
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1996

A Policy-Independent Secure X Server A Policy-Independent Secure X Server

Kirk Joseph Bittler
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Bittler, Kirk Joseph, "A Policy-Independent Secure X Server" (1996). Dissertations and Theses. Paper 6231.
https://doi.org/10.15760/etd.8091

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6231
https://doi.org/10.15760/etd.8091
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Kirk Joseph Bittier for the Master of Science in Computer Sci

ence were presented December 9, 1996, and accepted by the thesis committee and de

partment.

COMMITTEE APPROVALS:

Mike Driscoll, Representative of the
Offic uate Studies

DEPARTMENT APPROVAL:

Department of Computer Science

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

ohn McHugh, Chair

ABSTRACT

An abstract of the thesis of Kirk Joseph Bittier for the degree Master of Science in Com

puter Science, presented December 9, 1996.

Title: A Policy-Independent Secure X Server

This thesis demonstrates that a secure X system can be designed and im

plemented to be independent of a particular security policy. The advantages and costs

of a separation of security policy and enforcement are examined by developing a large

scale application, the DX windowing system, on a DTOS platform.

DTOS is a high assurance operating system that isolates policy decisions

in a Security Server. A security conscious process, such as DX, eliminates policy con

siderations from the code. The process instead consults the Security Server and enforces

the decisions that server derives from the policy.

The DX architecture is described and its internal design examined. A

discussion of X Windows security issues and an evaluation of the DX response is in

cluded. The performance of DX is analyzed and future work in the area of secure X

systems is considered.

A POLICY-INDEPENDENT SECURE X SERVER

by

Kirk Joseph Bittier

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University

1997

Contents
List of Tables . iv

List of Figures . v

1. Introduction . 1

2. Computer Security . 5

2.1 Overview . 5

2.2 Security Ratings and the "Orange Book" 8

3. The X Window System . 11

3.1 The X Protocol . 11

3.2 The X Architecture . 13

3.2.1 Flow of Control 14

3.2.2 Windows . 14

3.2.3 Event Processing 15

4. TX .. 17

4.1 TMach . 17

4.2 X on TMach . 18

5. The DTOS Operating System . 22

5.1 The Synergy Model . 22

5.2 DTOS 23

5.2.1 The Mach Operating System 23

5.2.2 DTOS and Security 28

6. X and Security . 34

7. The DX System. 38

7.1 Init.. 40

7 .2 The Communications Manager 41

7.3 The Single Level Server . 42

7.3.1 Modifications for use with the IM 42

7.3.2 Modifications for use with the DM 43

7.4 The Display Manager . 45

7.4.1 Initialization and Connections 45

7.4.2 Normal Operation 47

7.4.3 Changing Levels 52

7 .5 The Input Manager . 54

7 .5.1 Initialization and Communication . . . 54

7.5.2 Normal Operation 55

7.5.3 Changing Levels 56

7 .6 The Trusted Module . 57

7.7 The Property Escalator and Selection Emulators 58

7.8 DTOS Security Changes to Accomodate DX 60

8. DX Security Analysis . 62

8.1 Authentication . 62

8.2 Privileges . 62

8.3 Mandatory Access Control . 63

8.4 Discretionary Access Control 63

8.5 Secure Networking . 63

8.6 Visible Labeling . 64

8.7 Trusted Path . 65

8.8 Auditing . 66

8.9 Cut and Paste . 66

8.10 Denial of Service . 66

8.11 Input Processing . 66

8.12 Overlapping Windows . 67

8.13 Window Managers . 67

8.14 TCB Size and Structure . 67

9. Analysis and Future Work . 69

9.1 Performance . 69

9.2 Variations to the DX Design 71

9.3 Single Server Approaches to Secure X 72

11

I 0. Conclusions . 73

References . 74

ll1

List of Tables

Table 8.1: TCB Size . 67

iv

List of Figures

Figure 3.1: X Architecture . 11

Figure 5.1: TX Architecture . 18

Figure 6. 1 : The Synergy Model . 22

Figure 7 .1: The DX System . 39

Figure 7.2: DX Ports and Port Rights . 41

V

1. Introduction

This thesis wil1 show that a secure X Windows System can be designed

and implemented to enforce a variety of security policies without change to the code. X

has become the standard windowing system in Unix environments, so an X system that

would support a wide range of the various security policies in use today, without modifi

cation to the code, could be used in many different commercial and government settings.

The National Security Agency Synergy research project provides an operating system

model on which we propose to develop a policy independent secure X system. Synergy

is designed to support a large variety of security policies. This is accomplished by sepa

rating policy from its enforcement, with the former being localized in a Security Server ..

It is widely held that dividing policy from mechanism has significant ad

vantages. Among the benefits are the ease with which policy may be replaced or main

tained, the portability of applications, and higher assurance that applications are enforc

ing the same policy. This separation also has potential efficiency costs in both design and

execution. The Synergy architectural model strictly separates security policy from its en

forcement by isolating security policy decisions in a Security Server. A security con

scious application first contacts the Security Server to ascertain if a particular operation

is allowed and then enforces the server's decision. The design appears elegant, yet has

not been demonstrated through the construction of significant security sensitive software.

This thesis proposes that the Synergy architecture provides a reasonable model for de

signing a large scale policy neutral application.

The X Window System1, or X, by design, fully supports sharing of re

sources and thus is inherently insecure. While most secure systems require some type

of isolation so that the limited interaction of processes can be strictly monitored, the X

1. Trademarks: X Window System is a trademark of the Massachusetts Institute of Technology.
UNIX is a registered trademark of X/Open.

system promotes the sharing of data and resources among applications. The clients of an

X server are meant to cooperate with each other. There are codes of "proper behavior",

but no enforcement of them. This makes for an attractive and versatile windowing system

in the absence of security concerns. Reconciling this approach, however, with the needs

of a secure system is a significant problem.

X is defined by an asynchronous protocol that supports, but does not dic

tate, graphical user interfaces. An X server controls the hardware involved and imple

ments graphics functionality by operating on resources such as windows, fonts, and cur

sors. X clients are application programs that communicate with the X server by requesting

operations upon these resources. A client that implements a specific graphical user inter

face is called a window manager.

X is not able to restrict access to its resources. Any resource can be used

by any client, whether or not that client was responsible for its creation, by simply supply

ing the appropriate resource ID in the X protocol request. A malicious client, thus can

not only access the entire display region of another client, but can also sabotage other cli

ents in numerous other ways. Indeed, all clients have equal rights - there is no notion

of privilege.

By a secure X system, we mean a system that prevents unauthorized infor

mation from being disclosed, altered, and ensures the availability of its services, yet al

lows most current X applications to run without modification. In particular, the following

issues are of concern. This list is selected from [4] and represents, in part, an interpreta

tion of issues involved in creating a secure X Windows System. The DX system should

provide the means for authentication of connecting clients including clients on remote

hosts, visible labeling of windows indicative of sensitivity, a trusted path mechanism to

authenticate the system to the user, and elimination of the communication channels

created by overlapping windows of different sensitivities. A further objective is to mini-

2

mize the size of the Trusted Computing Base while keeping its component modules both

small and functionally consistent, to ensure that trusted modules do no more than they

should.

One system designed with reference to some of these goals is TX. Sepa

rating resources of clients at different sensitivity levels is an obvious solution to some

problems in securing an X system. The design of the TX system involves separation of

the management of shared devices, the screen, the keyboard, and the mouse, from the rest

of the X server code. The portion responsible for device management must be trusted to

allow access only as prescribed by the security policy. The rest of the code is "polyinstan

tiated", or replicated once for each active sensitivity level. This ensures that all other X

resources are shared only by clients at the same sensitivity level.

Built on the TMach2 operating system, TX was created with a specific se

curity policy embedded into the code: a DoD style multilevel secure policy. TX was a

trusted application created to run on a B3 system. It was targeted to show that such an

X system could achieve a B3 application rating. It was not certified as such, but was a

prototype for future work.

In order to demonstrate the thesis, a prototype policy independent secure

X system, DX, based on the TX design will be designed and implemented on the DTOS

operating system .. DTOS is based on the Synergy architectural model. Though the high

level TX design is publicly available, we have not had access to the TX code. Developing

an internal design for a secure X system , then, is a major objective of this work. Imple

menting a policy-independent system on DTOS requires recognition of any policy deci

sions built into the design, removal of these decisions from the system, and the substitu

tion of calls to the Security Server in their place.

2. Trademark of Trusted Information Systems, Inc.

3

Performance issues inherent in the design and specific to the DX prototype

implementation will also be explored.

In order to understand the DX design and its goals certain background ma

terial is necessary. Therefore, before presenting the design of the DX system we will pro

vide, in chapter 2, a brief introduction to computer security, and, in chapter 3, an introduc

tion to the X Window System. Chapter 4 describes the TX approach to security folowed

by an introduction to the target DTOS operating system in chapter 5. The security prob

lems involved in creating a secure X system are investigated in chapter 6. Chapter 7 de

scribes the design and implementation of the DX system in detail. An analysis of the DX

system with the respect to the problems described in chapter 6 follows. There follows

an investigation of the performance of the DX system and some possibilities for future

work in this area. The paper concludes with a discussion of the Synergy security architec

ture in practical applications such as DX.

4

2. Computer Security

2.1 Overview

Computer security is concerned with the protection of data resources from

inappropriate disclosure, alteration, or destruction. In addition, the ability to use system

resources must be restricted and carefully controlled. The specific needs of a system will

vary depending on, among other things, how a system is used, who has access to the sys

tem, what resources are available, and the concerns of the system owner. A system's secu

rity requirements can be expressed as a "policy" in terms of the following:

Confidentiality: The assurance that sensitive information is not dis

closed to unauthorized subjects.

Integrity: The assurance that data and programs are not destroyed

or modified in an unauthorized manner.

Availability: Resources are usable when needed by an authorized

user.

Before a security policy is defined the entities and operations of a system

must be identified. Entities are divided into subjects and objects. A subject is an active

computer entity that can initiate requests for resources and utilize those resources to com

plete some computing task, e.g. processes or process groups executing on behalf of some

user. An object is a passive repository used to store information, e.g. files, directories,

memory. At times, interprocess communication (IPC) mechanisms result in processes

classified as both subjects and objects. A policy states under what conditions a subject

may operate on an object. Operations are types of accesses include reading, writing, de

leting, etc.

5

Certain portions of a system are trusted with enforcing the security policy.

These make up the Trusted Computing Base (TCB). The. TCB should be protected from

non-trusted parts of the system to assure its inviolability.

There are several mechanisms for enforcing confidentiality, integrity and

availability. Among them are authentication, access control, penetration analysis, and co

vert channel analysis.

Access Control comprises those methods of enforcing which subjects are

allowed to access which objects. There are two primary classifications of access control.

Discretionary Access Control (DAC) is the enforcement of user specified access. For

example, in a Unix system the owner of a file may set access permissions for owner,

group, and world (anyone else). The access permissions are at the discretion of the owner.

Mandatory Access Control (MAC) enforces access mediation at the discretion of a sys

tem administration facility, based on the security attributes of the subject and object in

question. For instance, a file may be labeled "top-secret", and a process attempting read

it may be labeled "confidential". Under these circumstances read permission is denied.

Authentication consist of the procedures and mechanisms that a1low a

system to ensure that the stated identity of some external agent is correct. The question

asked is, "how do we know someone or something is what it claims to be?" For instance,

passwords are an authentication mechanism for users, as are various "smart card" and bio

metric identification methods. Users may also wish that the system provide a direct

means to communicate with the TCB. This can be supported by a Trusted Path mecha

nism. Frequently, a trusted path is implemented using a Secure Attention Key (SAK).

When the SAK is pressed, all processes running at the terminal are suspended except the

one trusted listener. This provides a guarantee of direct access to the system. No process

can persuade the user that it is the trusted system, causing him/her to reveal privileged

6

information. Such an attempt by a program is cal1ed "spoofing". The trusted path only

works if the user regularly presses the SAK to begin a dialogue with the system.

There are also assurance techniques available for raising one's confidence

in the security mechanisms of the system. Penetration Analysis attempts to find the

flaws in a system by attacking it. Though useful, it can never prove the absence of prob

lems. Greater assurance can be obtained by subjecting the system to Formal Verifica

tion. This includes creating both a formal model and a formal mathematical specifica

tion. Proofs are used to verify the correctness of the transition from one stage to another.

This technique requires significant effort, but is required for some systems.

Covert Channel Analysis attempts to discover and analyze how pro

cesses can send information through means other than those intended for data transfer.

Storage channels are exploited by a sending process changing some system attribute that

acts as a "signal" to a receiving process that monitors the attribute. This results in a coded

message being transferred. For example, process B can signal information to process A

simply by changing the name of a file. As a result, even if process A cannot directly com

municate with process B or read a file to which process B writes, A may still be able to

see the file. If so, then This simple covert channel may be closed by making the file invis

ible to process A, but will other channels be introduced? For example, the amount of disk

space used by the directory can change. Timing channels vary the time required by vari

ous operations, using the passage of time as a coding scheme. These are even more diffi

cult to discover. Storage and timing channels, collectively known as covert channels are

particularly insidious since they avoid the normal access control checks.

One type of program that exploits covert channels is a Trojan Horse. Such

a program looks like a normal program that appears to work correctly, but with unob

served side effects. For example, a Trojan Horse disguised as a text editor may use a co

vert channel to pass some of the information entered by a user to an unauthorized process.

7

The effectiveness of this or any covert channel is typically measured by its "bandwidth"

(i.e. bits per second). Since covert channels are difficult to eliminate, a covert channel

with a bandwidth of .001 bits/sec may be considered tolerable. Depending on the data

in question and the system goals, one bit each thousand seconds could be a disaster. In

general, though, the higher the bandwidth, the more likely a covert channel is a cause for

concern.

2.2 Security Ratings and the "Orange Book"

In 1983 the Department of Defense Computer Security Center released an

official evaluation criteria for secure systems. The 1985 revision of the "Department of

Defense Trusted Computer Evaluation Criteria", also known as the "TCSEC" or the

"Orange Book" (because of the color of its cover), became a standard for evaluating

trusted systems in the United States. Since 1985 other official standards have been de

fined, most notably the 1989 "Canadian Trusted Computer Product Evaluation Criteria",

and the 1990 European "Information Technology Security Evaluation Criteria". Many,

indeed, feel that the TCSEC is becoming quickly outdated. At least, it may be inappropri

ate for many new situations such as distributed systems. The "Common Criteria," or

"CC", released in 1996, attempts to harmonize the various standards listed above into a

new evaluation criteria. The CC promises to become the standard for evaluation criteria.

The systems in this paper are closely concerned with the TCSEC rating system.

The TCSEC lists several fundamental requirements for secure systems.

The ratings of systems depend on the degree to which these "requirements" are met. They

include[6]:

Security policy - There must be an explicit and well-defined secu

rity policy enforced by the system.

Marking - Access control labels must be associated with objects.

8

Identification - Individual subjects must be identified.

Accountability - Audit information must be selectively kept and

protected so that actions affecting security can be traced to the re

sponsible party.

Assurance - The computer system must contain hardware/software

mechanisms that can be independently evaluated to provide suffi

cient assurance that the system enforces [the four] requirements

above.

Continuous Protection - The trusted mechanisms that enforce these

basic requirements must be continuously protected against tamper

ing and/or unauthorized changes.

The TCSEC lists four basic security divisions, A, B, C, and D, with some

subdivisions. The requirements are monotonically increasing, from lowest D to highest

A. If a lower rated division has a requirement, then all higher divisions have it also.

D: A system in this division has been evaluated but fails to meet the requirements for any

other division.

C: To be in the C division a system must enforce Discretionary Access Control. This

division is intended for single sensitivity level systems. It is subdivided into

Cl: A Cl rating requires user authentication and functional tests

for assurance of the system.

C2: A C2 rating requires a login procedure, auditing of security

relevant information, and resource isolation.

9

B: To be in the B division, a system must enforce Mandatory Access Control. It is in

tended for systems with multiple sensitivity levels. The subdivisions of the B division

are as follows:

Bl: AB 1 rating requires a specific informal security policy state

ment, sensitivity labels for all data, and mandatory access control.

B2: A B2 rating requires a formal policy model, labels for all sub

jects and objects, a trusted path mechanism for purposes of authen

tication, covert channel analysis, and a division of protection-criti

cal and protection-non-critical components.

B3: In addition to all the previously stated requirements, a B3 rat

ing requires a security administrator and recovery procedures. In

addition, all accesses must be through a reference monitor. A "ref

erence monitor" has three requirements: It must be tamperproof. It

must mediate every access. It must be small enough to be analyzed

completely.

A: To be in the A division, a system is not required to provide additional security func

tionality than for a B3 rating. The level of assurance, however, must be higher. The re

quirements include a Formal Model, a Formal Top Level Specification (FTLS), and a

proof of their consistency. Also necessary are an informal FTLS to code proof and a for

mal covert channel analysis.

3. The X Window System

The X Window System is a popu1ar and versati1e windowing system. It

provides a hierarchy of resizab]e windows and support for high-performance, device-in

dependent graphics. Windows, cursors, and co]ormaps are among the abstractions pro

vided to applications.

The X architecture is based on a client/server mode] of distributed com

puting. The X server contro]s the screen (or screens), keyboard, pointer (usually a

mouse), and perhaps other input devices. X clients are application programs that commu

nicate with the X server by sending requests to operate on resources maintained by the

server. The X server controls the input devices, sending input events to clients as ap

propriate. Figure 3.1 illustrates the situation.

Window
Manager

Client #I Client #2 Client #3

Figure 3.1: X Architecture

3.1 The X Protocol

X is based on the asynchronous X protoco1. In fact, X is the X protoco1.

From its definition, an X system can be implemented. The versatility of X comes from

the fact that it is defined only by a protocol and not a particular graphical user interface

policy. The protoco] is asynchronous for higher performance. Since a round-trip mes-

11

sage sent across a network takes considerable time, not waiting around for responses,

which in many cases are not even needed, is much more-efficient.

There are three types of X protocol messages:

Requests: an X client may send a request to the X server, consisting of an object id(some

X resource such as a window, colormap, or cursor) and an operation (such as drawing a

line, changing a color, creating a window, mapping a window - displaying it to the

screen, or asking the size of a window).

Replies: the X server returns to a client information from some requests (such as asking

the size of a particular window). Replies only are returned when a request asked for infor

mation or in response to errors.

Events: the X server sends events to clients informing them of something that they have

expressed an interest in. For example, keyboard and pointer input create events. A client

registers for events of which it wishes to be informed. An expose event is generated

when a window, previously obscured, is uncovered. It is sent to the client which owns

the window. This client is then responsible for sending the requests to redraw it.

Here is an example of a simple X protocol session [3]:

X server

Open connection

accept connection, reply describing server

Create Window request

AllocColor request

reply to AllocColor request

CreateGC request

Map Window request

12

Expose event

PolyLine request

etc.

3.2 The X Architecture

The use of X has become quite widespread because the protocol implies

a device independent nature and because it is free. The X Sample Server may be obtained

for no cost over the Internet or from the X Consortium. Vendors optimize, or rewrite, this

server for their specific concerns, but the definition of the protocol is controlled by the

X Consortium. We also used the sample server as a starting point for the DX system.

The code for the sample server distributed by the X Consortium is divided

into three primary layers: the device independent or DIX layer, the device dependent or

DDX layer, and the operating system dependent or OS layer.

The DIX layer does not depend on graphics devices, input hardware, or

the host operating system. It controls the other parts of the server: the OS and DDX layers.

In addition, it is responsible for dispatching client requests, managing the event queues

and client data structures, and distributing events to clients.

The OS layer contains the higher level (non-DDX) functions that depend

on the operating system. These include listening for client connections and requests, for

warding requests to the DIX layer, and memory management. The OS layer also contains

routines that read font data from the font server.

The DDX layer contains procedures that manage the input devices and the

graphics hardware. Among its duties are the creation and handling of pixmaps, color

maps, screens, fonts, and graphics contexts. The DDX layer is, itself, split into two layers.

The top layer includes the mostly device independent frame buffer code. A frame buffer

is a section of memory to which the CPU may write directly instead of writing to a graph

ics coprocessor. It is able to handle monochrome frame buffers (one bit per pixel) or color

13

frame buffers (2, 8, 16, or 32 bits per pixel are supported). Included are most of the rou

tines that create and manage the frame buffer, pixmaps, colormaps, and graphics contexts.

The lower layer includes the code to initialize and probe input and output

devices, as well as any graphics device dependent rendering code. Included in this layer

are drivers for different operating systems and some specific graphics devices.

3.2.1 Flow of Control

The main routine, in the DIX layer, processes command line arguments,

controls initialization of devices, data structures, and communications. Device initializa

tion is done through the routines Initlnput and InitOutput in the DDX layer. The OS

layer handles communication set up.

When the server is ready for client requests, Dispatch is invoked by main.

Dispatch reads and distributes requests from clients and device input events. If a client

has requests ready in its queue, as determined by WaitForSomething (in the OS layer),

they will be read and dispatched to the appropriate handling routine. Between client proc

essing Dispatch handles input events by invoking ProcesslnputEvents which clears the

event queue.

3.2.2 Windows

Each window has a parent, which contains it, and possibly siblings and

children. Siblings (children with the same parent) have a stacking order. Windows higher

in the stacking order obscure lower ones if part of their respective areas overlap. Window

attributes are maintained in a WindowRec structure, which contains pointers to the par

ent, the previous sibling in the stacking order, the next sibling in the stacking order, the

first child in the stacking order, and the last child in the stacking order. These structures

form a window tree.

One of the purposes of this organization is to facilitate the process of clip

ping. Clipping ensures rendering is done only to those portions of a window that are vis-

14

ible. Therefore, each window also has clip-regions associated with it. These contain lists

of regions of the window that are currently visible. There are separate clip-regions for

the window and the window with border. When a window is mapped (displayed to the

screen), unmapped, moved, or resized it potentially affects the visibility of other win

dows. Therefore, when such an operation is performed, the window and border clip re

gions of any affected window must be updated. This process is called window tree valida

tion.

If an area of a window is exposed during one of the operations listed

above, after window tree validation occurs, an Expose event is generated and sent to its

client, which is then responsible for sending the appropriate requests to repaint the newly

exposed areas. Clients may, on the other hand, request backing store for a window. In

this case, just before portions of a window are obscured, the server saves them in off

screen memory, so they may be immediately rewritten in the event of exposure. This may

be much more efficient if a window's contents are updated infrequently.

3.2.3 Event Processing

Events fall into two categories: input events and server events. Input

events are generated by input from the devices. The pointer, keyboard, and perhaps oth

ers, are monitored by the X server, which, upon receipt of data passes control to the re

spective routine, ProcessPointerEvent, ProcessKeyboardEvent, or ProcessOtherEv

ent. These routines are responsible for keeping track of what clients should receive

notification for what events.

The server sends events to clients that have expressed an interest in them.

For a specific event, it discovers what clients these are by traversing the window tree look

ing for windows for which a client has registered an interest. The server then sends an

event notification to that (or those) client(s). There is, however, another way.

15

Clients sometimes grab a device. When this occurs, the input events for

that device are sent only to the interested client. Grabs are of two types, each of which

may be of two modes, an active or a passive grab. In an active grab the client takes over

the device immediately. In a passive grab, the c1ient specifies a combination of key and

button pushes that initiate the grab. Each type of grab may be either synchronous or asyn

chronous. In a synchronous grab the device is essentially frozen until the client allows

more events. For an asynchronous grab events are queued for later delivery to the client

as usual.

Server events, on the other hand, are sent only to the client that created the

window in which the events occur. These events are handles by the routine DeliverEv

ents.

16

4. TX

Trusted X, a prototype secure X system, is designed for the TMach operat

ing system. Both TMach and TX are designed to enforce a standard multi-level secure

policy.

4.1 TMach

The Trusted Mach system, or TMach is a highly secure operating system

base. It consists of a microkernel based on Mach principles and a set of servers. It is eval

uated to a B3 security rating. It may, variously, take on the personality of a Unix, DOS,

or, in the future, some other operating system through changing some of the higher level

servers.

TMach is a layered system. Each layer depends on the lower for function

ality but may not tamper with it. The bottom layer is TMach kernel, which provides the

basic abstractions in the same way as does the Mach microkernel (see chapter 5.2.1):

tasks, threads, ports, messages, and memory objects, along with others such as 1/0. It is

certainly security conscious, but does no policy-specific mediation. The kernel provides

the means for servers to construct various security functions of the system.

The rest of the TMach trusted computing base consists of a set of servers.

These constitute layers above the kernel and provide multi-level secure services for other

trusted servers as well as untrusted applications. They include a File Server, an Authenti

cation Server, an Audit Server, a Printer Server, and the Trusted Shell Utilities. The last

include a trusted path mechanism. The servers execute as separate tasks with independent

address spaces. Communication between server and client is via IPC messages or explic

itly shared memory. This isolation allows security properties to be more easily verified.

Another server, the Root Name Server, handles all access mediation based on the security

policy.

17

Outside the TCB are the single-level OS servers. These include servers

for NFS, sockets, and pipes. Finally, on the top layer are the user processes.

4.2 X on TMach

TX was designed as a prototype multilevel secure X windows system with

a target B3 security rating. The premise of the design is the encapsulation of untrusted

functionality to limit the size of trusted code, together with polyinstantiation of the un

trusted code per sensitivity level. This allows isolation of untrusted portions from their

counterparts at other levels.

property

escalator

otherwindowselection
manager clientsemulator

screen

Figure 5.1: TX Architecture

The majority of the X server remains untrusted. The input functionality

(keyboard and pointer input) and output functionality (the display), however, require trust

because input and output each involve managing data from different security levels. An

18

Input Manager was created for the handling of keyboard and pointer input, and a Display

Manager was created for handling the actual display of infonnation on the screen.

The modified X server, called the Single Level Server (SLS), no longer

directly receives input from the keyboard or mouse, but from the Input Manager. Like

wise, it no longer writes to the screen, but instead, sends the information to the Display

Manager which renders it. The Single Level Server may now be untrusted. It is replicated

once per security level and works independently from all of the other instantiations.

The Input Manager (IM) is responsible for routing keyboard and mouse

input to the correct Single Level Server, or, in response to the Secure Attention Key se

quence, to the MiniServer. When an input destination is specified by the user - a Single

Level Server, the MiniServer-Trusted Shell, or none, all subsequent input is sent to that

server only, until the Secure Attention Key is pressed again.

The Display Manager (DM) is the largest and most complicated of the

trusted modules. It is responsible for accepting the output of the various SLSs, combining

them into a coherent image, and displaying the result. This also requires labeling the win

dows according to their sensitivity levels. Each window has a label on all four sides, out

side any window manager dressing, indicative of the sensitivity level to which it belongs.

For efficiency as well as to minimize the size of trusted code, the DM does

not do low-level rendering. Rather, it composes the screen image from "frame buffers"

sent in messages from Single Level Servers. The DM keeps track of all top-level win

dows, i.e. children of the root window. All other visible windows are contained within

these. When a SLS maps (or updates) a window, it sends a Mach message to the DM.

The message includes information such as the frame buffer (a buffer containing the pixel

map for the top-level window), and the position, size and stacking order of top-level win

dows. The DM maintains all this infonnation for each window. In addition, it records

the colonnap used at each level, along with the position, image, and color of the cursor.

19

When the MiniServer instructs the Display Manager to change the active

Single Level Server, the correct colormap is installed and the correct cursor image is

placed in the position it previously occupied when this level was last active.

When a level is inactive it may not map or unmap windows (i.e. cause

them to be drawn to the screen or removed thence). Since the Single Level Servers do

not know what the others are doing, mapping a window from an inactive server would

not cause a security problem, but it could obscure a window currently in use. Even if

placed in the background it could be disconcerting. TX resolves this problem by distin

guishing between operations that should occur immediately and ones that can be delayed.

The DM has two ports on which it receives requests: the "hold" port and the "non-hold"

port. Mapping, unmapping, and some other requests are sent to the hold port. There they

are "held" until the server which sent them becomes active. Requests sent to the "non

hold" port are fulfilled in the usual fashion. For example, if a clock were running at an

inactive level, it should still be updated.

An area of the screen is reserved for use by the MiniServer to provide users

with security state information. The MS sends messages to the DM which are immediate

ly displayed in this area. This is part of the trusted path mechanism. The Single Level

Servers know nothing of it.

The MiniServer (MS) and Trusted Shell (TSH) are concerned with the

trusted path mechanism. As has been mentioned, the MS is part of the trusted path. It

communicates with the Input Manager and the Display Manager and provides simple

buffers for the DM to display. The Trusted Shell interacts closely with the MS, providing

it with the information it renders for display by the DM. The TSH is the user interface

for certain administrative functions such as creating a new SLS, selecting an active SLS,

locking or unlocking the screen, displaying the sensitivity level of a window on the

screen, or exiting TX.

20

So far, all these modules have served to keep clients at different levels sep

arate from each other. Some interaction, though, is desired. In particular, cutting and

pasting is a useful and characteristic function of X, but must be mediated by some trusted

module. The Property Escalator (PE) is an implementation of such a server. The Selec

tion Emulators (SE) are untrusted clients that grab cut buffers at their level and pass them

on to the PE. Conversely, when a paste is requested at the level of an SE, it forwards the

request to the PE. The PE then makes a decision as to what cut is allowed to be pasted

to the requesting level. From its store of such cuts, the PE returns to the SE the one it

deems appropriate. To reiterate, there is one PE, which is trusted, and multiple untrusted

SEs, one per sensitivity level.

These are the primary modules involved in the TX system. There are also

a Server Initiator that starts up the Single Level Servers when asked to by the DM, a

Client Initiator that starts the SE, and a Window Manager for each SLS. Once commu

nication has been established between the X client and the SLS, subsequent X protocol

messages to pass directly between client and server.

It would be well to note here that the TX system restricts the drawing of

"help-lines" by window managers when placing a window on the screen. Instead, the DM

renders these lines. An extension to the X protocol was made for this purpose.

In summary, the TX system provides a very solid security design, targeted

at B3 for a multi-level secure policy. It does not provide trusted graphics (Single Level

Servers are untrusted), but enforces a separation of different sensitivity levels, with only

mediated cut and paste interaction. The extra overhead of the various trusted modules

does have a negative effect on performance. On the average TX responses are about half

the speed of ordinary X.

21

5. The DTOS Operating System

5.1 The Synergy Model

Synergy is a National Security Agency research project for developing a

"distributed, microkemel-based security architecture that will allow for flexibility in the

security policies implemented and enforced[14]." This is a much different approach than

TMach, which was designed specifically for multilevel secure policies.

The architecture divides functionality into servers allowing each part to

be conceptually simpler, and increasing the flexibility of the system. The design also iso

lates security policy in a separate Security Server with enforcement by security conscious

servers. The consequence is a system that can support a wide variety of security policies

with relatively minor adjustments. The following servers are included in the original

Synergy model.

application application application

OS Servers

audit
server

authentication
server

crypto
server

microkernel

Figure 6.1: The Synergy Model

1. A microkernel provides the basic lowest level operating system

functions (see the discussion of Mach to follow in 6.2.1). It also

enforces all system access control decisions.

22

2. A Security Server is responsible for all access control policy de

cisions.

3. An Audit Server accepts and logs audit messages from all parts

of the system.

4. A Cryptographic Subsystem is provided for encryption services.

5. A Network Server supports multi-level secure communication

across physically unprotected networks.

6. An Authentication Server provides authentication for users and

other systems.

7. OS Servers are responsible for all normal OS functionality not

included in the microkernel.

5.2 DTOS
DTOS is an implementation of aspects of the Synergy model. Its stated

goal is " .. directed toward making an experimental microkernel-based secure operating

system generally available to support further research and development in a number of

different aspects of secure distributed computing[15]."

DTOS uses a modified version of the Mach microkernel with a LITES

server to provide a Unix personality. We will first consider the Mach system. Then we

will consider the security features added by DTOS.

5.2.1 The Mach Operating System

The Mach operating system was designed with the following objectives.

1. Provide a base for other operating systems.

2. Support large sparse address spaces.

3. Allow transparent access to network resources.

23

4. Exploit parallelism in both system and applications

5. Portability.

Mach is designed around a microkemel. The microkemel is much smaller

than a monolithic kernel such as Unix. Indeed, its scope is much more limited. The re

sponsibilities of the microkemel include only simple process management, memory man

agement, communication, and I/O. All remaining duties, including file system manage

ment, are handled by servers running in user space.

In accordance with the first stated goal above, Mach may be used as a base

for other operating systems by providing an emulator. An emulator typically consists of

a set of servers to handle various OS functions and an emulation library. For example,

consider the BSD Unix emulator. When a Unix system call is made, the application traps

to the microkemel. The microkemel "bounces" this back to the emulation library, which

is part of the application binary. The emulation library redirects the system call as a re

mote procedure call to the appropriate Unix server, which uses Mach primitives to satisfy

the system call. In this way Mach takes on the "personality" of BSD Unix.

Some current releases of Mach use a 4.4 BSD Lite server called LITES.

Other emulators could be created with the personalties of other operating systems. In

deed, one could run multiple OSs simultaneously on top of Mach by providing the ap

propriate servers and emulation libraries.

The Mach microkemel supports five basic abstractions: tasks, threads,

ports, messages, and memory objects.

Tasks: A task is the environment in which program execution can occur. It is a passive

entity consisting of the address space for the program (program text, data, and stacks),

one or more threads, and some ports (including the process port, the bootstrap port, the

exception port, and registered ports).

24

Threads: A thread is the executable member of the task, or its "active entity". It contains

a program counter and registers, executes the instructions, and manipulate the task's ad

dress space and registers. Threads are managed by the Mach kernel. A thread is associat

ed with a particular task, but more than one thread may belong to that task. In a multipro

cessor environment threads may execute on different processors in parallel, while in a

single CPU environment they are timeshared. Threads common to a task share the same

address space and the special ports owned by the task of which they belong. In essence,

a Unix process is a task containing a single thread. The "lightweight" nature of a thread

(i.e., the fact that creating a new thread does not involve a new address space and special

ports) means that it is relatively cheap to create multithreaded programs in comparison

to Unix processes.

Ports: A port is a protected "mailbox" inside the kernel. All interprocess communication

in Mach is done via unidirectional ports. There are three basic port rights:

1. A receive right- Each port has one and only one receive right

associated with it. The task with this right is the only task which

can get messages from the port.

2. A send right - Each port may have multiple send rights associ

ated with it. Each task holding a send right may send messages to

the port.

3. A send-once right-Each task holding a send-once right may

send one message to the port, after which the right disappears.

There are also rights, more properly associated with the messages than the ports, that re

late to the transfer between tasks of these basic rights.

25

Associated with each port is a message queue, a count of rights to that port,

and limits on the amount of virtual copy memory, port rights and data the port can receive.

All Mach entities are referred to by ports. For example, a task always has

an associated task port. Threads executing on behalf of a task use the task port to send

requests to the kernel. A task also has a bootstrap port (receive right) for task initializa

tion, an exception port (receive right) on which it receives errors, and a set of registered

ports for communication with standard system servers. Likewise, threads are referred to

by a thread port and abstract memory objects by a memory object representative port.

Messages Mach interprocess communication (IPC) is based on message passing. In fact,

there is only one message passing system call, albeit a very complicated one. Messages

are sent by a thread to a port. To send a message to a specific port, the thread or its task

must possess a send or send-once right to that port. Messages are sequenced (queued on

the port) and reliable (guaranteed to be delivered).

There are different types of messages. Messages may be used to send

small amounts of data, large amounts of data, or port rights. Messages consist of a mes

sage header containing, among other things, the type and size of message data, the port

to which it is sent, and the data itself. If the amount of data is very large, an "out-of-line"

message may be sent. In this scenario the data consists of a pointer to a region of memory.

The system copies this area of memory into the receiving task's address space. For effi

ciency, the memory object backing this region (see discussion below on memory objects)

is mapped into the receiving task's address space. Only when a write occurs on a page

in this region will an actual copy be made. This policy, called "copy-on-write", is used

throughout Mach and is responsible for much of the efficiency of its virtual memory sys

tem. If a task has the appropriate capabilities, a message may be used to transfer or copy

(in the case of a send right) a right to another task.

26

A message based IPC system is well suited for a client-server paradigm.

The Mach OS uses it internally, and applications are easily written this way. The netmsg

server is largely responsible for the ability to access network resources transparently, pro

viding a network-wide ASCII name registration of ports and a network transparent deliv

ery of messages.

Memory Objects The virtual memory system is divided into three parts. This division

improves Mach's portability. The parts are:

1. The pmap that manages the hardware memory management

unit.

2. The machine-independent kernel code that processes page

faults, manages address maps, and replaces pages.

3. The memory manager or external pager that manages the

backing store (disk) through the abstraction of memory objects.

A memory manager manages memory objects. For each type of object

there may be a different memory manager. A memory object is referred to by a port that

associates it with a particular manager. It may consist of one or more pages, a file, a de

vice, or another specialized data structure. Each is treated the same by the outside world.

The difference lies in the memory manager used. For example, a device may have a dif

ferent memory manager than a file.

Consider an external pager (a memory manager for a disk). Any region

of physical memory is backed by an abstract memory object. The memory manager de

fines how the memory is organized, and how it can be used. One could say that a memory

manager gives an area of memory its semantics. When a task references an area in its

address space not presently in memory, a page fault occurs. The kernel sends a message

to the memory object's port requesting the correct page. This message is received by the

27

memory manager for this object and handled according to the data in the memory object

structure.

Programmers may write their own memory managers. There is a well-de

fined, asynchronous protocol with the kernel to which they must adhere. In this way, a

user may create a customized paging policy for a specialized class of memory objects.

At a slightly higher level, a programmer is given much greater flexibility

over the use of virtual address space than in a most operating systems. For example,

memory objects can be mapped into a task's address space at pre~hosen locations. This

provides support for large sparse address spaces. Sharing of memory between tasks can

be achieved by mapping a memory object into each task; perhaps one with read and one

with write permissions.

5.2.2 DTOS and Security

DTOS has altered the Mach rnicrokemel with the following objectives

[I 5]:

1. Provide policy-based control over all Mach services.

2. Minimize the impact of security on performance.

3. Maintain compatibility with the existing Mach interface.

4. Support a wide range of policies, including dynamic policies.

5. Provide a platform on which to experiment with secure applica

tions.

To achieve these objectives the Mach rnicrokernel and Lites server have

been modified. DTOS is designed to provide a policy-independent operating system with

all security policy decisions made by a Security Server. Mechanisms to support a wide

range of security policies are available.

28

Two types of modifications were necessary to the rnicrokernel. It was al

tered to perform security checks on all accesses. Also, for performance reasons, a cache

was added to store recent security policy decision information.

The Lites server was modified to label all files with a security context, en

force policy control over file operations, and allow security aware applications to specify

a label on a process.

In DTOS, security subjects consist of threads executing in a task. Security

objects may be either ports or memory regions. With each type of object, a set of services

and corresponding permissions is associated that indicate the access modes and permis

sions allowed for that object.

The Security Server "embodies a specific system security policy and pro

vides security relevant information[15]." The prototype security server released with

DTOS implements a policy of Type Enforcement, though other policy styles are possible.

Type Enforcement is based on the enforcement of permissions to which a subject is en

titled with respect to an object. It establishes the rules that decide if an action that a subject

requests to perform on an object should be permitted. Type Enforcement restricts access

to data using domains and types. A domain defines a role which users or programs may

assume. For instance, in the DTOS prototype, all tasks responsible for initiating the sys

tem run in the bootstrap domain. Types are classifications of objects. An object may

be of type regular file, Mach task port, host port, or many others. A permission such as

create_file might be granted to a subject in domain A to create an object of type regu

lar_file.

Security is implemented in the DTOS prototype by adding permission

checks to all services provided by the microkernel. This is done by consulting the Securi

ty Server, which provides the information in accordance with the security policy. The

microkernel checks this information and enforces the decision. The Lites Server behaves

29

similarly with regard to the file system permissions and the Network Server with regard

to network security permissions.

The particular security policy is defined in a security database. For the

prototype Security Server, the database defines permissions for all subject-object pairs.

Included are such permissions as those for reading or writing a file, possessing various

Mach port rights, creating a new task, and accessing various devices. All subjects are la

beled with a security context. That context consists of a domain, a level, one or more cate

gories ("none" is acceptable), and, perhaps, a classifier.

Levels and categories are orthogonal within domains. The terminology

is taken from standard multilevel secure systems, where a level may be unclassified, con

fidential, secret, top-secret, etc. Domain-level compartments are separated into catego

ries. These categories may or may not be accessible to each other. An object

classifier creates a type from a subject domain. For instance, if a task running at user:un

classified:none creates a regular file, the context of the file will be user:unclassi

fied:none:reg_file, where reg_file is the classifier. The type of this file is then

user_reg_file.

These are the various forms that security contexts take in the database.

Subjects

Subject: Domain: Level :Category 1,Category2,... ,Category N

e.g. Unix:unclassified:none

Object: There are different types of objects.

1. Objects Related to Subjects (Derived Objects)

Domain:Level :Category 1,Category2, ... ,Cate gory N :Classifier

e.g. user:secret:nato:reg_file

30

This refers to an object which is a regular file in the user domain.

Nato is a standard MLS (multi-level secure) category.

2. Root Objects (not related to a domain)

Type:Level:Category 1,Category2, ... ,CategoryN

e.g. dev _iopl_port_sid:unclassified:none

3. Objects Related to Root Objects

Type:Level :Category 1,Category2, ... ,CategoryN :Classifier

e.g. dips:unclassified:none:device_pager_port

The type "dips" is the short name for dev _iopl_port_sid.

The database consists of subject-object pairs. For instance, here is an ex

ample take from the database that defines the permissions for a subject in the security

domain and an object of type regular file in the user domain (user_reg_f ile).

/* This is a subject domain*/

domain:security

/ * This is the object type. The type here refers to a

regular file. The permissions are all file service per

missions which will be enforced by the Lites Server. */

type:user_reg_file

/* The following are lists of the specific permissions for

the subject to act upon the object. For example, a

fsv_create permission, in this context, allows a task in

the security domain to create a regular file in the user

domain. */

/* First come the permissions when subject and object are

at the same security Level (and in the same category) */

31

perms:fsv_create,fsv_link,fsv_unlink,fsv_append

perms:fsv_truncate,fsv_visible,fsv_exec,fsv_write

perms:fsv_read_fsv_chflags,fsv_chmod,fsv_chown

perms:fsv_utimes,fsv_stat,fsv_access,fsv_revoke

perms:fsv_chcontextfrom,fsv_chcontextto

perms:fsv_rename,fsv_rmdir,fsv_setlock,fsv_getlock,fsv_un

lock

/* Next come the permissions when the subject Level domi

nates the object Level. */

dom_perms=fsv_visible,fsv_exec,fsv_read,fsv_stat,fsv_ac

cess

I* These are the permissions when the subject Level is

dominated by the object Level. */

domby_perms=fsv_create,fsv_write,fsv_truncate,fsv_ap

pend,fsv_chcontextto

/* There are, in this instance, no permissions for incom

patible Levels, i.e. the Categories field is different. */

incomp_perms=

The Security Server loads a policy that consists of permission lists such

as those above. When the microkernel, or, in this case, the Lites Server queries the Securi

ty Server with subject and object security contexts, it replies with an access vector that

contains the permitted actions of the subject upon the object.

Since the policy may be changed to fit the goals of a specific system in a

fairly straightforward manner, DTOS can reasonably claim to be policy-independent.

32

Since the policy decisions are localized in the Security Server, separation of policy and

enforcement is effected. This, in tum, makes a change of policy reasonable to implement.

33

6. X and Security

Let us look at some specific security problems involved in creating a se

cure X system and proposed solutions to them [4]. The problems mentioned here are gen

eral, but the solutions assume a design featuring a single X server. Our multiple X server

solution will be presented later. Throughout this discussion an assumption is made that

on any "secure" X system, "well-behaved" applications can run unchanged. The follow

ing list represents, in part, an interpretation of the B3 requirements for an X system.

Authentication: Who can connect? Some control is needed over what clients are able

to connect to the X server. Currently, there are two mechanisms: the host access list, pro

viding access control per host, and the MIT "magic cookie" authentication, providing ac

cess control per client. The former does not provide very fine grained control, and the

latter is not very secure. This is often improved upon by using Kerberos or some other

authentication protocol to mediate access to the X server.

Privileges: X has no notion of privileges. There is no means for limiting the functionality

of clients on a per client basis. Of course, a wide range of possible privileges could be

implemented. Are privileges static or dynamic? How does the X server discover the priv

ileges of a specific client? How are they handled in a networked environment? If the

privileges are dynamic, how is the buffering of requests handled? These are only some

of the questions which need to be considered. One could define separate privileges for

each class of X operation and give every protocol event a privilege label. This is the

course of action suggested by [4].

Mandatory Access Control: How is access to private resources limited? How is access

to shared resources limited? Every resource needs to have an attached sensitivity label.

This may still cause problems, because any access to even a local resource could result

in events being sent to other clients. This opens information channels. Resources which

34

are normally shared must be polyinstantiated or have access to them limited by privileges

-or both.

Discretionary Access Control This is only an issue if different users utilize the same

server at the same time. For B3 assurance, user-based access control lists are necessary.

Maybe even per-client based access control is desired.

Secure Networking This is really an outside issue, i.e. an underlying system must al

ready be in place to guarantee that the network is secure. At least the sensitivity label of

a connecting program must be provided when a connection is established; perhaps includ

ing specific X security information such as privileges, DAC, information levels, etc.

Visible Labeling The TCSEC can be interpreted as requiring visible labeling of windows

(specifically of top-level windows). This can be accomplished using a modified window

manager to display labels for each of these windows. The concern then arises of label

spoofing: when a client pretends to be at another level by creating what looks like a secu

rity border around itself. Can this be avoided?

Trusted Path A trusted path mechanism is required for B3 certification. This mecha

nism should allow the user to determine the sensitivity of all windows and to change the

input information label. It must provide non-spoofable access to the trusted system.

Auditing It must be determined which actions should be audited and how they should

be identified and characterized. The natural security subject for the X server is a client,

not a thread or process. Whenever a client makes a request for a resource that it does not

own, therefore, it should be logged. Connection requests should also be logged. Some

ambiguity remains.

Cut and Paste How do we regulate the flow of information between clients? A mandato

ry access control policy does much of the work. A covert channel exists, however, when

35

the cutting client is at a lower level than the pasting client and a request is received from

the pasting client declaring in what format the cut inform;ition should be sent. One solu

tion would be to require a trusted intermediary which converts the formats itself. Other

solutions seem less feasible.

Denial of Service A trusted path mechanism can aid against some types of denial of ser

vice attacks. If some client is inhibiting normal operation of the system by dominating

resources, the SAK allows the user instant access to the system, from which it can kill the

client.

Input Processing How are grabs controlled? Recall that a grab occurs when a client

registers for, and receives all input from a device. How do we keep a client from grabbing

input intended for another security level? Input events could be labeled according to the

MAC policy and only delivered appropriately. The trusted path could be used to change

the MAC label as needed. Then, when a grab occurs, it only applies to input to which the

client has access under the MAC policy.

Overlapping Windows Overlapping windows create very complicated problems. In

formation channels abound because clients redraw their own windows when they are ex

posed. The X server must let a client know when another client at a different sensitivity

level covers and exposes the first one's window. This provides a means of communication

between the two clients. Possible solutions are:

1. The server could keep backing store (backup buffer containing

the the image of the window) for all windows, so that the client

need never know when it has been exposed. This, unfortunately, is

a big memory drain. On a typical screen nearly two megabytes of

memory would be needed for backing store.

36

2. Slow down the covert channels by requiring exposed clients to

redraw their entire windows. Aside from not solving the entire

problem, this requirement would slow down everything else as

well.

3. Use a tiling policy to make sure that windows do not overlap.

This is not popular with users. In addition, if clients can determine

how much tile space is available, that could be used for a covert

channel.

Window Managers Must window managers be trusted? In the single X server case cov

ered here, it seems difficult, if not impossible, to avoid. Who is going to be responsible

for labelling? If the window manager must, then it needs to be trusted. The trusted portion

can, perhaps, be separated from the untrusted portion so as to minimize trusted code, but

this may be a very difficult task.

TCB Size and Structure In order for the X server to meet B3 requirements, the trusted

portions of it must be minimized. The trusted and untrusted portions are then separated.

The Trusted Computing Base of the system thus would contain parts of the X server and

parts of the window manager.

37

7. The DX System

The DX design separates out the portions of the X server that must be

trusted, namely, the input and the output operations. The keyboard, mouse, and screen

are shared by all clients regardless of sensitivity level. The remaining untrusted portions

of the X server are polyinstantiated when required by the security policy.

As in TX, the untrusted portions are in a separate task called the Single

Level Server (SLS). It is modified to accept input from an Input Manager (IM) instead

of directly from the keyboard and pointer. Since there may be multiple SLSs running si

multaneously, the IM is responsible for directing input to the correct instantiation.

The Display Manager (DM) accepts the output of SLSs, in the form of

buffers containing output images, which it combines into a coherent screen image. The

Trusted Module (TM) provides a trusted path mechanism and a user interface for DX

administration tasks.

The DX design differs from the TX model in the handling of security deci

sions. The Communications Manager (CM) handles client connections, directing the

X protocol messages to the correct SLS. Instead of providing a built-in policy, the DTOS

Security Server is consu1ted for each of the decisions. The CM is also responsible for

starting new SLSs.

Cutting and pasting are accomplished by the trusted Property Escalator

(PE) with assistance from the untrusted Selection Emulators (SEs). The PE mediates

the transfer of cut data between different SLSs. The SEs are SLS applications that transfer

cut data to and from the PE. Again, these act similarly to their TX counterparts, the major

difference being how security decisions are made. The PE makes requests of the Security

Server for policy information regarding permissions to paste data, and enforces those de

cisions.

38

Each of these modules, together with Init, the program that starts all the

trusted modules, is a separate Mach task with a separate address space. They communi

cate with each other soley through IPC mechanisms. An attempt has been made to keep

the size of the trusted modules as small as possible for greater assurance.

The DX System

other
clients

IM

I
p
1
t DM

I

I

I

I TM

SE
/

PE

I

I

' ' '
untrusted

SLSTCB B
Socket

--►connection

Mach message ...
Figure 7 .1 : The DX System

39

7.1 lnit

Init starts the CM, DM, IM, and TM. First the DM is invoked and the Init

task then waits for the DM to send it configuration information such as the physical screen

size and co]or depth, which wi11 be needed by the SLSs. When the CM is created, this

information is passed along so that the CM can forward it to the Single Level Servers

when they are started. The TM also uses this information when forming its frame buffers

to send to the DM. Certain ports are created and rights to these ports are inserted in the

newly created tasks. These ports are used for communication between the various DX

modules. The ports are named cm2dm, tm2dm, tm2im, im2tm, cm2im,

cm2 tm, tm2 cm, cm2pe, and one unnamed port for sending the configuration infor

mation from the DM to Init (see figure 7 .1).

7.2 The Communications Manager

The Communications Manager has three primary responsibilities: 1) It

connects X clients to the appropriate Single Level Server, 2) It consults the Security Serv

er to see when a new Single Level Server should be started, and 3) It starts Single Level

Servers and Se]ection Emulators.

The CM is started by the program Init at DX startup time and listens on

port 6000, the default X server port, waiting for clients to connect. Upon such a connec

tion request, the CM makes an accept_secure Lites call in order to obtain the security

context of the client. A list of running SLSs with their connection ports and security con

texts is kept in the CM. First, these security contexts are checked to see if any match that

of the client. If so, this is the first chosen. If not, the choice is made to check the oldest

server first. The Security Server is consulted by asking if the subject security context (for

the client) has dxv_share_server permission to the object security context (the SLS

as an object has the SLS subject context with the classifier, dx. See chapter 7.7). If the

40

permission bit is set, the CM opens a Unix socket connection with that SLS and begins

forwarding all messages from the client to the SLS and vice versa. If the permission bit

is not set, then each subsequent SLS is checked in tum in the same manner.

If the client is not allowed to connect to any running SLS, the CM starts

a new one at the security context of the client. An SE also must be started at that context.

Certain port rights must be granted at this time by the CM for communication between

the new servers and other system components. These include s 1 s 2 dm, s 1 s 2 im,

im2s1s_m, im2s1s_k, and se2pe (see figure 7.2).

_____c_11:_2pe_____ _

/

cm2dm ,.,.
,.,.,

,. ,.,.,. ,.

,.,.
,. ' '

',
',cm~m

' ' ' ' '

DM IM

SLS

PE

se2pe

SE

A port xx2yy implies that xx has sends rights to the port and yy has the receive rights

to it.

Figure 7.2: DX Ports and Port Rights

41

7.3 The Single Level Server

The Single Level Server (SLS) is an X Server modified for use with the

DX system. To maintain as much compatibility as possible with future X server releases,

our objective is to minimize any changes to the X server for use as an SLS.

We begin with the Xvfb server, which is part of the core X distribution for

X 11 R6. This server emulates a dumb frame buffer using virtual memory. All rendering

is done to this frame buffer instead of writing to the screen. It has no dependencies on

either input or output hardware since it does not use them. It accomplishes this by replac

ing the standard X server output code with stubs or simple substitutions that use the virtual

frame buffer instead. The standard input code is replaced by stubs that do nothing, since

Xvfb does not take input from devices.

For our purposes a number of changes needed to be made in order to use

Xvfb. These included re-introduction of the standard X input code, which was then mod

ified to accept its input from the Input Manager rather than directly from the devices.

7.3.1 Modifications of X Server for use with Input Manager

The changes necessary to allow the X server to work with the Input Man-

ager are at a low level and fairly limited. This serves the dual purpose of simplicity in

the reworking of the X server and minimization of code in the trusted Input Manager. The

Input Manager simply forwards input to the X server which acts upon it in much the usual

manner.

At the lowest level of the X server reside the operating system specific

functions for opening, closing, reading from, and writing to devices. Functions requiring

alteration for use with the Input Manager include those routines associated with the input

devices. For instance, the code to open a device was replaced by a Mach IPC request to

the Input Manager. The Input Manager opens the device and replies with a (dummy) file

42

descriptor - the return type of the replaced function. The case is similar for close and

ioctl calls. On the other hand, device read and write calls are replaced by routines that

check Mach ports for the arrival of input events. These functions are not request-driven

(which would be most natural) for the sake of functionality and efficiency. If a request

were made of the Input Manager each time the X server checks for input, either a) the X

server would block waiting for a return message, retarding its operation severely if it is

non-active, orb) the Input Manager would need to be able to simultaneously manage re

quests from all the Single Level Servers, adding to its complexity and degrading perfor

mance. All of these routines, xf86Kbd0n, xf86Kbd0ff, xf86KbdEvents, xf86Mou

se0n, xf86Mouse0ff, xf86MouseEvents, are in the operating system specific

Mach_io. c file. In addition, a few routines exist that write to the mouse and get the

keyboard type. These reside in a common directory and were changed in much the same

way.

7.3.2 Modifications of X Server for use with Display Manager

Changes made to the Xvfb server in order to work with the Display Man-

ager include the addition of message passing functions to enable communication between

the Xvfb server and the Display Manager. Specifically, the virtual frame buffer itself was

sent in a Mach "out-of-line" message.

Most messages to the DM originate in the Xvfb DIX routine Dispatch,

in dispatch.c. These are sent from the primary dispatch loop under certain conditions:

1. The request from the client is one of: MapWindow, Map-

Subwindows, UnmapWindow, ConfigureWindow, CirculateWin

dow, WarpPointer, SetinputFocus, SetDashes, SetClipRectangles,

ClearToBackground, Copy Area, CopyPlane, PolyPoint, PolyLine,

PolySegment, PolyRectangle, PolyArc, FillPoly, PolyFillRectangle,

PolyFillArc, Putimage, PolyText, ImageText8, ImageTextl 6, Crea-

43

teCursor, CreateGlyphCursor, RecolorCursor, SetScreenSaver, Kill

Client

2. The request refers to a window, specifically an Input-Output win

dow (as opposed to an Input-Only window, which is not visible).

3. The window in question is mapped (displayed on the screen).

4. The "active" top level window has changed since the last request.

That is, the ancestor of the current window that is also a child of

the root window is different than that of the last request. A mes

sage is also sent if a fixed time has elapsed since the last request in

the same top level window, during which time at least one of the

above requests was made.

In effect, a message is sent once per fixed time interval (small enough to

be reasonable) if requests relating to a top level window have been made during that time.

In addition, when one of the requests listed in point 1 occurs for a window in a different

top level window than the previous one for which a message was sent, the old window

is updated and the new one is sent. The use of this timing mechanism was implemented

for reasons of efficiency. The large number of messages required for many applications

were deemed unnecessary and a serious drain on computing resources. The timing policy

served to eliminate a large portion of these messages, significantly improving perfor

mance.

The contents of a message to the Display Manager are as follows.

1. The virtual frame buffer passed "out-of-line". Since the frame buffer can be quite

large, for example, this prevents a resource-consuming extra copy. Mach simply passes

the address of the virtual frame buffer, allocates memory for it in the virtual address space

44

of the receiving task, and maps that memory to the same pages containing the data.

Mach's copy-on-write policy ensures that the frame buffer is actual1y shared by the two

tasks until it is written again.

2. The window id of the top level window.

3. The "extent" of the descendent of the top]eve] window in which the drawing actually

occurs. That is, we send the coordinates of the upper left and lower right comers of the

smallest rectangle containing the window referred to by the request. This window is con

tained in the top level window referred to in 2.

4. The stacking order of all top level windows that are currently mapped.

5. The operation performed on the window. The following operations are defined: MAP

PING, UNMAPPING, CURSOR, CONFIGURE, and UPDATE. These are the only ones

the Display Manager chooses to differentiate.

The last four items in this list are sent "in-line" in a single structure.

Messages related to the cursor are handled a bit differently. They are sent

from the routine miSpri teMoveCursor in misprite.c every time the routine is in

voked. Each time the cursor is moved, the new location is sent to the Display Manager.

The contents of the message are the same as above, except that there is a dummy window

id. The "extent" of the cursor is identical in concept to the extent of windows.

7.4 The Display Manager

7.4.1. Initialization and Connections

The Display Manager is started by the program, Init. When it is invoked

it is given certain port rights: dm2init - a send right to Init (i.e. to a port to which Init

has receive rights), cm2dm - a receive right from the Communications Manager (i.e. a

45

port for which the CM has send rights), and tm2dm - a receive right from the Trusted

Module.

The Display Manager begins by examining a modified version of the

XF86Config file, which excludes the usual keyboard and pointer sections. It then probes

and initializes the output devices. This part of the code is taken directly from the X Sam

ple Server. The DM then executes the following initialization procedures:

1. A message is sent to Init (using the dm2init port) containing the

screen dimensions. Init passes these on to the modules that need

them: the CM, TM, and SLSs. The CM does not use this informa

tion directly, but distributes to the TM and SLSs. They need it to

compose their respective frame buffers to be sent to the DM.

2. A port set is allocated to be used for receiving messages from

SLSs and the TM, and moves tm2dm into it. The port set is a con

venience used to listen at all DM ports simultaneously, rather than

each individually.

3. A new thread is created (NewConnectionThread) to accept mes

sages from the CM to transfer receive rights to ports for which

SLSs have send rights. These are the ports to which the SLSs send

requests and frame buffers.

4. A frame buffer is allocated to be used to store the ''background"

of the screen.

The NewConnectionThread begins in DMAcceptConnections, which

waits for messages from the Communications Manager. Such a message contains receive

rights to a new port and its receipt indicates that a new SLS has been started with send

rights to this port. This port is renamed for the convenience of the DM and then added

46

to the port set created in step two above. Finally, the port is added to an array of ports

for each running SLS.

7.4.2 Normal Operation

After the initialization steps above are completed and the NewConnec-

tionThread has received a message from the Communications Manager indicating that a

Single Level Server is running, the Display Manager is in normal operational mode. The

routine, main, loops, reading requests from SLSs. A request from a Single Level Server

consists of:

1. a virtual frame buffer

2. the colormap of the virtual frame buffer

3. the stacking order of all top-level windows (children of the root

window) controlled by the SLS

4. the extent (dimensions) of the window upon which the operation

is to be performed

5. a unique identification number for the top-level window that is

an ancestor of the window upon which the operation is to be perfor

med

6. the operation to be performed on the window: MAPPING, UN

MAPPING, CONFIGURE, CURSOR, ROOT, UPDATE.

The first three operations are performed only on top-level win

dows.

When a request is received from an inactive server three situations may

occur. If the operation is MAPPING, UNMAPPING, CONFIGURE (movement of a

window or a change in its size), or ROOT (any operation pertaining to the root window),

47

the requests (minus the frame buffer) are queued for later delivery when the server again

is active. If the operation is CURSOR (i.e. a cursor move1!1ent) it is ignored. If the opera

tion is UPDATE, it is processed normally.

If the request is from the active SLS and the operation is MAPPING or

ROOT, the colormap information is stored using the appropriate X StoreColors routine.

Otherwise, the routine vfbUpdateScreen is invoked.

VfbUpdateScreen is the heart of the Display Manager. If the opera

tion is MAPPING, the new window information is added to the global array winList,

which keeps track of all windows mapped for each SLS (note that the DM only keeps track

of top-level windows). Then the security border for the window at that level is printed

to the screen. This is a simple bitmap that is replicated to fill rectangular areas on the

screen - one for each side of the window. Finally, the window is drawn to the screen.

More precisely, the box, whose extents are sent with the request, is copied from the virtual

frame buffer to the screen.

Copying a box from the virtual frame buffer to the screen becomes much

more complicated when the window referred to is not on top of the stacking order. In this

case, and others we will see, we would like to draw to the screen only those portions of

the window that are currently visible. In order to do so we find the "clip area" of the win

dow. The clip area is a series of rectangles that, taken together, form the visible portions

of the window. These rectangles have the following constraints:

a) rectangles do not overlap,

b) rectangles are sorted by the vertical coordinate of the upper-left

corner and then by the horizontal coordinate of the same corner,

48

c) rectangles are further sorted into bands - rectangles in the same

band share the same vertical coordinates, only their horizontal coor

dinates differ.

The routine FindClipArea iterates through the list of windows higher

in the stacking order than the window to be written, finding the clip area with respect to

each one (including the security border). The resulting clip area's coordinates are stored

in a linked list, boxList. The members of this list refer to the coordinates of boxes in both

the real frame buffer and the virtual frame buffer of the window in question. Then the

rectangles described by this list are in turn copied from the virtual frame buff er to the

screen.

If the operation requested by the Single Level Server is UPDATE, the re

quest may be from either the active SLS or an inactive SLS. In each case, the clip area

must be calculated. If the window to be updated is from the active SLS, it is clipped to

each window above it in the stacking order for the active SLS. On the other hand, if the

window is from an inactive SLS, it is clipped to each window above it in the stacking order

of its SLS, and, also, to each window in each virtual frame buffer higher in the SLS stack

ing order. (The stacking order of these different "levels" is determined by how recently

they have been active. The most recently active Single Level Server will be second in

the stacking order to the currently active SLS, etc.) The clip regions, in both cases are

copied from the appropriate virtual frame buffer to the screen. When the window is from

an inactive SLS, however, the regions are also copied to the background virtual frame

buffer3•

3. Clip areas of windows are not, in general, calculated each time a window is updated. Instead,
for efficiency, these regions are stored in the winList structure along with a clip_ valid field. A clip
area is marked invalid when a window intersecting the one in question is either MAPPED, UN
MAPPED, or there is a change in the active Single Level Server. A clip-area, then, is calculated
almost only when it needs to be.

49

The root window of the active server is handled slightly differently. On

a ROOT request, vfbUpdateScreen checks to see if the window is already mapped

to the screen (i.e. if it is in winList). If not, the window is added to winList. The root

window is then written to the screen after being clipped to all (non-root) windows at ALL

levels. This will put it in the background, behind every other window as the user would

expect. In order for this to work correctly with the cursor (as we shall shortly see), the

window must also be written to the background virtual frame buffer, again clipped to all

(non-root) windows at all non-active levels.

When the pointer device is moved, the active Single Level Server will

send a CURSOR request to the Display Manager indicating the extents of the box contain

ing the cursor image. The Display Manager then must remove the old cursor image and

write the new one.

The first task is a rather complex one. The cursor must be in some subset

of the set of three areas: 1) in a window of the currently active SLS, 2) in a security border

of one of these windows, or 3) in a window of an inactive server. When the old cursor

image is replaced, with what do we replace it? The portion in an active window should

be replaced with the image of that region from the active virtual frame buff er. The portion

in active security borders should be replaced by the appropriate security border bitmap.

Finally, the portion not in one of the aforementioned regions necessarily must be in a win

dow of an inactive SLS, and should be replaced by that region of its virtual frame buffer.

In order to facilitate cursor image replacement and the unmapping of win

dows (which will be examined below), the Display Manager creates a background virtual

frame buff er. This buffer contains the image of all windows in all inactive servers, with

their security borders, in the correct stacking order, as well as the root window of the cur

rent active server in the background. This background buffer acts analogously to the root

window of a normal X server.

50

Now let us consider in more detail how the cursor image replacement is

accomplished. When a CURSOR request is received by vfbUpdateScreen, this rou

tine stores the location of the new cursor image for later use. When the next CURSOR

request arrives, the location previously saved is the one that must now be replaced. This

entire region is copied from the active virtual frame buffer to the screen. This will ensure

that region 1 above is on the screen, but also, perhaps, some extraneous areas. Next, a

check is made to see of the old cursor region intersects any security borders of a window

from the active Single Level Server. If so, the borders affected are redrawn. (Recall that

the security border of each window is divided into four sections: top, bottom, left, and

right. Only the affected ones are redrawn.) This takes care of region 2. For region 3 we

clip the area to be replaced to all (non-root) windows in the active virtual frame buffer,

then copy these clip regions from the background virtual frame buff er to the screen. In

this way all the non-active virtual frame buffers are handled at once.

Finally, when the old cursor image has been replaced, the new one is cop

ied from the active virtual frame buffer to the screen. Note that this causes an interesting

side effect: the area in the cursor image that is not the cursor itself (the cursor is often

an X or an arrow, but by the cursor image we mean the rectangle that contains the cursor)

is always from the active SLS. This means that when the cursor is in an inactive window

or in a security border, this area around the cursor will appear as a hole or "window" into

the active virtual frame buffer. This gives an extra means of determining which windows

are from the active SLS, aside from the security borders.

When a request is for the UNMAPPING of a window, the sequence of

events is similar to that of replacing a cursor image. The area that formerly contained the

window is copied from the active virtual frame buffer. Next, the region, clipped to the

current level 's windows, is copied from the background frame buffer to the screen. Any

security borders that have been affected in this process are subsequently redrawn. In addi-

51

tion to these steps, the window entry is deleted from winList and the clip-areas of any

windows in the list that intersected the deleted window are marked "invalid".

Lastly, a CONFIGURE request (indicating a window movement or resiz

ing) is satisfied by executing an UNMAPPING request on the window, followed by a

MAPPING request with the new coordinates.

7.4.3 Changing Levels
In addition to the requests from the Single Level Servers, the Display

Manager listens for requests from the Trusted Module. These are of two types: DIS

PLAYWINDOW, and TM_ACTIVE.

In the first instance, the TM message consists of a buffer and a height. This

buffer is copied to the screen, starting at the top and occupying the first "height" lines.

Most commonly "height" corresponds to a reserved area of the screen to which only the

TM has access. Otherwise, if the buffer covers an area greater than that reserved, the area

of the real frame buffer that is to be overwritten is saved into a new buffer, to be copied

back at the appropriate time.

Upon receipt of a TM_ACTIVE request (when the Secure Attention Key

is pressed) the DM enters a mode in which it accepts requests only from the TM4. These

requests are DISPLAYWINDOW again or a request to change the active SLS. The latter

request indicates the SLS number to be activated and signifies that the DM is no longer

in TM_ACTIVE mode.

The routine ChangeLevels is invoked upon return from TM_ACTIVE

mode if the server requested to be active is different than that which was most recently

active. The duties of this procedure are as follows:

1. Change the stacking order of the connected Single Level Serv

ers. The new active server is given the highest stacking order pre-

4. This requires removing the port right tm2dm from the port set to listen on it alone.

52

cedence, and each SLS between the top of the stacking order and

the previous position of new one is moved down one notch, For

example, if server_stack_order, the variable which keeps track of

this, was { 0, 1,2,3,4,empty, ... } and server 3 is to become the active

SLS, server_stack_order would be changed to

{ 3,0, 1,2,4,empty, ... }.

2. Set the global current_server to new_active_server.

3. Copy the (non-root) windows from each non-active virtual

frame buffer to the background virtual frame buffer, adding securi

ty borders, in order from lowest to highest in server stacking order.

4. Copy the root window of the new active virtual frame buffer to

the background virtual frame buffer, clipping to all (non-root) win

dows in each inactive frame buffer.

5. Copy the entire background virtual frame buffer to the screen.

6. Copy each (non-root) window of the new active virtual frame

buff er to the screen in order from lowest to highest in window

stacking order.

7. Change the active colormap to that of the last request from the

new active Single Level Server.

8. Satisfy the requests that had been stored while the current server

was inactive.

The result of these operations is a screen with a "background" consisting

of the active root window with all the (non-root) windows of inactive servers on top. The

"foreground" is made up of all the (non-root) windows from the active SLS. All windows

53

are labelled with security borders to indicate from which Single Level Server they derive.

The Display Manager is then returned to normal operatio~al mode and is ready to process

all requests from the new active SLS.

7.5 The Input Manager

The Input Manager is responsible for opening, initializing, and reading

the keyboard and pointer devices. It interacts with Single Level Servers, the Trusted

Module, and the Communications Manager. The input devices are polled and, when input

is present, the input events are sent to the active SLS or the TM. The TM receives all input

after the Secure Attention Key is pressed until the TM determines the new active SLS.

The CM informs the IM when a new SLS has been created.

By allowing input events to one Single Level Server at a time, as deter

mined by the Trusted Module, the Input Manager effectively separates all input per SLS

without making any security decisions.

7.5.1 Initialization and Communication Threads

The Input Manager is started by the program, Init. When it is invoked it

is given certain port rights: a receive right on the port cm2im - for which the Commu

nications manager has a send right, a receive right on the port tm2im - for which the

Trusted Module has a send right, and a send right on the port im2tm - for which the

Trusted Module has a receive right.

The Input Manager begins operation by creating a thread dedicated to lis

tening for the Trusted Module. This TM thread awaits messages on tm2im, which indi

cate to whom the input events should be sent: either the TM itself or a Single Level Server.

This signifies a change in the active SLS.

Next, the IM creates another thread which listens on the port cm2im for

messages informing it of the creation of a new SLS. Port rights are contained therein:

54

a receive right for one, and send rights for two others. The new SLS has the corresponding

send and receive rights for these ports. One port is reserved for special requests from the

SLS. The two send rights correspond to SLS ports for the transmission of keyboard an

pointer events. These port rights are placed in arrays indexed by the SLS number (deter

mined by first come first assigned).

Lastly, before normal operation begins, KbdOn, MouseOn and

MouseIOCTL are called. KbdOn open the keyboard device and sets it into non-blocking

event mode.

7.5.2 Normal Operation

After the initialization steps are complete the Input Manager is ready to

accept requests from, and send input events to, SLSs. When the Trusted Module indicates

that a Single Level Server is now active, the IM will accept requests from the designated

SLS. These requests are: KBD_ON, KBD_OFF, KBD_GETMAP, MSE_ONE,

MSE_OFF, MSE_ WRITE, and MSE_IOCTL A KBD_GETMAP request is usually first

to arrive. The type of keyboard (always VANILLAK.BD) is returned in a reply message.

A KBD_ON request is responded to by returning the keyboard file descriptor (the key

board was already "turned on" during initialization). Likewise, a MSE_ON request is

followed by a reply containing the mouse file descriptor. The KBD_OFF, MSE_OFF, and

MSE_IOCTL requests essentially do nothing but provide a dummy interface for the usual

X server calls.

After the active Single Level Server has made a KBD_ON request, it be

gins to receive keyboard input when it is available. Similarly, after the active SLS has

made a MSE_IOCTL request, it begins to receive pointer input. Since the SLSs require

that input take the form of events, and the device drivers require that this be polled, the

Input Manager polls the keyboard and mouse according to a simple timing mechanism

that linearly increases the time between polling if no event has occurred. The interval

55

https://VANILLAK.BD

increases until a set limit is reached. When input is discovered, the interval is reset to a

lower value (what value depends on the type of input received).

When an input event is discovered, the IM first checks to see if it was the

result of hitting the Secure Attention Key. If so, all subsequent events are sent to the TM

until further notice. If not, the event structure (containing a list of events in the case of

pointer input) is sent to the appropriate SLS port. The SLS does its own polling on the

input message queue. Due to the asynchronous nature of this interaction, combined with

polling, it is conceivable that some input could be lost. To minimize this risk, the size of

the input message queues is set to the maximum allowable by the Mach OS. This tech

nique makes it unlikely that keyboard input will be lost. Pointer events may exist up to

thirty two per event structure. making loss of these equally unlikely.

Requests from the active Single Level Server and polling for input are

done in the main event loop. In order to keep the IM from blocking on a message receive,

a timeout value is needed. This is integrated with the timing mechanism mentioned above

so that the timeout values become the polling interval. Likewise, a timeout value is used

on message-sends to keep a Single Level Server from effectively suspending the IM by

not reading its messages.

7.5.3 Changing Levels

When the Secure Attention Key is hit all input (including the actual SAK

keystroke) is immediately redirected to the TM. When that entity sees fit to return control

of input to a SLS, it sends a message containing the index of the SLS to be made active.

The TM thread reads this message and sets the variable active_sls to it. This is simply

an index into the various arrays of ports associated withe SLSs. At this point the IM has

changed the active SLS.

56

7.6 The Trusted Module

The Trusted Module (TM) provides a number of important services. Fore

most among these is a trusted path mechanism. When the Secure Attention Key is

pressed, the TM receives all keyboard and pointer input. The TM is then said to be "ac

tive".

The DM reserves an area on the screen for the use of the TM. Frame buff

ers, sent in messages to the DM, are displayed there. The information the TM displays

includes:

l. A message indicating the security context of the active SLS.

2. The security border of the active server.

When the TM is active, an expanded menu is displayed, utilizing a larger

portion of the screen. In this larger area the following menu is displayed:

TM Active

0. Startup new single level server 4. Sec. Context of running SLS

1. Shutdown single level server 5. Sec. Context of running SLS

2. Activate Shell

3. Exit DX

The top line indicates that the TM is active. Menu items 4,5, etc. designate

the security contexts of running SLSs. Selecting one of these items will make that SLS

active. The TM sends messages to the IM and the DM informing each of the new active

SLS (these are the only other modules which have a notion of an active SLS).

Selecting menu item O will begin the process of starting up a new SLS and

SE at a requested security context. It does this by informing the CM of the request. The

57

CM is responsible for both checking with the Security Server for the validity of such a

request and for actually executing the programs. Selecting menu item 1 will initiate the

shutting down of a SLS. This is done, again, by sending a message to the CM which kills

the SLS and informs the the DM, IM, and PE that the SLS is dead. Menu item 2 activates

a trusted shell at the security context of the shell which started up the DX system. This

shell may be used to start clients or perform many other tasks within a trusted path. When

the shell is activated, it is displayed by overwriting the menu above. The shell is ended

by typing "exit". Selecting menu item 3 will initiate the process of shutting down the en

tire DX system (this is not yet implemented).

7.7 The Property Escalator and Selection Emulators

The ability to transfer information between windows is an essential part

of the X Windowing system. Much like TX, the DX system uses a Property Escalator

(PE) to mediate the transfer of information between clients of different Single Level Serv

ers, and Selection Emulators (SEs) to aid in that transfer. There are some essential differ

ences, however.

A Selection Emulator (SE) is a small untrusted X application. Its pur

pose is to pass selections (cuts) back and forth between the Property Escalator and a Single

Level Server. It is replicated, once per SLS, of which it is a client.

An SE is started by the Communications Manager when it determines (by

consulting the Security Server) that a new SLS should be started. The SE asserts owner

ship over the current selection so that it will be notified (through Xlib routines) when

another client makes a new selection. When the SE receives this notification, it requests

the data of the new selection and then re-asserts ownership of the selection. This selection

data is converted to text format and forwarded in a Mach message to the PE.

58

As the owner of the "current selection" the SE receives notification when

the selection is pasted. The target X application for the paste negotiates with the owner

to copy the selection data. The SE, instead of returning the current selection data (for this

SLS), sends a message to the PE requesting the latest overall selection. The PE returns

either the most current appropriate data from another SLS, or a message indicating that

the selection already owned by the SE is the most current one.

Upon receipt of the data from the PE, always in text format, the SE con

verts it to the format requested by the target client, and registers the data as the new selec

tion with itself as owner.

This method of handling conversions is necessary to avoid covert chan

nels. An SE (untrusted, remember) at one security context should not know the format

of a selection at another. Converting all selections to text for storage in the PE circum

vents this problem. Also note that it is somewhat different and more versatile than the

way TX handles the situation. The TX PE stores each selection in all formats which are

likely to be used.

The Property Escalator (PE) is responsible for storing selection data

from the different Selection Emulators and mediating the transfer of that data.

The PE is started by Init at DX startup time. It receives selections from

SEs and stores them in chronological order in a linked list, together with their security

contexts_. One selection is stored for each SE. When a request for a selection is received

by the PE, a check is made to see if the requesting SE already has the most recent selection.

If it does, the PE will inform it so in a message. On the other hand, if the most recent

selection was from another SE, the PE will consult the Security Server to see if the re

questing SE is allowed to paste. This is done by asking if the subject security context (for

the requesting SE) has dxv_paste permission to the object security context (the selec

tion gets the security context of the cutting SE with classifier dx, created for the DX sys-

59

tern. See chapter 7 .7). If this permission bit is set for these pairs the PE will return the

selection to the requestor. If not, the next most recent in _the list is considered, etc. The

process repeats until an acceptable selection is found or the possibilities are exhausted.

In the latter case, the one the SE owns is deemed most recent.

7.8 DTOS Security Changes to Accommodate DX

A number of changes were necessary to allow the DX system to run under

DTOS security mechanisms.

1. A new security domain, the xserver domain, was created in which to run the trusted

portions of the DX system. Permissions relating to this domain were given where ap

propriate. It was patterned after the privileged Unix domain, which has access to all other

domains currently available. System programs run in the Unix domain, so they need ac

cess to devices and files, etc., at many security contexts. Conversely, programs in other

domains sometimes need to access system information. Much of this is true with the

xserver domain as well. It does not need access to, say, the bootstrap domain, but

it does need to communicate with all the domains in which users normally execute pro

grams. Likewise, Init and the CM, running in the xserver domain, must be able to exe

cute programs in other domains. The CM needs to be able to communicate via Unix sock

ets as well as TCP sockets. The IM and DM must be allowed to access certain devices

such as the mouse, keyboard, and graphics hardware. All of these permissions were added

to the security database for the xserver domain. In addition, a macro was created to

facilitate the addition of permissions between the xserver domain and any new domain

that might be created.

2. A new classifier, dx, was created so that specific permissions could be available for

use with the DX system. Creating this classifier required two very small alterations to

the DTOS kernel. Then a service permission access vector was created for the dx classifi-

60

er. The access vector returned by the Security Server when presented with a subject and

an object consists of a set of IPC permissions and a union structure of mach_services per

missions. The union is resolved by the classifier of the object. The new access vector

is one member of this union.

struct dx_service {

unsigned char;

dxv_paste:1,

/* can subject paste object?*/

dxv_shareserver:1,

/* can subject run on this SLS? */

dxv_pad:6

/*padding*/

}

Example permissions for all existing user domains were set up and a macro for creating

multilevel secure style permissions for any new domain was created.

3. The context of/ dev/tty was changed from user:unclassified:none to tmp:unclassi

fied:none. When the application, xterm, runs it attempts to open / dev/tty with read/

write permissions. Very few security contexts may both read and write a user domain

device under the prototype MLS policy. These restrictions are not applied to the tmp do

mam.

61

8. DX Security Analysis

The security issues relating to the DX system have been treated through

out the foregoing descriptions. Here we summarize those features, analyzing with respect

to the security issues described in chapter 6.

8.1 Authentication
The Communications Manager determines what clients are allowed to

connect to what Single Level Servers. The Security Server is consulted to get the policy

information for these decisions. The determining factor is the security context of the cli

ent. When a client connects with the CM, the context of each SLS is considered in turn,

and the Security Server is asked if a client (identified by its context) is allowed to connect

to the SLS (identified by its context with the classifier dx). When the permission is

granted the CM opens a connection to the SLS. If no permission is granted for any SLS,

the CM starts a new SLS and SE at the security level of the client.

In the future, DX will not automatically begin a new SLS, but, instead

send a message to the TM requesting confirmation. The TM will indicate to the user at

the console that a new SLS is requested. The user then will be responsible for either con

firming that a SLS should be started, in which case, the TM will initiate the process, or

ignoring this request.

8.2 Privileges
Each client that connects to the DX system is allowed the full range of

privileges within its own sensitivity level. That is, clients have access to all of the SLS

X resources that they would under a normal X server. The limitations are imposed on the

resources to which the SLS has access. Access to keyboard and pointer input is restricted

by the Input Manager. Access to the output screen is in the control of the Display Manag

er. The client has no privileges to resources in any other SLS. Access to any resource

of a different SLS is prevented entirely by their complete separation. The only exception

62

to this rule is cutting and pasting. This is mediated by the trusted Property Escalator that

enforces the permissions allowed by the Security Server as set forth in the security policy.

8.3 Mandatory Access Control

Every resource in the DX system has an attached sensitivity label inherited

from the underlying DTOS operating system. When a client connects to the CM, the most

common situation is that a connection will be opened to a SLS at the same security context

as the client. Each SLS has a specific security context, so all its resources are labeled ac

cordingly by DTOS. Every resource, including ports and sockets, has one and only one

security context under DTOS. No resource is shared between different SLSs directly.

The DM controls the screen real estate. It is a trusted intermediary be

tween the SLSs and the graphics hardware. It has an internal labeling scheme for frame

buffers sent from SLSs. The DM can determine the security context of any pixel on the

screen. None of this information is available to the SLSs.

8.4 Discretionary Access Control

Any user running in a context that is allowed to send information to a TCP

socket in the xserver domain may currently connect to the system. The security policy

limits which users may run under what contexts. The security policy of the operating sys

tem is thus responsible for limiting user access.

DX does not extend DAC to the X resource level. The primary reason for

this is that the X server, in general, does not make distinctions based on the user. Such

a policy would alter the whole flavor of X and require major modifications to the X server

itself.

8.5 Secure Networking

All incoming data from the network is intended to go through the CM.

There, it is directed to the appropriate SLS. The CM obtains the security context of a cli

ent through the DTOS accept_secure call. The context of the client, together with

63

the security policy determines what the target SLS is. Even if the CM were avoided,

DTOS limits the connections to the SLSs. At the moment a client could bypass the CM

and connect to a SLS. It could, however, only connect to a SLS with a context for which

it has pennission to write to a socket. This hole should be closed in the future. One way

would be to establish the communication between the CM and SLS be via Mach mes

sages. This would involve both wrapping the X protocol request in a Mach message and

altering the SLS to accept and unwrap Mach messages instead of socket messages.

8.6 Visible Labeling

One of the key components in a secure windowing system is the labeling

of windows displayed on the screen. The Display Manager attaches a security border to

all four sides of every top level window displayed on the screen. This label consists of

a simple bitmap replicated to surround the entire window. The TM displays, in its expand

ed menu, the bitmap for each SLS together with its context. It also displays the bitmap

of the security border for the active SLS.

When a window is in the foreground (no other windows obscuring it) the

entire security label is usually visible. If the window is situated flush against one or more

of the sides of the display area (including top and bottom), however, that portion of the

label will not be displayed. At least one side of the label will be visible under all circum

stances except when the window in question takes up the entire display area (as the root

window does). Two situations may occur. In the first, the active SLS has only the root

window displayed and no other. In this case, another SLS could spoof the root window

by covering the entire display area with its own window, because the root window of the

active SLS is always in the background. This spoof is not considered to be a security risk.

No information is transmitted to the spoofing SLS and the user has only to look at the

active SLS field in the TM display to see the SLS to which input will be directed. In the

second situation, the window in question is not the root window. In this case, the user

64

could determine the security context of the window simply by looking in the area reserved

for the TM where the bitmap of the security border of the active SLS is displayed. Since

all windows of the active SLS (with the exception of the root window) are "on top" of

all other windows, any such window would necessarily be from the active SLS.

Spoofing windows at other sensitivity levels is limited by a number of fac

tors in the design of the DM. Foremost is the labeling itself. Under almost all circum

stances labeling makes it obvious from what SLS the window originated. Also, the win

dows from the active SLS are on top. This makes it impossible for a rogue SLS to overlap

a window from the active SLS with the labels of its own windows, thereby convincing

the user that a window of the active SLS is really from the imposter. A SLS has no idea

where the windows of another SLS are located (or even if they exist). Therefore it would

be extremely unlikely that one SLS could spoof a window of a different SLS by creating

its own security border that looks like that of the level being spoofed. The DM would

still put the real border on the outside of this one. To hide this, the rogue SLS could at

tempt to size and place the window so that active windows obscure the real security bor

der. This would, however, require a peculiar configuration of active windows together

with knowledge of the size and placement of those windows.

8.7 Trusted Path

The DX system offers a trusted path mechanism involving the IM, TM,

and DM. A trusted path operation is initiated by a press of the Secure Attention Key

(SAK). As we have seen, the IM, upon reading this, redirects all input to the TM. The

TM sends all relevant information to the DM for display. All SLSs are in an inactive state

with respect to the IM and DM. Any time a user desires trusted functionality, the SAK

will allow him/her to interact with the TM.

65

8.8 Auditing

The prototype DX system currently does no auditing. At least, in the near

future, connection attempts and cut and paste attempts will be logged. The latter is neces

sary because a client may perform cuts and pastes without intervention from the user.

8.9 Cut and Paste

The discussion of the PE and SE in chapter 7 .6 covered cut and paste thor-

oughly. Please refer to it for details.

8.10 Denial of Service
It is probably not possible to eliminate all denial of service attacks. They

have been taken into consideration in the design of DX, however. The trusted path mecha

nism is of great use for this purpose. The user can always take control and kill SLSs if

they are, for instance, flooding the DM with window update requests. Another possible

attack is flooding the CM with connection requests. Both of these approaches could slow

down the system enough to make it virtually unusable. More serious denial of service

attacks have been avoided by careful design of the IM. The IM uses timeouts on all mes

sage to or from the SLS, so that it will not block for long periods of time waiting for mes

sage transmission to complete. It sends input data to the active SLS when the data is read

rather than waiting for a request for input from the SLS. In this way, the IM is not unduly

impeded by slow SLS.

8.11 Input Processing

The IM guarantees secure input processing. All input data is directed to

exactly one SLS or the TM. The data is then effectively labeled with the sensitivity label

of that module. When a client grabs the pointer or mouse, therefore, the grab applies only

to input data directed at its SLS. It has no effect on the distribution of other input data.

66

8.12 Overlapping Windows

The problems arising from allowing overlapping windows are avoided in

the DX architecture. Only the DM knows if windows from separate SLSs overlap and

there is no communication pathway from the DM to a SLS. A SLS simply creates its own

frame buffer. It has no knowledge and no means of knowing that any other window could

overlap one it has created. In order to keep the system this simple, the DM must keep a

backing store for all the windows it displays. It does this by retaining the frame buffer

from each SLS until a new one is received or that SLS terminates. When a window needs

to be redrawn, the DM copies the data from the appropriate frame buffer to the screen.

8.13 Window Managers

Window managers are not trusted in the DX system. Instead, each SLS

has its own window manager. There is no interaction between them. They know no more

than the SLSs of which they are clients.

8.14 TCB Size and Structure

The size of the various trusted modules is given below. Some effort has

been made to keep the size of the trusted computing base components within reasonable

limits.

subject approximate lines of C code (LOCC)

DX TX

DM 11,500(SVGA),
19,000(S3)

9,700

CM 1,500 800 (SIT + CIT)

IM 500 2,400

TM 2,000 5,300 (TSH + MS)

PE 500 300

lnit 500 550 (Master)

Table 8.1: TCB Size

67

When using the DM built for the SVGA graphics devices the total lines

of C code for the TCB is about 16.5K. For S3 cards the total comes to about 24K. Includ

ing a library shared by all tasks (9.3K LOCC), the total for the TX TCB is approximately

30KLOCC.

68

9. Analysis and Future Work

9.1 Performance

Performance of the prototype DX server has not been studied in detail.

Using some standard X benchmarks, it was determined that DX operation responses were

on the average just less than half the speed of ordinary X running on the same hardware

under DTOS. This is comparable to the performance of TX. For small rendering opera

tions the performance was worse (about 35% on ten pixel lines), and better for larger areas

(about 80% on large rectangles). The greater the complexity of the operation, the slower

the performance relative to ordinary X. For a complex test, including creating a window,

creating a graphics context, clearing an area, drawing some text, scrolling the window,

and finally destroying the window, the performance was only about 20% of the normal

X server.

No working profiler is yet available for DTOS, making the identification

of problem areas less precise and more difficult. The results above would appear to indi

cate that a significant portion of time is spent in message passing and context switches,

since more complex operations involve more messages. It was also observed that disk

accesses were more common than had been hoped. This seems to be caused by excessive

swapping resulting from high memory usage.

One possibility to improve the performance of DX is to utilize shared

memory between the Single Level Servers and the Display Manager. The frame buffers

passed from a SLS to the DM occupy roughly one megabyte of memory. Sending the

buffers in out-of-line messages, together with Mach's copy-on-write scheme allows the

servers to share this region of memory until one task writes to the buffer. The SLSs may

write to this area almost continuously, causing copies to be made of the pages containing

the frame buffer. If the memory could be truly shared, so that the SLS had read/write ac-

69

cess and the DM read-only access to it, these copies would not need to occur. Performing

the same tests as above using significantly different frame buffer sizes, however, yielded

statistically identical results, indicating that sharing memory would not result in an in

crease in efficiency due to fewer copy operations. Sharing would still be beneficial be

cause the corresponding reduction in memory use caused by one fewer frame buffer

should cut down on expensive disk accesses resulting from swapping.

Despite Mach's elegant virtual memory system, where memory sharing

may occur by simply mapping a memory object into more than one address space, sharing

at the user task level is quite difficult. The memory manager provided with DTOS does

not allow a user task to gain access to memory objects directly, nor does it provide any

other means of sharing memory. To provide shared memory between an SLS and the DM,

a new memory manager will need to be developed. Even if memory sharing were imple

mented, there are potential problems with the consistency of the frame buffer and the ac

tual screen displayed by the DM. The DM uses the frame buffer of a particular SLS as

backing store for the windows it displays. When the DM updates a window by copying

it from the frame buffer, the DM may catch the window in an incomplete state - e.g. only

partially drawn. This image could remain displayed on the screen for a considerable peri

od of time until the next update of that area. The DM could be altered to utilize a more

traditional, per window backing store.

Another approach to SLS-to-DM communication would be for the SLS

to send only those portions of the frame buffer that have been updated. Aside from some

changes to the SLS, this would also require that the DM use a different method of backing

store, probably a different buffer for each window, including the cursor. This approach

would require an extra copy of the region to be sent by the SLS, but would eliminate some

copying of other regions of the frame buffer.

70

To reduce the amount of memory used by the DM and so reduce disk ac

cesses, frame buffers could also be compressed. Only the portions of the compressed

frame buffer copied to the screen would be uncompressed. Whether the overhead of com

pressing and uncompressing buffers would eliminate the gain from fewer disk accesses

is currently unknown.

9.2 Variations to the DX Design

In the future DX should be enhanced to log security relevant information

for the purposes of auditing. This would, at least, include connection attempts and cut

and paste attempts.

The possibility of the DM creating the cursor itself rather than copying the

cursor image from the active frame buffer has been explored. A simplification of cursor

management would result, but the changes in cursor style that many applications provide

when the cursor enters a particular area would not appear on the screen.

One could have a different user interface such that switching between ac

tive servers only requires a mouse click in the new active window rather than a press of

the SAK and choosing the new level through the TM. For this to occur through a trusted

path, the IM would need to track the pointer so that, when the correct button is clicked

in another window (from a non-active SLS), the TM would be notified immediately to

initiate the change. The SLS, however, controls the visible cursor location, creating the

possibility that the user could be fooled into activating a different SLS than intended. If

the DM creates the cursor image itself and obtains the location from the IM this problem

is avoided. Adding cursor tracking functionality to the IM involves the addition of signif

icant code. The resulting increase in size of the trusted IM could be a cause for concern.

Though the DX system works well under a large variety of security poli

cies, certain types of dynamic policies are not supported. Specifically, the revocation of

a permission for a particular client to connect to its SLS, once that connection has been

71

established, is not allowed with the current design. Revoking the permission would re

quire cloning the SLS at a different security context, killing the client in the old SLS, kil

ling all inappropriate clients in the new SLS, and redirecting client communication to the

new SLS. When a dynamic policy dictates that clients of different SLSs should be togeth

er, the situation is worse. Major modifications would be necessary to separate or repro

duce the exact state of the resources belonging the client in one SLS for use in another.

9.3 Single Server Approaches to Secure X

There have been attempts to create secure X servers using a single server

instead of polyinstantiated servers. Compartmented Mode Workstations (CMWs)

usually have a monolithic trusted server, a trusted window manager, and a few trusted cli

ents to assist with security borders and cut and paste operations. Implementations of the

model exist and are in use today. They are low assurance (B 1) multi-level secure systems.

Another approach would be to have a single server and a trusted window

manager that would display different sensitivity levels in different viewing areas (i.e. like

"desktops" in the FVWM window manager). This has the advantage that it makes some

resources easier to separate, and, most importantly, it eliminates many possible commu

nication channels arising from overlapping windows. The major drawback to this ap

proach, aside from the complicated mandatory access control involved in any single serv

er system, is its rigidity. Users may not like being able to see only one level at a time.

Though there would be freedom of movement within the area reserved for one sensitivity

level (unlike a system with "tiled" windows), the ability to juxtapose windows at different

levels would be severely restricted.

Single X server systems would likely have an advantage in execution

speed when multiple levels of sensitivity are present. This, along with the ability to con

trol access at a finer level makes the model worth further investigation, despite the many

problems involved.

72

1O. Conclusion

A prototype DX system is now operational in a DTOS environment. It

supports the full range of security policies that can be implemented using the DTOS pro

totype Security Server, and is expected to support most other types of policies. Clients

do not require alteration for use with DX and behave in the expected manner.

The prototype DX system demonstrates that a secure X system that is

policy-neutral is possible. An operating system that separates security policy from mech

anism allows such an application to be developed.

The separation of security policy from mechanism that the Synergy archi

tecture prescribes serves a large security sensitive application such as DX very well.

Many modifications to the policy have been successfully attempted with no change to the

DX system. A system that provides this separation mechanism, such as DTOS, allows

the system and its applications to function in environments with varying security require

ments. Some questions remain about other types of applications. The performance cost

of making DX policy-independent is minimal, as messages to the Security Server are rel

atively few. Applications that consult the Security Server more frequently will incur

greater performance degradation. These costs may be partially offset, in DTOS, by a

mechanism that allows individual applications to cache security decisions. The applica

tion is notified when the cache should be flushed. If a dynamic policy requires very fre

quent flushes of an application cache, the benefits of the cache may be diminished. We

suggest, however, that application caches for security decisions is an important mecha

nism for any operating system of this type.

73

References

[1] Robert W. Scheifler, James Gettys. X Window System, The Complete Reference to

Xlib, X Protocol, ICCCM, XLFD, 2nd Edition, X Version 11, Release 4. Digital Press,

X and Motif Series, 1990.

[2] Elias Israel, Erik Fortune. The X Window System Server, X Version 11, Release 5.

Digital Press, 1991.

[3] Adrian Nye. X Protocol Reference Manual for Xll Version 4, Release 6. O'Reilly

& Associates, Inc., 1995.

[4] Jeremy Epstein, Jeffrey Picciotto, "Trusting X: Issues in Building Trusted X Window

Systems or What's Not Trusted About X?". In Proceedings of the 14th National Comput

er Security Conference, October 1991.

[5] Epstein, McHugh, Orman, Pascale, Marmor-Squires, Danner, Martin, Branstad,

Benson, Rothnie. "A High Assurance Window System Prototype". Journal of Computer

Security, 18 Jan 1994.

[6] National Computer Security Center. Trusted computer systems evaluation criteria.

Technical Report 5200.28-STD, Fort Meade, MD, DoD, December 1985.

[7] Andrew S. Tanenbaum. Case Study 4: Mach. Pages 637-680 in Modern Operating

Systems. Prentice-Hall, Inc. 1992.

[8] Johannes Helander. "Unix under Mach, The Lites Server". Master's Thesis 1994.

[9] Boykin, Kirschen, Langerman, Lo Verso. Programming under Mach. Unix and Open

Systems Series. Addison-Wesley, Reading, 1993.

[1 O] Keith Loepere. OSF Mach Approved Kernel Principles. Open Software Foundation

and Carnegie Mellon University, June 1993.

[11] Keith Loepere. OSF Mach Approved Kernel Interfaces. Open Software Foundation

and Carnegie Mellon University, June 1993.

74

[12) Secure Computing Corporation. DTOS Mach Kernel Interfaces. Derived from OSF

Mach 3.0 Kernel Interfaces Document, Edited by Keith Loepere. Secure Computing Cor

poration, December 1993.

[13) Spencer E. Minear. "Providing Policy Control Over Object Operations In a Mach

Based System". Secure Computing Corporation, April 1995.

[14] Saydjari, Turner, Peele, Farrell, Loscocco, Kutz, Bock. "Synergy: A distributed,

micro kernel-based security architecture.' Technical Report, Version 1.0. INFOS EC Re

search and Technology, November 1993.

[15] Secure Computing Corporation. DTOS Users Manual. Secure Computing Corpora

tion October 1995.

[16] Richard A. Kemmerer. "Computer Security". In Encyclopedia ofSoftware Engi

neering. 1993.

[17) Edward Amoroso. Fundamentals of Computer Security Technology. Prentice-Hall,

1994.

[18] Secure Computing Corporation. DTOS Formal Security Policy Model. Secure

Computing Corporation. January 1996.

75

	A Policy-Independent Secure X Server
	Let us know how access to this document benefits you.
	Recommended Citation

