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Abstract

Nonlinear functions of random vectors are frequently used in signal processing, and

especially in state space tracking algorithms. Many of these algorithms require a

way of estimating the probability density of the state vector at the output of the

nonlinear function. Algorithms derived from Kalman Filter, such as Extended

Kalman Filter and Unscented Kalman Filter, are popular choices for this, but

they only estimate mean and covariance which may be insufficient to describe the

non-Gaussian densities. On the other hand, Monte Carlo methods such as particle

filters can be more capable but require much more computation. Gaussian mixture

filters aim to strike a balance between these two approaches. They offer more flex-

ibility than the filters in the Kalman Filter family by being able to approximate

any smooth density arbitrarily well, and at the same time typically require far

less computation than the Monte Carlo methods. The number of components in

a Gaussian mixture is often chosen to balance the trade-off between computation

and accuracy. When necessary, new components are typically created by splitting

one of the components in a single direction. This work proposes a new method

for determining the direction of split that minimizes the variance of the new com-

ponents along the direction of nonlinearity. This results in more localized linear

function approximation that generally improves accuracy. The proposed direction
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of split is close to optimal, and performs better than popular alternatives in several

examples detailed in this thesis.
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1 Introduction

State space tracking is used in many applications to track the state vector of a

stochastic dynamic system. Typically the state changes with time, and its exact

value is not known. The information about the state is conveyed by a probability

density. This work is in the context of discrete-time state space tracking where, at

each time step, the true state vector changes based on a deterministic function re-

ferred to as the state transition function. Correspondingly, the probability density

representing the state also needs to be updated at each time step. Let’s express

the state transition function as

y = f(x) (1.1)

where x and y respectively denote the state vectors before and after the state

transition. This work deals with the problem of density propagation, i.e., the task

of estimating the probability density of y, represented by q(y), given the probability

density of x, represented by p(x) and a nonlinear state transition function f(x).

Terms prior density and propagated density are also used to refer to p(x) and q(y)

respectively. The place and application of this work within the broader state space

tracking framework is discussed in more detail in Chapter 5.
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1.1 Current Practices

This section introduces some of the popular methods used for estimating propa-

gated densities for nonlinear state transition functions. Firstly, it highlights the

two most popular classes of techniques – the Kalman Filter family and the Monte

Carlo methods – used for this purpose. Then it introduces the Gaussian mixture-

based methods that attempt to strike a balance between the two. This establishes

the context for the main contribution of this work.

1.1.1 Kalman Filter Family

Kalman Filter (KF) and its extensions [34], such as Extended Kalman Filter (EKF)

and Unscented Kalman Filter (UKF), represent the state probably density by a

Gaussian probability density function (PDF). When the state transition function

f(x) is linear or affine1, i.e. f(x) = ax + b, the Kalman Filter provides an exact

solution for the propagated state density, which also happens to be Gaussian. But,

in practice, the state transition function f(x) may be nonlinear in many applica-

tions. Estimating the propagated density becomes more difficult in those cases and

one must use alternatives such as EKF or UKF [1, 21, 31]. Both of them estimate

the mean and covariance of the propagated densities based on different linearized

approximations of f(x). EKF uses Taylor series expansion of the nonlinear func-

1This text does not differentiate between linear and affine functions for sake of conciseness.
Throughout the thesis, the use of the term “linear function” is intended to include affine functions.
Similarly, the use of the term “nonlinear function” excludes the affine functions. This is consistent
with most sources on state space tracking.
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tion to analytically create a linear approximation in order to be able to use the

Kalman Filter update equations. UKF does not sacrifice the function nonlinearity,

and applies unscented transform [19] on the sigma points of the input density to es-

timate the output mean and covariance. Both EKF and UKF are computationally

efficient, but only partly characterize the true propagated density. Between EKF

and UKF, UKF is more effective in dealing with nonlinearities [19,31]. But despite

its remarkable simplicity and the effectiveness in handling many nonlinear state

transition functions, some of UKF’s limitations should also be noted. UKF only

estimates the first and seconds moments of the density, which only fully character-

ize the density if the density is Gaussian. Consider, for example, a state transition

function that produces the propagated density with more than one mode. In such

cases, no single Gaussian PDF, including those obtained by UKF, might be be a

good representation of the new state density. Additionally, even when the true

propagated density has a single mode, it is possible for the function nonlinearity

to be severe enough such that the true behavior is not captured well by the UKF

update equations. Sometimes these limitations result in large estimation error.

1.1.2 Monte Carlo Techniques

Monte Carlo techniques, such as Particle Filters (PFs), are popular alternatives

[5, 7, 13]. These represent the state density as a weighted random sample of state

vectors, also referred to as particles. The ensemble of particles can represent a

much broader range of densities than the Gaussian form. The representation also
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generally converges to the true value asymptotically as the number of particles

increases [17].

Monte Carlo techniques also have a few drawbacks that should be noted.

Firstly, certain problems may need a very large number of particles, thus resulting

in high computational cost. This often happens when the dimensionality of the

state vector is high or when the state dynamics are such that the state evolution

only depends on a small fraction of all particles. Another shortcoming of PFs is

that while certain properties of q(y), such as mean and covariance, may be esti-

mated easily, certain other properties, such are number of modes, are difficult to

estimate. This stems from the fact that Monte Carlo techniques lack a canonical

form representation of the state density. So it is difficult to determine the exact

value of the probability density for an arbitrary value of the state vector, and one

must resort to approximations such as kernel smoothing [27] when that is needed.

1.1.3 Gaussian Mixture Models

Gaussian mixture models have the potential to provide estimates of the propa-

gated density that are both more general than the EKF and UKF, but also more

computationally efficient than PFs. They represent the state density, p̂(x), by a

Gaussian mixture, i.e. a weighted sum of individual Gaussians distributions. This

can be expressed as

p̂(x) =
N∑

n=1

αnN (x;µn, Pn) (1.2)
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where αn is the weight of the nth component, and N (x;µn, Pn) is a Gaussian

density with a mean vector of µn and a covariance matrix of Pn.

Thus, they possess a canonical form, but can also represent any smooth den-

sity, including densities with multiple modes [28], with arbitrary degree of accu-

racy given sufficient number of Gaussian components. If the mixture uses a large

number of components, each with a small covariance such that f(x) can be well

approximated as a local linear function for that component, then the resulting

density q(y) can also be well approximated as a Gaussian mixture, and the mean

and covariance of each component can be calculated using the EKF or UKF up-

date equations [2]. If one of the mixture components spans over a large domain of

the nonlinear function, the linear approximation may be significantly inaccurate

which in turn can cause the estimate of the propagated density q(y) to be inaccu-

rate. The accuracy can be improved by subdividing the Gaussian component into

multiple subcomponents where each of the subcomponent Gaussians has a smaller

covariance than the original. This is illustrated using an example in Figure 1.1.

However, processing additional components requires more computation, so the to-

tal number of components N has a significant influence on the trade-off between

the computational cost and accuracy of the representation.

One of the major challenges with the Gaussian mixture methods is that having

a fixed number of Gaussian components at all times during the tracking may not

work well. At a new time step, the number of Gaussian components may need to be

increased such that the covariance of each individual component gets small enough

to deal with the nonlinearity effectively. On the other hand, since having a large
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Figure 1.1: Density update for a univariate nonlinear function. The state update
equation is y = x+2arctan 4x, which is shown by the curve in the top-right subplot.
The prior density consists of a single standard Gaussian component, shown in the
bottom subplot. Its Gaussian mixture approximation consists of seven Gaussian
subcomponents of smaller variance which are shown by dashed lines. The 1.5 sigma
region for each of the Gaussian subcomponent is also highlighted in the top-right
subplot. The propagated densities are shown in the left subplot. The Gaussian
mixture update results in a much better approximation of the true propagated
density compared to the single Gaussian. This is due to the nonlinear function
appearing less nonlinear to each of the Gaussian mixture subcomponents with
smaller variance.
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number of components is computationally expensive, the number of components

should also be reduced when possible. A common way to increase the number

of components in a Gaussian mixture is to split one or more of the components

into subcomponents. Similarly, one way to reduce the number of components in

a Gaussian mixture is to merge two or more Gaussian components into a single

Gaussian component.

1.2 Gaussian Split Literature Review

One of the most popular ways of splitting a multivariate Gaussian component is

along the eigenvectors or principal axis of its covariance matrix. Zhang et al. [35],

and Vishwajeet and Singla [32] present solutions for splitting a Gaussian com-

ponent into two subcomponents along each of the eigenvectors of its covariance

matrix. This can be trivially reduced to split only along a subset of the eigenvec-

tors. Very often this subset is limited to just the principal axis as in [6,16,18,23].

Terejanu [30], and Faubel and Klakow [11] attempt to split Gaussian compo-

nents along the direction of state transition function nonlinearity. But they limit

the direction of split to one of the eigenvectors for sake of simplicity and com-

putational efficiency. Terejanu limits the search for the direction of nonlinearity

to the set of eigenvectors of the covariance matrix. Faubel and Klakow identify

the direction of nonlinearity without this constraint but later quantize that to the

nearest eigenvector because, in their words, ‘splitting a Gaussian distribution in

an arbitrary direction Ψ turns out to be difficult unless Ψ coincides with one of
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the principal axes of the covariance matrix’. Presumably the said ‘difficulty’ is in

guaranteeing that the subcomponent covariance matrices resulting from the split-

ting formulae remain positive definite. A matrix must be positive definite to be a

valid choice for the covariance matrix of a Gaussian distribution. It is analogous

to the necessity that the variance of a univariate Gaussian distribution be positive.

It is worth noting that the work presented in this thesis, by construction, always

results in valid Gaussians subcomponents with positive definite covariance matrix.

Many authors such as Havlak and Campbell [14], Raitoharju et al. [25], and

Vishwajeet and Singla [33] have suggested various methods for determining the

direction of maximum nonlinearity in the state transition functions. They also

provide methods of splitting Gaussian components along that direction.

A variation of splitting along the direction of maximum nonlinearity is proposed

by Duńık et al. in [9], where the split is performed along the direction of maximum

‘non Gaussianity’, which is defined as the normalized third-order central moment

of the transformed variable [29].

1.3 Significance of This Work

This work deals with the problem of splitting a Gaussian component into multi-

ple subcomponents in the context of the Gaussian mixture-based techniques. As

mentioned previously, the split reduces the covariance of individual Gaussians in

the mixture such that each component in the Gaussian sum is able to better deal

with the nonlinear system dynamics.



9

As seen in Section 1.2, the most common way of performing the split is just

along a single direction. The direction of split is an important design decision. It is

common to choose the direction of split to be along the principal axis (DoPA) of the

prior distribution as that is the direction of maximum spread for the distribution.

However a better choice for the direction of split would also take into account

the nonlinearity in the state transition function. For example, splitting the prior

distribution along its principal axis would not yield any benefit if the function

nonlinearity only existed in an orthogonal direction. If the direction of nonlinearity

(DoNL) is known, it is common to perform the split along that direction. If it is

not known, it can be estimated [9, 26]. This work shows that in the situations

where the direction of nonlinearity is either known or can be estimated, an even

better direction of split can be used. This thesis refers to it as the direction of

minimum variance (DoMV).

1.4 Symbols and Notations

Table 1.1 is a consolidated list of important symbols and notations used in this

thesis.
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Table 1.1: Symbols and notations.

Symbol Description

x, y State, before and after, the nonlinear transition

p(x), q(y) Prior and propagated densities (before and after the nonlinear tran-

sition)

N Number of components in a Gaussian mixture

αn, µn, Pn Weight, mean and covariance of the nth Gaussian component in the

prior density Gaussian mixture

µ′
n, P

′
n Mean and covariance of the nth Gaussian component in the propa-

gated density Gaussian mixture

s Vector representing a direction of split

u, sMV Vectors representing the direction of function nonlinearity (DoNL)

and the direction of split for minimizing variance (DoMV)

K Number of samples in the Monte Carlo simulation

q̂(y), q̄(y) propagated density estimated using Gaussian mixture and Monte

Carlo method respectively

δ, gij Square grid spacing and grid points for numerically estimating KL

divergence

wij Two-dimensional histogram of the Monte Carlo samples
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1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 describes and

derives the proposed algorithm. Chapter 3 specifies the method used for evaluating

the proposed algorithm. Chapter 4 presents and discusses the evaluation results.

Finally, Chapter 6 summarizes the work and provides conclusions.
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2 Algorithm

As seen in Section 1.1.3, the individual components of a multivariate Gaussian

mixture distribution are often split into subcomponents to create a mixture con-

sisting of Gaussians with smaller covariance. There are many ways of performing

the split, but as seen in Section 1.2, most commonly it is performed just along

a single direction, and when the direction of nonlinearity (DoNL) in the system

transition function is known or can be estimated, the split is performed in the same

direction.

This chapter firstly describes what it means to split a Gaussian distribution

along a direction. It then discusses the intuition behind the belief that a better

direction of split than DoNL must exist, and proceeds to derive it.

2.1 Splitting a Gaussian Density Along a Direction

Splitting a Gaussian component into subcomponents along a direction refers to

the fact that the means of the new subcomponents are located on a straight line

parallel to the direction of split.

Consider the case where the prior density, p(x), has just one Gaussian compo-

nent with mean µ and covariance P .

p(x) = N (x;µ, P ). (2.1)
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It is split into a Gaussian mixture, p̂(x), represented as

p̂(x) =
N∑

n=1

αnN (x;µn, Pn) (2.2)

where αn is the weight of the nth component andN (x;µn, Pn) is a Gaussian density

with a mean vector of µn and a covariance matrix of Pn. The direction of split is

said to be along a vector s if the mean of the individual subcomponents after the

split are related to the original mean by

µn = µ+mns (2.3)

where mn is a scalar.
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Figure 2.1: Examples of splitting a two-dimensional Gaussian density into three

subcomponents along a direction. Each Gaussian density is represented by an el-

lipse outlining its two-sigma boundary. The blue ellipse with thick line represents

the original Gaussian component, while other ellipses represent the split subcom-

ponents. The direction of split is given by the vector s whose first and second

components represent the horizontal and vertical directions respectively.

Limiting the split of a multivariate Gaussian to a single direction in this man-

ner is desirable because then, through simple transformations, it can be reduced

to a much simpler problem of splitting a standard univariate Gaussian. This is

explained well by DeMars et al. in [6] as: ‘The best way to think of this is to con-

sider the principal directions of the covariance matrix (given by the eigenvectors of

the covariance matrix). Then, in the coordinate system described by the principal

directions, the multivariate Gaussian distribution becomes a product of univariate

Gaussian distributions, which allows for the straightforward implementation of a

univariate splitting technique to be applied to any one, several, or all of the ele-

ments in this product of univariate Gaussian distributions. While thinking of the
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principal directions provides physical insight into the problem, it is not required

for describing the general approach.’

2.1.1 Splitting Univariate Gaussian

Consider the case of splitting a standard univariate Gaussian, i.e., µ = 0 and

P = 1 in (2.1). In general, the new Gaussian mixture density p̂(x) cannot exactly

equal the original density p(x), except in the trivial and uninteresting case where

all the subcomponents in p̂(x) have the same mean and covariance as the original

density. This presents an optimization problem with two conflicting objectives:

producing subcomponents with small covariances and keeping the approximation

error small. It is a common practice to let each of the subcomponents after the

split have the same covariance to simplify the optimization process.

Representing the subcomponent covariance as σ̄2, DeMars et al. [6] frame the

standard univariate splitting problem as minimizing the loss function

J = D (p(x)∥p̂(x)) + λσ̄2 (2.4)

where λ is a design parameter representing the weight applied to the objective

of minimizing covariance of the new subcomponents, and the divergence D is a

measure of the approximation error in p̂(x) relative to p(x). Kullback–Leibler

divergence (KL divergence) and integrated squared error (ISE) are a couple of

examples that could be used for such a measure. For the specific case of ISE,

D (p(x)∥p̂(x)) can be found in closed form. DeMars et al. use this to solve the
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optimization problem with N = 3 and λ = 0.001 in [6]. The results from the

optimization are summarized in the table below.

Table 2.1: DeMars et al.’s three-component splitting library.

n αn m̄n σ̄2

1 0.2252 -1.0575 0.6716

2 0.5496 0 0.6716

3 0.2252 1.0575 0.6716

Note that the optimization for the standard univariate split can be performed

offline. The optimized parameter values listed in the table can be saved for reuse

during run-time. Thus, the existence of the closed-form solution for ISE is only a

minor convenience. For example, one could use KL divergence for D and estimate

it numerically for the optimization.

2.1.2 Splitting Multivariate Gaussian

DeMars et al. also present a method to split a multivariate Gaussian along an

arbitrary direction in [6]. It involves finding a square-root of P , say S, that has

the desired split direction s as one of its columns. Without loss of generality, let’s

say that the ith column, si, represents the desired direction of split, i.e.,

si = ks (2.5)
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where k is a scalar and

S = [s1, · · · , si, · · · , sL] (2.6)

P = SST (2.7)

where L is the dimensionality of the state vector. The means and covariance of

the Gaussian subcomponents after the split along si, or equivalently s, are given

by

µn = µ+ m̄nsi (2.8)

S̄ = [s1, · · · , σ̄si, · · · , sL] (2.9)

Pn = S̄S̄T for 1 ≤ n ≤ N (2.10)

where the values of mn and σ̄2 are listed in Table 2.1.

2.1.3 Alternative Form for Splitting Multivariate Gaussian

The following derives an alternative set of equations for splitting a multivariate

Gaussian. It is functionally equivalent to the method outlined in the previous

section, but does not require finding any square-root of the covariance matrix.

Note the relationship

det(Pn) = σ̄2 det(P ) (2.11)
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since

det(P ) = |det(S)|2,

and, det(Pn) = |det(S̄)|2 = σ̄2|det(S)|2.

Also note that (2.7) and (2.10) can be expanded as

P = s1s
T
1 + · · ·+ sis

T
i + · · ·+ sLs

T
L,

and, Pn = s1s
T
1 + · · ·+ σ̄2sis

T
i + · · ·+ sLs

T
L.

Taking their difference,

P − Pn = (1− σ̄2)sis
T
i . (2.12)

Substitution si by ks from (2.5), and rearranging,

Pn = P − k2(1− σ̄2)ssT . (2.13)

Taking determinant on both sides and using the matrix determinant lemma allows

solving for k as follows:

det(Pn) = det(P − k2(1− σ̄2)ssT ),

σ̄2 det(P ) = det(P )
(
1− k2(1− σ̄2)sTP−1s

)
,

σ̄2 = 1− k2(1− σ̄2)sTP−1s.
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Thus,

k =
1√

sTP−1s
(2.14)

Substituting the value of k from (2.14) and si from (2.5) into (2.8) and (2.13)

results in the following set of equations for computing the mean and covariance of

the Gaussian subcomponents after the split.

µn = µ+ m̄n
s√

sTP−1s
(2.15)

Pn = P − (1− σ̄2)
ssT

sTP−1s
for 1 ≤ n ≤ N (2.16)

This produces exactly the same set of subcomponents as the method outlined in

the previous section. But this novel form avoids having to find any square-root

of P , much less a square-root containing the desired split direction as one of its

columns.

2.2 Direction of Split for Minimum Variance (DoMV)

The motivation behind splitting a Gaussian component of the prior distribution

into further subcomponents is to make the linear approximation of the nonlinear

system transition function more accurate over the domain of each of the subcom-

ponents. The same logic dictates that when the function nonlinearity is along a

particular direction, say DoNL, one should choose the direction of split that would

minimize the spread or variance of the split components along the DoNL.
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Note that splitting a Gaussian along the DoNL does not necessarily minimize

the variance of the resulting subcomponents along DoNL. The following example

illustrates this. Let’s assume, without loss of generality, that the DoNL is [1 0]T

for a two-dimensional state vector. In other words, the coordinate system is such

that the the DoNL is along the x-axis. Consider a Gaussian component with mean

[0 0]T and covariance  1 −1

−1 2

 .

Splitting this Gaussian component along any general direction results in multiple

subcomponents that are offset from each other along that direction. Using the

method explained in Section 2.1, the split produces three subcomponents of equal

covariance. Fig. 2.2 shows the variance of these subcomponents along the DoNL

for all possible angles of split. It confirms that splitting along DoNL, which is

0◦ in this example, may not produce subcomponents with the minimum variance

along DoNL. The angle of split that does produce minimum variance along DoNL

is defined as DoMV in this work. Note that DoMV is also different from the

principal axis, which is shown by the green marker.

Fig. 2.3 compares splitting along DoNL with splitting along DoMV for the same

example in more detail. The two directions of split result in different subcompo-

nents. Marginals of the subcomponents along the x-axis, which is the DoNL, show

how the two directions of split result in two different approximations of the origi-

nal marginal. As expected, the subcomponents for split along DoMV have smaller

spread along DoNL than the subcomponents for split along DoNL.
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Figure 2.2: Example of subcomponent variance along DoNL for various angles of
split. The yellow square represents the case when the split is along DoNL, i.e., 0◦.
The red circle marks the minimum of the curve, and the corresponding angle of
split is defined as DoMV. Note that DoMV is also different from the principal axis
of the original component, which is annotated with the green line and a diamond
marker.

Let vector u represent the DoNL, and sMV represent the DoMV, i.e., the di-

rection of split that would minimize the variance of the split components along u.

This can be expressed as

sMV = argmin
s

uTPnu (2.17)
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Figure 2.3: Example Gaussian component split along DoNL and DoMV. The top-
left subplot shows the case when the original Gaussian component (thick blue
ellipse) is split along DoNL into three subcomponents (thinner ellipses of various
colors). Since the DoNL is 0◦, the subcomponents are spread along the x-axis.
The top-right subplot shows the same for the split along DoMV. The bottom
two subplots show the corresponding marginal distributions along the DoNL. The
marginals have smaller spread when the split is along DoMV.

where Pn is a function of s as shown in (2.16). Thus,

sMV = argmin
s

uT

(
P − (1− σ̄2)

ssT

sTP−1s

)
u.

Since the minimization is over s, the terms that do not depend on s can be safely
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ignored. So,

sMV = argmin
s

−uT ssTu

sTP−1s

= argmax
s

(uT s)2

sTP−1s
(2.18)

Using any square-root Q of the positive definite matrix P such that P = QQT ,

this can be rewritten as

sMV = argmax
s

(uT s)2

sTQ−TQ−1s
(2.19)

where the superscript −T represents the operations of both inverse and transpose.

Using substitution v = Q−1s, or equivalently, s = Qv, this can be rewritten as

sMV = Q argmax
v

(uTQv)2

vTv
(2.20)

Both the numerator and the denominator of the term being maximized are propor-

tional to the square of the magnitude of v. Hence, the maximization only depends

on the direction of v and not the magnitude. Thus, the maximization happens

when vectors v and QTu have the same direction. In other words,

argmax
v

(uTQv)2

vTv
= cQTu (2.21)

where c is any scalar. For simplicity and without loss of generality, let’s choose c
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to be unity. Substituting this back in (2.20) results in

sMV = QQTu = Pu. (2.22)

Thus, the variance of the split subcomponents is minimized along a given direction

u when the original Gaussian component is split along the direction given by the

vector Pu. This is a crucial result. It shows how to compute the DoMV when

DoNL is known. It also shows that, in general, DoMV and DoNL are different. The

only case when they are the same is when DoNL is along one of the eigenvectors

of the covariance matrix P . Furthermore, when the split is performed along the

DoMV, the variance of the split components along DoNL, i.e. u, is

uTPnu

= uT

(
P − (1− σ̄2)

sMVs
T
MV

sTMVP
−1sMV

)
u

= uTPu− (1− σ̄2)
uTPuuTP Tu

uTP TP−1Pu

= σ̄2uTPu (2.23)

Thus, splitting along DoMV reduces the variance of the individual Gaussian

components along DoNL by a factor of σ̄2. This is the most reduction that could

be expected since the underlying optimized univariate Gaussian split library in

Section 2.1.1 reduces the univariate variance by the same factor. It is comforting to

see that the maximum variance reduction happens in the direction of nonlinearity.

The same aspect is also reflected by the fact the determinant of the covariance
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matrix after the split shrinks by a factor of σ̄2 as seen is (2.11).
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3 Assessment

The general goal of state space tracking methods is to estimate the probability

density of a state vector. Therefore, the most direct way of evaluating the per-

formance of these methods is to compare the estimated probability density with

the true density. The same applies to this work, which proposes a new direction

of split, DoMV, for Gaussian mixture filters, which is also a state space track-

ing method. Since a different direction of split results in a different estimate of

the propagated density, ascertaining whether a particular direction of split is a

better choice than another, requires determining which of the two resulting den-

sity estimates is a better approximation of the true density. Hence, assessing the

performance of the proposed scheme requires comparing the resulting propagated

density with the true propagated density.

3.1 Measure of Performance

There are many different established measures of dissimilarity between two prob-

ability densities that could be used to quantify the approximation error in the

propagated density. Kullback–Leibler divergence, or KL divergence, is one such

widely used measure. Representing the true propagated density by q(y), its KL
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divergence relative to an approximation, q̂(y), is defined as

DKL(q∥q̂) =
∫ ∞

−∞
q(y) (log q(y)− log q̂(y)) dy. (3.1)

Like other measures of distance, KL divergence is always non-negative and is zero

only when the two densities are identical. It is noteworthy that KL divergence is

not symmetric and the measure depends on the order of the two arguments.

Another measure of dissimilarity between two probability densities is integrated

squared error (ISE) distance, defined as

DISE(q∥q̂) =
∫ ∞

−∞
|q(y)− q̂(y)|2dy. (3.2)

Unlike KL divergence, ISE is a symmetric metic, i.e.

DISE(q∥q̂) = DISE(q̂∥q). (3.3)

Yet another popular choice for comparing univariate densities is the Kolmogorov–Smirnov

distance, which is the maximum difference in the two cumulative densities. Rep-

resenting the cumulative densities for q(y) and q̂(y) as Q(y) and Q̂(y) respectively,

the Kolmogorov–Smirnov distance can be exprerssed as

DKS(q∥q̂) = max
y

(
|Q(y)− Q̂(y)|

)
. (3.4)

But computing the KS distance for multivariate densities is significantly more
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cumbersome than KL divergence and ISE distance because while the probability

density for the Gaussian mixtures for any y can be computed readily in closed

form, their cumulative densities must be estimated numerically.

This work uses both KL divergence and ISE distance to compare the true and

propagated densities. This choice differs significantly from the most commonly

encountered measure of performance in state space tracking literature, which hap-

pens to be the mean squared error (MSE) between the true state and the mean of

the estimated state density. MSE is much simpler to compute than KL divergence.

It also may be the only practical option when the values that the underlying state

vector takes are known but the true posterior state probability density is unknown.

A better MSE metric would be based on the mean of the true density instead of

the value that the true state takes. However, in either event, the MSE is an over-

simplified measure of performance for a density estimator, as it only depends on

the mean, i.e. the first moment, of the estimated density. For example, consider

the case of a bimodal estimated density with the two modes well-separated from

each other. In this case, the mean of the density would be at an extremely unlikely

value for the true state to take, and yet that is what the MSE metric would be

based on.

In contrast, KL divergence and ISE distance compare the totality of the two

densities. Hence, they are more comprehensive than MSE. It is reflected in the

fact that while the MSE metric requires averaging over a number of time-steps to

be meaningful, comparison between a propagated density and the true density is

a valid, and often revealing, exercise at each time-step.
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Section 3.2.4 describes in detail the method for estimating KL divergence and

ISE distance of the true density relative to an estimated density in form of a

Gaussian mixture.

3.2 Simulation Setup

Problems of uncertainty propagation provide good opportunities for examining the

effects of different directions of split. In these problems, a random variable x with

known probability density p(x) is transformed by a nonlinear state transition func-

tion, as in (1.1), and the algorithm is tasked with predicting q(y), the probability

density of the output y.

3.2.1 Example State Transition Functions

The evaluation uses two different examples to probe the merits of splitting along

DoMV. In both examples, the dimension of the state vectors is limited to two

to simplify visualizations of the propagated densities. Since every direction in a

two-dimensional space can be represented by a scalar angle, this also allows clear

presentation of the results comparing the DoMV to all other possible directions

of split. Furthermore, both examples use functions where the DoNL is known. In

practice, there are a variety of methods that can be used to estimate the DoNL

[9,26].

The first example uses a function that converts two-dimensional polar co-

ordinates to two-dimensional Cartesian coordinates. This is a nonlinear trans-
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formation and is often encountered when the system dynamics include angular

motion in Cartesian coordinates. This was analyzed previously by Duńık et al.

in [9]. The second example uses the arctan function to produce nonlinearity. It

is a smooth transformation and yet produces bimodal output density even when

the input is Gaussian. As mentioned earlier, both examples are limited to two-

dimensional state vectors so that the probability densities and evaluation results

can be presented clearly using two-dimensional plots. The Polar-to-Cartesian func-

tion transforms the Gaussian-distributed input into non-Gaussian distributed out-

put, whereas the Arctan function output distribution is bimodal as well as non-

Gaussian. Both of these problems are well suited for Gaussian mixture models.

Table 3.1 lists the details of the chosen examples.
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Table 3.1: Examples with nonlinear state transition functions.

Feature Polar-to-Cartesian Example Arctan Example

y(0)† x(0) cos (x(1)) x(0)

y(1)† x(0) sin (x(1)) x(1) + 2 arctan(4x(1))

Prior mean, µ

2
π
4


0.0
0.0



Prior covariance, P

0.2 0.2

0.2 π
9


1.0 0.8

0.8 1.1



† x = [x(0), x(1)]T and y = [y(0), y(1)]T denote the input and output state vectors

respectively.

It is clear that, for both functions, the nonlinearity exists only along the second

input dimension x(1). So their DoNL is 90◦ or, equivalently, along the vector

u = [0, 1]T .

3.2.2 Reference for the True Propagated Density

The true propagated density can be expressed as

q(y) =

∫
x

Pr (y|x) p(x)dx. (3.5)
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where Pr (y|x) is the probability of the function output being y for the input x.

Unfortunately, in general, it is not possible to compute the above integral in closed

form for a nonlinear function, f . Hence, obtaining a reference for the true prop-

agated density requires numerical methods. Two types of numerical methods are

commonly used for this purpose. The first type consists of deterministic numerical

integration performed over a finitely small grid. The computational complexity for

numerical integration grows exponentially with the dimension of the state. The

second type consists of Monte Carlo methods which utilize a number of random

state vectors drawn from the original distribution. They are computationally more

efficient than numerical integration for multidimensional states. Hence, this eval-

uation process uses a Monte Carlo method to obtain the reference for the true

propagated density.

A key idea used in Monte Carlo methods is the ability to represent a probability

density by a collection of state vectors. For example, let {xk}Kk=1 represent the set

ofK random state vectors where each of them is drawn independently from density

p(x). Let’s also say that we are interested in the expected value of a property h(x)

of the state vectors. The true expectation is given by

E (h(x)) =

∫
x

h(x)p(x)dx. (3.6)

The Monte Carlo estimator for the same expectation is

Ê (h(x)) =
1

K

K∑
k=1

h(xk). (3.7)
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The bias of this estimator, i.e., the difference between the expected value of the

estimator and the true value, is

E
(
Ê (h(x))

)
− E (h(x)) = E

(
1

K

K∑
k=1

h(xk)

)
− E (h(x))

=

(
1

K

K∑
k=1

E (h(xk))

)
− E (h(x)) .

Since each xk is independently drawn, E (h(xk)) = E (h(x)), and the above can be

reduced to

E
(
Ê (h(x))

)
− E (h(x)) =

(
1

K

K∑
k=1

E (h(x))

)
− E (h(x))

= E (h(x))− E (h(x))

= 0. (3.8)

Thus, the Monte Carlo estimator is unbiased. As a specific example, setting h(x) =

x in (3.6) and (3.7) suggests that the average of the Monte Carlo samples is an

unbiased estimator of the mean of the density. This can also be extended to higher

order moments of the density p(x). It is also evident from (3.7) that, asK increases,

the variance of the estimator decreases. In fact, it asymptotically converges to the

true value.

As the state transition function f(x) is applied to the input x with density

p(x), let the output be y with density q(y). The expected value of any property of
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the output y can be obtained as

E (h(y)) =

∫
y

h(y)q(y)dy. (3.9)

Expressing this in terms of the original random variable x,

E (h(y)) =

∫
x

h(f(x))p(x)dx (3.10)

Using (3.7), an unbiased estimator for the above is

Ê (h(y)) =
1

K

K∑
k=1

h(f(xk)).

Finally, defining yk = f(xk), this can rewritten as

Ê (h(y)) =
1

K

K∑
k=1

h(yk). (3.11)

Thus, the properties of the output density q(y) can be estimated using a set of

state vectors {yk}Kk=1 where yk = f(xk). In other words {yk}Kk=1 is the Monte Carlo

representation of the true propagated density.

For the purposes of the simulations that follow, K is set to 106. This value was

picked experimentally to be large enough such that the resulting variance in the

Monte Carlo estimates are negligibly small.
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3.2.3 Gaussian Mixture Density

The single Gaussian component of prior density is split into a Gaussian mixture of

three Gaussian subcomponents by following the method outlined by (1.2), (2.15),

(2.16), and Table 2.1. Let αn, µn, and Pn respectively represent the weight, mean

and covariance of the nth subcomponent. Let L be the dimension of the state

vector.

Each of the Gaussian subcomponents is updated independently using the un-

scented transform, which is outlined below.

1. Find a sqare-root Sn or Pn such that SnS
T
n = Pn. Let S

(i)
n represent the ith

column of Sn.

2. Create a set of 2L + 1 sigma vectors {χi}2L+1
i=1 and a corresponding set of

weights {wi}2L+1
i=1 , such that

χ1 = µn, (3.12)

w1 = W, (3.13)

and for i = 1, 2, · · · , L,

χ2i = µn + γS(i)
n , (3.14)

χ2i+1 = µn − γS(i)
n , (3.15)

w2i = w2i+1 =
1−W

2L
, (3.16)
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where W and γ are design parameters. There are many different strategies

for assigning values to these parameters [10, 31]. One of the the simplest

strategy is to have γ =
√
L and W = 0. This is also what the simulations in

this work use.

3. Create a new set of sigma vectors {χ′
i}2L+1

i=1 such that χ′
i = f(χi).

4. Compute the mean and covariance of output subcomponent as

µ′
n =

2L+1∑
i=1

wiχ
′
i, (3.17)

P ′
n =

2L+1∑
i=1

wi(χ
′
i − µ′

n)(χ
′
i − µ′

n)
T . (3.18)

Note that the weights αn are not affected by the update equations above.

The mixture of updated Gaussian subcomponents provides an estimate of the

true propagated density q(y) and can be expressed as

q̂(y) =
N∑

n=1

αnN (y;µ′
n, P

′
n). (3.19)

This process of updating the Gaussian mixture model is repeated for angles of split

along DoMV, DoNL and all directions from 0 to 180 degrees in 1 degree increment

as part of a grid-search to numerically determine the best direction of split.
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3.2.4 Estimating KL Divergence and ISE Distance

As discussed earlier, the KL divergence and the ISE distance of the reference

density relative to the Gaussian mixture approximation act as measures of perfor-

mance for the Gaussian mixture method. As seen in (3.1) and (3.2), computations

of KL divergence and ISE distance require evaluation of q(y) and q̂(y) for general

y. This is trivial for q̂(y) as it can be computed in closed form for a mixture

of Gaussians. But the true propagated density q(y) is represented just by a set

of samples {yk}Kk=1, which does not delineate an obvious way of evaluating q(y)

directly. Instead, it must use a numerical approach, such as outlined below, to

estimate the value of the true density q(y).

Let gij, where i and j are signed integers, represent a point on a two-dimensional

square grid on the plane of the state vector y. So,

gij = [iδ, jδ]T (3.20)

where δ is the grid spacing. Let wij represent the number of samples from the set

{yk}Kk=1 that lie within a square of area δ2 centered at gij. So the ratio
wij

K
is an

estimate of the probability mass within that area. Note that the set {wij}ij for all

i, j represents a two-dimensional histogram of the Monte Carlo samples. Thus, the

normalized histogram provides a way to get an approximation of the true density.

Let’s represent this as

q̄(gij) =
wij

δ2K
(3.21)
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where K has been previously defined as the total number of Monte Carlo samples.

As seen earlier for other Monte Carlo estimates, this too is an unbiased estimate

and converges to the true value asymptotically as K increases. Using this estimate

of the true propagated density, the KL divergence can be numerically estimated

using the summation

DKL(q∥q̂) ≈ δ2
∑
i,j

q̄(gij) (log q̄(gij)− log q̂(gij)) . (3.22)

Similarly, the ISE distance can be numerically estimated by

DISE(q∥q̂) ≈ δ2
∑
i,j

|q̄(gij)− q̂(gij)|2. (3.23)



39

4 Results and Discussion

As detailed in Chapter 3, the evaluation process consists of three major stages:

1. Representation of the prior density by

(a) drawing Monte Carlo samples from the true prior density, and

(b) creating Gaussian mixture approximation of the prior density by split-

ting.

2. Computation of propagated density by

(a) propagating the Monte Carlo samples through the nonlinear state tran-

sition function to produce the reference true propagated density, and

(b) using the UKF technique to estimate the propagated density for the

Gaussian mixtures.

3. Estimation of the KL divergence of the reference density relative to the Gaus-

sian mixture estimates.

4. Estimation of the ISE distance between the reference density and the Gaus-

sian mixture estimates.

The results from each of the four stages, for each of the two examples, are presented

in the following eight plots. Fig. 4.1 - Fig. 4.4 present the results for the example
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with Polar-to-Cartesian nonlinearity. Similarly, Fig. 4.5 - Fig. 4.8 present the

results for the example with Arctan nonlinearity.

Fig. 4.1, and similarly Fig. 4.5, shows the prior distributions, along with the

Gaussian mixture approximation when the split performed along the DoMV for

the two examples. One thousand of the total one million Monte Carlo samples

drawn from the prior distribution are also shown. The small subset is sufficient for

visualization of the density, and at the same time does not clutter the plots.
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Figure 4.1: Prior density for the Polar-to-Cartesian example. The blue dots rep-

resent one thousand of the Monte Carlo samples. The blue ellipse represents the

two-sigma boundary of the true prior density. The set of three red ellipses rep-

resent the Gaussian mixture approximating the true prior as the prior Gaussian

component is split along DoMV.

The Monte Carlo samples and the Gaussian mixture components following

the nonlinear update, which now represent the propagated density, are shown in

Fig. 4.2 and Fig. 4.6 for the two examples. The Monte Carlo samples help visualize
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the true propagated density. Both of these figures illustrate the benefit of splitting

and using a Gaussian mixture over a Gaussian representation, as it is evident that

any single Gaussian density would be a poor representation of the true propagated

density.

Figure 4.2: Propagated density estimation for the Polar-to-Cartesian example.

The blue dots represent one thousand of the Monte Carlo samples after they have

been propagated through the nonlinear function. The set of three red ellipses

represent the Gaussian mixture approximating the propagated density after split

along DoMV.



43

Fig. 4.3 and Fig. 4.7 show the KL divergence for various directions of split.

Firstly, they confirm that the choice of split direction does influence the perfor-

mance of the Gaussian mixture estimate. They also show that splitting along

DoMV results in a better approximation of the true propagated density than split-

ting along DoNL. In fact, based on the grid search over all possible angles of split,

the DoMV is very close to the best angle of split in both of the examples. Note

that while the grid search may provide a slightly better angle of split than DoMV,

it requires much more computation and is not a feasible option for state vectors of

higher dimension.
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Figure 4.3: KL divergence of the reference for the true propagated density relative

to the estimated propagated density as a function of the direction of split for

the Polar-to-Cartesian example. The solid blue line shows the KL divergence for

various directions of split, and its minimum corresponds to the optimal direction

of split. Splitting along DoMV results in closer performance to optimal than the

DoNL does. The optimal direction of split, DoMV and DoNL are 66.8◦, 71.8◦ and

90◦ respectively.

Similarly, Fig. 4.4 and Fig. 4.8 show the ISE distance for various directions of
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split. The results are very similar to the KL divergence measure. One notable

difference is that the optimal angle of split for ISE distance is closer to DoMV

than the KL divergence was. This may be due to the Gaussian splitting library

being optimized for ISE distance as detailed in Section 2.1.1.
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Figure 4.4: ISE distance of the reference of the true propagated density relative

to the estimated propagated density as a function of the direction of split for the

Polar-to-Cartesian example. The solid blue line shows the ISE distance for various

directions of split, and its minimum corresponds to the optimal direction of split.

Splitting along DoMV results in closer performance to optimal than the DoNL

does. The optimal direction of split, DoMV and DoNL are 67.2◦, 71.8◦ and 90◦

respectively.
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Figure 4.5: Prior density for the Arctan example. The blue dots represent one
thousand of the Monte Carlo samples. The blue ellipse represents the two-sigma
boundary of the true prior density. The set of three red ellipses represent the
Gaussian mixture approximating the true prior as the prior Gaussian component
is split along DoMV.



48

Figure 4.6: Propagated density estimation for the Arctan example. The blue dots
represent one thousand of the Monte Carlo samples after they have been propa-
gated through the nonlinear function. The set of three red ellipses represent the
Gaussian mixture approximating the propagated density after split along DoMV.
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Figure 4.7: KL divergence of the reference for the true propagated density relative
to the estimated propagated density as a function of the direction of split for the
Arctan example. The solid blue line shows the KL divergence for various directions
of split, and its minimum corresponds to the optimal direction of split. Splitting
along DoMV results in closer performance to optimal than the DoNL does. The
optimal direction of split, DoMV and DoNL are 52.4◦, 54.0◦ and 90◦ respectively.
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Figure 4.8: ISE distance of the reference for the true propagated density relative
to the estimated propagated density as a function of the direction of split for the
Arctan example. The solid blue line shows the ISE distance for various directions
of split, and its minimum corresponds to the optimal direction of split. Splitting
along DoMV results in closer performance to optimal than the DoNL does. The
optimal direction of split, DoMV and DoNL are 53.7◦, 54.0◦ and 90◦ respectively.
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5 Application in State Space Tracking

5.1 Brief Overview of State Space Tracking

State space tracking is a Bayesian approach to estimate the state of a dynamic

system with a set of noisy observations related to the state. It models the state

changes and observations as a sequential process. This is illustrated in Fig. 5.1.

The state may change and a new set of observations may be made at each time

step. This sequential formulation simplifies the state space tracking problem to

that of tracking the state change at a single time step as the same method can be

used recursively to also track the state indefinitely.

Figure 5.1: Sequential model of a dynamic system for state space tracking.
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5.1.1 Notation in This Chapter

This chapter uses different set of symbols and notations than the preceding text.

Previously, x and y have been used to respectively represent the input and output

of the state transition model, as in (1.1). The same does not work well for state

space tracking where the state changes sequentially multiple times. Hence, this

chapter uses a different set of symbols and notations as listed in Table 5.1.

Table 5.1: State space tracking symbols and notations.

Symbol Description

xk State after the kth time step.

zk Observation at the kth time step.

fk State transition function at time step k

hk Measurement function at time step k

wk Process noise at time step k

vk Measurement noise at time step k

p(x0) Initial prior density of the state.

p (xk|z1:k) Posterior density after kth time step.

5.1.2 State Space Models

Fig. 5.2 shows the state space model at a single time step. The state updates

according to a process model, which consists of a deterministic state transition
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Figure 5.2: Model for the kth time step in state space tracking.

function and a stochastic process noise. Similarly, the observations are modeled

by a measurement model, which consists of a deterministic measurement function

of the state and a stochastic measurement noise.

Using the new notation, the state space model at the kth time step can be

represented by the following set of equations.

xk = fk(xk−1) + wk (5.1)

zk = hk(xk) + vk (5.2)

Due to the stochastic nature of the model, the state is a random variable. The
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goal of the state space tracking methods is to estimate the posterior density of the

state p (xk|z1:k), i.e., the density of the state after time step k, conditional on the

set of all observations from the first to the kth time step. Typically this is done

recursively, i.e., the posterior density p (xk|z1:k) is estimated from the previous

posterior estimate p (xk−1|z1:k−1), the model parameters at time step k, and the

new observation zk.

5.2 Relation to Density Propagation

The focus of this work has been on density propagation when a nonlinear function

is applied on a random state vector. The same occurs in state space models

where nonlinear state transition functions and measurement functions act on the

random state vectors. Hence, the method proposed in this thesis, which is to split

Gaussian components along DoMV, is also applicable to the broader state space

tracking problem when the densities are represented as Gaussian mixtures.

To explore the merit of the proposed method in this broader context, this chap-

ter examines the effect of various directions of split on the tracking performance

of a Gaussian mixture filter using a simulated state space tracking example.
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5.3 State Space Tracking Example

5.3.1 State Space Model Parameters

The following is an example of a nonlinear state space tracking problem where

a simple UKF results in large tracking error. The problem can be thought of as

tracking the position of an object, such as a boat, that moves in a two-dimensional

plane with constant speed but constantly changing heading. The state is a four-

dimensional vector such that

xk =



ak

bk

θk

ωk


(5.3)

where ak and bk are the Cartesian coordinates of the object’s position, θ is the

heading angle, and ω is the rate of change of the heading angle. The process

and measurement models are nonlinear and time-invariant. The state transition

function is

fk (xk−1) =



ak−1 + γ cos(ωk−1)

bk−1 + γ sin(ωk−1)

θk−1 + ωk−1

ωk−1


(5.4)
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where γ, i.e., the speed of the object, is 2. Note that the output of the function

changes nonlinearly only if the input changes along the third component. Thus,

the DoNL for the state transition function is [0 0 1 0]T . The process noise is

zero-mean Gaussian with covariance Q, i.e.,

wk ∼ N (0, Q) , (5.5)

where

Q =



0.04 0 0 0

0 0.04 0 0

0 0 0.0001 0

0 0 0 0.0001


. (5.6)

The observations are in form of the distance and angle of the object from the

origin. So, the measurement function is

hk(xk) =


√
a2k + b2k

arctan

(
bk
ak

)
 . (5.7)

It is not straightforward to define and estimate the exact direction of maximum

nonlinearity for this function. But since the output changes nonlinearly with the

first two components of the input, [1 1 0 0]T is a simplifying and reasonable assump-

tion for DoNL of the measurement function. The measurement noise is zero-mean
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Gaussian with covariance R, i.e.,

vk ∼ N (0, R) , (5.8)

where

R =

10 0

0 0.1

 . (5.9)

The initial prior is a Gaussian with mean µ0 and covariance P0, i.e.,

p (x0) ∼ N (µ0, P0) , (5.10)

where

µ0 =



20

20

0

0


(5.11)
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and

P0 =



4 0 0 0

0 4 0 0

0 0 0.1 0

0 0 0 1


. (5.12)

Note that the ω, which is the rate of change of the heading, is a random

variable with large initial prior uncertainty. Depending on the value is takes in

any given realization, the object might move either clockwise or counterclockwise.

This makes the ability to represent multimodal densities important for achieving

good tracking performance. Hence, this example is especially challenging for a

simple UKF, and suitable for Gaussian mixture filters.

5.3.2 Gaussian Mixture Filtering Algorithm

While UKF and particle filter are well-established and well-defined methods, there

is no such consensus on the form the Gaussian mixture filters yet. Fig. 5.3 shows

the main steps of the Gaussian mixture filter used in this simulation.
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Figure 5.3: Steps in the Gaussian mixture filter.

During the splitting steps, each of the Gaussian components is split into two

subcomponents along the chosen direction of split by the method described by

Faubel and Klakow in [11]. The time updates and measurement updates are as

described by Kotecha and Djuric in Section II-A of [20]. The merge steps are

necessary to keep the number of Gaussian components from growing geometrically.

The process merges the best pair of Gaussian components, as suggested by Faubel

et al. in [12], repeatedly until eight of fewer Gaussian components remain.

5.3.3 Results

The simulation includes 100 independent realizations of the process model, with

each realization being 50 samples long. The average mean squared error (MSE)

of the estimated position acts as the measure of performance. Table 5.2 lists the

average MSE for various tracking methods.
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Table 5.2: Average MSE for variuous state space tracking methods.

Tracking Method Average MSE

UKF 42.81

GM UKF with split along DoNL 25.02

GM UKF with split along DoPA 15.46

GM UKF with split along DoMV 6.33

Splitting along DoMV results in lower average MSE than splitting along the

direction of principal axis (DoPA) or along the DoNL. Note that this finding is

very similar to the results for KL divergence or ISE metric for a single time step

in Chapter 4.
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6 Conclusions

6.1 Contributions

This work reveals and advocates a new direction of split, termed DoMV, for split-

ting the Gaussian components of a Gaussian mixture. At present, it is common

practice to split a Gaussian component along either its principal axis or the di-

rection of nonlinearity. While the former is only a function of the state density,

the later is only a function of the system dynamics. This work suggests that when

the direction of function nonlinearity (DoNL) is known or can be estimated, the

Gaussian components should be split along DoMV. DoMV depends both on the

density and system dynamics. It is obtained simply by multiplying the covariance

matrix of the Gaussian component with the DoNL. So the extra cost for split-

ting along DoMV instead of DoNL is negligible. At the same time, it can result

in significant performance improvement because splitting along DoMV minimizes

the variance of the subcomponents along the DoNL, and a smaller variance makes

the linear approximations used by the unscented transform more localized and

therefore more accurate. As expected, the examples demonstrated that the DoMV

produced a more accurate estimate of the propagated density q(y) than splitting

along the DoNL, as measured by KL divergence. The DoMV also was close to the

optimal direction of split determined by a grid search to minimize either the KL

divergence or the ISE distance.
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Another contribution of this work is a concise and robust formulation for split-

ting a multivariate Gaussian into subcomponents along any direction. This is

shown in (2.15) and (2.16).

The evaluation methodology outlines a scheme that uses measures such as KL

divergence and ISE distance to compare the estimated probability density with

reference probability density, resulting in a more comprehensive measure of per-

formance than the more widely used metric of mean squared error (MSE) between

the true state and the mean of the estimated density.

6.2 Open Problems

This work touches on a narrow aspect of the broader Gaussian mixture state space

tracking problem. Among the many directions that it can be expanded in, the

following are of particular interest.

6.2.1 DoNL Estimation

The computation of DoMV, as presented here, assumes the knowledge of DoNL.

While there has been much work on estimating DoNL, it remains an open and

challenging problem. For example, most commonly the search for DoNL is per-

formed only along a small number of directions, typically the eigenvectors of the

covariance matrix [8, 15, 33]. Using a wider search for DoNL requires much more

computation, which scales exponentially with the dimension of the state vector.

A computationally practical and general DoNL estimation scheme is not available
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at present. Among the available measures, rigorous evaluation of the trade-off

between computation and accuracy, and an understanding of how well they work

across a range of example systems are also missing. Either estimating DoMV

directly, or further progress on robust and practical ways of finding DoNL will

broaden the scope of DoMV.

6.2.2 Splitting Strategy

There are many different proposed splitting libraries. For example, DeMars et al.

in [6] and Vishwajeet and Singla in [32] propose different splitting methods that

respectively result in even and odd number of subcomponents. A common un-

derstanding of how to choose the best splitting method for a given problem is

lacking.

Furthermore, the splitting libraries are pre-optimized and result in a certain

number of subcomponents. They do not depend on the degree of system nonlin-

earity. However, the goal of splitting is to reduce the subcomponent covariance

relative to system nonlinearity. One way to balance the two has been to perform

the splitting recursively [6,33] until the measure of nonlinearity for every subcom-

ponent is smaller than a threshold. But this results in much higher computation.

A way of estimating how many subcomponents to split into and which splitting

library to use based on analysis of the nonlinearity will increase computational

efficiency.
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6.2.3 Merging Strategy

Splitting increases the number of Gaussian components in the mixture, which also

results in more computation. Hence, it is desirable to merge two or more Gaussian

components into one if it can be done without introducing significant error in

the probability density representation. The challenge with merging lies in finding

the subset of Gaussian components whose mixture can be well approximated by

a single Gaussian. There have been many proposals for the merging strategy,

some of which have been reviewed by Li et al. in [22]. A common approach

is to find and merge similar Gaussian components, where the similarity between

components may be measured by KL divergence, Wasserstein-distance, integrated

squared error or other similar measures [4,24]. But this is not the best strategy as

it is not able to merge two or more Gaussian components that are different from

each other but can still sum up to a near-perfect Gaussian. For example, consider

the case of the splitting algorithm presented in Chapter 2. A good merge algorithm

should be able to merge the split subcomponents back into original subcomponent,

which the similarity-based methods are not designed to do. More capable merge

strategies have been proposed that are based on the similarity between the mixture

of the subcomponents and the merged version of the subcomponents [3]. But

these also require more computation. Moreover, in all practical proposals, the

candidate subcomponents for merge are identified using pair-wise tests. This is

sub-optimal, since in some cases, particularly with the splitting library used in

this work, testing subsets of three or more subcomponents may be required to find
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good candidates for merging. Overall, much more work is required to understand

the trade-off between computation and performance for various merging strategies

across different applications.
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[8] J. Duńık, O. Straka, Mahendra Mallick, and Erik Blasch. Survey of nonlin-
earity and non-gaussianity measures for state estimation. In 2016 19th In-
ternational Conference on Information Fusion (FUSION), pages 1845–1852,
July 2016.
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[15] Jindřich Havĺık and Ondřej Straka. Measures of nonlinearity and non-
gaussianity in orbital uncertainty propagation. In 2019 22th International
Conference on Information Fusion (FUSION), pages 1–8, July 2019.

[16] Joshua T. Horwood and Aubrey B. Poore. Adaptive gaussian sum filters for
space surveillance. IEEE Transactions on Automatic Control, 56(8):1777–
1790, Aug 2011.

[17] Xiao-Li Hu, Thomas B. Schon, and Lennart Ljung. A basic convergence result
for particle filtering. IEEE Transactions on Signal Processing, 56(4):1337–
1348, April 2008.

[18] Marco F. Huber, Tim Bailey, Hugh F. Durrant-Whyte, and Uwe D. Hanebeck.
On entropy approximation for gaussian mixture random vectors. 2008 IEEE
International Conference on Multisensor Fusion and Integration for Intelligent
Systems, pages 181–188, 2008.

[19] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new method for the
nonlinear transformation of means and covariances in filters and estimators.
IEEE Transactions on Automatic Control, 45(3):477–482, March 2000.



68

[20] J.H. Kotecha and P.M. Djuric. Gaussian sum particle filtering. IEEE Trans-
actions on Signal Processing, 51(10):2602–2612, Oct 2003.

[21] Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. Kalman filter and its ap-
plication. In 2015 8th International Conference on Intelligent Networks and
Intelligent Systems (ICINIS), pages 74–77, 2015.

[22] Tiancheng Li, Jinya su, Wei Liu, and Juan Corchado Rodŕıguez. Approximate
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