
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

11-18-2008 

Hardware Architectures and Implementations for Hardware Architectures and Implementations for 

Associative Memories : the Building Blocks of Associative Memories : the Building Blocks of 

Hierarchically Distributed Memories Hierarchically Distributed Memories 

Changjian Gao 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Gao, Changjian, "Hardware Architectures and Implementations for Associative Memories : the Building 
Blocks of Hierarchically Distributed Memories" (2008). Dissertations and Theses. Paper 6173. 
https://doi.org/10.15760/etd.8033 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6173
https://doi.org/10.15760/etd.8033
mailto:pdxscholar@pdx.edu


HARDWARE ARCHITECTURES AND IMPLEMENTATIONS FOR 

ASSOCIATIVE MEMORIES - THE BUILDING BLOCKS OF 

HIERARCHICALLY DISTRIBUTED MEMORIES 

by 

CHANGJIAN GAO 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of 

DOCTOR OF PHILOSOPHY 
Ill 

ELECTRICAL AND COMPUTER ENGINEERING 

Portland State University 
2008 



DISSERTATION APPROVAL 

The abstract and dissertation of Changjian Gao for the Doctor of Philosophy in 

Electrical and Computer Engineering were presented November 14, 2008, and 

accepted by the dissertation committee and the doctoral program. 

COMMITTEE APPROVALS: 
Dan Hammerstrom, Chair 

Fei Xie 
Representative of the Office of Graduate Studies 

zano ska-Jeske, Director 
Electrical an Computer Engineering 
Ph.D. Program 



ABSTRACT 

An abstract of the dissertation of Changjian Gao for the Doctor of Philosophy in 

Electrical and Computer Engineering, presented November 14, 2008. 

Title: Hardware Architectures and Implementations for Associative Memories - the 

Building Blocks of Hierarchically Distributed Memories 

During the past several decades, the semiconductor industry has grown into a global 

industry with revenues around $300 billion. Intel, no longer relies on only transistor 

scaling for higher CPU performance, but instead, focuses more on multiple cores on a 

single die. It has been projected that in 2016 most CMOS circuits will be 

manufactured with 22 nm process. The CMOS circuits will have a large number of 

defects. Especially when the transistor goes below sub-micron, the original 

deterministic circuits will start having probabilistic characteristics. Hence, it would be 

challenging to map traditional computational models onto probabilistic circuits, 

suggesting a need for fault-tolerant computational algorithms. Biologically inspired 

algorithms, or associative memories (AMs) - the building blocks of cortical 

hierarchically distributed memories (HDMs) discussed in this dissertation, exhibit a 

remarkable match to the nano-scale electronics, besides having great fault-tolerance 

ability. Research on the potential mapping of the HDM onto CMOL (hybrid CMOS/ 



nanoelectronic circuits) nanogrids provides useful insight into the development of 

non-von Neumann neuromorphic architectures and semiconductor industry. 

In this dissertation, we investigated the implementations of AMs on different hardware 

platforms, including microprocessor based personal computer (PC), PC cluster, field 

programmable gate arrays (FPGA), CMOS, and CMOL nanogrids. We studied two 

types of neural associative memory models, with and without temporal information. 

In this research, we first decomposed the computational models into basic and 

common operations, such as matrix-vector inner-product and k-winners-take-all (k

WTA). We then analyzed the baseline performance/price ratio of implementing the 

AMs with a PC. We continued with a similar performance/price analysis of the 

implementations on more parallel hardware platforms, such as PC cluster and FPGA. 

However, the majority of the research emphasized on the implementations with all 

digital and mixed-signal full-custom CMOS and CMOL nanogrids. 

In this dissertation, we draw the conclusion that the mixed-signal CMOL nanogrids 

exhibit the best performance/price ratio over other hardware platforms. We also 

highlighted some of the trade-offs between dedicated and virtualized hardware circuits 

for the HDM models. A simple time-multiplexing scheme for the digital CMOS 

implementations can achieve comparable throughput as the mixed-signal CMOL 

nanogrids. 

2 



TABLE OF CONTENTS 

List of Tables ...................................................................................................................... iv 

List of Figures .............................................. , ....................................................................... v 

List of Abbreviations .......................................................................................................... ix 

1. Introduction ................................................................................................................... 1 

1.1. Research Background and Motivations ............................................................. 1 

1.2. Objectives and Contributions .......................................................................... 14 

1.2.1. Objectives ............................................................................................ 14 

1.2.2. Contributions ....................................................................................... 15 

1.3. Thesis Organization ......................................................................................... 20 

2. AM Algorithms and Hardware Architectures ............................................................. 23 

2.1. Introduction ..................................................................................................... 23 

2.2. Algorithm ........................................................................................................ 24 

2.2.1. HDM .................................................................................................... 24 

2.2.2. Bayesian Memory and Associative Memory ...................................... 29 

2.3. Virtualization in Hardware Resources ............................................................ .48 

2.4. Hardware Architectures for AM ...................................................................... 56 

2.4.1. WPNAM-like Model Hardware Implementations Review ................. 56 

2.4.2. Hardware Architectures Used in This Work ....................................... 63 

2.5. Methodology .................................................................................................... 68 

3. Design with General-Purpose Architectures ............................................................... 72 

3 .1. Introduction ..................................................................................................... 72 

3.2. Implementation with PC .................................................................................. 73 

3.2.1. CSIM Introduction ............................................................................... 73 

3.2.2. Network Configurations and Vtune Introduction ................................ 74 

3.2.3. Average Memory Access Time for Data (AMATD) .......................... 76 

3.2.4. Column-wise Inner-product. ................................................................ 77 

3.2.5. Simulation Results ............................................................................... 80 

1 



3.3. Implementation with PC Cluster ..................................................................... 85 

3.4. Performance Comparison between PC and PC Cluster ................................... 89 

4. Design with Reconfigurable Architectures ................................................................. 91 

4.1. Introduction ..................................................................................................... 91 

4.2. A Case Study of FPGA Implementation ......................................................... 92 

4.2.1. FPGA Implementation ......................................................................... 94 

4.2.2. Simulation Results ............................................................................... 99 

4.3. Implementation Analysis with the Relogix FPGA Board ............................. 101 

4.3.1. FPGA System Architecture ............................................................... 102 

4.3.2. Performance Analysis ........................................................................ 110 

4.3.3. Performance Comparison between the P4 and the Relogix 

FPGA Board .................................................................................................. 113 

4.4. Conclusion ..................................................................................................... 115 

5. Design with Special-Purpose Architectures (CMOS) ............................................... 117 

5 .1. Introduction ................................................................................................... 11 7 

5.2. Implementation with Digital CMOS ............................................................. 118 

5 .2.1. Non-spiking AM Model .................................................................... 118 

5.2.2. Spiking AM Model. ........................................................................... 121 

5.3. Implementation with Mixed-signal CMOS ................................................... 132 

5.3.1. Non-Spiking Mixed-signal CMOS Design ....................................... 132 

5.3.2. Spiking Mixed-signal CMOS design ................................................. 134 

6. Design with CMOL ................................................................................................... 136 

6.1. Introduction ................................................................................................... 136 

6 .1.1. Introduction of N anoscale Devices ................................................... 13 8 

6.1.2. Circuits .............................................................................................. 146 

6.1.3. OtherNanoarchitecture ..................................................................... 155 

6.1.4. Performance Modeling of Nano-structures ....................................... 157 

6.2. Implementation with Digital CMOL ............................................................. 170 

6.2.1. Non-spiking AM Model .................................................................... 170 

6.2.2. Spiking AM Model. ........................................................................... 171 

11 



6.3. Implementation with Mixed-signal CMOL. .................................................. 171 

6.3.1. Non-spiking AM Model .................................................................... 171 

6.3.2. Spiking AM Model. ........................................................................... 178 

6.4. Performance/price Comparisons between CMOS and CMOL ..................... 180 

6.5. Results and Discussion .................................................................................. 182 

7. Summary and Future Work ....................................................................................... 190 

7 .1. Summary and Conclusions ............................................................................ 190 

7.2. Future Work ................................................................................................... 195 

8. References ................................................................................................................. 197 

111 



LIST OF TABLES 

Table 2-1: Neocortex neuron counts in several mammals ................................................ 26 

Table 2-2: Data precisions for AM ................................................................................... .43 

Table 3-1: Configurations of the PALM associative neural networks .............................. 75 

Table 3-2: The overall performance results for the sparsely represented matrix with 

release compiler mode and speed optimizations enabled ................................ 81 

Table 3-3: The overall performance results for the fully represented matrix with 

release compiler mode and speed optimizations enabled ................................ 81 

Table 3-4: The hotspot OutGenObj::Execute() performance results for the sparsely 

represented matrix with release compiler mode and speed optimizations 

enabled ............................................................................................................. 82 

Table 3-5: The hotspot OutGenObj::Execute() for the full-matrix representation 

with release compiler mode and speed optimizations enabled ........................ 83 

Table 3-6: PC cluster (8 processors) simulation results .................................................... 88 

Table 4-1: Performance comparison of the WPNAM implementations on PC and 

D2 FPGA board ............................................................................................... 99 

Table 4-2: The time for the inner-product operation for the full-weight matrix 

representation. The weights are obtained from the SDRAM, the test 

vector is stored inside the FPGA ................................................................... 111 

Table 4-3: Time for k-WTA and the total time for the inner-product and k-WTA. ........ 113 

Table 6-1: Components for different systems of non-spiking AM model. ..................... 180 

Table 6-2: Components for different systems of spiking AM model.. ............................ 181 

Table 6-3: Circuit performance/price scaling .................................................................. 182 

Table 6-4: Performance/price comparison for the non-spiking AM model. ................... 183 

Table 6-5: Performance/price comparison for spiking AM model. ................................ 187 

IV 



LIST OF FIGURES 

Figure 1-1: Parallelism increases with the evolution oflntel® microarchitecture ............... 5 

Figure 2-1: Hierarchically distributed memory structure in the Mountcastle sense ......... 27 

Figure 2-2: The "decoder" model of association ............................................................... 30 

Figure 2-3: Communication channel. ................................................................................ 31 

Figure 2-4: Hawkins and George's HTM structure ........................................................... 33 

Figure 2-5: A three-BM network (adapted from [72]) ...................................................... 34 

Figure 2-6: With light emitted from C through B to A, the original spots on A are 

generally brighter ............................................................................................. 36 

Figure 2-7: The architecture of the Willshaw and Palm NAM model. ............................. 3 7 

Figure 2-8: Spiking neuron model. .................................................................................... 45 

Figure 2-9: A possible RC circuit model for an I&F neuron ........................................... .47 

Figure 2-10: Hardware spectrum for the implementation of biologically inspired 

networks .......................................................................................................... 51 

Figure 2-11: Processing nodes (PN s) time-multiplex neuron emulation .......................... 55 

Figure 2-12: The architecture of the BACCHUS III chip ................................................. 57 

Figure 2-13: Neuron unit block diagram of the Porrmann's FPGA design for the 

WPNAM model. .............................................................................................. 58 

Figure 2-14: CNAPS system architecture ......................................................................... 60 

Figure 2-15: CNAPS PN architecture ............................................................................... 61 

Figure 2-16: CrossNets ...................................................................................................... 63 

Figure 2-17: Methodology flow chart used in this work, i.e., performance/price 

ratio comparisons for AM algorithm hardware implementations ................... 68 

Figure 3-1: Memory hierarchy test for Pentium 4 machine (DELL Dimension 

8100) ................................................................................................................ 77 

Figure 3-2: The row-wise inner-product. .......................................................................... 79 

V 



Figure 3-3: The column-wise matrix-vector inner-product. .............................................. 80 

Figure 3-4: The relationship between the number of network nodes (vector 

elements) and the inner-product memory bandwidth for the Pentium 4 ......... 83 

Figure 3-5: Vector size versus node update rate for Pentium 4 ........................................ 84 

Figure 3-6: Illustration of the weight matrix distribution for the PC cluster (4 PCs 

example) .......................................................................................................... 88 

Figure 3-7: Node update rate for the P4 and the PIii cluster ............................................. 89 

Figure 4-1: EVS associative memory application ............................................................. 93 

Figure 4-2: System organization and data flow for the EVS system with the 

WPNAM algorithm implemented on the D2 FPGA board ............................. 96 

Figure 4-3: FPGA functional blocks - D2 FPGA board implementation .......................... 97 

Figure 4-4: Weight matrix data structure .......................................................................... 98 

Figure 4-5: The data structure in the "result vector" unit.. ................................................ 98 

Figure 4-6: Node update rate (node outputs computed per second) for P4 and 

FPGA versus the vector dimension, n . .......................................................... 101 

Figure 4-7 The basic Relogix FPGA board ..................................................................... 103 

Figure 4-8: FPGA board components block diagram. For the performance analysis, 

the FPGA_x is Xilinx XC2VI000-5, the DRAM_x is a 64-bit 133 

MHz DDR SDRAM DIMM .......................................................................... 105 

Figure 4-9: Weights distribution in the DRAMs ............................................................. 106 

Figure 4-10: Relogix FPGA functional block diagram ................................................... 107 

Figure 4-11: Node update rate for P4 and Relogix FPGA .............................................. 114 

Figure 5-1: The functional partitioning of the four configurations for CMOS and 

CMOL implementations ................................................................................ 119 

Figure 5-2: CMOS column processor system and functional blocks in a single PN 

for the spike-timing-dependent AM model. .................................................. 124 

Figure 5-3: Memory architectures inside CP ................................................................... 125 

Figure 5-4: Average waiting time in terms of firing rate A, according to (5.1) ............. 129 

Figure 5-5: Normalized (weight read) time of multiple-weight read with the 

network size of 16,384 .................................................................................. 131 

VI 



Figure 5-6: Schematic view of the k-WTA circuit. ......................................................... 134 

Figure 6-1: Two different views of a nanoscale crossbar ................................................ 140 

Figure 6-2: Nanoscale molecular-switch crossbar circuit from Chen [34]. .................... 141 

Figure 6-3: The crossbar as a 64-bit random access memory ......................................... 142 

Figure 6-4: Schematic diagram illustrating the basic function of a latch used to 

transform a bidirectional switch (memory) into a voltage (logic) 

· representation for representing logical data values ....................................... 143 

Figure 6-5: Two-terminal latching switch ....................................................................... 145 

Figure 6-6: The generic CMOL circuit. .......................................................................... 147 

Figure 6-7: The system architecture ofCMOL memory ................................................. 148 

Figure 6-8: Logic blocks implemented with a complementary/symmetry array ............ 149 

Figure 6-9: Implementing two logic functions by selectively configuring the 

nanodevice-based junctions ........................................................................... 150 

Figure 6-10: CMOL FPGA architecture .......................................................................... 151 

Figure 6-11: Kogge-Stone adder and its NOR gate synthesis ......................................... 153 

Figure 6-12: Schematic diagrams of hybrid circuits. The left is CMOL. The right is 

FPNI. ........................................................................ : .................................... 154 

Figure 6-13: A hypercell consisting of four three-input NAND/AND gates, one 

flipflop and 26 buffers ................................................................................... 155 

Figure 6-14: A design paradigm involving nanoelectronics on a CMOS IC .................. 156 

Figure 6-15: Schematic of crossbar arrays ...................................................................... 15 8 

Figure 6-16: Calculation of nano wire capacitance with back gate .................................. 159 

Figure 6-17: Nanowire arrays with square-like cross-section NWs ................................ 160 

Figure 6-18: Schematic of NOR gate with CMOL FPGA. ............................................. 162 

Figure 6-19: Equivalent circuit of transmission line for the circuit in Figure 6-18 ........ 162 

Figure 6-20: Schematic of current flow and R, C parameters for CMOL memories ...... 164 

Figure 6-21: Equivalent circuit of Figure 6-20 ................................................................ 164 

Figure 6-22: Simplified equivalent circuit of Figure 6-21. ............................................. 165 

Figure 6-23: Schematic 1-V curve of a two-terminal nanodevice ................................... 167 

Vll 



Figure 6-24: Current (the arrowed line) flows from the input pin via an input 

nanowire through the nanodevice and output nanowire to the output 

pin .................................................................................................................. 169 

Figure 6-25: A structural view of the mixed-signal CMOL design ................................ 172 

Figure 6-26: CMOL nanogrid interface between nanowires and CMOS ........................ 173 

Figure 6-27: CMOL nanogrid weight bits ....................................................................... 175 

Figure 6-28: 1-D asymmetric multi-bit weight nanogrid implementation ...................... 176 

Figure 6-29: CMOS weighted multi-bit implementation, with complexity of O(N) . ..... 176 

Figure 6-30: (a) Programming nanodevices with multi-bits. (b) Operation of 

CMOL nanogrids with multi-bits .................................................................. 177 

Figure 6-31: Mead k-WTA CMOS circuit. ..................................................................... 178 

Figure 6-32: Schematic view of an analog integrate-and-fire neuron circuit.. ................ 179 

Figure 6-33: A log-log plot of the input spiking rate of the digital CMOS design 

for an 858 mm2 chip with three different levels of connectivity ................... 184 

Figure 6-34: A log-log plot of the input spiking rate of the digital CMOL design 

for an 858mm2 chip with three scenarios of connectivity ............................. 185 

vm 



Abbreviation 

AER 

AI 

AM 

AMATD 

ANN 

ASIC 

BBP 

BCPNN 

BIC 

BM 

CAM 

CB 

CB-DIR 

CB-FET 

CMOL 

CMOS 

CMP 

CP1 

LIST OF ABBREVIATIONS 

Meaning 

Address Event Representation 

Artificial Intelligence 

Associative Memory 

Average Memory Access Time for Data 

Artificial Neural Network 

Application Specific Integrate Circuit 

Bayesian Belief Propagation 

Bayesian Confidence Propagation Neural Network 

Biologically Inspired Computation 

Bayesian Memory 

Content-Addressable Memory 

CrossBar 

CrossBar Diode/Resistor 

CrossBar Field Effect Transistor 

hybrid CMOS I nanoelectronic circuit 

Complementary Metal-Oxide-Semiconductor 

Chip MultiProcessor 

Column Processor 

IX 



CP2 

CPI 

CPS 

CSIM 

EBS 

eDRAM 

EVS 

FET 

FPGA 

FPNI 

HC 

HC-WPNAM 

HDD 

HDM 

HTM 

HUD 

I&F 

ILP 

k-WTA 

LUT 

LWIR 

MIPS 

Control Processor 

Clocks Per Instruction 

Connections Per Second 

Cortex SIMulation 

Event Based Sampling 

embedded DRAM 

Enhanced Vision System 

Field-Effect Transistor 

Field-Programmable Gate Array 

Field-Programmable N anowire Interconnect 

Hyper-Column 

Hyper-Column WPNAM 

Head-Down Display 

Hierarchically Distributed Memory 

Hierarchical Temporal Memory 

Head-Up Display 

Integrate and Fire 

Instruction-Level Parallelism 

k Winners-Take-All 

Look-Up Table 

Long Wave InfRared 

Million Instructions Per Second 

X 



MMX 

MOSFET 

MP 

MPI 

NW 

OCR 

P4 

PC 

PLA 

PN 

PSEM 

PSP 

RC 

SIMD 

SSE 

STOP 

SWIR 

VLSI 

WPNAM 

WTA 

MultiMedia eXtensions 

Metal-Oxide-Semiconductor Field-Effect Transistor 

Membrane Potential 

Message Passing Interface 

NanoWire 

Optical Character Recognition 

Pentium® 4 . 

Personal Computer 

Programmable Logic Array 

Processing Node 

PreSynaptic Events Memory 

PostSynaptic Potential 

Resistor-Capacitor 

Single Instruction and Multiple Data 

Streaming Single-instruction multi-data Extension 

Spike-Timing-Dependent synaptic Plasticity 

Short Wave InfRared 

Very-Large Scale Integration 

Willshaw and Palm Neural Associative Memory 

Winner-Take-All 

XI 



1. INTRODUCTION 

1.1. RESEARCH BACKGROUND AND MOTIVATIONS 

In this chapter we state the research problem pursued in this dissertation. In addition, 

we present the motivation for solving this problem, along with background 

information on the research domain. We also provide a brief introduction of the 

concepts and technologies used in this work. However, most of the details are 

presented only in their corresponding chapters. For example, previous work on 

hardware implementations of artificial neural networks is discussed in Chapter 2, 

where we also discuss algorithms, virtualization, and potential hardware platforms 

studied in this work. 

This dissertation deals with the hardware implementation of certain families of 

artificial neural network algorithms. These chosen algorithms are biologically

inspired, and the hardware implementations are based on CMOS ( complementary 

metal-oxide-semiconductor) technology augmented in some cases with speculative 

nanogrid-based computing structures. This dissertation constitutes a comprehensive 

evaluation of a wide range of hardware platforms for implementing the hierarchically

distributed memories (HDM) that we believe will constitute a core component in the 

artificial cognitive systems of the future. Both spiking and non-spiking forms of the 

algorithms are studied for a range of hardware platforms, such as microprocessors, 

cluster of microprocessors, FPGAs (field-programmable gate arrays), digital/mixed-

1 



signal CMOS, and digital/mixed-signal CMOL (hybrid CMOS / nanoelectronic 

circuits) [1, 2]. 

The semiconductor industry has been following Moore's law, where the number of 

transistors doubles every 18-24 months, for more than 30 years. It is not a real 

physical law, but one of faith; the fruits of a hyper-competitive $300 billion global 

semiconductor industry. And then there is Moore's lesser known 2nd law that states 

that sustaining the 1st law requires exponentially increasing investment. There is also 

what we refer to as Moore's 3rd law, where the 1st law results in exponentially 

increasing design errata ( design errors). 

At the time of this writing, Intel is manufacturing some of its chips with 45 nm 

process [3], with physical gate length of 18 nm, and is preparing to move to 32 nm 

process. Transistors of this size are no longer acting like ideal switches. And there are 

other problems outlined by Hammerstrom [4] as follows: 

• Projected power density - the main limiter of processor performance today; 

• Performance overkill - the highest volume segments of the market are no 

longer performance ( clock frequency) driven; 

• Density overkill- How do we use all these billion transistors [3]? 

• The end of Moore's law - scaling will continue, though at a decreasing rate, 

asymptotically approaching 22 nm in 7-12 years - the current business model 

based on shrinks and compactions will change dramatically; 

2 



• Complexity - how do we create a 100% guaranteed correct design of several 

billion transistors? 

Because of power and interconnect limitations, ever increasing processor performance 

will need to come more from parallel execution and not from raw clock speed 

improvements, and we see this already happening with the offering of multi-core chips 

from Intel® and AMD®. Figure 1-1 shows the evolution of Intel®'s microarchitecture. 

The parallelism starts with the instruction pipeline, a fundamental parallelism in 

organizing and executing multiple tasks. It then goes to instruction-level parallelism 

(ILP), which allows super-scalar, out of order execution. With additional, wider 

registers, the microarchitecture achieves data-level parallelism and thread-level 

parallelism with MMX (multimedia extensions) and SSE, SSE2, SSE3 (streaming 

single-instruction multi-data extensions) technology. 

Due to power limitations and diminishing returns in ILP, Intel® is embracing chip

level multiprocessing ( or chip multiprocessor - CMP) or "multi-core" architectures to 

increase computational performance [4]. However, with the exception of multi-media 

and perhaps games, there are still few opportunities to leverage parallelism in volume 

market desktop applications. Furthermore, writing parallel code remains one of the 

most difficult programming tasks, with only a few programmers able to do it well. 

As CMOS scaling slows, researchers are now looking at molecular scale / 

nanoelectronics to continue Moore's law. Will nanoelectronics be economical? What 

will we do with it? Can we design it reliably? Can we tolerate the expected high levels 

3 



of faults and defects with our "fault intolerant" applications? Will it enable new 

applications? Or will it be more of the same? What should the research agenda be? 

Although nanoelectronics will probably take many different forms, the most likely 

configuration, at least initially, will be simple nanogrids fabricated on top of 

traditional CMOS circuitry in a hybrid configuration. Simplistically, a nanogrid 

consists of: 

• A roughly horizontal group of nanowires; 

• A single molecule layer of some specialized material (with the electrical 

properties of rectification and bi-stable resistance); 

• Another roughly vertical group of nano wires; 

• Connections of both groups of nanowires to CMOS metal lines (the CMOL 

self-aligning skewed pattern developed by Likharev [l] is the most promising). 

4 



Figure 1-1: Parallelism increases with the evolution of Intel® 
microarchitecture. 
The horizontal axis is the degree of parallelism. The vertical axis is the overall 
performance (adapted from [5]). 

At the intersections ( cross points or junctions) of vertical and horizontal nanowires, 

the molecules or other nanoelectronic devices ideally form a bistable, rectifying device 

that connects a horizontal wire to a vertical wire. Currently, researchers are fabricating 

wires from silicon and other materials that are ~ 15 nm in diameter, eventually going to 

< 10 nm, with lengths up to 10 µm [6, 7]. These ultra-thin wires have very high 

resistance, limiting their speed, but they have significantly high density. 

Standard photolithography will not be possible at these very small dimensions, and 

electron beam lithography remains too expensive for commercial production. 

5 



However, several groups have demonstrated reasonably effective manufacturing of 

nanowires using a template method called nanoimprint lithography [8, 9]. 

Unfortunately, of the various problems facing the semiconductor industry, 

nanoelectronics does not solve very many. In fact, it addresses the end of Moore's law 

scaling, and perhaps the memory bandwidth problem. It also severely aggravates the 

design complexity problem. If we are currently struggling with the complexity of 

designing chips with several billion switches, then how will we manage designs of 

several trillion switches in the future? 

Nanoelectronic systems will be built from modules, which, in turn, are implemented 

by nanodevices connected into nanocircuits. The collection of modules creates a 

computing structure - the specific modules and their connections constitute a 

"nanoarchitecture [10]." 

As discussed above, one likely form that early nanoelectronics will take is nanogrids 

fabricated on top of CMOS, as illustrated in Figure 6-25. In such a configuration, 

nanoscale devices perform their limited, but very dense computing. At the same time, 

the CMOS part provides the remaining "enabling" functionality such as I/O and signal 

restoration; and some logic operations such as AND, NOT, buffers, and flip-flops. 

One important example of this is the CMOL (hybrid CMOS / nanoelectronic circuits) 

concept, developed by Likharev [1, 2] at SUNY Stony Brook. 

The effective use of nanoelectronics will require solutions to more than just increased 

density; we need to consider total system solutions [ 4]. We cannot create chip-

6 



architectures without some sense of the applications they will execute [10], since a 

chip-architecture is not an end in itself, but a tool to solve a problem. 

Any paradigm shift in applications and architecture will have a profound impact on the 

tools and the entire design process. Radically new technologies create opportunities 

for radically new capabilities. However, generally, those capabilities require radically 

new computational models and structures. 

One direction to take computing architecture involves a large class of problems that 

computers still do not solve well. These problems involve the interaction of a system 

with the real world, which, in part, involves the transformation and interpretation of 

data at the boundary between the real world and the digital world [4]. These problems 

occur wherever a computer is interacting with the real world. Examples include: 

speech recognition, computer vision, textual and image content recognition, robotic 

control, unmanned vehicles, sensor data collection, intelligent power management, and 

OCR (optical character recognition) [4]. 

These are difficult problems that require the computer to find complex structures and 

relationships in massive quantities of low precision, ambiguous, and noisy data [ 4 ]. In 

spite of phenomenal increases in processor speed and memory capacity, true machine 

intelligence still eludes us. Our inability to adequately solve these problems constitutes 

a significant barrier to computer usage [4]. Neither AI (artificial intelligence), ANNs 

(artificial neural networks), fuzzy logic, nor Bayesian networks (see Section 2.2.2) 

have yet led to robust solutions [4]. 

7 



One potential source of inspiration, which also acts as an existence proof for solutions 

to these challenges, is the biological system. Though there is a wide range of "natural" 

computation from genes to cells, the one that is most relevant here deals with the 

neural circuits. Our research is inspired by the computational or "systems" [ 4, 11] 

neuroscience, and cognitive science. 

There is a growing set of fascinating models and techniques that deserve a closer look 

by main-stream computer engineers and scientists. It is a gold-mine waiting for us to 

dig and refine the ore. The goal of this work is not to build a brain nor to contribute to 

neuroscience, but to use biology as a source of ideas for building new kinds of chip 

architectures, especially architectures that consist, in part, of nanoscale components. 

Do we know how the brain works? No. However, we believe that enough is known to 

begin to utilize information from neuroscience as inspiration for new techniques and 

algorithms. In general, neural circuits 

• are fine-grained and massively parallel, consisting of networks of sparsely 

connected nodes, 

• are built from slow, low-power, asynchronous, low precision, unreliable 

components, 

• demonstrate a level of design error tolerance, 

• are robust in the presence of faulty and failing hardware, including hardware 

manufacturing defects, 

8 



• degrade gracefully, 

• adapt instead of being programmed, 

• constitute systems involved in the interaction of an organism / system with the 

real world, and 

• self-organize - in fact, system design becomes more the prov1S1omng of 

organizing principles (Prof. Christoph von der Malsburg, FIAS, www.organic

computing.org) than the specification of all operational aspects of the models. 

In short, neural models could not be more different from most existing computational 

models - and yet they are a remarkable match to nanoelectronics. 

The ultimate cognitive processor is the cerebral cortex (neocortex), which is a folded 

2D planar sheet. When stretched out, the human neocortex is about 2/3 's of a square 

meter. It is 3-4 millimeters thick, and consists of roughly 3xl010 neurons. It has a 

consistent six-layer structure and is remarkably uniform; not only across all different 

parts of human neocortex, but across almost all mammalian species. Although we are 

far from understanding the details of what it does and how, some of the basic 

computations are beginning to take shape. Nature, so it appears, has produced a 

general purpose computational device in the neocortex that is a fundamental 

component of higher level intelligence [4]. Consequently, several groups are looking 

to create increasingly more sophisticated models of neocortex and then to apply these 

models to real applications [12-20]. In Section 2.2, we will introduce the meaning and 

9 

http://www.organic-
http://computing.org


structure of the core terminology, HDM (Hierarchically-Distributed Memory) and AM 

(Associative Memory) - the building block of HDM, used in this dissertation. For 

now, we will assume AM algorithm as the biologically-inspired cognitive building 

block. 

The problem with using traditional computers (microprocessors) for simulating AM 

algorithms is that, for the most part, instruction execution is sequential with only 

modest amounts of parallelism. Even though the current generation of microprocessors 

is using multiple cores in a single chip, parallelism is still limited compared to neural 

models. If there are millions of nodes in a neural network algorithm for a real system, 

the traditional PC (personal computer) cannot emulate such a network in real time (in 

the sense of biology). In fact, as we understand more about how to scale these 

algorithms, the lack of efficient implementations is starting to be a major impediment 

to the use of AM in real applications. Therefore, our research goal is to study the 

hardware platforms with the best performance/price ratio for those models, using both 

existing technology and, in the long term, hybrid CMOS nanoscale structures. 

There has been some research over the last 15-20 years on special-purpose hardware 

for implementing traditional artificial neural network algorithms. However, the rapid 

advances in microprocessor performance, coupled with the poor scalability of these 

algorithms [4], have resulted in little research being done on relevant hardware 

development. 

10 



Now, however, we are looking at very large, scalable, biologically-inspired algorithms 

that are extremely compute intensive. They are also massively parallel and can absorb 

just about any parallelism we can provide at the hardware level. 

Ideally, the range of hardware that can be used to implement AMs could go from 

microprocessors to FPGAs (field-programmable gate arrays), full-custom silicon, and 

nanoelectronic architectures. Figure 2-10 shows a qualitative description of the 

hardware spectrum for artificial neural network implementations. As we move from 

general to specialized computing structures, we can get greater performance/price 

from the implementations, but such customization also tends to reduce general 

flexibility. 

However, the efficiency of parallel architectures is dependent on Amdahl's law, which 

is represented as "Total Speedup = 1 / [(1 - Fraction) + Fraction I SpeedupFractian]" 

[21]. Thus, the total speedup of a system with some parallel operations tends to be 

limited by the sequential part of the algorithm, i.e. the (1 - Fraction) in the previous 

equation. We could think of a simple example: for a given system, if Fraction (parallel 

part)= 0.5, SpeedupFraction = 1000, the system's Total Speedup will be only about 2x. 

However, if we increase the Fraction (parallel part) to 0.95, the system's Total 

Speedup will be almost 200x, which is much better than the previous case. This shows 

that the more computational time for the sequential part in the algorithm, the less 

speedup the enhanced hardware could possibly achieve. As a result, by being difficult 

to parallelize a large portion of an application, Amdahl's law favors the flexibility in 

designing a hardware computing platform. We should also be aware that trading off 

11 



flexibility with parallelism is a critical aspect of designing hardware platforms for the 

AM application presented here. 

For different applications and constraints, computer engineers use various kinds of 

performance/price ratios to measure the effectiveness of different hardware 

implementations. Performance is generally a measure of the speed of a system. So for 

neural network models, performance may be measured by the number of connections 

computed per second. Price has traditionally been measured by silicon area, though 

power consumption is becoming more important. Comparing the performance/price 

for different hardware implementations will give us an intuitive view of how to choose 

the optimal hardware platform, and the optimal hardware architecture. 

In looking at hardware implementations of artificial neural networks, a wide range of 

neuromorphic (coined by Carver Mead [22, 23] in the 1980s to describe the analog 

VLSI systems that mimic the neural circuits) VLSI (very-large scale integration) has 

been explored. Since most computational models were massively parallel, designers 

sought to explore this characteristic to achieve cost-effective speedup. Additionally, 

because many network algorithms were very compute intensive, specialized neuro

hardware was even thought to be necessary for the field to progress [ 4]. 

Neuromorphic hardware took the form of special computers based on general-purpose 

microprocessors, such as BSP400 [24] and CO KOS [25], or systems that used 

specialized silicon. However, Amdahl's law coupled with the rapid increase in speed 

m mainstream microprocessor technology compromised most of the 

12 



performance/price value these systems had. The same can be said for many of the 

digital neurochips such as CNAPS [26] and SYNAPSE-I [27]. Palm et al. [17, 28] 

also developed BACCHUS chips for their neural associative memory models. We will 

introduce those prior works in Section 2.4. 

Carver Mead [22] developed the idea of using analog circuits to implement a number 

of neural inspired algorithms. One of Mead's innovations was to operate MOS FETs 

in the sub-threshold region, creating slow, but ultra-low power designs. This 

technology is now often referred to as a VLSI (analog VLSI). 

Analog based neurochips can be both extremely fast due to massive parallelism, yet 

very inexpensive and consume very little power. However, they are essentially 

algorithms wired into silicon and are inflexible. As shown later in this dissertation, 

under certain conditions and for a certain family of algorithms, they do not provide an 

improved performance/price. They are intrinsically good for front end applications or 

low-precision cognitive models [15], but lack the flexibility and precision of higher 

level cognitive models. 

Because of the storage requirements of BIC (Biologically-Inspired Computational) 

models, and because nanogrid technologies promise very high density on-chip storage, 

we believe that the CMOL technology developed by Likharev [1] is a promising 

paradigm to include into our search for cost-effective AM implementations. There are 

a number of other nanodevice crossbar architectures [29-35]. However, the 

electronics-based CMOL technology appears to be more practical to manufacture with 

13 



a reasonable cost [2, 36, 37] by the use of nanoimprint lithography [8]. For these 

reasons, we include CMOL as an implementation option for our AM models. CMOL 

is probably the densest charge-based computing technology that we will see any time 

over the next decade or so [38]. 

When we use analog circuits to implement AM models at the nanoscale, under certain 

assumptions power density can become a significant limiting factor. One promising 

approach to reducing power requirements is the use of spiking models. Although they 

are not well developed, we also investigate what is possible if we assume simple 

spiking neuron models [39]. From the algorithmic perspective, in spiking models, time 

is the additional dimension of information. This temporal information is not present in 

the WPNAM family. Spiking neural network models are intrinsically closer to the 

neocortex than non-spiking neural network models [39]. Although they are much more 

complex than WPNAM model, they lend themselves to some interesting 

optimizations. 

1.2. OBJECTIVES AND ·CONTRIBUTIONS 

1.2.1. OBJECTIVES 

The goal of this dissertation is to compare different hardware solutions for a certain 

class of artificial neural network algorithms, specifically associative networks ( or 

associative memories) as might be used to implement a node in an HDM, to determine 

the best performance/price solution among several reasonable alternatives. Although 

dynamic, incremental learning in the neural associative memory is important, it is 

14 



complex, and, hence, was deemed to be beyond the scope of this dissertation. 

Consequently we assume that the connection weights are pre-determined and 

downloaded into the network prior to network operation. Consequently, the hardware 

only deals with the network's retrieval of the stored patterns. 

In this dissertation, there are two neural associative memory models implemented by 

the specialized hardware platforms. One is a non-spiking ( often called a "rate" code), 

binary, neural associative memory model, derived from WPNAM. This dissertation 

focuses on a single WPNAM network, which would be a node in a larger HDM model 

and does not consider multiple nodes and inter-node communication. The other model 

is a spiking neural associative memory model. The spiking neuron model is based on 

the simple spiking neuron model proposed by Gerstner [39] and a variation of 

Gerstner's simple spiking neuron model, the leaky integrate and fire (I&F) neuron 

model ( details in Chapter 2). 

1.2.2. CONTRIBUTIONS 

Here we show the contributions of the work undertaken in this dissertation, including 

all the major problems addressed by this work. 

• Algorithm decomposition 

To implement the target algorithms, we first need to understand their properties. We 

started by decomposing the AM models into a number of simple computations that 

have reasonable functional coverage. For example, the simple WPNAM model 

includes a matrix-vector inner-product and k-WTA operations. The simple spiking 

15 



neuron model includes the post-synaptic potential, accumulation, and threshold 

operations. The leaky I&F (integrate and fire) model includes accumulation and 

threshold operations. From these models, we extract the basic computations: 

multiplication, summation (accumulation), and threshold. The hardware architectures 

should handle these computations efficiently and at some reasonable "optimal" 

performance/price ratio. The HDM consists oflarge numbers ofrelatively independent 

modules and decomposes fairly nicely. These modules are typically modeled as 

"Bayesian Memories" [40]. In this dissertation, we studied how to physically 

implement associative memories as an approximation to a Bayesian Memory. 

• Explore possible hardware platforms 

For most people, using a stand-alone workstation to simulate AM algorithms seems 

very practical. However, in order to run some applications in real time or on small 

portable embedded platforms, hardware accelerators will still be required. In addition, 

we are interested in the best performance/price solution. In this dissertation, we 

explore several different hardware configurations for implementing associative 

networks, including a desktop PC (commercial microprocessor), PC cluster, FPGA, 

custom CMOS, and nanodevice hybrid circuits (CMOL). 

There is also another factor that motivates the use of custom hardware: the need to 

handle very large, scalable networks. More than anything else, the inability to scale 

has been the biggest problem with traditional AI ( artificial intelligence) and ANN 

algorithms [4], which is one reason that specialized hardware was ultimately not cost 

16 



effective in the ANN boom of the late 80s and early 90s. BMs are scalable and 

consequently will demand scalable hardware. 

As a part of this work we have developed an architectural analysis methodology, 

which includes an approach to analyzing the performance/price ratio of different 

hardware implementations, and the comparisons for those performance/price ratios to 

determine the best configuration from a range of hardware platforms. This exploration 

of hardware platforms for AM algorithms is new and unique. It not only establishes 

the equations to analyze the performance/price ratio with different hardware platforms, 

but it also creates a set of hardware building blocks that can be used for a wide range 

of related data parallel algorithms. 

• FPGA architectural design, analysis, and implementation 

It is generally accepted that the finer grain the parallelism, and the lower the precision, 

the more effective an FPGA implementation will be [41, 42]. Consequently, an FPGA 

design should exhibit a better performance/price ratio compared to a PC. In the work 

described here we developed a method for the design of FPGA functional blocks for 

the non-spiking algorithm. We then compared the performance/price ratio with the 

previous results of PC and PC clusters, and showed the validity of the parallelism 

assumption. We also present an example FPGA design from a low-end FPGA 

development board to demonstrate the feasibility of using an FPGA as a hardware 

platform for our non-spiking AM model. We demonstrated this system at NIPS'03 

(Neural Information Processing Systems 2003) and published a paper at IJCNN'04 

17 



(International Joint Conference on Neural Networks 2004) [43]. The FPGA 

implementation for the AM algorithm is an important step in this work. FPGAs tend to 

be used to accelerate the applications that the PC cannot execute in real time, or where 

the PC is too expensive of a platform. Our results proved the validity of this 

assumption for the algorithms studied here. 

• Using CMOL to implement AM algorithms 

Although the concept of CMOL [l] is relatively new, HP [44, 45], for example, has 

already been working to commercialize nanogrid structures. They have proposed a 

possible application FPNI (field-programmable nanowire interconnect) based on 

CMOL. And while Tilrel and Likharev [46] have proposed neuromorphic CMOL 

structures, we are the first to study the use of CMOL for implementing HDM-like 

cortical models [47-49]. Our implementations not only include non-spiking, but also 

the spiking AM algorithms. The mixed-signal CMOL structure implements the 

multiplication and accumulation directly in the nanowire, which saves silicon area and 

power. Consequently, mapping the multiplication-summation, i.e., inner-product 

computations, onto CMOL is an excellent candidate technology for implementing 

neural associative memories. We will show detailed equations to estimate CMOL's 

real estate, time delay (according to Elmore's time delays for resistor-capacitor 

network [50]), and power. 

• Hardware parallelism 

18 



In order to explore hardware parallelism, we studied both mixed-signal CMOS and 

mixed-signal CMOL as potential hardware technologies for implementing non-spiking 

and spiking AM algorithms. As illustrated in Figure 2-10, the finest-grained 

parallelism literally has a PN (processing node) for each synapse. Only mixed-signal 

CMOL can achieve such hardware parallelism. We will show (in Chapter 6) that this 

ultimate parallelism gives us the best performance/price ratio compared with other 

hardware candidates for both spiking and non-spiking AM algorithms. This also 

demonstrates the significant parallelism of neural associative memory models and the 

intrinsic properties of parallelism of mixed-signal CMOL. 

• Hardware virtualization 

Although this ultimate parallelism gives us the best performance, it may not 

necessarily be the most efficient. We present a theoretical analysis of hardware 

virtualization in the spiking AM algorithm implementations, especially for digital 

CMOS. Because of the sparse input activation and sparse connectivity, the most 

parallel (finest grained) structure of digital CMOS is not necessarily the most efficient 

implementation. Instead, we can increase efficiency by multiplexing many neurons 

over a single physical processing node. Though it is possible to multiplex analog and 

digital computations, digital circuits are easier to implement and can actually be less 

expensive. They also tend to be more fault-tolerant and they put fewer requirements 

on the fabrication process. Consequently sparse activation tends to significantly 

increase efficiency in digital implementations of these algorithms. Hardware 

19 



virtualization then provides guidance to other similar designs that have the properties 

of sparse input events or sparse connectivity. 

1.2.2.1. Contribution to knowledge 

However, the contributions listed above mainly represent the detailed work we have 

done, such as using FPGA to implement associative memory algorithm for the EVS 

application (see Section 4.2). However, the results of our methodology and work could 

provide insights to people from different fields. For the neuromorphic engineering, our 

results provide "insights into brain's high-level computational principles" [51], which 

pave the road to novel scalable cognitive systems; and also provide guidance to steer 

future research trends in computational neuroscience. The study of associative 

memory hardware architectures will lead to novel non-von Neumann computing 

architectures, which could change the future state of computer industry. Moreover, it 

provides the semiconductor industry one of the potential architectural solutions for the 

scaling challenges faced by the design of nanoelectronic circuits in the future [52]. 

1.3. THESIS ORGANIZATION 

The purpose of the work presented here is to analyze the performance/price 

characteristics of a range of hardware platforms for implementing cortical-like models. 

The general organization of this thesis is to first present the models, and then to 

describe the selected hardware options. Finally the results of this analysis are 

presented. Because of its increased complexity, learning, i.e., dynamic, real-time 

modification of the network parameters is not addressed here. However, for non-

20 



learning models we believe that this work constitutes one of the more thorough 

analysis to date of the various hardware implementation options for a range of 

cortical-like algorithms, including the addition of nanogrid structures that may be 

available in the next 7-12 years. 

In Chapter 2 - "AM Algorithms and Hardware Architectures", we introduce the 

hierarchically-distributed memory models, the Bayesian memory, and associative 

memory models that approximate Bayesian memory. There are both non-spiking and 

spiking variations of these associative memory models. We explain the most important 

theory, virtualization, for our work in this chapter. We also introduce possible 

hardware architectures for the neural associative memories, and the methodology for 

conducting the performance/price compansons among selected hardware 

architectures. 

In Chapter 3 - "Design with General-Purpose Architectures", we investigate the 

implementation method of using a desktop computer for the non-spiking neural 

associative memories. This chapter describes a baseline, the PC, for the hardware 

implementation of neural associative memories. This baseline is used to compare with 

different hardware architectures in later chapters. We also investigate the 

implementation with PC clusters, and compare the performance/price ratios of those 

two solutions (PC and PC duster). 

In Chapter 4 - "Design with Reconfigurable Architectures", we analyze the 

performance/price ratio of using FPGAs to implement the non-spiking neural 

21 



associative memory algorithm. We give an example of a simple FPGA design with an 

available FPGA development board to implement the AM algorithm. We also 

compare the performance/price ratios of the PC and FPGA implementations. 

In Chapter 5 - "Design with Special-Purpose Architectures (CMOS)", we introduce a 

detailed design method and analyze the performance/price ratios with the 

digital/analog CMOS technology for the non-spiking and spiking AM algorithms. 

In Chapter 6 - "Design with CMOL", we introduce previous work on nanodevice and 

nanoarchitecture proposed or developed by other people. We give the equations for the 

performance/price modeling of CMOL. We compare the performance/price 

benchmarks for non-spiking algorithm implementations with PC, CMOS, and CMOL, 

and spiking algorithm implementations with CMOS and CMOL. 

Finally, in Chapter 7 - "Summary and Future Work", we summarize our work and 

point out the important conclusions. We also point out some potential future work. 

22 



2. AM ALGORITHMS AND HARDWARE ARCHITECTURES 

2.1. INTRODUCTION 

In traditional computing, data are stored in memory using an address-based scheme, 

which requires that the program knows the location of the desired data. For some 

applications, such as the storage of numerical arrays, creating the necessary address is 

not particularly onerous. However, for some applications, such as the EVS (Enhanced 

Vision System) association engine (in Section 4.2), the address is unknown, or only 

the part of the data is known and the remainder is sought. In these circumstances, 

content addressing [ 42] is used. 

The most common kind of content addressing is exact match, where part of the data is 

known and is matched exactly to any location with these contents. Exact match 

addressing is commonly used in traditional computing hardware and software, and a 

number of implementation techniques, such as hashing, have been developed. 

However, with exact match association, any search using slightly corrupted data will 

return the wrong data. For this reason, some applications use a more complex form of 

association, called best match, where the memory finds the content that has the 

"closest" match according to some metric. There are many metrics that can be used in 

best-match search. For the networks studied here, we use a simple Hamming distance 

23 



for binary vectors, and the Euclidean distance1 for non-binary (fixed or floating point) 

vectors. Presenting a noisy vector as input to a best match associative memory returns 

the location that has the smallest metric difference. Although best-match association is 

quite useful, there are no real computational short-cuts to checking the distance to 

every item in memory. For this reason, best match association has rarely been used. At 

the same time, we are aware of some techniques for VQ (Vector Quantization) [53], 

such as kd-tree (k-dimensional tree) [54] and LSH (Local Sensitive Hash) [55], which 

are approximations and can work well in some cases and not so well in others. 

There are biologically inspired associative memory models, such as the Willshaw [18-

20] and Palm [ 17, 56] neural associative memory models (WPNAM), and the 

Hopfield [57] neural associative model, which find the best-matched content in a 

computationally efficient manner. The WPNAM model forms the basis of the work 

reported here. 

2.2. ALGORITHM 

2.2.1. HDM 

Neocortex appears to implement efficient Bayesian-like inference over sparsely 

distributed representations of data ( only a few bits in the data are ones, the others are 

zeros), using columns to represent invariant lower level "features" in the data [58]. We 

believe that distributed representations are a kind of factorization, allowing massively 

1 For the higher levels in an HDM system, we would ideally want a metric that had meaning in the 
application space where the HDM is being used. However, such measures are beyond the scope of the 
research proposed here and so simple vector distance metrics are used. 

24 



parallel inference. Distributed representations also diffuse information, topologically 

localizing it to the area where it is needed, and reducing global connectivity 

requirements. Those columns are connected with each other to form hypercolumns. 

We call this hierarchical structure of correlated information, or HDM. As mentioned 

earlier, a number of people in Computational ( or "Systems") Neuroscience view 

HDM-like models as being a promising model for some aspects of mammalian 

cerebral cortex. 

Based on the current understanding of the biology of the mammalian neocortex, 

Braitenberg and Schilz [59] proposed a statistical approach to cortical neuroanatomy. 

One finding was that the number of neurons in the mouse neocortex is at least }Ox 

greater than the number of input elements. In human neocortex, this relationship 

between neuron counts and input fiber counts can exceed 1 OOOx. 

Johansson and Lansner [ 60] considered the mammalian neocortex as a kind of 

associative memory. When we look at the vast number of homogeneous neurons and 

synapses in neocortex, the electrical charge accumulation and ion concentration 

variations determine the state of the neurons and synapses, with many learning rules 

following the basic Hebb model [ 61]. 

Johansson and Lansner [60] present a nice summary of the neuron and synapse counts 

in some mammals, as illustrated in Table 2-1. It shows a consistent synapses/neuron 

proportion (around 7000) prevailing among those of several different mammalian 

species. This consistency gives us a hint that there may be a fundamental 

25 



computational unit or module inside mammalian neocortex. This also partly proves 

Mountcastle's proposal of columnar structure introduced in the following paragraph. 

Table 2-1: Neocortex neuron counts in several mammals. 
(Adapted from [60].) 

Human Macaque Cat Rat 
Cortex Area (mm') 2.4x10' 2.5x10" 8.3Xl05 6.0xl0~ 

Neurons 2.0xlOiu 3.0x lOY 6.0xl0M 5.0xlO' 
Neurons (mm-2) 8.3xl04 l.2xl0:, 7.2Xl04 8.4xl04 

Synapses l.5xl014 2.2xlQLl 4.5xl012 4.0xl011 

Synapses/Neuron 7500 7300 7500 7900 

Mouse 
2.5x10~ 

2.0xlO' 
8.0xl04 

l.6X10ll 

8000 

Mountcastle [62] proposed a columnar organization of the neocortex. In the book 

"Perceptual neuroscience - the cerebral cortex" [62], based on the physiological 

studies of some heterotypical cortical areas, such as somatic sensory cortex, visual 

cortex, auditory cortex, motor cortex, and the physiological studies of some other 

homotypical cortical areas, he concluded that the basic unit of the neocortex is a 

minicolumn. The minicolumn is a vertically organized group of about 80-100 neurons 

that traverses the thickness of the gray matter (~3 mm) and is about 50 µm in 

diameter. The neocortex also has a distinct six layer organization. Neurons in a 

minicolumn tend to communicate vertically with other neurons on different layers in 

the same minicolumn. 

Mountcastle then proposed that minicolumns are grouped into larger units, variously 

referred to as columns, macrocolumns, or hypercolumns, as shown in Figure 2-1. The 

existence of this larger structure is more controversial in the neuroscience community. 

However, Braitenberg and Schilz [59] showed that there are spatially close groups of 

neurons that are tightly connected with each other, but sparsely, and more randomly 
26 



connected to other groups. For convenience we loosely use the term "column" for 

these tightly connected groups, but do not necessarily imply a true column in the 

Mountcastle sense. 

minicolumn or node 
macrocolumn or 

hypercolumn 

Figure 2-1: Hierarchically distributed memory structure in the Mountcastle 
sense. 
Each big circle represents a hypercolumn. Hypercolumns are connected loosely. 
Located inside each hypercolumn are several the minicolumns, which have tightly 
connected neurons. 

In the early days of neural networks, simple associative memory models were 

considered a first step towards modeling the neocortex. It is now clear that the early 

models fell far short [63], among other things they did not scale. However, they still 

are useful as models for the smaller cortical "modules", such as the cortical column. A 

number of advanced models [64-66] have been developed to create cortical-like 

27 



structures by loosely connecting such modules into larger arrays. Several of these 

models assume columns are implemented as associative networks or Bayesian 

networks (in Section 2.2.2). Since the majority of connections and computation are 

within a column, which will be the focus of this dissertation, that is the hardware 

implementation of a single associative memory column. We also call the hardware that 

emulates the single associative memory column - Column Processor (CP), details in 

Section 2.4.1. 

Once we have an efficient implementation of a column, the next step is to connect the 

cortical columns together into a large array, which creates the HDM, as illustrated in 

Figure 2-1. In many of these models, the columns are configured into a two

dimensional grid. Connectivity is typically nearest neighbor with a few random, 

longer-range, point-to-point connections. The entire structure creates a higher-order, 

scalable, large capacity Association Memory (AM) or Bayesian Memory (BM), which 

are explained in Section 2.2.2. 

Analysis of such structures is more complex and is not addressed here, but there are 

several successful approaches, including the work of Lansner [67], Fulvi-Mari [68], 

Granger [69], Hecht-Nielsen [64], and Anderson [65], George and Hawkins's HTM 

[70], Hecht-Nielsen's Cortronics [14, 64, 71]. Zhu [72] demonstrated that a group of 

smaller-size networks that are sparsely interconnected can be less costly than much 

larger networks, without sacrificing basic network performance. Also, several of these 

researchers have proposed that at the cortical level, the columns do a kind of Bayesian 

Belief Propagation (BBP). It is our belief that a more complex associative memory, 

28 



called a BAM (Bidirectional Associative Memory) can approximate BBP [14, 73]. 

However, this functionality is beyond the scope of this dissertation and is not 

addressed here. The interested reader is referred to [40, 74, 75]. 

2.2.2. BAYESIAN MEMORY AND ASSOCIATIVE MEMORY 

To demonstrate how an HDM model works, a communication channel is a useful 

analogy. In speech recognition, e.g., when we say a word, we have a specific word in 

mind. We then encode that word into a form (speech) that is transmitted over a noisy 

channel (sound waves in air) to a computer, which then decodes the received wave 

back into the original word. The channel, as shown in Figure 2-2, is our mouth, 

tongue, vocal chords, the physical environment, as well as the computer's microphone 

and signal processing. This channel is noisy because there is significant variation in 

the way the word is encoded - people say the same things very differently from one 

instant to the next, and there are speaker variations and ambient noise in the 

environment. The decoding process uses digital signal processing algorithms at the 

front end and complex "Intelligent Signal Processing (ISP)" algorithms that model 

grammatical rules and higher order dependencies at the back end (more about this in 

Section 2.4.2). 

29 



0 
0 

Noisy Channel 

ASCII Output: "dog" 

Computer 
Decodes 

Waw-Based 
Encoding 

Figure 2-2: The "decoder" model of association. 

By casting pattern recognition into a communication channel model, we can then 

apply both information theory, and Bayesian decision theory [76] to the decoding 

process. In simple pattern recognition, we collect statistics on the occurrence of certain 

features. During decoding, we then use those statistics to answer the question: "if we 

received a certain input, what was the most likely word or phrase that was sent?" 

An HDM, or specifically speaking, the building block of HDM, the BM2
, can be 

modeled as the decoder in a simple communication channel, as illustrated in Figure 

2-3. An input generates a message y that is encoded by the transmitter as x. The 

message is then sent over a noisy channel and x' is received. The decoder decodes x' 

into y ', which is the most likely y that has been sent. 

2 We refer to BM as the building block, or module/ node ofHDM. 

30 



Original Message 
y 

, . 

Encod$r --

Encoded Message 
)( 

Noise 

Rec:efi.led 
Me$sagex' 

1 

Noisy Chatlf1$1 -·-

Figure 2-3: Communication channel. 

Decoder 

1, 
Decoded 

Messagey' 

Messages are generated with probability p(y), these are encoded into a transmitted 

message x (a bit stream) over a noisy channel, a received message (another bit stream, 

the transmitted message with errors) x' is input into the decoder. The decoder has, via 

many examples learned the probabilities p(y) and p(x 'ly), as well as the probabilities 

p(x 'Ix) and p(x). In this case, the network is given the received bit vector, and it 

outputs the most likely message to have been sent. It then uses these data to determine 

the most likely y given that it received x' as shown below: 

p(y I x1 = p(x' I y)p(y) = p(x' I y)p(y) 
p(x1 Lxp(x' I x)p(x) 

(2.1) 

The basic node of an HOM implements what we call a Bayesian Memory (BM). So 

BM is a single node or module of HOM. We call our network a Bayesian Memory, 

31 



since it basically stores information and then, in response to some input, retrieves the 

"most likely" input in a Bayesian sense, based on inference on probabilities estimated 

from statistics collected during the write (training) process (2.1). A large number of 

BM modules are connected into a layered hierarchy (HDM), where each module 

connects to a subset of the modules in the preceding layer. Based on Pearl's Bayesian 

networks and Bayesian Belief Propagation (BBP) [77, 78], Hawkins and George 

proposed HTM [12]. As illustrated in Figure 2-4, the HTM's output is a set of 

probabilities of learned causes. The input to the HTM is a set of sensory data. The 

distribution of the causes is called belief. Actually, HTM learns a hierarchy of causes 

as illustrated in Figure 2-4. Each block or node in Figure 2-4 learns causes and forms 

beliefs according to Section 4 in [12]. In addition, Zaveri [40] discussed the 

implementation of a more abstract Bayesian Memory functionality based on the 

original Bayesian Belief Propagation [78], however, did not incorporate the temporal 

information, which is required in HTM. Our work, however, uses Associative Memory 

(AM) to approximate the BM, the details of Hawkins' HTM and Zaveri's BM CMOS 

and nanoelectronics implementation will not be explained in this dissertation. 

Interested readers are referred to [40, 70, 79]. 

32 



sensory Data 

Figure 2-4: Hawkins and George's HTM structure. 
The sensory data are fed into the lowest layer of nodes. The arrows in between two 
layers are called belief (adapted from [12]). 

Different from Hawkins and George's HTM or Zaveri's simplified BBP as the 

building block of BM, Zhu [80] showed that under certain circumstances AM models 

approximate Bayesian inference or BM. Zhu [80] gave a simplified version of HDM 

with two layers of BMs. As illustrated in Figure 2-5, each BM is a WPNAM 

(Willshaw and Palm Neural Associative Memory) network (see Section 2.2.2.1). The 

arrows in Figure 2-5 are input and output vector-pairs. This hierarchy of BMs also 

resembles a hierarchy of Bidirectional Associative Memories (BAMs) [73], because it 

has the input and output vectors (e.g., VLinl, VHoutl, Vmnl, VLoutJ) from both directions. 

Zhu used one WPNAM model to map BM in one direction, and used another 

33 



WPNAM model to map the other direction's BM. Zhu [72] demonstrated that with 

this three-BM network, the noisy input vectors (i.e., VLinI and VLin2) were recovered to 

the output vectors (i.e., VLoutJ and VLout2) with the best performance according to Zhu's 

metrics. Zhu [72] also demonstrated that the use of such hierarchical structures (HDM) 

can lead to large and scalable systems based on their preliminary work. 

VLout1 Vu,,1 

Figure 2-5: A three-BM network (adapted from [72]). 

Our primary objective, therefore, is to develop an associative memory that performs 

such probabilistic inference in the BM in real-time over very large data sets using 

sophisticated metrics. We also believe that a large capacity version of a BM, 

implemented in an inexpensive chip, has significant commercial value. 

For performing such Bayesian inference, there is always the brute force approach: a 

simple processor per record ( or per a small number of records), all computing the 

match in parallel, then with a competitive "run-off' to see which processor has the 

best score. Though inefficient, this implementation of best-match guarantees the best 

34 



results, and can easily be used to generate optimal performance criteria. Unfortunately, 

it is too compute intensive for most real applications. 

In Figure 2-3, message Xi is transmitted, message x' is received. For simplicity, assume 

that all vectors are N bits in length, so the noisy channel only causes substitution 

errors. The Hamming Distance (HD) between two vectors, Xi and Xj, is HD(xi, x). 

Assume that the noisy channel is binary symmetric with the probability of a single bit 

error being e, and the probability that a bit is transmitted intact is (1 - e). The error 

probabilities are independent and identically distributed and e < 0.5. Under these 

circumstances it can be shown that the Palm memory approximates a Bayesian 

inference [72]. That is, the Palm associative memory will, under certain conditions, 

recall the most likely original message, Xi, from a noisy received message x' [72]. 

Since Bayesian inference is compute intensive (NP-Hard) [72], the distributed 

representations used by associative memory and the modular organization of the BM 

have the potential to perform inference quickly and efficiently. 

In 1969, Willshaw [18] published a paper about the theory of neural associative 

memory, and Palm [56] gave a detailed explanation of associative memories in 1980. 

They both proposed associative memory models based on a binary weight matrix, 

Hebbian learning, and threshold activation functions. Their model is a particularly 

efficient implementation of BM. We call their model WPNAM (Willshaw and Palm 

Neural Associative Memory), and we will use WPNAM extensively in this work. In 

this dissertation, WPNAM and AM are interchangeable. When we mention AM in this 

35 



work, we mean WPNAM-based AM. Now, we will start introducing the WPNAM

based HDM model in the following sections. 

2.2.2.1.Non-spiking AM model 

A B C 

Figure 2-6: With light emitted from C through B to A, the original spots on A 
are generally brighter. 
(Adapted from [18].) 

To understand the associative memory, a good place to start is Willshaw's work back 

in the 1960s. Willshaw [ 18] used a physical experiment to investigate the analogy of 

associative memory. In this experiment, a light was emitted from a source on board A. 

The light passed through holes in board B and struck board C. The experiment was 

then reversed, by emitting light from board C, through holes in board B and striking 

board A. During the reversed experiment, Willshaw found that the brightest spots on 

A were at the positions where the light was being emitted in the forward experiment. 

The reversed process is illustrated in Figure 2-6. This experiment gives us a hint: the 

light spots on C are the correlation results of holes on B and A. When we are given 

patterns of C and B, we can find the original pattern of A. That is to say, the C-pattern 
36 



is the training result of A-pattern and B-pattern. When given the B-pattern and C

pattern, we can retrieve A-pattern. These training and retrieval processes are 

somewhat similar to biological associative processing. 

Based on the Willshaw NAM model, Palm proposed different types of neural 

associative memories using a binary weight matrix, Hebbian learning, and a transfer 

function with a global threshold [17, 56]. Figure 2-7 shows the basic network structure 

of the WPNAM model. 

Hebbian 

► 
x. 

l 
--Y; 

S. 
I 

Figure 2-7: The architecture of the Willshaw and Palm NAM model. 

For the training stage of the network, Palm uses a "clipped" Hebbian learning rule: 

(2.2) 

37 



where w!i is the binary value O or 1 (or multi-bit value) of the weight between the i-th 

input neuron and the j-th output neuron; x{' is the binary value of the i-th input 

neuron; y'j is the binary value of the j-th output neuron; µ is the µ-th training pattern 

index; Mis the total number of training patterns. The training patterns (vectors x{' 

and Y1 ) we used in Chapter 3 were generated with constant number of active neurons 

(nodes) uniformly distributed among all input neurons. 

For the retrieval stage of the network, when an input pattern x propagates through the 

network, the output neuro:11-'s somatic potential is given by: 

(2.3) 

where sj is thej-th output neuron's somatic potential; X; is the value of the i-th input 

neuron's output value, which is a noisy version of the training vector (how to generate 

such test vector was discussed in [72]); wii is the weight connecting the i-th input 

neuron and the j-th output neuron. This somatic potential then goes through a transfer 

function with a global threshold 0, which activates k different output neurons (i.e., 

activated neurons are set to one, others to zero). The value of the j-th output neuron is 

(2.4) 

The computations in (2.3) are the Boolean AND, and integer additions of the weight 

matrix and the input vector. Equation (2.3) is a matrix-vector inner-product operation. 

38 



Equation (2.4) is the activation function, a non-linear step function (a threshold based 

Heaviside step function), which makes the output layer have only k active nodes. The 

operation specified by Equation (2.4) is generally referred to as k-WTA (k Winners

Take-All). These two operations, matrix-vector inner-product and k-WTA, are the 

primary computations for the retrieval phase of the WPNAM model. It is not clear 

from biology whether a column simulation needs only be WTA or whether k-WTA is 

required (k > 1). Obviously the WTA is simpler, but it also reduces capacity [17]. We 

used the complex k-WTA for analysis since it is more generic. Those two 

computations (matrix-vector inner-product and k-WTA) also represent a group of 

operations in AM algorithms that use binary data representations, a clipped Hebbian 

learning process, and excitatory-inhibitory output activation functions. Any hardware 

implementations of the WPNAM-based HDM model must perform these two main 

computations. 

Hopfield proposes an associative memory model with a recurrent network structure 

[57], where he uses the analogy of an associative memory network with the collective 

properties common in the physics of "spin-glass" systems. This network operates to 

minimize its "energy", where the locally stable states of the network are essentially 

energy minima ("attractors"). Ideally, these energy minima correspond to the 

"training" vectors, i.e., the data entries into the associative memory. The main 

drawback of the Hopfield NAM model is that it is not particularly robust. It also 

requires an asynchronous update of network nodes, when emulating a Hopfield 

network on a synchronous hardware platform, not all the network nodes update at one 

39 



time. This causes the Hopfield NAM updates to be slower than those of the WPNAM 

model, which can be synchronous or asynchronous. The WPNAM model in its 

simplest form is a simple linear inner-product with a non-linear competitive output. It 

also works very well with binary input and weight vectors, leading to significant 

hardware savings. Generally, the network updates all the nodes for one retrieval cycle, 

and is more robust than Hopfield NAM model [ 17, 18, 56, 57]. In addition, compared 

with the WPNAM model, the Hopfield associative memory has less capacity [17]. 

As an example of how associative memories might be used in real applications, we 

present an association driven Enhanced Visual System (EVS) in Chapter 4 and in [43]. 

Association networks or AMs have much promise as a component in building systems 

that perform Intelligent Signal Processing (ISP) [4, 81]. However, there are a number 

of problems that need to be solved before distributed representation, best match 

associative memories can find widespread usage. Perhaps the most serious concern is 

the scaling to very large networks. Even though the vectors used by the WPNAM are 

sparse ( only very few bits in the vector are one, the others are all zero), the weight 

matrix becomes decidedly non-sparse as we add training vectors to the memory. Palm 

[17, 82] has shown that maximum capacity occurs at 50% connectivity, where there 

are an equal number of ones and zeros in the weight matrix. At the systems level this 

is not biological and does not scale. For example, the law of large numbers tells us that 

as network size increases each neuron gets almost the exact same input. This level of 

connectivity causes significant implementation problems as we scale to relatively 

large networks. 

40 



If we randomly delete connections from a Palm network, performance degrades 

gradually to a point where the network suddenly fails completely. However, there is 

no existing algorithm that achieves the neocortex's association performance ( the 

ability to retrieve information from the associative memory) with only about 0.0001 % 

connectivity (shown in Table 2-1). Clearly we are doing something wrong. 

In the early days of neural modeling, scaled up versions of simple auto-associative 

networks (same input and output training vectors) were proposed as models of 

neocortex. Such networks have been studied extensively [17, 57, 83, 84]. However, it 

quickly became clear that these networks do not scale well enough to be a model of 

the neocortex [ 63]. 

Many in the research community [16, 64, 65] are beginning to study large associative 

networks that are organized more like cortical columns and are scalable. Column in 

those networks is defined as a single associative network, or a WPNAM network. 

These columns are then connected together into an array. The layout is generally a 

two-dimensional grid, and connectivity is typically nearest neighbor with a few 

random, longer-range, point-to-point, connections. The entire structure creates a 

higher order association memory, which can store hierarchical and distributed data 

structures with a large capacity, and has the ability to do inference over those 

structures. 

In this dissertation we will refer to this type of model as an HDM. However, the 

exploration ofHDM models is beyond the scope of this dissertation. Consequently, for 

41 



the work discussed here, we concentrate on the physical implementation of a single 

HDM node, or an individual column, which can be modeled as an auto-associative 

memory (WPNAM) as presented above. Also, since these columns have the densest 

connectivity and constitute the majority of the computational load, they consume most 

of the silicon real estate and power of the HDM hardware implementation. 

In an HDM, the cortical columns are connected together into a two-dimensional array. 

The hardware structure to do this would most likely consist of a set of column 

processors interconnected by some form of routing network. We call the processor to 

implement the column algorithm or a single WPNAM a column processor. There are a 

number of architectural issues involved in the hardware requirements of such multi

column networks that are not addressed by this paper. Other important issues concern 

the control signals, general clocking, and synchronization of the system. These are 

ignored here, though our final goal is to design column processors that will most likely 

be asynchronous [85] and execute in roughly the same time as their biological 

counterparts. 

Since these models are naturally parallel, a column can be implemented by several 

processors, or a column processor can implement one or more columns. This 

"virtualization" (see Section 2.3) ratio can be chosen to maximize density and meet 

performance requirements. Though the column processors may have a hybrid CMOS / 

nanoelectronic circuits implementation, the larger inter-column network would be 

most likely implemented strictly in CMOS. From the perspective of an individual 

42 



column, the external, incoming connections constitute additional inputs. Likewise, 

out-going connections are taken from the column processor outputs. 

For the CMOS and CMOL implementation analysis performed in Chapter 5 and 6, we 

have assumed the values for each column as shown in Table 2-2. In the "Range" 

column, we list the range of possible values for each parameter type. The column node 

size range is determined from Mountcastle' s proposal [ 62]. The ranges of other 

parameters are decided by Equations (2.2), (2.3), and our assumptions for some 

particular parameters, e.g., the number of active nodes in each column is defined as 

log2( column node size). However, we used single weight bit in the PC, PC cluster, and 

FPGA implementations and analysis (Chapter 3 and 4), due to the early stage of our 

research. We also swept the column node (input vector) size from 1 K to 64 K (some 

cases 32 K) in the ·PC and FPGA analysis to compare the performance/price ratios 

under different column node size scenarios. Because the inter-parameter dependencies 

can make these kinds of performance/price analysis and comparisons much more 

complex in CMOS and CMOL cases, we did not sweep column node size in the 

CMOS and CMOL implementation analysis as we did in the PC and FPGA analysis. 

Instead, we chose to the "Typical Values" for the analysis in Chapter 5 and 6. 

a e - . a a 1 orec1s10ns or . . T bl 2 2 D t ti AM 
Parameters Range Tvoical Value 

Column node size 128 ~ 128 K 16K 
Weight matrix size (single-weight-bit) 2'., ~ 2~" bits 2" 0 bits 
Weight matrix size (multi-weight-bit) 2•~ ~ 2~ 1 bits 2"" bits 

Weight bits 1 ~ 17 bits 4 bits 
# Active nodes in column 7 ~ 17 14 

Inner-product result bits (single-weight-bit) 3 ~ 5 bits 5 bits 
Inner-product result bits (multi-weight-bit) 11 ~ 21 bits 18 bits 

43 



2.2.2.2. Spiking AM model 

As discussed later, our preliminary analysis [ 49] of the hardware architectures for the 

non-spiking auto-associative memory model showed significant power density 

problems in the mixed signal CMOL implementations. In addition, it is becoming 

clear that cortical-like models leverage the time domain as a fundamental organizing 

principle [69, 70]. Consequently, in this dissertation we also look at the 

implementation requirements of spiking models, which operate in both space and time 

domains. An additional benefit is that these models also have a limited duty cycle 

which leads to a reduction in estimated power consumption, and potentially a more 

efficient use of hardware. However, in this dissertation, we do not study how to use 

spiking models in real applications as we do with the Palm model, e.g., EVS system in 

Section 4.2. The spiking models are more complex, so such an exercise is beyond the 

scope of this dissertation. Though there has been work on spiking associative models, 

such as models in [86, 87]. 

Spiking or pulse-based models actually lead to an important principle: computation 

proceeds by incremental change in response to spikes to a baseline state, where 

incremental data are represented by the inter-pulse timing. Traditional signal 

processing and neural models generally consist of sums of products. By using pulse

based models, the entire sum needs not be computed at any one time, rather only 

sparse incremental updates are processed. In this approach, then, the membrane 

potential of the neuron is updated by the sparse arrival of spikes. This characteristic 

leads to significantly increased efficiency in implementation, especially due to the use 

ofresource multiplexing as we will show. 
44 



Consequently, for the analysis performed here, we expand our associative memory to 

use neurons based on spiking neuron models. As illustrated in Figure 2-8, a neuron's 

dendrites receive pre-synaptic spikes ( or Pre Synaptic Events - PSE) from other 

neurons' axons. The soma or neuron body accumulates the neurotransmitters ( or 

PostSynaptic Potential - PSP) from the dendrites. When a neuron is sufficiently 

depolarized and passes a voltage threshold, the axon will fire and send spikes to other 

neurons. After a neuron fires, it will be hyperpolarized (undershoot) to a voltage lower 

than the resting potential. It will go back to the normal voltage after a refractory 

period. During this refractory period, neuron cannot fire again. 

axons from other neurons 

Input spikesW, 
presynaptic events I I \ 

' 

dendrite 

weighted postsynaptic potential 
~ 

membrane potential 

output spike · 1-___ _.__ 

axon 

Figure 2-8: Spiking neuron model. 

Suri [88] proved that all information in the spiking neuron model is determined by the 

time of the spike's occurrence, not by its shape. Hence, this gives us the freedom to 

choose the spiking neuron models that favor our hardware implementations. For the 

digital versions of the implementations studied in Chapter 5 and 6, we use the Gerstner 

spiking neuron model [39]. The reason that we chose this model is because it satisfies 

our criteria that the neuron model can represent the time domain with spiking or 

45 



limited duty cycle model. It is also fairly simple, has a solid mathematical foundation, 

and is widely used in the computational neuroscience community. In this model, the 

membrane potential (MP) u; (t) of neuron i ( 1 ::;; i ::;; N) at time t is given by 

N 

u;(t) = L wijeu(t-tj) +1/;(f-t;), 
j~l 

(2.5) 

where wij is the efficacy (weight) of the connection from neuron j to neuron i; 

Bij (t - tj) is the postsynaptic potential (PSP) of neuron j contributing to neuron i; and 

1/; (t - f;) is the refractory function, which, in our model, is a negative contribution that 

reduces the likelihood of additional output for some period of time ., as soon as the 

MP reaches the threshold value 0 . The threshold value can be static or dynamic. 

The PSP function is given by 

(2.6) 

where rm and rs are time constants; H(t-rJis the Heaviside function; and ra is the 

axonal transmission delay. 

46 



l 
Figure 2-9: A possible RC circuit model for an l&F neuron. 

However, when usmg analog circuit in the mixed-signal CMOS / CMOL 

implementations (in Chapter 5 and 6) to emulate the spiking neurons, the RC circuit 

illustrated in Figure 2-9 becomes more appealing to us, especially in the sense of 

saving much more power and silicon real estate compared with the possible analog 

circuits for the equations (2.5) and (2.6). Thus, for the mixed-signal CMOS / CMOL 

implementations, we chose to use one of Gerstner's simple spiking neuron model 

variations, the leaky integrate-and-fire (I&F) neuron model. This I&F model can be 

represented by a first-order linear differential equation: r mdu/dt = -u(t) + RJ(t) , where 

-rm = RC is the time constant of the current I(t) leaky integrator, with the neuron's 

equivalent resistance R and capacitance C. As soon as the membrane potential reaches 

the threshold 0, the membrane potential will go to zero with time constant -rd and 

kept at zero for a time of 'r. A detailed circuit by Indiveri [89, 90] for this I&F model 

is shown in Figure 6-32. 

Palm et al. [86, 87] used Gerstner's simple spiking neuron model in their modeling of 

primary visual cortex, which is a part of the neocortex. This model is based on the 

47 



WPNAM model for the functionality of associative memory. Rao [91] used the I&F 

neuron model to implement Bayesian inference for graphical models. However, in this 

work, we did not give an application example using either Palm's spiking associative 

memory model, or Rao's spiking Bayesian network model. In Chapter 5 and 6, we 

focus on the analysis of implementing the CMOS / CMOL column processors with 

Gerstner' s simple spiking neuron model and I&F model, rather than the details of the 

spiking AM models. 

A number of learning schemes exist for the spiking neuron model, such as competitive 

Hebbian learning through spike-timing-dependent synaptic plasticity (STDP) [92]. 

However, due to the significant increase in implementation complexity required to do 

learning, especially in spiking models we do not address it in this dissertation. 

2.3. VIRTUALIZATION IN HARDWARE RESOURCES 

When looking at massively parallel models, such as WPNAM, Bailey et al. [93, 94] 

used c-graph to represent the connectivity graph of the network being emulated and p

graph to represent a physical realization. When synthesizing a logic network to a set 

of standard cells, which are placed into a silicon design, the c-graph and p-graph are 

the same. But the two graphs need not be the same and can be different if there is a 

sharing (multiplexing) of physical resources by virtual resources. For example, when 

synthesizing to an FPGA where physical connections are configured dynamically, the 

c-graph and p-graph are not necessarily isomorphic. 

48 



One of the key contributions of the work presented here is the definition and use of the 

principle of virtualization and its application to our computational models and 

assumed implementation options (CMOS and CMOL). In the context of this 

dissertation, we define virtualization to be the degree of time-multiplexing of 

computations and communication tasks over hardware resources [47]. Virtualization is 

typically not an issue in most applications of computer technology, since almost all 

computation and communication are virtualized. In our sense, virtualization is about 

time-multiplexing a hardware resource by a number of different operations, which can 

be on a space-available demand driven basis, such as a bus. Alternatively, it can be 

explicitly scheduled (by instructions), as in the case of computational hardware. 

The scheduling of the hardware resources can become very complicated as one sees 

with out-of-order and superscalar executions by high end general-purpose processors. 

One of the best examples of virtualization is a computer network. Rather than having 

dedicated point-to-point connections between every computer on a network, these 

connections are virtualized, via time multiplexing over a global interconnect structure 

(bus). 

Virtualization then is about taking advantage of usage demands to share expensive 

resources. Virtualization involves space, generally hardware costs. However, it can 

also include power usage, time, system performance, and related trade-offs. Increasing 

virtualization can reduce performance, but it improves utilization. That is, the efficient 

use of a resource results in how to leverage performance and hardware costs of non

shared resources. Generally, virtualization implies a digital representation of the data 

49 



in this dissertation, since it is usually more difficult and costs more to multiplex analog 

signals. However, it is possible to multiplex analog computation so it should not be 

thought of as an exclusively digital technique. 

Although virtualization is ubiquitous in general purpose computing, this has not been 

the case in many proposed hardware implementations of neural algorithms. These 

algorithms, and many other kinds of signal processing algorithms, have a natural 

massive parallelism that allows a wide range of parallel implementation options. 

Often, they also have low precision requirements, so the individual processors tum out 

to be very inexpensive. Consequently, analog implementations can be used effectively 

in emulating many of these algorithms in silicon. This approach certainly makes sense 

when computation is being done continuously, as might be the case at the sensory 

front end. However, as we move further back into the system, activations normally 

become sparser, which favors virtualization. 

One way to conceptualize the implementation options for neural algorithms is to 

imagine a "virtualization" spectrum. At one end of the spectrum (in Figure 2-10) we 

have an off-the-shelf single microprocessor ( or say PC) that emulates all components, 

computation, and communication of the model in a mostly sequential fashion [95]. At 

the other end of the spectrum, we literally implement the algorithm in custom silicon. 

This can be thought of as having a processor for each individual parallel computation, 

which at the finest grain is the individual synapse. Obviously, minimizing 

virtualization increases performance. However, it can also introduce significant 

inefficiency, and is more expensive. Also, the virtualization of hardware tends to make 

50 



the processor more general purpose, enhancing flexibility to be used to more 

applications. Figure 2-10 shows a qualitative hardware virtualization spectrum. 

programming 
fl exibi liry 

non-flexi Ii bi 
-----------""---------'------'>-<:....__--

max time multiplexing max structual parallelism 

coarsest PN -+----- coarse PN .,.____. line PN ------+- finest PN 
-+----- More Virtual iz ati on Less Virtual izati on ------+ 

Figure 2-10: Hardware spectrum for the implementation of biologically 
inspired networks. 
Finer-grained processing (less virtualization) means more structural parallelism, but 
less efficiency and flexibility. 

In the neural network community, there has been a diversity of opinion on whether 

such hardware for emulating Biologically-Inspired Computations (BIC) should be 

analog or digital [96]. Quite a bit of the research into hardware for emulating neural 

models over the years involved implementing most, if not all, of an algorithm directly 

in silicon, with minimal virtualization. And over the years many groups have done that 

[90, 97-99]. Computing in the analog domain provides significant computational 

density, performing complex calculations with just a few transistors and very little 

power. On the other hand, computing in the digital domain is easier to design, more 

flexible, and easier to move to higher precision calculation [96]. 

51 



However, even the analog community has accepted that there are significant 

interconnect limitations when silicon is compared to biological circuits, and it is 

difficult to communicate analog signals over a long distance. Neurons use spikes to 

transmit information. Consequently, the aVLSI community developed the Address 

Event Representation (AER) [100], which is based on spiking models. As we will 

show here, depending on the dynamic behavior of the network, virtualization can 

actually be more cost-effective for the computational models we are using [47]. 

Another implementation option concerns the representation of data. The spiking 

neuron models in this work use timing to represent data. During actual physical 

implementations of such computations, however, there are other options, including 

digital (discrete) and analog (continuous) circuits, that can use voltage or current 

representations [39]. 

It has also been argued [22] that analog circuits implement a "truer" version of the 

computation, and that the digital implementation is fundamentally lacking. We have 

not seen such an effect in the simple models we are emulating, though it is possible 

that, as we scale to larger systems, this could become a problem. Also, neural circuits 

are very noisy, so the presence of digital quantization noise may not be a problem. 

The cost of virtualization in hardware is the sum of the non-shared hardware, plus the 

shared hardware and the hardware required to do the actual multiplexing. Those pieces 

of hardware that cannot be multiplexed are, in most cases, memories that store 

computational states or synaptic weights that are unique to each computation. 

52 



In this dissertation we use the term Processing Node or Processor Node (PN) 

somewhat loosely. In general, it is a simple, low precision digital processor that 

emulates a single neuron. Though the PN is digital, mixed signal computation can also 

be used. For our analysis, we studied a single PN for each neuron within a column 

processor at the minimum level of virtualization, as well as at the maximum level of 

virtualization, where one PN is assumed to emulate all the neurons assigned to a 

column. Lesser and greater levels of virtualization are possible, but, for the models 

and parameters discussed here, these tend not to be as cost-effective, and are not 

included in this work. 

As stated in Section 2.2.2.2, the primary reason for moving from level sensitive to 

spiking, or pulse-based, models was to control the power dissipation in the mixed

signal CMOL. Additionally, the spiking models allow us to capture the time 

dimension of signals more effectively, although they are more complex. However, the 

other big advantage of spiking-based models is that they tend to be sparsely activated, 

which can be leveraged for significant savings in more effective hardware sharing. In 

the Palm model, only O(log2N) neurons are active at a time, which means that, on 

average, only O(log2N) connection computations need to be computed during the 

general time to update the network. One way to virtualize the neuron computation is 

by treating the incoming spikes as incremental modifications to an accumulated sum. 

This is particularly efficient if the spikes arrive, as they would on an AER bus, in a 

serialized manner. 

53 



In a virtualized spiking neuron, the cost per connection includes the storage of the 

synaptic facilitation (i.e., weight); some timing information for "active" synapses that 

have recently experienced some postsynaptic potential; and the shared computation; 

and communication hardware, which is amortized over all the connections. If spikes 

occur sparsely in time and the degree of virtualization is balanced properly, then there 

is little performance lost in waiting for the availability of the compute hardware. 

Likewise, the idle time for the shared resource is minimized, thus maximizing the 

performance/price ratio. 

Although there is a global system clock, computations are assumed to be 
l 

asynchronous in the sense of a global timing signal and to occur in real time. As 

Carver Mead once said, "we let time be its own representation" [22]. Most system 

times will be predictable within some jitter noise, something that also occurs in real 

neural circuits as well. The PNs do have a need for some internal timing, for example, 

post-synaptic potentials and refractory periods require predetermined times to run their 

course. Though we assume synchronous circuits to simplify the analysis, it is most 

likely that the implementation of such processors will be done almost exclusively in 

asynchronous logic [85]. 

Figure 2-11 shows different degrees of time-multiplexing spiking neuron models onto 

PNs, from the coarsest-grained PN (one PN multiplexes all computations) to the 

finest-grained PN (without multiplexing). Each column processor can have a single or 

multiple PNs to emulate a single cortical column (WPNAM). Many column 

processors, in tum, emulate a much more complex cortical function. 

54 



axons from other neurons dendrite 

/ synapse 
finest 

PN 

,--------------- \ --------1 I 
~~~A I, I I ----n~ - I .....;::_...L.l~ 

fine 
PN 

coarse 
PN 

coarsest 
PN 

___ ..._\ I 

11 \ 
1

1 

' I 
,, I ___ ,,. I 

--------------· 
axon 

Figure 2-11: Processing nodes (PNs) time-multiplex neuron emulation. 
The finest-grained PN computes a single postsynaptic potential and does not 
multiplex other postsynaptic potentials. A coarser-grained PN time-multiplexes 
computations from multiple neurons. The coarsest PN time-multiplexes all the 
computations required by the network. 

The traditional view of neural emulation was that a small number of transistors were 

dedicated to an analog, non-multiplexed implementation of each synapse. However, 

the sparse communication and the sparse activation of our models appear to 

compromise the effectiveness of such an approach. In other words, depending on the 

dynamics of the network, dedicated, non-multiplexed compute hardware, whether it is 

analog or digital, does not appear to be the most efficient use of silicon area. 

Although learning is not addressed here, multiplexed computational hardware looks to 

be an even more efficient way to. utilize silicon real estate when dynamic, incremental 

learning is added to the model. 

55 



2.4. HARDWARE ARCHITECTURES FOR AM 

2.4.1. WPNAM-LIKE MODEL HARDWARE IMPLEMENTATIONS REVIEW 

Before we discuss our own hardware architectures and implementations, we look at 

the previous work people have done to implement the WPNAM-like cortical models, 

or ANN models. Actually, over the years, a number of hardware implementations of 

WPNAM-like algorithms have been proposed and built. Strey and Palm implemented 

the WPNAM model with a special-purpose digital IC (BACCHUS) [17, 28] to 

leverage the parallel features of their model. Figure 2-12 shows the architecture of the 

BACCHUS III chip. They also showed how to use this chip to implement the neural 

associative memory for an image recognition application [17]. Although implemented 

in older technology, the chip architecture is still relevant to the exploration presented 

here. 

Each BACCHUS chip emulates 32 neurons in the WPNAM model in parallel. The 

corresponding weights are stored off-chip in standard DRAM memory chips. · The 

BACCHUS chip executes Boolean OR operations and the threshold operations (for the 

output function). Because all the neurons in the WPNAM model execute the same 

instruction simultaneously, the parallel structure of Palm's hardware platform is a 

single-instruction multiple-data (SIMD) computational model. The CP (Control 

Processor) broadcasts the input vector to all BACCHUS chips, which perform the 

inner-product and threshold comparison operations, and send the output vector to the 

CP. 

56 



Figure 2-12: The architecture of the BACCHUS III chip. 
(Adapted from [28].) 

Riickert's research group m Germany also developed digital hardware 

implementations of the WPNAM model in the 1990s [101-104]. They used digital 

VLSI technology to build the associative memory processing nodes. In 2002, 

Porrmann, Riickert, and their colleagues proposed a reconfigurable hardware 

accelerator RAPTOR2000 with Xilinx Virtex FPGA, to implement the WPNAM 

model [101]. 

The RAPTOR2000 has several serially-connected daughter-boards. Each daughter

board has one Xilinx Virtex XCVlO00 FPGA, which implements an associative 

memory with 512 neurons. The SDRAM controller and a neuron processing unit (for 

the output neurons' computations) are implemented on the FPGA (Figure 2-13). The 

SDRAM controller provides a 512-bit register that buffers the data to and from the 

57 



SDRAM. Each output neuron processes one row of the memory matrix. Each bit 1 in 

the input vector selects one element of the memory matrix and thus one component in 

each row. The activated elements of the memory matrix are processed sequentially. 

The activated element is read by all neurons in parallel. Those neurons that receive a 

zero will decrement their internal counters and stop firing if and when the counter 

reaches zero. The synthesis results show that about 3200 Virtex CLBs (Configurable 

Logic Blocks) were required for 512 neurons and 250 Virtex CLBs for the SDRAM 

controller. The neurons operate at 50 MHz, and the SDRAM controller uses a clock 

frequency of 100 MHz. The time for the association of a vector depends mainly on the 

SDRAM access time. Porrmann claimed their implementation requires about 5 µsec 

for one association. However, neither the neuron (node) update rate nor the connection 

update rate for this FPGA implementation was provided. 

e~ 
El.~---
u fl) 

SDRAM 
32 x32 Mbit 

SDRAM Controller 

512 

Neural 
Processing Unit 

Output Vector 

Figure 2-13: Neuron unit block diagram of the Porrmann's FPGA design for 
the WPNAM model. 
(Adapted from [101].) 

58 



The BACCHUS chip used sparse representation for the input and output vectors, and 

implemented learning algorithm on chip. The RAPTOR2000 reconfigurable 

accelerator did not use sparse representation for the input and output vectors, and did 

not implement learning algorithm. Furthermore, the functionality provided by those 

two implementations was limited to specific AM algorithm, without much flexibility. 

The architectures for those two implementations did not use virtualization, meaning 

maximum performance was pursued, but not the efficiency. Although they could, they 

did not use pipelining in their designs either. 

During the late 1980s and early 1990s, Hammerstrom (Adaptive Systems Inc.) [105] 

proposed and taped out CNAPS chips for more general ANN algorithms and other 

non-ANN applications, such as Back-Propagation (BP), image processing, and Optical 

Character Recognition (OCR). In each CNAPS-1064 chip, there are 80 PNs during 

fabrication. Before packaging, only 64 working PNs are tested and enabled. The rest 

16 PN s are disconnected from the bus and the power grid. This redundancy of PN s 

during manufacturing guaranteed a high yield. Because of this 64-parallel-working 

PNs, the CNAPS-1064, for example, can store and train the entire NetTalk [106] 

network in about 7 seconds [105]. CNAPS is a single instruction, multiple data stream 

(SIMD) architecture. As shown in Figure 2-14, in CNAPS, the PNs are connected in a 

one-dimensional array. Each PN can only communicate with its right or left neighbors. 

The sequencer broadcasts each instruction and data to all PN s, which execute the same 

59 



instruction at each clock. The PNs transmit output data to the sequencer (with 

arbitration). 

CNAPS 

Figure 2-14: CNAPS system architecture. 
(Adapted from [105].) 

Figure 2-15 shows that each PN in CNAPS has a local memory, a multiplier, an 

adder/subtracter, a shifter/logic unit, a register file, and a memory addressing unit. 

During each clock, the computational units can work at the same time. With 

pipelining, the memory accessing, instruction fetching, and message passing can also 

execute in the same clock cycle. The 16 x 16 fixed-point multiplier is sufficient (in the 

sense of precision) for most ANN algorithms. The non-linear activation function (e.g., 

sigmoid function) is realized by Look-Up Table (LUT) with the local memory. 

60 



PNCMD bus 

IN bus 

OUT bus 8 

lnter-PN bus 

31 

Figure 2-15: CNAPS PN architecture. 
(Adapted from [105].) 

Because most ANN algorithms use matrix-vector inner-product operations, the 

multiply-accumulate unit (i.e., the multiplier and adder in the PN) is very helpful for 

ANN algorithms. Hammerstrom [4] claimed that the maximum compute rate for 

CNAPS was 1.2 billion multiply-accumulates per second per chip (at 25 MHz and 6 

watts worst case power consumption), which was about lOOOx faster than the fastest 

workstation at that time, about a decade ago. 

In addition to the digital designs explained above, T-Urel et al. proposed a possible 

implementation of the Hopfield model using mixed-signal CMOL, or, more 

61 



specifically, CMOL CrossNets [107]. CrossNets can be described by the fire-rate 

equation r0d.x; I dt+ X; = gI,, wijf(x1 ), where r0 is a constant, X; = GV; !Vo is 
j 

normalized dendritic voltage, wij are synaptic weights, g is the effective somatic 

gain, and G is the voltage gain of a somatic amplifier. The output function is 

f(x) = {~ (1

1

xl
1 

< l). As illustrated in Figure 2-16, the red lines are output signal 
s1gn(x) ( x > l) 

nanowires from neurons, and the blue lines are input signal nanowires to the neurons. 

The green circles represent nano-switches. The soma calculation is implemented in 

CMOS. However, the synapses are implemented with the nanodevices. The nanowires 

represent the dendrites and axons in the CrossNets. Tu.rel [107] reported that the 

CMOL CrossNets should be able to emulate a Hopfield model with high defect 

tolerance. 

62 



(a) 

t 

l 
(b) (c) 

Figure 2-16: CrossNets. 
(a) Aeneral structure, and two varieties of (b) InBar and (c) FlossBar. (Adapted 
from [ 107].) 

2.4.2. HARDWARE ARCHITECTURES USED IN THIS WORK 

One can think of an abstract neuron model as consisting of three components: 

• State information; 

• Local computation that takes inputs, updates local state, and computes outputs; 

• Connection mechanisms to allow neurons to communicate. 

63 



People can disagree about whether the state and local computation should be analog or 

digital. Complex dynamics, functional density, and low power favor analog circuits, 

while sparse activation, complex learning algorithms, and large, simplistic models 

favor digital circuits. However, for large cortical-like association models, multiplexed 

connectivity is the only alternative - Why? 

Assume a rectangular array of silicon neurons where each neuron receives input from 

its N nearest neighbors. Each such connection consists of a single metal line (and the 

number of metal layers is much less than n ). The area required by the metal 

interconnect is of O(n3
) [93, 94]. The non-local interconnect problem manifests itself 

in simulation costs as well. It and the global WT A (Winner-Take-All) were the major 

time sinks in all of our simulation experiments (see Chapter 3, 4, 5, and 6). 

Again, as illustrated in Figure 2-10, the hardware platforms we could choose to 

implement the AM algorithms can vary from the off-the-shelf PC, to a VLSI (analog 

VLSI). In between those two, there are PC cluster, DSP (Digital Signal Processor), 

FPGA, digital general-purpose NN processor, digital special-purpose CMOS/ CMOL, 

and mixed-signal CMOS/ CMOL architectures. However, we could not choose all of 

them as the hardware architecture candidates in this work. The five hardware 

architectures we used to implement the AM algorithms or estimate the possible 

implementations for such algorithms are PC, PC cluster, FPGA, digital special

purpose (full custom) CMOS / CMOL, and mixed-signal CMOS / CMOL. In the 

following paragraphs, we will explain why we chose those architectures, and why not 

the other architectures. 

64 



The PC or microprocessor is the traditional computing architecture for people to run 

simulations for AM. We did not invent new microprocessor architecture in this work, 

however, we used Intel®'s off-the-shelf CPU to run the non-spiking AM simulations. 

The PC implementation is a baseline for us to compare the performance/price ratios 

across all hardware architectures in this work. PC is the most flexible way to program 

for all kinds of AM models, as shown in Figure 2-10. PC virtualizes all computations 

and communications within the traditional von Neumann's computer architecture. The 

reason we did not run spiking AM algorithms on PC (and FPGA) was because we did 

not have a fully working spiking-AM algorithms. What all we had for the spiking AM 

algorithms is the basic spiking neuron model, along with possible memory and 

interconnect requirements. The spiking AM algorithms are only applied to CMOS and 

CMOL architectures (in Chapter 5 and 6). 

The reason that we did not choose a VLSI is because a VLSI implementation will not 

virtualize any computations. The benefit is the upmost performance we could expect 

from using a VLSI. However, the disadvantage of a VLSI is the inefficiency in 

implementing sparsely activated AM model explained in Section 2.2.2.land 2.2.2.2. 

This inefficiency diminishes the performance gain from using a VLSI. In a VLSI 

implementation, each synapse and neuron's computations have their own dedicated 

circuits, except some of the pulse communications between different neurons with the 

help of AER [100]. Also, aVLSI is front-end oriented for emulating biologically

inspired models (BIC). Hammerstrom [4] summarized the differences between front 

end versus back end operations, the two domains for emulating the BIC models. Front 

65 



end operations tend to involve direct access to raw signals from the front end sensors 

(Figure 4 in [4]). The operations include filtering and extracting features, thus, aVLSI 

fits well into emulating such kind of sensory signal processing. The back end 

operations deal more about Intelligent Signal Processing (ISP) [81] in the BIC domain. 

Hammerstrom [4] said: "As we move from front end to back end, t:Q.e computation 

becomes more interconnect driven, leveraging ever larger amounts of diffuse data at 

the synapses from the connections." Hammerstrom [4] also argued that the analog

based circuits are primarily focused on the front end. So, there is not much room for 

a VLSI to emulate the robust back end ISP computations. This is also the reason we 

chose the more virtualization-oriented digital and mixed-signal CMOS / CMOL 

architectures to emulate the AM. The mixed-signal CMOS / CMOL designs are the 

finest-grained PN hardware architectures in this work as shown in Figure 2-10. 

The digital general-purpose NN processor, such as CNAPS [105], can be one of the 

hardware candidates in this work. However, we need more dedicated circuits for the 

AM algorithms to compete with the general-purpose microprocessor in the sense of 

performance. Although such dedicated circuits ( or digital and mixed-signal special

purpose NN processors) lose programming flexibility to the more general-purpose NN 

processors, the huge performance benefit from those dedicated circuits for AM 

algorithms could enable the digital/ mixed-signal CMOS and CMOL designs to race 

well against PC and FPGA. The reason we chose CMOL as the nanoarchitecture to 

emulate AM can be found in Section 1.1, and 6.1. 

66 



We also chose FPGA and PC cluster to be the other two hardware candidates to 

implement the AM algorithms. PC cluster can be as flexible as PC (shown in Figure 

2-10), and can also modestly move toward the less-virtualization direction in the 

hardware spectrum (to the right hand side of Figure 2-10) to improve performance. 

However, it (PC cluster) also increases the cost proportionally (see Chapter 3). In 

Figure 2-10, FPGA has less flexibility than PC and PC cluster, however, less 

virtualization too. That means FPGA should have better performance than PC and PC 

duster when power and silicon cost are considered into this comparison. FPGA now 

becomes an important tool for people to run simulations or build prototypes for AI, 

ANN, and non-ANN applications (details in Section 3.1). 

Although we did not put multi-core or CMP (Chip Multi-Processor) into the hardware 

architecture spectrum in Figure 2-10, it is worth for us to study CMP's 

performance/price on emulating HDM algorithms in the future. We put the possible 

future work in Chapter 7. 

67 



2.5. METHODOLOGY 

D~oonipos~:,il~~dthms intoi6i~ic corrifilo. 
ns and;ijefin,Jypi · · 

Figure 2-17: Methodology flow chart used in this work, i.e., performance/price 
ratio comparisons for AM algorithm hardware implementations. 
(Adapted from [40].) 

The objective of this research is to conduct a methodical search of the design space for 

different hardware architectures to emulate a single HDM column network. Zaveri 

[ 40] from our group proposed a formal design flow for implementing abstract cortical 

models. When conducting this methodical search, we list six major steps in Figure 

2-17 to show the methodology flow chart used in this work. 

68 



The first step in the methodology in Figure 2-17 is to present the algorithm, the non

spiking and spiking AM algorithm as the building block of HDM. We have presented 

this in Section 2.2. The second step is to decompose the algorithms into basic common 

computations, which are matrix-vector inner-product and k-WTA operations. Also, we 

realized that compared to those two operations, multiplication, addition, and 

comparison, which are used for the two operations, are fundamental computations one 

level lower. The second step was also presented in Section 2.2. 

To implement the AM algorithm with suitable hardware architectures, the third step 

we did was to explore the hardware candidates, which were explained in Section 2.4. 

In later chapters (Chapter 3, 4, 5, and 6), we covered the next three steps in the 

methodology flow chart. For example, for the fourth step, the mapping of 

computations to hardware is a complex issue since it concerns the degree of 

multiplexing of the computational hardware. Because of the significant parallelism 

available in an AM network, we could spend significant computational hardware to do 

massive speedup of each node (neuron) in the network. At the other end of the 

spectrum in Figure 2-11 (the coarsest PN, which multiplexes all the computations 

required by the network), we could use one arithmetic unit to sequentially compute all 

the nodes in a column, essentially multiplexing the computational hardware over the 

required computations. Each point on the spectrum in Figure 2-11 brings its own set of 

performance/price trade-offs. Mapping of the computation to hardware is a critical 

problem for FPGA, CMOS, and CMOL implementations, as explained in Chapter 4, 

5, and 6, respectively. However, for the PC implementations, the mapping is to 

69 



maximally virtualize the PC system for the computations (see Chapter 3). As we have 

explained in Section 2.4.2, we only mapped the non-spiking AM algorithms on the 

PC, PC cluster, and FPGA, while both the non-spiking and spiking AM algorithms on 

the CMOS and CMOL architectures. 

The fifth step in our methodology is to benchmark performance/price from simulation 

or analysis of implementing AM with different hardware architectures. For PC and PC 

cluster implementations, this benchmarking or measuring performance is 

straightforward, because we could record the simulation's running time (see Chapter 

3). We did this for one of the FPGA implementations in Chapter 4 too. However, for 

the optimal FPGA, CMOS, and CMOL architectures, we did not have the physical 

implementations, so that benchmarking the performance/price ratio was achieved 

through estimate. We used ideal performance/price numbers or numbers from 

literatures for this estimate. We also scaled down the CMOS transistor size to 22 nm 

technology according to ITRS [108], since 22 nm is the projected feature size for mass 

production in 2016. The details of this estimate and scaling are in Section 4.3.2, 

6.1.4.4, and 6.4. 

The final step in this work is to compare the performance/price ratios across those 

studied hardware architectures at the system level. The performance for the non

spiking AM implementations is measured by Connections Per Second (CPS) that the 

hardware could compute for the AM networks. The results are listed in Section 3.2.5, 

3.4, 4.2.2, 4.3.3, and 6.4. For spiking AM implementations with CMOS and CMOL, 

we used the maximum input spiking rate as the performance measurement (see 

70 



Section 6.4). For estimating the pnce, we used power and silicon area as the 

measurement. 

71 



3. DESIGN WITH GENERAL-PURPOSE ARCHITECTURES 

3.1. INTRODUCTION 

Although traditional general-purpose microprocessors could provide different kinds of 

parallelism, such as instruction level parallelism or multi-thread, we could still think 

of a single microprocessor chip as mostly a sequential computational platform. If we 

do not care about the performance and real time3 requirements, writing software 

implementations of biologically inspired algorithms on a PC or workstation is 

sufficient. An overview of simulators of some artificial neural networks based on such 

general-purpose PCs can be found in [109]. 

Our study of association algorithms begins with implementations on a PC, primarily 

with Intel's Pentium 4 microprocessor as our baseline of performance comparisons. 

Having a working simulator and an understanding of the performance bottleneck of a 

PC implementation is as important as finding the most efficient way to implement the 

AM algorithm on specialized hardware platforms. 

More recently PC clusters, typically with distributed memory, are becoming more and 

more popular in scientific and engineering applications [13, 51, 110]. Such clusters are 

an easy way to increase the performance of computing the AM algorithm. However, 

3 Here, real time refers to either running video/audio applications or real world 
applications that must be shown/played in the real time manner, or emulating an 
artificial "scaled-up" brain with response time approaching that of biological 
systems, which requires huge amount of computations that are beyond all but the 
very largest parallel computing systems. 

72 



PC cluster is a limited solution for real applications. This is particularly true if the 

inter-PC interconnect bandwidth is a performance bottleneck, in which case we could 

not expect the ideal performance scaling from a PC cluster. Thus, we need to 

investigate the performance/price ratio of PC cluster implementations as well as single 

PC implementations. 

This chapter will look at the implementation methods of WPNAM on a PC and a PC 

cluster, compare their performance/price ratios, and use the results as a baseline to 

compare with FPGA, CMOS, and CMOL implementations of the same AM models 

(see Chapter 4 and Chapter 6). 

3.2. IMPLEMENTATION WITH PC 

3.2.1. CSIMINTR0DUCTION 

Our PC simulation is based on a C++ software system - CSIM (Cortex SIMulation). 

The primary objective of CSIM is to allow researchers to build simulators of large 

neuro-like models quickly and run them on a variety of parallel machines. CSIM is not 

actually a simulation system so much as it is a collection of library modules and 

utilities that allow a rapid prototyping capability for a range of simulators for 

modeling neuro-computational models. The models implemented by CSIM are fairly 

simple, and more oriented toward easing the next step to silicon implementation 

(FPGA or full-custom VLSI). There are both C++ and MATLAB® versions of CSIM. 

Using CSIM, we ran several experiments measuring average memory bandwidth and 

node-update rate per second [41]. CSIM also uses the MPI (Message Passing 

73 



Interface, version 1.1) [111, 112] standard for inter-process communication in multi

thread (and multiprocessor) systems. The WPNAM algorithm that CSIM implemented 

is not optimal. Both for the sparse and full representations ( explained in the following 

paragraph), the weight matrix is stored by row. The PC reads in one row at a time and 

performs an inner product with the input (test) vector. Because the input vectors are 

very sparse, they are stored as a set of indices. Another approach to the matrix-vector 

inner-product with very sparse data structures is to store the weight matrix by columns 

and then only read the columns that correspond to a non-zero element in the input 

vector. We used the latter version (column-wise weight matrix) on the PC and PC 

cluster implementations. 

The weight representation in CSIM is implemented in two different ways: full matrix 

and sparse matrix. Full-matrix weight representation is defined that all the bits of the 

synapses (weights) are explicitly stored in the matrix, no matter there is a connection 

or not for the corresponding weight. A sparse matrix weight representation is defined 

that only the indices and values (both of type unsigned int) of the synapses with 

connections are stored in the weight matrix .. The performance of the different CSIM 

options was collected. 

3.2.2. NETWORK CONFIGURATIONS AND VTUNE INTRODUCTION 

The PC version of the WPNAM model is implemented on a DELL Dimension 8100 

(P4 1.8GHz) with CSIM. The network configurations are listed in Table 3-1. 

74 



Table 3-1: Configurations of the PALM associative neural networks. 
vector _size is the number of input neurons, which is also equal to the number of the 
output neurons; number _train_vector is the number of training vectors; 
active_ nodes is the number of active nodes in each of the training vectors (it equals 
log2(vector _size)); the Hebb matrix fullness is the measurement of the sparseness of 
the Hebb weight matrix of the network (the percent of non-zero entries). 

vector size number train vector active nodes Hebb matrix fullness 
Confl 1024 706 10 10.00% 
Conf2 2048 1412 11 3.50% 
Conf3 4096 2826 12 1.75% 
Conf4 8192 5652 13 0.72% 
Conf5 16384 11304 14 0.51% 

For our experiments, we used vectors that are randomly generated internally to CSIM. 

The time for generating the vectors was not measured. The most time consuming 

operations were the inner-product and k-WTA. 

Intel's VTune Performance Analyzer 6.1 is used to evaluate the code performance on 

PCs with Intel processors. With VTune's Event Based Sampling (EBS), we can view 

the performance of our code in relation to processor events, and obtain performance 

measures such as CPI (Clocks Per Instruction), Ll cache load misses, and L2 cache 

load misses. Additionally, we can drill down to any hot spots in the program. In order 

minimize the performance impact of the compiler, we set it to maximum speed 

optimization. Since VTune is sampling based, it still provides a useful view of the 

causes of the varying performance by different configurations of the associative 

network. 

75 



3.2.3. AVERAGEMEM0RYACCESSTIMEFORDATA(AMATD) 

To help us understand the specific performance characteristics of the associative 

memory algorithm, we defined a quantitative method to measure the memory 

performance within the simulation program, the Average Memory Access Time for 

Data or AMATO: 

AMA TD = L 1 data cache hit time + L 1 data cache miss rate x miss penalty 

= L 1 data cache hit time + L 1 data cache load miss rate x (L2 cache hit time 

+ L2 cache load miss rate x main memory hit time) (3.1) 

In order to obtain the L 1 data cache hit time, L2 cache hit time, and main memory hit 

time, we used the method by Andrea Dusseau of U. C. Berkeley [21] to run the 

memory hierarchy test (using different data array size and different data read and write 

offset, or stride, to test the PC's average read and write time for each word) for the 

DELL 8100. The memory hierarchy test code was also compiled with speed 

optimizations. 

76 



Memory Hierarchy 

350 ...--------------------, ui 
.:. 300 -t-------------------, 

f 250 -t----------------~;r------, 

if 200 +----------------~,"'-----l 

i 150 +=====.;~::~:;::;2~~!:~H ._ 100 
-2 
~ 50-t---------,,,=----------------'I-I 
E 
j:: 0 

,t,'o & R,'o ~~ ~'o 
"(;) ~'5 "'o";j 'o<,;,<6 

Stride (Bytes) 

-0.5K 

-1K 

.•••.• 2K 

Figure 3-1: Memory hierarchy test for Pentium 4 machine (DELL Dimension 
8100). 
The x-axis is the stride ( offset) to read and write array elements from the example 
in [21]. The y-axis is the time for reading and writing an integer. The different 
curves show different data array sizes from 0.5 KBytes to 64 MBytes. 

As illustrated in Figure 3-1, the Ll data cache hit time is about 0.8 ns (or 1.6 ns/2), the 

L2 cache hit time is about 4 ns (or (9.6 ns - 1.6 ns) / 2), and the main memory hit time 

is about 45.2 ns, or (100 ns - 9.6 ns)/ 2. 

3.2.4. COLUMN-WISE INNER-PRODUCT 

Over the last ten years there have been a number of hardware implementations of the 

WPNAM model. Since the development of the first Palm NAM silicon chip [28], the 

performance of commercial microprocessors has increased dramatically according to 

Moore's Law. Although the memory bandwidth lags behind the CPU clock rate, the 

Pentium 4 CPU can compensate to some degree by having 1 MB on-chip cache 

storage, which was not possible even ten years ago. For providing a baseline 

77 



performance number, it is important that we evaluate the PC's performance in 

implementing the WPNAM algorithm. With the baseline performance of the Pentium 

4, we can then evaluate the implementation on a PC cluster to see the speedup 

obtained using multiple processors, and the influence of inter-processor 

communication overhead. 

When implementing the matrix-vector inner-product, there are several issues to be 

considered. The first is whether we have sparse and full weight matrix representations. 

The second issue is that we can do row-wise inner-product or column-wise inner 

product. Figure 3-2 shows a traditional row-wise inner-product method. Figure 3-3 

shows the method of column-wise inner-product. 

As shown in Figure 3-2 for the row-wise inner-product, the computer reads in one 

word in the i-th weight row according to one active node in the input vector ~n, and 

examines the corresponding bit in the word to see if it is 1 or 0. If it is 1, then the 

computer accumulates the result value in the i-th row of the somatic-potential vector 

S . Assuming that the memory word width is 32 bits, and the input vector ~n is 

sparsely coded, this method of row-wise inner-product wastes too much memory 

bandwidth, approximately 96.9%, for the bits that are zeros. This is because we use 32 

bits to represent a one bit weight, so for each weight matrix word that is read, there is 

only one bit out of the 32 bits to be tested for a one or zero. We do not need the 

remaining 31 bits. In addition, even if we could optimize the 32 bits to represent 32 

weight connections, because of the sparseness of the input vector V;n, a lot of weight 

bits are discarded after being read into the CPU from external memory. 
78 



Wv vm s 

Woo ----------- 0 0 
1 1 ---------- 2 2 

* 9 
\ -----------

w,._1.,._1 n-2 n-2 ------ n-1 n-1 

Inner-
Product 

Figure 3-2: The row-wise inner-product. 
W!i is the weight matrix. The i-th element in the somatic-potential vector S is the 

inner-product vector of the weight matrix and the input vector "V;n . 

Because of the sparseness of the input vector "V;n , we propose a much more efficient 

method for inner-product, namely the column-wise inner-product [113]. In this 

operation, we only read the columns of the weight matrix W;j according to the active 

nodes in the input vector "V;n. We then do a column-wise add of these column vectors 

to get the result vector, which is the somatic-potential vector S. For example, in 

Figure 3-3 the input vector "V;n has three active nodes, 0, 2, and n-1. We read in the 0-

th, 2nd, and (n-1 )-th columns of the weight matrix W!i, and add all three columns 

together to get the result vector S . Because the columns of the weight matrix that are 

read in from memory do not contain as many redundant bits as the row-wise inner-

79 



product, the column-wise inner-product method could save us more time on reading 

the weight matrix as compared to the row-wise inner-product method. 

0 1 2 n-1 
v,.,. s 

0 

2 

X ➔ 

n-1 

Figure 3-3: The column-wise matrix-vector inner-product. 
This diagram shows an example of a sparse input vector v;n only with the 01

\ 2nd
, 

and (n-1/h nodes active. 

3.2.5. SIMULATION RESULTS 

We ran CSIM on a DELL 8100, and used VTune Performance Analyzer 6.1 to 

evaluate the L 1 cache load miss rate, L2 cache load miss rate, and CPI, as illustrated in 

Table 3-2 and Table 3-3. 

When we drilled down to the hotspot of the program CSIM( ), we found that the 

OutGenObj::Execute( ) (the procedure for inner-product) has the highest CPI for all 

functions. We can also see the detailed data from the VTune Performance Analyzer 

and for Equation (3 .1 ). 

80 



From Table 3-2 to Table 3-5, we find that the sparsely represented weight matrix has a 

greater AMATO and requires more computational time than the full-weight matrix 

representation. We also find that the sparsely represented weight matrix has a smaller 

CPI than the full-weight matrix representation, both for the overall program and the 

hotspot function. This indicates that the sparse-weight matrix representation requires 

more instructions. That is obvious, since each connected synapse should have a 32-bit 

unsigned int index and a 32-bit unsigned int value for the sparse-weight matrix 

representation. For a full-weight matrix representation, however, each input/output 

node pair has a one-bit weight to represent connectivity. If the connectivity is very 

sparse, the sparse-matrix will be a better solution. From a memory bandwidth 

perspective, the break-even point is at a sparseness of about 3%. 

Table 3-2: The overall performance results for the sparsely represented 
t . . h I ·1 d d d f . f bl d ma nxwit re ease comp1 er mo e an spee op 1miza ions ena e . 

LI Cache Load L2 Cache Load Average memory # (loads + stores) / Time CPI 
Miss Rate(%) Miss Rate (%) access time for data # (total (s) 

AMATD (ns) instructions) 
Confl 1.03 15.97 0.92 0.51 2.3 1.20 
Conf2 1.04 16.67 0.92 0.51 5.6 1.20 
Conf3 1.06 17.27 0.92 0.51 13.5 1.22 
Conf4 1.08 19.05 0.94 0.51 31.9 1.23 
Conf5 1.08 22.92 0.96 0.51 75.1 1.24 

Table 3-3: The overall performance results for the fully represented matrix 
. h I il d d d f . . bl d wit re ease comp er mo e an s1>ee op 1mizations ena e . 

L1 Cache L2 Cache Average memory # (loads + stores) / Time CPI 
Load Miss Load Miss access time for # (total (s) 
Rate(%) Rate(%) data AMATO (ns) instructions) 

Confl 0.45 10.00 0.84 0.51 0.5 1.49 
Conf2 0.58 15.63 0.86 0.51 1.1 1.53 
Conf3 0.89 11.90 0.88 0.51 3.0 1.53 
Conf4 0.76 16.27 0.89 0.51 8.0 1.50 
Conf5 0.58 16.57 0.87 0.51 11.2 1.42 

81 



Table 3-4: The hotspot OutGenObj::Execute0 performance results for the 
sparsely represented matrix with release compiler mode and speed 

f . t· bl d op 1m1za 10ns ena e . 
L1 Cache L2 Cache Average #(loads+ Ratio of CPI 
Load Miss Load Miss memory access stores)/# clockticks for 
Rate(%) Rate(%) time for data (total the total vtune 

AMATD(ns) instructions) event samplings 
Confl 0.23 l.ll 0.81 0.4 0.39 1.16 
Conf2 0.28 1.27 0.81 0.4 0.38 1.14 
Conf3 0.25 5.18 0.82 0.4 0.37 1.13 
Conf4 0.29 15.53 0.83 0.4 0.37 1.13 
Conf5 0.37 33.63 0.87 0.4 0.36 1.14 

3.2.5.1. Vector size impact to the memory bandwidth 

A major concern is that these programs exhibit little locality, which compromises 

cache performance and puts greater dependence on memory bandwidth. Consequently, 

we examine the bandwidth issue in more detail. 

From Figure 3-4, we can see that, as the vector size increases (the number of training 

vector numbers used is approximately 0.69 of the vector size, and the number of active 

nodes is Iog2(vector size)), the inner-product memory bandwidth decreases. For the 

sparse-matrix representation, the bandwidth goes to 140 MB/sec when the vector size 

is about 32 K. For the full-matrix representation, the bandwidth goes to 100 MB/sec 

when the vector size is about 32 K. 

82 



Table OutGenObj: :Execute0 3-5: 
t f represen a 10n w1 

The 
"th re ease comp1 er mo e an spee 

hotspot 
I ·1 d d d op 1m1za 10ns ena e . 

for the 
f . f 

full-matrix 
bl d 

L1 Cache L2 Cache Average #(loads+ stores) Ratio of CPI 
Load Load memory access I# (total clockticks for the 
Miss Miss time for data instructions) total vtune event 

Rate(%) Rate(%) AMATO (ns) samplings 
Confl 0.04 23.08 0.81 0.57 0.10 1.43 
Conf2 0.08 0.00 0.80 0.56 0.11 1.89 
Conf3 0.11 7.19 0.81 0.55 0.08 1.77 
Conf4 0.11 9.36 0.81 0.52 0.06 1.49 
Conf5 0.14 13.51 0.81 0.55 0.05 1.69 

vector size impact to the memory bandwidth 

300.00 

250.00 

;§ 
200.00 'iii 

i! -
! J 150.00 
~ !!! i - 100.00 

- sparse-matrix \l\ilh 

"' 
compiler set to max-

speed 

\_ -tll- full-m air ix \l\ilh 
compiler set to max-... ,'-,,, speed 

"--

"'·•------ - -
~ 50.00 :I 
'8 
!:I. 0.00 
~ 
C 0 5000 1 0000 1 5000 20000 25000 30000 35000 
,!i 

vector size (neuron node!j, 

Figure 3-4: The relationship between the number of network nodes (vector 
elements) and the inner-product memory bandwidth for the Pentium 4. 

In Figure 3-4, the horizontal axis is the vector size, and the vertical axis is the inner

product memory bandwidth (MB/sec). The diamond-dotted curve denotes the sparse 

weight matrix representation. The square-dotted curve denotes the full binary weight 

matrix. As shown in Figure 3-4, when the vector size increases, the inner-product 

memory bandwidth is reduced, both for the full-matrix and for the sparse-matrix 

representations, where the number of training vector numbers used is 0.69 of the 

83 



vector size, n, and the number of active nodes, k, is approximately log2 n. For the 

sparse-matrix representation, the memory bandwidth goes to 140 MB/sec when the 

vector size, n, is about 32 K. For the full-matrix representation, the bandwidth 

decreases to 100 MB/sec when the vector size is about 32 K. Figure 3-4 also shows 

that the full binary weight matrix representation has a smaller memory bandwidth 

requirement than the sparse weight matrix representation when the vector size is 

greater than 5 K. Intuitively, we prefer the method with a lower memory bandwidth 

requirement. From Table 3-2 to Table 3-5, the greater AMATD in sparse weight 

matrix representation proves that the full binary weight matrix representation is 

favorable in our WPNAM simulation cases. 

vector size impact on node update rate 

u 16000 -.-------------....-----=-------:,,._--, 
C11 -+-Sparse matrix 
~ 14ooo +-------------------1-111-Full matrix 

°& 12000 +------~.,L_-----"'-.c----'=========='---------1 

~ 10000 +------=---------->---------------j 

~ 8000 +-----------7'~------___,"'-cc----------j 
E 
~ 6000 -l---.L--------------=::::11::===ll_-----l 
Ill 

"8. 4000 +---------------------------1 

::, 

~ 
C 

2000 +-------------------------1 

0 +--..t1==;:::=-====;===-==;==~=""1'-----4~-,--,+--! 

1024 2048 4096 8192 16384 32768 

vector size 

Figure 3-5: Vector size versus node update rate for Pentium 4. 

84 



Figure 3-5 shows that the node update rate with full-matrix is much greater than that 

of sparse-matrix. The horizontal axis is the vector size. The vertical axis is the node 

update rate (Knodes/sec ). The diamond-dotted curve is the sparse-matrix with 

compiler set to maximum speed. It goes to 110 Knodes/sec when the vector size is 

about 32 K. The square-dotted curve is the full-matrix representation with compiler 

optimization set to maximum speed. It goes to 6000 Knodes/sec when the vector size 

is about 32 K. Because sparse matrix wastes much more bandwidth on reading the 

indices of the active weight bits than the full matrix that just reads the weight column 

bits corresponding to the non-zero elements in the input vector, the full-matrix has less 

of a memory bandwidth requirement than the sparse-matrix. For the sparse-matrix 

representation, each active weight bit has a 32-bit row-index and a 32-bit column

index. 

3.3. IMPLEMENTATION WITH PC CLUSTER 

One common technique to get more performance using the basic PC platform is with a 

multiple PC configuration, generally referred to as a PC cluster [114]. A common 

cluster configuration is to use Linux based PCs in what is referred to as a "Beowulf 

cluster" [ 115], where a number of PCs are connected to a common broadband 

network. Software is available that allows these PCs to share tasks and communicate 

data and results. 

In addition to system support there are programming environments for developing 

parallel programs for such clusters, the most commonly used is MPI (message passing 

85 



interface) [111]. MPI consists of a set of calls (in C, C++, or Fortran) for 

implementing parallel programs. CSIM has a parallel processing option that is based 

on MPI. In this section, we present results of executing CSIM on a small Beowulf 

cluster. In these experiments, a single association network is spread across the 

processors as shown in Figure 3-6. 

The purpose of this experiment was to understand the overhead required to execute a 

single association network across multiple processors. However, real implementations 

will probably use multiple association networks, with each module assigned to a 

processing node. 

There are two components in the WPNAM algorithm that require different approaches 

to parallelization. The first is the matrix-vector inner-product. Here, the weight matrix 

is equally divided into p groups of r rows ( n = p x r ), each processor is assigned a 

group of r rows. The entire input vector is broadcast to all processors so that they can 

perform a matrix-vector inner-product on those rows of the weight matrix that are 

assigned to that processor. 

The second part of the algorithm involves the k-WT A. Each processor computes a k

WT A on the portion of the output vector for which it is responsible (those k nodes 

allocated to it). These (p-1) k-element vectors are then sent to processor O (the root 

process), which performs another k-WTA over the entire vector. Since pk is usually 

much smaller than the vector dimension, n, this approach is reasonabJy efficient and 

86 



guarantees the final k-WTA is correct. Also, the k-WTA is only performed after all the 

inner-products are complete, which generally require a much longer time. 

The cluster gets its performance by dividing the computation into p equal parts that 

can be computed concurrently. This also increases the effective memory bandwidth by 

p. Ideally the speedup would be p. Unfortunately, the speedup is smaller than p, since 

parallelism creates additional overhead. In our simulator this overhead has two 

components: 1) the broadcast of the input vector to all the processes, and 2) the 

broadcast of the k local winners to the root processor and the computation of the final 

k-WTA. 

To know the relationship between the speedup and the number of processors, p, we 

performed experiments of implementing the WPNAM model on the PC cluster. For 

these experiments, we used a small PC cluster environment with 8 DELL Dimension 

LlO00R computers. Each node includes an Intel® Pill 1.0 GHz CPU, 512 MB PC133 

memory. The OS is RedHat® Linux 7.1. The compiler is G++ 2.96. 

87 



~ s 
PCO_DRAM < wo,o 

wn 
-1,n-1 

PC1_DRAM < 
wn 

4'0 
wn 

-1,n-l 
-

PC2_DRAM < 
wn 

2'0 w3n 
--1,n-l 

PC3_DRAM < 
~n 

4'0 
Wn-1,n-l 

Inner-Product p=4 

Figure 3-6: Illustration of the weight matrix distribution for the PC cluster (4 
PCs example). 

Table 3-6: PC cluster (8 rocessors simulation results. 
Number Vector Knodes update Normalize nodes update rate 
of PCs er second b 2-PC number 

A summary of the results is shown in Table 3-6. The number of training vectors, M, is 

0.69 of the vector size, n. The number of active nodes, k, is log2 n. The most 

88 



important result is that for the larger vectors, increasing parallelism does not add 

significant overhead. For the 64 Knode network, only about 8% of the performance is 

lost in going from two PCs to eight PCs. In these experiments we are only 8% short 

of a linear performance improvement of four times. 

3.4. PERFORMANCE COMPARISON BETWEEN PC AND PC CLUSTER 

Figure 3-7 shows the node update rate for the P4 and the PIii cluster. The x-axis is the 

node size. The y-axis is the node update rate (Knodes/sec ). The square-dotted curve is 

the cluster implementation. The diamond-dotted curve is the simulation result from the 

P4 for full-matrix vector. 

~ 1800 
"' CII 
'g 1600 
C 

~ 1400 
.s 
~ 1200 
CII 

~ 1000 
C. 
::, 800 

CII 
"CJ 

~ 600 

Node Update Rate for P4 and Cluster 

·, -+-P4 with Full-Matrix 

\ --8-Processors Cluster 

"'-. with Full-Matrix 

Iv---~ -

4096 9096 14096 19096 24096 29096 

Number of Nodes (vector size) 

Figure 3-7: Node update rate for the P4 and the PIii cluster. 

From Figure 3-7, we can see that the PC cluster has better performance for the node 

update rate when the vector size grows beyond 10 K. However, the entire Pill cluster 

89 



implementation did not do significantly better than the P4 implementation. This is 

because the computers in the PIII cluster are much slower than the P4, and PC133 

memory in the PIII cluster has much lower bandwidth than the Rambus memory in the 

P4. 

90 



4. DESIGN WITH RECONFIGURABLE ARCHITECTURES 

4.1. INTRODUCTION 

FPGA is a useful hardware platform for implementing certain kinds of 

computationally intensive algorithms. The use of FPGAs has become a trend not only 

in the artificial neural network field, but also in fields such as computer graphics 

[116], computer vision [117], speech recognition [118], bioinformatics and 

computational biology [119], financial analysis [120], and physics [121]. In the recent 

, seven years, FPGAs have benefited from Moore's law with steadily reduced pricing 

and increased capacity and speed. Consequently, the performance (speed) gap between 

FPGAs and microprocessors has been shrinking dramatically. People are not only 

using FPGAs as pre-silicon prototypes, but also in more and more situations as the 

final component listed in the bill of materials, due to shorter development time, shorter 

product life time, and field reconfiguration. 

Generally speaking, with our data-parallel, low precision AM model, an FPGA should 

have a competitive performance/price ratio when compared to a PC and PC cluster due 

to more parallel computing capability of the FPGA, and the specialized design of 

FPGA implementations over the general-purpose software implementation of the PC 

and PC cluster. Therefore we believe that an FPGA implementation of the AM model 

should have a better performance/price over the PC and PC cluster, without 

considering the flexibility of mapping and programming AM onto FPGA or PC 

platforms. As a part of the FPGA implementation exercise, we introduce the EVS 

91 



(Enhanced Vision System) application with the WPNAM model and how to 

implement the WPNAM model onto an existing Xilinx development board (D2) [43]. 

We then study the potential for implementing the WPNAM model onto a virtually 

designed FPGA board Relogix, which is optimized for maximum external memory 

capacity and speed, and analyze the performance of such design. 

4.2. A CASE STUDY OF FPGA IMPLEMENTATION 

We first introduce the FPGA implementation of the AM model for a real application. 

This application is an association engine4 in the EVS for commercial aircraft [43], 

which has been developed in collaboration with Max-Viz Inc. A pilot guidance system 

[122, 123], which makes use of fused, visible-band, infrared (short wave and long 

wave) and radar imaging sensors, provides guidance to pilots when landing in low 

visibility conditions. Short wave and long wave infrared (SWIR and L WIR) are 

suitable for night operation whereas radar is useful· in foggy conditions. However, 

since these sensors have differential sensitivities, their image characteristics can be 

very different and even opposite in some cases. Partial polarity reversal for local 

contrast, for instance, is very common for visible-band and infrared images. Also, 

features reported in one sensor might not be seen by the other sensors. More 

importantly, this application has critical time constraints and requires a maximum 

likelihood image fusion to be performed in real time, in the sense that the time lag 

between processing of each single image frame has to be small enough so that it does 

4 The author acknowledge Luk who did most of feature extraction and MATLAB 
prototype work. 

92 



not cause any visual discrepancy. All these requirements pose a big challenge to the 

image fusion task. 

Figure 4-1 shows the EVS association engine, which uses the WPNAM model we 

have discussed in Chapter 2. The EVS takes these various images and fuses them into 

a WPNAM model, which generates the most-likely object image and projects this 

image (video) onto a Head-Up Display (HUD) in front of the pilot [43]. 

Sensors 

HUD 

Feature 
Extraction 

Figure 4-1: EVS associative memory application. 

In this system, simple visual processing is used on each image to find key elements of 

the background, generally the edges of the runway. We utilize feature extraction based 

on the model of the early visual processing of primate visual cortex, Vl [124, 125]. 

We have followed Olshausen's approach [124] to approximating Vl function, making 

93 



use of the receptive fields of VI simple cells: This biologically-inspired feature 

extraction is invariant over subtle shifts in feature position and size [126, 127]. 

Since these features tend to be consistent across all images from the various sensors, 

the feature vectors are just added together, then thresholding (sparsification) is 

performed to reduce the number of features, creating a sparse representation of the 

strongest features. This cumulative feature vector is then input to an associative 

memory that returns the features of a stored image. 

Association involves storing mappings of specific input representations to specific 

output representations. When an obscured, noisy or incomplete input image is 

presented to the memory, it will recall the best match in its database. For auto

association, the input representations are the same as that of the output and allows for 

easy recursion (using the previous output for the next input). We used an associative 

memory based on the WPNAM model from equations (2.2), (2.3), and (2.4). This 

network was trained by presenting the visual approaches to the field in clear visual 

conditions [ 41]. 

4.2.1. FPGA IMPLEMENTATION 

Since the associative memory model in the EVS system has a massively parallel 

computing architecture, currently a traditional computer such as the Intel's Pentium 4 

cannot execute the model efficiently [15]. The aircraft also requires a small, light, low 

power implementation. As a result, we need other hardware platforms to accelerate the 

performance. The system's computational performance is not only determined by the 

94 



hardware platform, but also by the system parameters. These parameters include the 

image size, the number of active nodes, k (via the k-WT A), and the size of the feature 

vectors. As a part of the work reported here, we implemented the Palm associative 

network on a Xilinx FPGA with dedicated SRAM. Since the Palm network is 

memory-access intensive, we were investigating whether the FPGA could be a 

reasonable alternative to the PC platform when the memory bandwidth of the FPGA 

board is high enough to satisfy the requirements of the application. 

4.2.1.1. System description 

Since a number of imaging applications have been implemented on FPGAs, we can 

rely on previous efforts to understand the cost-performance trade-offs of implementing 

the feature extraction. Consequently, we have ported only the Palm associative 

network to the FPGA board. All other algorithms of the EVS system are performed by 

a host PC. As shown in Figure 4-2, the hardware platform for the EVS system consists 

of a host PC and an FPGA board with dedicated SRAM. The PC is a DELL 

Dimension 8100, with Pentium 4 1.8 GHz CPU, Intel 850 chipset, 1024 MB RDRAM 

memory, 8 KB Data/ 12 KB Instruction LI cache, 256 KB L2 cache, and a 400 MHz 

front side bus. The EVS system is implemented in MATLAB® 6.5. The operating 

system was Windows XP Professional. The FPGA is a Xilinx XC2S200 -6. The 

FPGA development board is the Digilab D2 from Digilent Inc. The external SRAM 

consists of two 512K Bytes of 15ns SRAMs from Cypress (CY7C1049CV 33-15VC). 

95 



Original 
Image 

PC running Matlab 

Display i 
i 

Image Pre- Pre-
processing----... processe 
(Feature d Image 

E:x!radion) 

D2 FPGA 
Board 

\ 

Palm 
Associative 

Netrork 

Finding the 
most-like 
original 
image 

Retrieved 
Image 

Figure 4-2: System organization and data flow for the EVS system with the 
WPNAM algorithm implemented on the D2 FPGA board. 

4.2.1.2. FPGA implementation details 

We added Gaussian noise to the original, clean, video images. The size of each frame 

of the video is 128x 128 pixels with 8 bits of grayscale resolution per pixel. These 

noisy images are used to test the system. The PC begins pre-processing each frame of 

the test video by extracting the features and creating a sparse vector of the features. 

The PC then transmits this feature vector to the FPGA, which implements the 

associative memory algorithm. The first step for the FPGA is to perform an inner

product with the weight matrix stored in the SRAM, creating the result sum vector. A 

vector-vector inner product is performed on the input vector with each row of the 

weight matrix, generating one element of the result sum vector at a time. 

The resulting sum vector is stored in the FPGA with k 24-bit registers, where k is the 

number of active nodes in the output vector. When the (k+ llh node's sum arrives, it is 

96 



compared with the smallest value, if it is smaller than or equal to that value, it is 

discarded. Otherwise, it is compared with the remaining values until a node is found 

whose value is greater than the value of the (k+ 1 )1h node (the node output that is 

currently being evaluated). Then the FPGA will insert this new value (and its index) 

into the list of active nodes. This merging process implements the Palm k-WTA 

function. After the k largest sums for a single vector-matrix inner product have been 

identified, the FPGA sends the sparse result vector (where the active nodes of the 

result vector are represented by the row-indices in the k 24-bit registers) back to the 

PC. 

serial port input 

SRAM (weight 
matrix 

1--~--~---1 
O<lh 

col row OOh 

row 

inner 
product 

k-WTA 

Figure 4-3: FPGA functional blocks - D2 FPGA board implementation. 

Figure 4-3 shows the FPGA functional blocks and the weight matrix organization in 

the SRAM. The SRAM stores the weight matrix with sparse representation with the 

97 



row and column indices of the active weight bits. The weight matrix is stored in the 

SRAM with the data structure as in Figure 4-4. For one specific weight bit, we need 

four reads to get its row and column indices in the WPNAM. The FPGA stores the 

input vector in the "input vector" unit. The "input vector" unit contains the non-zero 

row information of the input vector. The FPGA reads in weight matrix with the same 

row index, searches the corresponding column numbers inside the "input vector", then 

accumulates the value and writes to the "result vector" unit. This operation is done in 

the "inner-product" unit. The "k-WTA" unit will sort and insert the incoming result 

from the "inner product" unit to the "result vector" unit. The data structure of the 

"result vector" unit is shown in Figure 4-5. 

16 bit 

rowX 

rowY 

16 bit 16 bit 16 bit 

columnA rowX' columnA' 

columnB rowY' columnB' 

Figure 4-4: Weight matrix data structure. 

No.O 

No.1 
No.2 

No .active_node_ 
number-1 

Bbits 

row zfJ 

row a1 

row & 

row c11- 1 

16bits 

value 

value 
value 

value 

16 bit 
columnA"' 

columnB"' 

Figure 4-5: The data structure in the "result vector" unit. 

98 



4.2.2. SIMULATIONRESULTS 

In the preliminary system described in this dissertation, we used a database of 86 

images. The average number of iterations required to obtain a stable output was about 

three. The accuracy of correct retrieval using this final stable output is 80% for the 

noise level as shown in Figure 4-1. On the PC side, the feature extraction and post

processing was implemented in MATLAB®. Figure 4-1 also shows a snapshot of those 

images in different stages during simulation. It can be seen that even though the input 

image is highly corrupted by Gaussian noise, the feature image obtained after the pre

processing step still captures fairly well the edges of the runway. After being 

processed by the associative memory, a clean database image is retrieved. 

The accuracy of correct retrieval is not 100% as there is interference among the 

training vectors of images that are very close to one another in feature vector space. 

This happens with images that represent a fraction of a second difference in time 

during approach. Although these "nearly identical" images would appear as a mild 

flicker to the pilot, we are looking at ways to separate the images more in the feature 

vector space, such as by adding some smoothed temporal difference information to the 

feature vectors. 

Table 4-1: Performance comparison of the WPNAM implementations on PC 
and D2 FPGA board. 
"Time" denotes the time of 24 frames of video getting through the WPNAM 
network. 

Time (sec) Power dissipation (Watt) 
WPNAM on Pentium 4 0.43 64 
WPNAMonD2 0.81 1.25 

99 



From Table 4-1, we can see that the computation time for the associative memory on 

the FPGA is twice as compared on the PC. However, the power dissipation of Pentium 

4 is 51 times greater than that of the FPGA. The reason why the FPGA version is 

slower than the PC version is that we have not yet optimized the FPGA 

implementation with techniques such as pipelining and the use of a full binary matrix. 

Furthermore, the FPGA XC2S200 that we used was a very low-end but easily 

available FPGA at that time. It operates at a much lower frequency (50MHz) than the 

recent FPGA chips. And, the time penalty by the MATLAB® RS-232 serial port 

interface also detracts significantly from the performance of Palm network execution 

by the FPGA. However, even with these limitations, the FPGA still achieves a 

comparable performance to the Pentium 4. By exploiting parallelism in the FPGA 

with pipelining, preliminary analyses show that an FPGA based EVS system will 

operate within the real time constraints of this application [41, 43]. 

For example, ignoring the time penalty caused by the MATLAB® RS-232 serial port 

function, and replacing the SRAM with a faster SDRAM (at the mild cost 

compensation for power and silicon), which has 1.6 GB/s memory bandwidth, we 

found that the FPGA version has the potential to be at least twice as fast, as measured 

by node update rate, as the PC version. Figure 4-6 shows the analytic performance 

comparison of the Pentium 4 and a more highly optimized FPGA implementation [15]. 

In addition to matching desktop performance, the FPGA has a significant power usage 

advantage. Our FPGA implementation of the Palm network shows the feasibility of 

implementing associative networks on FPGAs, and provides important data on how 

100 



best to implement our application in an FPGA. Due to the increased parallelism, we 

expect the Vl implementation to be even more efficient. 

Node Update Rate for P 4 and FPGA 

5000 -+- full-matrix vector 

4000 I 
k- -- FPGA design analysis (U ..... 

;;_ ~ 3000 t ~ - -
Ch - •• :! GI 2000 

«I "CJ . 
"CJ 

O 1000 Cl. C ::) =- D 
en 
GI 1024 6024 11024 16024 "CJ 
0 
z Number of Nodes (vector size) 

Figure 4-6: Node update rate (node outputs computed per second) for P4 and 
FPGA versus the vector dimension, n. 
This is an analytic result of what is possible with higher FPGA memory and 
FPGAIPC IO bandwidth. The square-dotted curve is the node update rate for the 
FPGA implementation. The diamond-dotted curve is the node update rate for the 
P4 implementation with the weight matrix in full binary representation (for each 
weight bit, it is either 1 or 0). 

4.3. IMPLEMENTATION ANALYSIS WITH THE RELOGIX FPGA BOARD 

The D2 FPGA implementation of WPNAM network not only shows the feasibility of 

implementing the HMM model on an FPGA, but also provides important clues on how 

to improve FPGA architecture to execute the WPNAM algorithm for the EVS system 

more efficiently. For this reason it is useful for us to study an FPGA implementation 

in a system that has more highly optimized off-chip memory bandwidth. For this 

analysis, we propose an optimal FPGA board, called the Relogix board, to analyze the 
101 



performance of implementing the WPNAM model on a high performance FPGA 

platform. The Relogix board is a memory-intensive reconfigurable board with 

dedicated SDRAM. Each board has 1.6 GB/sec of memory bandwidth available for 

memory-intensive applications. The architecture allows multiple boards to be 

connected together to create larger, parallel configurations. Each accelerator is 

accessed by application software running on the host via an IDE/Fire Wire bridge. The 

objective of this board is to take advantage of inexpensive PC memory, FPGAs, and 

high speed interfaces to minimize the performance/price ratio in a reconfigurable 

accelerator. Figure 4-7 shows the basic board layout. 

FPGAs can provide significant performance improvement for highly data parallel, 

lower precision applications. However, some of the performance is compromised 

when access external storage is required. Given the state of the art of FPGAs and their 

on-chip memory capacities, emulating AMs will require such external memory. The 

Relogix exercise5 has been done to determine what performance is possible when the 

latest in DRAM memories and interfaces are paired with state of the art FPGAs. 

4.3.1. FPGA SYSTEM ARCHITECTURE 

The PQ208 pinout form factor accepts any size Xilinx Spartan-HE chip. The Spartan-

IIE, XC2S50E, IO0E, 150E, 200E, or 300E, may be installed at assembly. All Spartan-

5 "Relogix" comes from the name of a small company that intended to produce this 
board for the EVS among other things, but then lost its funding. Also, it is important 
to remember that the numbers and configurations used here were the latest in state of 
the art when this work was done, but now, as this dissertation is being written they 
are already out of date. 

102 



IIE chips have the same pinout, 142 general-purpose I/Os, and four global clock 

inputs, differing only in amount of logic and memory cells. By using smaller FPGA, 

we can stay in a QFP for the early boards, since the QFP package reduces costs. 

Because our algorithms make such extensive use of the SD RAM, there is a point of 

diminishing returns as one goes to larger FPGA. 

Figure 4-7 The basic Relogix FPGA board. 

Connected to each FPGA is a single DIMM socket, which supports a 10 nsec DDR 

64-bit pathway (two words are delivered in every 10 nsec clock cycle) into the FPGA. 

With today's memory technology this allows up to 512 MB (at the time this work was 

investigated) of memory to be directly connected to each FPGA. Finally there is an 

IDE to FireWire chip that creates the external FireWire interface for the board. An 

external header uses 20 uncommitted FPGA I/Os that can be connected to other 

Relogix boards or external devices such as sensors. A JTAG daisy chain header 

connects the FPGA to a Xilinx interface cable for programming with Xilinx software. 

103 



Many Relogix boards can be used in one JTAG loop. One or more Relogix boards are 

installed in one or more FireWire/IDE enclosures, which provide an IDE to FireWire 

bridge, power and cooling, and a connection to a Linux, OS-X or Solaris host. 

The system will obviously be most cost-effective with larger numbers of parallel, low

precision operations, a configuration where typically there will be more computation 

per bit fetched from the SDRAM. This is also a perfect match to our WPNAM 

implementations. The board will track the latest memory density ( commercial 

SDRAM) and bandwidth, following Moore's Law at the same rate as a general 

purpose microprocessor. 

We do not yet have a functioning board, so we cannot provide exact performance 

measurements. We present an analysis of the expected performance of the Relogix 

board on the same WPNAM algorithm used for the PC. The resulting information has 

never the less been very useful in helping us form our AM implementation 

architecture methodology. 

104 



DR.aM_O DR.aM_1 DR.aM_2 DR.aM_3 

61 

PCI Interface Controller 

PCIBUS 

Figure 4-8: FPGA board components block diagram. For the performance 
analysis, the FPGA_x is Xilinx XC2Vl000-5, the DRAM_x is a 64-bit 133 
MHz DDR SDRAM DIMM. 

The primary reason for building this board is that we want to be able to place the 

SD RAM, in the form of a DIMM immediately next to a modest sized FPGA. The goal 

is to leverage the maximum bandwidth of the largest commercially available memory. 

Because of the availability of inexpensive FPGAs and high capacity memory, this 

should provide a significant performance/price ratio. 

The DRAM stores the weights. The weights are distributed evenly in the 4 DRAMs as 

shown below. The weight vectors are stored as 32 single weight bits per word. The 

input vector is assumed to be stored within the FPGA, also in binary, full-matrix form. 

105 



DR,!lM_O 

DR,!lM_1 

DR,!lM_2 

DR,!lM_3 

Inner
Product 

Figure 4-9: Weights distribution in the DRAMs. 

The implementation of the WPNAM model in an FPGA is quite similar to that of the 

PC and PC cluster, in the sense that the weight values are stored in the external 

SDRAM with the inner-product and k-WTA performed by the FPGA. Figure 4-10 

shows the block diagram of the Relogix FPGA. The "IDE Interface" connects the 

Relogix FPGA with the host through the "IDE Bus". The host sends the test vector to 

the Relogix FPGA through the "IDE Bus". The "Memory Bus" connects the 

"SDRAM Memory Bus Interface" in the Relogix FPGA and the external SDRAMs on 

the Relogix board. The "Interconnect" connects different Relogix boards. The "Inner

Product Unit" executes the inner-product operation of the WPNAM model. The 

Relogix board uses the column-wise inner-product method and stores the weight 

matrix in the full binary mode. However, the D2 board only stores the existing weight 

bits' row and column indices. The reason we used sparse weight representations (row 

and column indices) in the D2 board was because the huge amount of memory 

requirement (256 Mbits) was much more than D2 board's external SRAM (4 Mbits) 

106 



can provide. The "k-WTA Unit" sorts the inner-product result vector, keeps the 

intermediate values in the "RAM" unit, generates the result vector indices, and sends 

them back to the host through the "IDE Interface" unit. Because the Relogix board 

implementation is simple, and there are no complex entities such as multi-level 

caches, the results presented in the next section are a reasonably accurate 

representation of the performance we expect from the actual board. 

Memory Bus 

Inner.Product 
Unit ti 

4) 

ft.ddress Interconnect 
C: 

6 Transistor 
IIJ\ID Logic I,,! 

4) 

E 

Counter 

Internal 
Register FPGA_OS 

PCI Config 
k-\11/T A Unit 
Comparator 

Control 

RllM 
Logic 

< t 
~ IDE Bus 

Figure 4-10: Relogix FPGA functional block diagram. 

Inner-product operation: The input vector v;
0

i 's addresses (row number and offset) 

are transferred to the Local Bus Interface. The address information is translated to the 
107 



corresponding weight matrix address by the Address Translator. The DRAM outputs 

the data requested by the FPGA through the DRAM Memory Bus Interface. The input 

vector Vin,i and its corresponding weight will do the AND _SUM operation in the 

Inner-Product Unit. It also sends back the node value ne9 to the local memory through 

the DRAM Memory Bus Interface. 

k-WTA operation: After executing the inner-product for the input vector ~n,i and 

Wji, the weights stored in the local memory, each FPGA performs the k-WTA for its 

nodes. It is assumed that the result vector remains inside the FPGA. The k-WTA Unit 

sorts the local node values and finds the k nodes with the largest values. These nodes 

retain their values and all other nodes are changed to Os. 

After the local k-WTA is complete, the other three FPGAs will transfer their k winning 

nodes to the master FPGA to do another cycle of k-WTA. During this transfer, since k 

is considerably small, the vectors are converted to a sparse representation. After doing 

one more k-WTA sort, the master FPGA transfers the output vector Voutj (address and 

data) to the CPU through the PCI Bus. 

Local bus: The input vector transferred from the CPU to each of the FPGAs includes 

the row number and offset of ~n,i • The output vector transferred from the master 

FPGA_ 0 to the CPU also includes the row number and offset of VoutJ• 

108 



Interconnect: It includes the control logic and data/address bus. The three slave 

FPGAs need to transfer their k winner nodes to the master FPGA to do another k

WT A operation. 

PCI bus: The host PC uses PCI bus to transfer input vectors to the FPGA board and 

receive the output vectors back from the FPGA board. 

There are a number of assumptions about the WPNAM implementation on the Relogix 

board: 

• A single FPGA/SDRAM board is used for analysis, even though the Relogix 

system supports multiple FPGA configurations. Likewise, it is likely that the 

communication overhead for connecting multiple boards, as a percentage of 

the total computation time, will be smaller than with multiple PCs in a cluster. 

• Only a full binary weight matrix implementation is assumed where each bit is a 

binary weight. The weight matrix is stored by columns. One 64-bit word of a 

column corresponding to the non-zero element in the test vector is fetched 

from the SDRAM at a time. The fetching could be sequential so that it can 

save the latency time of the SDRAM, and be close to the maximum memory 

bandwidth. 

• The input test vectors are sparsely encoded and the time transfer of data to and 

from the PC host is ignored. Each vector is assumed to have single bit 

precision and consists of a list of indices of the weight bits in the matrix row. 

109 



When a test vector is processed, this list of indices is brought from the PC into 

theFPGA. 

• The inner-product operation is column-wise inner-product. The k-WTA is 

computed in a batch mode. That is, after all inner-product elements are 

generated they are sorted to get the k largest elements. 

• The final output vector is sparse and its indices are written to the PC host thus 

completing the computation of a single vector. This time is also ignored. 

4.3 .2. PERFORMANCE ANALYSIS 

4.3.2.1. Inner-product 

Computation in the FPGA: The Counter counts how many bits in the AND 

operation's result are 1. The results are accumulated to get the final inner-product 

operation result for a node. The Counter has the potential of being the bottleneck in 

the inner-product operation. But bits sums can be accumulated in a parallel pipelined 

manner for fast execution. The FPGA can work at up to 400MHz. 

Memory bus bandwidth: The DDR memory interface in the Xilinx Virtex II has 

2.1 GB/s bandwidth with 133MHz system frequency, 64-bit data width at both clock 

edges. The average memory access time for 8 Bytes is 3.8ns. To calculate the time for 

memory accessing, we use the following equation: 

Time for memory accessing (sec)= (vector_size I 4 x vector_size) / 64 x 3.8 / 109 

110 



PCI bus bandwidth: The PCI specification v2.2 implementation enables burst 

transfers ofup to 132 MB/s. 

Time for feeding test vectors (sec) = number_test_vectors x active_nodes x 2 / 8 / 

132M 

Table 4-2 shows the time for the inner-product operation. From this table, we notice 

the bottleneck is at the time for memory accessing. And the time for memory access 

increases exponentially with the vector size. 

Table 4-2: The time for the inner-product operation for the full-weight matrix 
representation. The weights are obtained from the SDRAM, the test vector is 
stored inside the FPGA. 

Time for memory Time for feeding test Time for inner-product 
accessing (sec) vectors (sec) (sec) 

Confl 1.6x10-' l.9xlQ-b l.8x10-' 

Conf2 6.2x10-' 2.lxl0-0 6.4x10_, 

Conf3 2.5x10-4 2.3x10-0 2.5x10-4 

Conf4 l.0xlO_., 2.5xl0-0 1.0xl0-3 

Conf5 4.0xlO-L 2.7X10-b 4.0xlO-L 

4.3.2.2. k-WTA 

Time for sorting in the FPGAs: To determine the k-largest values from the inner-

product results, we have to do a sort. As discussed above, this operation is performed 

twice, once by each FPGA over the inner-product results, then again by the master 

FPGA to get the final result. Currently the sorting process is implemented with a 

single comparator, we are exploring faster parallel sort mechanisms, but do not have 

results for those at this time. 

111 



For each clock, the 'Comparator' unit compares two values at a time. If the first one is 

smaller than the second one, then the 'Comparator' unit will exchange the two values, 

and write back to the RAM. For the worst case, the inner-product results are sorted 

reversed. If there are N nodes (vector_ size) in the results, we need to access the node's 

data (including value and address offset) M times in the master FPGA (here we 

calculate the average value): 

Each time, the FPGA will use one clock cycle to do a 'read', 'compare', and 'write 

back' by the means of pipelining. 

Time for sorting (sec) =Mx 2.5/109 

Time for transferring data via the local interconnect: After the three slave FPGAs 

have executed the sorting algorithm on their local nodes, they will transfer the results 

to the main FPGA through the interconnect. The interconnect operates at 400MHz. 

Time for data transferring on interconnect (sec) = active nodes x 3/4 x 2 / 400M 

Time for moving the data from the FPGA to host PC: This is equal to the time for 

feeding test vectors. 

Table 4-3 shows the time for k-WTA and the total time for the inner-product and k

WT A. Here we consider the three steps: sorting, data transferring on the local 

interconnect, and then moving the data from the FPGA back to the CPU as sequential 

112 



processes. The inner-product and k-WTA processes are also sequential. From the 

table, we can see, that the sorting in the FPGA occupied most of the time for k-WTA . 

And the time fork-WT A is a little more than the time for inner-product. 

Table 4-3: Time for k-WTA and the total time for the inner-product and k
WTA. 

Time for Time for data Time for Time for k- Total time for 
sorting in the transferring on putting back WTA (sec) inner-product and 
FPGA (sec) interconnect data from k-WTA (sec) 

(sec) FPGA to 
CPU (sec) 

Confl 4.2x10_, 3.8x10-ij l.9xl0-0 4.4x10_, 6.2xl0-5 

Conf2 l.6xl0-4 4.lxlO-ij 2.lxl0-0 1.6xl0-4 2.2xl0-4 

Conf3 6.6x10-4 4.5xl0-8 2.3xl0-0 6.6xl0-4 9.lxl0-4 

Conf4 2.6xl0-3 4.9xl0-8 2.5xl0-0 2.6xl0-3 3.6xl0-3 

Conf5 1.0xlO_., 5.3xl0-8 2.7xl0-6 1.0xlO_., 1.4xl0-2 

4.3.3. PERFORMANCE COMPARISON BETWEEN THE P4 AND THE RELOGIX FPGA 

BOARD 

Figure 4-11 shows that the Relogix FPGA implementation has advantages over the P4 

implementation. That is mostly from the help of the parallel and hardware-specific 

implementation of the FPGA. Although the performance of the Relogix FPGA 

implementation is better than the P4 implementation, as the nodes size increases, the 

performance of Relogix FPGA implementation drops, which is mostly due to the time 

required to sort the result vectors. If we could use multiple 1-WT A regions ( or 

hypercolumn AM from Lansner [67]), the time spent on sorting can be greatly 

reduced, although this hypercolumn AM also changes the network behavior. 

113 



Node update rate for P4 and FPGA 

-+- full matrix for P4 
45000 --.--------------, -11- FPGA board 

40000 -l------1111;;=----------~______...:========'------l 
.!! 35000 +--------',.,=,-,,_......._'11111::--------------l 

e "[30000 t--------------==---==-"'""""IIF======~, GI en 
1a iii 25000 -t--------------------1 
'0 Cl) g- -g20000 -t--------------------1 

Cl) ~ 15000 --t---------~------------l 

°8 -10000 +----~~----------'""""'-::--c-----------j 
C 5000 L_.,.,,,,..,....__::::___ _____ _____..====~==-:-½_~ 

0 ------.-------.------.----,----..,......-----1 
1024 2048 4096 8192 

vector size 
16384 32768 

Figure 4-11: Node update rate for P4 and Relogix FPGA. 
The inner-product operation is in the column-wise manner. The x-axis is the node 
size. The y-axis is the node update rate (Knodes/sec ). The square-dotted curve is 
the Relogix FPGA implementation. The diamond-dotted curve is the simulation 
result from the P4 for full-matrix vector. 

As we suspected, the memory bandwidth is the pnmary limitation to higher 

performance for the Pentium 4 implementation, where inner-product requires most of 

the time in the retrieval phase of the WPNAM network. For the Relogix FPGA, the k

WTA algorithm is the major performance limitation, if the k-WTA were executed at a 

higher speed, then like the Pentium 4, the memory bandwidth would also limit the 

performance. Therefore, increasing memory bandwidth can improve the performance 

of the WPNAM network implementation on P4 and inner-product algorithm on the 

Relogix FPGA implementation. Increasing the FPGA performance can improve the 

performance of k-WTA implementation on the FPGA. 

114 



4.4. CONCLUSION 

Although still preliminary, we believe that the results given here indicate that an 

FPGA acceleration card based on the tight integration of an FPGA chip and 

commercial SDRAM creates an effective association network hardware emulation 

system with a very competitive performance/price. Although for this chapter we have 

not extended our results to include an analysis of multiple FPGA systems, we believe 

that such systems will have larger incremental performance than PC clusters built 

from commercial boxes, since we believe that memory bandwidth and k-WT A scaling 

will improve performance faster than inter-FPGA communication requirements will 

degrade it. 

From the study of implementing the WPNAM models on PC and FPGA, we could see 

for AM algorithms with the SIMD computational architecture, a traditional desktop 

PC, in spite of high clock rates, caching, and deep pipelines, does not provide the best 

performance/price ratio since it does not leverage the natural data parallelism in the 

AM model. The PC cluster could not improve the performance/price ratio due to the 

same reason as the PCs. The FPGA implementation has a better performance/price 

ratio than the desktop PC, since FPGAs can exploit the parallelism of the hardware to 

match the parallel computational properties of the WPNAM model. The two main 

operations in the WPNAM. the inner-product and the k-WTA, are quite common in 

HDM models. Any models with inner-product and k-WTA could use the FPGA 

implementation as the hardware platform with the best performance/price ratio among 

the choices of desktop PC, PC cluster, and FPGA. However, the memory capacity and 

115 



the memory bandwidth constraints do limit the performance of the biologically

inspired computation models such as the WPNAM model on FPGAs. And FPGAs are 

resource-limited for more complex AM models. We have to do trade-offs between the 

FPGA implementation and the precision of the more biologically-inspired models. 

This methodology for investigating the hardware platform with the best 

performance/price ratio for one AM model could be used to determine the 

performance of other HDM models and other hardware platforms. With the 

implementation and simulation of more AM models on different hardware platforms, 

we can decompose the AM models into several basic operations, such as the inner

product and k-WT A. Investigating the major operations on different hardware 

platforms can help give us an idea of how to achieve the best performance/price ratio. 

We use the same methodology in Chapters 5 and 6 to compare the performance/price 

ratio of AM implementations on full-custom VLSI and nanoelectronic circuits 

(CMOL). 

116 



5. DESIGN WITH SPECIAL-PURPOSE ARCHITECTURES (CMOS) 

5.1. INTRODUCTION 

For certain compute intensive applications, ASIC (application specific integrate 

circuit) or even full-custom CMOS VLSI designs are used to accelerate inner-loop 

calculations that dominate the time of the algorithm or application. From a recent 

paper by Shaw et al. [128], they used special-purpose ASIC to accelerate simulations 

of molecular dynamics (or computational biology. With 512 identical parallel 

processing nodes for the molecular dynamics computations, the parallel machine, 

Anton [128], achieves about three orders of magnitude improvement over the current 

software simulations, which shows that the special-purpose CMOS design could 

achieve much higher performance than the PC. 

This motives us to investigate full custom CMOS implementations of the non-spiking 

and spiking AM models. This chapter presents a methodology and an analysis for 

designing CMOS architectures for the non-spiking and spiking AM models. The 

CMOS technology includes all digital and mixed-signal ( digital and analog) CMOS 

circuits. In the next chapter, we will present the digital and mixed-signal CMOL 

architectures for non-spiking and spiking AM models, and compare the 

performance/price ratios for CMOS and CMOL implementations. 

117 



5.2. IMPLEMENTATION WITH DIGITAL CMOS 

5.2.1. NON-SPIKING AM MODEL 

For the non-spiking model analysis, we assumed four basic configurations of CMOS 

and CMOL implementations: all digital CMOS, mixed-signal CMOS, all digital 

CMOL, and mixed-signal CMOL. The primary computations in the column-processor 

(for each WPNAM like associative memory model) are the inner-product of input 

vector and weight matrix, and k-WTA. Figure 5-1 shows the configuration for the four 

basic designs. However, we will introduce CMOL and explain CMOL configurations 

for the non-spiking and spiking AM models in the next chapter (Chapter 6). The result 

analysis for CMOS implementations (from this chapter) will also be given at the end 

of Chapter 6, together with the CMOL implementations. 

118 



MEM MEM 

($RAM, - Weight Mat~ (SRAM, 
eORAM) eOAAM) 

/lnne,-Produ 

Olgital O:t A Coov~ Mixed-
signal 

CMOS - k-WTA CMOS 

(a) (b) 

CMOL 
- Weight Ma~ CrossNet 

.,__ ____ / 1nnef.Produ/ ____ _ 

Oigitat 
CMOS -- k-WTA 

CMOLMEM 

analog VLSI 

(c) (d) 

Figure 5-1: The functional partitioning of the four configurations for CMOS 
and CMOL implementations. 
(a) Digital CMOS design; (b) mixed-signal CMOS design; (c) digital CMOL 
design; and ( d) mixed-signal CMOL design. The different computation tasks are 
partitioned onto different hardware. 

As illustrated in Figure 5-1 (a), the weight matrix is stored in CMOS memory (MEM), 

which could be implemented with SDRAM or embedded-DRAM (eDRAM [129]). 

The inner-product and k-WTA computations are performed by arithmetic logic in the 

digital CMOS platform. Because of the sparse activation of input vectors ( on the order 

of O(log2N), where N is the network size), we only retrieve weight columns whose 

column indices correspond to those of the active nodes, and sum them. Thus, this 

column-wise inner-product saves time and power over the traditional row-wise inner ... 

product ( comparing O(Mog2N) ·additions to O(N2
) additions [ 42]). 

119 



Each column processor reads in the corresponding column weight bits from memory 

(SDRAM or eDRAM), adds them together (using a column-wise inner-product as 

discussed in Chapter 3 and [41, 42]), and sorts the inner-product results for the k

WTA. The output is recursively fed back to the input for auto-association. There is 

significant parallelism available, since each neuron, of which there are thousands in 

each column can be computed in parallel. The column neuron size is 16,384, and the 

weight bits are 4, as shown in Table 2-2. In both the digital CMOS and digital CMOL 

implementations of the non-spiking AM model, we chose to use 256 parallel 

computational units (or PNs) in each column processor (CP). In this way, each PN 

multiplexes 64 neurons' matrix-vector inner-product operations for the 16,384-neuron 

AM network. There is a global k-WTA operation in the CP without any multiplexing. 

The reason we chose to use 256 parallel PNs is because our preliminary study showed 

the best balance between the area of PNs and the area of memory to store the AM 

network weights under this configuration. In addition, it is hard for us to show the 

performance/price ratios for different hardware architectures in a single table, as 

shown in Table 6-4. In this approach we need only as many parallel memories as we 

have computational units, though the total amount of memory remains the same. We 

borrowed the hardware circuits from other groups (see Section 6.4). The details of 

those circuits and how we scaled the circuits' power, speed, and area to 22 nm in this 

work are addressed in Section 6.4. 

120 



5.2.2. SPIKING AM MODEL 

The digital CMOS can also implement the spiking A.M model, equations (2.5) and 

(2.6). Now, we present how to implement the spiking AM model in an all-digital 

system. The same architecture also applies to all-digital CMOL architecture for the 

same spiking AM model. When emulating the spiking AM models, the hardware is 

assumed to operate in real time [130]. Usually, an analog-circuit system has a 

dedicated circuit for each computation. The real time requirement sets constraints on 

each analog circuit. This in turn determines the signal processing rate for the analog 

circuits, and the power consumption in terms of response time or spiking rate. For 

digital circuits, computational resources are generally multiplexed. Therefore, there 

can be jitter noise, which needs to be minimized. One potential disadvantage of 

virtualization (multiplexing computational hardware) is that the more resource sharing 

there is, the more unpredictable processing time is, and the more jitter noise may be 

added to the signals. In digital systems, it is possible to keep a virtual system clock, 

which is updated as needed that would eliminate jitter noise. However, it adds 

significant complexity to the system and is not assumed here. 

For the spiking model analysis, we have the same basic configurations we saw in the 

non-spiking case. For each design, because the computations and operations of the 

non-spiking and spiking AM models are different, the corresponding architectures, 

complexity, and underlying circuit components are also different. A few basic 

components, however, could be identical. Furthermore, because . of the sparse 

121 



activation of the spiking AM, it is possible to leverage virtualization to build more 

efficient digital CMOS and CMOL designs. 

In the spiking all digital, all CMOS design, we use a PN to emulate some part of the 

network. The virtualization ( degree of multiplexing) chosen depends on the specific 

dynamic characteristics of the model being emulated. The column processor, as shown 

in Figure 5-2, consists of single or multiple PNs that perform the calculations, and a 

memory to store the weight values. In the HDM each column consists of some number 

of neurons, typically several thousand, which are fairly tightly connected with each 

other. 

When implementing such a computation in a set of processors, the sparse activation of 

input spikes motivates the use of a sender-oriented multiplexed communication 

method to improve computational efficiency [ 131]. That is, the PN reads the sparse 

presynaptic events from the input neurons6 
- senders, computes the weighted 

postsynaptic potentials (2.6) for the connected output neurons according to the 

connection list and stored weights, and updates their membrane potentials (2.5). 

Figure 5-2 shows the block diagram of each PN, with weight memory in the column 

processor system. Each PN time multiplexes the computations of one or more neurons. 

6 Because of the simple operations in the non-spiking AM model, we used node to 
denote the neuron in the AM network in the previous chapters. However, due to the 
more complex operations in the spiking AM models, we started to use neuron to 
denote each neuron in the spiking AM network. Also, we used processing node (PN) 
to denote the physical computational unit inside the physical column processor, 
which is used to implement the non-spiking and spiking AM algorithms. 

122 



For example, if a PN multiplexes four neurons in a 32 neuron network, the total 

system needs eight PNs to run in parallel. We call it a mux-4 PN system. 

There are eight major operations that are performed by a spike PN: 

1) Read SE: The column processor system has a dispenser to distribute the presynaptic 

events from the intra-column spike events or the AER-based inter-column 

communication channel to each PN, and put those events' indices and a countdown 

time into the PSEM (PreSynaptic Events Memory), shown in Figure 5-3. The 

presynaptic event is the spike from the incoming axon, as illustrated in Figure 2-8. The 

PN reads the presynaptic events from the PSEM and captures the event's timing 

information. This time is used to fetch the postsynaptic potential (PSP) from the PSP

LUT (look-up table). When the countdown time goes to zero, this event no longer 

affects the computation and the record can be invalidated. The PSEM could be 

implemented with an SRAM. The PSEM has a records of synaptic events, with a 

record width oflog2(index) + log2(time resolution). 

123 



Weight 
Memory 

Figure 5-2: CMOS column processor system and functional blocks in a single 
PN for the spike-timing-dependent AM model. 
Each column processor system has one weight memory for all PN s or several 
weight memories distributed for many PNs. 

The PSP-LUT stores the postsynaptic potentials in terms of elapsed time. We could 

also calculate the PSP value according to (2.6). However, such a computation requires 

at least two dividers and two exponential arithmetic units, which consume either time 

or silicon area for the "Multiplier" and "Adder" in the PN as in Figure 5-2. If the look

up table has a small number of entries, it can be faster. A possible circuit for the LUT 

is Content-Addressable Memory (CAM) with SRAM [132]. 

124 



Pre
Synaptic 
Events 

Memory 
IIIUl:S, time· 

◄ 
in_2 t_2 

I I 
I ' I • I I 
I I 
I ' ! ! 

in_a t_a 

(a) 

Weight 
Cache 

Output 
Synaptic Neuron1 ON_2 -------· ON_N 

Eventst 

SE_2 

SE_a 

wt_ij 

• • I 
I 
I 
I 
! 

I 
I 

' I I 
I 
! 

-------· _______ .. 
I I 
I I 
I I 
I I 
I I 
I I 

! ! 

-------· 
{b) 

Output 
Neuron 

MP 
Memory 

va1u1 1 re1raC1 
~ lime1 

v_2 rt_2 

I I 

' I 
I I 
I I 
I I 
I I 
! ! 

v_N rt_N 

(c) 

Figure 5-3: Memory architectures inside CP. 

ry 

(a) The presynaptic events memory (PSEM) stores each valid event's index and 
time offset. (b) The weight cache stores the weights with a consecutive 
arrangement of the synaptic events index and the output neuron index as the row 
and column addresses respectively. ( c) Output neuron membrane potential memory 
stores each output neuron's somatic membrane potential and remained refractory 
time. 

2) Read the weight values from weight memory: The weight memory stores the 

weights with size of N 2 
, where N is the network size. Because this is generally the 

largest component of the column processor, we have assumed eDRAM technology 

(we assume that the eDRAM processing does not add considerable cost to the chip 

[129], so that it does not significantly impact cost). When the PN receives a new 

synaptic event, it will read the corresponding column weight data from the weight 

memory into the weight cache. If the event is not new or the weight information is 

already inside the weight cache, the PN will skip this stage. 

125 



3) Read the weight from the weight cache: The weight cache is implemented in SRAM 

and has lower latency and higher bandwidth than the weight memory. The weight 

cache stores at most the same number of record rows as the number of valid (i.e., 

active) synaptic events. The number of valid synaptic events is roughly log2N, which 

reduces the capacity requirement of the weight cache as compared to the weight 

memory. Because of this sparse activation and the elapsed time ofpostsynaptic events 

in the PN, we can store the weight in the weight cache for the duration of the synaptic 

event guaranteeing that the weight is in the weight cache while the event is active, 

except for the first cycle of a new synaptic event. The weight cache block diagram is 

illustrated in Figure 5-3 (b). The size of the weight cache is (Iog2N)·M·bw, where bw is 

the bit width of each weight. Since not all connections exist, the weight matrix could 

be sparse. We could store only the non-zero weights into the weight cache when 

p((log2N) + log2(M) + bw) < bw, where p is the probability of a non-zero weight. A 

disadvantage of this sparse representation is that the non-zero weights are stored as a 

list, and we would need to traverse the entries in the weight cache to fetch a weight 

from a random request. Though not assumed here, it is possible to use CAM to store 

the non-zero weights. 

In order to leverage the sparse connectivity, for the full representation of the weight 

cache (i.e., store all zero and non-zero weights according to their sequential addresses) 

we could read multiple weights at once instead of reading a single weight during a 

clock cycle, and Boolean OR them to see if the result is zero. If so, then there is no 

connection between those neurons and the driving synaptic event. If this value is not 

126 



zero, then we must test each connection sequentially. The multiple-weight read only 

works for PNs with multiplexed neurons. For non-multiplexing PNs, this multiple 

(i.e., more than one weight) read option is not possible. 

4) Multiply weight and PSP: This operation uses the "Multiplier" unit, the inputs are 

the weight and PSP values, and the output is a weighted PSP. This assumes multi-bit 

weight values, since the PN does not need a multiplier for single-bit weight 

representations. 

5) Update neuron's somatic membrane potential (MP): The PN first checks if the 

neuron is still in the refractory period by examining whether the record in the MP 

memory is zero. If it is not zero, then the PN will ignore the new weighted PSP input 

and decrease the neuron's refractory time by a single time unit. Otherwise, the PN 

adds the new weighted PSP value with the neuron's last saved MP value. The structure 

of the MP is shown in Figure 5-3 (c). 

6) Compare the MP with threshold: If a new MP is generated, the PN will compare the 

new MP with a stored threshold 0 via the "> threshold" unit, which will enable a "yes" 

signal when the new MP ~ 0 , and a "no" signal otherwise. 

7) Write back MP if needed: When there is a new MP value or new refractory time 

(from the Counter unit) available, the PN will write the update value into the MP 

memory. 

8) Write to spike event memory: When the "> threshold" unit outputs a "yes" signal, 

the PN will write the neuron's index into the "Spike Events Memory", which either 
127 



goes to the column processor's dispenser directly, or to other chips via an AER 

transmitter. 

These eight stages listed above are assumed to be pipelined reasonably well to 

improve the PN's performance and reduce the possibility of idle hardware. The overall 

performance is determined by the slowest pipe state of these eight stages. When the 

weight read from the weight cache is zero, the pipe stages following it will be in the 

idle state, which lowers the PN's computational efficiency, though it does improve the 

power efficiency. 

In Figure 5-2, the AT units are address translators. The PN stores the weights and 

membrane potentials consecutively, since there is a known relation between the 

memory address and the stored items. Consequently, the address translators can use 

the current synaptic event index and the neuron index to encode the address. This 

simplified encoding allows us to ignore the speed and silicon area requirements for the 

address translators. The OR is a Boolean operator that generates a "next neuron 

enable" signal to the Neuron Counter unit to increment the current neuron index to the 

next neuron. 

In the digital circuit design, the PSEM stores the presynaptic events. The size of this 

PSEM affects the maximum waiting time for the computation of each event. Assume 

there are three clock times: Tch, Tc1k_sys, and Tclk_pn for channel speed (intra-column 

communication channel or inter-column AER communication channel), column 

processor system clock, and PN clock, respectively. We assume synaptic events are 

128 



independent, identically distributed, and are generated as a Poisson 

approximation: P(k, A)= Ake-A /k ! , where A is the expected spiking ( or firing) rate in 

the channel to the column processor. As Boahen summarized [100], the average 

waiting time is 

m = A I 2(1-1) , 

I 
I 

I 
! 

I 
I 

) 
-------~----------0'--=======L---__.L_ ___ .L__ __ __J 

0 0.2 0.4 0.6 0.8 
firing rate,_ 

(5.1) 

Figure 5-4: Average waiting time in terms of firing rate A, according to (5.1 ). 

Figure 5-4 shows the average waiting time (with unit of Tch) in terms of spiking rate 1. 

In our system, assume there are a entries in the PSEM in each PN, and each 

postsynaptic event spreads over S number of Tc1k_sys cycles, the maximum average 

waiting time should be aTch• That is to say, if the average waiting time is aTch, each 

129 



spike has to wait a channel cycles. We assume m =a= log2 N, where N is the 

network size, the maximum firing rate is A = 2m /(2m + 1), ( 0 ~ A < 1 ). The maximum 

spiking rate of the PN is then given by A I T;,h , where Tch = STc1k sys, This means the 

maximum spiking rate is only a fraction of the channel speed. 

For example, in our performance estimate, for a typical network size of N = 16,384, if 

the average waiting time is m = 14 ( = logzN ), then the maximum spiking rate .1i. = 

28/29,,,0.97, which means the maximum spiking rate each PN can achieve is about 

97% of the maximum channel speed 1/Tch• We also define the column processor's 

clock as Tc1k_sys= n~
0
rrn1',,lk_J)Il , where n is the number of multiplexed neurons per PN, 

Tnorm is the PN's synaptic potential calculation time normalized to the full connection 

calculation time, which will be explained in the next paragraph. If the PN's clock 

cycle time Tc1k_pn = 0.2 ns (i.e., 5 GHz), the postsynaptic event's spread time STc1k_sys = 

1 000Tclk_sys, and n = 32, then Tclk_sys = 6.4 Tnorm ns, so the channel spiking rate is 111',,h = 

0.97/(l000x6.4Tnonn ns) ,,, I.5x105/Tnonn Hz. For example, in Figure 5-5, with 0.001 

connectivity, mux-32 PN, Tnonn= 0.06, the column processor's final maximum input 

spiking rate is I.5x105/0.06,,, 2.5x106 (spikes/s). 

Because of the sparse activation and sparse connectivity, there is opportunity to 

multiplex the computational hardware without impacting execution time. In our 

current association memory models 0.1 (10%) connectivity is typi.cal. However as the 

columns scale and are interconnected into a large AM array, it is less clear how sparse 

the local, intra-column connectivity will be. For the sake of our analysis, we start with 

130 



0.1, and then go down to very sparse connectivity to demonstrate the effectiveness of 

virtualization7
• The inefficiency of not multiplexing results in idle silicon area, and 

puts a highly parallel digital system's performance/price far behind a coarser-grained 

PN system. As explained in the "Read weight from weight cache" paragraph, a 

multiple-weight read coupled with multiple neurons per PN design can save time 

compared to single-weight read or a non-virtual design. We use the term normalized 

weight read time to indicate the time for a multiple-weight read, divided by the time 

for a single-weight read. 

0.2 

0.1 

I 

I 
t 

I 

I 

/1,.-------------,f 
--+ - 0.1 comectivity 
---o-- 0.01 connectivity 

* 0.001 connecth,ity 

o~~~-~~~-~~~-~~~-~~~ 

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 
number of multiple)(Bd neurons in each PN 

Figure 5-5: Normalized (weight read) time of multiple-weight read with the 
network size of 16,384. 
The horizontal axis is the number of multiplexed neurons per PN with the same 

7 In fact, most AMs tend to fail at much less than about 10% connectivity. The HOM 
models do not depend extensively on intra-column sparseness, but rather on inter
column sparseness. 

131 



number of weights read; vertical axis gives the normalized weight read time with 
the longest time (the single-weight read). The three curves represent three different 
probabilities of memory connectivity. As shown in this figure, for 0.1 connectivity, 
the 4-weight read has the optimal normalized time of 0.5; for 0.01 connectivity, the 
8-weight read with 0.2 normalized time; and for 0.001 connectivity, the 32-weight 
read with 0.06 normalized time. 

Normalized time then is Tnorm = tsft1, where ts is the time for readings connections in a 

Tc1k_yn cycle, and t1 is the time for reading one connection in each PN cycle. That is, 

ts = ~ [(I - ~ 0 )s + ~0 
]~lk_pn and 11 = ~lk_pn , where ~ 0 is the probability that s 

consecutive connections are all zero, and Mis the number of multiplexed neurons per 

PN. If A' is the weight connectivity, then the average probability of s consecutive 

non-zero weights is A= SA'. According to queuing theory [133], with Poisson arrival 

and service times, we know that ~ 0 = e-Jc . Thus, we have the normalized time 

t)t1 == [(1-e-Jc)s +e-Jc]/s. Figure 5-5 shows the normalized memory reading time with 

three different levels of connectivity, for a network size of 16,384 neurons. 

5.3. IMPLEMENTATION WITH MIXED-SIGNAL CMOS 

5 .3 .1. NON-SPIKING MIXED-SIGNAL CMOS DESIGN 

As illustrated in Figure 5-1 (b ), in this option, because the inner-product operation 

does not scale with the network size (i.e., number of neurons), the weight matrix is 

still stored in CMOS memory and the inner-product is computed digitally. We could 

also implement the inner-product in mixed signal circuits, using a capacitor (requiring 

regular refresh) or floating gate transistors to store non-binary weights. This idea has 

132 



appeared in a number of neural-network chips over the years, one of the most well 

known was Intel's ETANN chip [15]. However, the floating-gate transistor 

implementation of the network connections with the analog inner-product operations 

was not cost-effective for a number of reasons, though the primary reason is that it 

speeds up only a small part of a larger, more complex algorithm, such as AM 

algorithm. 

The digital inner-product unit realizes the circuit with complexity of O(Mog2N), while 

the analog inner-product approaches O(N2
) complexity with finer-grained PNs (fewer 

neurons multiplexed per PN). With the help of time-multiplexed digital inner-product 

circuits, we can use an analog k-WTA with the same O(N) complexity. The k-WTA 

analog circuits use analog currents to generate the k highest voltages according to the k 

largest currents [134]. The column processor then converts those k highest-voltages to 

the addresses of the output neurons. Figure 5-6 shows a simple k-WTA analog circuit 

with O(N) complexity, where the k largest injection currents drive the k outputs high, 

and the remaining outputs low. 

However, the k-WTA is implemented in analog CMOS, so we need N parallel D/ A 

converters to convert the digital signals from the inner-product results to analog inputs 

of the k-WTA circuit [134, 135]. 

133 



Il 

Tll 

Vee 

T21 Vk T2k Vn T2n 

Tlk Tln 

Figure 5-6: Schematic view of the k-WTA circuit. 
(Adapted from [134].) 

5.3.2. SPIKING MIXED-SIGNAL CMOS DESIGN 

Ic 

The spike based mixed-signal CMOS design is not as simple as the non-spiking 

mixed-signal CMOS design, which time-multiplexes the inner-product operations in 

the digital domain. Furthermore, the analog k-WT A circuits replace the time

consuming and silicon-consuming digital k-WTA circuits. For the spiking models, it 

would not make sense to use multiplexed digital circuits for the weighted PSP 

computations and analog circuits for the l&F neuron model. This is because of the 

real-time requirement and the continuous operation of the analog circuits. Even if we 

did use these analog circuits, they could only replace the "Adder" and"> threshold" 

units in the digital counterparts, which are fairly simple and already fast. The PN also 

needs a DI A converter for each I&F neuron. Thus, the mixed-signal CMOS approach 

would not improve the performance/price by much, and it is not included in the 

134 



performance/price compansons m Chapter 6, where we compare the CMOS and 

CMOL implementations' performance/price together. 

135 



6. DESIGN WITH CMOL 

6.1. INTRODUCTION 

There are a number of challenges facing the semiconductor industry, and, in fact, 

computer engineering as a whole. For metal-oxide-semiconductor field-effect 

transistors (MOSFET), the gate voltage threshold sensitivity to gate length grows 

exponentially as gates and gate oxide shrink, this is especially true for gate lengths 

below 10 nm [1, 136, 137], although less predictable MOSFET continue to operate at 

very small dimensions. However, as we approach 22 nm, it is becoming increasingly 

difficult to provide sufficiently accurate lithography in state of the art manufacturing 

processes. And it is not clear how much farther current approaches will take us below 

22nm [108]. 

Other challenges include parameter variation, design complexity, and severe power 

density constraints. Nanoelectronic circuits have been touted as the next step for 

Moore's law, yet these circuits aggravate most existing problems and then create some 

of its own, such as a radical increase in levels of faults and defects. Borkar [138] 

indicated that currently there is no emerging nanoelectronics candidate that promises 

to replace CMOS in the next ten to fifteen years. Chau et al. [139] proposed four 

metrics for benchmarking nanoelectronics, and showed a promising future for 

nanoelectronics although their further performance and scalability need to be 

demonstrated. 

136 



In recent years, research in nanoelectronics has made tremendous progress, with 

advances in novel nanodevices [6], nano-circuits [140, 141], nano-crossbar arrays [32, 

34, 35], manufacturing technologies such as nanoimprint lithography [8, 9], and 

CMOS/nano co-design architectures [1, 44, 142, 143] and their applications [107, 144, 

145]. Although a two-terminal nanowire crossbar array does not have the functionality 

of FET-based circuits, it has the potential for incredible density and low fabrication 

costs [ 1]. In addition, unlike spintronics and other proposed nanoelectronic devices 

that use quantum mechanical state to compute [146], crossbar arrays use a charge 

accumulation model that is more compatible with existing CMOS circuitry. 

Riickert et al. [103, 104, 147] have demonstrated digital and mixed-signal circuit 

designs for non-spiking and spiking neural associative memories. They did not fully 

explore time-multiplexing in their physical designs. Also, there is no universal 

benchmark to evaluate different hardware designs with different neural computational 

models. We believe that the unique combination of hybrid CMOS/ nanogrids and the 

currently available biologically inspired models has the potential for creating exciting 

new computational capabilities. In our research we are taking the first few tentative 

steps in architecting such structures. Consequently, the goal of this chapter is to 

investigate the possible architecture and performance/price ratios in implementing 

cortical models taken from computational neuroscience with molecular grid based 

nanoelectronics [1]. 

In this chapter we first introduce some promising nanoscale device technologies, 

especially CMOL, and the discuss how to model the performance and price of CMOL 

137 



when used to implement HDM models. We then focus on specific CMOL 

implementations of the non-spiking and spiking AM models, and compare the 

performance/price of the CMOL results with results discussed earlier for the PC, 

FPGA, and CMOS. 

6.1.1. INTRODUCTION OF NANOSCALE DEVICES 

There are many kinds of nanoscale devices used for computation. They include, but 

are not limited to, single electron transistors, resonant tunneling diodes, quantum-dot 

cellular automata, and crossbar arrays. Because of the simplicity and near term 

feasibility of nanoscale crossbar arrays, we have chosen to include these structures in 

our analysis of promising architectures for implementing HDMs. The underlying 

materials for the crossbar array are single-wall carbon nano-tube, or silicon nanowires. 

Because single-wall carbon nano-tubes exhibit inconsistent electrical properties due to 

varying helicity [30], most nanogrid research assumes silicon nanowires. 

For the convenience we use the following abbreviations: 

• CB-FET: CrossBar Field Effect Transistor 

• CB-DIR: CrossBar Diode/Resistor 

• CMOL: hybrid CMOS/ nanoelectronic circuits 

• CB: CrossBar 

138 



The CB structure could be implemented with carbon nano-tube, silicon nanowire and 

metal nanowires. Different ( chemical) treatment for the molecules sandwiched in 

between two perpendicular crossbars, or different chemical treatment for the cross 

points of the crossed bars, or different oxidation and doping for the silicon nanowires, 

the junction of the CB would yield different electrical components, such as Field

Effect Transistor (FET), diode, or resistor. In this work, we use nanogrid extensively. 

We define nanogrid cross-nanowire-based grid (with nanowire diameter and pitch size 

< 10nm). 

6.1.1.1. CB-FET 

Lieber's research mainly focuses on doped silicon nanowires. In 2001, Lieber et al. 

proposed an implementation of logic gates with nanowire building blocks [29]. They 

reported assembly of p-type silicon (p-Si) and n-type gallium nitride (n-GaN) NWs to 

form crossed nanoscale p-n junctions and junction arrays in which the electronic 

properties and function are controlled in a predictable manner to provide both diode 

and FET elements in high yield. In 2003, Lieber et al. proposed another way to build 

the FET devices with specific treatment (aqueous or ethanol solution of 

tetraethylammonium chloride) on the desired cross points ofNWs [30]. 

In 2003, Kuekes et al. patented a nanodevice structure built with crossed nanowires or 

nano-tubes [31], which demonstrated bipolar or field effect transistors characteristics. 

In 2004, Snider et al. proposed a CMOS-like logic capability using crossbar field 

effect transistors built with nanowires [32]. 

139 



plane 1 nanowi~ 

~ ~ 

plane 2 naoowlres . 
......._ __ ,I.If 

Figure 6-1: Two different views of a nanoscale crossbar. 
(Adapted from [32].) 

Figure 6-1 shows that the circuit consists of two perpendicular aligned arrays of 

nanowires. One layer of nanowires is metallic. The other layer is semiconductive. The 

doped silicon nanowire forms the source and drain, and the metal wire forms the gate 

by modulation the doping on the doped silicon nanowire at the point where the wires 

cross8
, between the source and drain, to form a field effect transistor. Junctions may be 

independently configured to behave as electronic devices. A chemical "interlayer" 

between the two planes of parallel nanowires, and the nanowire composition 

determines the type of devices that may be configured. The channel will be formed in 

the semiconductor nanowire, within a small region around the junction. However, for 

a semiconductor nanowire with typical doping levels of 1018 atoms of boron or arsenic 

per cubic centimeter, there would be, on average, only 0.1 dopant atom in a 5 nm x 5 

nm junction. "As a result, FETs at those dimensions might not behave predictably, if 

they would evenjimction at all [32]." 

8 Doping exists on both sides of the doped nanowire around the cross point. 

140 



6.1.1.2. CB-DIR 

Lieber et al. [33] also reported the assembly of functional nanoscale devices from 

indium phosphide nanowires, the electrical properties of which are controlled by 

selective doping. Gate-voltage-dependent transport measurements demonstrate that the 

nanowires can be predictably synthesized as either n- or p-type. 

In 2003, Chen et al. at HP formed nanoscale molecular-switch crossbar circuits [34]. 

The proposed nanoscale circuits are based on configurable crossbar architecture to 

connect molecular switches in a two-dimensional grid, as shown in Figure 6-2 (a). 

Figure 6-2: Nanoscale molecular-switch crossbar circuit from Chen [34]. 
(a) Schematic representation of the crossbar circuit structure. A monolayer of the 
rotaxane (green) is sandwiched between an array of Pt/Ti nanowires (gold, left
right) on the bottom and an array of Pt/Ti nanowires (gold, up-down) on the top. 
(b) Molecular structure of the bistable rotaxane R (adapted from [34]). 

The electrical properties are discussed in [34]. For example, the initial resistance of a 

typical device measured at 0.2 V was 6.1 x 108 
Q. After sweeping the voltage bias 

141 



cycle from 0 to +5 V, the resistance subsequently measured at 0.2 V dropped to 

4.3 X 105 Q, 

The basic element in the circuit is the Pt/rotaxane/Ti junction formed at each cross 

point, which acts as nonvolatile switches. And 64 such switches are connected to form 

an 8 x 8 crossbar circuit within a 1 um2 area, as illustrated in Figure 6-3. 

(a) 
I l 3 4 5 6 7 8 

(b) 
100 

90 
60 

""" 40 
l3 10 
~ 0 
0 e o.e: 
~ O,(i 

IU 

0,2: 
0 

JA·H 21\·H M-H 4A-H M·H M•ll7A-H M-H 
~ ~ .._,,......,. '-....-' .........,_ ._,__.. (_,_J ,.___.-, 

HPi11vtnt 

Figure 6-3: The crossbar as a 64-bit random access memory. 
(a) The ideal 'write' and 'read' modes for the memory. To write a bit, V is 
increased in increments of 0.5 from 3.5 V until the bit is written or V reaches 7 V, 
while keeping V' = V/2. To read a bit, V = 0.5, and V' = 0. (b) Resistance at each 
cross point in the circuit after one particular set of bits was written into a defect
free crossbar (adapted from [34]). 

142 



The nanodevice mentioned above is like a bistable-switch latch. Standard 

semiconductor latch circuits use three-terminal transistors to achieve the switching 

illustrated in Figure 6-4. 

LL~- LL~ 
'iSo tSo 

Vo Vo 

Figure 6-4: Schematic diagram illustrating the basic function of a latch used to 
transform a bidirectional switch (memory) into a voltage (logic) representation 
for representing logical data values. 
The logic line L is connected to two control lines with voltages VO and V 1 
representing logical O and logical 1, respectively. When switch S1 is closed and S0 

is open, the line voltage is pulled up to V 1 and thus has a logical value of 1. When 
the switch S1 is open and S0 is closed, the line voltage is pulled down to Vo and 
thus has a logical value of O (adapted from [35]). 

6.1.1.3. CMOL 

Likharev [l, 2] argued that the CMOS circuits can hardly be extended to a few 

nanometer region, because the sensitivity of parameters ( e.g., the gate voltage 

threshold) of FET to fabrication grows exponentially. Also, for the single-electronic 

devices, the fabrication accuracy should be the order of 0.1 nm. This is not a realistic 

number for mass production. Consequently, Likharev proposed a nanoscale circuit 

model called CMOL, which originally was an abbreviation of 

Cmos/nanowire/MOLecular integrated circuits [1]. However, Likharev extend the 

concept of CMOL to more general hybrid CMOS I nanogrid circuits [2]. Likharev has 

143 



many publications presenting a systematic research of device, circuits, architectures 

and algorithm implementations with CMOL [1, 37, 144, 145, 148, 149]. 

CMOL is also based on the crossed nanowires. CMOL has three components, a 

nanowire grid, a set of pins connecting the nanowires to CMOS circuits - here is 

where the famous CMOL tilt [1] allows for alignment free grid structures, and a 

bistable resistance, which need not be a single molecule, at the nanowire crosspoints. 

A possible molecule acting as a switch or a 2-way diode is shown in Figure 6-5 (c). 

Under a certain threshold voltage, the device turns on (Figure 6-5 a). 

Real progress has been made in implementation candidates for all those areas, 

however, the least well developed is the grid switch [2], though Likharev indicates 

some promising materials are being investigated [2]. Currently, there are no viable 

candidates for materials that demonstrate a bistable resistance and rectify current. 

Having resistive connections only allows for a certain amount of signal degradation in 

mixed signal designs and would seriously affect scaling. 

144 



isocyanide 
group as 
aciamp 

+ 

single-electron transistor 

(c) 

Figure 6-5: Two-terminal latching switch. 
(a) 1-V curve (schematically), (b) single-electron device schematics, and (c) a 
possible molecular implementation of the device (adapted from [1]). 

From Figure 6-5 (a), we notice the 1-V curve of the two-terminal bi-stable device. It 

can be implemented with a combination of two single-electron devices: a "transistor" 

and a "trap"9
, as shown in Figure 6-5 (b ). If the applied drain-to-source voltage V = Vd 

- Vs is low, the trap island in equilibrium has no extra electrons (n = 0), and its net 

electric charge Q = - ne is zero. As a result, the transistor is in the virtually off state, 

and source and drain are essentially disconnected. If V is increased beyond a certain 

threshold value V+, its electrostatic effect on the trap island potential (via capacitance 

Cs) leads to tunneling of an additional electron into the trap island: n ➔ I. This change 

of trap charge affects, through the coupling capacitance Cc, the potential of the 

9 The problem with single electron traps is that they are very hard to create and usually 
work properly under extremely low temperature, otherwise the electrons do not stay 
put. 

145 



transistor island, and suppresses the Coulomb blockade threshold to a value well 

below V+. As a result, the transistor, whose tunnel barrier should be thinner than that 

of the trap, is turned into on state in which the device connects the source and drain 

with a finite resistance Ron• If the applied voltage stays above V+, this connected state 

is sustained indefinitely. However, if V remains low for a long time, the thermal 

fluctuations will eventually kick the trapped electron out, and the transistor will get 

closed, disconnecting the electrodes. This on ➔ off switching may be forced to 

happen much faster by making the applied voltage V sufficiently negative, V :=:: V_. 

Figure 6-5 ( c) shows a possible molecular implementation of the device shown in 

Figure 6-5 (b ). Here, two different diimide acceptor groups play the role of single

electron islands, while short oligo-ethynylenephenylene (OPE) chains are used as 

tunnel barriers. The chains are terminated by isocyanide-group "clams" ("alligator 

clips") that should enable self-assembly of the molecule across a gap between two 

metallic electrodes [l]. 

6.1.2. CIRCUITS 

6.1.2.1. Memory 

With the bistable-switch device mentioned in Section 6.1.1.2, Kuekes et al. proposed 

the crossbar latch circuit [35]. This device stored a logic value on a signal wire, 

enabling logic value restoration, and inversion. In combination with resistor/diode 

logic gates, these operations in principle enable universal computing for crossbar 

circuits, and potentially, integrated nanoscale electronics. 

146 



Likharev proposed an architecture of integration of nanoscale and microscale circuits 

[1, 145]. The architecture of CMOL memories is shown below: 

nanodQl.licss 
§ 

in!Br:facs { pns 

pin 1 

} 

nancwiring 
and 

nanode'Oic"" . 

} 

upper 
wirirg 
lsvelaf 
CMOS 
stack 

(bl 

(cl 

Figure 6-6: The generic CMOL circuit. 
(a) a schematic side view; (b) a schematic top view showing the idea of addressing 
a particular nanodevice via a pair of CMOS cells and interface pins, and ( c) a 
zoom-in top view on the circuit near several adjacent interface pins (adapted from 
[1]). 

147 



Figure 6-7 shows the top structure of the CMOL memory. It is essentially a matrix of 

L memory blocks, where each block is a rectangular array of (n + a) x (m + b) 

memory cells. Here a and b are the number of spare rows and columns, respectively, 

while n x m is the final block size after reconfiguration. 

relay ""n 1 block 
addresses rrNII 
(row and addriass 
caumnJ 

dam 
1/0 

relayCllll 2 
a:ldrnsses 
(rnwand 
column) 

Figure 6-7: The system architecture of CMOL memory. 
At each block, block address decoders allow sending the cell row and column 
addresses to a single row of blocks. The cell addresses are then processed by 
decoders for each block (adapted from [l]). 

6.1.2.2. Logic Units 

Snider et al. (from HP) had a very interesting idea about complementary circuits with 

CB-FET. The circuit is defect-tolerant. The simple structure is similar to a traditional 

CMOS structure, and can implement AND-OR-INVERT functions, which are 

sufficient for general computation. These arrays can be combined to create logic 

blocks capable of implementing sum-of-product functions, and larger computations, 

such as state machines, can be obtained by adding additional routing blocks. Figure 

148 



6-1 shows two different views of the nanoscale crossbar. Figure 6-8 and Figure 6-9 

show the schematic of the CB-FET and the logic function implementation by the 

circuit. 

confip"abte 
pFUS 

mOOII 
nanowires 

'-y-1 '-v-1 
p.type na~ n,type rtenowlres 

~b!G 
nFETS 

Figure 6-8: Logic blocks implemented with a complementary/symmetry array. 
Each junction in the pink quadrant may be independently configured to implement 
a p-FET, while each junction in the blue quadrant may be configured to implement 
an n-FET. The junctions in the two lower quadrants may be configured to perform 
signal routing (adapted from [32]). 

149 



V 

A AC/ 

7' (b) ANOO~WERT gaie 

Figure 6-9: Implementing two logic functions by selectively configuring the 
nanodevice-based junctions. 
(Adapted from [32].) 

Strukov and Likharev [144] proposed a reconfigurable architecture to implement 

logics with CMOL, which is called CMOL FPGA, as illustrated in Figure 6-10. 

150 



CMOS 
l'tllV 2 

output 
nano'tlim 

(b) (c} 

Figure 6-10: CMOL FPGA architecture. 
(a) Generic CMOL, (b) a single CMOS cell, and (c) a NOR gate implementation. In 
panel (a) the cells painted light-gray may be connected to the input pin of a specific 
cell (dark-gray). Panel (b) shows only two nanowires (that contact the given cell), 
while panel ( c) shows only three nanowires used to implement the NOR gate 
(adapted from [l]) .. 

This approach to Boolean logic circuits based on CMOL is similar to the so-called 

cell-based FPGA [1]. In Figure 6-10, an elementary CMOS cell includes two pass 

151 



transistors and an inverter, and is connected to the nanowire/molecular subsystem via 

two pins. During the configuration process the inverters are turned off, and the pass 

transistors may be used for setting the binary state of each molecular device. Each pin 

of a CMOS cell can be connected through a nanowire-nanodevice-nanowire link to 

each of M = 2r2 
- 2r -1 other cells within a square-shaped "connectivity domain" 

around the pin. Figure 6-10 ( c) shows how such a fabric may be configured for the 

implementation of a fan-in-of-two NOR gate, which sufficient to implement any logic 

function. Gates with larger fan-in and fan-out are clearly possible. Figure 6-11 shows a 

NOR-NOR network implementation of a Kogge-Stone adder. 

152 



{a) (b) 

Figure 6-11: Kogge-Stone adder and its NOR !ate synthesis. 
(a) The 32-bit Kogge-Stone adder and (b) its single (16 ) bit slice implemented 
with NOR gates only (adapted from [l]). 

Snider et al. [44] proposed a more conservative variation of CMOL, called FPNI (field 

programmable nanowire interconnect). Figure 6-12 illustrates the differences between 

CMOL and FPNI: 

i) The architecture of FPNI is based on CMOL, with nanowire crossbars 

fabricated on top of CMOS. 

153 



ii) FPNI uses more conservative nanowire pitch data (about 9 nm) versus 

CMOL's 3 nmnanowirepitch. 

iii) In FPNI the pins have greater clearance for contact with the nanowires. 

iv) In FPNI, the CMOS logic for each cell is buffer based, not inverter based, 

as in CMOL. This simplifies the routing in the nanowire crossbars. For 

example, in Figure 6-13, a hypercell could include four three-input 

NAND/AND gates, one flip-flop and 26 buffers. 

FPNI 

.... 
CMOS 

naM{ 
CMOS{ 

Figure 6-12: Schematic diagrams of hybrid circuits. The left is CMOL. The 
right is FPNI. 
( Adapted from [ 44].) 

154 



Figure 6-13: A hypercell consisting of four three-input NAND/AND gates, one 
flipflop and 26 buffers. 
(Adapted from [44].) 

6.1.3. OTHER NANO ARCHITECTURE 

6.1.3.1.Likharev's CMOL 

Earlier we introduced Likharev's CMOL. It is not only a device or circuit innovation, 

but also a unique nanoarchitecture. It is also very promising for implementing the AM 

models assumed in this dissertation. In this section we introduce some other 

nanoarchitectures. Our objective is to show that there are many other possibilities for 

nanotechnology implementations. 

6.1.3.2. Ziegler and Stan's CMOS/nano Co-design 

Ziegler and Stan proposed a co-design of CMOS and nanoscale devices [143, 150]. 

They use the crossbar technology proposed by HP and UCLA [32, 35, 151]. This 

crossbar technology is composed of arrays of crossed nanowires with bistable 

nanoscale-switches sandwiched between the cross points of the nanowires. The upper

left portion of Figure 6-14 shows a simplified diagram of such a crossbar. Molecules 

are present at each junction, forming a two-terminal device that can be electrically 

155 



configured to behave as a low resistance or a high resistance diode. These molecules, 

such as rotaxanes or cantenanes, create a programmable computing fabric that can be 

used for memories and logic arrays. 

Figure 6-14: A design paradigm involving nanoelectronics on a CMOS IC. 
(Adapted from [143].) 

The general concept of a mixed CMOS/nano circuit is to divide the functionality 

between conventional CMOS and nanoelectronic technology. Ziegler and Stan [143] 

favor a PLA (Programmable Logic Array) implementation over LUT (Look Up Table) 

implementation in terms of array size. Equations (6.1) and (6.2) govern the size of a 

diode-based crossbar, for LUT and PLA structures. In the equations, N is the number 

of literals in all the functions implemented on the crossbar, f is the number of 

functions, and c is the number of two-level minimized cubes in all the functions. 

Equation (6.3) shows the area overhead for a LUT structure versus a PLA structure. 

Thus, the optimality of a PLA representation increases as more functions with 

overlapping product terms are allocated to a single crossbar. 

(6.1) 

156 



PLAarea = c(2N + f)Pwire 
2 

P'LA 
. 2N 

savmgs=
c 

(6.2) 

(6.3) 

Interface cost: there will be some overhead incurred when a signal switches media. 

Furthermore, the lack of signal gain in some crossbar technologies mandates that the 

computation must leave the crossbar periodically for restoring signal integrity. 

6.1.4. PERFORMANCE MODELING OF NANO-STRUCTURES 

We focus on the performance and price ( cost) modeling for the CMOL circuits in this 

section. The performance refers to speed (propagation time delay). The price of the 

circuit includes silicon (nanodevice) area and power consumption. A simplified 

performance and price model for our CMOL nanogrid is also given in this section. 

6.1.4.1. CMOL crossbar arrays 

For CMOL crossbar arrays, the nanodevices exist at the cross points, or junctions. The 

nanowire (NW) acts as interconnect. When we model the physical structures, we need 

to clarify the following: 

a) N anowire can act as interconnect. The NW s come in different materials, 

diameter, length, and conductivity (resistivity). 

b) The cross points have different electrical properties due to built with 

different materials. 

157 



Based on those considerations, Figure 6-15 shows the schematic to a generic crossbar 

array. 

Lower 
Layer 

Upper 
Layer 

Molecules or p-n 

R. junction 
JlM. 

Figure 6-15: Schematic of crossbar arrays. 

In Figure 6-15, there are two layers of nanowires. Rjun is the resistance of the junction 

between the two perpendicular nanowires. For CB-DIR, Rjun has the value of 

Rjun(ON) and Rjun(OFF) for closed and open junction resistance respectively 

( current can only flow in one direction for diode-like nano-switch, or both directions 

for resistor-like nano-switch); For CB-FET, Rjun has a large value and could be 

considered infinity; P NW is the pitch between two parallel neighbor nanowires; r NW is 

the radius of the nanowire (without coating); pNW is the nanowire resistivity; CNW 1s 

the nanowire capacitance. 

158 



E 

Figure 6-16: Calculation of nanowire capacitance with back gate. 

In Figure 6-16, & is the insulator permittivity; h is the height of the insulator; and L 

is the length of the nanowire for calculating the capacitance, which is Equation (6.4). 

(6.4) 

The CMOL nanodevices we are usmg do not have back gates. The nanowire 

capacitance only exists around the crosspoints. Thus the nanowire capacitance for 

each crosspoint is modified to Equation ( 6.5). 

(6.5) 

where h is the height of insulator between two nanowire layers. 

If the nanowire is fabricated using nanoimprint lithography [8], the shape of the 

nano wire is more like the one depicted in Figure 6-17. Equation ( 6.5) only models one 

NW. We need to model the NW arrays, because it is more appropriate to fabricate the 

NW with nanoimprint [8] other than bottom-up fabrication. 

159 



bistable 
junction 

d 

M3 

Figure 6-17: N anowire arrays with square-like cross-section NW s. 
C

101 
is the lateral capacitance; C

01 
is the overlap capacitance; / is the length of Nl; 

w is the width of cross-section of Nl; h is the distance between the two NW 
layers. 

Figure 6-17 shows that the capacitance for Nl includes the lateral capacitance between 

Nl and N2, Nl and N3 (if we only count the nearest nanowire influence on Nl in the 

upper plane), and the overlap capacitance between Nl and Ml, Nl and M2, ... , and 

Nl and Mm, ifthere are m nanowires in the lower plane overlapped with NL The total 

capacitance CNW is given by 

(6.6) 

where C
101 

is the lateral capacitance, and C
01 

is the overlap capacitance. 

If we assume all the NWs are connected to ground except Nl, then we can compute 

capacitance as follows. Although in real circuits, the other NWs could not be in the 

160 



same contact, we still can use this assumption to calculate the capacitance in the worst 

case. 

lw 
c,at = Klio d ' (6.7) 

(6.8) 

where K is the dielectric constant for material between the NWs in the upper layer; 

K' is the dielectric constant for material at the intersection (crosspoint) of the NWs. 

6.1.4.2. CMOL FPGA 

For a CMOL FPGA, as illustrated in Figure 6-18, we notice that the CMOS signals 

and nanoscale signals interleave with each other very tightly. The signals coming from 

CMOS go to input nanowires via CMOS inverters, which restore the signal to the tail 

voltage; the output nanowires signals are input to a CMOS cell, where the signal is 

restored to full voltage. 

161 



A 

RJ,rw -~~~~u 
CMl'_l 

Figure 6-18: Schematic of NOR gate with CMOL FPGA. 

In Figure 6-18, when A is enabled (high) and Bis low, the current will flow along the 

bold black line from A to F. C Nw _1 is the capacitance along the input nanowire and 

CNw _2 is the capacitance along the output nanowire. 

A Reon inter R jun Reon inter 

Figure 6-19: Equivalent circuit of transmission line for the circuit in Figure 
6-18. 

The time constant (propagation delay) for the RC (resistor-capacitor) interconnect tree 

is given by (6.9), which is based on the classical Elmore delay model [50]. 

162 



N i 

tpd = 2:(2:Rj) · Ci (6.9) 
i=l j=I 

According to Elmore delay model in (6.9), the transient time delay (high to low) for 

the equivalent circuit in Figure 6-18 is given by: 

t phi'= Rcon_interccon_inter + (Rcon_inter + RNW )CNW_l 

+ ( Rcon_inter + RNW + Rjun )Cjun + ( Rcon_inter + RNW + Rjun + Rcon_inter )( ccon_inter + CNW _I) 

(6.10) 

Equation (6.10) does not include the time delay from F to F. We assume 

CNw 1=CNW 2 =CNW. In order to add the time delay for the CMOS inverter 

tcMos _inverter, the total propagation time delay t phi (high to low) is expressed as below: 

tphl = tphl '+ tCMOS_inverter (6.11) 

Because the circuit in Figure 6-18 has the same current flow route for output F going 

from low to high as the current flow route for output F going from high to low, the 

propagation time delay tplh (low to high) is the same as tphl (high to low). 

(6.12) 

6.1.4.3. CMOL Memories 

For CMOL memories, from Figure 6-20, we can analyze the transient time delay with 

the similar schemes with thouse in the previous section. 

163 



(b) 

RMY=======-;;:l;;?= 
C,VW 

mlaycell 1 

Figure 6-20: Schematic of current flow and R, C parameters for CMOL 
memories. 

Rcon_inm 

~-inter RNW 

Figure 6-21: Equivalent circuit of Figure 6-20. 

We assume the two parallel parts in Figure 6-21 are symmetric for simplicity, then the 

equivalent circuit in Figure 6-21 could be re-drawn in Figure 6-22. 

164 



Rcon._inter 

Figure 6-22: Simplified equivalent circuit of Figure 6-21. 

According to the Elmore delay model (6.9), we can get the delay time constant of 

Figure 6-22 as below: 

+(Rcon_inter + RNW + Rjun / 2 + RNW / 2 + Rcon_inter / 2)2Ccon_inter 

= (2Rcon_inter + I .5RNW + Rjun / 2)2Ccon_inter + (Rcon_inter + RNW + Rjun / 2)2Cjun 

+(1.5Rcon_inter + 2RNW + Rjun / 2)2CNW (6.13) 

6.1 .4.4. Simplified CMOL-based nanogrid performance modeling 

For the nanogrid model used in this analysis, we use CMOL, a hybrid CMOS / 

nanoscale circuit architecture developed by Likharev et al. [1, 2]. Although 

nanoelectronics allows much denser circuits, it does have a number of limitations. 

Perhaps the biggest limitation is that it is a faulty computation platform. In CMOL 

circuits, static defects (permanent defects) and transient faults are possible in the 

nanodevices, the nanowires, and the CMOS-to-nanowire contacts. Strukov and 

165 



Likharev [145] demonstrated two methods of fault tolerance for CMOL memory. For 

associative algorithms, Riickert et al. [152] showed that the stuck-at-0 connection 

errors have a greater impact on network performance than the stuck-at-I connection 

errors. Sommer et al. [153] used iterative retrieval by probabilistic inference to 

improve the network's information capacity in the presence of weight matrix errors. 

Zhu [72] also demonstrated detailed fault tolerance of WPNAM model, with static and 

dynamic changes (faults added) to the weight (connection) matrix. We [154] simulated 

a WPNAM-like network with static and dynamic faults added to the input vectors and 

weight matrix, and found the network favors weight matrix ( connection) faults than 

input faults. The fundamental fault tolerance of our target algorithms, coupled with 

Strukov and Likharev's results [145], leads us to believe that any additional overhead 

for tolerating a reasonable level of faults will be minimal (5-10%) and so it is not 

factored into this analysis. 

The nanodevice in CMOL is a binary "latching switch" based on molecules with two 

metastable internal states. Figure 6-23 shows the schematic 1-V curve of this two

terminal nanodevice. Qualitatively, if the drain-to-source voltage is low during 

programming, the nanodevice will be in the "off' state with a high resistance (Raff); if 

the applied voltage is greater than the threshold voltage (Vt), the nanodevice will be in 

the "on" state with a lower resistance (Ron)-

166 



"on 11 

"on"-> "off" 

Figure 6-23: Schematic 1-V curve of a two-terminal nanodevice 10
• 

(Adapted from [l].) 

In this analysis we develop the performance/price analysis of vanous CMOL 

configurations when emulating an auto-associative memory model. The components 

that affect the performance of the circuit include the nanodevice itself, the nanowire, 

and the pin-to-nanowire contact (pins interface CMOS and nanowire, Figure 3(a) in 

[ 1 ]), as shown in Figure 6-24. In CMOL, we assume that each latching switch is 

implemented as a parallel connection of D single-electron devices. The molecular 

capacitance is typically negligible in comparison with the capacitance between the 

wires. What is changing is D. Theoretically D increases with the half pitch of 

nanowire Fnano, however, it is highly related to manufacturing precision. If we assume 

the scaling Fnano is t = 8nm!Fnano, then the scaling of Dis llt2 (i.e., D/18 = Ilt2); and 

'
0 This 1-V curve also necessarily represent the best material at the NW intersections in 
HP's memristor, the fourth passive component type after resistors, capacitors and 
inductors, which was first postulated by Chua (L. Chua, "Memristor - The missing 
circuit element," IEEE Transactions on Circuits Theory, vol. 18, pp. 507-519, 1988. 
And URL: 
http://www.eetimes.com/show Article.jhtml?articleID=207 403 521 &printable=true ). 

167 

http://www.eetimes.com/show


the scaling of R0 n!D is t2. For nanowire capacitance and resistance, refer to Fig. 13 and 

Eq. (5) in [144]. Size issues also need to be considered because of very high resistance 

of the nanowire. We assume the pin-to-nanowire contact is ohmic. The contact 

resistance is Reon = p I F 2 nano' where p is about 10-8 n cm2 with ND ~ 3 X 1020 cm-3 

doping. 

Figure 6-24 shows a signal current flowing through a nanowire crossbar. With values 

for the resistance and capacitance of the basic CMOL components, according to the 

classic Elmore delay model [50] we estimate the time delay from the input pin to the 

output pin through the nanowires and nanodevices as follows: 

(6.14) 

where Reon is the pin-to-nanowire contact resistance; Rwire is the nanowire resistance; 

and Cwi,e is the nanowire capacitance. 

For CMOL crossbar arrays, the static power consumption includes both the working 

power and the leakage power. A working "on" power is due to the "on" nanodevices, 

and is given by 

~n = aj3NMV2 /(2Reon + Rwire +Ron/ D) , (6.15) 

168 



CMOS 
Metal 

input pin 

selected 

working 
current 

Figure 6-24: Current (the arrowed line) flows from the input pin via an input 
nanowire through the nanodevice and output nanowire to the output pin. 

where a is the average probability that the driving voltage to the input nanowire is 

high (voltage on the nanodevice is over Vt); /3 is the probability that the nanodevices 

are "on"; and N and Mare the horizontal and vertical nanowire counts, respectively. 

Due to the current leakage through the "off' nanodevices, the leakage power is given 

by 

~eak = a(l- /J)NMV 2 /(2Rcon + Rwire +Roff/ D). (6.16) 

If we know the average current lb for each output nanowire or each bundle (a group) 

of output nanowires (Figure 6-27 (b)), the average power that CMOL nanogrids 

dissipate is given by 

169 



(6.17) 

where Nb is the number of output nanowires or the number of bundles of output 

nanowires depending on applications. The dynamic power due to the dynamic 

charging of the nanowires is 

(6.18) 

where r is the average probability that the nanowires are charged during the cycle 

time r. The area for a CMOL crossbar array is 

A = 4N"l,£D2 
- lVlI' nano · (6.19) 

6.2. IMPLEMENTATION WITH DIGITAL CMOL 

As of the CMOS implementations, as similar design space is assumed for the CMOL 

technology in Figure 5-1. It does not matter whether non-spiking or spiking AM 

models are used for mixed-signal CMOL implementations, since mixed-signal CMOL 

implementations can leverage the CMOL nanogrids to implement the weight matrix 

and inner-product, and do not need the D/ A conversion. 

6.2.1. NON-SPIKING AM MODEL 

Here, CMOL is used only as very dense (and somewhat slow and unreliable) memory 

to replace the CMOS weight memory of the all digital CMOS design. The inner

product and k-WT A computations are still in digital CMOS and have the same circuits 

170 



as those in the digital CMOS design. The CMOL memory performance/price 

modeling is referred to Section 6.1.4.3 and Section 6.1 .4.4. The performance/price 

analysis of the CMOS part is referred to Section 5.2.1 and Section 6.4. 

6.2.2. SPIKING AM MODEL 

This design is similar to the spiking all digital CMOS implementation, except that 

CMOL memory is used to hold the weight values as compared to using eDRAM in the 

spiking digital CMOS design. The CMOL memory performance/price modeling is 

referred to Section 6.1.4.3 and Section 6.1 .4.4. For the performance/price analysis of 

the CMOS part is referred to Section 5.2.2 and Section 6.4. 

6.3. IMPLEMENTATION WITH MIXED-SIGNAL CMOL 

6.3.1. NON-SPIKING AM MODEL 

In this configuration, we use CMOL CrossNets [46, 107] to represent the network 

connections (i.e., the weight matrix). Our usage is a variation of neuromorphic CMOL 

CrossNets [46, 107], with somewhat different CMOS cells and network topology. Due 

to the use of CMOL nanowires to represent the network connections, we refer to this 

configuration as CMOL nanogrids. Where CMOS circuits drive the input nanowires, 

the output nanowires connect to the inputs of the analog (CMOS) k-WTA circuits. 

171 



analog CMOS neura, circuits : receiving 
current fi'om outplt nanawires 

CMOL nanogrids: 
nanawire crossbar 

array, encoding 
HOM connections 

under nanowires : 
CMOS circuits 
for driving and 
programming 
nanodevices 

Figure 6-25: A structural view of the mixed-signal CMOL design. 
The denser crossbar array in the center is a CMOL nanogrids (nanowire crossbar 
arrays). Beneath the CMOL nanogrids are the CMOS drive and programming 
circuits for the nanodevices. The larger square blocks are analog CMOS circuits for 
each output neuron. 

Figure 6-25 shows the structure of the mixed-signal CMOL design - CMOL 

nanogrids. In this figure, the CMOL nanogrids sit in the center of the layout. The 

nanogrids are fabricated on top of the CMOS circuits, which are used for driving, 

programming, and reading the outputs of the nanodevices. The nanowires connect to 

the CMOS using the CMOL self-aligning architecture. Each input block of the analog 

k-WTA circuit represents a competing neuron. Because the analog circuits are 

assumed to only scale to 250 nm ( due to the transistor sizing of analog circuits), 

instead of to 22 nm, the area for each neuron is about 12.5 um2
, which is much larger 

172 



than nanowire cells ( 4F nano)- An important characteristic of CMOL is that the CMOS 

circuits need 2N pins to connect to the 2N nanowires within the 4N2 F' nano area. This 

requires that Fcmosf Fnano :s; ✓N, where Fcmos is the half pitch of CMOS. 

"xn" pins connecting 
CMOS and horizontal 

nanowires 

l 
XO 

''.Yn" pins connecting 
CMOS and vertical 

nanowires 

(a) 

''xn" pins connecting 
CMOS and horizontal 

nanowires 

l 
xO 

"yn" pins connecting 
CMOS and vertical 

nanowires 

(b) 

Figure 6-26: CMOL nanogrid interface between nanowires and CMOS. 
(a) Single-bit CMOL nanogrid and pin connection diagram, where the "x<n>" are 
the driving pins from CMOS to nanowires, and "y<n>" are the pins connecting 
output nanowires and analog CMOS neuron circuits. (b) Multi-bit CMOL 
nanogrids and pin connection diagram. Each driving signal "x<n>" and output 
signal "y<n>" connects three nanowires in this diagram. The dark circles represent 
the pins connecting CMOS signals and horizontal nanowires. The hollow circles 
represent the pins for the vertical nanowires. 

Figure 6-26 shows a schematic diagram of the CMOL nanogrids of Figure 6-25, only 

the layout of pins and nanowires is displayed. The dark circles represent pins 

connecting horizontal nanowires, which are the inputs to the nanogrid, to the top level 

of metal of the underlying CMOS. The hollow circles represent pins connecting 

vertical nanowires, which are the outputs from the nanogrid. In Figure 6-26 and Figure 

173 



6-27, xO, x1, •··, represent input nanowrres; and yO, y1, ... , represent output 

nanowires. Figure 6-26 does not show the inter-wire molecular connections. Figure 

6-27 is a schematic that includes these inter-grid devices. The small black dots at the 

cross-points of the nanowires are "on" nanodevices. The "off' nanodevices are not 

shown in the diagram. The positions of the "on" nanodevices are used to illustrate the 

current flow. 

During the operation for single-bit-weight computation, input active nodes (CMOS 

circuits to emulate the input neurons) pull their nanowires to the input active voltage 

"high"; all output nodes (CMOS circuits to emulate the output neurons) pull their 

nano wires to voltage "low". If there is a connection between the. input neuron and the 

output neuron (i.e., the synapse value is "1"), which means that the nanodevice is in 

the "on" state, an "on" current will flow through the connection from the input neuron 

to the output neuron. The currents from different input neurons will be summed 

together to form a single output. As illustrated in Figure 6-27 (a), nanowire yO sums 

three units of current. 

Although auto-associative models (input and output vectors are same) work quite well 

with binary weights, there are situations, such as when we are doing dynamic 

adaptation, where we would like a few bits of precision so that we can do incremental 

learning. Because the nanodevices at the wire cross point can only take two states, we 

need 0(2!) nanodevices to represent an N-bit weight. For example, if the weight has 

three bits, we need at least eight nanodevices to represent all values. This is illustrated 

in Figure 6-27 (b ), where each input neuron and output neuron connects to three 

174 



nanowires. For a pair of input and output neurons, they have nine nanodevices to 

connect their nanowires. These nanodevices can then be programmed to represent the 

different values. 

xlJ 

x1 
x2 

x3 

x4 

yO y1 y2 y3 y4 

yO y1 

00 00 

Figure 6-27: CMOL nanogrid weight bits. 
(a) Single-bit CMOL nanogrids schematic diagram. (b) Multi-bit CMOL 
nanogrids schematic diagram. Here, for example, each input signal and each output 
signal connects a bundle of three nanowires, which can satisfy a 3-bit precision 
requirement. 

There are other ways to implement multi-bit weights. Figure 6-28 shows a one

dimensional implementation of multi-bit weight. If the number of bits is N, then the 

area (complexity) of this method is O(~). Figure 6-29 shows another way to 

implement the multi-bit weight in a CMOL nanogrid and with tighter a tighter CMOS 

connection, where, different nanowires output to different CMOS amplifiers with 

different gains. Although, this method seems to save some area in the CMOL 

nanogrid, it loses its area advantage to other methods because of the large area 

consumption of the CMOS amplifiers. 

175 



Figure 6-28: 1-D asymmetric multi-bit weight nanogrid implementation. 

xO 
x1 
x2 
x3 
x4 

~ 
yO 

Figure 6-29: CMOS weighted multi-bit implementation, with complexity of 
O(N). 

As mentioned by Tiirel et al. [107], Figure 6-30 shows one way to program multi-bit 

CMOL nanogrids. When programming the nanodevices, voltage differences A and B 

are added to the metallic resistors connecting to the horizontal nanowires and vertical 

nanowires, respectively. As shown in the picture, the slope angle of the "boundary" is 

a = arctan A I B , ( A, B ~ 0 , A and B are not both integers). The boundary is located at 

the point where the voltage is equal to the threshold voltage Vt. However, in order to 

be able to program each of the N 2 nanodevices, the boundary should avoid crossing 

176 



two or more nanodevices simultaneously. Thus, we have the constraint that A and B 

are not both integers at the same time. 

V1+A/2 V1-A/2 
V 

'-,...,,.,,,-,, ,,----,,.___J 

boundary 

V2+B/2 

(a) (b) 

Figure 6-30: (a) Programming nanodevices with multi-bits. (b) Operation of 
CMOL nanogrids with multi-bits. 
(Adapted from [107].) 

One big advantage of CMOL nanogrids as they are used here is that they do not 

require the line encoding and decoding circuits of a memory. They not only provide 

memories for the synapses, but also implement the inner-product computations 

naturally. Furthermore, the CMOL nanogrids convert the digital data (voltages) to 

analog data (currents). This saves space for the DIA converters required in the mixed

signal CMOS design, and is why we only need to perform one computation (i.e., k

WTA) inside CMOS. 

177 



Is 

Figure 6-31: Mead k-WTA CMOS circuit. 
(Adapted from [134].) 

Figure 6-31 shows the Mead k-WTA circuit [134]. The circuit can adjust ls adaptively 

to make sure Vi, Vi, ... , Vi are high, others are almost zero, with input condition Ii > 12 

6.3.2. SPIKINGAMMODEL 

Like the non-spiking mixed-signal CMOL design, we use CMOL nanogrids (Figure 

6-25) to represent the network connections (i.e., the weight matrix). Pulses (current 

spikes) from the CMOS circuitry drive the CMOL output nanowires, which connect to 

the inputs of the analog I&F neuron circuits, which, as discussed earlier, is a variant of 

spiking models that is particularly well suited to the CMOL mixed signal design. 

Indiveri's [90] circuit implements the leaky I&F neuron, which could control the 

output firing rate by changing the bias voltage. Figure 6-32 shows the schematic view 

of this analog I&F neuron circuit. 

178 



Adaptation Positive Feedback 

Vee 

Vad~ 

J 
l., ...... : ............................................ , ... ,, ....................... R ............ ., • ..,.,., ......... , ... , _______ _ 

Refractory Period 

Figure 6-32: Schematic view of an analog integrate-and-fire neuron circuit. 
(Adapted from [90].) 

Each CMOL nanogrid output nanowire connects to the input of the I&F neuron 

circuit, i.e., the Iinj in Figure 6-32. The current from the CMOL nanogrids output 

nanowire charges the capacitor Cmem, which represents the neurons somatic voltage 

potential. When the capacitor's voltage reaches the threshold, the circuit will generate 

an output spike, which will discharge the Cmem• As with real neurons, this circuit will 

generate spikes at a fixed rate ifwe have a continuous injection current. 

179 



6.4. PERFORMANCE/PRICE COMPARISONS BETWEEN CMOS AND 

CMOL 

For non-spiking implementations, the components used by each of the four designs are 

shown in Table 6-1, in which a "Y" indicates where in the target system the 

component is used. 

Table 6-1: Components for different systems of non-spiking AM model. 

Circuit Component 
Digital Mixed-signal Digital CMOL Mixed-signal 
CMOS CMOS CMOL 

SRAM/eDRAM y y 
Digital inner-product y y y 

Digital k-WTA y y 
DI A converters y 
Analogk-WTA y y 
CMOLmemory y 
CMOL CrossNet y 

These designs are evaluated according their performance/price ratios, where 

performance is measured by speed (Connections Per Second, CPS, for the non-spiking 

model, or maximum input spiking rate for the spiking model). CPS is a traditional 

performance measure when emulating neural networks. Unfortunately, it is not as 

precise with the incremental, spike based models presented here, but the maximum 

spike processing rate still gives a reasonably good predictor of hardware performance. 

Price is measured by silicon area and power (regarding the total chip size of 858 mm2
, 

which is the maximum reticle field size expected at the 22 nm ITRS node [108]). 

Table 6-3 lists the equations used to estimate the performance/price for each 

component in Table 6-1 and Table 6-2. For the CMOL circuit performance/price 

estimates, we refer to Section 6.1 .4.4, and estimate the typical design density for a 

180 



number of circuits using examples from the literature: the digital k-WTA [155], the 

DIA converter [135], the CAM [132], the multiplier [156], and the adder [132]-p.678. 

We then scale these circuits to our hypothetical 22 nm technology according to the 

ITRS projections [108], using the first-order constant field scaling principle [132], 

where Sis the scaling factor. We know that current scales as 1/S, resistance as 1, gate 

capacitance as 1/S, gate delay as 1/S, frequency as S, chip.area as l/s2, and dynamic 

power dissipation as 1/ s2. Analog circuits do not scale at the same pace as digital 

circuits, so we conservatively scaled the analog circuits to 250 nm. 

Table 6-3 shows the area, power, and time delay scaling estimates for the various 

components. Our performance/price estimates cover a range of parallelism 

("virtualization" as defined earlier), from a single PN for each neuron, to having a 

single PN multiplex all the neurons in the column. The estimates also explore 

variations in model parameters, such as network size, weight data precision, and 

sparseness of connections. 

Table 6-2: Components for different systems of spiking AM model. 

Circuit Component Digital CMOS Digital CMOL Mixed-signal 
CMOL 

eDRAM y 
SRAM y y 

CAM (PSP LUT) y y 
Multiplier y y 

Adder y y 
Analog I&F Neuron y 

CMOLmemory y 
CMOL CrossNet y 

181 



Table 6-3: Circuit performance/price scaling. 
Circuit 

Area(mm2
) 

Power 
Time delay (ns) 

Component (W) 
SRAM (6N/2.85)x 10-7 (N total bits) 0.64 Area 0.025 

eDRAM (2N/24.7)xto-7 (Ntotal bits) 0.64 Area 0.1 
Digital a,2 Nlog, ¼21og, 321.2 X 10-2 

( a,=22/180' N- 0.04 Area log,¾ 0 75 a, log2 32 • 

adder bits adder) 
Digital k- 0.23a/ aha1 (a,=22/350, ah=n/8, 0.04Area 15aiajc (k winner 

WTA acm/8, m n-bit k-WTA) count) 
DIA 1.8 a1, (a,=22/80) 0.08 Area 2.2 

converter 
Analog k- l.25Nx 10-3 (N size network) 2.5Nxl0-8 900 

WTA 
Digital l.2x10-4(16-bits x 16-bits) l.7x 10-5 0.2 

multiplier 
(9log2k+6m)kx 10-112.85, where m the Digital 0.32 Area 0.05 

CAM(PSP output data width, k record count 
LUT) 

l.7X 10-4 5.7x10-3 Analog IF Average neuron 
neuron 8.6x 10-3 spiking rate: 57Hz 

2x10-2
, at 57, 140, 140Hz 

482Hz respectively 482Hz 

6.5. RESULTS AND DISCUSSION 

The resulting performance/price estimates are presented in two parts. Table 6-4 shows 

the performance/price comparisons of various architectures for the non-spiking model, 

while Table 6-5 shows the performance/price comparisons of various architectures for 

the spiking model. 

In Table 6-4, the estimates are based on a model size (for a single column) of 16,384 

neurons, with 4-bit weight resolution, 256 PNs per column processor, and eDRAM 

technology for the CMOS designs. The total chip size is 858 mm2
• 

Table 6-4 shows that the CMOL designs have lower power consumption (by one to 

two orders of magnitude) than the CMOS designs, due to greatly reduced charging 

182 



power. Because the digital k-WTA circuit is at least ten times slower and ten times 

more costly in area than its analog counterpart, the CPS performance of mixed-signal 

CMOS and CMOL designs have roughly two orders of magnitude advantage over 

their digital counterparts. 

We also estimated the performance/price with different algorithm parameters, for 

example with a network size of 1,024, and single-bit weights; the relative 

performance/price comparisons above are still valid [49]. We also find the update rate 

for CMOL mixed-signal design has seven orders of magnitude advantage over a 

scaled microprocessor (about 20 M nodes/sec for microprocessor when scaled down to 

22 nm technology [41]). For the CMOL mixed-signal design, we can implement more 

than 1700 column processors ( each with 16K-neuron network size) onto a single chip 

(ifwe neglect the silicon area for the inter-column communications.) Such a capability 

cannot be approached by the full-custom CMOS designs, let alone by a single 

microprocessor or a single FPGA (expecting seven orders of magnitude of CPS 

improvement from the mixed-signal CMOL implementation over the PC 

implementation). 

Table 6-4: Performance/price comparison for the non-spiking AM model. 

Design 

Digital CMOS 
Mixed-signal CMOS 

Digital CMOL 
Mixed-signal CMOL 

# Column Power CPS 
Processors (W) (1012connections/s) 

123 330 0.5 
195 507 41.5 
226 27 1.0 

1,716 1.4 365.3 

183 



For the spiking CMOL and CMOS designs, we compared the input spiking rate (i.e., 

the maximum input spiking rate that the chip can process), power, and the number of 

column processors on a chip based on digital CMOS, digital CMOL, and mixed-signal 

CMOL designs. The performance/price here means the spiking rate of a chip size of 

858 mni. 

iii 
8 
~ 
co 
E ... 
~ 
a. 

- - +-- - 0.1 connectivity 

o - 0.01 connecti\iity 
* ········· 0.001 connectivity 

number of multiplexed neurons in each PN 

50 

,..._ 
?t. 
co 
Q) ... 
co 
m 
~ --~ 
<( 
Cl:'.'. 
Cl 
Q) 

'cs 
83 ... 
co 

Figure 6-33: A log-log plot of the input spiking rate of the digital CMOS 
design for an 858 mm2 chip with three different levels of connectivity. 
The "diamond" marked curve shows the percentage of the area that is consumed by 
theeDRAM. 

184 



0. 1 connectivity 
---B - 0.01 connectivity 

* ·········· 0.001 connectivity 

number of multiplexed neurons in each PN 

80 ~ 
L.. 

co 

· 60 -;_ 
L.. 

0 
E 
(l) 

E 

Figure 6-34: A log-log plot of the input spiking rate of the digital CMOL 
design for an 858mm2 chip with three scenarios of connectivity. 
The "diamond" marked curve shows the area percentage of the CMOL memory. 

Figure 6-33 and Figure 6-34 show the input spiking rates per chip for digital CMOS 

and digital CMOL, respectively. With less connectivity, the PN should be able to 

multiplex more neurons (total connections tends to be a more important indicator than 

number of neurons), and the whole chip can process a higher input spiking rate. For 

example, in Figure 6-33, for 0.1 connectivity, the highest input spiking rate occurs 

when four neurons are multiplexed by each PN. For 0.01 connectivity, the highest 

input spiking rate occurs when 32 neurons are multiplexed by each PN. With more 

multiplexed neurons in each PN, the weight memory (eDRAM and CMOL memory) 

185 



occupies a greater proportion of the chip area as fewer PN s are needed. This is an 

issue in the CMOS design when the eDRAM area approaches 90% of the whole chip 

with maximum neuron multiplexing (all neurons being emulated by one PN). CMOL 

memory is slower than eDRAM, but occupies much less silicon area. Figure 6-34 

shows the improved performance/price of a digital CMOL design over the digital 

CMOS design (about 50% improvement). 

Table 6-5 shows the performance/price results of the spiking AM models for the 

digital CMOS and mixed-signal CMOL designs, assuming the same benchmark input 

spiking rate for both designs. The benchmark input spiking rate is the maximum input 

spiking rate the digital CMOS can process under the three different connectivity levels 

used in Figure 6-33. Although the power consumption of the mixed-signal CMOL 

design increases with the input spiking rate, it has at least two orders of magnitude of 

advantage (in terms of the Power x Input Spiking Rate) over the digital CMOS design 

under the same network conditions. On the other hand, we can also see a much 

narrower performance/price gap between the digital CMOS and mixed-signal CMOL 

implementations for the spiking model than for the non-spiking model. This is due 

primarily to hardware virtualization. 

The dynamic power dissipated by the CMOL memory in the nanowire/nanodevice 

crossbars is defined by (6.18). If the horizontal and vertical nanowires are N = M = 

103
, the connectivity b = 0. l, nanogrid half pitch Fnano = 3 nm, applied voltage V = 1 

V, in order to satisfy the power density < 0.64 W/mm2
, we have the constraint of 

2Rcon + 1.5~;,e + R
0

) D > 8.6 MO.. If we increase the nanogrid size by 1000 times, 

186 



that is, N = M = 106
, the constraint will be 2Rcon + 1.5~ire + R

0
/D > 8.6 kQ. These are 

reasonable constraints. On the other hand, the time delay defined by (6.14) degrades 

when the nanowire length increases. This means that when the CMOL nanogrids 

footprint increases, the dynamic power density decreases, while the time delay 

mcreases. 

Table 6-5: Performance/price comparison for spiking AM model. 

Design Connectivity 
#Column Power Input Spiking Rate / Chip 
Processors (W) (109spikes/sec·858mm2

) 

Digital CMOS 0.1 15 481 0.26 
MS*CMOL 0.1 276 1.8 0.26 

Digital CMOS 0.01 28 482 0.65 
MSCMOL 0.01 276 2.7 0.65 

Digital CMOS 0.001 780 490 2.2 
MSCMOL 0.001 11 276 6.2 2.2 

* MS stands for Mixed-Signal 

Digital CMOS circuits need DI A converters to interface with analog CMOS circuits, 

which are expensive in both area and power. The mixed-signal CMOL design does not 

require converters. Currents from CMOL nanogrids can feed directly into analog 

circuits, such as the k-WTA (illustrated in Figure 6-31) and the I&F neuron (see 

Figure 6-32). The average injection current determines the analog circuit's dynamic 

response. For example, the I&F circuit requires at least 10 pA of injection current to 

spike at 10 Hz. The nanowire connecting the CMOL to the input node of the l&F 

neuron circuit can provide such current. The CMOL · power density is 

~VLnj
2 

< 0.64W I mm 2 , which leads to the constraint 2n N > 0.43 , where n is the 
2n N 4F nano 

11 Too less connectivity in the WPNAM model can cause remarkably smaller capacity. 

187 



weight bits, V = I V, Fnano = 3 run, and Iinj = 10 pA. CMOL nanogrids can easily 

satisfy this constraint. However, if there is sparse connectivity, the power density of 

the hot spots (i.e., where the "on" nanodevices are located) is 

NVEnj 2 

2 2 
< 0.64W I mm , where <; is the connectivity. This gives the constraint 

<;2n N 4F nano 

of 2n N > 430 with <; = 0.001. 

Another nanodevice average power density constraint derived from CMOL nanogrids 

operation is given by Power I Area= DTdV2 I R
0
nF2 nano < 0.64 WI mm2

, where Td is the 

duty cycle defined as Td = (spike width) x (average spike rate per neuron). For 

Td =0.0l, R
0
n!D>4.3xl08Q, which might be possible for single electron molecules 

[157]. However, Ron should not be too high, otherwise it will degrade the dynamic 

response of the CMOL CrossNets, given (6.14). 

The possibilities created by hybrid CMOS / nanogrid electronics are very exciting, 

especially in the area of neural model emulation. An important conclusion of the 

architectural trade-offs presented here is the value of leveraging sparse activation and 

connectivity to multiplex scarce resources. We have demonstrated that, because of the 

sparse activation and sparse connectivity of our models, a simple time-multiplexing 

scheme for digital CMOS can achieve comparable throughput as a mixed-signal 

CMOL configuration while using the same silicon area {Table 6-5), although this 

approach does consume more power (but all digital CMOS is much easier to debug, 

manufacture, and test). 

188 



Furthermore, when we begin to add dynamic learning to our architecture, fine-grained, 

dedicated per synapse hardware that incorporates learning will be expensive and 

under-utilized. Hardware virtualization will improve the efficiency when emulating 

the dynamic adaptation. 

189 



7. SUMMARY AND FUTURE WORK 

7.1. SUMMARY AND CONCLUSIONS 

In this dissertation, we motivated why we are interested in HDM models, that it has 

significant potential as a building block for intelligent systems. It is inspired by and is 

based on high level models of cerebral cortex. We also believe that it strikes a 

reasonable compromise between implementing neuron level details and model 

abstraction. In this work, we used associative memory, in particular the models 

developed by Wilshaw and Palm to approximate a Bayesian Memory which is the 

assumed high level functionality of a single node in an HDM. We used Wilshaw/Palm 

model (WPNAM) for the non-spiking model and Gerstner's spiking neuron model for 

the spiking associative memory model. 

When conducting this research, we used the methodology in Figure 2-17 to investigate 

the hardware architectures' performance/price ratios for the target algorithms. This 

methodology is very important for exploring hardware architectures due to the 

following reasons: 

• For any compute intensive models, we need to understand the critical 

operations in the models, and whether they can be implemented in a parallel 

fashion. And while doing that we need to keep Amdahl's law in mind. Steps 

(1) and (2) in our methodology (Figure 2-17) address these concerns. 

190 



• The methodology creates a formalism for studying the entire virtualization 

spectrum, Figure 2-10, in search of the sweet spot. This is an important 

contribution of this work, since the neural network field has traditionally gone 

from standard processors to maximum, usually mixed signal, parallelism, 

never stopping to look at intermediate points on the spectrum. 

• Although we made assumptions on the parameters of the algorithms and based 

the subsequent analyses on those versions of the algorithms, it would not be 

difficult to take the methodology and the various steps taken here and redo the 

various analyses with very different parameters. 

In addition to a wider range of WPNAM networks, many of these ideas can be used in 

exploring a broader set of algorithms. It will also continue to serve as an important 

tool for our group to conduct further study of hardware architectures for biologically

inspired computations. 

With this tool (methodology) in hand, we did the performance/price comparisons for 

hardware implementations of AM algorithms. For the non-spiking AM algorithm, or 

WPNAM, for the CMOL mixed-signal design, we can implement more than 1700 

column processors onto a single chip (if we neglect the silicon area for the inter

column communications.) That is about 3 x 1014 connections per second. These are 

densities and speeds that are approaching biology. The mixed-signal CMOS design is 

dwarfed by mixed-signal CMOL's performance; with l0x less CPS and IO0x more 

power consumption. Furthermore, the mixed-signal CMOL implementation is 

191 



10,000,000x faster than the PC's in CPS. This makes a strong case for investing in 

CMOL technology, if for no other reason than to move intelligent computing to the 

next level. 

For spiking AM models, the mixed-signal CMOL implementation is also the winner in 

the race with digital CMOS implementation. Although the power consumption of the 

mixed-signal CMOL design increases with the input spiking rate, it shows at least two 

orders of magnitude of advantage (in the measure of Power x Input Spiking Rate) over 

the digital CMOS design under the same network conditions. However, we also notice 

a much narrower performance/price gap between digital CMOS and mixed-signal 

CMOL implementations for the spiking model than for the non-spiking model. Digital 

CMOS designs leverage sparse connectivity and activation (''virtualization") to 

balance power consumption and performance speedup. As discussed in Section 5.2, 

we explored virtualization by multiplexing PN resources for different number of 

neurons. With the analysis and equations in Section 5 .2, we demonstrated a method 

for calculating the virtualization performance gain against a measure of normalized 

time spent. Although we did not provide sweet spots of how much virtualization we 

need for different implementations in a variety of applications, we did show certain 

levels of virtualization for the specific digital CMOS / CMOL cases for the spiking 

AM algorithms in Figure 6-33 and Figure 6-34. 

Recall the discussion on front end and back end operations in Section 2.4.2, when we 

move to emulate the more "intelligent" or ISP-based HDM algorithms; we need a 

huge amount of memory storage for the diffuse data from the front end sensors. For 

192 



example, to implement 226 column processors with the digital CMOL architecture, as 

shown in Table 6-4, we need to store one trillion connections in the hardware. Because 

each connection needs 4 bits to represent the weight, we need to store totally 4 x 1012 

bits in a single chip. Nanoelectronic architectures provide a huge density advantage 

when implementing such a large amount of data in the hardware. This is proved in 

Figure 6-33 and Figure 6-34, where for the digital CMOS architecture more than 90% 

of the silicon area is devoted to memory to store the network connections (weights). 

However, this same number for the digital CMOL architecture is only about 25%, 

which is a better balanced use of chip real estate. 

Also, when we look at the mixed-signal CMOL's performance/price results for the 

non-spiking AM algorithm in Table 6-4 and neocortex data from the human brain in 

Table 2-1, it turns out that we only need 711 such mixed-signal CMOL chips (each 

one is 858 mm2 in area) to achieve the 2.0x 1010 neuron count in human neocortex. 

However, with that many CMOL chips, we can update each neuron's state in 1 µs. 

This is 10,000x faster than human neocortex, because Lansner et al. [158] stated that 

in human neocortex, each neuron updates their state in 10 ms. Such a speed advantage 

could also be traded-off for lower power utilization. 

We do not mean to imply that 711 chips would recreate the functionality of the human 

brain. Our cortical models are a significant simplification of real biology and there are 

large parts of the brain where we do not even have such high level models. However, 

this studying is promising in that CMOS / nanogrid hardware is getting into the closer 

all the time to "Reverse-Engineer the Brain" - one of the fourteen Grand Challenges 

193 



for Engineering determined by the National Academy of Engineering 

(http://www.engineeringchallenges.org). 

CMOL not only provides a high-density storage medium for the network connections, 

but also integrates the multiply-accumulate-based matrix-vector inner-product 

operation into its architecture. This natural mapping of biologically-inspired 

computational models' most common operation (inner-product) onto hardware 

architectures could be useful for a broad range of bio-inspired and more traditional 

computational models. And would be of interest to researchers from areas such as 

neuroscience, computer architecture, semiconductor, and applied physics. 

Although the CMOL nanoarchitecture has its own speed disadvantage (see the end of 

Section 6.1 .4.4) and power density issues (see the end of Section 6.5), utilizing 

nanoarchitecture's circuit density to emulate the high-level HDM algorithms, 

especially those with sparse input activity and sparse connectivity, was shown to be of 

significant value. On the other hand, nanoarchitecture, due to the nature of its fault

prone nanodevices, benefits from asynchronous, low precision, massively parallel, 

fault-tolerant HDM algorithms. 

194 

http://www.engineeringchallenges.org


7.2. FUTURE WORK 

We believe that this work is a useful first step in architecting and implementing 

hardware for executing algorithms inspired by neurosciern,e. Consequently there are 

many directions where we can go from here. These include: 

• Dynamic learning embedded into the hardware. To fully emulate neocortex, 

we need to integrate the adaptation of the connection efficacy along with the 

network's updating or memory retrieval. Only then, we can compare the 

performance/price ratios from different hardware implementations with the 

fully functional biology-like ability and intelligence. This is probably the most 

important short-term objective. 

• Multi-core implementation's performance/price ratio for AM. Although we 

have included the PC cluster implementation in this dissertation, the latest 

developments from the computer industry, especially multi-core processor 

chips with very high memory bandwidth need to be benchmarked and 

integrated into our results. The most flexibility of the multi-core 

microprocessor is a very important thing that we should not neglect in this 

performance/price war among different hardware candidates. This statement is 

also true for graphics processors, GPUs. 

• Heterogeneous CMP (chip multiprocessor) architectures. An important 

variation on multi-core CMP architectures concerns moving to heterogeneous 

195 



cores for accelerator cores that incorporate many of the ideas presented in this 

dissertation. 

• More complex associative memory models (such as the Bayesian memory 

model in Zaveri et al.'s work [40]) are needed, since the models here, although 

an important first step, do not implement all the functionality required of 

modular cortical models. 

196 



8. REFERENCES 

[1] K. K. Likharev and D. V. Strukov, "CMOL: devices, circuits, and 
architectures," in Introduction to Molecular Electronics, G. Cuniberti and et 
al., Eds. Berlin: Springer, 2005, pp. 447-478. 

[2] K. Likharev, "CMOL technology: devices, circuits, architectures, and possible 
applications," Stony Brook University, Stony Brook, NY 2008, 
http://pavel.physics.sunysb.edu/~1ikharev/persona1/CMOL08.pdt: 

[3] Intel, "60 Years of the transistor: 1947-2007," 2008, 
http://www.intel.com/technology/timeline.pdf. 

[4] D. Hammerstrom, "A survey of bio-inspired and other alternative 
architectures," in Nanotechnology Information Technology - II, vol. 2. 
Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2008, pp. 251-285. 

[5] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and J. 
Rattner, "Platform 2015: Intel processor and platform evolution for the next 
decade," Technology Intel Magazine, pp. 1-10, 2005. 

[6] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, "Ge/Si nanowire 
heterostructures as high-performance field-effect transistors," Nature, vol. 441, 
pp. 489-493, 2006. 

[7] A. B. Greytak, L. Lauhon, M. S. Gudiksen, and C. Lieber, "Growth and 
transport properties of complementary germanium nanowire field-effect 
transistors," Appl Phys. Lett., vol. 84, pp. 4176-4178, 2004. 

[8] S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, and C. M. S. Torres, 
"Nanoimprint lithography: challenges and prospects," Nanotechnology, vol. 
12, pp. 91-95, 2001. 

[9] D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. 
Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, and S. V. Sreenivasan, 
"Imprint lithography for integrated circuit fabrication," Journal of Vacuum 
Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, 
pp. 2624, 2003. 

197 

http://pavel.physics.sunysb.edu/~likharev/personal/CMOL08.pdf
http://www.intel.com/technology/timeline.pdf


[10] R. I. Bahar, D. Hammerstrom, J. Harlow, W. H. Joyner Jr., C. Lau, D. 
Marculescu, A. Orailoglu, and M. Pedram, "Architectures for silicon 
nanoelectronics and beyond," Computer, vol. 40, pp. 25-33, 2007. 

[11] E. Rechtin, "The art of systems architecting," IEEE Spectrum, vol. 29, pp. 66-
69, 1992. 

[12] J. Hawkins and D. George, "Hierarchical temporal memory - concepts, theory 
and terminology," Numenta Inc. 2006, 
http://www.numenta.com/Numenta HTM Concepts.pd£ 

[13] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, b. Ekeberg, and A. 
Lansner, "Brain-scale simulation of the neocortex on the IBM Blue Gene/L 
supercomputer," IBM J. Res. & Dev., vol. 52, pp. 31-41, 2008. 

[14] R. Hecht-Nielsen, "Tutorial: Cortronic Neural Networks," presented at 
International Joint Conference on Neural Networks, Washington, DC, 1999. 

[15] M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable 
artificial neural network (ETANN) with 10240 "floating gate" synapses," 
presented at International Joint Conference on Neural Networks, pp. 191-196, 
1989. 

[16] A. Lansner and others, "Detailed Simulation of Large Scale Neural Networks," 
in Computational Neuroscience: Trends in Research 1997, J. M. Bower, Ed. 
Boston, MA: Plenum Press, 1997, pp. 931-935. 

[17] G. Palm, F. Schwenker, F. T. Sommer, and A. Strey, "Neural associative 
memories," in Associative Processing and Processors. Los Alamitos, CA.: 
IEEE Computer Society, 1997, pp. 284-306. 

[18] D. J. Willshaw, 0. P. Buneman, and H. C. Longuet-Higgins, "Non-holographic 
associative memory," Nature, vol. 222, pp. 960-962, 1969. 

[19] D; Willshaw and B. Graham, "Improving Recall From An Associative 
Memory," Biological Cybernetics, vol. 72, pp. 337-346, 1995. 

[20] D. Willshaw, "Marr's theory of the neocortex as a self-organizing neural 
network," Neural Computation, vol. 9, pp. 911-936, 1997. 

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative 
Approach, 3rd ed. Palo Alto, CA: Morgan Kaufmann, 2002. 

[22] C. Mead, Analog VLSI and Neural Systems. Reading, Massachusetts: Addison
Wesley, 1989. 

198 

http://www.numenta.com/Numenta_HTM_Concepts.pdf


[23] R. Douglas, "Fifteen years of Neuromorphic Engineering: progress, problems, 
and prospects," in Brain Inspired Cognitive Systems - BICS2004. Scotland, 
UK: University of Stirling, 2006. 

[24] J. N. H. Heemskerk, J. Hoekstra, J. J. J. Murre, L. H. J. K. Kamna, and P. T. 
W. Hudson, "The BSP400: A Modular Neurocomputer," Mircroprocessors 
and Microsystems, vol. 18, pp. 67-78, 1994. 

[25] H. Speckman, P. Thole, and W. Rosentiel, "COKOS: A Coprocessor for 
Kohonen's Selforganizing Map," presented at Proceedings of the ICANN-93, 
Amsterdam, pp. 1040-1045, 1993. 

[26] D. Hammerstrom, "Techniques for the Efficient Execution of Sparse Matrix 
Neural Networks Algorithms on SIMD Machines," Adaptive Solutions, Inc., 
Beaverton, OR July 1992 1992. 

[27] U. Ramacher, W. Raab, J. Anlauf, U. Bachmann, J. Beichter, N. Briils, M. 
WeBeling, E. Sicheneder, R. Manner, J. GlaB, and A. Wurz, "Multiprocessor 
and Memory Architecture of the Neurocomputer SYNAPSE-I," presented at 
World Congress on Neural Networks, Portland, OR, pp. 775-778, 1993. 

[28] M. Huch, W. Pochmueller, and M. Glesner, "BACCHUS: a VLSI architecture 
for a large binary associative memory," presented at Proceedings of the 
International Neural Network Conference, Paris, 1990. 

[29] Y. Huang, X. Duan, L. J. Lauhon, K. Kyoung-Ha, and C. M. Lieber, "Logic 
gates and computation from assembled nanowire building blocks," Science, 
vol. 294, pp. 1313-1317, 2001. 

[30] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, "Nanowire 
crossbar arrays as address decoders for integrated nanosystems," Science, vol. 
302,pp. 1377-1379,2003. 

[31] P. J. Kuekes and R. S. Williams, "Molecular wire transistor (MWT)," in 
United States Patent, vol. US 6,559,468 Bl. United States: Hewlett-Packard 
Development Company LP, Houston, TX (US), 2003. 

[32] G. S. Snider, P. J. Kuekes, and R. S. Williams, "CMOS-like logic in defective, 
nanoscale crossbars," Nanotechnology, vol. 15, pp. 881-891, 2004. 

[33] X. Duan, Y. Huang, J. Wang, and C. M. Lieber, "Indium phosphide nanowires 
as building blocks for nanoscale electronic and optoelectronic devices," 
Nature, vol. 409, pp. 66-69, 2001. 

199 



[34] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. 0. Jeppesen, 
K. A. Nielsen, J. F. Stoddart, and R. S. Williams, "Nanoscale molecular-switch 
crossbar circuits," Nanotechnology, vol. 14, pp. 462-468, 2003. 

[35] P. J. Kuekes, D. R. Stewart, and R. S. Williams, "The crossbar latch: logic 
value storage, restoration, and inversion in crossbar circuits," Journal of 
Applied Physics, vol. 97, pp. 034301-1-5,2005. 

[36] K. Likharev, "Hybrid Semiconductor-Molecular Nanoelectronics," Industrial 
Physicist, vol. 9, pp. 20-23, 2003. 

[37] K. K. Likharev, "CMOL: A New Concept for Nanoelectronics," presented at 
12th Int. Symp. "Nanostructures: Physics and Technology", St Petersburg, 
Russia, 2004. 

[3 8] G. F. Cerofolini, "Realistic limits to computation I. Physical limits," Applied 
Physics A, vol. 86, pp. 23-29(7), 2007. 

[39] W. Gerstner, "Spiking Neurons," in Pulsed Neural Networks, W. Maass and C. 
M. Bishop, Eds. Cambridge, MA: MIT Press, 1998, pp. 3-53. 

[ 40] M. S. Zaveri and D. Hammerstrom, "Nano/CMOS implementations of cortical 
model based on Bayesian memory - a generic architecture assessment 
methodology," IEEE Transactions on Nanotechnology, vol. (submission 
number: TNANO-00261-2008), 2008. 

[41] C. Gao and D. Hammerstrom, "Platform Performance Comparison of PALM 
Network on Pentium 4 and FPGA," presented at International Joint Conference 
on Neural Networks, Portland, Oregon, pp. 995-1000, 2003. 

[42] D. Hammerstrom, C. Gao, S. Zhu, and M. Butts, "FPGA implementation of 
very large associative memories - scaling issues," in FPGA Implementations of 
Neural Networks, A. Omondi, Ed. Boston: Kluwer Academic Publishers, 2003. 

[43] C. H. Luk, C. Gao, D. Hammerstrom, M. Pavel, and D. Kerr, "Biologically 
inspired enhanced vision system (EVS) for aircraft landing guidance," 
presented at International Joint Conference on Neural Networks, Budapest 
HUNGARY, pp. 1751-1756, 2004. 

[44] G. Snider and R. Williams, "Nano/CMOS architectures using a field
programmable nanowire interconnect," Nanotechnology, vol. 18, pp. 1-11, 
2007. 

[45] M. LaPedus, "HP claims FPGA breakthrough," in EE Times (online), vol. 
2007: EE Times, 2007, 
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=l9690lOl2. 

200 

http://www.eetimes.com/news/latest/showArticle.ihtmnarticlelD-196901012


[46] 6. Turel and K. Likharev, "CrossNets: possible neuromorphic networks based 
on nanoscale components," Int. J. of Circ. Theor. Appl., vol. 31, pp. 37-53, 
2003. 

[47] C. Gao and D. Hammerstrom, "Cortical models onto CMOL and CMOS -
architectures and performance/price," IEEE Tran. on Circuits and Systems - I: 
Regular Papers - Special Issue on Nanoelectronic Circuits and 
Nanoarchitectures, vol. 54, pp. 2502-2515, 2007. 

[48] C. Gao, M. S. Zaveri, and D. Hammerstrom, "CMOS/CMOL architectures for 
spiking cortical column," presented at IEEE International Joint Conference on 
Neural Networks (IJCNN 08), Hong Kong, pp. 2441-2448, 2008. 

[49] C. Gao and D. Hammerstrom, "CMOL based cortical models," in (accepted/or 
publication) Emerging Brain-Inspired Nano-Architectures, V. Beiu and U. 
Riickert, Eds., 2006. 

[50] W. C. Elmore, "The transient response of damped linear networks," Journal of 
Applied Physics, vol. 19, pp. 55-63, 1948. 

[51] R. Ananthanarayanan and D. S. Modha, "Anatomy of a cortical simulator," 
presented at ACM/IEEE Conf. on High Performance Networking and 
Computing: Supercomputing, Reno, NV, 2007. 

[52] V. Beiu, "Grand challenges of nanoelectronics and possible architectural 
solutions: what do Shannon, von Neumann, Kolmogorov, and Feynman have 
to do with Moore," presented at the 3 7th International Symposium on 
Multiple-Valued Logic (ISMVL '07), Oslo, Norway, 2007. 

[53] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression: 
Kluwer Academic Press / Springer, 1992. 

[54] J. L. Bentley, "Multidimensional binary search trees used for associative 
searching," Commun. ACM, vol. 18, pp. 509-517, 1975. 

[55] A. Andoni and P. Indyk, "Near-optimal Hashing algorithms for approximate 
nearest neighbor in high dimensions," Commun. ACM, vol. 51, pp. 117-122, 
2008. 

[56] G. Palm, "On associative memory," Biological Cybernetics, vol. 36, pp. 19-31, 
1980. 

[57] J. Hopfield, "Neural networks and physical systems with emergent collective 
computational abilities," Proceedings of National Academy of Science, vol. 79, 
1982. 

201 



[58] G. Zeng and D. Hammerstrom, "Distributed Associative Neural Network 
Model Approximates Bayesian Inference," ECE Department, OGI School of 
Science and Engineering, OHSU, Beaverton, OR 2002. 

[59] V. Braitenberg and A. Schilz, Cortex: Statistics and Geometry of Neuronal 
Connectivity: Springer-Verlag, 1998. 

[60] C. Johansson and A. Lansner, "Towards cortex sized attractor ANN," in LNCS 
-- Biologically Inspired Approaches to Advanced Information Technology, vol. 
3141. Berlin, Germany: Springer Verlag, 2004, pp. 63-79. 

[61] D. 0. Hebb, The Organization of Behavior. New York: Wiley, 1949. 

[62] V. Mountcastle, Perceptual Neuroscience - The Cerebral Cortex. Cambridge, 
MA: Harvard University Press, 1998. 

[63] D. O'Kane and A. Treves, "Why the Simplest Notion of Neocortex as an Auto
associative Memory Would Not Work," Network, vol. 3, pp. 379-384, 1992. 

[64] R. Hecht-Nielsen, "A theory of thalamocortex," in Computational Models for 
Neuroscience - Human Cortical Information Processing, R. Hecht-Nielsen 
and T. McKenna, Eds.: Springer, 2003. 

[65] J. A. Anderson, "Programming Considerations for a Brain-Like Computer," 
Dept. of Cognitive and Linguistic Sciences, Brown University, Providence, RI 
02912 June 14 2005 2005, 
www.cog.brown.edu/Research/ErsatzBrainGroup/index.html 

[66] C. Johansson and A. Lansner, "Towards cortex sized artificial nervous 
systems," presented at Knowledge-Based Intelligent Information and 
Engineering Systems KES'04, Wellington, New Zealand, pp. 959-966, 2004. 

[67] C. Johansson, M. Rehn, and A. Lansner, "Attractor neural networks with 
patchy connectivity," Neurocomputing, vol. 69, pp. 627-633, 2006. 

[68] C. Fulvi Mari, "Extremely Dilute Modular Neuronal Networks: Neocortical 
Memory Retrieval Dynamics," Journal of Computational Neuroscience, vol. 
17,pp.57-79,2004. 

[69] R. Granger, "Brain circuit implementation: high-precision computation from 
low-precision components," in Replacement Parts for the Brain, T. Berger and 
D. Glanzman, Eds.: MIT Press, 2005, pp. 277-294. 

[70] D. George and J. Hawkins, "A hierarchical Bayesian model of invariant pattern 
recognition in the visual cortex," presented at IJCNN '05, pp. 1812-1817 vol. 3, 
2005. 

202 



[71] R. Hecht-Nielsen, "The Mechanism of Thought," presented at IJCNN '06, pp. 
419-426, 2006. 

[72] S. Zhu, "Associative memory as a Bayesian building block," Ph.D. 
dissertation, OGI School of Science and Engineering, Oregon Health and 
Science University, Beaverton, Oregon 2008. 

[73] B. Kosko, "Bidirectional associative memories," IEEE Transactions on 
Systems, Man, Cybernetics, vol. 18, pp. 49-60, 1988. 

[7 4] T. Dean, "Leaming invariant features using inertial priors," Annals of 
Mathematics and Artificial Intelligence, vol. 47, pp. 223-250, 2006. 

[75] T. S. Lee and D. Mumford, "Hierarchical bayesian inference in the visual 
cortex," J. Opt. Soc. Am. A. Opt. Image Sci. Vis., vol. 20, pp. 1434-1448, 2003. 

[76] F. V. Jensen, Bayesian Networks and Decision Diagrams: Springer, 2001. 

[77] J. Pearl and S. Russell, "Bayesian Networks," in Handbook of Brain Theory 
and Neural Networks, M. Arbib, Ed. Cambridge MA: MIT Press, 2001. 

[78] J. Pearl, Probabilistic Reasoning in lntelligentSystems: Networks of Plausible 
Inference. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1988. 

[79] Numenta, "Introduction to Numenta technology," 2007, 
http://www.numenta.com/about-numenta/numenta-technology.php. 

[80] S. Zhu and D. Hammerstrom, "Associative Memory and Bayesian 
Classification," Submitted/or Publication, 2007. 

[81] S. Haykin and B. Kosko, "Intelligent Signal Processing," in Proceedings of the 
IEEE, vol. 86, 11 ed: IEEE Press, 1998. 

[82] G. Palm and F. T. Sommer, "Information capacity in recurrent McCulloch-Pitts 
networks with sparsely coded memory states," Network, vol. 3, pp. 177-186, 
1992. 

[83] D. Willshaw and B. Graham, "Improving Recall from an Associative 
Memroy," Biological Cybernetics, vol. 72, pp. 337-346, 1995. 

[84] S. Amari, "Neural Theory of Association and Concept Formation," Biol. 
Cybern., vol. 26, pp. 175-185, 1977. 

[85] J. D. Lynch and D. Hammerstrom, "Triplex micropipelines: A fault-tolerant 
clockless processing architecture," submitted to IEEE Transactions on VLSI 
Systems, 2008. 

203 

http://www.numenta.com/about-numenta/numenta-technology.php


[86] A. Knoblauch and G. Palm, "Pattern separation and synchronization in spiking 
associative memories," Neural Networks, vol. 14, pp. 763-780, 2001. 

[87] A. Knoblauch and G. Palm, "Spiking associative memory and scene 
segmentation by synchronization of cortical activity," Lecture Notes in 
Computer Science, vol. 2036, pp. 407-411, 2001. 

[88] R. E. Suri, "A computational framework for cortical learning," Biol. Cybem., 
vol. 90, pp. 400-409, 2004. 

[89] G. Indiveri, "A low-power adaptive integrate-and-fire neuron circuit," pp. IV-
820-IV-823 vol.4, 2003. 

[90] G. Indiveri, E. Chicca, and R. Douglas, "A VLSI array of low-power spiking 
neurons and bistable synapses with spike-timing dependent plasticity," IEEE 
Transactions on Neural Networks, vol. 17, pp. 211-221, 2006. 

[91] R. P. N. Rao, "Hierarchical Bayesian inference in networks of spiking 
neurons," NIPS'04, vol. 17, 2005. 

[92] S. Song, K. D. Miller, and L. F. Abbott, "Competitive hebbian learning 
through spike-timing-dependent synaptic plasticity," Nature Neurosience, vol. 
3, pp. 919-926, 2000. 

[93] J. Bailey, "A VLSI Interconnect Strategy for Biologically Inspired Artificial 
Neural Networks," Ph.D. dissertation, Department of Computer 
Science/Engineering, Oregon Graduate Institute, Beaverton, OR 1993. 

[94] J. Bailey and D. Hammerstrom, "Why VLSI Implementations of Associative 
VLCNs Require Connection Multiplexing," 1988 lntemational Conference on 
Neural Network, pp. 173-180, 1988. 

[95] R. Figueiredo, P. A. Dinda, and J. Fortes, "Guest Editors' Introduction: 
Resource Virtualization Renaissance," Computer, vol. 38, pp. 28-31, 2005. 

[96] H. C. Card, D. K. McNeill, and C. R. Schneider, "Analog VLSI circuits for 
competitive learning networks," Analog Integrated Circuits and Signal 
Processing, vol. 15, pp. 291-314, 1998. 

[97] U. Riickert, "ULSI architectures for artificial neural networks," Micro, IEEE, 
vol. 22, pp. 10-19, 2002. 

[98] T. Schoenauer, S. Atasoy, M. Nasser, and H. Klar, "NeuroPipe-chip: a digital 
neuro-processor for spiking neural networks," IEEE Trans. on Neural 
Networks, vol. 13, pp. 205-213, 2002. 

204 



[99] A. Bofill-i-Petit and A. F. Murray, "Synchrony detection by analogue VLSI 
neurons with bimodal STDP synapses," presented at NIPS, 2003. 

[100] K. A. Boahen, "Point-to-point connectivity between neuromorphic chips using 
address events," IEEE Transactions on Circuits and Systems II - Analog and 
Digital Signal Processing, vol. 47, pp. 416-434, 2000. 

[101] M. Porrmann, U. Witkowski, H. Kalte, and U. Riickert, "Implementation of 
artificial neural networks on a reconfigurable hardware accelerator," presented 
at Euromicro Workshop on Parallel Distributed and Network-based Processing 
(PDP2002), Gran Canaria Island, Spain, 2002. 

[102] U. Riickert, A. Funke, and C. Pintaske, "Accelerator-board for Neural 
Associative Memories," Neurocomputing, vol. 5, pp. 39-49, 1993. 

[103] U. Riickert, "An associative memory with neural architecture and its VLSI 
implementation," presented at HICSS-24, Koloa, Hawaii, 1990. 

[104] U. Riickert, "VLSI design of an associative memory based on distributed 
storage of information," in VLSI Design of Neural Networks, U. Ramacher and 
U. Riickert, Eds. Boston: Kluwer Academic Publishers, 1991, pp. 153-168. 

[105] D. Hammerstrom, "A Digital VLSI Architecture for Real-World Applications," 
in An Introduction to Neural and Electronic Networks, S. F. Zornetzer, J. L. 
Davis, C. Lau, and T. McKenna, Eds., Second ed. San Diego, CA: Academic 
Press, 1995, pp. 335-358. 

[106] T. Sejnowski and C. Rosenberg, "NetTalk: A parallel network that learns to 
read aloud.," The John Hopkins Univeristy Electrical Engineering and 
Computer Science Department JHU/EECS-86/01, 1986. 

[107] 6. Tiirel, J. H. Lee, X. Ma, and K. K. Likharev, "Architectures for 
nanoelectronic implementation of artificial neural networks: new results," 
Neurocomputing, vol. 64, pp. 271-283, 2005. 

[108] ITRS, "International Technology Roadmap for Semiconductors 2005 edition -
Executive Summary," 2005, 
http://www.itrs.net/Links/2005ITRS/ExecSum2005 .pdf. 

[109] J. M. J. Murre, "Neurosimulators," in Handbook of brain research and neural 
networks, M. Arbib, Ed.: MIT Press, 1995. 

[110] H. Markram, "The Blue Brain Project," Nature Reviews Neuroscience, vol. 7, 
pp. 153-160, 2006. 

205 

http://www.itrs.net/Links/2005ITRS/ExecSum2005.pdf


[111] W. Gropp, E. Lusk, and A. Skjellum, Using MP/ - Portable Parallel 
Programming with the Message Passing Interface, 2nd ed. Cambridge, MA: 
MIT Press, 1999. 

[112] S. Zhu and D. Hammerstrom, "Simulation of associative neural networks," 
presented at Proc. of the ICONIP, Singapore, pp. 1639-1643, 2002. 

[113] S. Pissarnezky, Sparse Matrix Technology. New York: Academic Press, 1984. 

[114] C. Reschke, T. Sterling, D. Ridge, D. Savarese, D. Becker, and P. Merkey, "A 
Design Study of Alternative Network Topologies for the Beowulf Parallel 
Workstation," presented at High Performance and Distributed Computing, 
1996. 

[115] T. Sterling, Beowulf cluster computing with Linux: MIT Press, 2002. 

[116] T. K. Priya and K. Sridharan, "An efficient algorithm to construct reduced 
visibility graph and its FPGA implementation," presented at 17th International 
Conference on VLSI Design, pp. 1057-1062, 2004. 

[117] B. Christos-Savvas, Y. K. C. Peter, and Z. Li, "FPGA-Accelerated Pre
Attentive Segmentation in Primary Visual Cortex," presented at International 
Conference on Field Programmable Logic and Applications (FPL'06), pp. 1-6, 
2006 . 

. [118). G. Marcus and J. A. Nolazco-Flores, "An FPGA-based coprocessor for the 
SPHINX speech recognition system: early experiences," presented at 
International Conference on Recofigurable Computing and FPGAs (ReConFig 
2005), pp. 4 pp., 2005. 

[119] M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, and D. 
DiSabello, "Achieving High Performance with FPGA-Based Computing," 
Computer, vol. 40, pp. 50-57, 2007. 

[120] M. B. I. Reaz, S. Z. Islam, M. A. M. Ali, and M. S. Sulaiman, "FPGA 
realization of backpropagation for stock market prediction," pp. 960-964 vol.2, 
2002. 

[121] A. J. N. Batista, D. Alves, N. Cruz, J. Sousa, C. A. F. Varandas, E. Joffrin, R. 
Felton, J. Farthing, and J. E. Contributors, "An FPGA-based multi-rate 
interpolator with real-time rate change for a JET test-bench system," Nuclear 
Science, IEEE Transactions on, vol. 53, pp. 756-760, 2006. 

[122] D. Kerr, D. Hammerstrom, and M. Pavel, "Real Time Sensor Image Fusion For 
Enhanced Vision Systems," Air Force Phase II SBIR 2003. 

206 



[123] J. R. Kerr, C. H. Luk, D. Hammerstrom, and M. Pavel, "Advanced integrated 
enhanced vision systems," presented at SPIE Aerosense - Specific Conference 
(no. 5081): Enhanced and Synthetic Vision, Orlando, Florida, 2003. 

[124] B. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: a 
strategy employed by Vl," Vision Research, vol. 37, pp. 3311-3325, 2001. 

[125] P. 0. Hoyer and A. Hyvarinen, "A multi-layer sparse coding network learns 
contour coding form natural images," Vision Research, vol. 42, pp. 1593-1605, 
2001. 

[126] D. George and J. Hawkins, "Invariant pattern recognition using Bayesian 
inference on hierarchical sequences," 2004. 

[127] H. Wersing and E. Komer, "Leaming optimized features for hierarchical 
models of invariant object recognition," Neural Computation, vol. 15, pp. 
1559-1588, 2003. 

[128] D. Shaw and et al., "Anton, a special-purpose machine for molecular dynamics 
simulation," presented at The 34th International Symposium on Computer 
Architecture (ISCA 2007), San Diego, CA, USA, 2007. 

[129] S. S. Iyer, J. E. Barth. Jr, P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan, 
and D. Hoyniak, "Embedded DRAM: technology platform for the Blue Gene/L 
chip," IBM J. Res. & Dev., vol. 49, pp. 333-350, 2005. 

[130] A. Lansner and A. Holst, "A Higher Order Bayesian Neural Network with 
Spiking Units," Int. J. Neural Systems, vol. 7, pp. 115-128, 1996. 

[131] M. Schafer and G. Hartmann, "A flexible hardware architecture for online 
Hebbian learning in the sender-oriented PCNN-neurocomputer Spike 128 K," 
presented at Proc. MicroNeuro '99, pp. 316-323, 1999. 

[132] N. Weste and D. Harris, CMOS VLSI Design - A Circuits and Systems 
Perspective, 3rd ed: Addison Wesley, 2004. 

[133] L. Kleinrock, Queueing Systems. New York, NY: Wiley, 1976. 

[134] J. Lazzaro, S. Rychkebusch, M.A. Mahowald, and C. A. Mead, "Winner-take
all networks of O(N) complexity," Computer Science Department, California 
Institute of Technology, Pasadena, CA CALTECH-CS-TR-21-88, 1989. 

[135] S.-Y. Chin and C.-Y. Wu, "A 10-b 125-MHz CMOS digital-to-analog 
converter (DAC) with threshold-voltage compensated current sources," IEEE 
Journal of Solid-State Circuits, vol. 29, pp. 1374-1380, 1994. 

207 



[136] S. Borkar, T. Kamik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, 
"Parameter variations and impact on circuits and microarchitecture," presented 
at DAC 2003, Anaheim, CA, USA, pp. 338-342, 2003. 

[137] Q. Chen and J. D. Meindl, "Nanoscale metal-oxide-semiconductor field-effect 
transistors: scaling limits and opportunities," Nanotechnology, vol. 15, pp. 
S549-S555, 2004. 

[138] S. Borkar, "Electronics beyond nano-scale CMOS," presented at DAC 2006, 
San Francisco, CA, U.S.A., pp. 807-808, 2006. 

[139] R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. 
Metz, and M. Radosavljevic, "Benchmarking nanotechnology for high
performance and low-power logic transistor applications," IEEE Transactions 
on Nanotechnology, vol. 4, pp. 153-158, 2005. 

[140] A. Bachtold, P. Hadley, T. Naknishi, and C. Dekker, "Logic circuits with 
carbon nanotube transistors," Science, vol. 294, pp. 1317-1320, 2001. 

[141] R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, 
"High-speed integrated nanowire circuits," Nature, vol. 434, pp. 1085, 2005. 

[142] A. DeHon, P. Lincoln, and J. E. Savage, "Stochastic assembly of 
sublithographic nanoscale interfaces," IEEE Trans. on Nanotechnology, vol. 2, 
pp. 165-174, 2003. 

[143] M. M. Ziegler and M. R. Stan, "CMOS/nano co-design for crossbar-based 
molecular electronic systems," IEEE Transactions on Nanotechnology, vol. 2, 
pp. 217-230, 2003. 

[144] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a reconfigurable 
architecture for hybrid digital circuits with two-terminal nanodevices," 
Nanotechnology, vol. 16, pp. 888-900, 2005. 

[145] D. B. Strukov and K. K. Likharev, "Prospects for terabit-scale nanoelectronic 
memories," Nanotechnology, vol. 16, pp. 137-148, 2005. 

[146] V. Cerletti, W. A. Coish, 0. Gywat, and D. Loss, "Recipes for spin-based 
quantum computing," Nanotechnology, vol. 16, pp. R27-R49, 2005. 

[147] A. Heittmann and U. Rlickert, "Mixed mode VLSI implementation of a neural 
associative memory," presented at MicroNeuro '99, pp. 299-306, 1999. 

[148] J. H. Lee, X. Ma, D. B. Strukov, and K. K. Likharev, "CMOL," presented at 
International Workshop on Design and Test of Defect-Tolerant Nanoscale 
Architectures, Palm Springs, CA, pp. 3.9-3.16, 2005. 

208 



[149] 6. Tu.rel, J. H. Lee, X. Ma, and K. K. Likharev, "Neuromorphic architectures 
for nanoelectronic circuits," Int. J. of Circ. Theor. Appl., vol. 32, pp. 277-302, 
2004. 

[150] M. M. Ziegler and M. R. Stan, "A Case for CMOS/Nano Co-design," 2002. 

[151] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, "A Defect-Tolerant 
Computer Architecture: Opportunities for Nanotechnology," Science, vol. 280, 
pp. 1716-1721, 1998. 

[152] U. Riickert and H. Surmann, "Tolerance of a binary associative memory 
toward stuck-at-faults," presented at Proceedings of the 1991 International 
Conference on Artificial Neural Networks (ICANN-91), Espoo, Finland, pp. 
1195-1198, 1991. 

[153] F. T. Sommer and P. Dayan, "Bayesian retrieval in associative memories with 
storage errors," IEEE Trans. on Neural Networks, vol. 9, pp. 705-713, 1998. 

[154] C. Gao, "Fault tolerance for WPNAM-like associative memory," Dept. 
Electrical and Computer Engineering, Portland State University 2006. 

[155] C. S. Lin, S. H. Ou, and B. D. Liu, "Design of k-WTA/sorting network using 
maskable WT A/MAX circuit," presented at International Symposium on VLSI 
Technology, Systems, and Applications, pp. 69-72, 2001. 

[156] R. K. Kolagotla, H. R. Srinivas, and G. F. Burns, "VLSI implementation of a 
200-MHz 16x16 left-to-right carry-free multiplier in 0.35 µm CMOS 
technology for next-generation DSPs," presented at Proc. IEEE 1997 Custom 
Integrated Circuits Conference, pp. 469-472, 1997. 

[157] J. C. Ellenbogen and J. C. Love, "Architectures for molecular electronic 
computers: 1. Logic structures and an adder designed from molecular 
electronic diodes," Proceedings of the IEEE, vol. 88, pp. 386-426, 2000. 

[158] C. Johansson and A. Lansner, "Towards cortex sized artificial neural systems," 
Neural Networks, vol. 20, pp. 48-61, 2007. 

209 


	Hardware Architectures and Implementations for Associative Memories : the Building Blocks of Hierarchically Distributed Memories
	Let us know how access to this document benefits you.
	Recommended Citation

	ProQuest Dissertations

