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Abstract 

 Humid-heat extremes threaten human health and are increasing in frequency with 

global warming, so elucidating factors affecting their rate of change is critical. This thesis 

examines the role of historical (1985-2014) wet-bulb temperature distribution tail shape 

on the probability of wet-bulb temperature extreme threshold exceedances under 

2°Celsius global warming. Analysis of global climate models and reanalysis reveals that 

non-Gaussian wet-bulb temperature distribution tails are common worldwide across 

extensive, spatially coherent regions. More rapid increases in the number of days 

exceeding the historical 95th percentile are projected in locations with shorter-than-

Gaussian warm-side tails. Of the two primary components of wet-bulb temperature, 

specific humidity and temperature, specific humidity tail shape is much more closely 

correlated with wet-bulb temperature tail shape and future exceedances. This suggests 

that humidity tail shape is more influential on the rate of future changes in wet-bulb 

temperature extreme exceedances than temperature tail shape. Short non-Gaussian wet-

bulb temperature warm tails have notable implications for dangerous humid-heat stress in 

regions where current-climate wet-bulb temperature extremes approach human safety 

limits. 
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1. Introduction 

 Anthropogenic global warming is exacerbating extreme heat (IPCC 2021; Perkins 

et al., 2012), one of the deadliest types of severe weather (Barriopedro et al., 2011; Buzan 

et al., 2015; Robine et al., 2008). As global warming continues, extreme heat is expected 

to become more frequent, intense, and widespread (Alexander et al., 2006; Mora et al., 

2017), even under a relatively modest 1.5°C increase above mean global pre-industrial 

temperatures (Dosio et al. 2018). In addition to temperature, humidity impresses upon the 

human experience of heat by modulating the evaporation of sweat (Davis et al. 2016; 

Wheeler 1991). Extreme humid-heat events are similarly projected to increase in 

frequency, magnitude, and duration with global warming, potentially exposing very large 

swaths of the global population to heat stress (Barnston et al., 2020; Coffel et al., 2017). 

Concurrent high humidity can markedly increase the human health risks of extreme heat 

(Buzan and Huber, 2020; Sherwood and Huber, 2010), demonstrated by heatwaves that 

have featured a moisture component which amplified their death tolls (Barriopedro et al., 

2011; Fischer and Knutti, 2013; Karl and Knight, 1997; Wehner et al., 2016; Raymond et 

al., 2020).  

 Wet-bulb temperature (TW), representing the lowest possible temperature of an air 

parcel at saturation, is an effective metric for appraising humid-heat stress that was 

initially described in the early 1900s (Haldane, 1905). However, heat stress indices which 

include humidity date at least to the 18th century (MacPherson, 1962) and overall, there 

are about 160 indices which endeavor to describe the human body’s interaction with the 

thermal environment (de Freitas and Grigorieva, 2015). Other widely used examples 

include wet-bulb globe temperature, which considers TW, solar radiation, and wind speed 
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(Yaglou and Minaed, 1957), and Apparent Temperature (also referred to as Heat Index), 

which uses temperature and relative humidity at a specific pressure to approximate the 

human perception of air temperature (Steadman, 1979). There have also been attempts to 

define humid heatwaves, such as the Apparent Temperature Heat Wave Index (Russo et 

al., 2017). Of these, TW is relatively simple due to the low number of required 

meteorological input variables.  

 Sherwood and Huber (2010) proposed that a TW of approximate human body 

temperature is an unequivocal human adaptability threshold. Evaporative cooling through 

sweating becomes insufficient to reduce body temperature to a safe level as TW 

approaches and surpasses 35°C (Sherwood and Huber, 2010). The identification of this 

upper adaptability limit has galvanized the study of humid-heat extremes and moist-heat 

stress (Buzan and Huber, 2020; Coumou and Robinson, 2013; Matthews, 2018; Pal and 

Eltahir, 2015; Raymond et al., 2020; Zhang et al., 2021). When the upper adaptability 

threshold of 35°C TW was introduced in 2010, such extreme TW had not yet been 

knowingly observed, and informed estimates based on climate models showed that this 

threshold would likely not be breached until approximately 7°C global warming 

(Sherwood and Huber, 2010). This was disputed by Raymond et al. (2020), who 

discovered several instances exceeding 35°C TW in weather station data, and Matthews 

identified a maximum of 35.4°C TW at the hourly resolution in the European Centre for 

Medium-Range Weather Forecast’s reanalysis dataset ERA5 (2018).  Although TW may 

overestimate heat stress under cloud cover (Willet and Sherwood, 2012) and 

underestimate heat stress in the sun (Sherwood and Huber, 2010; Willet and Sherwood, 
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2012), the theoretical adaptability limit universally applies to all humans, even those most 

well-suited to extreme conditions (Sherwood and Huber, 2010).  

 The threshold of 35°C TW is specific to a human both unclothed and unmoving, 

and this has been recently scrutinized as underestimating heat stress in real-world 

conditions (Vanos et al., 2020). There is also scant experimental physiological research 

that substantiates the theoretical limit of 35°C TW, but a recent experiment found young, 

healthy subjects’ body temperatures began to rise at 31°C TW and sometimes as low as 

26°C TW  (Vecellio et al., 2022). This is supported by observational evidence of 

concurrent high humidity and heat, which has been consistently identified as producing 

the highest levels of morbidity and mortality in comparison to high heat alone, despite 

not being anywhere near the theoretical adaptability limit (Fischer and Knutti, 2013; 

Mora, et al., 2017; Schär, 2016). Occurrences of TW pushing human physiological limits 

have cascading economic and societal impacts (Dunne et al., 2013). This is of particular 

concern in areas with future TW climatologies that will necessitate substantial cooling 

infrastructures but have impaired adaptive capacities.   

 Considering that climate change is already increasing the occurrence of TW 

extremes that challenge the human body’s thermoregulatory system (Matthews, 2018; 

Raymond et al., 2020), understanding their changing probability is prudent in the 

preemptive preparation for impending warming and climate change. Temperature by 

itself is documented to nonlinearly increase under global warming at varying scales and 

at different locations (Friedrich et al., 2016; Huybers et al., 2014; Loikith et al., 2018; 

Seneviratne et al., 2016), but TW includes the added parameters of humidity and pressure, 

rendering the increase of TW extremes more complex than temperature alone. Humidity 
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affects the partitioning of latent and sensible heat flux which impacts localized warming 

(Miralles et al., 2014; Skinner et al., 2018; Seneviratne et al., 2010), and paradoxically 

TW may not increase in concordance with temperatures on extreme temperature days 

(Coffel et al., 2019). Moreover, atmospheric dynamics may temper a congruent increase 

of TW with global increases in temperature, especially in the tropics (Sherwood and 

Huber, 2010; Zhang et al., 2021). Rastogi et al. (2020) found that for heatwaves high in 

Apparent Temperature, there was an increase in temperature but relative humidity stayed 

the same, in contrast to dry heatwaves in which relative humidity decreased. There is also 

evidence that sources of humidity, such as soil moisture, can influence the shape of the 

temperature probability density function (PDF; Berg et al., 2014). These inherent 

complexities confound the projection of future increases in extreme TW.   

 Another complicating factor in the increase of TW extremes is the shape of the 

PDFs of TW, temperature, and humidity. Although the simplest prototype of global 

warming is a uniform rightward shift of a temperature distribution, most locations do not 

have normal distributions of their seasonal daily mean temperatures (Loikith et al., 2018; 

Loikith and Neelin, 2019). For example, a short non-Gaussian warm-tail can more 

drastically increase the probability of extreme threshold exceedances with a rightward 

shift (Figure 1). This is relevant in the context of heat stress, as impactful extremes are 

found in the warm-tails of a location’s temperature PDF. Therefore, the shape of the 

warm-tail is valuable in determining how warming will alter the future manifestation of 

extreme heat (Loikith et al., 2018). The non-Gaussian nature of several meteorological 

variables is well-established (Garfinkel and Harnick, 2017; Linz et al., 2018; Loikith et 

al., 2018; Loikith and Neelin, 2019; Perrson and Sura, 2018; Ruff and Neelin, 2012), but 
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non-Gaussianity in wet-bulb temperature distributions has not been explored to our 

knowledge. If non-Gaussianity is also common for TW distributions, the shape of the tails 

will have implications for the probability and magnitude of future TW extreme threshold 

exceedances under global warming. Due 

to TW being a heat-humidity metric, it is 

possible the tails of temperature and 

humidity PDFs are also influential. We 

investigate the global prevalence of TW, 

temperature, and specific humidity non-

Gaussian tails and their influence on 

future TW exceedances above the 

current-climate 95th percentile extreme 

threshold under 2°Celsius global 

warming.   

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Shifted distributions demonstrating how tail 
shape can influence the manifestation of future extreme 
threshold exceedances. The top panel displays a Gaussian 
distribution, the center panel a distribution with a short 
non-Gaussian warm-side tail, and the bottom panel a 
distribution with a long non-Gaussian warm-side tail. 
Shaded red areas represent the warm tail, the solid line is 
the historical distribution, and the dashed line is the 
distribution under a warm shift (Loikith and Neelin, 2018).  
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2. Data 
 
 This analysis utilizes 31 models contributing to the sixth phase of the Coupled 

Model Intercomparison Project (CMIP6; Eyring et al., 2016) which were validated 

against reanalysis from the Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2; Gelaro at al., 2015). We selected models based on 

the availability of the necessary meteorological variables for TW calculation. Scenarios 

from CMIP6 included the pre-industrial control (piControl), historical, and the highest 

emission scenario ssp585. The first ensemble member of each model was used when 

more than one was available. Both CMIP6 models and MERRA-2 data were regridded to 

a 2° latitude by 2° longitude resolution using bilinear interpolation, and resampled from 

hourly values to a daily mean. Our analysis includes all land masses with the exception of 

Antarctica.  
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Model Year Range 
Native Resolution  
(latitude × longitude) 

ACCESS-CM2 2023-2052 1.25° × 1.88° 
ACCESS-ESM1-5 2025-2054 1.25° × 1.88° 
BCC-CSM2-MR 2019-2048 1.13° × 1.13° 
CanESM5 2015-2044 2.81° × 2.81° 
CESM2 2023-2052 1.98° × 2.00° 
CESM2-WACCM 2019-2048 0.94° × 1.25° 
CMCC-CM2-SR5 2015-2044 0.94° × 1.25° 
CMCC-ESM2 2019-2048 0.94° × 1.25° 
CNRM-CM6-1 2024-2053 1.41° × 1.41° 
CNRM-CM6-1-HR 2017-2046 0.50° × 0.50° 
CNRM-ESM2-1 2032-2061 1.41° × 1.41° 
EC-Earth3 2021-2050 0.70° × 0.70° 
EC-Earth3-Veg 2015-2044 0.70° × 0.70° 
GFDL-CM4 2026-2055 1.00° × 1.25° 
GFDL-ESM4 2038-2067 1.00° × 1.25° 
GISS-E2-1-G 2028-2057 2.00° × 2.50° 
HadGEM3-GC31-LL 2017-2046 1.25° × 1.88° 
HadGEM3-GC31-MM 2019-2048 0.56° × 0.83° 
INM-CM4-8 2030-2059 1.50° × 2.00° 
INM-CM5-0 2031-2060 1.50° × 2.00° 
KACE-1-0-G 2015-2044 1.25° × 1.88° 
KIOST-ESM 2023-2052 1.88° × 1.88° 
MIROC6 2039-2068 1.41° × 1.41° 
MIROC-ES2L 2032-2061 2.81° × 2.81° 
MPI-ESM1-2-HR 2036-2065 0.94° × 0.94° 
MPI-ESM1-2-LR 2034-2063 1.88° × 1.88° 
MRI-ESM2-0 2025-2054 1.13° × 1.13 
NorESM2-LM 2040-2069 1.88° × 2.50° 
NorESM2-MM 2040-2069 0.94° × 1.25° 
TaiESM1 2022-2051 0.94° × 1.25° 
UKESM1-0-LL 2017-2046 1.25° × 1.88° 

   
 

 

 

 

 

Table 1. All models used in this analysis, their 30-year ranges of 
simulated 2°C global warming under the ssp585 scenario, and their 
native spatial resolutions. 
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3. Methodology 

 TW is calculated using a Python translation (Li, 2019) of a Matlab implementation 

(Kopp, 2016) of a method utilizing pseudoadiabats as detailed by Davies-Jones (2008) 

and employed by Buzan within the Community Land Model version 4.5 (Buzan et al., 

2015). We chose this method due to its accuracy up to 40°C TW  (Davies-Jones, 2008). 

We computed a pre-industrial baseline global average temperature (in accordance with 

the IPCC-defined pre-industrial baseline period of 1850-1900; IPCC 2021) to identify the 

initial 30-year period in which the CMIP6 ssp585 scenario simulated 2°C global warming 

for each individual model (Table 1), as equilibrium climate sensitivity is highly variable 

within CMIP6 (Zelinka et al., 2020). We compared historical multi-model ensemble 

mean (MMEM) results with MERRA-2 data for 1985-2014.  TW anomaly distributions 

for June-July-August (JJA) and December-January-February (DJF) were created for each 

individual climate model and the MERRA-2 dataset at each grid cell. Gaussianity was 

assessed through a shift ratio, i.e. shifting each distribution by 0.5 standard deviations (σ) 

and comparing to an equivalently shifted Gaussian distribution, as follows: 

 
1. Shift the TW anomaly distribution by 0.5σ at each grid cell. 
2. Calculate the percentage of days that exceed the pre-shifted 95th percentile, and 
 divide by the number of exceedances expected if a Gaussian distribution is 
 similarly shifted. 
 
  
 To calculate the exceedances expected from a Gaussian shift, 10,000 datasets of 

equal size to each grid cell dataset were randomly generated from a Gaussian 

distribution shifted by 0.5σ. The median of the shifts was then calculated. We chose a 

0.5σ shift instead of a specified value (e.g. 1°C) to ensure the shift is proportional to the 
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width of the distribution. If the shift ratio is greater than one, the tail is shorter than 

Gaussian, and the tail is longer if the shift ratio is less than one. A shift ratio 

approximately equal to one is indicative of a near-Gaussian tail. This method differs from 

measuring skewness and can apply to more symmetrical PDFs which have short-tails on 

both sides of the distribution. This approach and significance test serves as a variant of 

the Kolmogorov–Smirnov/Lilliefors test for normality (Loikith and Neelin, 2015).  

 To assess the influence of historical tail shape from 1985-2014 on future extreme 

exceedances during the first 30-year period with mean warming of 2°C above pre-

industrial climate, we calculate a warming ratio (as in Loikith et al., 2018) at each grid 

cell for each climate model using the following procedure: 

 
1. Calculate projected exceedances of the historical 95th percentile. 
2. Shift a Gaussian distribution by the simulated mean warming (in σ) and calculate 
 the exceedances of the pre-shifted 95th percentile. 
3. Divide the value from step #1 by step #2 to obtain the warming ratio.  
 
 
 A warming ratio greater than one denotes a greater increase in extreme TW 

exceedances than would be expected from a Gaussian. Individual model results from 

these two procedures are averaged in order to produce a MMEM shift ratio and warming 

ratio.   

 We used simple linear regression to evaluate the correlation between the shift 

ratios of TW, temperature, and specific humidity and the warming ratio for each 

individual model as well as the MMEM. The regression was conducted for summer (JJA) 

in the northern hemisphere and summer (DJF) in the southern hemisphere and only 

included grid cells on land except Antarctica. We also created an average of the 
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correlation coefficient r (Table 2). This summarizes the influence of the shift ratios on 

future extreme threshold exceedances as simulated by the models and as quantified by the 

warming ratio.   
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4. Results 

4.1 The global prevalence of non-Gaussian tails according to CMIP6 and 
MERRA-2 data 

 
 As with temperature (Linz et al., 2018; Loikith et al., 2018; Loikith and Neelin, 

2019; Ruff and Neelin, 2012;), results show that extensive, spatially coherent regions of 

non-Gaussian TW tails are common globally (Figure 2). This is evident in CMIP6 and 

MERRA-2, as well as in JJA and DJF in both hemispheres. Regions with short-tails are 

spatially extensive across the northern and southern hemispheres in JJA and DJF.  Some 

notable regional examples are the southeastern United States and southern Europe in JJA, 

and central South America and northern Australia in DJF. Long-tails are also prevalent 

and in agreement between the models and reanalysis, such as across the Sahara in DJF 

and the Arabian Peninsula in JJA, although these are not quite as widespread as short-

tails.    

 Comparison of MERRA-2 shift ratios with CMIP6 shift ratios reveal that the 

models, particularly when all 31 models are averaged, realistically simulate the reanalysis 

non-Gaussianity of TW. For example, the MMEM short-tails in the southeastern United 

States, across Europe, and throughout central America in JJA are similar in geographic 

extent to the short-tails in reanalysis, as are the short-tails in northern Australia and 

Central America in DJF. There are some locations with discrepancies between the 

MMEM and the reanalysis data, such as the Indian subcontinent in JJA, which is mostly 

long-tailed in the MMEM, but is highly heterogenous with diffuse regions of long- and 

short-tails embedded within close-to-Gaussian areas in MERRA-2. Because the MMEM 

includes 31 models, some variability and magnitude may be blunted in the process of 
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calculating a mean. Similarly, large areas of Gaussianity are lost in the MMEM. A broad 

area may be mostly Gaussian according to MERRA-2, such as across the Amazon basin 

and the northern Sahara desert, but the tails appear non-Gaussian in the CMIP6 data. 

Despite these caveats, the overall patterns of short- and long-tails are similar between the 

reanalysis and climate model data.    

 

 
 
Figure 2. Shift ratio maps for MERRA-2 and the CMIP6 multi-model ensemble mean. Values 
larger than one (red hues) indicate a short-tail and thus a larger number of exceedances with a 
warm shift than if the distribution were Gaussian. Values less than one (blue hues) signify a long-
tail and a lower number of exceedances than if the distribution were Gaussian. Long-tails indicate 
further excursions from the mean. White grid cells on land represent a warm tail that is not 
significantly different from a Gaussian. Models generally agreed with each other in regards to tail 
shape, and the MMEM shift ratios correspond with MERRA-2 shift ratios.  
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4.2 The warming ratio and projected extreme threshold exceedances 

 The shift ratio together with the warming ratio demonstrates the distinct effect 

that tail shape has on future extreme exceedances (Figure 3). Areas with short-tails 

generally coincide with regions that are projected to see a greater increase in the number 

of exceedances than if the distribution were Gaussian, and areas with long-tails are 

projected to see a smaller number of exceedances than a Gaussian. The warming ratios 

have more variation between models than the shift ratios; nonetheless, patterns were 

similar between the two metrics. Most locations with a short-tail exhibit a faster-than-

Gaussian increase in extreme threshold exceedances, with some exceptions, such as the 

central-western and southeastern coast of Australia in JJA, and the southeastern United 

States in DJF. There is only subtle incongruence between the shift ratio and warming 

ratio, exemplified by their coincident extent across the entirety of North America in JJA, 

South America in DJF, Australia in DJF, Africa in DJF, and Southeast Asia in JJA.  

 Although areas with long-tails will not observe as expedient of an increase in the 

number of exceedances, the exceedances that occur can be very far from the current and 

future mean TW, possibly dangerously high. Such locations in very high TW environments 

may be the most at-risk of exceeding the 35°C adaptability threshold, even though the 

rate of increase in exceedances above the historical 95th percentile threshold will be 

slower than for shorter-tailed locations. Some areas with long warm-tails, such as some 

regions on the Indian subcontinent, already observe very extreme TW (Im et al., 2017; van 

Oldenborgh et al., 2018), so this may indicate TW that grazes or even breaches the 

adaptability threshold under 2°C global warming. Other long-tailed locations, such as in 

the Sahara, may be exposed to extreme high TW that are so anomalous that existing 
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infrastructure is lacking in its ability to safely cool the population. In this sense, long-tails 

may assist in the identification of areas which are at risk of very rare, but very large, 

excursions from the mean, such as was witnessed with dry-bulb temperature in the June 

2021 heatwave in the Pacific Northwest of the United States.  

 

  
Figure 3. Shift ratio (left) and warming ratio (right) multi-model ensemble means. Values greater 
than one indicate a larger increase in the number of TW extreme threshold exceedances under 
warming than if the underlying distribution were Gaussian.  
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4.3 Correlations between the TW warming ratio and the shift ratios of specific 
humidity, temperature, and TW  
 
 We ran a simple linear regression on shift ratios and the warming ratio for all 

individual models and averaged results of the model regression correlation coefficients, 

as well as the MMEM humidity, temperature, and TW shift ratios and TW warming ratio 

(Table 2). The shift ratios of specific humidity and temperature also demonstrate 

significant non-Gaussianity in their probability distributions, which may or may not 

resemble the TW shift ratio. To investigate the correlation between the Gaussianity of 

specific humidity, temperature, and TW, we conducted similar linear regression on the 

shift ratios of specific humidity and temperature with the shift ratio of TW as the 

dependent variable. The shift ratio of specific humidity is much more closely correlated 

with the shift ratio of TW (MMEM r = 0.87) than the shift ratio of temperature is with the 

shift ratio of TW (MMEM r = 0.28).   

 To quantify the relationship between each shift ratio and TW warming ratio, we 

conducted a simple linear regression with each shift ratio as the explanatory variable and 

the TW warming ratio as the dependent variable. The correlation between the shift ratio 

and projected extreme threshold exceedances is at its strongest when utilizing the shift 

ratio for TW (MMEM r = 0.95; Table 2), but the relative roles of temperature and specific 

humidity are also meaningful. The non-Gaussianity of TW sometimes follows the pattern 

of temperature non-Gaussianity (Figures A1 and A2), but our analysis suggests that 

specific humidity has a more direct influence on TW PDF shape than temperature. The 

dry-bulb temperature shift ratio is only weakly correlated with the TW warming ratio 

(MMEM r = 0.25; Table 2), while the shift ratio for specific humidity is more closely 
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correlated (MMEM r = 0.80; Table 2). There is some variability between models. 

CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, and EC-Earth3 show a weak 

negative correlation between the temperature shift ratio and the warming ratio, while 

CNRM-CM6-1 and CNRM-ESM2-1 also have a weak negative correlation between 

temperature shift ratio and the TW shift ratio.  Aside from these exceptions, all other 

models in our analysis exhibit similar patterns of correlation. 

 Due to the Clausius-Clapeyron relation, specific humidity is expected 

to scale with temperature as climates warm (Held and Soden, 2000; Santer et al., 2007; 

Willet et al., 2007). This relationship results in an approximate 7% increase in 

atmospheric moisture-holding capacity per each 1°C increase in temperature, although 

this can differ over the ocean and land, and there are other considerations, such as higher 

temperatures reducing specific humidity by increasing surface drying (Coffel et al., 

2019). While a more complete understanding of the physical mechanisms that comprise 

the contributions from both components of TW is beyond the scope of this research, this 

has important implications in the assessment and projections of humid-heat extremes. 

These results suggest that the presence of a short warm tail in the humidity distribution in 

high temperature areas may be more indicative of large increases in heat stress risk under 

global warming than temperature. 
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Model 
TW SR- 
TW WR 

T SR- 
TW WR 

Q SR- 
TW WR 

T SR- 
TW SR 

Q SR- 
TW SR 

ACCESS-CM2 0.88 0.21 0.76 0.29 0.84 
ACCESS-ESM1-5 0.82 0.23 0.68 0.35 0.86 
BCC-CSM2-MR 0.82 0.31 0.66 0.34 0.76 
CanESM5 0.87 0.10 0.77 0.14 0.84 
CESM2 0.76 0.14 0.79 0.37 0.83 
CESM2-WACCM 0.88 0.26 0.76 0.39 0.83 
CMCC-CM2-SR5 0.26 0.11 0.22 0.23 0.90 
CMCC-ESM2 0.78 0.27 0.77 0.35 0.89 
CNRM-CM6-1 0.80 -0.08 0.57 -0.02 0.76 
CNRM-CM6-1-HR 0.85 -0.01 0.67 0.03 0.82 
CNRM-ESM2-1 0.83 -0.02 0.58 -0.02 0.79 
EC-Earth3 0.42 -0.18 0.31 0.13 0.80 
EC-Earth3-Veg 0.84 0.12 0.74 0.25 0.76 
GFDL-CM4 0.83 0.29 0.69 0.42 0.82 
GFDL-ESM4 0.87 0.29 0.68 0.33 0.82 
GISS-E2-1-G 0.77 0.42 0.75 0.41 0.83 
HadGEM3-GC31-LL 0.82 0.28 0.69 0.35 0.79 
HadGEM3-GC31-MM 0.83 0.26 0.68 0.35 0.78 
INM-CM4-8 0.81 0.17 0.67 0.35 0.82 
INM-CM5-0 0.80 0.14 0.66 0.31 0.84 
KACE-1-0-G 0.65 0.11 0.57 0.17 0.72 
KIOST-ESM 0.88 0.35 0.72 0.38 0.83 
MIROC6 0.90 0.15 0.68 0.13 0.74 
MIROC-ES2L 0.88 0.34 0.69 0.34 0.76 
MPI-ESM1-2-HR 0.88 0.18 0.70 0.20 0.79 
MPI-ESM1-2-LR 0.87 0.27 0.66 0.25 0.77 
MRI-ESM2-0 0.90 0.21 0.77 0.27 0.86 
NorESM2-LM 0.87 0.29 0.67 0.35 0.82 
NorESM2-MM 0.89 0.38 0.68 0.48 0.78 
TaiESM1 0.82 0.30 0.67 0.37 0.87 
UKESM1-0-LL 0.88 0.28 0.77 0.33 0.80 
Average 0.80 0.20 0.67 0.28 0.81 
MMEM 0.95 0.25 0.80 0.28 0.87 

 
Table 2. Linear regression coefficients for the: (first column) TW shift ratio (SR) and the TW 

warming ratio (WR); (second column) 2-meter temperature (T) SR and the TW WR; (third 
column) 2-meter specific humidity (Q) SR and the TW WR; (fourth column) temperature SR and 
the TW SR; and (fifth column) the specific humidity SR and the TW SR. All p-values are under 
0.05. This regression only includes values on land for JJA in the northern hemisphere and DJF in 
the southern hemisphere. The “Average” row is the mean of all model r values. A visual 
representation of these results is available in the Appendix (Figure A5). 
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4.4 Example short-tailed locations 
 
 We examined four locations with short-tailed distributions: Ras Al Khaimah, 

United Arab Emirates; New Orleans, United States; Larkana, Pakistan, Asunción, 

Paraguay. A Gaussian distribution was fit to the core of the non-Gaussian PDF created 

from MERRA-2 anomaly data (Figure 4). We shifted the MERRA-2 TW array by the 

local simulated change in warming divided by the historical σ (ΔTW/σ historical; as in 

Figures A6 and A). This is a uniform shift which assumes no changes in variance, 

skewness, or kurtosis. Histograms from short-tailed locations as indicated by MERRA-2 

data for the period of 1985-2014 are shifted by the MMEM ΔTW/σ historical with the 

simulated rise in global average temperature of 2°C since the pre-industrial era.  

 These cities will each have a very large percentage of days over the 1985-2014 

percentile in the future. Panel (a), Ras Al Khaimah on the Persian Gulf Coast, displays a 

shift in extreme TW days translating to a substantial portion of the summer months as 

being inhospitable to humans, with a projected 58.41% of days over the historical 95th 

percentile threshold of 27.33°C TW. Panels (b-d), New Orleans, Larkana, and Asunción, 

also are projected to see a large rise in extreme humid-heat days every summer. Their 

percentage of days over their current-climate 95th percentiles (New Orleans: 26.03 °C TW; 

Larkana: 25.91 °C TW; Asunción: 25.25 °°C TW) is projected to be 51.09%, 28.95%, and 

20.33%, respectively.  

 In some places, especially for those with relatively low TW variance, the recent-

climate 95th percentile will be exceeded most of the time under 2°C of warming. In these 

locations, tail shape is not as relevant to the rate of increase because a small amount of 

warming will shift most of the distribution to the right of the 95th percentile. Therefore, 
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we have only included examples of locations with sufficiently large variance (σ greater 

than 1°C) for tail shape to influence future increases in extreme threshold exceedances. 

To illustrate this effect for cases where warming will lead to a very large number of days 

exceeding the historical extreme threshold, but where variance is small and the influence 

of warm-tail shape is dampened, we provide some examples in the Appendix (Figure 

A7).  

 

 

Figure 4. MERRA-2 PDFs of 1985-2014 TW anomalies with a Gaussian curve fit to the core, 
plotted on a log-scale. In each subplot, the vertical dashed line indicates the historical 95th 
percentile, and points are histogram bin centers. Solid points represent the warm tail. Panel (a) is 
Ras Al Khaimah in the United Arab Emirates on the Persian Gulf coast in JJA, panel (b) is New 
Orleans, Louisiana in the United States in JJA, panel (c) is Larkana, Pakistan in JJA, and panel 
(d) is Asunción, Paraguay, in DJF.   
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5. Discussion 
 
 Since the identification of a theoretical physiological upper limit of TW (Sherwood 

and Huber, 2010), much attention has been paid to the potential for humid-heat extremes 

to intensify under global warming (Matthews, 2018; Pal and Eltahir, 2016, Raymond et 

al., 2020; Schär, 2016). Studies that utilize climate models to analyze future TW extremes 

often focus on global warming far above 2°C, such as 4°C (Schär, 2016), or even 7°C 

(Sherwood and Huber, 2010), or during the 30-year period of 2071-2100 when some 

CMIP6 models simulate a similarly high amount of warming under high-end emissions 

scenarios (Coffel et al., 2017; Pal and Eltahir, 2016). There are also several studies which 

examine the effect of warming on TW at different emissions levels (Chen et al., 2022) and 

others which assess TW under 1.5°C, 2°C warming, and 3°C (Freychet et al., 2022; Saeed 

et al., 2021; Wang et al., 2022). While these studies have in common an emphasis on the 

adaptability threshold of 35°C, instead we emphasize areas that may be regularly exposed 

to TWs which are classified as extreme in the recent climatology. This signal is 

sufficiently captured with 2°C warming, which is likely to occur without considerable 

near-term global mobilization around decarbonization. Furthermore, recent research 

implies that the human adaptability limit may actually be around 31°C, and probably 

lower in older people or those with certain underlying health conditions (Vecellio et al., 

2022), though more research is needed. TWs of 31°C and above are very uncommon 

today, but not as rare as 35°C. An over-emphasis on the 35°C TW threshold may overlook 

locations which are at high-risk of dangerous moist-heat stress in the near future. 

Nevertheless, the adaptability threshold is still an important consideration, especially 

because several degrees of global warming is possible without climate change mitigation.     
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The non-Gaussian nature of temperature has been previously used to identify 

regions at risk of extreme heat under global warming (Loikith et al., 2018; Loikith and 

Neelin, 2015; Loikith and Neelin, 2019; Ruff and Neelin, 2012). Analysis of tail shape is 

not as useful in locations with low variance. When σ is less than 1°C TW, the PDF is 

shifted so far to the right of the original PDF that tail shape is practically inconsequential. 

Some analyses of increases in humid-heat extremes assume Gaussianity of the underlying 

PDFs at each location, identifying significant shifts up to 3σ in the time period of 2000-

2012 in the tropics (Coumou and Robinson, 2013). We find that this similarly applies to 

TW when σ is less than about 1°C, no matter the shape of the underlying PDF, since even 

a modest warming shifts the core of the distribution to the right of the pre-shifted 95th 

percentile. When assessed globally and especially outside the tropics, TW distribution tail 

shape is well-correlated with future extreme threshold exceedances. This is in accordance 

with prior research on temperature distribution tails and extreme exceedances (Loikith et 

al., 2018; Loikith and Neelin, 2015; Loikith and Neelin, 2019). 

It is theorized that the atmospheric dynamics from approximately 20°S to 20°N 

limit TW warming to 1°C per 1°C tropical mean warming, possibly preventing extremes 

from reaching the 35°C threshold (Zhang et al., 2021). Although the theoretical 

adaptability limit may not be reached, a daily mean TW which is almost always above 

26°C in the summer months would create substantial public health and infrastructure 

challenges, despite possibly never breaching the adaptability threshold, such as in 

Cancún, Mexico and Darwin, Australia, as represented by our analysis (see Appendix 

Figure A6). Cancún has relatively low variability of its TW PDF, and under a 2°C rise in 

global average temperature may observe daily mean temperatures in JJA which hinder all 
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outdoor activities. In addition, our analysis utilizes a daily mean instead of a maximum 

TW, so a breach of the adaptability threshold cannot be ruled out. The low spatiotemporal 

resolution of our data also undoubtedly underestimates extremes, as both low extremes 

and more moderate values are averaged with hot extremes. Such high daily mean TW can 

be suggestive of high nighttime TW, a time when humans are especially vulnerable to heat 

stress (Kravchenko et al., 2013). It is possible that in some cases, the prevailing 

meteorology that causes the short-tails may also prevent TW from becoming too high, 

similar to the possible ceiling for TW due to atmospheric constraints in the tropics 

(Sherwood and Huber, 2010; Zhang et al., 2021).  

Although the relationships between humidity and temperature are well-understood 

(Fischer and Knutti, 2013), the relative contributions of humidity and heat to the risk of 

human heat stress still needs further investigation (Lutsko, 2021). Prior research suggests 

that latitude, topography (Raymond et al., 2022), or other geographic and climatological 

factors (Buzan et al., 2015; Ivanovich et al., 2022; Raymond et al., 2017; Wang et al., 

2019; Zhao et al., 2015) can all be influential. This analysis suggests that, in general and 

on the global scale, specific humidity is more closely correlated to TW extreme 

exceedances than temperature. This agrees with what Lutsko found with equivalent 

temperature in 2021, Coffel et al. found with TW in 2019, and Raymond et al. found with 

TW in 2017.  Buzan and Huber found that TW generally aligned with extreme temperature, 

but Heat Index and simple wet-bulb globe temperature aligned with temperature (2020).  

Our analysis also supports that humidity and heat combined provide a more robust 

assessment of TW extremes, in agreement with Fischer and Knutti (2013). Experimental 

research which has examined the human body’s response to different levels of heat and 
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humidity is sparse, but a recent study suggests that hotter, dryer TW extremes may stress 

the body more than warm, humid, TW extremes (Vecellio, et al., 2022). Utilizing 

controlled conditions indoors, this experiment found that body temperature rose in hotter, 

drier conditions of equal TW to very humid, but less hot environments.  If the human body 

responds differently to TWs that are of higher temperature and relatively lower humidity, 

then a possible next step would be to ascertain the different types of TW extremes, for 

example, high temperature and lower humidity or lower temperature and higher 

humidity.  

Long-tails may assist in the identification of areas which are at risk of very large 

excursions from the mean, such as was witnessed in the June 2021 heatwave in the 

Pacific Northwest of the United States which was outside the temperature distribution of 

the area in which it occurred (Thompson et al., 2022). This area has a long-tail of its 

temperature distribution (Loikith et al., 2018), so it can be expected that its local 

temperature extremes might fall past the hot end of the distribution during an event 

amplified by global warming. Long-tailed areas may be especially unprepared for 

extreme heat events. A similar case can be made for TW and its long-tailed distributions. 

While certain short-tailed locations might endure persistently dangerous TWs during the 

warm season, it is also possible that long-tailed locations might experience TWs that the 

local populace may be completely unprepared for. These locations may also be the most 

at-risk of breaching the human adaptability threshold of 35°C TW. Even though our 

analysis focuses on short-tails, the implications of long-tails are also relevant.   

There are some limitations to this study. Certain regions which are at high-risk of 

dangerous TW observe their highest temperatures outside of the summer months, such as 
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May in the northern hemisphere. Additionally, it is possible that in some locations higher 

spring temperatures mimic summer conditions. In certain climates, high temperatures 

may interact with terrestrial moisture sources to induce higher TWs (Freychet et al., 2020; 

Im et al., 2017). Changes in distribution shape may also not be effectively captured by the 

models, even though distribution shape is overall sufficient in the historical simulation 

when compared with reanalysis data. Unpredictable changes in human society or in the 

global climate cannot be accounted for in climate models. CMIP6 may also not 

accurately identify the 30-year time period in which there is a 2°C rise in global average 

temperatures, so the timeline for predicted adaptation may be difficult to determine. 

Despite these limitations, this study supports that our methodology is effective in 

identifying regions at increased risk of high TW.  
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6. Conclusions 
 

This research demonstrates that TW distribution tail shape has a significant effect 

on future extreme threshold exceedances under 2°C global warming as simulated by 

CMIP6 models. Short-tails on the warm-side of the TW distribution are of particular 

concern as they may indicate a very large number of future exceedances over the current-

climate 95th percentile. Although this analysis suggests that long-tails result in a slower 

increase in extreme exceedances in comparison to Gaussian- or shorter-tails, long-tails 

can still be impactful in areas which are unprepared for extreme TW due to its relative 

rarity. We also find that specific humidity has a larger contribution to projected TW 

extremes than temperature when assessed using our shift ratio methodology. The physical 

mechanisms behind this are outside the scope of this thesis, but a more thorough 

understanding of how specific humidity and temperature interact to produce TW extremes 

may benefit the accurate projection of their future occurrence. Insight into the changing 

probability of extreme TW and identifying locations at risk of TWs that dangerously 

challenge the human thermoregulatory system is essential in the adequate preparation for 

the human health and societal consequences of extreme humid-heat under global 

warming.  
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Appendix: Supplementary Figures and Tables 
 

 
 
Figure A1. The multi-model ensemble mean shift ratio for TW, the MERRA-2 TW shift ratio, the 
MERRA-2 temperature shift ratio, and the MERRA-2 specific humidity shift ratio for JJA.  
 

 
 
Figure A2. The multi-model ensemble mean shift ratio for TW, the MERRA-2 TW shift ratio, the 
MERRA-2 temperature shift ratio, and the MERRA-2 specific humidity shift ratio for JJA. 
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Figure A3. The MMEM mean TW for JJA and DJF (left), and the MMEM standard deviation of 
TW for JJA and DJF (right). 
 
 

 
  
Figure A4. The MMEM 95th percentile of TW for JJA and DJF (left), and the MERRA-2 
exceedances with a rightward shift of the MMEM mean warming of TW for JJA and DJF (right). 
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Figure A5. Box and whisker plot of r values for the TW shift ratio (SR), air temperature (T) shift 
ratio, and specific humidity (Q) shift ratio, and the TW warming ratio (WR) as in Table 2. Each 
point represents an individual CMIP6 model, and the purple diamond represents the MMEM.  
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Figure A6. MERRA-2 wet-bulb temperature distributions of short-tailed locations shifted by the 
local ΔTW/σ historical with the MMEM of 2°Celsius global warming.  
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Figure A7. MERRA-2 wet-bulb temperature distributions shifted by the local ΔTW/σ historical with 
the MMEM of 2°Celsius global warming. (a-c) possess lower variance and (d) is a location with a 
Gaussian distribution.   
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