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ABSTRACT 

Wildfires impact snow albedo, forest cover, and forest structure and thus snow 

melt rate and snowpack supply for as long as 15 years following burn. These effects have 

not been quantified at fine spatial resolutions and long time periods at a watershed scale. I 

modeled the effects of postfire effects on snow albedo, snow-mass energy balance, and 

resulting snow-water equivalent (SWE) depth over a long-time scale and at a fine spatial 

resolution. Using a spatially and temporally distributed snow evolution model called 

SnowModel, I modeled postfire effects on snow albedo and forest structure over postfire 

recovery within 8 forest fires between 2000 and 2020 in a region in Northwestern 

Wyoming. SnowModel does not currently incorporate the effects of postfire effects on 

snow albedo, forest structure nor the recovery of the postfire effects, so I developed and 

incorporated postfire snow albedo decay functions from Gleason and Nolin (2016) into 

SnowModel and developed a 15-year postfire recovery of postfire effects on snow albedo 

and forest structure parameterization informed by remotely-sensed measurements of 

surface snow albedo from the MODIS-MOD10A1 dataset. I then compared the 

parameterized model (postfire albedo) with a base model to quantify changes in peak 

SWE, snow volume, and snow disappearance date (SDD) due to postfire effects on snow 

and recovery within the burn regions and at the watershed scale for up to 20 years 

following fire. To partition the postfire impacts on snow due to forest structure from the 

albedo impacts, I also parameterized a third model with only forest structure impacts 

(postfire forest) and compared the results with the postfire albedo model and the base 
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model. My hypothesis was that modeled results would show significant and lasting 

alterations in peak SWE, total snow volume, and SDD for up to 15 years following fire. 

Postfire parameterizations caused peak SWE losses of between 2.81% and 31.91% (474K 

m3 to 12.7M m3) and an average 9.93 to 87.97% reduction in ablation season SWE in the 

year immediately following fire. Immediately following fire, snow disappearance 

occurred 33 (SD: 3 days) to 58 days (SD: 9 days) earlier than in the base model. Over 

recovery, losses in total SWE and peak SWE, and shifts in disappearance date tended to 

shrink relative to the losses observed immediately following fire, but remained negative 

throughout. In two fires modeled for the entire 15 year postfire recovery period, the 

greatest losses in peak SWE did not occur immediately following fire, but instead 4-9 

years following fire. Postfire effects on snow summed over the entire 15-year recovery 

period caused total reductions in peak SWE of between 0.76% and 12.45% (5.5M m3 and 

-20.5M m3) over 1 to 15 years following fire - losses between 2 and 18 times greater than 

the losses incurred in the first year immediately following ignition. Postfire impacts were 

most severe in burns occurring at lower elevation. Beyond 15 years following fire, 

postfire effects on snow persisted due to the shift from forest to open meadow over the 

course of the 15-year recovery period. The Boulder fire (ignition date:2000) showed 

significant increases in snow volume (+2.32%; +196K m3) 16 years following fire while 

the Green Knoll fire (ignition date: 2001) showed peak SWE losses (-2.20%; -241K m3) 

16 years following fire. Postfire impacts in the Lower Granite Creek subbasin, a heavily 

burned watershed (Ryan et al., 2011) within the study region (43% burned over 20 years), 

caused average annual reductions in ablation season (May 1st) SWE of -6.30 ± 6.95% 

(5.9M m3 ± 6.5M m3). Postfire effects in the Lower Granite Creek subbasin caused 
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earlier melting of 5.85% of snowpack over 20 years in total, an amount equal to 94M m3 

of additional runoff added to the watershed over 20 years. Overall, parameterizations of 

postfire impacts and recovery showed significant changes in snow volume and spring 

snowmelt following fire that lasted 16+ years beyond the initial ignition date. 

Quantifying the changes in snow accumulation and snowmelt due to severe wildfire using 

postfire recovery parameterizations will provide critical understanding needed for 

anticipating wildfire effects on water supply under a changing climate and increasingly 

severe fire regime.  
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INTRODUCTION 

The American West stores much of its water in snowpack. Warming due to 

climate change and subsequent changes to snowpack energy balance have impacted 

zones of snow accumulation and the supply of water to areas downstream (Barnett et al, 

2005; Mote et al, 2018; Luce et al., 2009; Luce et al., 2013). Approximately 50-70% of 

water in the Intermountain West falls as snow, with the flora, fauna, and human 

populations relying on the slow and steady melting of this snow as a source of water in 

the dry periods of spring and summer (Serreze et al., 1999). Due to global warming, it is 

predicted that the spring streamflow maximum in the western US will occur about one-

month earlier than it does today by the year 2050 (Barnett et al., 2005; Barnett et al., 

2008). Current water storage infrastructure cannot accommodate such a shift in 

streamflow regime. Excess water would be released into oceans, resulting in a 10-20% 

reduction in hydropower and significant impacts to important aquatic populations such as 

salmon (Payne et al., 2004; Barnett et al., 2005).  

Western forest fires occur predominately in the heavily-forested seasonal snow 

zone where as much as 50% of western snow falls (Gleason and Nolin, 2013). The 

frequency, severity, and extent of forest fire in the American West has been increasing 

due to rising air temperatures and subsequent effects on seasonal snowpack and 

summertime soil moisture (Westerling, 2016). Watersheds burned for as little as 19% of 

their watershed area have significant reductions in river flow in the following melt season 

resulting in greater soil moisture deficits and drier summer conditions in forests, making 

these watersheds more prone to future wildfire (Helema et al., 2018).  
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Wildfire in the seasonal snow zone modifies forest structure and increases black 

carbon inputs to snow, altering the snowpack energy balance and snow ablation (Gleason 

et al., 2019). Canopy removal by wildfire reduces shading, subjecting greater surface 

areas of snow to increased solar shortwave radiative inputs and increasing wind-driven 

sublimation losses (Ueyama et al., 2014). Canopy removal also reduces longwave 

radiative inputs from vegetation, but in continental snowpack these reductions can often 

be counteracted by the additional inputs of solar radiative forcing due to reduced shading 

and increased wind ablative losses (Musselman et al., 2008; Varhola et al., 2010; 

Lundquist et al., 2013). In continental regions, where temperatures are colder and 

longwave radiative inputs from vegetation are reduced, additional solar radiative inputs 

from reductions in shading tend to outweigh the losses in longwave radiative inputs from 

canopy removal and result in a net increase in shortwave radiative forcing on snowpack 

(Musselman et al., 2008; Varhola et al., 2010; Lundquist et al., 2013).  

 Forest fires in the seasonal snow zone introduce black carbon and burned woody 

debris into snowpack, reducing snow albedo and increasing shortwave radiative forcing 

on snowpack (Gleason et al., 2019). Following wildfire, surface snow albedo is reduced 

directly through the deposition of light absorbing impurities on the surface of snowpack, 

resulting in increased shortwave radiative forcing on snow (Gleason et al., 2019). Snow 

albedo is also reduced indirectly by enhancing the rate of snow metamorphosis and 

subsequent albedo decay. Following snowfall, fine snow grains metamorphose into 

coarser grains over time, exhibiting reduced surface area and fewer snow-air interfaces, 

decreased capacity to reflect or refract incoming photons, and overall lower surface snow 

albedo (Wiscombe and Warren, 1980). The addition of black carbon on snow from 
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charred forests enhances the rate at which snow metamorphosis occurs following fresh 

snowfall and the corresponding rate of snow albedo decay over time (Gleason and Nolin, 

2016). Together, forest fires impact snow hydrology through direct and indirect 

reductions in snow albedo and canopy removal, resulting in increased solar forcing on 

snow, altered snowpack energy balance, decreased peak snow-water equivalent (SWE), 

and earlier snow disappearance dates (SDD) (Gleason et al., 2013; Gleason et al., 2019; 

Gleason and Smoot, 2021). 

 Reductions in snow albedo from wildfire last up to 15 years following burn and 

have collectively resulted in a four-fold increase in solar forcing on snow in burned 

forests in the western US since 1999 (Gleason et al., 2019). Postfire effects on snow 

result in losses in mid-winter snowpack volume, accelerated snowmelt during ablation, 

and significantly earlier SDD (Gleason et al., 2013; Gleason et al., 2019; Smoot & 

Gleason, 2021). A comparison of SNOTEL sites within burn regions to reference sites 

located outside fire showed significant reductions in peak SWE and significantly earlier 

SDD in seasonal snow zones for up to 10 years following fire (Smoot & Gleason, 2021). 

However, efforts to assess the impacts of wildfire on snow at the watershed scale using 

SNOTEL data alone are limited as SNOTEL stations are situated in specific sites chosen 

primarily for ease of access and to limit public disturbance (Meromy et al., 2012); thus, 

these data do not necessarily represent the variability in snowpack conditions across a 

basin (Meromy et al., 2012; Molotch and Bales, 2005). Further, many western forest fires 

occur in remote, high-elevation regions, making direct measurements of postfire effects 

the snowpack across the watershed scale and over many years following fire difficult, 

dangerous, and costly.  
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 The difficulty in quantifying postfire impacts on snow over large temporal and 

spatial scales using in-situ measurements make remotely sensed measurements a valuable 

tool in monitoring snow properties in remote regions over broad spatial scales. Recent 

research by Gersh et al. (2022) utilized remotely sensed measurements of snow albedo 

from the National Aeronautics and Space Administration’s (NASA) Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument’s snow albedo product (MOD10A1) to 

analyze trends in the long-term recovery of snow albedo following wildfire in the Triple 

Divide Region of Wyoming (Gersh et al., 2022). The results of this research showed that 

snow albedo and landcover steadily recovered back to an unburned open meadow state 

over the course of 15 years, with much of the recovery occurring in the first 10 years 

following the initial burn (Gersh et al., 2022). The rapid return time and long mission 

lengths of satellite observations make remotely sensed observations an important data 

source in assessing long-term postfire recovery trends over large spatial scales. However, 

assessment of fine-scale snow albedo trends using these data are limited by coarse 

resolutions and the presence of obstructions such as clouds or canopy. MODIS-

MOD10A1 data are provided at a low spatial resolution of 500m and are not able to 

measure snow albedo values through clouds or other obstructions such as canopy cover 

(Hall and Riggs, 2007; Armitage et al., 2013; Riggs et al. 2017). Measurements of snow 

albedo can be influenced by fine scale landcover variability resulting in mixed pixels that 

do not accurately represent the albedo in a given grid cell (e.g., patchy snow cover can 

artificially reduce albedo measurements) (Cescatti et al., 2012; Campagnolo et al., 2016) 

and variability in cloud cover can result in long periods where little to no data can be 

retrieved from a particular study region (Hall and Riggs, 2007; Armitage et al., 2013; 
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Riggs et al. 2017). The limited spatial extent of in-situ measurements and coarse 

resolution of remotely sensed measurements make physically-based snow evolution 

models that incorporate such data an important tool in quantifying the long-term effects 

of wildfire on snow at a watershed scale. 

This study modeled the postfire effects on snow using a spatially distributed 

snow-evolution model called SnowModel. SnowModel is a process-based model that 

uses first-order physics to simulate snow accumulation; blowing-snow redistribution and 

sublimation; snow-density evolution; and snowpack melt over spatially varying elevation 

and landcover grids driven by temporally varying meteorological forcing fields (Liston 

and Elder, 2006a; Liston and Elder, 2006b; Liston et al., 2007). SnowModel was used in 

this study because of its basis in first-order physics, ready customizability, and extensive 

validation in forested, montane seasonal snowpack similar to my study region (Hiemstra 

et al., 2006; Liston and Elder, 2006a; Liston and Elder, 2006b; Liston et al., 2007; Liston 

et al., 2008; Sextone et al., 2018). SnowModel utilizes four sub-models in a hierarchal 

modeling structure: MicroMet, EnBal, SnowPack-ML, and SnowTran-3D. MicroMet 

spatially interpolates meteorological forcing data from met stations observations and/or 

modeled reanalysis met outputs of air temperature, precipitation, wind speed, wind 

direction, air pressure, and relative humidity (Liston and Elder, 2006b). Using a spatially-

weighted Barne’s interpolation method, MicroMet produces a meteorological forcing 

field for every cell in the simulation for every time step (Liston and Elder, 2006b). 

MicroMet also estimates incoming shortwave and longwave radiation inputs in each cell 

using solar calculations based on the latitude of the study region and parametrizations of 

cloudiness (Liston and Elder, 2006b).  EnBal utilizes the outputs of MicroMet and 
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physics-based mass energy balance equations to calculate the snow mass-energy balance 

of the snowpack within every cell at every time step of the simulation (Liston and Hall, 

1995). SnowTran-3D is a three-dimensional model that incorporates the wind-flowing 

forcing field from MicroMet and topographical and vegetation inputs to compute 

redistribution of snow due to wind and loss of snow by saltation and wind-induced 

sublimation (Liston et al., 2007). SnowPack-ML computes snow-density through 

temperature- and compaction-based snow-density evolution (Liston and Elder, 2006a).   

SnowPack-ML can be run using a single layer or up to 12 distinct layers and simulates 

cold content, permeability, and liquid water release from the snowpack within each cell 

for every time step (Liston and Elder, 2006a).  The mechanistic nature of SnowModel’s 

calculations and its high customizability make SnowModel a powerful tool in quantifying 

modified snow-mass energy balance regimes such as those outlined above. 

Study Design 

Study Region 

To date, research has shown that postfire effects of wildfires occurring in the 

seasonal snow zone affect snow hydrology for many years following the initial burn 

(Gleason et al., 2013; Gleason et al., 2019; Smoot & Gleason, 2021). However, no 

studies have quantified postfire effects on snow hydrology at a fine spatial resolution and 

over the decades-long postfire recovery period using a physically based snow evolution 

model. This study modeled and quantified postfire impacts on peak SWE, total snow 

volume, and SDD in a heavily-burned area within the Triple Divide region of 

northwestern Wyoming. The Triple Divide region of Wyoming has experienced a 

significant increase in drought and corresponding wildfire occurrence over the last 
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decade. Wyoming, like much of the western United States, faces the growing threat of 

dramatic declines in snowpack, more rapid snow melt, drier forests, and resulting 

increased wildfire risk (Westerling, 2016; Kulakowski & Jarvis, 2011; West et al., 2015). 

According to NOAA’s state climate summary for Wyoming, severe state-wide drought in 

recent years has resulted in a significant increase in wildfire occurrence (Frankson et al., 

2017). In 2012 alone, Wyoming experienced over half a million acres of burned area, a 7-

fold increase in the typical historical average. While often suffering from severe droughts 

in the Great Plains region of the state, the mountainous regions receive more the 200 

inches of snowfall per year making Wyoming a major source of water for states and river 

basins that extend beyond the state borders. Rainfall in Wyoming helps to feed four 

major river basins including the Green-Colorado river basin, Missouri-Mississippi river 

basin, Great Salt Lake river basin, and Columbia river basin, broadening the implications 

of impacts to Wyoming’s water supply to regions outside the state boundaries (Frankson 

et al., 2017). The study region investigated in this study (Figure 1) resides within the 

Triple Divide region of Wyoming. Although only 8 burns within my study region are 

modeled here, 26 burns in total occurred in my study region between 2000 and 2020. 

Many of these burns overlap with the seasonal snow zone, making it a prime location for 

modeling the postfire effects of wildfire on the snow-mass energy balance.  

Parameterization Background 

This research quantified postfire effects on snow hydrology over the postfire 

recovery period within a region of the Triple Divide (see Methodology: Study Region) by 

incorporating a postfire effect on snow albedo and forest structure and recovery 

parameterization into SnowModel. A simplified conceptual model of the postfire effects 
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on snow, forest structure, and recovery parameterization as well as the general modeling 

process can be found in Figure 2. The postfire effect on snow albedo decay and forest 

structure and recovery model utilized a parameterization of postfire effects on snow 

albedo and snow albedo decay from Gleason and Nolin (2016) and a postfire forest 

structure degradation and snow albedo recovery model informed by long-term trends in 

MODIS-derived landscape snow albedo (LSA) from Gersh et al. (2022).  The 

parameterization of postfire effects on snow albedo and snow albedo decay was drawn 

from a study by Gleason and Nolin (2016) which derived empirical snow albedo decay 

functions from broadband snow albedo measurements taken in adjacent burned and 

unburned forested sites in the Shadow Lake burn region (ignition date: 2011) in the 

Oregon Cascades up to 3 years following fire. The parameterizations from this study 

characterized snow albedo decay as an exponential function of days since snowfall for 

both burned and unburned forested sites and for both positive net energy balance periods 

(accumulation) and negative net energy balance periods (ablation) respectively for a total 

of four snow albedo decay functions (Gleason & Nolin, 2016). The long-term (1-15 years 

postfire) snow albedo recovery trends were informed from a study by Gersh et al. (2022) 

which characterized postfire snow albedo recovery over many years following fire in a 

chronosequence of eight burns occurring in the Triple Divide region of Wyoming 

between 2000 and 2018, the same burns modeled in my study. The study by Gersh et al. 

(2022) utilized MODIS-MOD10A1 measurements of landscape snow albedo (LSA) 

values taken from within the eight burn regions for up to 15 years following fire and 

determined, through Tukey analysis, that LSA values within the burn regions shifted to 

LSA values similar to that of unburned open regions over the course of 15 years 
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following fire. The findings of these two studies provided the basis for postfire and 

unburned snow albedo ranges and snow albedo decay (Gleason & Nolin, 2016) and 

informed the long-term postfire recovery of snow albedo towards an unburned forested 

state over the course of 15 years following fire (Gersh et al., 2022). 

Model Descriptions 

Using the above parameterization, I developed three models to quantify how 

postfire effects on snow albedo, snow albedo decay, and forest structure degradations 

alter snow volume and snowmelt timing over the decades-long postfire recovery period. 

The three models included a base model, a postfire forest model, and a postfire albedo 

model. A summary of each of the three models and their purpose follows, but more 

detailed descriptions of each model can be found in the Methodology section. 

The base model consisted of a default SnowModel run from which to compare 

and contrast the results of the postfire forest and postfire albedo models. The default 

version of SnowModel does not include snow albedo decay functionality, so the base 

model was supplemented with a modified time-decay of albedo parameterization from 

Gleason & Nolin (2016) which applied different time-decay of snow albedo to grid cells 

depending on their landcover type (forested or unforested) and the season of the current 

time step (accumulation or melting season). All equations relating to burned grid-cells 

were removed from the base model. In short, the base model represented a simulation of 

the study region for 20 years with no postfire effects incorporated.  

The postfire forest model consisted of the base model with the addition of time-

varying postfire forest degradation parameterizations that simulated the degradation of 

forest structure over 15 years following fire towards that of an open meadow, but with no 
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postfire effects on snow albedo or snow albedo decay included. The postfire forest model 

allowed for compartmentalization of postfire effects on snow hydrology due to forest 

structure changes and postfire effects on snow hydrology due to postfire effects on snow 

albedo and snow albedo decay. In short, the postfire forest model simulated only the 

postfire effects of forest structure degradation over 15 years without postfire effects on 

snow albedo. 

The postfire albedo model consisted of both the time-decay of albedo 

parameterizations from Gleason & Nolin (2016) as well as the forest structure 

degradation parameterizations from the postfire forest model. In short, this model 

simulated the postfire effects on snow albedo, snow albedo decay, and forest structure 

and recovered these parameters to the snow albedo ranges, snow albedo decay trends, and 

forest structure of that of an open meadow over the course of 15 years following fire. 

Research Goals 

Following calibration of the base model, parameterizations for the postfire forest 

and postfire albedo models were applied and each of these models was run for 20 years 

(from 2000 to 2020). The results of the postfire albedo model and postfire forest model 

were then compared with the results of the base model to quantify postfire effects on 

snow hydrology (peak SWE, total snow volume, and SDD) over decades following fire in 

critical headwaters. By incorporating postfire effects on snow albedo and forest structure 

and the associated recovery into a mechanistic model, I was able to quantify the impacts 

that wildfire has on snow hydrology across a chronosequence of eight burns within the 

study region over the 20-year modeling period. Specifically, I addressed the following 

research questions: 
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1. What are the immediate (1-year postfire) volumetric and proportional differences 

in peak SWE and SDD caused by postfire snow albedo and forest structure 

modifications? 

2. How do postfire effects on snow albedo and forest structure impact snow volume 

throughout the snow season (accumulation, start of ablation, and ablation) and 

how do impacts on peak SWE, seasonal snow volume, and SDD change over the 

course of the postfire recovery many years following fire? 

3. What are the total volumetric and proportional impacts of postfire effects on snow 

albedo and forest structure degradation on peak SWE summed over 15 years 

following fire and are there any lasting impacts on peak SWE and SDD beyond 

15 years following fire? 

4. How do postfire effects on snow albedo and forest structure impact total ablation 

season snow volume at a watershed scale over the entire 20-year modeling 

period? 

Regarding these research questions, I hypothesized that: 

1. Parameterizations of postfire effects on snow albedo and forest structure will 

cause reductions in peak SWE and shift SDD earlier with the greatest reductions 

in peak SWE and earliest shifts in SDD occurring immediately following fire. 

2. Parameterizations of postfire effects on snow albedo and forest structure will 

cause increases in snow volume in burn regions during the accumulation season, 

decreases in snow volume at the start of ablation and during ablation, and 

reductions in seasonal snow volume, peak SWE and shifts in SDD will all lessen 

over years since fire. 
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3. Parameterizations of postfire effects on snow albedo and forest structure will 

cause net reductions in peak SWE and total snow volume when summed over 15 

years of postfire recovery and changes in peak SWE and SDD will still be 

observed beyond 15 years following fire due to changes in landcover. 

4. Parameterizations of postfire effects on snow albedo and forest structure will 

cause annual reductions in ablation season snow volume at the watershed scale. 

Understanding and quantifying how postfire effects on snow albedo and forest 

structure impact snow hydrology over many years following fire is vital as the 

Intermountain West continues to warm and wildfires increase in occurrence, extent, 

duration, and severity. The modeling approach and findings discussed here will help to 

improve understanding of the broad scale and lasting implications of forest fire on snow 

in headwaters critical for spring and summertime water supply. 
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METHODOLOGY 

Study Region 

 To model and quantify the impacts of postfire effects on snow albedo and forest 

structure on snow hydrology, I investigated an area within the Triple Divide region of 

Wyoming. SnowModel requires the user to first define a rectangular study region in 

which to perform grid-based calculations. To define this region, I first selected eight 

burns which occurred in the Triple Divide region of Wyoming. The eight fires were 

chosen due to their progressive ignition dates providing a chronosequence of burns 

occurring in the region over 20 years and due to the availability of ground validation data 

available for several of these fires. The modeling region was then defined by calculating 

a minimum bounding rectangle within ArcGIS containing the eight fires plus a 2km 

buffer using burn perimeters from MTBS (MTBS, 2017). The final modeling region 

contained an area of 7677 square kilometers with the eight selected burns resulting in a 

total of 564 square kilometers of burned area (Figure 1). 

 Based on a preliminary analysis of meteorological and landcover data collected 

within the study region between 2000 and 2020 (more information on this data is 

provided in the SnowModel Input Data Retrieval subsection) the study domain had an 

average daily air temperature of 1.57 ± 19.24 degrees Celsius over the 20-year modeling 

period and received an average of 2.00 ± 7.96 mm daily precipitation. The modeling 

region is largely forested, consisting of 60% forested land and 40% unforested land (35% 

shrub, grassland, and agricultural, 0.006% urban, and 4% bare rock). The forested land is 

pine-dominated, of which the most common species are Lodgepole Pine (Pinus contorta) 

and Whitebark Pine (Pinus albicaulis). The average elevation of the modeling area was 
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2503 ± 680m with a minimum and maximum elevation of 1727m and 3596m 

respectively. 

MODIS Albedo Decay Modeling 

 Prior to running SnowModel and applying the postfire recovery parameterization, 

long-term recovery trends in snow albedo and landcover recovery were determined using 

MODIS-MOD10A1 snow albedo data from the study region from Gersh et al. (2022). 

Using these data, I performed a Tukey analysis comparing landscape snow albedo (LSA) 

values from within the burn regions to LSA values in 5 km unburned buffer regions 

around the fires over many years following fire. Following this analysis, it was found that 

LSA values within the burn regions shifted away from  the LSA values of unburned 

forest and approached LSA values closer to those of unburned open regions over the 

course of 15 years following fire. In short, by investigating trends in postfire LSA for up 

to 15 years following fire, I found that, following fire, snow albedo values within burn 

regions trended to those of open meadows rather than those of pre-burn forests. This 

finding informed the postfire recovery parameterization in such a way that forest 

structure within burned forests would recover to open meadows over 15 years rather than 

back to forest. Further information on MODIS-measured albedo analysis can be found in 

Appendices A and B.  

SnowModel Input Data Retrieval 

 SnowModel requires three major inputs: meteorological forcing data, a 

topographic elevation raster, and a landcover classification raster. Meteorological forcing 

data was retrieved from both automated weather stations and modeled reanalysis data. In-
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situ meteorological forcing data from automated weather stations were retrieved from the 

United States Department of Agriculture (USDA) National Resources Conservation 

Service’s (NRCS) automated Snow Telemetry (SNOTEL) network (USDA-NRCS, 2020) 

via the National Weather and Climate Center (NWCC) data retrieval tool. SNOTEL data 

were supplemented with additional in-situ weather data from the Western Regional 

Climate Center’s (WRCS) Remote Automated Weather Station (RAWS) network 

(WRCS, 2021), and the National Oceanic and Atmospheric Administration’s (NOAA) 

Climate Data Online (CDO) network (NOAA-CDO, 2022) to capture a wider range of 

weather variability over elevation. Information on the specific stations used and relevant 

metadata can be found on Table 1. In-situ meteorological data was further supplemented 

with modeled re-analysis meteorological data from NOAA’s Climate Forecast System 

version 2 (CFSv2) data sourced through Google Earth Engine.  

SNOTEL data from the USDA-NRCS (USDA-NRCS, 2020) were retrieved from 

the nine SNOTEL stations within the study region using the USDA-NRCS data retrieval 

tool. Daily values of air temperature, precipitation, wind speed, wind direction, and 

relative humidity were used as well as station metadata required for input into 

SnowModel (elevation and geographic coordinates). In addition to these input data, 

SNOTEL-measured values of SWE were also retrieved for later calibration of the 

modeled results.  

RAWS weather data were retrieved from the two stations within the study region 

using the RAWSmet package in R. RAWS stations are automated weather stations 

established throughout the US to monitor air quality, fire risk, and assist in land 

management practices (WRCS, 2021). Hourly measurements of air temperature, 
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precipitation, wind speed, wind direction, and relative humidity were retrieved from the 

two stations within my study region, converted to daily average values, and formatted to 

match the standards required by SnowModel. 

NOAA-CDO data from the Jackson Airport weather station were obtained using 

the CDO data retrieval tool. Daily measurements of air temperature, precipitation, wind 

speed, wind direction, and relative humidity were retrieved, converted to metric units 

where applicable, and formatted to the standards required by SnowModel. 

The in-situ meteorological data was supplemented with data from CFSv2 - 

modeled reanalysis meteorological data sourced from the National Oceanic and 

Atmospheric Administration’s (NOAA) National Centers for Environmental Prediction 

(NCEP) CFSv2 (Saha et al., 2011). CFSv2 data are modeled four times per day in 6-hour 

averages at a 0.2 arc-second spatial resolution and capture a range of variables including 

air temperature, precipitation, specific humidity, geopotential height, and v and u 

components of wind direction among many others. CFSv2 pixels were converted into 

“virtual” weather stations using R’s spatial package, where the location of each “station” 

was taken as the centroid of the pixel and elevation was taken as a product of 

geopotential height at surface. This process effectively produced an ordered grid of 

weather stations across the study region where each daily measurement was taken at 

ground surface. Daily values of temperature, precipitation, wind speed, and wind 

direction were calculated as an average of the four measurements CFSv2 captures each 

day and relative humidity was computed using daily averaged specific humidity value, 

daily average temperature, and the Clausius-Clapeyron relation (Brown, 1951). Modeled 

precipitation inputs were also increased by 18.5% during SnowModel calibration as 
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CFSv2 precipitation has been shown to underestimate precipitation up to 20% (Yuan et 

al., 2011). Finally, all meteorological data were converted by station to the standards 

required by SnowModel and then combined into a single met file using SnowModel’s 

included meteorological forcing pre-processing script. 

Digital elevation maps and landcover data were retrieved using Google Earth 

Engine, a cloud-based and free-to-use GIS software. A digital elevation map of the region 

was retrieved from the Global Multi-resolution Terrain Elevation Dataset (GMTED) 

2010 (Danielson & Gesch, 2010). GMTED is a product of NASAs Shuttle Radar 

Topography Mission (SRTM), which generated a digital elevation model of elevation 

data at a resolution of 1 arc-second. Landcover data was retrieved from the Copernicus 

Global Land Cover 2015-2019 dataset which classifies 23 different classes of landcover 

data at a 100m resolution (Buchhorn et al., 2020). Landcover data was reclassified to 

match the land classes recognized by SnowModel. Both raster layers were clipped to the 

study region, used at their native resolutions of 100m, and converted to ASCII using R 

spatial package. 

Snow-Water Equivalent Assimilation 

 As an optional input, users can assimilate SWE, snow depth, and snow density 

observations to create a correction field that forces SnowModel inputs to match those 

observed in-situ at certain dates specified by the user (Liston & Elder, 2006). For the 

purposes of this study, correctly estimating peak SWE at the start of the ablation is 

imperative as too much snow or too little snow at the start of the snowmelt period can 

alter resulting calculations of peak SWE, total snow volume, and SDD. Snow-water 
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equivalent observations at the nine SNOTEL stations were assimilated on April 1st (the 

start of the ablation period) of each simulation year by first extracting observed SWE 

values from each station and formatting the data to match the standards required by 

SnowModel. 

SnowModel Calibration 

 A SnowModel run with the time-decay of snow albedo parameterizations from 

Gleason & Nolin (2016) (base model) was initialized to perform model calibration and to 

provide a base line from which to compare the postfire forest and postfire albedo models 

with. The parameterization from Gleason & Nolin (2016) originally used landcover class 

5 to apply postfire albedo decay and albedo ranges to burn regions. For the purposes of 

creating a base model from which to compare the parameterizations used in this study, 

the Gleason & Nolin (2016) parameterization was modified such that no postfire 

parameterizations would be applied and landcover class 5 would follow snow albedo 

decay trends associated with an unburned forest.  

Following these modifications, SnowModel was calibrated by running the base 

model iteratively using different sets of parameters and, following each run, modeled 

SWE values were compared with the time-series of observed SWE values obtained from 

the SNOTEL stations within the study region. For calibration purposes, four of the nine 

SNOTEL stations were excluded from the meteorological inputs to use as a validation-

only set. Over the course of 21 model runs, the best calibration was found using the 

default parameters of SnowModel, but with the modeled precipitation inputs increased by 

18.5%, an amount consistent with previous research from Yuan et al. (2011) that found 
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that CFSv2 modeled reanalysis data can underestimate precipitation results by up to 20% 

(Yuan et al., 2011).  

Modeled values at the observation locations were extracted by locating the cell 

containing each SNOTEL station and the associated observed SWE measured by the 

SNOTEL station for that time step. Modeled SWE depth (SWED) was then compared to 

the observed SNOTEL measurements using four calibration statistics and thresholds 

outlined by watershed modeling from Moraisi et al (Moraisi et al., 2007). Pixel values 

were extracted using the spatial package within R and the performance statistics were 

calculated using the HydroGOF package. Following 21 calibration runs, ideal parameters 

were found that met the performance thresholds (Table 2). Values of these four statistics 

were averaged across each station for all snow seasons to produce performance metrics at 

each station. An overall calculation of model performance was computed by combining 

all SNOTEL data into a single dataset, combing all modeled data into a single data set, 

and then calculating the same performance metrics between the combined observed data 

and combined modeled data.  

Four calibration statistics were calculated on the modeled SWED values: Root-

Squared Error, Normalized Squared Error, R-squared, and Percent Bias. Root square 

error (RSR) is the root mean square error (RMSE) divided by the standard deviation. 

RMSE captures error or deviation from the observed value while division by the standard 

deviation normalizes the error so that the index can be applied and compared to variables 

of differing scales. Lower RSR is desired where zero RSR means the modeled results 

have perfectly matched the observed values. Following calibration, overall RSR was 

found to be RSR = 0.44, below the performance threshold of 0.70 (Table 2).  
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The Nash-Sutcliffe Efficiency (NSE) metric is a relative measure of the modeled 

residual variance compared to the variance in the observed data and indicates how well 

the plot of observed versus simulated data fits the 1:1 line (Nash & Sutcliffe, 1970; 

Moraisi et al., 2007). NSE has a range of -∞ to 1 with NSE = 1 being the most optimum 

value. The performance threshold for NSE was NSE > 0.50 and was met with an overall 

value of NSE = 0.81 following calibration (Table 2).  

The coefficient of determination (R2) describes the proportion of variance in the 

observed data explained by the modeled results and ranges from 0 to 1, with R2 = 1 

meaning 100% of the variation in the observed data is explained by the model. A 

performance threshold of R2 > 0.6 was used for the calibration of SnowModel and was 

met with an overall value of R2 = 0.85 (Table 2).  

Percent bias (PBIAS) is the tendency for the modeled results to under- or 

overestimate the observed results at a given timestep and can be either negative or 

positive, respectively. The optimal value of PBIAS is 0%, indicating that the modeled 

results do not under- or overestimate the observed data. A PBIAS threshold of PBIAS ≤ 

|15%| was used for calibration and was met with an overall final value of PBIAS = 

+11.40% (Table 2).  

Modeled results of SWED at the grid-cells associated with each of the SNOTEL 

stations were plotted over the entire study period to visualize the goodness of fit of the 

modeled results to the observed SWE. These results were plotted for all nine SNOTEL 

stations within the study area and a subset of these results are included here as an 

example (Figure 3). Post-calibration, SnowModel predicted the accumulation and 

ablation rates well, but showed a tendency to overestimate peak SWE by 11.40% across 
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all stations, a level of overestimation acceptable given the performance threshold 

(|PBIAS| < 15%) (Table 2). 

Parameterizations of postfire albedo decay, land cover change, and recovery 

 Following calibration, I developed and incorporated postfire effect 

parameterizations of postfire effects on snow albedo, snow albedo decay, and forest 

structure over recovery into SnowModel. The modified snow albedo decay 

parameterizations were derived from the time-decay of snow albedo equation 

parameterized by Gleason et al. (2016) and the recovery was informed by the analysis of 

long-term postfire recovery of MODIS-retrieved surface snow albedo data by Gersh et al. 

(2022) (Gleason & Nolin, 2016; Gersh et al., 2022). Further information on the methods 

used to inform the model of long-term postfire recovery and the associated results can be 

found in Appendix A and Appendix B.  

First, five albedo decay functions were computed by calculating five equally 

spaced exponential decay parameters between the postfire and unburned open albedo 

decay functions from Gleason and Nolin (Gleason & Nolin, 2016). This resulted in five 

unique albedo decay functions, each representing three years of recovery between the 

ignition date and the end of the 15-year recovery period. For example, the first equation 

represented postfire albedo decay from 1-3 years postfire, the second equation 

represented postfire albedo decay from 4-6 years postfire, and so on. In such a way, 

albedo decay was parameterized to return to the trends of an unburned open region by the 

15th year following each burn’s ignition year over five 3-year recovery steps (Figure 2). 

A similar method was used to calculate and update the minimum and maximum 

albedo values over each period of recovery. Stepwise minimum and maximum albedo 
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values were computed by calculating five equally spaced steps between the post-burn 

minimum and maximum albedo and the unburned open minimum and maximum albedo 

(Gleason & Nolin, 2016). Like the albedo decay functions, each subsequent set of albedo 

minima and maxima represents the range of snow albedo of a burned region for each 3-

year interval following ignition. For example, the first range of snow albedo values 

represented the snow albedo minimum and maximum of a postfire burn region 1-3 years 

postfire, the second range of snow albedo values represented the snow albedo minimum 

and maximum of a postfire region 4-6 years postfire, and so on. In such a way, snow 

albedo ranges returned to the snow albedo minimum and maximum of an unburned open 

region 15 years following ignition over five 3-year recovery steps. 

The complete modified snow albedo decay parameterization solves for daily mean 

snow albedo using a time-varying exponential decay coefficient, where the degree of 

decay and the minimum and maximum snow albedo are modified by the number of 

periods since the burn event occurred. The recovery rates (ΔKα , Δαsnow,min , and 

Δαsnow,max) represent the five equally-spaced intervals of the decay coefficients and albedo 

minimum and maximum between the postfire burned forest snow albedo decay model 

and the unburned open meadow albedo decay model. By applying these recovery terms 

times the number of periods since burn to the associated variables (Kα , αsnow,min , and 

αsnow,max), the three values were “recovered” in a stepwise fashion back to snow albedo 

decay coefficients and snow albedo minimum and maximum of an unburned open 

meadow region over 15 years.  

The parameterization operated by first resetting the snow albedo following a fresh 

snowfall event. For an unburned cell, the snow albedo value was reset to an associated, 
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unvarying maximum albedo based on the landcover type (forested or open). For a burned 

cell, snow albedo was similarly set to maximum burned snow albedo value, but in this 

case the value was modified as a function of number of periods following the initial burn 

(Equation 1). 

𝛼𝑠𝑛𝑜𝑤 = 𝛼𝑠𝑛𝑜𝑤,𝑚𝑎𝑥 + (𝑝 ∗ ∆𝛼𝑠𝑛𝑜𝑤,𝑚𝑎𝑥)   (1) 

In following time steps, unburned cells exponentially-decay as a function of daily 

time steps based on the coefficients determined by the landcover type. For a burned cell, 

snow albedo decayed using an exponential decay coefficient that was modified by the 

number of periods (3-year intervals) since the fire occurred (Equation 2). During this 

step, minimum burned snow albedo values were also updated in a similar fashion. 

(𝛼𝑠𝑛𝑜𝑤)𝑛+1 = (𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 + ∆𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 ∗ 𝑝)

+ ((𝛼𝑠𝑛𝑜𝑤)𝑛 − (𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 + ∆𝛼𝑠𝑛𝑜𝑤,𝑚𝑖𝑛 ∗ 𝑝)
[(−𝐾𝛼+ ∆𝐾𝛼∗𝑝)∗𝑑𝑡]

    (2) 

Finally, forest structure was parameterized by calculating five equally spaced 

snow-holding depth (SHD) values between that of a scattered conifer forest (simulating 

forest structure in an immediate postfire state) and that of an open meadow. The SHD 

value is used in SnowModel to calculate the snow holding capacity of vegetation within 

each grid cell. The snow depth of a cell must exceed this value before snow can reach the 

ground and become available for wind redistribution and be subjected to wind ablation 

effects and canopy-modified solar forcing. To simulate a “recovery” of land cover change 

from burned forest to an open meadow, the associated snow-holding depths (SHD) were 
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modified in a stepwise fashion from values of a scattered conifer forest to those of a 

sparse, open region using the default values from those land classes included in 

SnowModel (Equation 3). 

𝑆𝐻𝐷𝑏𝑢𝑟𝑛 = 𝑆𝐻𝐷𝑓𝑜𝑟𝑒𝑠𝑡 − (∆𝑆𝐻𝐷 ∗ 𝑝)    (3) 

Similar to the snow albedo parameterizations, these SHDs are updated over 5 equally 

spaced intervals as a function of periods since the burn occurred.  

Ideally and intuitively, albedo decay coefficients, albedo snow albedo minima and 

maxima, and SHD values would be updated on an annual basis, but this was not possible 

with the current iteration of SnowModel. Five steps were utilized due to a limitation in 

SnowModel that only allows 5 custom classes to be created by the user and, because five 

equally spaced steps were used, the albedo decay equations and snow albedo minimum 

and maximum shift one step closer to an open region every three years following fire. 

The three years within each period essentially operate off the same snow albedo decay 

coefficients and snow albedo minimum and maximum and this is reflected in the period-

wise analysis methods to follow.  

 Using these parameterizations, two parameterized models were created: a postfire 

forest model and a postfire albedo model. The postfire forest model used only the postfire 

effects on forest structure and recovery parameterization (equation 3) simulating only the 

postfire effects on forest structure and associated recovery with no parameterizations for 

postfire effects on snow albedo or recovery included. The postfire albedo model used all 

three parameterizations (equations 1-3) and simulated both the postfire effects on snow 

albedo and forest structure and the associated recovery of each over 15 years postfire. 
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Using a model that combined both the postfire effects on forest structure and snow albedo 

(postfire albedo model) along with a model that incorporated only the postfire effects on 

forest structure allowed for compartmentalization of postfire effects on snow hydrology 

due to forest structure from postfire effects on snow hydrology due to postfire effects on 

snow albedo. 

SnowModel Batch Runs 

 To apply the correct snow albedo decay equations, snow albedo minimum and 

maximum, and forest structure to each burn at the correct time, I utilized reclassified land 

cover rasters over 20 1-year “batch” runs of SnowModel. Annual landcover rasters were 

created by reclassifying burn areas in the vegetation input of SnowModel with values 

corresponding to each fires’ period of recovery over time. The landcover input was 

brought into R and, using the spatial package, pixels within the MTBS burn regions were 

reclassified with the custom class corresponding to each fires’ period of recovery over 

time. At ignition date and every subsequent three years postfire, the pixels within a 

respective burn region were set to a custom landcover class which was used to determine 

which set of snow albedo decay equations, snow albedo minimum and maximum, and 

SHDs for SnowModel to use in the energy balance equations. Fifteen years after ignition, 

the landcover values were set to a standard landcover class corresponding to an open 

meadow. At this point, cells within the burn region followed the standard equations for an 

open region. Because SnowModel does not support multiple landcover rasters for a single 

run, I developed an automated batch method wherein SnowModel runs in one-year 

increments, each time selecting the appropriate landcover raster, meteorological forcing 

data, and SWE assimilation date for that year. Following each run, SnowModel outputs 
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were converted from the native GrADs format to netCDF for later processing and 

analysis using R. 

Analysis of Model Results: Snow Volume and Disappearance Date Calculations 

 Following the parameterized (postfire forest and postfire albedo) batch runs, 

SnowModel outputs for the postfire albedo model and base model were differenced and 

compared for changes in peak SWE and total SWE and SDD shifts due to 

parameterization of postfire effects. All calculations were performed within R using the 

spatial package. 

Postfire impacts were quantified by subtracting the base model results from the 

corresponding rasters from the same time-step of the postfire albedo model results. This 

produced differenced rasters which isolated the change in SWE due to postfire effect and 

recovery parameterization. The differenced SWED values from within the burn regions 

were then isolated using MTBS burn boundaries. Calculations were then performed in 

each burn region to determine changes in total SWE immediately following fire, changes 

in total SWE over the full recovery period, changes in peak SWE averaged over each 

recovery period, and changes in SDD averaged over each recovery period.  

 Change in total SWE immediately following fire was quantified by identifying the 

date of peak SWE for the first year following fire for the base and postfire albedo models. 

Peak SWE date for each year was defined as the date of the maximum average SWE of 

all pixels within each burn region for the year in question. Once the date of peak SWE for 

the base and postfire albedo models were identified, the two associated modeled rasters 

were differenced and the SWE depth values of each pixel within each burn region were 

converted from measurements of SWE depth to measurements of SWE volume by 
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multiplying the SWE depth values (in meters) by 1002 (the spatial resolution of the 

modeled rasters was 100 m2) to produce a change in total SWE due to postfire effects. 

Changes in total SWE over the full recovery period were calculated by performing the 

above calculation for every year following the ignition date of each burn and summing 

the results over the entire postfire period.  

Changes in peak SWE and SDD over postfire recovery were calculated as 

averages over each 3-year period following fire. Due to the albedo decay and landcover 

parameterization only changing every 3 years following fire, values were averaged in 

three-year periods to produce a maximum of five total period-average peak SWE 

differences and associated standard deviations, as well as SDD shift values due to postfire 

effects for each fire. In this way, each calculation represents an average change in peak 

SWE or average shift in SDD over each 3-year recovery period due to postfire effects. A 

postfire recovery calculation was also computed using the model results for the 16th year 

following fire when albedo decay, albedo minimum and maximum, and forest structure 

had fully recovered to an unburned, open state. Most burns occurred later than 5 years 

into the 20-year modeling period and in these burns period-wise change in peak SWE and 

SDD were calculated for only the periods of available data. In the case of burns with less 

than 3 years of data available for their final modeled period, an average of the data that 

was available was calculated. In the case of burns where only one year of data was 

available for the period, the period calculation represents only a single, unaveraged date 

and thus no standard deviation was calculated.  

Period-wise change in total SWE was calculated for each fire as a measure of how 

snow volume is affected by postfire impacts and recovery over time and was calculated 
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by averaging the total volumetric change in SWE (again, converting the modeled SWE 

depth values to volumetric SWE) at time of peak SWE over each recovery period 

following ignition date. Postfire shift in SDD was calculated for each period to provide a 

measure of how snowmelt timing is affected by postfire effects and how these shifts 

change over the course of recovery. For each burn region, SDD was defined as the first 

five-day period where no snow cover was observed within the burn region with the SDD 

centered on the middle of that same period. Snow disappearance date was calculated for 

each burn in each of the years following ignition date. Annual dates of snow 

disappearance for each burn were then converted to Julian day using the lubridate 

package in R and the resulting values from the base model were differenced from the 

postfire albedo model. This produced an annual shift in SDD for every fire for each year 

following ignition date. The results were then averaged in 3-year bins to produce a final 

value of average shift in SDD and standard deviation of SDD shift among the three years 

for each three-year recovery period following each burn. 

Analysis of Model Results: Spatial and Daily Variability of SWE over Season and 

Recovery 

Spatial variability of changes in SWE over the snow season was visualized to 

analyze how postfire effects on snow albedo and forest structure affect snow distribution, 

both seasonally and over long-term recovery. Changes in SWE over the snow season 

were visualized by differencing the postfire albedo and base model rasters of March 1st 

(accumulation), April 1st (start of ablation), and May 1st (ablation) to produce a three 

change in SWE rasters for each date and each year for each fire. The differenced rasters 

were then averaged over each 3-year recovery period (like the methods used in period-
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wise change in peak SWE and SDD shift), effectively producing a period-averaged 

March 1st, April 1st, and May 1st differenced raster for each recovery period. The average 

proportional change in SWE and 95% confidence interval were also calculated and 

annotated on each plot. All calculations were computed in R using the spatial package. 

Daily SWE depth plots were created for each burn over the recovery period to 

highlight differences in how snow accumulates and melts in forests affected by wildfire 

over recovery. For each burn, SWE depth values in each pixel were averaged for each 

daily time-step for all three models. These values were then averaged over period to 

produce period-averaged SWE for each day of the water year for each recovery period.  

Quantification of Watershed Scale Impacts 

 Watershed scale impacts of postfire effects and recovery were investigated within 

the Lower Granite Creek HUC12 subbasin. A United States Geological Survey (USGS) 

delineation of the watershed was extracted using the Living Atlas tool in ArcGIS and 

exported into R (USGS, 2019). Modeled SWED rasters over the 20-year period for both 

the base model and postfire albedo model were clipped with the watershed delineation 

file using the spatial package in R. Corresponding May 1st SWE depth within the 

watershed were differenced between the base and postfire albedo models and plotted in a 

matrix, with each image overlayed on a hill shade DEM of the surrounding area. Using R, 

the proportional difference in SWE within the watershed between both models was 

calculated. Total SWE difference over 20 years between both models was summed and 

the total volume of snow difference was calculated as well as the proportional difference 

and 95% confidence interval (annotated on each subplot). Finally, the percentage of 
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watershed burned for each of the three fires occurring within the basin was calculated 

using the Calculate Shape Area tool in ArcGIS. 

Statistical Analysis 

 Differences between the base model and postfire albedo model results were tested 

for statistical significance using a two-sided, two-sample Welch t-test using an alpha 

value of 0.05. I tested for statistically significant differences between the base model and 

postfire albedo model for the following metrics: immediate peak SWE change, total peak 

SWE change 1-15 years postfire, period averaged peak SWE changes, and period 

averaged change in SWE rasters. All results were analyzed for statistical significance by 

selecting 100 random pixels within each burn region from the corresponding base model 

and postfire model rasters and running the t-test using base functions and the raster 

package within R.   

For immediate peak SWE change, the date of peak SWE for the first year 

following fire was found by calculating average SWE within each burn region during the 

first year following fire for both the base model and postfire, 100 random pixel values of 

SWE were selected from within each burn regions for each of the models, and set of 

modeled SWE values were tested for significant differences.  

For total peak SWE changes, the date of peak SWE was found for every year 

following fire for both the base model and postfire albedo model and the rasters were 

summed using the spatial package within R to produce a stack of peak SWE rasters 

including every year since fire. Again, 100 random pixel values of SWE were selected 

from each raster from within each of the burn regions and the resulting modeled SWE 

values were tested for significant differences using a t-test.  
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Period averaged peak SWE changes were tested for significant differences in a 

similar fashion, except rather than calculating summed rasters of peak SWE over the 

entire postfire period for each fire, postfire peak SWE rasters were averaged in 3-year 

bins following the ignition date. Random samples of 100 pixel values of SWE from 

within the burn regions of the corresponding averaged 3-date peak SWE stacks of the 

base model and postfire albedo model were then extracted and tested for significant 

differences using a t-test.  

Finally, to test for significant differences between period averaged March 1st, 

April 1st, and May 1st results, the three dates were selected from each year following fire 

and averaged in 3-year bins following ignition date. Random samples of 100 pixel values 

of SWE were then extracted from the period-averaged rasters from within each burn 

region and the two sets of modeled SWE values were tested for significance using a t-

test. All figures and tables including metrics tested for significance show asterisks 

denoting the level of significance found for each of the tests, but p-values calculated for 

each test can also be found on Table A3 in the Appendix Figures and Tables section. 

Model Validation 

Modeled SWE outputs from the base model and postfire albedo model were 

validated using field measurements of SWE taken from six of the modeled burns 

(Horsethief Canyon, Bull, Boulder, Cliff Creek, Lava Mountain, and Roosevelt) during 

February and March of 2019 (Figure 1). These measurements have not yet been 

published and were made available through the Portland State University Snow 

Hydrology lab via Dr. Kelly Gleason. Prior to validation, the field data were preprocessed 

using R. Originally, the 114 SWE measurements were collected inside and outside the 
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burn so I first subset the measurements based on measurements that fell within the MTBS 

burn boundaries of each of the six fires. At each site within the burns, one to three 

replicates of SWE measurements were taken and, due to the close proximity of the 

replicates and the modeling resolution of 100 m2, replicates were averaged as they always 

fell within the same modeled pixel. Average measured values were then matched with 

corresponding modeled SWE results from the base model and postfire albedo model 

using their geographic coordinates and date of collection and the average percentage 

difference between the values were computed for each fire. In addition, an overall 

average percentage difference was calculated by computing average percentage 

difference between all observed measurements and the associated base model SWE and 

postfire albedo model SWE. 
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RESULTS 

Postfire reductions in albedo and forest cover decreased snow volume and shifted 

SDD earlier persistently for up to 15 years following the initial ignition date (Table 3). 

Post-recovery (>15 years postfire), two burns still showed altered peak SWE and SDDs 

(Table 3). While snow accumulation increased slightly during the accumulation period 

(March 1st), additional melting caused by increased solar forcing from canopy loss and 

reductions albedo were persistent throughout the 15-year recovery period (Figures 4-11). 

This resulted in additional melting relative to the base model throughout each snow 

season following fire, leading to reduced peak snow volume and earlier SDDs relative to 

the pre-fire level (Table 3). 

Immediate Postfire Effects on Snow Volume and Snow Disappearance Date 

The greatest reductions in snow volume and shifts in SDD generally occurred in 

the winters immediately following ignition (1-year postfire). Relative to the base model, 

the postfire albedo model showed decreases in peak SWE volume of between 485K m3 

and 10M m3, proportional losses in peak SWE of between 2.81% and 31.91% (Table 3: 

Immediate Peak SWE Loss [<1 YPF]), and earlier SDDs of between 33 to 58 days (Table 

3: SDD Shift Averaged Over Period 1). A larger burn area typically resulted in greater 

losses in snow volume, while burns of smaller area resulted in the lowest losses in snow 

volume. The two largest burns, the Roosevelt (224 km2) and Cliff Creek (146 km2) 

(Table 3: Elevation), caused the greatest losses in snow volume in the year immediately 

following ignition (10.60M m3; p < 0.01 and 7.89M m3; p < 0.001) (Table 3: Immediate 

Peak SWE Loss [<1 YPF]). The Boulder and Green Knoll burns (15 km2) showed the 
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lowest losses of 804K m3 (p < 0.001) and 474K m3 (p < 0.001), respectively (Table 3: 

Immediate Peak SWE Loss [<1 YPF]).  

Trends of increasing SWE loss with increasing burn area were not entirely 

consistent, however. The smallest modeled burn, Horsethief Canyon (11 km2), caused 

losses of 1.87M m3 (p < 0.001) of snow volume – volumetric losses 2.45 and 3.86 times 

greater than the losses caused by the larger burns of Boulder (764K m3; p < 0.01; 15 km2) 

and Green Knoll (484K m3; p < 0.05; 15 km2) – and the greatest proportional loss in peak 

SWE (31.91%; p < 0.001) of all burns 1-year postfire. Similarly, the Lava Mountain burn 

caused immediate (1-year postfire) volumetric and proportional losses in snow volume on 

par or greater than those caused by the Cliff Creek burn (7.82M m3/17.05%/p < 0.001 vs. 

7.88M m3/8.82%/p < 0.001) despite burning 60% less area (59 km2 vs. 146 km2). While 

greater burn area did often result in greater volumetric losses of SWE immediately 

following burn, burn size alone did not explain the impacts on resulting loss in snow 

volume (Table 3). 

Immediate Postfire Effects on Seasonal Snow-Water Equivalent 

Immediate postfire effects on seasonal SWE were analyzed as modeled results 

averaged over the first recovery period (1-3 years postfire) or “period 1”. Seasonal trends 

in postfire effects on snow highlight why the size of a burn did not always predict how 

severe the immediate postfire impacts would be. Analysis of the spatial and seasonal 

variability in SWE difference caused by postfire effects showed altered snowpack 

evolution during accumulation, start of ablation, and ablation. March 1st, April 1st, and 

May 1st were selected as the dates for accumulation, start of ablation and ablation 

respectively and these dates were analyzed for spatial and seasonal differences in SWE 
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caused by postfire effect and recovery parameterizations (Figures 4-11). In general, the 

direction and magnitude of changes in SWE due to postfire effects corresponded with the 

relative elevations where each burn occurred. High elevation burns tended to have higher 

accumulation rates immediately following ignition, while lower elevation showed losses 

as early as the accumulation period (Table 3). Immediate postfire effects caused 

reductions in SWE at all but the highest elevation burns start of ablation and all fires 

showed substantial losses by the ablation season (Table 3). 

During accumulation of recovery period 1, SWE increased slightly due to the 

reduced canopy cover present burned regions. The postfire albedo model and postfire 

forest model followed similar accumulation trends (Figures 4d-11d: Period 1) throughout 

recovery period 1 and SWE accumulation was greater than the base model. Across the 

burn area, SWE accumulation was generally greater in the postfire recovery model during 

recovery period 1. The Roosevelt (Figure 5a: Period 1; p < 0.05), Bull (Figure 7a: Period 

1; p < 0.001), Cliff Creek (Figure 8a: Period 1; p > 0.05), Lava Mountain (Figure 10a: 

Period 1; p > 0.05), and Purdy (Figure 11a: Period 1; p < 0.001) burns all showed greater 

average SWE during the accumulation season 1-3 years postfire (+4.25% ± 3.01% to 

+6.93% ± 1.21%). In contrast, postfire effects in the Boulder (Figure 6a: Period 1), Green 

Knoll (Figure 4a: Period 1) and Horsethief Canyon (Figure 9a: Period 1) burns all caused 

significant losses (p < 0.001) in accumulation SWE during recovery period 1 (0.46% ± 

3.48% to 3.64% ± 1.81% reduction). The Green Knoll and Horsethief Canyon burns 

occurred at the lowest elevations on average (2168m and 2281m) (Table 3) and period 1 

accumulation losses were likely driven by the reductions in albedo combined with 

warmer temperatures at lower elevation. Snowpack at lower elevations is relatively 
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warmer on average than high elevation snowpack, resulting in earlier melting 

outcompeting the increased accumulation caused by reduced canopy cover (Lundquist et 

al., 2013). 

Losses in SWE began to manifest immediately following fire (period 1) during 

start of ablation (April 1st) across all modeled burns. Burns at low elevation showed 

greater SWE losses on average while higher elevation burns (elevation > 2300 meters) 

showed decreased losses or even slight gains in April 1st SWE over recovery period 1. 

The Green Knoll burn, (average elevation = 2168m), showed a 29.12% ± 71.64% (p < 

0.001) reduction in average April 1st SWE during recovery period 1 due to postfire 

effects (Figure 4b: Period 1). In contrast, the Lava Mountain burn, with an average 

elevation of 2565m, showed only slight losses in average April 1st SWE (-2.1% ± 

13.95%; p < 0.001) during recovery period 1 (Figure 10b: Period 1). The Purdy event, the 

highest elevation burned forest on average (2740m), showed slight gains in April 1st SWE 

(+2.17% ± 6.69%; p < 0.001) during recovery period 1 (Figure 11b: Period 1). In general, 

1-3 years following fire postfire effects caused the greatest losses in April 1st SWE in 

fires occurring at lower elevation and decreased losses or gains in April 1st SWE in fires 

occurring at higher elevation. It is likely that warmer temperatures at lower elevation 

drove greater losses in peak SWE relative to the higher elevation burns. 

One to three years following fire (period 1), postfire effects on snow caused losses 

in SWE during the ablation (May 1st) season and these losses were greater than those 

observed during start of ablation (April 1st). Less snowfall during ablation meant that 

albedo decayed further, resulting in additional solar forcing on snow and overall warmer, 

riper snowpack more prone to melting. Much of the gains in March 1st SWE during 
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recovery period 1 were counteracted by losses during the ablative seasons, resulting in a 

net reduction in snowpack by the ablation season (May 1st). All fires showed only 

decreases in May 1st SWE during recovery period 1 with the greatest proportional losses 

occurring in the Boulder (-87.97% ± 7.98%; p < 0.001) and Green Knoll (-76.63% ± 

26.47%; p < 0.001) fires (Figure 6c: Period 1 and Figure 4c: Period 1). The Cliff Creek 

Fire, a burn which showed gains in March 1st snow volume (+4.58% ± 1.72%; p > 0.05) 

during recovery period 1 (Figure 8a: Period 1), showed substantial period 1 May 1st 

losses (-47.26% ± 40.96%; p < 0.001) with all areas of prior increases in period 1 March 

1st SWE showing declines by period 1 May 1st (Figure 8c: Period 1). A similar effect was 

observed in the Roosevelt burn where modest gains in snow volume during March 1st 

period 1 (+6.93% ± 1.21%; p < 0.05) and April 1st period 1 (+0.10% ± 3.15%; p > 0.05) 

shifted to significant declines by May 1st period 1 (-45.76% ± 3.15%; p < 0.001) (Figures 

5a-c: Period 1). The only exception was in the Purdy burn, which showed small increases 

in SWE at high elevation during May 1st period 1 (Figure11c: Period 1), although these 

increases were reduced from the previous gains observed at April 1st period 1 (Figure 

11b: Period 1) with an overall average loss in SWE (shift from +2.17 ± 6.69%; p < 0.001 

to -9.93% ± 36.85%; p > 0.05) (Figure 11c: Period 1). 

Postfire Effects on Snow Volume and Snow Disappearance Date over Recovery 

Following the immediate postfire period, snow volume, peak SWE and SDD in 

the postfire albedo model began to approach values more similar to the base model as 

snow albedo and decay recovered from an immediate postfire state towards an unburned 

open meadow. However, the shift in forest structure and albedo decay of a sparsely 

forested postfire state towards those of a post-recovery open canopy state parameterized 
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in the postfire albedo and postfire forest models still resulted in differences in snow 

hydrology relative to the base model beyond the 15-year recovery period.  

In the burns modeled for up to 15 years postfire (Boulder and Green Knoll), the 

greatest losses in volumetric peak SWE did not occur 1-3 years following fire (period 1), 

but instead 4-9 years postfire (periods 2 and 3). Volumetric and proportional SWE losses 

in these burns tended to increase in magnitude 1 to 9 years postfire and then decrease in 

magnitude 10+ years postfire (Table 3; Boulder, Green Knoll, and Purdy). For instance, 

postfire effects on snow albedo and forest structure in the Boulder burn region caused the 

greatest loss in peak SWE (-1.1M m3/SD: 454K m3; -11.81%/SD: 3.12%; p < 0.001) 7-9 

years postfire (Table 3: Boulder - Period 3), while the greatest peak SWE losses in Green 

Knoll and Purdy fire (-1.9M m3/SD: 621K m3; -26.02%/SD: 10.17%; p < 0.001 and -

4.7M m3/SD: 412K m3; -8.89%/SD: 1.09%; p < 0.01) occurred 4-6 years postfire (Table 

3: Green Knoll – Period 2 and Purdy – Period 2).  

Shifts in SDD were greatest immediately following fire and smallest 16 years 

postfire (Table 3: SDD Shift Averaged Over Period). However, shifts in SDD did not 

decrease in magnitude consistently over the course of postfire recovery. In the case of the 

Boulder fire, SDD shifts increased in magnitude 7-12 years postfire where snow 

disappeared later on average during years 10-12 than during years 7-9 (period 3: -30 

days/SD: 2 days to period 4: -31 days/SD: 2 days) (Table 3). Snow disappearance within 

the Green Knoll burn region showed similar trends with snow disappearing later, on 

average, 7-9 years postfire (period 3: -34 days/SD: 8 days) than it did 4-6 years postfire 

(period 2: -27 days/SD: 4 days) (Table 3). Although shifts in SDD tended to decrease 
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progressively over the course of postfire recovery, the recovery of snow retention was not 

consistent over years since fire, and SDD shifts advanced yet again 4-12 years postfire.   

Losses in peak SWE over postfire recovery tended to decline 4 to 9+ years 

following fire yet impacts on snow hydrology still persisted 15+ years following fire 

when postfire effects on snow albedo had subsided. Peak SWE within the Boulder burn 

region increased significantly by 2.32% (196K m3; p < 0.001) 16 years postfire. 

Conversely, postfire effects in the Green Knoll burn region caused a 2.20% reduction 

peak SWE 16 following fire (-241,246 m3; p < 0.001). Similarly, SDD in the postfire 

albedo model still showed changes relative to the base model 16 years postfire. Snow 

disappeared in the Boulder burn region 2 days earlier than in the base model 16 years 

postfire and, in the Green Knoll burn region, snow disappeared 6 days later (Table 3: 

SDD Shift Averaged Over Period). Together, the lasting postfire impacts on peak SWE 

and SDD indicate that even after postfire effects on snow albedo have dissipated 16 years 

following fire, the shift in landcover from forest to an open meadow can still result in 

lasting impacts on snow hydrology beyond the 15-year postfire recovery period. 

Recovery of Postfire Effects on Seasonal Snow-Water Equivalent 

Over the 15-year postfire recovery of each fire, increases in accumulation were 

generally found to increase over each successive recovery period. For example, average 

SWE during accumulation (March 1st) within the Bull burn region increased in magnitude 

and extent over the four recovery periods modeled (period 1: +2.61% ± 16.99%, p < 

0.001; period 2: +1.53% ± 4.07%, p < 0.001; period 3: +0.70% ± 1.19%, p > 0.05; period 

4: +3.38%, p < 0.001) (Figure 7a: Periods 1-4). Average SWE also increased over 

successive recovery periods in the Cliff Creek burn region (period 1: +4.58%; period 2: 
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+7.09%) and the Lava Mountain burn region (period 1: +4.29%; period 2: +11.57%) 

(Figure 8a and Figure 10a). However, this trend was not consistent across all burns. For 

instance, average March 1st SWE in the Green Knoll burn region decreased by 1.40% 

during 10-12 years postfire (period 4 of recovery) when the previous two years showed 

widespread increases in SWE accumulation (period 3: +7.13%; period 4: +5.43%) 

(Figure 4a).  

Broadly, burns occurring at lower elevation showed greater losses on April 1st and 

slower recovery overall, while burns occurring at higher elevation showed immediate 

gains in April 1st SWE at their highest points of elevation and these gains continued to 

increase in magnitude and extent over the course of postfire recovery. Postfire reductions 

in start of ablation (April 1st) SWE then declined in magnitude over recovery in the years 

following fire. Lower elevation burns experienced gains in April 1st SWE in some 

locations starting in period 3 (7-9 years postfire) with SWE gains becoming more 

widespread and increasing in magnitude thereafter. For instance, the Green Knoll and 

Horsethief Canyon burns (the two lowest average elevation burns) showed widespread 

losses until period 3 of recovery when some increases in April 1st SWE occurred in some 

locations of the burn region (Figure 4b and Figure 9b). Burns occurring at higher 

elevation experienced April 1st SWE gains even earlier. The Purdy burn (elevation = 

2740m) showed increases in April 1st SWE during every recovery period and these gains 

increased in magnitude by the final modeled period of recovery (period 1: +2.17%; 

period 5: +6.87%) (Figure 11b). Similar trends were found with other high elevation 

burns, such as the Lava Mountain and Bull burns which increased from -2.11% to 

+10.53% and -8.29% to +3.38%, respectively (Figure 10b and Figure 7b).  
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Postfire reductions in ablation season (May 1st) SWE declined over time 

following fire, but these changes were consistently negative throughout the entire 

recovery period for nearly every fire modeled (Figures 4c-11c). For instance, the two 

burn regions that were modeled for the entire recovery period (Green Knoll and Boulder) 

showed losses in May 1st SWE for every postfire recovery period. The Green Knoll fire 

shifted from average period 1 May 1st SWE losses of 76.63% immediately following fire 

to losses of 13.50% in the post-recovery period (Figure 4c) while the Boulder fire 

recovered from losses of 87.97% period 1 May 1st SWE to losses of 8.25% in the post-

recovery (>15 years postfire) period (Figure 6c). Losses in May 1st SWE beyond period 5 

indicate that even after snow albedo impacts have dissipated, losses in SWE still occur 

and this is likely due to the lasting post-recovery (15+ years postfire) change in forest 

structure caused by wildfire. 

Effects of Postfire Impacts and Recovery on Total Snow Volume 

Postfire effects on snow albedo and forest structure caused losses in total snow 

volume many times greater than the initial losses when annual losses were summed over 

the entire recovery period. Postfire effects on snow in the Boulder and Green Knoll burn 

regions (the two burns modeled for the entire 15-year recovery period) caused total losses 

of 5.53M m3 (-3.83%) and 8.86M m3 (-7.51%) of SWE (Table 3). While the other six 

burns were not modeled fully over their entire respective recovery periods, total losses 

were often far greater than the immediate losses alone. The Horsethief Canyon fire 

caused immediate losses of 1.18M m3 which grew to total losses of 7.73M m3 over 8 

years of postfire recovery, a total loss 4x greater than the peak SWE losses in the year 

immediately following fire. Similarly, SWE losses caused by the Bull fire increased from 
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immediate postfire losses of 1.18M m3 to total losses of 19.03M m3, an increase of over 

17 times the immediate losses over 10 years of recovery (Table 3).  

When proportional peak SWE losses were averaged annually over the recovery 

period, losses were greatest in the fires occurring at the lowest elevation, while the 

highest elevation burns experienced the smallest losses (Table 4). The lowest elevation 

burn, the Green Knoll fire, showed a 7.2% average annual decrease in peak SWE over the 

modeling period, while the highest elevation fire, the Purdy fire, only showed a 0.5% 

average annual loss (Table 4).  

Effects of Postfire Impacts and Recovery at the Watershed Scale 

Postfire effects on snow albedo and forest structure caused long-lasting and 

persistent reductions in May 1st SWE at the watershed scale. Three of the modeled burns 

(Boulder, Bull, and Roosevelt) occurred entirely or partially within the Lower Granite 

Creek (LGC) subbasin. The Boulder burn was the earliest occurring burn of all modeled 

burns (2000) and burned entirely within the LGC subbasin (15 km2; 13.05% of the 

watershed area), while the Bull and Roosevelt fires occurred partially within the LGC 

subbasin (burning 12 km2 [10.48%] and 23 km2 [19.81%] of the basin, respectively) 

(Figure 12). In combination, all three fires burned 43.37% of the watershed area over the 

20-year modeling period (50.45 km2) making the LGC subbasin a useful representation of 

the watershed scale impacts of postfire effects and recovery on May 1st snow volume 

(Figure 12).  

The burns occurring within LGC subbasin caused mostly annual losses in ablation 

season snow volume over 20 years (-6.30 ± 6.95% loss in May 1st SWE) with all years 

other than 2011 showing a net average loss in May 1st SWE (Figure 12). Postfire effects 
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on snow albedo and forest structure caused the greatest proportional losses in SWE during 

2015 and 2019 (-9.50% and -14.58%). During 2015, postfire effects from both the Boulder 

and Bull fires impacted snow volumes within the LGC subbasin. The Bull fire occurred 5 

years prior, and the Boulder fire occurred 15 years prior and, combined, the burns caused 

a 9.50% reduction in May 1st SWE. During 2019, postfire impacts from the Cliff Creek 

burn (occurring 3 years prior) caused a -14.58% reduction in May 1st SWE in combination 

with the postfire recovery effects from the Bull fire (occurring 9 years prior) (Figure 12; 

2012 and 2019). Burns relatively late in their postfire recovery period continued to cause 

losses and enhanced immediate losses from more recent burns. Repeated burns within the 

LGC subbasin and the associated postfire impacts on snow and forest structure resulted in 

a total reduction of 5.85% in May 1st SWE over the 20-year modeling period, a total volume 

of >94M m3 of additional snowmelt by May 1st (Figure 12). 

Model Validation 

The base model and parameterized model results were validated using field 

measured values of SWE taken from six of the modeled burns between February 9th and 

March 19th of 2019 and the percentage difference between the observed and modeled 

values for each of the six fires and all fires overall were computed (Table 5). Modeled 

SWE results from the base model and postfire albedo model were proportionally greater 

than the observed SWE values across all burns and overall indicating that both models 

overestimated SWE on average. Overall, the base model performed better in across all six 

burns where measured values were available (base: +40.22 ± 38.88% vs. postfire albedo 

model: +41.61 ± 46.29%). SWE in the postfire albedo model was closer to the observed 

values on average relative to the base model in three fires (Horsethief Canyon: +58.64% 
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vs. +61.06%, Bull: +23.03 ± 33.79% vs. +24.67 ± 33.24%, and Lava Mountain: +46.18 ± 

30.25% vs. +48.89 ± 24.08%), while the base model performed better in the other three 

fires (Boulder: +40.71 ± 22.03% vs. +41.22 ± 22.3%, Cliff Creek: +40.4 ± 26.93% vs. 

+41.17 ± 19.53%, Roosevelt: +59.79 ± 26.84% vs. +67.89 ± 23.91%) (Table 5). The 

tendency for modeled results to overestimate the observed SWE indicates that the postfire 

albedo model and base model were likely underestimating postfire effects on snow in the 

locations where observed data were collected. Further, all field measurements were 

collected during the accumulation season between February 9th and March 19th, meaning 

that modeled results tended to overestimate observed SWE during periods of net negative 

snowpack energy balance. The base and postfire albedo model results tended to differ 

more during the ablation period, which explains why the percentage differences between 

the observed and base model and observed and postfire albedo model tended to be similar 

to one another. However, the observed data set was of a small sample size and the 

measurements were taken within a short time frame and within close proximity to one 

another (Figure 1). Conversely, the modeled results extend over many years and cover 

much larger areas and thus it is likely this data alone is insufficient to validate the 

modeled results. 
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DISCUSSION 

Forest fires in the seasonal snow zone accelerated snowmelt through the addition 

of black carbon into the snowpack and through modification of forest structure, effects 

which lasted for many years following ignition. Immediately following fire, snowpack 

within burned forests attained lower peak SWE and melted earlier, resulting in reductions 

in remaining snow volume by the ablation season. Over 15 years of postfire recovery, 

peak SWE and SDDs progressed towards base model levels as snow albedo and 

accelerated snow albedo decay rates shifted to levels of an unburned open meadow, but 

losses in peak SWE and earlier snowmelt were persistent throughout the entire postfire 

recovery period and beyond 15 years following fire. Landcover shifts from pre-fire forest 

to open meadow over 15 years postfire likely caused additional solar forcing on snow and 

wind ablation losses, resulting in reductions in peak SWE beyond the 15-year postfire 

recovery period. In total, persistent postfire effects on snow albedo and forest structure 

over 15 years following fire caused cumulative losses in peak SWE and resulting snow 

volume 8 to 17 times greater than the losses observed in the snow season immediately 

following ignition (Boulder and Green Knoll fires). At the watershed scale, watersheds 

burned for less than half of their area showed average annual reductions between 1.14% 

± 21.2% to 14.58% ± 76.1% and an average annual reduction of 6.30 ± 6.95% in ablation 

season snow volume over 20 years (Figure 12). Volumetric losses in snow volume due to 

postfire effects on snow summed over 20 years resulted in a total loss of >94M m3 

(5.85%) in ablation season SWE (Figure 12).   
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Postfire Forest Structure Impacts on Snow Hydrology 

The degradation of forest structure due to wildfire enhanced accumulation rates 

relative to a densely forested, pre-fire state, but also resulted in increased solar forcing on 

the surface of snowpack and greater losses from wind ablation. The interplay between 

these two competing effects can result in varying effects on snowpack depending on the 

local climate (Essery et al., 2008; Musselman et al., 2008; Roth and Nolin, 2017). Over 

15 years following fire, removal of canopy likely produced small increases in snow 

volume (+0.70% ± 1.19% to +11.57%) during March 1st, with increased exposure to 

incoming shortwave radiation and additional wind ablation from loss of canopy cover 

likely resulting in a far greater range in snow volume losses during May 1st (-0.93% ± 

11.88% to -87.97% ± 7.98%). These findings are consistent with the literature which 

show that the presence of forests helps to retain snow in colder, continental climates 

where shortwave radiative inputs and wind ablation are the dominant drivers of snowmelt 

(Musselman et al., 2008; Lundquist et al., 2013). With postfire effects on snow albedo 

decay and snow albedo excluded, the postfire forest model still showed reduced peak 

SWE and earlier SDD than in the base model meaning that canopy loss in the study 

region (combined with postfire reduction in snow albedo) likely enhanced the losses in 

snow volume and the earlier shifts in snow retention caused by postfire effects on snow 

albedo alone.  

Postfire Snow Albedo Impacts on Snow Hydrology 

Parameterizations of postfire effects on snow albedo caused reductions in peak 

snow volume and snow retention as long as 15 years following fire. Peak SWE within 

burn regions decreased across all burned forest due to parameterizations of postfire 
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impacts on snow albedo and snow albedo decay and, despite small increases in rates of 

accumulation likely due to the loss of canopy, peak SWE in the postfire albedo model 

was always less than that of the base model over all recovery periods with the exception 

of two fires (Purdy and Cliff Creek).  

The combined postfire effects on forest structure and snow albedo exposed 

snowpack to relatively greater amounts of solar shortwave radiation that is more readily 

absorbed rather than reflected or refracted, increasing overall net snowpack shortwave 

radiation (Warren & Wiscombe, 1980). Increases in snow volume or snow retention were 

rarely observed and only at stages when the reductions in snow albedo caused by postfire 

effects had dissipated (i.e., 16+ years postfire). Further, when net increases in snow 

volume and snow retention occurred, they were smaller in magnitude relative to the 

losses incurred 1 to 15 years postfire. Forest structure change and albedo impacts caused 

by wildfire within the study region resulted in net reductions in snow volume for many 

years following the initial burn and even in the post-recovery (16 years postfire) period. 

Snowmelt timing occurred later only in the post-recovery period, with snow in prior 

recovery periods disappearing between 1 week and two months earlier than in the base 

model. The postfire albedo model shifted landcover within burned forests from sparsely 

forested to open meadows over 15 years. The reductions in snow retention in postfire 

forests are consistent with the literature which show that postfire effects on snow albedo 

result in decreased snow retention in burned forests relative to their unburned forested 

counterparts (Gleason et al., 2019; Smoot & Gleason, 2021; Gersh et al., 2022).  

Similarly, postfire effects on snow albedo result in reductions in peak SWE and 

the advancing of snowmelt timing for many years following fire (Gleason et al., 2019; 
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Smoot & Gleason, 2021). Snowmelt timing plays an important role in annual water 

supply, specifically the length of the growing season and the likelihood of spring and 

summertime water stress and future wildfire (Harpold, 2016; Westerling, 2016; Hallema 

et al., 2018). A study by Harpold (2016) showed that a 1 day earlier shift in snow 

disappearance date can result in 1 additional day of water stress in the year (Harpold, 

2016). The results here show that postfire effects on snow and forest structure can result 

in significant advances in SDD of between 58 and 2 days (Table 3) which, if accurate, 

may have implications for the increasing water stress in the 15 years beyond ignition.  

However, the shifts in SDD found here are greater in magnitude than those found 

in the literature. Research by Smoot and Gleason found that snow in burned SNOTEL 

sites in the Middle Rockies disappeared between 14 to 7 days earlier 5 to 10 years 

postfire, less than the differences in snow disappearance between the base model and 

postfire albedo model (17 to 50 days earlier 5 to 10 years postfire) (Table 3) (Smoot & 

Gleason, 2021). The postfire shifts in SDD I found did fall in line with the 5-10 years 

postfire SDD shifts observed at SNOTEL sites within the Cascades region (-14 to -64 

days) (Smoot & Gleason, 2021), the same region in which the postfire effects on snow 

albedo parameterization was developed (Gleason & Nolin, 2016). This may indicate that 

the postfire effect on snow albedo parameterization used in the postfire albedo model 

may have reflected postfire effects on snow more consistent with those found in the 

warmer, maritime climate of the Western Cascades. However, the results of the Smoot 

and Gleason (2021) study were drawn only from SNOTEL sites which are situated in 

open clearings within forests and at specific elevation bands. Conversely, I modeled 

postfire effects on snow within regions that were largely forested and across a broad 
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range of elevations (2168 m to 2740 m; Table 3), regions which may exhibit more 

variable postfire effects on snow than what can be observed from SNOTEL data alone.  

Variability in Postfire Effects on Snow Volume over Season and Recovery 

Despite identical parameterizations for albedo impacts and forest structure change 

being applied to each burn, the fires modeled showed varying responses in snow 

hydrology depending on the elevation in which they occurred. Postfire reductions in 

snow volume were more pronounced in snowpack at lower elevation relative snowpack at 

higher elevations across all burns, indicating that postfire effects on snow are more 

pronounced in burn regions at lower elevation. Burned forests at low elevation tended to 

show decreased proportional gains in March 1st SWE and increased proportional losses in 

April 1st and May 1st SWE relative to higher elevation burned forests. Greater losses in 

peak SWE at lower elevation burns meant that SDD shifts were correspondingly greater 

immediately following fire. Fires occurring at higher elevation exhibited increased 

proportional gains in SWE during the start of ablation and as early as period 1 of 

recovery, in the case of the Purdy burn (Figure 11). In general, postfire effects in burned 

forests at higher elevation caused decreased losses in peak SWE relative to burned forests 

at lower elevations. Conversely, burned forests at low elevations had more pronounced 

postfire effects on peak snow volume. Temperatures and snowpack at lower elevations 

are warmer and lower elevation snowpack contains lower cold content relative to 

snowpack at higher elevation. Postfire effects on snow albedo and forest structure 

increase shortwave radiative forcing on snowpack. It is likely that, in snowpack at low 

elevation, postfire effects on snow are more likely to shift the snowpack energy balance 
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negative, explaining why postfire effects on snow were more pronounced in lower 

elevation snowpack. 

Over the recovery period, postfire effects caused losses in snow volume through 

every stage of recovery except in the two highest elevation burns (Purdy and Lava 

Mountain). The magnitude of losses in peak SWE and corresponding snow volume did 

not always follow a consistent trend with some burns showing the greatest losses 4-9 

years postfire, indicating that the greatest postfire reductions in peak SWE and snow 

volume may not occur in the winter immediately following fire, but instead many years 

later during postfire recovery. 

In contrast, SDD recovered at a steady rate throughout the recovery period, with 

snow disappearing earlier and earlier with each successive recovery period. Shifts in 

SDD were substantial and long-lasting, with snow disappearing 1-2 months earlier 

immediately following ignition and as much as 3 to 16 days earlier even 12 to 15 years 

following fire. Only once the albedo reductions due to forest fire had dissipated entirely 

(16+ years postfire) were any increases in snow retention observed and only in one burn 

region (Boulder). Shifts in SDD can result in impacts on water supply in the drier months 

of late spring and summer wildfire (Harpold, 2016; Westerling, 2016; Hallema et al., 

2018). The disappearance of snow earlier in the year can result in drier forests in the 

surrounding area during late spring and summer and increase the likelihood and severity 

of future wildfire (Harpold, 2016; Westerling, 2016; Hallema et al., 2018). 

Although postfire effects on snow albedo in the postfire albedo model had 

diminished or disappeared 15 years postfire, burned forests became unburned open 

meadows after 15 years and had not fully recovered back to a forested, pre-fire state. The 
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shift from forest to open meadow and the associated loss of canopy continued to cause 

reductions in snow volume even after the postfire effects on snow albedo had dissipated. 

To quantify the complete impacts of a wildfire on long-term snow evolution, future 

modeling using this postfire albedo parameterization in combination with models of long-

term forest recovery should be incorporated into a longer-spanning modeling period. 

Total Effects of Postfire Impacts on Snow 

Cumulative losses in snow volume over the entire recovery period were far 

greater than the losses occurring immediately following fire. Losses considered over the 

course of the entire postfire recovery period were 7-18 times greater than the losses 

immediately following fire in the burns modeled for the entire recovery period (Boulder 

and Green Knoll fires). Further, the total losses caused by burns were related to the size 

of the initial event and these two fires were relatively small compared to the burns 

occurring late in the modeling period. The two most recent fires modeled, Cliff Creek 

(146 km2; Figure 8) and Roosevelt (244 km2; Figure 5) were 9 and 16 times larger than 

the Boulder and Green Knoll (both 15 km2). The greater extent of these later fires and 

significant losses of 7-10M m3 of peak SWE occurring immediately postfire Cliff Creek: 

-8.82%/ p < 0.001; Roosevelt: -8.68%/p < 0.01) indicate that total volumetric losses over 

the full recovery of these burns may be on the order of hundreds of millions of volumetric 

peak SWE loss (Table 3). Further modeling as more data becomes available will be 

necessary to confirm these predictions, but such losses carry important implications for 

long-term water supply under a warmer, drier climate at the watershed scale. 

Postfire effects from the Boulder, Bull and Cliff Creek fires caused consistent 

annual reductions in snow volume within the Lower Granite Creek subbasin over the 20-
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year modeling period. The three fires burned over 40% of the watershed causing ablation 

season reductions in snow volume of 1.14% ± 21.2% to 14.58% ± 76.1% annually, an 

average annual reduction 6.30% ± 6.95%, and, in total, amounting to a 5.85% reduction 

in total snow volume over 20 years (Figure 12). Additional snowmelt caused by the 

postfire effects of these fires caused average annual increases in snowmelt of 5.9M m3 ± 

6.5M m3 per year and, over 20 years, resulted in a total of >94M m3 of added early 

snowmelt than would occur in no-burn conditions. As a frame of reference, the USGS 

stream gauge at the outlet of the Lower Granite Creek subbasin (USGS 13019438) 

measured an annual average streamflow volume of 29M m3 per year between 1982 and 

1993 (USGS, 2016).  Further research would be required to determine how much of this 

added, early snowmelt would translate to runoff. Still, such additions have the capacity to 

alter resulting annual streamflow runoff and show that wildfires occurring in the seasonal 

snow zone have important implications for water supply and water management over 

long temporal scales. 

Model Validation 

Validation of the modeled results using in-situ SWE measurements collected from 

within the burns showed that our modeling and parameterizations overestimated SWE in 

both the base model (+40.22 ± 38.88%) and postfire albedo model (+41.61 ± 46.29%). 

SWE was overestimated in both the base model and postfire albedo model and both were 

relatively close in accuracy (<1.5% difference). Both the base model and postfire albedo 

model also overestimated SWE in the individual fires and, again, showed similar levels 

of accuracy between one another (Table 5). This may indicate that the postfire albedo 

model is underestimating postfire effects on snow and that the associated postfire effects 
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on forest structure and snow albedo impact snow hydrology to a greater degree than the 

modeled results show. However, given these overestimations were present in both models 

and that both showed similar accuracy relative to the observed measurements, it is likely 

that the calibrated base model (from which the postfire albedo parameterizations were 

added to) does not accurately represent SWE in the locations and on the dates at which 

field data was collected. This could be due to several issues including the initial 

calibration of SnowModel, differences in measurement methods between the field data 

and SNOTEL data that was assimilated into SnowModel and calibrated upon, or spatial 

and/or temporal variability in SWE across the study region. 

First, calibration and SWE assimilation of SnowModel was performed using 

SNOTEL-measured SWE data and none of the SNOTEL stations were within the burn 

boundaries (Figure 1), meaning that calibration or assimilation of SWE within the burn 

regions was not possible. Second, SNOTEL stations measure SWE using a different 

method than that of the field validation data. SNOTEL stations measure SWE using a 

large bladder filled with antifreeze which weigh the overlying snow and convert to snow-

water equivalent measurements (USDA-NRCS, 2020). Conversely, the SWE validation 

data was measured by weighing snowpack within a federal snow sampling tube and 

converting the weight to snow-water equivalent. The differences in how these data were 

collected may have resulted in a miscalibration of SnowModel due to overestimation of 

SWE at the SNOTEL sites or may indicate that the field validation data underestimated 

SWE at the field sites or possibly both. Finally, the overestimation of modeled SWE may 

have been due to the low spatial and temporal coverage of the field validation data. The 

field validation data were collected within close proximity to one another (within each 
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burn), over the course of ~5 weeks in a single year. Meanwhile the modeled results span 

multiple decades and thousands of square kilometers. Further, the field validation data 

represents point measurements of SWE while the modeled results were calculated in 

grids of 100 m2. It is possible that the differences between the observed SWE and 

modeled SWE could be due to temporal and/or spatial variability across snowpack within 

the study region. More field data collected over a wider area across the burn regions and 

over a longer time period will be needed to further validate the modeled results. 

Limitations and Future Work 

A chief limiting factor of this study lies with the mismatch between the study 

region that the snow albedo decay parameterization was sourced from, and the study 

region investigated here. The snow albedo decay parameterizations were drawn from 

empirical parameterizations of snow albedo decay developed by Gleason & Nolin (2016) 

in the Oregon Cascades – a maritime snow climate – while my study region was in the 

Middle Rocky Mountains – a continental snow climate. Dominant snow metamorphic 

processes differ between these two climates (Domine et al., 2006; Colbeck, 1982), 

limiting the applicability of a snow albedo decay parameterization developed in warmer, 

maritime climates such as the Oregon Cascades to my relatively colder, continental study 

region within the Rocky Mountains. In warmer maritime climates, snowpack is typically 

warmer and snow metamorphism is often driven by more rapid wet snow metamorphic 

processes (Domine et al., 2006; Colbeck, 1982). Conversely, temperatures and snowpack 

in continental climates are typically colder and more often driven by slower dry snow 

metamorphic processes (Domine et al., 2006; Colbeck, 1982). Currently, no research 

exists parameterizing postfire effects on snow albedo decay in continental climates and 
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the research by Gleason & Nolin (2016) was the only published parameterization 

available for inclusion in the postfire albedo model. Nevertheless, it is possible that the 

parametrization used here may be overestimating the rate of snow albedo decay given the 

faster decay rates that tend to occur in warmer climates. A slower snow albedo decay rate 

would change the results of the model considerably. Snow albedo would be higher on 

average, reducing shortwave radiative forcing on snow, shifting the snowpack energy 

balance positively, and slowing snow melt overall. However, the parameterization 

implemented in this study is flexible and the coefficients of snow albedo decay are easy 

to modify. As more data becomes available characterizing and parameterizing postfire 

effects on snow albedo decay under colder, continental climates, it would be possible to 

repeat similar research with snow albedo decay parameterizations that more accurately 

represent the conditions within my study region. 

While the snow albedo decay parameterization was drawn from research using 

field data collected within burn regions, the forest structure component was less 

supported. Previous work shows that delayed tree mortality occurs at an exponentially 

decaying rate following fire (Angers et al., 2011; Brown & DeByle, 1987) while the 

parameterizations used here are linear in nature. Further, the modeling capabilities of 

forest structure dynamics in SnowModel are limited. SnowModel currently only has two 

metrics to capture forest structure dynamics: gap fraction and snow-holding depths. Gap 

fraction is not spatially variable so the the only way to model varying forest structure 

within burn regions alone is to modify the snow-holding depth value and associated leaf 

area index. While the snow-holding depths do play important roles in SnowModel’s 

physically-based calculations, more work should be done in the future to incorporate 
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more descriptive metrics of forest structure, specifically the three-dimensional capacity of 

vegetation to intercept and modify the snow-energy balance. Such parameterizations will 

allow more accurate modeling of postfire impacts on forest structure and the resulting 

impacts on snowpack in general. 

Another limiting factor in this study is the small number of in-situ SWE 

observations available for calibration of SnowModel and the limited spatial and temporal 

extent of in-situ SWE validation data. The study region only contains nine SNOTEL sites 

and thus only nine potential points in which to base the calibration of SnowModel upon. 

SNOTEL sites are placed within a relatively narrow band of elevations and in a limited 

variety of landcover types (Meromy et al., 2012; Molotch and Bales, 2005). These 

limitations inhibit this study’s ability to capture variability in snowpack both spatially and 

over elevation, which affects the accuracy of the modeled results. Validation of the 

modeled results was limited due to the small number of data points available for 

validation and the low spatial and temporal extent of those data. While the data available 

was highly valuable and diligently retrieved, they were collected in a short span of time 

and within close proximity to one another within each fire region relative the 20-year 

time scale and thousand square-kilometer spatial scales modeled in this study. The fires 

modeled in this study occurred over large extents and the postfire effects on snow and 

associated recovery span many years meaning that field data, while useful, is likely 

insufficient to validate processes modeled over such temporal and spatial scales. Future 

work will attempt to use remotely-sensed measurements of snow-covered area and snow 

albedo from the MODSCAG dataset sourced from Snow Today through the NSIDC 
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(Ashcroft & Wentz, 2013), allowing for a more spatially- and temporally-extensive 

validation of the base model, postfire forest model, and postfire albedo model.  

Finally, the results of this study show that postfire effects on snow hydrology 

result in significant reductions in snow volume by May 1st for many years following fire 

and earlier snow disappearance dates for as long as 15 years following fire. While the 

volume and earlier snowmelt was quantified in this study, I did not perform any modeling 

to determine how this earlier snowmelt affects the hydrology of burned watersheds and, 

critically, what the fate of additional, earlier runoff is. Future research should pair results 

of this study with hydrological runoff models such as the Hydrologic Engineering Center 

Hydrologic Modeling System (USACE-HEC, 2012) or others to quantify additions to 

springtime runoff and associated impacts on water storage and summertime water 

supplies.  
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CONCLUSION 

Wildfire has significant effects on canopy cover and radiative forcing on snow for 

decades following fire and thus has the capacity to significantly alter snow evolution and, 

by extension, water supply over long time scales. This study assessed the long-term water 

supply impacts of postfire effects on the snow-mass energy balance by incorporating 

time-varying forest structure change and an empirical burned albedo decay function into 

SnowModel. The results of the parameterized (postfire forest and postfire albedo) runs 

were compared with those of a base model and a postfire forest model to quantify and 

partition the impacts of wildfire on snowpack evolution. I quantified the resulting impacts 

of forest structure change and albedo modification on modeled peak snow water 

equivalent (peak SWE), snow disappearance date (SDD), and total SWE volume 

reductions over a 20-year time scale and over a >7 thousand square kilometer area. 

Spatially-variate changes in SWE due to postfire effects were compared both over the 

snow season (accumulation, start of ablation, and ablation) and throughout the 15-year 

postfire recovery period. 

Postfire degradation of canopy allowed for slightly greater accumulation rates in 

the modeled burns, but postfire reductions in canopy shading and postfire effects on snow 

albedo and snow albedo decay generally resulted in severe reductions in SWE at start of 

ablation and during the melt season. Volumetric SWE was reduced following fire and 

snow was observed to disappear up to 5 weeks earlier relative to the base model. Over the 

15 years of postfire recovery, seasonal differences in SWE, volumetric SWE reductions, 

and SDD shifted closer to base model levels, but remained negative in nearly every burn 

modeled. The most significant postfire reductions in peak SWE were observed in burn 
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forests at lower elevation. Across the 15 year postfire recovery period, the greatest 

reductions in SWE and SDD due to postfire effects on snow did not occur immediately 

following fire, but instead 4-9 years following fire. 

Following the 15 year postfire recovery period (16 years postfire), one fire 

showed increased volumetric SWE and later SDD relative to the base model, but another 

still showed reductions in both metrics 16 years following ignition. Burned forests 

approach snow albedo values similar to that of open regions over 15 years following burn 

indicating that such regions have not yet fully recovered back to a forested state by this 

time. Future work should use similar parameterizations over longer time scales (>20 

years) to better capture and quantify postfire impacts on snow over the entire recovery to 

a pre-fire state.  

The results of this study show that wildfire has significant and persistant impacts 

on snow hydrology and water supply that last decades beyond the initial burn event. 

Quantification of changes in snow volume and snow melt on the snow-mass energy- 

balance using physically-based, parameterized snow models provide information critical 

to our understanding of the long-term impacts of an increasingly-severe fire regime on 

the quantity and timing of our precious water resources. 
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FIGURES AND TABLES 

Figure 1: A map of the study region and modeling bounds. The map includes MTBS fire boundaries of the 

eight fires that occurred in the study region over the modeling time period along with their ignition date, 

incident type, and total burn area. The location and type of meteorological stations that the in-situ 

meteorological forcing data was drawn from are shown and the boundaries of the HUC-8 sub-basins and 

their names are also displayed. 
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Figure 2: A conceptual model of the postfire effects on snow captured by the postfire albedo and postfire 

forest models and a simplified explanation of the modeling methods. 
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Figure 3: A subset of the calibration plots following calibration of SnowModel’s SWE outputs for 10 years 

of the study period. 
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Table 2: Table showing the final performance statistics of SnowModel following pre-parameterization 

calibrations. The four statistics (described in the Preliminary Results section) are shown for each of the 

nine SNOTEL stations within the study region and the overall performance statistics are shown on the last 

row. The performance thresholds used for this study are also shown for each of the four statistics. 

 

Table 1: List of meteorological stations used as the meteorological forcing data input or as validation data 

in SnowModel. Relevant metadata is provided including station type, data source, station ID number (* = 

validation station only), elevation in meters, easting and northing coordinates (CRS: NAD83 UTM12N), 

and date of the start of record.  
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Table 3: Calculations of the differences in volumetric SWE (<1 year postfire, total, and per period) and 

differences in snow disappearance date (SDD) between the base model and burn-recovery parameterized 

model. Cells are colored in severity of the change for each burn, with red indicating more severe losses 

and blue indicating relative gains. The ignition year, total burn area, average elevation, and altitudinal 

variability for each burn region are included above. Asterisks are also shown on all SWE metrics denoting 

the level of significant difference between the base model and postfire albedo model (blank: not 

significantly different, *: p < 0.05, **: 0.001 < p < 0.01; ***: p < 0.001). 
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Figure 4: Matrix of rasters of the Green Knoll fire (Ignition Year: 2001) showing the change in snow-water 

equivalent depth (SWED) between the base model and parameterized model. Each row of rasters is labeled 

(a to c) for reference. A differenced raster is shown for accumulation (a; March 1st), start of ablation (b; 

April 1st), and ablation (c; May 1st) and each raster represents a three-year average over each successive 

recovery period following fire (e.g. Period 1 = 1-3 years postfire, Period 2 = 4-6 years postfire, etc.). 

Within each raster, the average proportional difference in SWE between the postfire effect and recovery 

model and the base model. Next to the title of each raster, results of significance testing between the base 

and postfire albedo model are displayed (blank: not significantly different, *: p < 0.05, **: 0.001 < p < 

0.01; ***: p < 0.001). Beneath the rasters are nivea plots (row d) showing the average snow-water 

equivalent depth within the burn region over the water year, once again averaged over each 3-year period 

following fire. The results of the base model, forest only model, and fully-parameterized model are 

displayed along with lines showing the position of the accumulation/start of ablation/ablation dates.  
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Figure 5: A combined raster/nivea matrix similar to Figure 7 for 

the Roosevelt fire (Ignition Year: 2018). 
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Figure 6: A combined raster/nivea matrix similar to Figure 7 for the Boulder fire (Ignition Year: 2000). 
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Figure 7: A combined raster/nivea matrix similar to Figure 7 for the Bull fire (Ignition Year: 2010). 
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Figure 8: A combined raster/nivea matrix similar to Figure 7 for the Cliff Creek fire (Ignition Year: 

2016). 
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Figure 9: A combined raster/nivea matrix similar to Figure 7 for the Horsethief Canyon fire (Ignition Year: 

2012). 
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Figure 10: A combined raster/nivea matrix similar to Figure 7 for the Lava Mountain fire (Ignition 

Year: 2016). 
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Table 4: Average annual proportional peak SWE loss between the postfire effect and recovery model and 

the baseline model. Fires are ordered by increasing elevation to highlight the trend in decreasing average 

proportional peak SWE losses over increasing elevation. Elevation and losses are colored to indicate the 

magnitude relative to the range in the given value. 

 

Fire 
Green 
Knoll 

Horsethief 
Canyon Boulder 

Cliff 
Creek Bull Roosevelt 

Lava 
Mountain Purdy 

Ignition Year 2001 2012 2000 2016 2010 2018 2016 2006 

Elevation 
(mean) 2168 2281 2291 2321 2323 2419 2565 2740 

Elevation 
(Std. Dev.) 144 142 119 181 176 177 125 143 

Avg. Annual 
Peak SWE 
Loss -7.20% -6.69% -2.17% -4.07% -4.16% -4.26% -3.08% -0.54% 

Figure 11:  A combined raster/nivea matrix similar to Figure 7 for the Purdy fire (Ignition Year: 2006). 

 



73 
 

   

Figure 12: Spatial analysis of watershed scale impacts of postfire effects and recovery in the Lower 

Granite Creek subbasin (HUC12) during the ablation period (May 1st) for every modeled year. Reductions 

in SWE due to postfire effects are presented as proportional differences between the postfire effect on snow 

albedo and forest structure model and the base model. SWE data is shown only for areas within the 

subbasin these data are overlayed on a hill shade DEM of the surrounding area. Each raster also shows 

the proportional difference in snow volume for the entire watershed on May 1st for each year. Calculations 

of proportional burn size and associated mean annual changes in SWE and total proportional losses are 

shown in the tables below the figure. 

Table 5: Results of the model validation using field measurements of SWE collected from six of the burns 

between February and March of 2019. Percentage difference between the base/postfire albedo model were 

calculated against the field observations and the 95% confidence interval was included when n > 1. 

Instances where the postfire albedo model performed better than the base model are highlighted in green. 
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APPENDIX A: LONG-TERM POSTFIRE RECOVERY TREND METHODS 

Prior to running SnowModel and applying the postfire recovery parameterization, 

long-term recovery trends were in albedo and landcover recovery were determined using 

remote sensing data from the study region. Albedo decay models were derived from 

MODIS MOD10A1 snow albedo data retrieved and pre-processed by Gersh and Gleason 

(Gersh & Gleason, 2022). MOD10A1 snow albedo is of 500m pixel resolution and is 

available on a daily basis. Pixel values within the burn regions were extracted for each 

day and cross-referenced with the MTBS burn severity data to determine the burn 

severity of each pixel. Due to the difference in image resolution between MTBS data and 

MODIS data (30m and 500m, respectively) the MTBS and MOD10A1 data were 

resampled to 250m and then burn severity values from MTBS were joined with the 

respective MOD10A1 snow albedo value for that pixel area.  

 To develop models of snow albedo decay as a function of days since snowfall, 

snow albedo data were classified according to their associated burn severity levels and 

years since fire. All pixels with negative years since fire values were classified as pre-

fire. Snow depth data was retrieved from the nine SNOTEL stations contained within the 

study region via the National Weather and Climate Center (NWCC) data retrieval tool, 

averaged across all stations by date, and differenced using a lag time of 1 day to produce 

an average per day difference in snow depth for the entire study region. Snow days were 

classified as days where snow depth increased by 5cm or more since the previous day 

using base R. The “days since snowfall” data were then joined with the extracted snow 

albedo values in such a way that each snow albedo data point was associated with the 

number of days since snowfall.  
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A generalized linear model using a Gaussian distribution and a link log was then 

derived from these data using days since snowfall as the predictor variable and resulting 

snow albedo as the response. Several different factoring variables were used to identify 

key trends in the recovery of snow albedo decay over years since fire. Postfire data was 

split into three epochs (0-6 years postfire, 7-10 years postfire, and 11-15 years postfire) 

based on findings from Gersh and Kelly (2022). Albedo decay models were also 

computed as a function of burn severity. Finally, albedo decay models for buffer zones 

outside the burn regions were computed to determine significant differences in snow 

albedo between unburned and burned regions. Several Tukey plots were then produced 

using ggplot2 to identify key factors in predicting snow albedo decay in burned regions.  

Following Tukey plot analysis, it was found that pre-fire and postfire explained 

the most variance in snow albedo decay and thus factors of landcover and years since fire 

were excluded. Two final models were produced using the generalized linear log model: 

one for the pre-fire snow albedo values and one for the postfire snow albedo values. Each 

of the individual models was tested for significance using a t-test and then analysis of 

variance was computed between the two models using a Wald test. Stepwise functions 

based on years since fire were then computed such that snow albedo decay would recover 

to pre-burn levels over 15 years. This was done by creating 13 equally-sized steps 

between the parameters of the post-burn snow albedo decay function and the pre-burn 

snow albedo decay function. These models would then be used later in SnowModel to 

simulate the recovery of snow albedo decay over the course of 15 years following burn. 
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APPENDIX B: TUKEY ANALYSIS OF LONG TERM POSTFIRE RECOVERY 

TRENDS 

Prior to modeling burned albedo decay, I set out to identify key differentiating 

trends in snow albedo within and without the burn region. MOD10A1 surface snow 

albedo data was grouped by landcover and years since burn and analyzed using two 

Tukey plots (Figure A1 and Figure A2). Tukey plot comparison within the burn regions 

showed similar long term albedo values regardless of burn severity (Figure A1). Pixels 

classified as high and medium burns showed no significant difference from one another 

for up to 15 years following fire. Low severity burned pixels only showed a significant 

difference from high burn pixels in the first 6 years following fire and showed no 

significant difference from moderate burn pixels for the entire period. These findings 

provided the rationale that burned pixels, regardless of MTBS burn severity 

classifications, can be grouped into a single classification. Comparison of open pixels 

with low, medium and high severity burned pixels showed significant differences over 

the entire time period. Further, burned pixels seemed to trend towards albedo values 

similar to open regions over the course of the time range. These two findings led to two 

important conclusions: 1) burned areas have similar surface snow albedo values to one 

another in the long term, regardless of burn severity, and thus can be grouped and 

classified as one and 2) burned pixels trend towards open area surface snow albedo 

values in the long term, thus providing the rationale for incorporating a recovery 

mechanic in the SnowModel parameterizations to come. 

To justify using a modified snow albedo decay function for burned pixels, it was 

necessary to identify significant differences between snow surface albedo values within 
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the burn and outside the burn regions. Tukey plots comparing snow surface albedos in the 

burn regions to snow surface albedos outside the burn regions were constructed (Figure 

A2). For this figure, burned pixels were grouped into a single “Burn” group based on the 

reasoning above and these pixels showed significant differences from snow surface 

albedo values outside in the buffer regions outside the burns. Tukey analysis showed all 

groups (buffer forest, buffer open, burned, and open within burn) were significantly 

different from one another across all time periods. Burned pixels exhibited significantly 

lower SSA than buffer open pixels 0-6 years PF, no significant difference between 6-10 

years PF, and significantly higher SSA 10+ PF. This indicated that although burned 

forests have lower SSA immediately following fire, they eventually recover to a state 

similar to that of an unburned open region in the long term. This observation is further 

supported by comparison to burned forests with unburned forests. Burned forests 

exhibited significantly higher SSA values than unburned forests at all time periods and 

the gap between these two landscape types widened in the longer term. Together these 

observations show that SSA in burned forests increasingly deviate from forest SSA 

values and approach and overtake SSA values in open regions. Following a burn, forest 

canopy is removed and burned forests become more like open regions in the decades 

following fire. Analysis of the Tukey plots provided the rationale for creating differing 

albedo decay models for pre-burn and post-burn pixels. Further, SSA trends approach 

levels similar to open regions in the long term, thus snow albedo decay should recover to 

pre-burn albedo decay levels of open regions in the long term. 

Following Tukey plot analysis of the MOD10A1 data, albedo decay models were 

computed for both pre-fire and postfire pixels and divided into accumulation and ablation 
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periods (Figure A3). Exponential decay models were computed using a generalized linear 

model with a Gaussian log-link (Table 6). Both the pre-fire and postfire models were 

found to be significant using a t-test. When separated into accumulation and ablation 

submodels, pre- and postfire accumulation albedo decay were found to be significantly 

different using a Wald test. Likewise, pre- and postfire ablation albedo decay models 

were found to be significantly different to high degree using a Wald test. Snow albedo 

was plotted as a function of days since snowfall measured using SNOTEL snow depths. 

Separate albedo decay models were computed for accumulation and ablation periods as 

snow metamorphism has been shown to accelerate much more rapidly during the ablation 

period than during accumulation. During accumulation, pre- and postfire albedo decay 

showed similar decay rates, but postfire albedo was higher at all days following fresh 

snowfall. This is likely due to the fact that the solar incidence angle during early winter is 

lower, thus temperature gradients within the snowpack are substantially lower during the 

accumulation period and the postfire effects on snow albedo are not significant in 

comparison to the postfire removal of canopy cover. During ablation, the initial albedo 

following snowfall is higher than pre-fire SSA, but decays at a much faster rate. This 

aligns well with findings in the literature as, during ablation (April 1st till snow 

disappearance), the solar incidence angle is much higher and additional absorption of 

shortwave radiation caused by postfire introductions of black carbon into the snowpack 

are more significant than in the accumulation period. This creates greater temperature 

gradients that accelerate snow metamorphism and result in faster decay of snow albedo in 

the days following fresh snowfall. 
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APPENDIX C: FIGURES AND TABLES 

  

 Figure A1: A Tukey plot of differences in mean MOD10A1-measured snow albedo data in comparison to 

burn severity within the burn regions. The plots are split into different periods following the burn based on 

significant snow albedo recovery partitions from Gersh and Gleason, 2021. The y-axis shows which 

landcover types are being compared and the plot shows the relative difference mean albedo between the 

first landcover type and the second landcover type. 
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Figure A2: A Tukey plot of differences in mean MOD10A1-measured snow albedo data in comparison to 

burn severity between regions outside the burn areas and regions inside the burn areas. All burn types 

were combined into a single “Burn” group. Open areas within the burn are titled “Open”. Buffer forest 

and buffer open areas outside the burn are titled “BuFo” and BuOp”, respectively. 
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 Figure A3: The results of the snow albedo decay generalized linear model with snow albedo as a function 

of days since last snowfall. Box plots showing the distribution of the snow albedo of pixels within the burn 

region separated by landcover type are underlayed behind the decay functions. Four decay functions were 

computed (pre-fire accumulation, pre-fire ablation, postfire accumulation, and postfire ablation) and the 

coefficients of these functions are included within the plot. 
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Table A1: Numerical results of significance testing performed on all modeled SWE results. For each 

result, 100 random pixels between the base model and postfire albedo model were selected and a two-

sided Welch Two-Sample t-test was performed with an alpha value of 0.05. 
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 Table A2: Table showing the results of the generalized linear log-link model 

performed to calculate albedo decay models for burned and unburned regions 

using MODIS-MOD10A1 surface snow albedo data collected by Gersh et al. 

(2022). A Wald test was carried out to determine significant differences between 

the accumulation and ablation models for pre- and postfire periods. The results 

of the Wald test (standard error, Wald Z score, and p-value) are shown on the 

second table. 
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