
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

11-17-2022

Domain Knowledge as Motion-Aware Inductive Bias Domain Knowledge as Motion-Aware Inductive Bias

for Deep Video Synthesis: Two Case Studies for Deep Video Synthesis: Two Case Studies

Long Mai
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mai, Long, "Domain Knowledge as Motion-Aware Inductive Bias for Deep Video Synthesis: Two Case
Studies" (2022). Dissertations and Theses. Paper 6247.
https://doi.org/10.15760/etd.8106

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6247
https://doi.org/10.15760/etd.8106
mailto:pdxscholar@pdx.edu

Domain Knowledge as Motion-Aware Inductive Bias for Deep Video Synthesis:

Two Case Studies

by

Long Mai

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Feng Liu, Chair
Bart Massey
Atul Ingle

Dan Hammerstrom

Portland State University
2022

© 2022 Long Mai

i

Abstract

Deep neural networks have been part of many breakthroughs in computer graphics

and vision research. In the context of visual content synthesis, deep learning models

have achieved impressive performance in the image domain. However, adapting the

successes of image synthesis models to the video domain has been difficult, arguably

due to the lack of sufficiently strong inductive biases that encourage the models to

capture the temporal-dynamic nature of video data. Inductive bias refers to the prior

knowledge incorporated into the learning models to explicitly drives the learning

process toward the solutions that capture meaningful structures from data, which is

critical to help the model generalize beyond the training data. Successful deep neural

network architectures, such as convolutional neural networks (CNN), while effective in

representing image data thanks to the spatial inductive bias, often lack the inductive

biases relating to the dynamic nature of videos. I argue that designing such inductive

biases can benefit from the domain knowledge of video processing literature. My

primary motivation in this thesis is to demonstrate that the knowledge acquired from

traditional computer vision and graphics literature can serve as effective inductive

biases for designing deep learning models for video synthesis. This dissertation provides

the initial steps toward verifying that insight via two case studies.

In the first case study, I explored adapting the standard CNN architecture to

perform video frame interpolation. Early CNN-based methods for frame generation

ii

followed the direct prediction approach, thus ineffective in learning to capture motion

information. That often results in visual distortions and blurry results. Inspired by

traditional video frame interpolation techniques that established frame interpolation as

a joint process of motion estimation and pixel re-sampling, I presented our CNN-based

frame interpolation framework that incorporated such insight into the synthesis model

via the novel AdaConv layer. That serves as a functional inductive bias and enables

the first deep learning model for high-quality video frame interpolation.

In the second case study, I explored adapting the recent Implicit Neural Repre-

sentation (INR) to a novel motion-adjustable video representation. Viewing modern

INR frameworks as a form of non-linear transform from a frequency domain to the

image domain, and inspired by the success of phase-based motion modelling in the

classical computer vision literature, I presented a simple modification to the standard

image-based INR model that allows for not only video reconstruction but also a variety

of motion editing tasks.

iii

Dedication

My PhD study is a journey full of joy, and excitement. Along the way, I am blessed

with the opportunities to know and work with so many wonderful people. They

helped me learn a great deal and make my whole journey not only memorable but

also immensely enjoyable. I dedicate this dissertation to all of them.

I want to thank my advisor, Professor Feng Liu, for his unconditional support for

me over many years. I learned from him not only the skills to do well in research, but

also the mindset to become a good scientist. I’m sure I would not be where I am now

without him.

I thank my friends and labmates at Portland State University and our Computer

Graphics & Vision Lab for making my student life the best experience. I am grateful

to my friends, Hoang le and Huy Tran, for the great friendships that span beyond

two decades and two continents; and to Simon Niklaus, for being not only the best

collaborator I have ever had but also one of my best friends for life.

I am forever in debt to my parents. Every step I took in life, they have always

been there for me. Every success I have ever achieved in life, no matter how big or

small, would never be possible without their loves.

And last but not least, I want to thank my dear wife Amy for always supporting

every decision I made, no matter how crazy they were.

iv

Table of Contents

Abstract i

Dedication iii

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Video Synthesis . 2

1.2 Learning-Based Video Synthesis – The Challenge of Temporal Dynamics
Modeling . 3

1.3 Learning to Synthesize Videos – Domain Knowledge as Inductive Biases 5

1.4 Two Case Studies . 7

1.4.1 Video Frame Interpolation with Adaptive Convolution 7

1.4.2 Motion-Adjustable Neural Implicit Representation for Video with
Phase-Varying Positional Encoding . 9

1.5 Outline . 10

2 Relevant Literature 11

2.1 Visual Computing Research and Early Successes in Visual Content
Synthesis . 11

2.1.1 Classical Image-Based and Video-Based Rendering. 12

2.1.2 Flow-Based Video Synthesis . 13

2.1.3 Patch-Based Video Synthesis . 14

v

2.1.4 Phase-Based Video Synthesis . 15

2.2 Learning to Synthesize Video Content . 16

2.2.1 Deep Neural Networks for Visual Synthesis . 17

2.2.2 Inductive Biases in Representation Learning . 19

3 Adaptive Convolution for Video Frame Interpolation 21

3.1 Overview . 22

3.2 Related Work . 24

3.3 Method . 27

3.3.1 Convolution kernel estimation . 29

3.3.2 Training . 33

3.3.3 Implementation details . 35

3.4 Experiments . 37

3.4.1 Comparisons . 38

3.4.2 Edge-aware pixel interpolation . 41

3.4.3 Discussion . 43

3.5 Discussion . 44

4 Motion-Adjustable Neural Implicit Video Representation 49

4.1 Introduction . 50

4.2 Related Work . 54

4.3 Method . 55

4.3.1 Neural Implicit Image Representation . 55

4.3.2 Shifting Images with Pre-Trained Image-Based INR. 56

4.3.3 Neural Implicit Video Representation . 60

4.4 Experiments . 62

4.4.1 Implementation Details . 62

4.4.2 Learning to Fit Video Data . 63

4.4.3 Phase-based Motion Manipulation . 66

4.5 Discussion . 73

4.5.1 Inspecting the Learned Phase Space . 74

vi

4.5.2 Phase-Shift Learning with Direct Optimization 76

4.5.3 Limitation and Future Work . 78

5 Conclusion 80

Bibliography 85

vii

List of Tables

Table 3.1 The convolutional neural network architecture. It makes use of Batch
Normalization (BN) [75] as well as Rectified Linear Units (ReLU).
Note that the output only reshapes the result without altering its
value. 30

Table 3.2 Evaluation on the Middlebury testing set. We compared different
methods in terms of the average interpolation error metric which
measures the average absolute difference in per-pixel values between
the predicted and the ground-truth target frames. 40

Table 4.1 Video fitting performance. 63

viii

List of Figures

Figure 3.1 Pixel interpolation by convolution. For each output pixel (x, y), our
method estimates a convolution kernel K and uses it to convolve
with patches P1 and P2 centered at (x, y) in the input frames to
produce its color Î(x, y). This adaptive convolution formulation
effectively combines motion estimation and pixel synthesis into a
single operation for synthesizing each pixel. 23

Figure 3.2 Interpolation by convolution. (a): a two-step approach first esti-
mates motion between two frames and then interpolates the pixel
color based on the motion. (b): our method directly estimates
a convolution kernel and uses it to convolve the two frames to
interpolate the pixel color. In this way, our method combines both
steps of coventional frame interpolation techniques into a single
operation under a unified convolution formulation. 28

Figure 3.3 Effect of using an additional gradient loss. (a) Using the color loss
alone can lead to blurry results. (b) Combining the color loss and
gradient loss enables our method to produce sharper interpolation
results (most noticeable in front-wheel region of the middle car). . . . 31

Figure 3.4 Qualitative evaluation on blurry videos. Blurry regions are often
challenging for optical flow estimation, resulting in noticeable arti-
facts (Columns 4-7). The phase-based method from Meyer et al.
[117] can handle blurry regions better (3rd column). Our method
tend to be more robust in regions with large motion, such as the
right side of the hat in the bottom example. 37

Figure 3.5 Qualitative evaluation on video with abrupt brightness change. In
general, our method and the phasebased method generate more
visually appealing interpolation results than flow-based methods. . . 39

ix

Figure 3.6 Qualitative evaluation with respect to occlusion. Occlusion is one
of the biggest challenges for optical flow estimation. Our method
adopts a learning approach to obtain proper convolution kernels
that lead to visually appealing pixel synthesis results for occluded
regions and preserve better object boundaries in the synthesis results. 39

Figure 3.7 Occlusion handling. For the illustration, we compute the centroid of
each sub-kernel and mark it using x and only visualize it if the sum
of kernel value is sufficiently larger than zero. The correspondence
between a pixel and its convolution kernel is established by color.
The pixel indicated by the green x is visible in both frames and
our kernel shows that the color of this pixel is interpolated from
both frames. On the other hand, the pixel indicated by the cyan x
is only visible in Frame 1. Our kernel correctly accounts for this
occlusion and gets its color from Frame 1 only. 41

Figure 3.8 Convolution kernels. The third row provides magnified views into
the non-zero regions in the kernels in the second row. While our
neural network does not explicitly model the frame interpolation
procedure, it is able to estimate convolution kernels that enable
similar pixel interpolation to the flow-based interpolation methods.
More importantly, our kernels are spatially adaptive and edge-aware,
such as those for the pixels marked by the red and cyan x. 42

Figure 3.9 Comparison with direct synthesis. Direct prediction approaches, us-
ing both our network architecture and the archicture from Long et al.
[104], produce blurry results. By allowing for the explicit motion rea-
soning in the inference process, our model can produce significantly
sharper results. 43

Figure 3.10 Interpolation quality of our method with respect to the flow magni-
tude (pixels). 45

Figure 3.11 Interpolation of a stereo image. Our method fails to interpolate the
left and right view in this stereo image due to the large disparity
(over 41 pixels), as shown in (c). After downscaling the input images
to half of their original size, our method interpolates well, as shown
in (d). 45

Figure 3.12 Compared to the our original AdaConv approach that utilizes 2D
kernels (b), our new separable convolution methods [128], especially
the one with perceptual loss (d), incorporate 1D kernels that allow
for full-frame interpolation and produce higher-quality results. 46

x

Figure 4.1 We extend a standard image-based implicit neural representation to
a motion-adjustable neural implicit video representation by incorpo-
rating temporally varying phase-shift information into Fourier-based
positional encoding. By changing the phase-shift values at inference
time, our method can not only reconstruct video data but can also
re-synthesize videos with modified motion properties. This chapter
contains video figures that are best viewed using Adobe Reader.
The video results in this chapter can also be viewed on our project
website [1]. 53

Figure 4.2 Phase-shift-induced image shifting with pre-trained image-based
INR model (i0 = 0). 58

Figure 4.3 Phase-shift-induced image shifting with pre-trained image-based
INR model (i0 = 1). 59

Figure 4.4 Motion-Adjustable Neural Implicit Video Representation. We ex-
tend image-based implicit neural representation (left) to model a
video. Our method determines the phase-shift ϕ(t) at each time t
using the phase-shift generation network Mp. The frame generation
network Mf synthesizes the video frames corresponding to the po-
sitional embeddings with the phase shifted by ϕ(t). At inference
time, ϕ(t) can be manipulated to generate new videos with modified
dynamics. 60

Figure 4.5 Video reconstruction examples. Our method can fit video content
with comparable visual quality as Direct-VINR (rows 1-4) while
tending to be robust in capturing object motion over uniform
background such as the man’s legs over the uniform sky regions
(row 5). 65

Figure 4.6 Temporal interpolation examples. The frame generation model can
synthesize plausible interpolated frames with interpolated phase-
shift vectors during inference time. The interpolation results often
show plausible motion transition rather than copying nearby frames
or taking frame-wise average (2nd row). 67

Figure 4.7 Motion filtering. Low-pass filtering the phase-shift sequence ϕ(t) at
inference time can make the frame generation model to generate a
new video with smoother object motion. 1st example: The concrete
base becomes more stable while its larger-scale motion is preserved.
2nd example: The vibrating motion of the car-washing tool in the
original video was significantly smoothened in the re-synthesized
version. 3rd example: the hand-grip exhibit strong jiterring motion
in the original video but remained relatively static after motion
smoothing. 69

https://mai-t-long.com/Phase_NIVR/index.html
https://mai-t-long.com/Phase_NIVR/index.html

xi

Figure 4.8 Motion magnitude adjustment. Scaling the phase-shift sequence ϕ(t)
at inference time can alter the motion magnitude in the synthesized
video. Varying the scaling factor allows for both motion minification
and motion magnification. 70

Figure 4.9 Video loop detection. Potential repeat point in a video can be
detected by simple phase-matching strategy in the learned phase-
shift sequence ϕ(t). Applying phase blending improves the looping
results especially for challenging scenarios, such as when both the
wind chime and the background move due to subtle camera motion
(3rd row). 73

Figure 4.10 We visualize five channels of the learned phase-shift values ϕ(t) as a
function of time (top). The structure of the phase-shift series reflects
the symmetric nature of the video (bottom-left). In addition, the
fifth phase-shift series (the red curve) correlates with the hair-lock
movement even when other channels are frozen to one keyframe. . . . 75

Figure 4.11 Direct optimization for per-frame phase-shift sequence is challenging.
Without stronger structural regularization, it is difficult for the
optimized phase-shift sequence to reflect the inherent continuity in
video data. The resulting model cannot generate plausible results
from the interpolated phase-shift vectors (top row). Our method
uses an implicit neural representation model to parameterize the
mapping from the continuous input t to ϕ(t). This partly serves as
an implicit continuity-aware regularization. 77

1

1 Introduction

In recent years, video has become a major form of media for entertainment and

communication. In 2022, it is estimated that video data contributed more than 80%

of the overall internet traffic 1 . A typical internet user spends, on average, 19 hours

every week watching video content online 2 . From streaming services (Netflix 3 , Hulu

4) to modern social video-sharing platforms (Youtube 5 , Instagram 6 , TikTok 7),

influential stories are now delivered through video content. Besides entertainment,

video is also an essential form for marketing and education [4, 17, 33, 86, 100, 103].

With great demands in video consumption come great demands in video production.

The growing popularity of video platforms in recent years has turned video content

creation into a fruitful career path 8 . To create impactful videos, content creators

need to not only capture interesting content but also transform it in creative ways

into their intended stories. Therefore, video editing and post-production have become

critical components in modern video production workflows [63, 130, 180].

1https://cyrekdigital.com/uploads/content/files/white-paper-c11-741490.pdf

2https://www.wyzowl.com/video-marketing-statistics/

3https://www.netflix.com

4https://www.hulu.com

5https://www.youtube.com/

6https://www.instagram.com/

7https://www.tiktok.com/

8https://www.bloomberg.com/press-releases/2022-08-03/oxygen-announces-the-state-of-the-
creator-economy-report

2

Such ever-increasing needs for video content creation have encouraged the rapid

development of advanced video processing systems in recent years. In addition to the

basic editing capabilities, such as cutting and assembling video footages, modern video

creation often demand advanced editing tools that can support adjusting different

aspects of the captured videos to fix the imperfection incurred during the captured

process, or to achieve certain artistic appearances. Video processing, and video

synthesis in particular, has long been a core research topic in computer graphics and

computer vision.

1.1 Video Synthesis

In video synthesis, the main goal is to synthesize novel video results from the

original source videos such that certain properties are transformed according to the

users’ desires. Over the past decades, computer graphics and vision research have

enabled advanced systems for many low-level video processing tasks. Examples include

removing sensor noise in the captured footage [6, 67, 85, 97, 175], reducing camera

shaking from the videos [99, 102, 112], and re-targeting the aspect ratios of the

captured video to fit the display device [31, 98, 203]. They have been incorporated

into successful commercial video editing applications such as Adobe Premiere 9 and

Apple’s Final Cut 10 .

Modern video production workflows, however, demand more than adjusting low-

level pixel information. They often requires solving more sophisticated video synthesis

problems in which higher-level aspects of the video content, such as objects’ appearance

or dynamics, need to be manipulated to fit the users’ creative purposes. One example

is the task of video object removal. Removing objects from the video content requires

9https://www.adobe.com/products/premiere.html

10https://www.apple.com/final-cut-pro/

3

beyond manipulating low-level pixel information. It requires novel information to be

generated to fill in the removed regions. Importantly, the generated content needs to

be consistent with the rest of the videos in terms of both appearance and dynamics.

Another example is the video re-timing task. When editing videos with dramatic

actions, users often want to create the slow-motion effect in certain part of the video

to emphasize the beauty of the captured actions. Adjusting the perceived speed of the

motion in the video requires more than adjusting the existing content in the video. It

requires additional frames to be synthesized, and the synthesized content needs to

appear consistent with the original frames.

In those modern video synthesis problems, the fundamental challenge is to generate

novel contents that are visually plausible both spatially and temporally. The algorithms

need to synthesize natural looking individual frames. In addition, the synthesized

frames, when put together, need to exhibit the plausible temporal dynamics that are

consistent with both the original content and the users’ constraints. That requires

the video synthesis algorithms model not only the low-level pixel information but also

mid- and high-level semantics information involving the appearance and dynamics of

the synthesized content.

1.2 Learning-Based Video Synthesis – The Challenge of Temporal Dy-

namics Modeling

In recent years, advances in machine learning have revolutionized visual computing

research. In particular, learning-based techniques have been highly successful in image

synthesis. The ability to learn predictive models from large image/video databases has

enabled many smart image editing systems, thanks to the effectiveness of deep neural

networks in modeling and generating plausible visual appearance. Intelligent tools are

now available to adjust image sizes without distorting important content [7, 11, 146],

4

replacing unwanted regions with better content [11, 101, 217], and perform image

style transfer to transform the image appearance while preserving the scene content

and structures [58, 134, 150, 206].

The successes in image synthesis, however, are not easily translated into successes

in the video domain. A Video is not just a collection of images. Instead, a video is

a sequence of images consistently relating to each other. For that reason, applying

a known image editing technique frame-wise often fails to generate plausible video

synthesis results. The fundamental challenge in learning to synthesize video content is

to incorporate the temporal dynamics information into the synthesis model.

Early attempts in video synthesis with deep neural networks explored adapting the

successful architectures in image modeling to video data by extending the models to

handle an additional time dimension. For example, the successful 2D convolution in the

successful convolutional network archicture was extended to 3D convolution [148, 191].

Given the successes of their image-based counterpart in capturing image priors, it

was expected that the resulting models could similarly learn to capture the video

priors, including temporal dynamics information. Those efforts, while showing early

promising results, do not match the level of quality obtained in the image domain.

Such difficulty demonstrated that learning the representation for videos is challenging

for the models designed originally for images without explicitly incorporating the

specific natures of videos. Arguably, directly learning temporal dynamics information

is difficult without motion-aware inductive biases [185, 198].

Inductive biases refer to the assumptions and prior knowledge incorporated with

the learning algorithms via either the model architecture designs or training strategies.

This mechanism helps induce the learning models to effectively capture the structure

in the data and, from that, generalize better to unseen data. Inductive biases have

been playing critical roles in the success of modern deep learning systems, ranging

5

from the spatial inductive bias incorporated in Convolution Neural Network (CNN)

architectures to the 3D inductive biases [?] incorporated through the volumetric

rendering processes [121, 125].

My research in this dissertation was motivated by the question, “What inductive

biases can be incorporated to encourage deep learning models to capture useful

temporal dynamics information for video synthesis tasks?” This question can be

approached from different directions. Machine learning researchers and practitioners

have been actively exploring this through novel architecture designs, datasets, and

training strategies. In this dissertation, I am interested in exploring this question

from a slightly different perspective. I argue that, orthogonal to looking for future

architectural advances, it is also beneficial to look into the past by revisiting the

valuable insights that have been discovered in the rich literature in more traditional

computer graphics and vision research. Those insights, which rooted in the well-

researched understanding about the nature of video data, can potentially serve as

useful inductive biases for deep learning models.

1.3 Learning to Synthesize Videos – Domain Knowledge as Inductive

Biases

To this end, it’s worth noting that traditional vision/graphics methods have

provided successful editing systems by leveraging what we understand about the visual

data.

Understanding and modeling temporal dynamics information in video content

is a long-standing problem in computer vision and computer graphics. From the

foundational works in vision research that established the connection between optical

flows information extracted from video frames and motion perception in the human

visual system [49, 109, 181, 199], many computational methods have been developed

6

for motion estimation from video data [129, 145, 177, 200]. Motion representation

has also been studied in depth from the signal processing perspective. Treating

images as high-dimensional signals represented in the frequency domain via Fourier

or wavelet decomposition, motion information in videos can be estimated from the

phase information in the frequency domain. These insights in motion representation

from video data provide the foundations for many video analysis tasks, ranging from

camera tracking [68, 170] to object tracking [24, 215] and video coding [178, 204].

Notably, those motion modeling insights have been proven beneficial not only for

video analysis but also for the video synthesis. Such domain knowledge harnessed

from the foundational understanding of video signals have enabled many important

works in video synthesis. For example, the connection between optical flow and motion

perception has been leveraged to support video frame interpolation [8, 201, 218]. The

relation between the phase shift information in frequency domain and the observed

motion in the pixel domain was successfully leveraged to enable a range of motion

manipulation tasks [116, 118, 192].

Comparing the traditional computer graphics- and vision-based approaches with

modern learning-based approaches to video synthesis, it is interesting to observe

their complementing strengths. On the one hand, traditional approaches benefit

from solid domain knowledge in motion modeling and establish better-controlled

synthesis processes to support high-quality synthesis. Yet, they have difficulty modeling

appearance due to the lack of high-level semantics priors and adaptability to data.

On the other hand, Learning-based models are good at capturing appearance thanks

to powerful image models and the ability to learn from data. However, they often fail

to capture motion due to the lack of motion-aware inductive bias. Is it possible to

combine the best of both worlds?.

In this dissertation, I describe my exploration so far toward combining the strength

7

of deep learning models and motion modeling techniques from the more traditional

computer graphics and vision research. The key thesis statement is that the insights

underlying the motion-modeling techniques in traditional techniques can effectively

serve as inductive biases for learning-based approaches. With this direction, I hope to

provide a new perspective to re-think the insights offered by traditional graphics and

vision works in the data-driven age. Instead of leveraging that domain knowledge in a

heuristic manner, I argue that they can be leveraged as effective implicit guidance in

the learning process to assist in modeling temporal dynamics information.

1.4 Two Case Studies

This dissertation verifies the key thesis above through two case studies, involving

two different video synthesis settings.

First, I explore the problem of learning to perform video frame interpolation. By

leveraging the insights from traditional frame interpolation works, I introduce a novel

deep-learning-based video synthesis technique that can generate high-quality frame

interpolation results.

Second, I explore the problem of learning implicit neural representation for videos.

Inspired by the relation between the phase information of visual signals in frequency

domain and their motion in space, I propose a simple modification to the existing

image-based implicit neural representation network that can not only capture video

data but also allows for manipulation of temporal dynamics information in the video.

1.4.1 Video Frame Interpolation with Adaptive Convolution

Frame interpolation is a classic problem in computer graphics and computer vision.

Given an input video, the goal of frame interpolation is to synthesize the intermediate

frames between each pair of consecutive original input frames, effectively increasing

8

the frame rate of the video. It is important for many video editing applications. Video

frame interpolation allows users to create slow-motion effects or to fit a captured video

into a new desired playback time.

Prior to this research, early learning-based systems for video frame interpolation

focus on directly predicting the pixel values in the intermediate frame. This was done,

for example, by extending convolutional neural network (CNN) structures from image

to video domain with 3D convolutional layers. While such direct synthesis approaches

showed promising early results, the synthesized videos often have low visual quality

with low resolution and contain significant visual distortions. The models tend not to

learn to capture the underlying temporal dynamics reasoning when trained with the

only objective of predicting the pixel values.

Earlier research on video frame interpolation from computer graphics and computer

vision have long established the important insight that the interpolated frames need

not be considered entirely new content. Instead, they can mostly be re-sampled from

the already provided input frames. The goal of video frame interpolation system is

thus to capture where to sample from and how to generate the color values from

the sampled regions. Traditional frame interpolation methods, therefore, are often

composed of two steps: motion estimation, usually optical flow, and pixel synthesis [8].

These approaches – via explicit motion reasoning and well-engineered pixel synthesis –

can enable high-quality interpolation results but suffer from two drawbacks. First,

flow-based pixel synthesis cannot reliably handle the occlusion problem and often lead

to noticeable artifacts in interpolated video frames [117]. Second, they rely entirely

on hand-crafted procedures and thus cannot learn from data.

To this end, I present our approach to incorporate the re-sampling insight from

traditional graphics-based methods into an end-to-end learning system. In particular,

our method considers pixel interpolation as convolution over corresponding image

9

patches in the two input video frames. Our system estimates the convolutional kernel

instead of directly regressing to pixel values. The convolution kernel captures both the

local motion between the input frames and the coefficients for pixel synthesis. This

allows us to model video interpolation as a single process. This frame interpolation

deep convolutional neural network can be directly trained end-to-end using widely

available video data.

1.4.2 Motion-Adjustable Neural Implicit Representation for Video with

Phase-Varying Positional Encoding

Implicit Neural Representation (INR) is an emerging paradigm for visual data

representation. INR represents visual data as continuous functions rather than

discretized structures, making it a faithful representation of the underlying signals.

Initially developed for 3D shape and scene representation, INR has recently been

adapted to image modeling to enable applications such as image generation [5, 165],

image compression [48], and image super-resolution [29].

Compared to their image-based counterpart, video-based INR has been relatively

under-explored. Existing works often consider videos as straightforward extensions of

images, treating videos as 3D volumes and applying a direct video fitting approach

without explicitly modeling temporal dynamics information [113, 163]. Such direct

fitting approaches, therefore, cannot allow motion in the fitted videos to be edited

due to the lack of explicit motion modeling.

In this work, I explore temporal dynamics modeling in the context of implicit

neural video representation. Observing that contemporary image-based INR – with the

use of Fourier-based positional encoding – can be viewed as a mapping from sinusoidal

patterns with different frequencies to image content, I hypothesize that it is possible to

generate temporally varying content with a single image-based INR model by displacing

10

its sinusoidal input patterns over time. Inspired by phase-based motion processing

approaches in computer graphics and computer vision literature [51, 59, 118, 192]

that built on the connection between motion information in a video and its phase

information extracted through frequency domain analysis [195] to enable various motion

editing applications, I proposed to explore leveraging phase information embedded in

the Fourier-based positional encoding to help implicit neural representation models

learn temporal dynamics information in video data. Instead of directly extracting

phase information from the video, the proposed method exploit phase-based motion

modeling as an inductive bias in INR model design, enabling an INR model that can

not only learn to fit the video data but also enables re-synthesizing the videos with

different motion manipulation tasks using the same framework.

1.5 Outline

The remaining of this dissertation is structured as follows. I first provide a

brief overview of the literature on video synthesis and position my research in this

rapidly developing field (chapter 2). I will go into detail the two case studies in

toward incorporating domain knowledge from traditional computer graphics and

vision research as inductive biases for motion-aware learning in deep video synthesis

models. In particular, chapter 3 elaborates our adaptive convolution framework for

video frame interpolation. In chapter 4, I then introduce our idea of incorporating

phase-based motion modeling into neural implicit representation to enable a novel

motion-adjustable neural video representation. I will finally summarize our findings

and discuss the potential directions for future work in chapter 5.

11

2 Relevant Literature

In this chapter, I will first briefly review the early developments that made photo-

realistic image and video synthesis possible. I will discuss the historical works in

computer graphics and computer vision along with the valuable insights they have

developed on understanding and representing visual data. Finally, I will discuss more

recent efforts in renovating image/video synthesis systems with deep learning advances.

2.1 Visual Computing Research and Early Successes in Visual Content

Synthesis

Synthesizing realistic imagery requires a deep understanding of visual data. By

combining advances in computer graphics, computer vision, and signal processing,

research in visual computing provides a rich source of computational models to

represent, manipulate, and generate visual data. On one side, computer vision

and signal processing research provide effective techniques to extract meaningful

information from the raw captured data. On the other side, computer graphics

research provides techniques to generate realistic-looking imagery. Combining the

two fronts, many essential foundations for successful systems that synthesize visual

content have been established.

12

2.1.1 Classical Image-Based and Video-Based Rendering

Photorealistic rendering is the ultimate goal in computer graphics. Traditional

computer graphics rely on detailed scene descriptions and sophisticated rendering

pipelines to generate realistic content. Scene construction is particularly challenging. It

is very labor-intensive to derive detailed 3D scene description with realistic geometries,

materials, and lighting information. It is is also extremely challenging to manually

model sophisticated phenonmena that involve dynamic and non-rigid content. In

addition, rendering is also a fundamental challenge. To achieve a high level of realism,

computationally expensive physically based rendering processes on high-end graphics

processing units are required to simulate global illumination effects.

Early breakthroughs in enabling practical realistic image and video synthesis

systems came from the idea of image-/video-based modelling and rendering [157]

in the context of the novel-view synthesis problems. Observing that photo-realism

is challenging to achieve with conventional 3D graphics pipelines, researchers have

explored methods that can directly leverage real images in the rendering process.

Unlike the traditional computer graphics rendering pipeline where 3D scene geometries

and materials must be known, image-based rendering (IBR) techniques render novel

views directly from input images, which are by-definition photorealistic.

In early IBR systems such as Lightfield Rendering [90] and Lumigraph Render-

ing [35], special camera arrays were constructed to sample the plenoptic function of the

scene [157]. Leveraging the known relation between the cameras in the array, it was

possible to synthesize any novel view along a certain range of viewpoints by selecting

and interpolating appropriate pixels in the original cameras. Lumigraph Rendering

was later extended to handling unstructured camera array by incorporating coarse

geometric information about the scene [20]. By leveraging different representations

13

cleverly designed to encode simplified geometric information, modern IBR methods

can support view synthesis from a sparse set of input views [37, 73, 154].

The success in novel view synthesis was also extended to the video domain. Multi-

camera systems and dedicated multi-view analysis techniques have been developed to

enable free-viewpoint videos in which novel views can be synthesized for any moment

in the captured videos [157]. Later on, the commercial successes of the Bullet-Time

effect 1 2 brought attention and interest to the possibility to manipulate not only the

viewpoints but also the temporal dynamics information such as timing and motion.

The original systems for bullet-time effect require special camera setups which dictate

the novel views and speed that can be synthesized. To enable more flexible systems,

motion information needs to be explicitly extracted from the original captured videos.

For this, modelling the motion information in videos has become increasingly critical.

2.1.2 Flow-Based Video Synthesis

Human visual systems are sensitive to motion. Foundational works in early vision

research have established the critical connection between the optical flow information

from image sequences and how the motion information is perceived when viewing those

sequences [181, 199]. The patterns of the extracted optical flows and their variations

over time were found to be critical cues for human visual systems to reconstruct

self-motion, object motion, time-to-contact, and scene layout [49]. Those findings

have been put into computational models that form the foundations for important

machine vision tasks such as object tracking [24, 215], Simultaneous Localization and

Mapping (SLAM) [23] and video coding [178, 204].

1https://www.newworlddesigns.co.uk/bullet-time-photography-what-is-it-and-how-to-get-
started/

2https://reframe.sussex.ac.uk/post-cinema/3-2-sudmann/

14

Modern video synthesis systems also take advantage of such connections to achieve

synthesis results with plausible temporal dynamics. Regularizing the flow maps of

the synthesized videos is a widely used strategy to encourage temporal coherence

in the synthesized results. Such regularization is often achieved by enforcing the

flow map of the synthesized videos to that of a reference videos [27, 28, 74, 197].

Alternatively, smoothness constraints such as total variation [19, 46, 87, 140] can be

incorporated into the objective function to regularize the flow map of the synthesized

video [108, 212].

Smoothing out the (sparse) flow trajectories and re-synthesizing the video to

respect the adjusted flow information has also been successfully used to stabilize

videos [99, 102]. By analyzing the optical flow information over the whole video clip

and determining the moment in time at which the flows are similar at each pixel,

Hoppe et al. [94] devised an effective method to synthesize a seamless loop from a

short video clip. Flow-based view synthesis techniques have also been successfully

employed for video frame interpolation. Using flow to represent the motion at each

pixel, it is possible to generate the slow-motion effect by synthesizing the pixels at

the intermediate positions along each flow vector to generate the interpolated frames

between each pair of original frames. [8, 201, 218].

2.1.3 Patch-Based Video Synthesis

An important insight that formed the foundation for many modern visual synthesis

tasks was that novel content can be synthesized by properly re-sampling the source

content. In Video Textures [152], Schödl et al. determined similar frames at different

times and used them to produce a new seamless video. Agarwala et al. applied the

same technique on dynamic regions of the video captured with a panning camera

while stitching the static part to enable seamlessly looping video panorama [3].

15

More recent works have extended this idea by considering much more local scope,

the small image patches. By sampling local image patches while respecting their local

coherence, Lin et al. showed that it was possible to perform texture synthesis from a

small sample texture image [93]. By coupling the patch re-sampling strategy with the

patch-recurrence properties of natural image patches [226, 227], patch-based methods

have been successful in image synthesis tasks such as image enhancement [119, 120, 227]

and image retargetting [11, 96].

The success of the patch-based synthesis methodology has also been adapted to the

video domain. To capture temporal dynamics information, 3D spatiotemporal patches

were used. Wexler et al. replicated the success of patch-based synthesis techniques to

perform video completion [202]. That idea of re-sampling videos with spatiotemporal

patches were also successfully employed by Shahar et al. to support super-resolution

and video frame interpolation [155]. Recently, Haim et al. revisited the idea of patch-

based synthesis and introduced an effective system that could synthesize different

plausible variations of a source video by sampling and assembling patches from the

input video [66].

2.1.4 Phase-Based Video Synthesis

Interpreting image and video data from a signal processing perspective, researchers

have revealed that the spatial frequency, temporal frequency, and speed of image

motion are highly related [49, 181]. Such observations allowed many motion analysis

tasks to be effectively performed in the frequency domain. In particular, the wavelet-

based steerable pyramid [160] has been invented to represent image data in the

frequency domain using the basis functions that resemble the sinusoids windowed by

a Gaussian envelope. This representation was shown effective for analyzing motion in

videos [52, 54, 59, 159].

16

Going beyond motion analysis, Wadhwa et al. cleverly leveraged the relation

between motion in the video and the phase information in steerable pyramids to devise

a video synthesis method that could perform temporal processing without explicit

optical flow computation [196]. Just as the phase shifts in sinusoidal functions encode

their translation, the phase variations in the steerable pyramid can be used to control

local motions in the image domain. Such phase-based representation of motion was

exploited by Wadhwa et al. to enable re-synthesizing videos with modified temporal

dynamics content such as motion magnification and motion denoising [193, 196].

In followed-up works, the phase-based motion processing strategy was further

extended to support other video synthesis tasks. Meyer et al. improved upon the

original phase-based motion processing formulation to address the phase-wrapping

ambiguity to allow for synthesizing larger motions, making it applicable to video frame

interpolation tasks [117]. Phase-based motion representation has also been applied to

transfer motion from a reference video to an image to support image animation [136].

2.2 Learning to Synthesize Video Content

Computational models developed in traditional graphics and vision works reflect

the researchers’ domain knowledge and sophisticated understanding about visual data.

The successful applications mentioned in the last sections have demonstrated that

such scientific knowledge is invaluable. However, as good as they were, the discov-

ered knowledge was likely still incomplete and often contains simplified assumptions.

Importantly, they were often implemented as heuristics when used for constructing

computational models. That heuristic nature is arguably an important limitation

of traditional graphics- and vision-based approaches in visual synthesis. Relying on

hand-crated heuristics made the resulting methods inflexible in adapting to challenging

scenarios that required handling complex phenomena such as non-rigid scenes and

17

occlusion. That often caused artifacts and distortions, especially when the simplifying

assumptions were violated.

Data-driven approach offer an attractive direction to address that challenge. Data-

driven techniques can complement the models by making them adaptable to data

rather than constrained to rigid sets of simplification assumptions and heuristics.

Exploring machine learning techniques, therefore, has recently become a major theme

in modern visual computing research.

2.2.1 Deep Neural Networks for Visual Synthesis

In recent years, the advances in deep learning research have enabled many technical

breakthroughs, especially in visual data modelling [69, 187]. The availability of large-

scale datasets, along with the ever-increasing computing power, makes it possible to

train deep neural networks with unprecedented levels of complexity. With modern

deep learning methodologies, it is possible to learn not only the top-level predictive

models but also the relevant features from raw data.

Deep learning methods have brought tremendous successes to image synthesis

tasks. Deep image generation architectures are now able to generate image content

with unprecedented level of realism, thanks to the advanced generative modelling

techniques such as GAN [82, 134] and Diffusion models [40, 71, 166]. In unconditional

image synthesis settings, state-of-the-art models [18, 40, 71, 82, 166] can now generate

natural images with the level of realism that can trick human perception [2]

Those models have also been successfully adapted to conditional image synthesis

settings, enabling controllability in the image generation process. Isola et al. investigate

conditional adversarial networks [123] as a generic approach to synthesizing images

from semantic maps or edge maps [76]. Reed et al. [143] further extend conditional

GANs to generate natural images based on textual descriptions. Building on the

18

power of diffusion models in high-fidelity image synthesis, the text-to-image generation

is advanced significantly by the recent effort of DALL-E 2 [139] and Imagen [147].

Despite the immense success in synthesizing images with deep learning models,

translating those successes to video modelling was challenging. Video is a separate

form of media in its own, not simply a collection of independent images. Because of

that, applying image-based models frame-by-frame to video synthesis usually leads to

sub-optimal results [16].

Early efforts to extend well-known deep image models to handle video data have

proven highly non-trivial. Inspired by the success of the 2D convolutional neural

network (CNN) in image synthesis architectures, many follow-up works have developed

video-based synthesis techniques on top of 3D-CNN models [34, 148, 191]. Recent

efforts in video modelling with deep learning have been devoted to explicitly encourage

motion modelling in the video synthesis process. Denton et al. leveraged the recurrent

neural network (RNN) architecture to model dynamic progression in videos to support

frame prediction [39]. In another direction, Tulyakov et al. extended the GAN-

based approach into a two-stream architecture and devise a training strategy to

explicitly encourage the model to learn disentangled representation for motion and

appearance [185].

Those efforts, while showing early promising results, do not match the level of

quality obtained in the image domain. Such difficulty demonstrated that learning the

representation for videos is challenging for the models designed originally for images

without explicitly incorporating the specific natures of videos. In other words, such

models lack the inductive bias to aid the learning of meaningful representation from

videos.

The most successful strategy for synthesizing high-quality video results remains

applying high-quality image-based synthesis for each frame and adjusting the results

19

to optimize the temporal coherence using optical flow [74, 97, 108]. This strategy,

however, is only applicable to the the problem setting where the reference optical flow

can be obtained, such as video denoising or super-resolution. It is not applicable for

more general video synthesis problems such as video frame interpolation and video

generation.

2.2.2 Inductive Biases in Representation Learning

Inductive bias is an essential concept in machine learning. Its role has been shown

to be critical in the success of modern deep learning systems. Inductive biases refer

to the assumptions incorporated with the learning algorithms to generalize a set

of training data. This mechanism encourages the learning algorithms to prioritize

solutions with specific properties. It helps induce the learning models to effectively

capture the structure in the data and, from that, generalize better to unseen data.

Spatial inductive bias is perhaps one of the best-known types of inductive biases

that have enjoyed great success in deep learning. Spatial inductive bias is particularly

helpful in the Convolutional Neural Network (CNN) architecture, which was designed

to exploit the spatial equivariance nature of vision data. It is highly effective in

processing and synthesizing image data [189].

Structured perception and relational reasoning is another type of inductive bias

that has proven highly useful, especially in reinforcement learning settings where

the learning agent must encode the meaningful structure of the environment [14].

Introducing structured relation information into deep RL architectures makes it

possible for the learning agents to learn interpretable representations to improve their

prediction accuracy, sample complexity, and ability to generalise [14].

Recently, 3D geometry has been incorporated into image synthesis architecture

to serve as a type of structural inductive bias. In [125], Nguyen-Phuoc et al. made

20

the important finding that shaping the learnable features of the GAN model into

the 3D volume that can be freely transformed during training is sufficient to induce

the model to generate and manipulate images in a multi-view consistent manner.

Representing the learned 3D scene, coupled with volumetric rendering for synthesis,

is also the key idea behind the success of the Neural Radiance Fields framework

for novel view synthesis [12, 122, 124] as well as the state-of-the-art 3D-aware GAN

models [25, 38, 64].

Inductive biases are not easy to define and incorporate. Good inductive biases

should represent the knowledge that is universally true, i.e. the correct priors. In

this thesis, the main direction I set out to explore is to look for and design inductive

biases from the insights and understanding of video data modelling already exists in

the rich literature of traditional visual computing research. I study that direction in

this thesis with two case-studies: a deep learning model that successfully extends 2D

convolution-based neural networks to enable high-quality frame interpolation results;

and a simple technique to extend image-based neural implicit representation to video

data that also enables the flexibility of temporal dynamics manipulation.

21

3 Adaptive Convolution for Video Frame Interpolation

Video frame interpolation is a classic problem in computer graphics and computer

vision. The goal is to synthesize the intermediate frames between each pair of

consecutive original input frames. Before 2016 when this research started, high-quality

frame interpolation results could not be obtained with contemporary deep learning

approaches, despite their tremendous successes in other image analysis and synthesis

domains. Existing deep-learning-based video frame interpolation methods followed

the direct prediction approach. Standard image-based convolutional neural network

(CNN) or recurrent neural network (RNN) architectures were extended to take a pair

of frames as input and directly predict the intermediate frames [39, 104]. Such direct

prediction approach failed to generate high-quality results, often with low-resolution

and severe visual distortion. Hypothesizing that more explicit inductive biases were

needed to enable plausible frame synthesis results, I started exploring the idea of

incorporating domain knowledge as inductive bias into deep neural network learning

for video frame interpolation.

The rich literature on video frame interpolation has established that video frame

interpolation fundamentally involves two processes: motion estimation and pixel

synthesis. As an alternative to the direct prediction approach, this chapter presents

AdaConv, a robust video frame interpolation method that explicitly incorporated

these two steps into the model. Unlike conventional optimization-based approaches to

video frame interpolation that implement those two steps as two separate processes,

22

the proposed method combines both steps into a single process implemented as a

novel differentiable layer into the CNN architecture. Specifically, AdaConv employs a

deep fully-convolutional neural network to estimate a spatially-adaptive convolution

kernel for each pixel. This method considers pixel synthesis for the interpolated frame

as a local convolution over two input frames. The convolution kernel captures both

the local motion between the input frames and the coefficients for pixel synthesis.

The resulting deep neural network can be directly trained end-to-end using widely

available video data without difficult-to-obtain ground-truth data like optical flow.

Experiments on a wide variety of real-world videos show that the formulation of video

interpolation as a single convolution process allows our method to gracefully handle

challenges like occlusion, blur, and abrupt brightness change and enables high-quality

video frame interpolation.

This work was the result of the collaboration with Simon Niklaus and Professor

Feng Liu. We published our work at the IEEE Conference of Computer Vision and

Pattern Recognition (CVPR) 2017 for which Simon and I contributed as the co-first

authors [127]. The writing of this chapter was adapted from the published paper. The

use of “we”, “our”, and “ours” throughout this chapter refer to the authors of the

published paper (Long Mai, Simon Niklaus, and Feng Liu). In particular, my own

contribution in the paper is the idea of modelling frame interpolation as adaptive

convolution, and the design of the neural network to realize that idea.

3.1 Overview

Frame interpolation is a classic computer vision problem and is important for

applications like novel view interpolation and frame rate conversion [117]. Traditional

frame interpolation methods have two steps: motion estimation, usually optical flow,

and pixel synthesis [8]. Optical flow is often difficult to estimate in the regions suffering

23

R1

P1

R2

P2

ConvNet

;

;
K

;

;

∗

Î(
x,

y)

Figure 3.1: Pixel interpolation by convolution. For each output pixel (x, y), our

method estimates a convolution kernel K and uses it to convolve with patches P1 and

P2 centered at (x, y) in the input frames to produce its color Î(x, y). This adaptive

convolution formulation effectively combines motion estimation and pixel synthesis

into a single operation for synthesizing each pixel.

from occlusion, blur, and abrupt brightness change. Flow-based pixel synthesis cannot

reliably handle the occlusion problem. Failure of any of these two steps will lead to

noticeable artifacts in interpolated video frames.

This chapter presents a robust video frame interpolation method that achieves

frame interpolation using a deep convolutional neural network without explicitly

dividing it into separate steps. Our method considers pixel interpolation as convolution

over corresponding image patches in the two input video frames, and estimates the

spatially-adaptive convolutional kernel using a deep fully convolutional neural network.

Specifically, for a pixel (x, y) in the interpolated frame, this deep neural network takes

two receptive field patches R1 and R2 centered at that pixel as input and estimates

a convolution kernel K. This convolution kernel is used to convolve with the input

24

patches P1 and P2 to synthesize the output pixel, as illustrated in Figure 3.1.

An important aspect of our method is the formulation of pixel interpolation as

convolution over pixel patches instead of relying on optical flow. This convolution

formulation unifies motion estimation and pixel synthesis into a single procedure.

It enables us to design a deep fully convolutional neural network for video frame

interpolation without dividing interpolation into separate steps. This formulation is

also more flexible than those based on optical flow and can better handle challenging

scenarios for frame interpolation. Furthermore, our neural network is able to estimate

edge-aware convolution kernels that lead to sharp results.

The main contribution of this work is a robust video frame interpolation method

that employs a fully deep convolutional neural network to produce high-quality video

interpolation results. This method has a few advantages. First, since it models video

interpolation as a single process, it is able to make proper trade-offs among competing

constraints and thus can provide a robust interpolation approach. Second, this frame

interpolation deep convolutional neural network can be directly trained end-to-end

using widely available video data, without any difficult-to-obtain ground truth data

like optical flow. Third, as demonstrated in our experiments, our method can generate

high-quality frame interpolation results for challenging videos such as those with

occlusion, blurring artifacts, and abrupt brightness change.

3.2 Related Work

Frame interpolation for video is one of the basic computer vision and video

processing technologies. It is a special case of image-based rendering where middle

frames are interpolated from temporally neighboring frames. Good surveys on image-

based rendering are available [80, 170, 219]. This section focuses on research that is

http://graphics.cs.pdx.edu/project/adaconv

http://graphics.cs.pdx.edu/project/adaconv

25

specific to video frame interpolation and our work.

Most existing frame interpolation methods estimate dense motion between two

consecutive input frames using stereo matching or optical flow algorithms and then

interpolate one or more middle frames according to the estimated dense correspon-

dences [8, 201, 218]. Different from these methods, Mahajan et al. developed a moving

gradient method that estimates paths in input images, copies proper gradients to each

pixel in the frame to be interpolated and then synthesizes the interpolated frame via

Poisson reconstruction [106]. The performance of all the above methods depends on

the quality of dense correspondence estimation and special care needs to be taken to

handle issues like occlusion during the late image synthesis step.

As an alternative to explicit motion estimation-based methods, phase-based meth-

ods have recently been shown promising for video processing. These methods encode

motion in the phase difference between input frames and manipulate the phase in-

formation for applications like motion magnification [193] and view expansion [41].

Meyer et al. further extended these approaches to accommodate large motion by prop-

agating phase information across oriented multi-scale pyramid levels using a bounded

shift correction strategy [117]. This phase-based interpolation method can generate

impressive video interpolation results and handle challenging scenarios gracefully;

however, further improvement is still required to better preserve high-frequency detail

in the video with large inter-frame changes.

Our work is inspired by the success of deep learning in solving not only difficult

visual understanding problems [60, 70, 81, 88, 153, 161, 168, 171, 205, 216, 222] but also

other computer vision problems like optical flow estimation [44, 55, 65, 179, 182, 200],

style transfer [47, 58, 78, 91, 188], and image enhancement [21, 42, 43, 167, 169,

208, 210, 221, 224]. Our method is particularly relevant to the recent deep learning

algorithms for view synthesis [45, 53, 79, 89, 176, 214, 223]. Dosovitiskiy et al. [45],

26

Kulkarni et al. [89], Yang et al. [214], and Tatarchenko et al. [176] developed deep

learning algorithms that can render unseen views from input images. These algorithms

work on objects, such as chairs and faces, and are not designed for frame interpolation

for videos of general scenes.

Recently, Flynn et al. developed a deep convolutional neural network method for

synthesizing novel natural images from posed real-world input images. Their method

projects input images onto multiple depth planes and combines colors at these depth

planes to create a novel view [53]. Kalantari et al. provided a deep learning-based

view synthesis algorithm for view expansion for light field imaging. They break novel

synthesis into two components: disparity and color estimation, and accordingly use two

sequential convolutional neural networks to model these two components. These two

neural networks are trained simultaneously [79]. Long et al. interpolate frames as an

intermediate step for image matching [104]. However, their interpolated frames tend

to be blurry. Zhou et al. observed that the visual appearance of different views of the

same instance is highly correlated, and designed a deep learning algorithm to predict

appearance flows that are used to select proper pixels in the input views to synthesize

a novel view [223]. Given multiple input views, their method can interpolate a novel

view by warping individual input views using the corresponding appearance flows

and then properly combining them together. Like these methods, our deep learning

algorithm can also be trained end-to-end using videos directly. Compared to these

methods, our method is dedicated to video frame interpolation. More importantly, our

method estimates convolution kernels that capture both the motion and interpolation

coefficients, and uses these kernels to directly convolve with input images to synthesize

a middle video frame. Our method does not need to project input images onto multiple

depth planes or explicitly estimate disparities or appearance flows to warp input images

and then combine them together. Our experiments show that our formulation of

27

frame interpolation as a single convolution step allows our method to robustly handle

challenging cases. Finally, the idea of using convolution for image synthesis has also

been explored in the very recent work for frame extrapolation [50, 77, 213].

3.3 Method

Given two video frames I1 and I2, our method aims to interpolate a frame Î

temporally in the middle of the two input frames. Traditional interpolation methods

estimate the color of a pixel Î(x, y) in the interpolated frame in two steps: dense

motion estimation, typically through optical flow, and pixel interpolation. For instance,

we can find for pixel (x, y) its corresponding pixels (x1, y1) in I1 and (x2, y2) in I2

and then interpolate the color from these corresponding pixels. Often this step also

involves re-sampling images I1 and I2 to obtain the corresponding values I1(x1, y1)

and I2(x2, y2) to produce a high-quality interpolation result, especially when (x1, y1)

and (x2, y2) are not integer locations, as illustrated in Figure 3.2 (a). This two-step

approach can be compromised when optical flow is not reliable due to occlusion,

motion blur, and lack of texture. Also, rounding the coordinates to find the color

for I1(x1, y1) and I2(x2, y2) is prone to aliasing while re-sampling with a fixed kernel

sometimes cannot preserve sharp edges well. Advanced re-sampling methods exist and

can be used for edge-preserving re-sampling, which, however, requires high-quality

optical flow estimation.

Our solution is to combine motion estimation and pixel synthesis into a single step

and formulate pixel interpolation as a local convolution over patches in the input images

I1 and I2. As shown in Figure 3.2 (b), the color of pixel (x, y) in the target image to

be interpolated can be obtained by convolving a proper kernel K over input patches

P1(x, y) and P2(x, y) that are also centered at (x, y) in the respective input images.

The convolutional kernel K captures both motion and re-sampling coefficients for pixel

28

I1 Î

Î(x
, y)

I2

(a) Interpolation by motion estimation and color interpolation

I1

P1

Î

Î(x
, y)

I2
P2

(b) Interpolation by convolution

Figure 3.2: Interpolation by convolution. (a): a two-step approach first estimates

motion between two frames and then interpolates the pixel color based on the motion.

(b): our method directly estimates a convolution kernel and uses it to convolve the

two frames to interpolate the pixel color. In this way, our method combines both steps

of coventional frame interpolation techniques into a single operation under a unified

convolution formulation.

29

synthesis. This formulation of pixel interpolation as convolution has a few advantages.

First of all, the combination of motion estimation and pixel synthesis into a single step

provides a more robust solution than the two-step procedure. Second, the convolution

kernel provides flexibility to account for and address difficult cases like occlusion. For

example, optical flow estimation in an occlusion region is a fundamentally difficult

problem, which makes it difficult for a typical two-step approach to proceed. Extra

steps based on heuristics, such as flow interpolation, must be taken. Our work provides

a data-driven approach to directly estimate the convolution kernel that can produce

visually plausible interpolation results for an occluded region. Third, if properly

estimated, this convolution formulation can seamlessly integrate advanced re-sampling

techniques like edge-aware filtering to provide sharp interpolation results.

Estimating proper convolution kernels is essential for our method. Encouraged

by the success of using deep learning algorithms for optical flow estimation [44, 55,

65, 179, 182, 200] and image synthesis [53, 79, 223], we develop a deep convolutional

neural network method to estimate a proper convolutional kernel to synthesize each

output pixel in the interpolated images. The convolutional kernels for individual

pixels vary according to the local motion and image structure to provide high-quality

interpolation results. Below we describe our deep neural network for kernel estimation

and then discuss implementation details.

3.3.1 Convolution kernel estimation

We design a fully convolutional neural network to estimate the convolution kernels

for individual output pixels. The architecture of our neural network is detailed in

Table 3.1. Specifically, to estimate the convolutional kernel K for the output pixel

(x, y), our neural network takes receptive field patches R1(x, y) and R2(x, y) as input.

R1(x, y) and R2(x, y) are both centered at (x, y) in the respective input images. The

30

type BN ReLU size stride output

input - - - - 6× 79× 79

conv 7× 7 1× 1 32× 73× 73

down-conv - 2× 2 2× 2 32× 36× 36

conv 5× 5 1× 1 64× 32× 32

down-conv - 2× 2 2× 2 64× 16× 16

conv 5× 5 1× 1 128× 12× 12

down-conv - 2× 2 2× 2 128× 6 × 6

conv 3× 3 1× 1 256× 4 × 4

conv - 4× 4 1× 1 2048× 1 × 1

conv - - 1× 1 1× 1 3362× 1 × 1

spatial softmax - - - - 3362× 1 × 1

output - - - - 41×82× 1 × 1

Table 3.1: The convolutional neural network architecture. It makes use of Batch

Normalization (BN) [75] as well as Rectified Linear Units (ReLU). Note that the

output only reshapes the result without altering its value.

patches P1 and P2 that the output kernel will convolve in order to produce the color

for the output pixel (x, y) are co-centered at the same locations as these receptive

fields, but with a smaller size, as illustrated in Figure 3.1. We use a larger receptive

field than the patch to better handle the aperture problem in motion estimation. In

our implementation, the default receptive field size is 79× 79 pixels. The convolution

patch size is 41× 41 and the kernel size is 41× 82 as it is used to convolve with two

patches. Our method applies the same convolution kernel to each of the three color

channels.

As shown in Table 3.1, our convolutional neural network consists of several convo-

31

color loss color loss + gradient loss

Figure 3.3: Effect of using an additional gradient loss. (a) Using the color loss alone

can lead to blurry results. (b) Combining the color loss and gradient loss enables

our method to produce sharper interpolation results (most noticeable in front-wheel

region of the middle car).

lutional layers as well as down-convolutions as alternatives to max-pooling layers. We

use Rectified Linear Units as activation functions and Batch Normalization [75] for

regularization. We employ no further techniques for regularization since our neural

network can be trained end-to-end using widely available video data, which provides a

sufficiently large training dataset. We are also able to make use of data augmentation

extensively, by horizontally and vertically flipping the training samples as well as

reversing their order. Our neural network is fully convolutional. Therefore, it is

not restricted to a fixed-size input and we are, as detailed in Section 3.3.3, able to

use a shift-and-stitch technique [61, 105, 153] to produce kernels for multiple pixels

simultaneously to speed-up our method.

A critical constraint is that the coefficients of the output convolution kernel should

be non-negative and sum up to one. Therefore, we connect the final convolutional

layer to a spatial softmax layer to output the convolution kernel, which implicitly

meets this important constraint.

32

3.3.1.1 Loss function

For clarity, we first define notations. The ith training example consists of two input

receptive field patches Ri,1 and Ri,2 centered at (xi, yi), the corresponding input

patches Pi,1 and Pi,2 that are smaller than the receptive field patches and also centered

at the same location, the ground-truth color C̃i and the ground-truth gradient G̃i

at (xi, yi) in the interpolated frame. The ground-truth gradient G̃k
i is obtained by

applying a gradient computation procedure on the ground-truth target frame C̃i. For

simplicity, we omit the (xi, yi) in our definition of the loss functions.

One possible loss function of our deep convolutional neural network can be the

difference between the interpolated pixel color and the ground-truth color as follows.

Ec =
∑
i

∥[Pi,1 Pi,2] ∗Ki − C̃i∥1 (3.1)

where subscript i indicates the ith training example and Ki is the convolution kernel

output by our neural network. Our experiments show that this color loss alone, even

using ℓ1 norm, can lead to blurry results, as shown in Figure 3.3. This blurriness

problem was also reported in some recent work [104, 111, 142]. Mathieu et al. showed

that this blurriness problem can be alleviated by incorporating image gradients in

the loss function [111]. This is difficult within our pixel-wise interpolation approach,

since the image gradient cannot be directly calculated from a single pixel. Since

differentiation is also a convolution, assuming that kernels are locally equivalent, we

solve this problem by using the associative property of convolution: we first compute

the gradient of input patches and then perform convolution with the estimated kernel,

which will result in the gradient of the interpolated image at the pixel of interest. As

a pixel (x, y) has eight immediate neighboring pixels, we compute eight versions of

gradients using finite difference and incorporate all of them into our gradient loss

33

function.

Eg =
∑
i

8∑
k=1

∥[Gk
i,1 G

k
i,2] ∗Ki − G̃k

i ∥1 (3.2)

where k denotes one of the eight ways we compute the gradient. Gk
i,1 and Gk

i,2 are the

gradients of the input patches Pi,1 and Pi,2, and G̃k
i is the ground-truth gradient. We

combine the above color and gradient loss as our final loss Ec + λ ·Eg. We found that

λ = 1 works well and used it. As shown in Figure 3.3, this color plus gradient loss

enables our method to produce sharper interpolation results.

3.3.2 Training

We derived our training dataset from an online video collection, as detailed later

on in this section. To train our neural network, we initialize its parameters using

the Xavier initialization approach [62] and then use AdaMax [83] with β1 = 0.9,

β2 = 0.999, a learning rate of 0.001 and 128 samples per mini-batch to minimize the

loss function.

3.3.2.1 Training dataset

Our loss function is purely based on the ground truth video frame and does not need

any other ground truth information like optical flow. Therefore, we can make use of

videos that are widely available online to train our neural network. To make it easy

to reproduce our results, we use publicly available videos from Flickr with a Creative

Commons license. We downloaded 3, 000 videos using keywords, such as “driving”,

“dancing”, “surfing”, “riding”, and “skiing”, which yield a diverse selection. We scaled

the downloaded videos to a fixed size of 1280 × 720 pixels. We removed interlaced

videos that sometimes have a lower quality than the videos with the progressive-scan

format.

34

To generate the training samples, we group all the frames in each of the remaining

videos into triple-frame groups, each containing three consecutive frames in a video.

We then randomly pick a pixel in each triple-frame group and extract a triple-patch

group centered at that pixel from the video frames. To facilitate data augmentation,

the patches are selected to be larger than the receptive-field patches required by the

neural network. The patch size in our training dataset is 150× 150 pixels. To avoid

including a large number of samples with no or little motion, we estimate the optical

flow between patches from the first and last frame in the triple-frame group [174]

and compute the mean flow magnitude. We then sample 500, 000 triple-patch groups

without replacement according to the flow magnitude: a patch group with larger

motion is more likely to be chosen than the one with smaller motion. In this way,

our training set includes samples with a wide range of motion while avoiding being

dominated by patches with little motion. Since some videos consist of many shots, we

compute the color histogram between patches to detect shot boundaries and remove

the groups across the shot boundaries. Furthermore, samples with little texture are

also not very useful to train our neural network. We therefore compute the entropy

of patches in each sample and finally select the 250, 000 triple-patch groups with

the largest entropy to form the training dataset. In this training dataset, about 10

percent of the pixels have an estimated flow magnitude of at least 20 pixels. The

average magnitude of the largest five percent is approximately 25 pixels and the largest

magnitude is 38 pixels.

We perform data augmentation on the fly during training. The receptive-field size

required for the neural network is 79 × 79, which is smaller than the patch size in

the training samples. Therefore, during the training, we randomly crop the receptive

field patch from each training sample. We furthermore randomly flip the samples

horizontally as well as vertically and randomly swap their temporal order. This forces

35

the optical flow within the samples to be distributed symmetrically so that the neural

network is not biased towards a certain direction.

3.3.3 Implementation details

We used Torch [36] to implemented our neural network. Below we describe some

important details.

3.3.3.1 Shift-and-stitch implementation

A straightforward way to apply our neural network to frame interpolation is to estimate

the convolution kernel and synthesize the interpolated pixel one by one. This pixel-wise

application of our neural network will unnecessarily perform redundant computations

when passing two neighboring pairs of patches through the neural network to estimate

the convolution kernels for two corresponding pixels. Our implementation employs the

shift-and-stitch approach to address this problem to speed our system up [61, 105, 153].

Specifically, as our neural network is fully convolutional and does not require

a fixed-size input, it can compute kernels for more than one output pixels at once

by supplying a larger input than what is required to produce one kernel. This can

mitigate the issue of redundant computations. The output pixels that are obtained in

this way are however not adjacent and are instead sparsely distributed. We employ

the shift-and-stitch [61, 105, 153] approach in which slightly shifted versions of the

same input are used. This approach returns sparse results that can be combined to

form the dense representation of the interpolated frame.

Considering a frame with size 1280 × 720, a pixel-wise implementation of our

neural network would require 921,600 forward passes through our neural network. The

shift-and-stitch implementation of our neural network only requires 64 forward passes

for the 64 differently shifted versions of the input to cope with the downscaling by the

36

three down-convolutions. Compared to the pixel-wise implementation that takes 104

seconds per frame on an Nvidia Titan X, the shift-and-stitch implementation only

takes 9 seconds.

3.3.3.2 Boundary handling

Due to the receptive field of the network as well as the size of the convolution kernel,

we need to pad the input frames to synthesize boundary pixels for the interpolated

frame. In our implementation, we adopt zero-padding. Our experiments show that

this approach usually works well and does not introduce noticeable artifacts.

3.3.3.3 Hyper-parameter selection

The convolution kernel size and the receptive field size are two important hyper-

parameters of our deep neural network. In theory, the convolution kernel, as shown

in Figure 3.2, must be larger than the pixel motion between two frames in order to

capture the motion (implicitly) to produce a good interpolation result. To make our

neural network robust against large motion, we tend to choose a large kernel. On the

other hand, a large kernel involves a large number of values to be estimated, which

increases the complexity of our neural network. We choose to select a convolution

kernel that is large enough to capture the largest motion in the training dataset, which

is 38 pixels. Particularly, the convolution kernel size in our system is 41× 82 that will

be applied to two 41× 41 patches as illustrated in Figure 3.1. We make this kernel a

few pixels larger than 38 pixels to provide pixel support for re-sampling, which our

method does not explicitly perform, but is captured in the kernel.

As discussed earlier, the receptive field is larger than the convolution kernel to

handle the aperture problem well. However, a larger receptive field requires more

computation and is less sensitive to the motion. We choose the receptive field using a

37

Input frame 1 Ours Meyer et al. DeepFlow2 FlowNetS MDP-Flow2 Brox et al.

Figure 3.4: Qualitative evaluation on blurry videos. Blurry regions are often challenging

for optical flow estimation, resulting in noticeable artifacts (Columns 4-7). The phase-

based method from Meyer et al. [117] can handle blurry regions better (3rd column).

Our method tend to be more robust in regions with large motion, such as the right

side of the hat in the bottom example.

validation dataset and find that 79× 79 achieves a good balance.

3.4 Experiments

We compare our method to state-of-the-art video frame interpolation methods, in-

cluding the recent phase-based interpolation method [117] and a few optical flow-based

methods. The optical flow algorithms in our experiment include MDP-Flow2 [209],

which currently produces the lowest interpolation error according to the Middlebury

benchmark, the method from Brox et al. [19], as well as two recent deep learning

based approaches, namely DeepFlow2 [200] and FlowNetS [44]. Following recent

frame interpolation work [117], we use the interpolation method from the Middlebury

benchmark [8] to synthesize the interpolated frame using the optical flow results.

Alternatively, other advanced image-based rendering algorithms [225] can also be used.

38

For the two deep learning-based optical flow methods, we directly use the trained

models from the author websites.

3.4.1 Comparisons

We evaluate our method quantitatively on the Middlebury optical flow bench-

mark [8]. As reported in Table 3.2, our method performs well on the four examples

with real-world scenes. Among the over 100 methods reported in the Middlebury

benchmark, our method achieves the best on Evergreen and Basketball, 2nd best on

Dumptruck, and 3rd best on Backyard. Our method does not work as well on the

other four examples that are either synthetic or of lab scenes, partially because we

train our network on videos with real-world scenes. Qualitatively, we find that our

method can often create results in challenging regions that are visually more appealing

than state-of-the-art methods.

Blur. Figure 3.4 shows two examples where the input videos suffer from out-of-focus

blur (top) and motion blur (bottom). Blurry regions are often challenging for optical

flow estimation; thus these regions in the interpolated results suffer from noticeable

artifacts. Both our method and the phase-based method from Meyer et al. [117] can

handle blurry regions better while our method produces sharper images, especially in

regions with large motion, such as the right side of the hat in the bottom example.

Abrupt brightness change. As shown in Figure 3.5, abrupt brightness change

violates the brightness consistency assumption and compromises optical flow estimation,

causing artifacts in frame interpolation. For this example, our method and the phase-

based method generate more visually appealing interpolation results than flow-based

methods.

Occlusion. One of the biggest challenges for optical flow estimation is occlusion.

When optical flow is not reliable or unavailable in occluded regions, frame interpolation

39

Input frames Ours Meyer et al. DeepFlow2 FlowNetS MDP-Flow2 Brox et al.

Figure 3.5: Qualitative evaluation on video with abrupt brightness change. In general,

our method and the phasebased method generate more visually appealing interpolation

results than flow-based methods.

Input frame 1 Ours Meyer et al. DeepFlow2 FlowNetS MDP-Flow2 Brox et al.

Figure 3.6: Qualitative evaluation with respect to occlusion. Occlusion is one of the

biggest challenges for optical flow estimation. Our method adopts a learning approach

to obtain proper convolution kernels that lead to visually appealing pixel synthesis

results for occluded regions and preserve better object boundaries in the synthesis

results.

40

Mequ. Schef. UrbanTeddyBacky.Baske.Dumpt.Everg.

Ours 3.57 4.34 5.00 6.91 10.2 5.33 7.30 6.94

DeepFlow2 2.99 3.88 3.62 5.38 11.0 5.83 7.60 7.82

FlowNetS 3.07 4.57 4.01 5.55 11.3 5.99 8.63 7.70

MDP-Flow2 2.89 3.47 3.66 5.20 10.2 6.13 7.36 7.75

Brox et al. 3.08 3.83 3.93 5.32 10.6 6.60 8.61 7.43

Table 3.2: Evaluation on the Middlebury testing set. We compared different methods

in terms of the average interpolation error metric which measures the average absolute

difference in per-pixel values between the predicted and the ground-truth target frames.

methods need to fill in holes, such as by interpolating flow from neighboring pixels [8].

Our method adopts a learning approach to obtain proper convolution kernels that

lead to visually appealing pixel synthesis results for occluded regions, as shown in

Figure 3.6.

To better understand how our method handles occlusion, we examine the convolu-

tion kernels of pixels in the occluded regions. As shown in Figure 3.1, a convolution

kernel can be divided into two sub-kernels, each of which is used to convolve with

one of the two input patches. For the ease of illustration, we compute the centroid

of each sub-kernel and mark it using x in the corresponding input patch to indicate

where the output pixel gets its color. Figure 3.7 shows an example where the white

leaf moves up from Frame 1 to Frame 2. The occlusion can be seen in the left image

that overlays two input frames. For this example, the pixel indicated by the green x is

visible in both frames and our kernel shows that the color of this pixel is interpolated

from both frames. In contrast, the pixel indicated by the red x is visible only in Frame

2. We find that the sum of all the coefficients in the sub-kernel for Frame 1 is almost

zero, which indicates Frame 1 does not contribute to this pixel and this pixel gets its

color only from Frame 2. Similarly, the pixel indicated by the cyan x is only visible

41

Overlay Frame 1 Ours Frame 2

Figure 3.7: Occlusion handling. For the illustration, we compute the centroid of each

sub-kernel and mark it using x and only visualize it if the sum of kernel value is

sufficiently larger than zero. The correspondence between a pixel and its convolution

kernel is established by color. The pixel indicated by the green x is visible in both

frames and our kernel shows that the color of this pixel is interpolated from both

frames. On the other hand, the pixel indicated by the cyan x is only visible in Frame

1. Our kernel correctly accounts for this occlusion and gets its color from Frame 1

only.

in Frame 1. Our kernel correctly accounts for this occlusion and gets its color from

Frame 1 only.

3.4.2 Edge-aware pixel interpolation

In the above, we discussed how our estimated convolution kernels appropriately

handle occlusion for frame interpolation. We now examine how these kernels adapt

to image features. In Figure 3.8, we sample three pixels in the interpolated image.

We show their kernels at the bottom. The correspondence between a pixel and its

convolution kernel is established by color. First, for all these kernels, only a very

small number of kernel elements have non-zero values. (The use of the spatial softmax

layer in our neural network already guarantees that the kernel element values are non-

negative and sum up to one.) Furthermore, all these non-zero elements are spatially

42

Figure 3.8: Convolution kernels. The third row provides magnified views into the

non-zero regions in the kernels in the second row. While our neural network does not

explicitly model the frame interpolation procedure, it is able to estimate convolution

kernels that enable similar pixel interpolation to the flow-based interpolation methods.

More importantly, our kernels are spatially adaptive and edge-aware, such as those for

the pixels marked by the red and cyan x.

grouped together. This corresponds well with a typical flow-based interpolation

method that finds corresponding pixels or their neighborhood in two frames and then

interpolate. Second, for a pixel in a flat region such as the one indicated by the green

x, its kernel only has two elements with significant values. Each of these two kernel

elements corresponds to the relevant pixel in the corresponding input frame. This is

also consistent with the flow-based interpolation methods although our neural network

does not explicitly model the frame interpolation procedure. Third, more interestingly,

for pixels along image edges, such as the ones indicated by the red and cyan x, the

kernels are anisotropic and their orientations align well with the edge directions. This

shows that our neural network learns to estimate convolution kernels that enable

43

Overlaid input Long et al.

Direct Ours

Figure 3.9: Comparison with direct synthesis. Direct prediction approaches, using

both our network architecture and the archicture from Long et al. [104], produce

blurry results. By allowing for the explicit motion reasoning in the inference process,

our model can produce significantly sharper results.

edge-aware pixel interpolation, which is critical to produce sharp interpolation results.

3.4.3 Discussion

Our method is scalable to large images due to its pixel-wise nature. Furthermore,

the shift-and-stitch implementation of our neural network allows us to both parallel

processing multiple pixels and reduce the redundancy in computing the convolution

kernels for these pixels. On a single Nvidia Titan X, this implementation takes about

2.8 seconds with 3.5 gigabytes of memory for a single 640× 480 image, and 9.1 seconds

with 4.7 gigabytes for 1280× 720, and 21.6 seconds with 6.8 gigabytes for 1920× 1080.

We experimented with a baseline neural network by modifying our network to

directly synthesize pixels. We found that this baseline produces a blurry result for

44

an example from the Sintel benchmark [22], as shown in Figure 3.9. In the same

figure, we furthermore show a comparison with the method from Long et al. [104] that

performs video frame interpolation as an intermediate step for optical flow estimation.

While their result is better than our baseline, it is still not as sharp as ours.

The amount of motion that our method can handle is necessarily limited by the

convolution kernel size in our neural network, which is currently 41× 82. As shown in

Figure 3.10, our method can handle motion within 41 pixels well. However, any large

motion beyond 41 pixels, cannot currently be handled by our system. Figure 3.11

shows a pair of stereo image from the KITTI benchmark [114]. When using our

method to interpolate a middle frame between the left and right view, the car is

blurred due to the large disparity (over 41 pixels), as shown in (c). After downscaling

the input images to half of their original size, our method interpolates well, as shown

in (d). In the future, we plan to address this issue by exploring multi-scale strategies,

such as those used for optical flow estimation [141].

Unlike optical flow- or phased-based methods, our method is currently only able to

interpolate a single frame between two given frames as our neural network is trained

to interpolate the middle frame. While we can continue the synthesis recursively to

also interpolate frames at t = 0.25 and t = 0.75 for example, our method is unable to

interpolate a frame at an arbitrary time. It will be interesting to borrow from recent

work for view synthesis [45, 79, 89, 176, 223] and extend our neural network such that

it can take a variable as input to control the temporal step of the interpolation in

order to interpolate an arbitrary number of frames like flow- or phase-based methods.

3.5 Discussion

This chapter presents a video frame interpolation method that combines the two

steps of a frame interpolation algorithm, motion estimation and pixel interpolation,

45

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40

S
S
IM

Figure 3.10: Interpolation quality of our method with respect to the flow magnitude

(pixels).

(a) Left view (b) Right view

(c) Ours - full resolution (d) Ours - half resolution

Figure 3.11: Interpolation of a stereo image. Our method fails to interpolate the

left and right view in this stereo image due to the large disparity (over 41 pixels), as

shown in (c). After downscaling the input images to half of their original size, our

method interpolates well, as shown in (d).

46

(a) Ground truth (b) AdaConv

(c) SepConv - L1 (d) SepConv - LF

Figure 3.12: Compared to the our original AdaConv approach that utilizes 2D kernels

(b), our new separable convolution methods [128], especially the one with perceptual

loss (d), incorporate 1D kernels that allow for full-frame interpolation and produce

higher-quality results.

47

into a single step of local convolution with two input frames. The convolution kernel

captures both the motion information and re-sampling coefficients for proper pixel

interpolation. We developed a deep fully convolutional neural network that is able

to estimate spatially-adaptive convolution kernels that allow for edge-aware pixel

synthesis to produce sharp interpolation results. This neural network can be trained

directly from widely available video data. Our experiments show that our method

enables high-quality frame interpolation and handles challenging cases like occlusion,

blur, and abrupt brightness change well.

However, our adaptive convolution formulation of the frame interpolation process

suffers from a critical limitation of expensive computation in the inference process. As

our method requires a k × k kernel to be predicted at each pixel, the model needs to

output k2 values for each pixel position. Due to such computational expense, we could

only apply our method with a moderate-size kernel (up to 41× 41), which limits the

range of motion our method could handle. In a follow-up work [128], we extended our

method to address that issue. The key idea is to leverage the separable convolution

formulation instead of the original full convolution one. In this way, we only need to

predict two kernels of size k × 1 at each pixel, resulting in the O(k) space complexity

compared to the original O(k2) complexity. With this new formulation, we were

able to train the model to process full video frames rather than local patches while

using significantly larger kernels. That allows us to achieve significant improvements

compared to this original, both quantitatively and qualitatively [128]. Fig. 3.12 shows

an example comparing the frame interpolation quality of our new SepConv formulation

with our original AdaConv formulation.

Our adaptive convolution frameworks for frame interpolation were the first to

introduce the idea of incorporating motion estimation as a learnable yet explicit

component into deep neural network architectures to support high-quality frame

48

prediction. This insight has soon been followed by contemporary works on deep

learning-based video frame interpolation [10, 9]. With it, I hope to bring attention to

the potential benefit of leveraging existing domain knowledge to design and incorporate

inductive biases into modern neural-network based synthesis models. Our kernel-

based formulation for motion estimation in deep neural network models has since

become a standard paradigm for frame interpolation which has been adopted in many

state-of-the-art methods in the field [30, 131, 186].

49

4 Motion-Adjustable Neural Implicit Video Representation

In recent years, Implicit Neural Representation (INR) has become a popular

paradigm for modelling visual data. Originally developed for 3D data modelling [115,

121, 132, 164], INR has recently been shown successful in representing static im-

ages [163, 173]. In this chapter, I am interested in the question: is it possible to

extend this novel representation to model video data? Moreover, is it possible to do it

so that the video’s temporal dynamics information can be manipulated?

It is important to note that contemporary image-based INR, with the use of

Fourier-based positional encoding, can be viewed as a mapping from sinusoidal

patterns with different frequencies to image content. Inspired by previous works

in computer vision literature that explore the relation between the phase information

in sinusoidal functions and their displacements, I hypothesize that it is possible to

generate temporally varying content with a single image-based INR model by displacing

its input sinusoidal patterns over time.

In this chapter, I will introduce a novel Implicit Neural Representation for videos.

The proposed method incorporates a phase-varying positional encoding module into

the conventional image-based INR model, and couple it with a phase-shift generation

module that determines the phase-shift values at each frame. The model is trained

end-to-end on a video to jointly determine the phase-shift values at each time and

the mapping from the phase-shifted sinusoidal functions to the corresponding frame,

enabling an implicit video representation. Experiments on a wide range of videos

50

suggest that such a model can learn to interpret phase-varying positional embeddings

into the corresponding time-varying content. More importantly, the learned phase-

shift vectors capture the video’s meaningful temporal and motion information. In

particular, manipulating the phase-shift vectors induces meaningful changes in the

temporal dynamics of the resulting video, enabling non-trivial temporal and motion-

editing effects such as temporal interpolation, motion magnification, motion smoothing,

and video loop detection.

The content of this chapter was mainly adapted and slightly extended from the

earlier version published at the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) 2022 [107]. The use of “we”, “our”, and “ours” throughout

this chapter refer to the authors of the published paper (Long Mai and Feng Liu).

My own contributions in this work are: the idea of modelling motion in video with

the phase information in positional encoding, the design and implementation of the

motion-adjustable neural implicit video representation model, the algorithms and

implementation for video editing applications resulting from this novel representation,

including motion filtering, motion-intensity adjustment, and video loop detection.

This chapter contains video figures that are best viewed using Adobe Reader.

The video results in this chapter can also be viewed on our project website.

4.1 Introduction

Implicit neural representation (INR) has recently emerged as a powerful paradigm

for representing visual data [121, 132, 163, 164, 173]. Notably, INR has recently been

successfully adopted to represent 2D images for image processing and synthesis [5,

29, 48]. Image-based INR employs a coordinate-based multi-layer perceptron (MLP),

typically along with Fourier-based positional encoding, to map 2D pixel coordinates

to the corresponding color values. Existing works also studied video-based INR and

https://mai-t-long.com/Phase_NIVR/index.html

51

considered it as a natural extension of their image-based counterpart [113, 163]. Such

an approach uses time as an additional input coordinate to the coordinate-MLP

model, effectively treating a video as a 3D volume without explicitly modeling inherent

temporal connection among video frames.

Alternatively, a video is often considered as a sequence of images evolving over

time in computer vision research [137, 170]. This work explores a video-based INR

from that perspective. We investigate if it is possible to leverage an image-based INR

to generate temporally varying video content motivated by two observations. First,

image-based INR, with the use of Fourier-based positional encoding [173], operates

as a mapping from sinusoidal patterns of different frequencies to 2D image content.

Varying the input sinusoids would necessarily cause the generated output to vary

accordingly. Therefore, in principle a time-evolving image sequence can be generated

from a single image-based INR by varying its sinusoidal functions over time. Second,

displacements of sinusoidal functions can be modeled mathematically by the shifts

in their phase angles. Time-varying sinusoids can therefore be achieved by assigning

different phase shifts at different times.

We develop an implicit neural representation for videos based on these observations.

We model the pixel generation process in a frame-wise manner with an image-based

INR, and leverage the phase information in its positional encoding to generate tempo-

rally varying video content. Our model consists of two components, a frame generation

module and a phase-shift generation module. Our frame generation module maps each

pixel coordinate c = (x, y) to the color value Mf (c) at the corresponding coordinates

in the image plane. This frame generation module is a standard image-based INR

model with a minimal yet important modification to its positional encoding (PE)

operation. Different from a standard INR, each sinusoidal function in our PE is not

static but to be shifted at each time t by a phase-shift vector ϕ(t). The mapping ϕ is

52

generated by the phase-shift generation module Mp, jointly trained end-to-end with

Mf to fit the input video. After training, Mp can provide the per-frame phase-shift

vector at each corresponding frame in the video. Those learned phase-shift vectors

can be externally manipulated before entering the frame generation stage, potentially

enabling new generated content with modified dynamics. That makes our neural

implicit video representation motion-adjustable.

With the proposed neural implicit video representation, we center our study around

two questions. First, can the model learn to fit a video? Compared to a standard

INR approach where the spatial coordinate encodings are fixed across frames, the

input coordinate encodings to our frame generation model constantly change from

frame to frame, making it more challenging to memorize the pixel value at each

location. Second, does the learned phase space have any meaningful structures? As

the image content at each time is associated with a phase-shift vector, it is interesting

to see whether manipulating the learned per-frame phase-shift sequence can result

in meaningful changes in the generated video. Our experiments on diverse video

content suggest positive answers. We found that the model can learn to interpret

the learned phase-varying positional encoding into the corresponding time-varying

video content. Interestingly, we found that the resulting phase space corresponds to

meaningful information in the video. Manipulating the generated phase-shift vectors

can enable different temporal-dynamics effects such as temporal interpolation, motion

magnitude adjustment, motion filtering, and video loop extraction from the video as

shown in Figure 4.1.

This work makes the following contributions.

• We introduce a motion-adjustable neural implicit video representation. Instead

of treating the time dimension equally as the spatial dimensions, our representa-

53

Input Reconstruction Interpolation Frame t ———– Interpolated ——— Frame t+ 1

Original Motion Magnification Original Motion Smoothing

Figure 4.1: We extend a standard image-based implicit neural representation to a

motion-adjustable neural implicit video representation by incorporating temporally

varying phase-shift information into Fourier-based positional encoding. By changing

the phase-shift values at inference time, our method can not only reconstruct video

data but can also re-synthesize videos with modified motion properties. This chapter

contains video figures that are best viewed using Adobe Reader. The video results

in this chapter can also be viewed on our project website [1].

tion maps time to a driving signal to modulate the frame-generation process,

effectively adapting regular image-based INR to generate temporally varying

video content.

• We report the interesting finding that the phase information in Fourier-based

positional encoding can be flexibly leveraged to capture temporal dynamics in

a video. Our work adds to the growing literature on the use of Fourier-based

positional encoding in INR, complementing prior works that study the roles of

frequency information in Fourier-based positional embeddings.

• We experiment on a wide variety of real-world videos and demonstrate that

our neural implicit video representation can not only represent a video but can

also allow for modifying certain temporal-dynamics aspects of the video content,

https://mai-t-long.com/Phase_NIVR/index.html

54

enabling a motion-adjustable neural implicit video representation and supporting

a range of video processing applications.

4.2 Related Work

Implicit Neural Representation has been shown a powerful approach to represent

visual data, such as 3D data modelling [115, 132, 164, 121, 13, 211, 184, 15, 149, 95,

220, 151, 26] and image representation [163, 173, 110, 113, 172]. Image-based INR

frameworks have been developed for numerous applications, including image compres-

sion [48], super-resolution [29], and image synthesis [5, 165]. In this paper, we focus on

exploring a motion-adjustable neural implicit video representation. Different from the

standard approach which extends image-based INR to fit a 3D video volume [163, 113],

we leverage the phase information in the Fourier-based positional encoding to learn

temporally varying video content with a regular 2D image-based INR.

Implicit Neural Representation for 3D Dynamic Scenes. Following the immense

success of Neural Radiance Fields (NeRF) [121], many methods extend NeRF to model

temporally varying 3D scenes from video data [57, 133, 138, 183, 207, 92, 56]. Existing

works along this line typically treat video frames as the projection of a dynamic 3D

scene onto the image plane. These methods explicitly model 3D scenes and per-frame

camera poses. This paper works on a more relaxed setting without any 3D scene or

camera information and focuses on adapting image-based INR model to capture the

temporally evolving content in a video.

Fourier-Feature Based Positional Encoding. Positional encoding (PE) refers to

the mechanism to represent position information by mapping low-dimensional input

coordinates to higher-dimensional vectors, typically through a collection of sinusoidal

functions. Initially made popular by Vaswani et al. through their Transformer pa-

per [190], positional encoding has also proved critical for implicit neural representation

55

models [121]. Recent works have studied the importance of the frequency components

in PE to the model’s fitting quality [173, 163]. Our work adds to the growing literature

on Fourier-feature-based positional encoding in INR, demonstrating that besides the

frequency information, the phase information in Fourier-based PE can also be used to

enable video modelling.

Phase-Based Motion Modelling. Our work is inspired by the rich literature

on phase-based motion processing [192, 51, 59, 118, 116]. These works built on

the connection between motion information in a video and its phase information

extracted through frequency domain analysis [195] to enable various motion editing

applications such as motion estimation [51, 59], motion magnification [192], and frame

interpolation [118, 116]. In this work we explore the possibility of leveraging phase

information embedded in the Fourier-based positional encoding to help implicit neural

representation models learn temporal dynamics information in video data.

4.3 Method

4.3.1 Neural Implicit Image Representation

We first review image-based INR and motivate the use of phase shifts for generating

temporally varying content. Image-based INR represents an image as a continuous

function f : c → v, where c = (x, y) are 2D coordinates on the normalized image

plane, and v = (R,G,B) is the corresponding color value. The mapping function f

is parameterized by the weights of a multi-layer perceptron (MLP) Mf . In practice,

the input coordinates c are first mapped to higher-dimension vectors γ(c) through a

positional encoder module γ. Mf then maps the resulting positional encodings to the

final color value v (Figure 4.4 left).

We adopt the widely used Fourier-based positional encoding scheme [95, 121, 190]

56

that forms the encoding by concatenating sinusoidal functions of c

γ(c) = [γ0(c), ...γN−1(c)] (4.1)

γi(c) = [sin(2i−i0πc), cos(2i−i0πc)] (4.2)

where N denotes the number of frequencies. γi(c) represents the encoding correspond-

ing to the i-th frequency. The sin and cos functions are defined coordinate-wise. i0

controls the lowest frequency component to use, which is typically set to 0 in most

INR models. With the positional encoding incorporated, the resulting model can be

viewed as mapping the sinusoidal patterns arranged in 2D planes to the corresponding

image content.

4.3.2 Shifting Images with Pre-Trained Image-Based INR

Our key hypothesis in this work is that the displacement of the sinusoidal functions

in positional encoding can be exploited to induce the image-based implicit neural

representation (INR) model to generate varying outputs. In fact, special cases of

image transformations such as global translation can be induced by phase-shifting

even with a pre-trained image-based INR model.

As a preliminary test to motivate the use of our phase-varying positional encoding

described later, here we train a standard image-based INR model on a static image.

Recall that the positional encoding operation is defined by Equations 4.1 and 4.2

After training the model, we shift the phase of each sinusoidal function in the

positional encoding in Equation 4.2 with a phase-shift term ϕ whose i-th component

is defined as

ϕi = [2i−i0πδx, 2
i−i0πδy] (4.3)

where δx and δy denote the desired (normalized) shifted amounts in each direction.

57

Equation 4.2 becomes

γi(c) = [sin(2i−i0πc+ ϕi), cos(2
i−i0πc+ ϕi)] (4.4)

As shown in Figure 4.2, passing the modified positional embedding through the

coordinate-MLP results in spatially shifted versions of the original image. Note that

the top-bottom and left-right folding effects are generated by the model due to the

repeating nature of the sinusoidal functions. This happens when i0 is set to 0 in

Equation 4.2. We repeat the experiment with i0 = 1 and show the result in Figure 4.3.

Note that the folding behavior disappears. Instead, the model tends to synthesize

the unseen areas with content from the nearby regions. For example, the yellow color

of the flower was extended to the right in Figure 4.2 (bottom right). This ability to

avoid the folding bias motivates our use of i0 = 1 in our experiments.

However, as to be expected the model also hallucinates noisy content in those

areas since the model was not trained to interpret the part of the sinusoidal functions

corresponding to those regions. We also note that the phase-shift values defined as in

Equation 4.3 corresponds to all sinusoidal functions being shifted by the same amount

and therefore can only model global translation. A pre-trained image-based INR model

cannot interpret arbitrary per-channel phase shifts as it was only trained with the input

sinusoids having a fixed phase relation. In our Neural Implicit Video Representation

described below, we take one step further and explore training the INR model explicitly

with phase-varying positional encoding to model complex transformations in real video

data.

58

Input Image Reconstruction

diagonal shift horizontal shift
(δx, δy) = (0.2,−0.2) (δx, δy) = (0.2, 0.0)

Figure 4.2: Phase-shift-induced image shifting with pre-trained image-based INR

model (i0 = 0).

59

Input Image Reconstruction

diagonal shift horizontal shift
(δx, δy) = (0.2,−0.2) (δx, δy) = (0.2, 0.0)

Figure 4.3: Phase-shift-induced image shifting with pre-trained image-based INR

model (i0 = 1).

60

Figure 4.4: Motion-Adjustable Neural Implicit Video Representation. We extend

image-based implicit neural representation (left) to model a video. Our method

determines the phase-shift ϕ(t) at each time t using the phase-shift generation network

Mp. The frame generation network Mf synthesizes the video frames corresponding to

the positional embeddings with the phase shifted by ϕ(t). At inference time, ϕ(t) can

be manipulated to generate new videos with modified dynamics.

4.3.3 Neural Implicit Video Representation

The displacement of the sinusoidal functions can be achieved by shifting their phase

angles. Inspired by that fundamental mathematical relation, we jointly determine

the phase-shift values at each time and the image-based INR model that map the

phase-shifted positional encodings to the corresponding video frames as shown in

Figure 4.4 right. This leads to our Neural Implicit Video Representation. Below we

detail its two main components.

Frame Generation. The frame generation module Mf generates each 2D video

frame. As in conventional image-based INR, Mf maps each 2D coordinate c to

the corresponding pixel value using a coordinate-MLP with Fourier-based positional

encoding. To make it generate different video content at different time, we modify its

61

positional encoding module to enable phase-varying positional encoding. Specifically,

we incorporate an explicit phase-shift term into each sinusoidal function. As a result,

the per-frequency positional embedding in Equation 4.2 is modified to

γϕ(t)i(c) = [sin(2i−i0πc+ ϕi(t)), cos(2
i−i0πc+ ϕi(t))] (4.5)

where ϕi(t) is a two-dimensional vector representing the i-th component of the phase

shift at time t. With this minimal change, Mf can generate different values for the

same (x, y) coordinate at different time, adapting an image-generation model for video

generation.

Phase-Shift Generation. We parameterize the mapping from time t to phase

shift ϕ(t) with a neural network Mp. As the mapping has a continuous nature, we

implement Mp as a 1-D implicit neural representation. Specifically, the input t is

first mapped to a positional embedding γ(t) using the regular positional encoding

procedure following the one-dimensional instantiation of Equation 4.1. The resulting

positional embedding is then processed by an MLP to generate the output phase-shift

vector ϕ(t).

Model Training. At each training iteration, we randomly sample one video frame

Vi along with its frame index i, which is normalized to [−1, 1] and passed through our

model to generate the frame V̂i. The model is trained with the reconstruction-based

loss function

L(V̂i, Vi) = ||V̂i − Vi||1 + λ||Φ(V̂i)− Φ(Vi)||2 (4.6)

where Φ(.) denotes the feature maps extracted from the pre-trained VGG-19 network

[162]. The loss function is composed of two loss terms: the conventional L1 loss and

the perceptual loss to encourage preserving better image details. λ = 0.2 is a weighing

factor.

During training, we found it beneficial to update Mf and Mp in an asymmetric

62

manner. In particular, we update the parameters of both networks only on half the

number of frames evenly sampled across the video. For the remaining frames, we

only update the parameters of the phase-shift generation network Mp while freezing

the parameters of Mf during back-propagation. In that way, Mf is prevented from

overfitting to all the frames while still able to guide the update of Mp such that the

predicted phase-shifts that can be correctly interpreted to generate the hold-out frames.

We found such asymmetric training procedure critical for learning well-structured

phase space.

4.4 Experiments

4.4.1 Implementation Details

We implement both Mf and Mp as MLPs with 3 hidden layers and 1024 neurons

per hidden layer. Following [163], we use the sine activation function in all hidden

layers. For Mf , the output layer has three neurons, corresponding to the RGB color

values. Each neuron has a tanh activation function to constrain the output value

to [−1, 1]. For Mp, the number of output neurons is equal to twice the number of

frequency channels in the positional encoding module of Mf . The number of frequency

channels N in positional encoding is determined by the number of samples L along

each dimension of the input video as N = [log2(L) + i0] as done in [163]. L is taken

to be the length of the video for the temporal dimension and the smaller side of the

frame for the spatial dimension. We use i0 = 1 in Eq. 4.5 and 4.2 for all experiments.

We trained our model using the ADAM optimization algorithm [84] with learning rate

0.0001 for 6,000 passes over an input video. It takes about 18 hours to train on a

video of 120 frames with resolution 256× 452 on one NVIDIA 2080Ti GPU.

63

Method PSNR SSIM

Direct-VINR 31.98 0.897

Phase-NIVR 32.05 0.905

Table 4.1: Video fitting performance.

4.4.2 Learning to Fit Video Data

We examine whether incorporating the phase-varying positional encoding and

the generated phase shifts hurts the ability of the model to fit the video data well.

Compared to standard INR formulation, it is more challenging for our model to fit

the coordinate-to-color mapping as the positional embeddings of the input spatial

coordinates constantly change across frames. We test our neural implicit video

representation (Phase-NIVR) on 25 videos from the WAIC-TSR dataset [135] that

covers different content and motion types. For each video, we use the first 120 frames

and resize them so that the small side is 128-pixel.

For comparison, we also train a direct extension of INR to video, named Direct-

VINR, that incorporates t as an additional input coordinate. We use the same

architecture and loss function as in our model to experiment with Direct-VINR.

We train both models on each video in the dataset and compute the PNSR/SIIM

reconstruction scores from their reconstructed videos. We report the video fitting

qualities in terms of two quality metrics PSNR and SSIM in Table 4.1. The results

indicate that our method performs comparably with Direct-VINR. This suggests that

incorporating phase-varying positional encoding, while making the learning problem

more challenging for the mapping network, does not prevent the model from fitting

the videos.

64

Figure 4.5 shows 30-frame segments of some example reconstructed videos. Consis-

tent with the numerical scores, we observe the reconstructed videos from two methods

often have comparable visual quality (Figure 4.5 rows 1-3). In some cases, we observe

that Direct-VINR tends to struggle in reconstructing object motions over relatively

static and uniform background such as in the last example in Figure 4.5 when the

man’s legs pass through the uniform sky region. That could possibly be due to the

model overfitting to the same background color that repeatedly appears at the same

spatial location in most of the frames. We found that by explicitly removing such

fix-position bias, our method tends to be more robust in such scenarios.

65

Input Direct-VINR Phase-NIVR (Ours)

Figure 4.5: Video reconstruction examples. Our method can fit video content with

comparable visual quality as Direct-VINR (rows 1-4) while tending to be robust in

capturing object motion over uniform background such as the man’s legs over the

uniform sky regions (row 5).

66

4.4.3 Phase-based Motion Manipulation

The previous experiment shows the ability of our model to map per-frame phase

information into the frame content. However, it is not clear whether the learned phase

captures meaningful temporal dynamics structure or simply serves as an index for the

model to memorize the frame content. In this section, we inspect how manipulating

the generated phase-shift sequence ϕ(t) influence the change in the output frames.

4.4.3.1 Temporal Interpolation

We examine if interpolating two phase-shift vectors corresponds to a meaningful

interpolation in the video domain. We sample five videos in the WAIC-TSR dataset

that cover different scene types and have good reconstruction quality (PSNR ≥ 28.5)

from the previous experiment. We re-train our model on 120 frames from each video

sampled at half the original frame rate. For this test, we train the model on video

frames resized to 256× 452 so that more details can be observed. After training, we

use Mp to generate the phase shift vectors at each time t and perform interpolation

between each pair of consecutive phase-shift vectors to obtain the interpolated phase-

shift sequence. We use spherical linear interpolation to account for the circular nature

of phases [156]. The resulting phase-shift sequence is used in the frame generation

module Mf to generate the final frames.

Figure 4.6 shows the interpolated video results. The videos were set to be played

back at two frames per second in the figure for easier inspection. First, it can be

observed that the interpolated frames have comparable visual quality as the original

frames. This indicates that the model can indeed interpret the positional embedding

from the interpolated phase-shift vectors into plausible video content rather than

treating them as out-of-distribution samples. Second, the appearance of the frames

67

Interpolated Videos

Interpolated Video Interpolated frame Frame averaging Ground-truth frame

Figure 4.6: Temporal interpolation examples. The frame generation model can

synthesize plausible interpolated frames with interpolated phase-shift vectors during

inference time. The interpolation results often show plausible motion transition rather

than copying nearby frames or taking frame-wise average (2nd row).

continuously changes, indicating that the model can associate the change in the

phase-shift vectors to the change in the video domain rather than simply copying the

content from the nearest frames. Finally, we inspect whether the interpolated frames

are the results of the pixel-space average of the corresponding neighboring frames. We

found that in general the interpolated frames are different from the frame-wise average

results (Notice the ghosting around the ice cube in the averaging result in Figure 4.6

(bottom row)). We observe that when the motion is sufficiently small, the interpolated

video does capture the interpolated motion. However, with a larger inter-frame motion,

the model may not identify the corresponding large-moving regions across frames as

part of a single motion. In those cases, interpolation tends to reduce to a blending

operation, resulting in occasional ghosting artifacts as can be observed in the “running

men” sequence (the third examples in Figure 4.6’s top row).

68

4.4.3.2 Motion Filtering

The previous interpolation test suggests that the learned phase-shift vectors can be

associated with the temporal states of the video content. We furthermore perform a

simple experiment to test whether low-pass filtering the learned phase-shift sequence

can smooth motion in the video. For this test, we collect videos that have some

jiterring object motion on top of a longer-range motion trajectory such as a tunning

fork vibrating while moving (Figure 4.1 (bottom-right)). After training our model on

each video, we treat the generated phase-shift sequence as a multi-dimensional time

series and apply a median filter with a temporal window-size of 7 to it. The filtered

phase-shift sequence is used with the frame generation model Mf to synthesize the

new video.

Figure 4.1 (bottom-right) and Figure 4.7 show two motion filtering results. More

examples can be found in our supplementary video. We observe that filtering the

learned phase-shift sequence leads to the resulting videos with reduced high-frequency

jittering while the larger-scale motion is preserved. Note the overall up-down motion

of the tuning fork in Figure 4.1 (bottom-right) is retained while its vibration is largely

removed. Also, the base concrete platform in Figure 4.7 is stabilized while its overall

motion direction is preserved.

4.4.3.3 Motion Magnitude Adjustment

Inspired by phase-based motion processing works [192, 195], we are curious if manip-

ulating the phase-shift vectors in our framework can alter the motion magnitude in

videos. Specifically, we test whether adjusting the magnitude of the difference between

neighboring phase-shifts can result in motion magnitude change.

We test our method on different videos with object fluctuating in space. For phase-

69

Input Reconstruction Motion Smoothing

Figure 4.7: Motion filtering. Low-pass filtering the phase-shift sequence ϕ(t) at

inference time can make the frame generation model to generate a new video with

smoother object motion. 1st example: The concrete base becomes more stable while

its larger-scale motion is preserved. 2nd example: The vibrating motion of the car-

washing tool in the original video was significantly smoothened in the re-synthesized

version. 3rd example: the hand-grip exhibit strong jiterring motion in the original

video but remained relatively static after motion smoothing.

shift adjustment, we first scale the difference between each consecutive phase-shift

vectors ˆ∆ϕ(t) = α(ϕ(t+1)−ϕ(t)). We then fix the phase-shift vector at the first frame

and re-compute the phase-shift sequence with the modified pair-wise difference ˆ∆ϕ(t).

The new videos are synthesized from the modified phase-shift sequence. Figure 4.8

and Figure 4.1 (bottom left) show two example videos with different scaling factor

α values. When α is smaller than one, the resulting video shows reduced motion

70

Original (α = 1.0) α = 0.5 α = 1.5

Figure 4.8: Motion magnitude adjustment. Scaling the phase-shift sequence ϕ(t) at

inference time can alter the motion magnitude in the synthesized video. Varying the

scaling factor allows for both motion minification and motion magnification.

magnitude, leading to the motion minification effect. The magnification effect was

obtained with α > 1. Note that only the motion magnitude was modified while the

overall motion structure, including the direction of motion and different motion stages

were preserved.

4.4.3.4 Video Loop Detection

Hypothesizing that the phase-shift vectors encode the states of dynamics, we investigate

if we can detect loops in videos with repeated motion by analysing the phase-shift

71

sequence.

We adopt a simple approach to detect loops in a video from the learned phase-shift

sequence. Let {ϕ(k)}k=0..N represent the learned phase vectors from the video with N

frames. We identify the looping point by determining the pair of frame indices î and

ĵ that minimize the cost function

min
i,j|j≥i+τ

∥ϕ(i)− ϕ(j)∥+ β∥∆ϕ(i)−∆ϕ(j)∥ (4.7)

where ∥.∥ denotes the L1 distance, ∆ϕ(i) = ϕ(i) − ϕ(i − 1) represents the phase-

difference vector, and β is a weighing factor to balance between phase matching and

motion matching terms. τ determines the desired minimum length for the extracted

loop. The idea is to determine the pair of as-similar-as-possible phase shifts that also

have similar phase transition. After solving for î and ĵ, the sub-sequence {ϕ(k)}k=î..ĵ

forms the candidate loop. The new video synthesized with this sequence would ideally

transition from the ĵ-th frame back to the î-th frame which has similar dynamics

state, forming the illusion of looping.

In practice, we observe that perfect matching is only possible for simple mechanical

motion where objects perfectly repeat themselves. For more organic motion such as

human action, slight variations in object poses can cause a perceivable jump at the

looping point. To address that problem, we further modify the phase-shift sequence

with a simple phase blending process. We modify the first l phase-shifts by blending

them with ϕ(ĵ) using spherical linear interpolation with the blending weight α(n) of

the n-th vector defined as α(n) = n
l
.

Figure 4.9 shows example loop extraction results from two potentially looping

videos. Please check our supplementary video for more examples. In general, the loop

points can be successfully detected by phase matching. This indicates that the similar

phase-shift vectors reflect similar scene states reappearing at different times. We note

72

that phase blending helps improve the perceived looping noticeably. The wind-chime

example (Figure 4.9 (bottom)) is particularly challenging to handle as the original

video contains small camera motion. For that reason, no perfect loop point exists that

can match both the background and the object motion, resulting in the noticeable

temporal seam in the looping result. Surprisingly, with phase blending it is possible to

achieve a seamless looping video. This indicates that manipulating in the phase-shift

space can lead to plausible modification in the video domain.

73

Original Looping w/o Phase Blending

Figure 4.9: Video loop detection. Potential repeat point in a video can be detected by

simple phase-matching strategy in the learned phase-shift sequence ϕ(t). Applying

phase blending improves the looping results especially for challenging scenarios, such

as when both the wind chime and the background move due to subtle camera motion

(3rd row).

4.5 Discussion

Our method demonstrates that the phase information in the positional encoding

can be used to encode temporal dynamics information in videos. That begs the

question: what does the learned phase-space look like? In this section, I visualize

74

the learned phase-space to draw more insights into the relation between the phase

information and the dynamics of the input video content. I will also discuss the role

of the phase-generation module via experimenting with an alternative technique for

phase prediction that follows a direct optimization approach.

4.5.1 Inspecting the Learned Phase Space

Our experiments suggest that the learned phase-shifts ϕ(t) can be associated with

meaningful transition in videos. We visualize ϕ(t) as a function over time. Figure 4.10

shows such a visualization for our model trained on a video with structured and

symmetric nature while containing some complex motion. We show the phase-shift

visualization for 5 out of 14 phase-shift series (corresponding to 14 Mf ’s frequency

channels).

Inspecting the visualized phase shifts, we can see that the phase-shift series evolve

smoothly over time rather than forming a sequence of uncorrelated states. More

interestingly, we found that the phase-shift series are well structured. The phase-shift

plots contain highly symmetric patterns, reflecting the symmetric nature of the input

video. We observe similar structured phase-shift patterns consistently in most videos

that we experimented with. The transition in the phase-shift series often corresponds

in meaningful ways to the transition in the visual domain.

Occasionally, we also observe a localized-control capability. For this example, we

found that the fifth phase-shift series (the red curve in Figure 4.10) correlates with the

movement of the hair-lock region. Keeping the fifth phase-shift evolving over the whole

temporal range while freezing the phase-shift values of all other frequency channels at

certain keyframes results in the re-synthesized scenes frozen at the selected keyframes

while keeping the hair lock moving in similar ways (Figure 4.10 (bottom)). This

localized-control behavior is interesting as it suggests the simple MLP networks can

75

Reconstructed Video Freq 5 only Freq 5 only
(keyframe at t = 0) (keyframe at t = 40)

Figure 4.10: We visualize five channels of the learned phase-shift values ϕ(t) as a

function of time (top). The structure of the phase-shift series reflects the symmetric

nature of the video (bottom-left). In addition, the fifth phase-shift series (the red

curve) correlates with the hair-lock movement even when other channels are frozen to

one keyframe.

potentially learn non-trivial spatial-temporal relations from raw visual data without

explicit motion, correspondence, or semantic supervision. However, we would like to

note that our current model does not exhibit this localized-control ability on all videos.

In general cases, one phase-shift series often correlates with more global motion, and

the motion of one visual element is often influenced by multiple phase-shift channels.

Explicitly encouraging such localized-control capability by incorporating a specialized

76

training strategy would be an interesting direction for future exploration.

4.5.2 Phase-Shift Learning with Direct Optimization

Our method parameterizes the mapping from t to ϕ(t) with a 1D coordinate-based

mutilayer perceptron. This unifies the whole system under the neural implicit function

paradigm. An alternative approach to realize the phase-shift generation module would

be to optimize a sequence of per-frame phase-shift vectors. However, we found such

direct optimization approach difficult to obtain well-structured phase space for two

reasons. First, the phase shift value ϕ(t) is a function of the continuous time signal

t, optimizing the per-frame phase shifts as a discrete sequence make it difficult to

capture such nature of continuity. Second, phase naturally has circular nature. That

makes the phase space highly non-Euclidean and challenging to optimize directly.

The top row of figure Figure 4.11 shows the video results synthesized by the model

trained while replacing our INR-based phase-shift generation module with the one that

uses direct optimization. For reference, we show the results generated by our method

in the bottom row of Figure 4.11. In the figure, we show the video reconstruction

results and the temporal interpolation results that is generated by re-synthesizing

the video using the interpolated phase-shift sequence. The interpolated phase-shift

sequence is obtained by interpolating each pair of consecutive original phase-shift

vectors as done in our temporal-interpolation experiment in Section 4.4.3.1.

We optimize the per-frame phase-shift vectors jointly with the frame-generation

module training, using the ADAM optimization algorithm [84]. We also experimented

with other optimization algorithms such as SGD and LBFGS and observe similar

results. From Figure 4.11, we observe that while the direct optimization approach can

fit the video data reasonably well the resulting phase-shift space lacks the structure

that reflects the inherent continuity in the video’s temporal information. That leads

77

Input Video Reconstructed Video Interpolated Video
Video results with direct phase-shift optimization.

Input Video Reconstructed Video Interpolated Video
Video results with INR-based phase-shift generation module (ours).

Figure 4.11: Direct optimization for per-frame phase-shift sequence is challenging.

Without stronger structural regularization, it is difficult for the optimized phase-shift

sequence to reflect the inherent continuity in video data. The resulting model cannot

generate plausible results from the interpolated phase-shift vectors (top row). Our

method uses an implicit neural representation model to parameterize the mapping

from the continuous input t to ϕ(t). This partly serves as an implicit continuity-aware

regularization.

to implausible results when re-synthesizing the video with interpolated phase-shift

sequence. The model seems to use the phase-shift vector simply to index and memorize

the mapping from the resulting shifted sinusoidal patterns to the RGB content at

each individual frame, without capturing the relation across frames. More advanced

optimization algorithms and explicit regularization would be needed to encourage

modelling temporal relation between neighboring phase-shift vectors. We conjecture

that our method, by parameterizing the phase-shift optimization process as neural

network training, imposes an implicit continuity-aware regularization since the model

is trained to map the continuous signal t to the continuous output ϕ(t). We note that

78

other ways of neural network based parameterization exists, for example by using more

sophisticated sequential models such as recurrent neural networks (RNNs) [72, 32] or

transformer architectures [190]. Exploring those models in the context of our problem

would be an interesting direction for future work.

4.5.3 Limitation and Future Work

Our study demonstrates the surprising effectiveness of using phase-varying posi-

tional encoding in image-based INR to capturing temporal dynamics. However, our

method has several limitations.

First, while our model can fit a video, the reconstruction quality is not perfect.

Our reconstructed videos are often slightly more blurry and sometime noisy compared

to input videos, as can be seen from the video results. We built our model upon the

most standard Fourier-based positional encoding scheme which uses a pre-defined set

of frequency components without per-example tuning. Incorporating more advanced

frequency selection principles [163, 173] or employing local implicit function models [29,

110, 113] are promising directions to improve the visual quality.

Second, as our framework requires example-specific training, it takes many hours

to process one video. Extending our method to multiple-video settings with hyper-

networks models [164] or meta-learning [172] can be fruitful directions to explore in

future work.

Finally, while our motion-adjustable neural implicit video representation shows

promising results for various motion editing tasks, we believe that incorporating

application-dependent domain knowledge for those tasks will improve our method to

generate better results.

Another interesting direction for future research is to extend the proposed method

to make it a generative model. While capable of synthesizing video content with

79

modification in temporal dynamics content, the current model is not a full-fledged

generative model. While we can slightly manipulate the temporal dynamics information

by adjusting the learned phase space in certain ways, we cannot freely sample arbitrary

phase values to generate arbitrary variations from the original videos as demonstrated

in [66]. Exploring our model with GAN-based training objectives could be a promising

direction to pursue.

80

5 Conclusion

Deep neural networks have transformed every aspects of computer graphics and

vision research. For visual content synthesis, imagery with impressive levels of realism

can now achieved with deep generative models [82, 139, 147]. Synthesizing video

content, arguably due to the the lack of effective motion-aware inductive biases, has

been shown much more challenging for deep neural network to master.

Before the deep learning era, computer graphics and vision research already

established a vast literature on video synthesis. Traditional graphics- and vision-based

methods exploited the rich source of domain knowledge and insights reflecting the

researchers’ understanding on the nature of visual data. However, in those more

traditional methods, such insights were often incorporated as heuristics. That often

limits their robustness and flexibility, leading to fragile systems. The key motivation

of my research in this dissertation is that such insights are can still be highly relevant

in this era of modern deep learning approaches. In particular, they can be used as

effective inductive biases for deep learning models.

Toward this idea of using domain knowledge as inductive bias for video synthesis,

I started my exploration with the problem of video frame interpolation. The existing

literature in this domain from traditional graphics and vision research allowed me

to stand on the giants’ shoulders. In particular, I was inspired by the key insight

that video frame interpolation can be modelled as fundamentally composing of two

processes: motion estimation and pixel synthesis. Leveraging that insight as an

81

inductive bias, I proposed the adaptive convolution formulation for CNN-based video

frame interpolation. This formulation effectively combines both processes into a unified

convolution process. Thanks to the inductive bias that explicitly encourages motion

estimation and sampling-based synthesis, the proposed method was able to synthesize

results with much higher quality compared to previous deep learning based techniques

for video synthesis which follow the direct prediction approach. Compared to the

conventional techniques, the proposed method enables end-to-end learning from data.

Therefore, the model can make use of the incorporated domain knowledge in a flexible

and data-adaptable manner rather than relying on heuristics or rigid hand-engineered

components. This makes the proposed method more robust against the challenging

scenarios where heuristics-based approaches often have difficulties handling such as

blurriness, occlusion, and the scenarios where motion cannot be faithfully represented

by optical flow (e.g., lighting changes or transparent movement) [117].

More recently, I explored applying this line of research to enable video manipulation

with the implicit neural representation (INR). Simply extending the standard image-

based INR model to video by considering time as an additional input dimension, while

suitable for video fitting, does not enable intuitive temporal dynamics manipulation.

By viewing contemporary INR models as learned (non-linear) inverse Fourier transform

processes, I can take inspiration from the important insight about the relation between

the phase information in the frequency domain and the motion information in the

image domain. This important insight was developed and applied for a long time

in many computer vision works [54, 117, 136, 194]. However, it has been relatively

under-explored in the age of deep learning based approaches. My research described

in Chapter 4 showed that incorporating such phase-based manipulation insight as

a simple modification into the standard image-based INR model makes it possible

to not only represent the video data well but also manipulate the video to achieve

82

different temporal dynamics effects.

Since the publication of our first paper on video frame interpolation in 2017,

the idea of incorporating explicit motion modelling into deep learning based video

synthesis systems has been greatly adopted. Motion estimation modules have become

integral components in not only video frame interpolation models [9, 10, 126] but also

other video processing models such as video super-resolution [108, 197], video-to-video

translation [198], and video generation [144, 158]. Most of these works, however, often

consider motion estimation simply as a computational trick and heuristic constraints.

For that reason, they tend to be limited to using only optical flow as motion models.

In this dissertation, I hope to push forward the view of leveraging the motion

modelling insights from traditional methods as useful inductive biases for deep model

learning. That view was what inspired us to incorporate not only the motion estimation

module into video frame interpolation, but also combine it with the pixel synthesis

process into the overall adaptive convolution formulation for frame synthesis. It was

also from that view that connect the idea of phase-based motion modelling from older

computer vision literature with the modern implicit neural representation to adapt it

to video synthesis and manipulation tasks.

Future Work

Toward Systematic Approaches to Discovering Knowledge-Based Inductive

Biases for Motion Modelling

I hope our works have demonstrated the value of this research direction of leveraging

existing domain knowledge as inductive learning biases. Nevertheless, my work in this

dissertation have only investigated this research direction in a rather ad-hoc manner.

The incorporated insights were determined by carefully reviewing the large existing

literature, and the incorporation of those insights as inductive biases in model design

83

was done on a per-problem basis.

More fundamental methods to discover and incorporate such motion modelling

insights in more systematic ways will be an interesting direction for future research.

Meta-learning techniques that can analyze the results from existing conventional

method and automatically discover motion-related inductive biases from them to train

problem-specific models can be a fruitful direction to explore toward this goal.

From Video Editing to Video Generation: Dynamical Systems Modelling

as Inductive Bias

My research described in this dissertation only focused on the video synthesis settings

that synthesize video content from a provided source content. This is a the most

common setting in modern video editing workflows. However, the future of content

creation will likely also have creators generating content from scratch. In such an

un-conditional, or weakly-conditional synthesis setting, full visual content will be

generated from a completely random noise or simplified input signal from different

modality such as text or audio.

Impressive results for image generation have recently been demonstrated [82]

Compared to the image generation part, the video generation results still pretty much

lack behind. State of the art methods can only generate very short videos, with

low-resolution, and often with severe distortions.

On the challenge that hampers the current generative models to properly model

video data, one key hypothesis I plan to investigate is that those existing models often

lack the inductive bias that encourage temporal continuity and structural variation

at multiple scales. Our visual world is not a set of disorganized, randomly sampled

data. It has very rich structures with content organized along many different scales.

For example, at the smaller time scale, we have content corresponding to consecutive

84

frames in a video. At larger time scale, perhaps it can arrange different videos of

the same subject while gradually varying the background scenes. And at an even

larger time scale, the changes from one video to the next can be more profound but

may still exhibit some continuation, such as transitioning from one type of animal to

another animal, then to the animal in a different environment, and then from one type

of environment to another. In the current frameworks, such structural relation has

not been encouraged. The model simply map stochastic noise, to equally stochastic

sampled data.

One idea I want to explore to address this challenge is to leverage dynamical-

systems modelling to encourage structural inductive bias in model learning. There

are many appealing properties of dynamical system modelling that can benefit the

modelling of video data, such as the built-in notion of temporal continuity and multi-

scale structured variation. Dynamical systems are well-known for their ability to

generate very rich dynamical patterns, and with good design, they can achieve that in

a controllable manner.

What I plan to explore as a first step is to replace the stochastic noise input with

the patterns generated from a simple dynamical system. I plan to start with the

simplest system possible: a set of independent harmonic oscillators with different

frequencies. Interestingly, this would lead to the same formulation as the popular

positional encoding that has been popular in neural implicit representations and

transformer architectures. As the system of oscillators naturally evolve over time, it

would be interesting to investigate whether the models trained this way can be induced

to capture the notion of temporal continuity. It is also interesting to investigate the

possibility of using multiple temporal scales in the input signals to induce the multiple

scales of variation in output content.

85

Bibliography

[1] Motion-adjustable neural implicit video representation – project website. https:

//mai-t-long.com/Phase_NIVR/index.html x, 53

[2] This person does not exist. https://thispersondoesnotexist.com/ 17

[3] Agarwala, A., Zheng, K.C., Pal, C., Agrawala, M., Cohen, M., Curless, B.,

Salesin, D., Szeliski, R.: Panoramic video textures. In: ACM Transactions on

Graphics. p. 821–827 (2005) 14

[4] Almuslamani, H.A.I., Nassar, I.A., Mahdi, O.R.: The effect of educational videos

on increasing student classroom participation: Action research. International

Journal of Higher Education (2020) 1

[5] Anokhin, I., Demochkin, K., Khakhulin, T., Sterkin, G., Lempitsky, V., Ko-

rzhenkov, D.: Image generators with conditionally-independent pixel synthesis.

In: IEEE Conference on Computer Vision and Pattern Recognition (2021) 9,

50, 54

[6] Arias, P., Morel, J.M.: Video denoising via empirical bayesian estimation of

space-time patches. Journal of Mathematical Imaging and Vision 60(1), 70–93

(jan 2018) 2

https://mai-t-long.com/Phase_NIVR/index.html
https://mai-t-long.com/Phase_NIVR/index.html
https://thispersondoesnotexist.com/

86

[7] Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM

Transactions on Graphics 26(3) (jul 2007) 3

[8] Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A

database and evaluation methodology for optical flow. International Journal of

Computer Vision 92(1), 1–31 (2011) 6, 8, 14, 22, 25, 37, 38, 40

[9] Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video

frame interpolation. In: IEEE Conference on Computer Vision and Pattern

Recognition (2019) 48, 82

[10] Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: Memc-net: Motion estima-

tion and motion compensation driven neural network for video interpolation and

enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence

(2018) 48, 82

[11] Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: A

randomized correspondence algorithm for structural image editing. ACM Trans-

actions on Graphics 28(3) (jul 2009) 3, 4, 15

[12] Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R.,

Srinivasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural

radiance fields. In: IEEE International Conference on Computer Vision (2021)

20

[13] Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R.,

Srinivasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural

radiance fields. In: IEEE International Conference on Computer Vision (October

2021) 54

87

[14] Battaglia, P., Hamrick, J.B.C., Bapst, V., Sanchez, A., Zambaldi, V., Malinowski,

M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F.,

Ballard, A., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K., Nash, C., Langston,

V.J., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li,

Y., Pascanu, R.: Relational inductive biases, deep learning, and graph networks.

arXiv (2018) 19

[15] Bemana, M., Myszkowski, K., Seidel, H.P., Ritschel, T.: X-fields: Implicit neural

view-, light- and time-image interpolation. ACM Transactions on Graphics 39(6)

(nov 2020) 54

[16] Bonneel, N., Tompkin, J., Sunkavalli, K., Sun, D., Paris, S., Pfister, H.: Blind

video temporal consistency. ACM Transactions on Graphics (2015) 18

[17] Brame, C.J.: Effective educational videos: Principles and guidelines for max-

imizing student learning from video content. CBE—Life Sciences Education

15(4), es6 (2016) 1

[18] Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity

natural image synthesis. In: International Conference on Learning Representa-

tions (2019) 17

[19] Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow

estimation based on a theory for warping. In: European Conference on Computer

Vision. vol. 3024, pp. 25–36 (2004) 14, 37

[20] Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured

lumigraph rendering. In: ACM Transactions on Graphics. p. 425–432 (2001) 12

88

[21] Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural

networks compete with BM3D? In: IEEE Conference on Computer Vision and

Pattern Recognition (2012) 25

[22] Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source

movie for optical flow evaluation. In: European Conference on Computer Vision

(2012) 44

[23] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid,

I., Leonard, J.J.: Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on Robotics

32(6), 1309–1332 (dec 2016) 13

[24] Challa, S., Morelande, M., Mušicki, D., Evans, R.: Fundamentals of Object

Tracking. Cambridge University Press (2011) 6, 13

[25] Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic

implicit generative adversarial networks for 3d-aware image synthesis. In: IEEE

Conference on Computer Vision and Pattern Recognition (2021) 20

[26] Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-gan: Periodic

implicit generative adversarial networks for 3d-aware image synthesis. In: IEEE

Conference on Computer Vision and Pattern Recognition (2021) 54

[27] Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G.: Coherent online video style

transfer. In: IEEE International Conference on Computer Vision (2017) 14

[28] Chen, X., Zhang, Y., Wang, Y., Shu, H., Xu, C., Xu, C.: Optical flow distillation:

Towards efficient and stable video style transfer. In: European Conference on

Computer Vision (2020) 14

89

[29] Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with

local implicit image function. In: IEEE Conference on Computer Vision and

Pattern Recognition (2021) 9, 50, 54, 78

[30] Cheng, X., Chen, Z.: Multiple video frame interpolation via enhanced deformable

separable convolution. IEEE Transactions on Pattern Analysis and Machine

Intelligence (2021) 48

[31] Cho, D., Jung, Y., Rameau, F., Kim, D., Woo, S., Kweon, I.S.: Video retargeting:

Trade-off between content preservation and spatio-temporal consistency. In:

ACM Internation Conference on Multimedia. p. 882–889 (2019) 2

[32] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F.,

Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-

decoder for statistical machine translation. In: Conference on Empirical Methods

in Natural Language Processing (2014) 78

[33] Cinganotto, L., Cuccurullo, D.: The role of videos in teaching and learning

content in a foreign language. Journal of E-Learning and Knowledge Society 11,

49–62 (01 2015) 1

[34] Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex

datasets. arXiv: Computer Vision and Pattern Recognition (2019) 18

[35] Cohen, M., Szeliski, R.: Lumigraph, pp. 462–467 (01 2014) 12

[36] Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment

for machine learning. In: BigLearn, NIPS Workshop (2011) 35

90

[37] Debevec, P.E., Yu, Y., Borshukov, G.: Efficient view-dependent image-based

rendering with projective texture-mapping. In: Eurographics Workshop. pp.

105–116 (1998) 13

[38] Deng, Y., Yang, J., Xiang, J., Tong, X.: Gram: Generative radiance manifolds

for 3d-aware image generation. In: IEEE Conference on Computer Vision and

Pattern Recognition (2022) 20

[39] Denton, E.L., Birodkar, v.: Unsupervised learning of disentangled representations

from video. In: Conference on Neural Information and Processing Systems (2017)

18, 21

[40] Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. In:

Conference on Neural Information Processing Systems (2021) 17

[41] Didyk, P., Sitthi-amorn, P., Freeman, W.T., Durand, F., Matusik, W.: Joint

view expansion and filtering for automultiscopic 3D displays. ACM Transactions

on Graphics 32(6), 221:1–221:8 (2013) 25

[42] Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a

deep convolutional network. In: IEEE International Conference on Computer

Vision (2015) 25

[43] Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep

convolutional networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence 38(2), 295–307 (2016) 25

[44] Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V.,

van der Smagt, P., Cremers, D., Brox, T.: FlowNet: Learning optical flow with

91

convolutional networks. In: IEEE International Conference on Computer Vision

(2015) 25, 29, 37

[45] Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with

convolutional neural networks. In: IEEE Conference on Computer Vision and

Pattern Recognition (2015) 25, 44

[46] Drulea, M., Nedevschi, S.: Total variation regularization of local-global optical

flow. IEEE Conference on Intelligent Transportation Systems (2011) 14

[47] Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style.

arXiv/1610.07629 (2016) 25

[48] Dupont, E., Golinski, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: COm-

pression with implicit neural representations. In: International Conference on

Learning Representations Wokshops (2021) 9, 50, 54

[49] Epstein, W., Rogers, S.: Perception of Space and Motion. Academic Press (1995)

5, 13, 15

[50] Finn, C., Goodfellow, I.J., Levine, S.: Unsupervised learning for physical

interaction through video prediction. In: Conference on Neural Information and

Processing Systems (2016) 27

[51] Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local

phase information. International Journal of Computer Vision 5(1), 77–104 (1990)

10, 55

[52] Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local

phase information. International Journal of Computer Vision 5(1), 77–104 (sep

1990) 15

92

[53] Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: Learning to

predict new views from the world’s imagery. In: IEEE Conference on Computer

Vision and Pattern Recognition (2016) 25, 26, 29

[54] Freeman, W.T., Adelson, E.H., Heeger, D.J.: Motion without movement. ACM

Transactions on Graphics p. 27–30 (1991) 15, 81

[55] Gadot, D., Wolf, L.: PatchBatch: A batch augmented loss for optical flow. In:

IEEE Conference on Computer Vision and Pattern Recognition (2016) 25, 29

[56] Gafni, G., Thies, J., Zollhofer, M., Niessner, M.: Dynamic neural radiance

fields for monocular 4d facial avatar reconstruction. In: IEEE Conference on

Computer Vision and Pattern Recognition (2021) 54

[57] Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic view synthesis from dynamic

monocular video. In: IEEE International Conference on Computer Vision (2021)

54

[58] Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional

neural networks. In: IEEE Conference on Computer Vision and Pattern Recog-

nition (June 2016) 4, 25

[59] Gautama, T., Van Hulle, M.A.: A phase-based approach to the estimation of the

optical flow field using spatial filtering. IEEE Transactions on Neural Networks

13(5), 1127–1136 (sep 2002) 10, 15, 55

[60] Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for

accurate object detection and semantic segmentation. In: IEEE Conference on

Computer Vision and Pattern Recognition (2014) 25

93

[61] Giusti, A., Ciresan, D.C., Masci, J., Gambardella, L.M., Schmidhuber, J.: Fast

image scanning with deep max-pooling convolutional neural networks. In: IEEE

International Conference on Image Processing (2013) 31, 35

[62] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward

neural networks. In: International Conference on Artificial Intelligence and

Statistics (2010) 33

[63] Goold, A.: The Video Editing Handbook: For Beginners. John Goold (2021) 1

[64] Gu, J., Liu, L., Wang, P., Theobalt, C.: Stylenerf: A style-based 3d aware

generator for high-resolution image synthesis. In: International Conference on

Learning Representations (2022) 20

[65] Güney, F., Geiger, A.: Deep discrete flow. In: Asian Conference on Computer

Vision. vol. 10114, pp. 207–224 (2016) 25, 29

[66] Haim, N., Feinstein, B., Granot, N., Shocher, A., Bagon, S., Dekel, T., Irani,

M.: Diverse video generation from a single video. CoRR (2022) 15, 79

[67] Han, J., Kopp, T., Xu, Y.: An estimation-theoretic approach to video denoising.

In: IEEE International Conference on Image Processing. pp. 4273–4277 (2015) 2

[68] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision.

Cambridge University Press (2003) 6

[69] Hassaballah, M., Awad, A.: Deep Learning in Computer Vision: Principles and

Applications. CRC Press (2020) 17

[70] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: IEEE Conference on Computer Vision and Pattern Recognition (2016) 25

94

[71] Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Con-

ference on Neural Information Processing Systems (2020) 17

[72] Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation

9(8), 1735–1780 (11 1997) 78

[73] Horry, Y., Anjyo, K.I., Arai, K.: Tour into the picture: Using a spidery mesh

interface to make animation from a single image. In: ACM Transactions on

Graphics. p. 225–232 (1997) 13

[74] Huang, H., Wang, H., Luo, W., Ma, L., Jiang, W., Zhu, X., Li, Z., Liu, W.:

Real-time neural style transfer for videos. In: IEEE Conference on Computer

Vision and Pattern Recognition (2017) 14, 19

[75] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In: International Conference on Machine

Learning. vol. 37 (2015) vii, 30, 31

[76] Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with

conditional adversarial networks. In: IEEE Conference on Computer Vision and

Pattern Recognition (2017) 17

[77] Jia, X., Brabandere, B.D., Tuytelaars, T., Gool, L.V.: Dynamic filter networks.

In: Conference on Neural Information and Processing Systems (2016) 27

[78] Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer

and super-resolution. In: European Conference on Computer Vision (2016) 25

[79] Kalantari, N.K., Wang, T., Ramamoorthi, R.: Learning-based view synthesis for

light field cameras. ACM Transactions on Graphics 35(6), 193:1–193:10 (2016)

25, 26, 29, 44

95

[80] Kang, S.B., Li, Y., Tong, X., Shum, H.: Image-based rendering. Foundations

and Trends in Computer Graphics and Vision 2(3) (2006) 24

[81] Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann,

A., Winnemoeller, H.: Recognizing image style. In: British Machine Vision

Conference (2014) 25

[82] Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J.,

Aila, T.: Alias-free generative adversarial networks. In: Conference on Neural

Information and Processing Systems (2021) 17, 80, 83

[83] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.

arXiv:1412.6980 (2014) 33

[84] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Inter-

national Conference on Learning Representations (2015) 62, 76

[85] Kokaram, A., Kelly, D., Denman, H., Crawford, A.: Measuring noise correlation

for improved video denoising. In: IEEE International Conference on Image

Processing (2012) 2

[86] Kosterelioglu, I.: Student views on learning environments enriched by video

clips. Universal Journal of Educational Research 4, 359–369 (2016) 1

[87] Krähenbühl, P., Koltun, V.: Efficient nonlocal regularization for optical flow. In:

European Conference on Computer Vision (2012) 14

[88] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep

convolutional neural networks. In: Conference on Neural Information and Pro-

cessing Systems (2012) 25

96

[89] Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional

inverse graphics network. In: Conference on Neural Information and Processing

Systems (2015) 25, 26, 44

[90] Levoy, M., Hanrahan, P.: Light field rendering. In: ACM Transactions on

Graphics. p. 31–42 (1996) 12

[91] Li, C., Wand, M.: Combining markov random fields and convolutional neural

networks for image synthesis. In: IEEE Conference on Computer Vision and

Pattern Recognition (2016) 25

[92] Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time

view synthesis of dynamic scenes. In: IEEE Conference on Computer Vision

and Pattern Recognition (2021) 54

[93] Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis

by patch-based sampling. ACM Transactions on Graphics 20(3), 127–150 (jul

2001) 15

[94] Liao, Z., Joshi, N., Hoppe, H.: Automated video looping with progressive

dynamism. ACM Transactions on Graphics 32(4) (jul 2013) 14

[95] Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: Bundle-adjusting neural

radiance fields. In: IEEE International Conference on Computer Vision (2021)

54, 55

[96] Lin, S.S., Yeh, I.C., Lin, C.H., Lee, T.Y.: Patch-based image warping for

content-aware retargeting. IEEE Transactions on Multimedia 15(2), 359–368

(2013) 15

97

[97] Liu, C., Freeman, W.T.: A high-quality video denoising algorithm based on

reliable motion estimation. In: European Conference on Computer Vision. p.

706–719 (2010) 2, 19

[98] Liu, F., Gleicher, M.: Video retargeting: Automating pan and scan. In: ACM

Internation Conference on Multimedia. p. 241–250 (2006) 2

[99] Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3d

video stabilization. ACM Transactions on Graphics 28(3) (jul 2009) 2, 14

[100] fu Liu, G., Gao, P., chun Li, Y., ping Zhang, Z.: Research on the influence of

social media short video marketing on consumer brand attitude. International

Conference on Social Science and Higher Education (2019) 1

[101] Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image

inpainting for irregular holes using partial convolutions. In: European Conference

on Computer Vision (September 2018) 4

[102] Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization.

ACM Transactions on Graphics 32(4) (jul 2013) 2, 14

[103] Liu, X., Shi, S., Teixeira, T., Wedel, M.: Video content marketing: The making

of clips. Journal of Marketing 82 (04 2018) 1

[104] Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image

matching by simply watching video. In: European Conference on Computer

Vision (2016) ix, 21, 26, 32, 43, 44

[105] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic

segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition

(2015) 31, 35

98

[106] Mahajan, D., Huang, F., Matusik, W., Ramamoorthi, R., Belhumeur, P.N.:

Moving gradients: A path-based method for plausible image interpolation. ACM

Transactions on Graphics 28(3), 42:1–42:11 (2009) 25

[107] Mai, L., Liu, F.: Motion-adjustable neural implicit video representation. In:

IEEE Conference on Computer Vision and Pattern Recognition. pp. 10738–10747

(June 2022) 50

[108] Makansi, O., Ilg, E., Brox, T.: End-to-end learning of video super-resolution

with motion compensation. In: German Conference on Pattern Recognition

(2017) 14, 19, 82

[109] Marr, D., Ullman, S.: Vision: A Computational Investigation into the Human

Representation and Processing of Visual Information. MIT Press (2010) 5

[110] Martel, J.N.P., Lindell, D.B., Lin, C.Z., Chan, E.R., Monteiro, M., Wetzstein,

G.: Acorn: Adaptive coordinate networks for neural scene representation. ACM

Transactions on Graphics 40(4) (2021) 54, 78

[111] Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond

mean square error. In: International Conference on Learning Representations

(2016) 32

[112] Matsushita, Y., Ofek, E., Tang, X., Shum, H.Y.: Full-frame video stabilization.

In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 50–57

(2005) 2

[113] Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker,

M.: Modulated periodic activations for generalizable local functional representa-

99

tions. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

9, 51, 54, 78

[114] Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE

Conference on Computer Vision and Pattern Recognition (2015) 44

[115] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy

networks: Learning 3d reconstruction in function space. In: Proceedings IEEE

Conference on Computer Vision and Pattern Recognition (2019) 49, 54

[116] Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M.,

Schroers, C.: Phasenet for video frame interpolation. In: IEEE Conference on

Computer Vision and Pattern Recognition (2018) 6, 55

[117] Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based

frame interpolation for video. In: IEEE Conference on Computer Vision and

Pattern Recognition (2015) viii, 8, 16, 22, 25, 37, 38, 81

[118] Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based

frame interpolation for video. In: IEEE Conference on Computer Vision and

Pattern Recognition (2015) 6, 10, 55

[119] Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: IEEE Inter-

national Conference on Computer Vision. pp. 945–952 (2013) 15

[120] Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In:

European Conference on Computer Vision (2014) 15

[121] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R.,

Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis.

In: European Conference on Computer Vision (2020) 5, 49, 50, 54, 55

100

[122] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R.,

Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis.

In: European Conference on Computer Vision (2020) 20

[123] Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR

abs/1411.1784 (2014) 17

[124] Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives

with a multiresolution hash encoding. ACM Transactions on Graphics 41(4),

102:1–102:15 (Jul 2022) 20

[125] Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: Unsu-

pervised learning of 3d representations from natural images. In: IEEEInterna-

tional Conference on Computer Vision (2019) 5, 19

[126] Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In:

IEEE Conference on Computer Vision and Pattern Recognition (June 2018) 82

[127] Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution.

In: IEEE Conference on Computer Vision and Pattern Recognition (July 2017)

22

[128] Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable

convolution. In: IEEE International Conference on Computer Vision (2017) ix,

46, 47

[129] Ong, E.P., Spann, M.: Robust optical flow computation based on least-median-

of-squares regression. International Journal of Computer Vision 31(1), 51–82

(feb 1999) 6

101

[130] Owens, J., Millerson, G.: Video Production Handbook. Routledge, 6th edn.

(2017) 1

[131] Parihar, A.S., Varshney, D., Pandya, K., Aggarwal, A.: A comprehensive survey

on video frame interpolation techniques. The Visual Computer 38(1), 295–319

(jan 2022) 48

[132] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf:

Learning continuous signed distance functions for shape representation. In: IEEE

Conference on Computer Vision and Pattern Recognition (2019) 49, 50, 54

[133] Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M.,

Martin-Brualla, R.: Nerfies: Deformable neural radiance fields. IEEE Interna-

tional Conference on Computer Vision (2021) 54

[134] Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with

spatially-adaptive normalization. In: IEEE Conference on Computer Vision and

Pattern Recognition (2019) 4, 17

[135] Pollak Zuckerman, L., Naor, E., Pisha, G., Bagon, S., Irani, M.: Across scales

and across dimensions: Temporal super-resolution using deep internal learning.

In: European Conference on Computer Vision (2020) 63

[136] Prashnani, E., Noorkami, M., Vaquero, D., Sen, P.: A phase-based approach

for animating images using video examples. Computer Graphics Forum 36(6),

303–311 (sep 2017) 16, 81

[137] Prince, S.: Computer Vision: Models Learning and Inference. Cambridge Uni-

versity Press (2012) 51

102

[138] Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: Neural

Radiance Fields for Dynamic Scenes. In: IEEE Conference on Computer Vision

and Pattern Recognition (2020) 54

[139] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-

conditional image generation with CLIP latents. CoRR (2022) 18, 80

[140] Ranftl, R., Bredies, K., Pock, T.: Non-local total generalized variation for optical

flow estimation. In: European Conference on Computer Vision (2014) 14

[141] Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.

arXiv/1611.00850 (2016) 44

[142] Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.:

Video (language) modeling: a baseline for generative models of natural videos.

arXiv/1412.6604 (2014) 32

[143] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative

adversarial text to image synthesis. In: International Conference on Machine

Learning (2016) 17

[144] Ren, J., Chai, M., Woodford, O.J., Olszewski, K., Tulyakov, S.: Flow guided

transformable bottleneck networks for motion retargeting. In: IEEE Conference

on Computer Vision and Pattern Recognition (2021) 82

[145] Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: Edge-

preserving interpolation of correspondences for optical flow. In: IEEE Conference

on Computer Vision and Pattern Recognition (June 2015) 6

[146] Rubinstein, M., Gutierrez, D., Sorkine, O., Shamir, A.: A comparative study of

image retargeting. ACM Transactions on Graphics 29(6) (dec 2010) 3

103

[147] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,

S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., Salimans, T., Ho, J., Fleet, D.J.,

Norouzi, M.: Photorealistic text-to-image diffusion models with deep language

understanding. CoRR abs/2205.11487 (2022) 18, 80

[148] Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with

singular value clipping. In: IEEE International Conference on Computer Vision

(2017) 4, 18

[149] Saito, S., Simon, T., Saragih, J., Joo, H.: Pifuhd: Multi-level pixel-aligned

implicit function for high-resolution 3d human digitization. In: IEEE Conference

on Computer Vision and Pattern Recognition (2020) 54

[150] Sanakoyeu, A., Kotovenko, D., Lang, S., Ommer, B.: A style-aware content loss

for real-time hd style transfer. In: European Conference on Computer Vision

(2018) 4

[151] Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields

for 3d-aware image synthesis. In: Conference on Neural Information Processing

Systems (2020) 54

[152] Schödl, A., Szeliski, R., Salesin, D., Essa, I.: Video textures. ACM Transactions

on Graphics 2000 (July 2000) 14

[153] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.:

OverFeat: Integrated recognition, localization and detection using convolutional

networks. In: International Conference on Learning Representations (2013) 25,

31, 35

104

[154] Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered depth images. In: ACM

Transactions on Graphics. p. 231–242 (1998) 13

[155] Shahar, O., Faktor, A., Irani, M.: Space-time super-resolution from a single

video. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

15

[156] Shoemake, K.: Animating rotation with quaternion curves. In: ACM Transac-

tions on Graphics. p. 245–254 (1985) 66

[157] Shum, H., Chan, S., Kang, S.: Image-Based Rendering. Springer (2008) 12, 13

[158] Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion

model for image animation. In: Conference on Neural Information Processing

Systems (December 2019) 82

[159] Simoncelli, E.: Local analysis of visual motion. The Visual Neurosciences (1992)

15

[160] Simoncelli, E., Freeman, W.: The steerable pyramid: a flexible architecture for

multi-scale derivative computation. In: IEEE International Conference on Image

Processing (1995) 15

[161] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv/1409.1556 (2014) 25

[162] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: International Conference on Learning Representations

(2015) 61

[163] Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.:

Implicit neural representations with periodic activation functions. In: Conference

105

on Neural Information and Processing Systems (2020) 9, 49, 50, 51, 54, 55, 62,

78

[164] Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks:

Continuous 3d-structure-aware neural scene representations. In: Conference on

Neural Information and Processing Systems (2019) 49, 50, 54, 78

[165] Skorokhodov, I., Ignatyev, S., Elhoseiny, M.: Adversarial generation of continu-

ous images. In: IEEE Conference on Computer Vision and Pattern Recognition

(2021) 9, 54

[166] Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data

distribution. In: Conference on Neural Information Processing Systems (2019)

17

[167] Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network

for non-uniform motion blur removal. In: IEEE Conference on Computer Vision

and Pattern Recognition (2015) 25

[168] Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse,

selective, and robust. In: IEEE Conference on Computer Vision and Pattern

Recognition (2015) 25

[169] Svoboda, P., Hradis, M., Barina, D., Zemćık, P.: Compression artifacts removal

using convolutional neural networks. arXiv/1605.00366 (2016) 25

[170] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer London

(2010) 6, 24, 51

106

[171] Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: Closing the gap to

human-level performance in face verification. In: IEEE Conference on Computer

Vision and Pattern Recognition (2014) 25

[172] Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P.P., Barron,

J.T., Ng, R.: Learned initializations for optimizing coordinate-based neural rep-

resentations. In: IEEE Conference on Computer Vision and Pattern Recognition

(2021) 54, 78

[173] Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan,

N., Singhal, U., Ramamoorthi, R., Barron, J.T., Ng, R.: Fourier features let

networks learn high frequency functions in low dimensional domains. Conference

on Neural Information and Processing Systems (2020) 49, 50, 51, 54, 55, 78

[174] Tao, M.W., Bai, J., Kohli, P., Paris, S.: SimpleFlow: A non-iterative, sublinear

optical flow algorithm. Computer Graphics Forum 31(2), 345–353 (2012) 34

[175] Tassano, M., Delon, J., Veit, T.: Fastdvdnet: Towards real-time deep video

denoising without flow estimation. In: IEEE Conference on Computer Vision

and Pattern Recognition (June 2020) 2

[176] Tatarchenko, M., Dosovitskiy, A., Brox, T.: Multi-view 3D models from single

images with a convolutional network. In: European Conference on Computer

Vision (2016) 25, 26, 44

[177] Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow.

In: European Conference on Computer Vision (2020) 6

[178] Tekalp, A.M.: Digital Video Processing. Prentice-Hall, Inc. (1995) 6, 13

107

[179] Teney, D., Hebert, M.: Learning to extract motion from videos in convolutional

neural networks. arXiv/1601.07532 (2016) 25, 29

[180] Thompson, R., Bowen, C.: Grammar of the Edit. Bitacora de retórica, Focal

Press (2009) 1

[181] Thompson, W., Fleming, R., Creem-Regehr, S., Stefanucci, J.: Visual Perception

from a Computer Graphics Perspective. Taylor & Francis (2011) 5, 13, 15

[182] Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Deep End2End

Voxel2Voxel prediction. In: IEEE Conference on Computer Vision and Pattern

Recognition Workshops (2016) 25, 29

[183] Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.:

Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a

dynamic scene from monocular video. In: IEEE International Conference on

Computer Vision (2021) 54

[184] Trevithick, A., Yang, B.: Grf: Learning a general radiance field for 3d represen-

tation and rendering. In: IEEE Conference on Computer Vision and Pattern

Recognition (October 2021) 54

[185] Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion

and content for video generation. In: IEEE Conference on Computer Vision and

Pattern Recognition (June 2018) 4, 18

[186] Tulyakov, S., Gehrig, D., Georgoulis, S., Erbach, J., Gehrig, M., Li, Y., Scara-

muzza, D.: TimeLens: Event-based video frame interpolation. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition (June 2021) 48

108

[187] Ugail, H.: Deep Learning in Visual Computing Explanations and Examples.

CRC Press (2022) 17

[188] Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: Feed-

forward synthesis of textures and stylized images. In: International Conference

on Machine Learning (2016) 25

[189] Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: IEEE Conference

on Computer Vision and Pattern Recognition (2018) 19

[190] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,

Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Conference on Neural

Information Processing Systems (2017) 54, 55, 78

[191] Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynam-

ics. In: Conference on Neural Information and Processing Systems (2016) 4,

18

[192] Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video

motion processing. ACM Transactions on Graphics 32(4) (2013) 6, 10, 55, 68

[193] Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video

motion processing. ACM Transactions on Graphics 32(4), 80:1–80:10 (2013) 16,

25

[194] Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video

motion processing. ACM Transactions on Graphics 32(4) (jul 2013) 81

[195] Wadhwa, N., Wu, H.Y., Davis, A., Rubinstein, M., Shih, E., Mysore, G.J., Chen,

J.G., Buyukozturk, O., Guttag, J.V., Freeman, W.T., Durand, F.: Eulerian

109

video magnification and analysis. Commununication of the ACM 60(1), 87–95

(dec 2016) 10, 55, 68

[196] Wadhwa, N., Wu, H.Y., Davis, A., Rubinstein, M., Shih, E., Mysore, G.J., Chen,

J.G., Buyukozturk, O., Guttag, J.V., Freeman, W.T., Durand, F.: Eulerian

video magnification and analysis. Commununication of the ACM 60(1), 87–95

(dec 2016) 16

[197] Wang, L., Guo, Y., Liu, L., Lin, Z., Deng, X., An, W.: Deep video super-

resolution using hr optical flow estimation. IEEE Transactions on Image Pro-

cessing 29, 4323–4336 (2020) 14, 82

[198] Wang, T.C., Liu, M.Y., Zhu, J.Y., Liu, G., Tao, A., Kautz, J., Catanzaro, B.:

Video-to-video synthesis. In: Conference on Neural Information and Processing

Systems. vol. 31 (2018) 4, 82

[199] Watanabe, T.: High-level Motion Processing: Computational, Neurobiological,

and Psychophysical Perspectives. CogNet (1998) 5, 13

[200] Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: Large

displacement optical flow with deep matching. In: IEEE International Conference

on Computer Vision (2013) 6, 25, 29, 37

[201] Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided TV-L

1 video interpolation and restoration. In: Energy Minimization Methods in

Computer Vision and Pattern Recognition. vol. 6819, pp. 273–286 (2011) 6, 14,

25

[202] Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: IEEE

Conference on Computer Vision and Pattern Recognition (2004) 15

110

[203] Wolf, L., Guttmann, M., Cohen-Or, D.: Non-homogeneous content-driven video-

retargeting. pp. 1–6 (2007) 2

[204] Wu, H., Rao, K.: Digital Video Image Quality and Perceptual Coding. CRC

Press (2017) 6, 13

[205] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D

ShapeNets: A deep representation for volumetric shapes. In: IEEE Conference

on Computer Vision and Pattern Recognition (2015) 25

[206] Xia, X., Zhang, M., Xue, T., Sun, Z., Fang, H., Kulis, B., Chen, J.: Joint bilat-

eral learning for real-time universal photorealistic style transfer. In: European

Conference on Computer Vision (2020) 4

[207] Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields

for free-viewpoint video. In: IEEE Conference on Computer Vision and Pattern

Recognition (2021) 54

[208] Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural

networks. In: Conference on Neural Information and Processing Systems (2012)

25

[209] Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation.

IEEE Transactions on Pattern Analysis and Machine Intelligence 34(9), 1744–

1757 (2012) 37

[210] Xu, L., Ren, J.S.J., Liu, C., Jia, J.: Deep convolutional neural network for image

deconvolution. In: Conference on Neural Information and Processing Systems

(2014) 25

111

[211] Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: Disn: Deep implicit

surface network for high-quality single-view 3d reconstruction. In: Conference

on Neural Information and Processing Systems (2019) 54

[212] Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with

task-oriented flow. International Journal of Computer Vision 127(8), 1106–1125

(aug 2019) 14

[213] Xue, T., Wu, J., Bouman, K.L., Freeman, B.: Visual dynamics: Probabilistic

future frame synthesis via cross convolutional networks. In: Conference on

Neural Information and Processing Systems (2016) 27

[214] Yang, J., Reed, S.E., Yang, M., Lee, H.: Weakly-supervised disentangling with

recurrent transformations for 3D view synthesis. In: Conference on Neural

Information and Processing Systems (2015) 25, 26

[215] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing

Surveys 38(4) (dec 2006) 6, 13

[216] Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in

deep neural networks? In: Conference on Neural Information and Processing

Systems (2014) 25

[217] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image

inpainting with contextual attention. In: IEEE Conference on Computer Vision

and Pattern Recognition (2018) 4

[218] Yu, Z., Li, H., Wang, Z., Hu, Z., Chen, C.W.: Multi-level video frame interpola-

tion: Exploiting the interaction among different levels. IEEE Transactions on

Circuits and Systems for Video Technology 23(7), 1235–1248 (2013) 6, 14, 25

112

[219] Zhang, C., Chen, T.: A survey on image-based rendering - representation,

sampling and compression. Signal Processing: Image Communication 19(1),

1–28 (2004) 24

[220] Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and

improving neural radiance fields. arXiv:2010.07492 (2020) 54

[221] Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European

Conference on Computer Vision (2016) 25

[222] Zhou, B., Lapedriza, À., Xiao, J., Torralba, A., Oliva, A.: Learning deep

features for scene recognition using places database. In: Conference on Neural

Information and Processing Systems (2014) 25

[223] Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by

appearance flow. In: European Conference on Computer Vision (2016) 25, 26,

29, 44

[224] Zhu, J., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipu-

lation on the natural image manifold. In: European Conference on Computer

Vision (2016) 25

[225] Zitnick, C.L., Kang, S.B., Uyttendaele, M., Winder, S.A.J., Szeliski, R.: High-

quality video view interpolation using a layered representation. ACM Transac-

tions on Graphics 23(3), 600–608 (2004) 37

[226] Zontak, M., Irani, M.: Internal statistics of a single natural image. In: IEEE

Conference on Computer Vision and Pattern Recognition. pp. 977–984 (2011)

15

113

[227] Zontak, M., Mosseri, I., Irani, M.: Separating signal from noise using patch

recurrence across scales. In: IEEE Conference on Computer Vision and Pattern

Recognition. pp. 1195–1202 (2013) 15

	Domain Knowledge as Motion-Aware Inductive Bias for Deep Video Synthesis: Two Case Studies
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1674496803.pdf.HQ8TB

