
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

11-16-2022 

Most Recent Rupture on the Boulder Creek Fault Most Recent Rupture on the Boulder Creek Fault 

Triggered Bedrock Landsliding in the Nooksack Triggered Bedrock Landsliding in the Nooksack 

Watershed, Whatcom County, Washington Watershed, Whatcom County, Washington 

Abigail Catherine Underwood 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Geology Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Underwood, Abigail Catherine, "Most Recent Rupture on the Boulder Creek Fault Triggered Bedrock 
Landsliding in the Nooksack Watershed, Whatcom County, Washington" (2022). Dissertations and 
Theses. Paper 6271. 
https://doi.org/10.15760/etd.8130 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/156?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6271
https://doi.org/10.15760/etd.8130
mailto:pdxscholar@pdx.edu


 

 Most Recent Rupture on the Boulder Creek Fault Triggered Bedrock Landsliding in the 

Nooksack Watershed, Whatcom County, Washington 

 

 

by 

Abigail Catherine Underwood 

 

 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

 

 

 

 

 

 

Master of Science 

in 

Geology 

 

 

 

 

 

 

Thesis Committee: 

Adam Booth, Chair 

Ashley Streig 

John Bershaw 

 

 

 

 

 

 

 

Portland State University  

2022 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2022 Abigail Catherine Underwood  



 
i 

Abstract 

Catastrophic bedrock landslides with volumes ranging from 106 to 108 m3 contribute to 

rapid landscape evolution, often resulting in erosion rates that exceed the long-term 

average rates caused by tectonic uplift. Understanding the spatiotemporal trends of large 

bedrock landslides helps us understand previous drivers of landscape evolution as well as 

predict how the landscape will respond in the future. The Nooksack watershed, Whatcom 

County, Washington, is particularly susceptible to large slope failures because of its high 

relief, seismic activity, local geology, and relatively abundant precipitation. Specifically, 

folded and faulted bedrock structures conducive to landsliding in addition to recent 

surface rupturing earthquakes on the Boulder Creek fault are both probable mechanisms 

for widespread landsliding. To determine the relative importance of these driving 

mechanisms, we investigate spatiotemporal trends of 447 landslides in the Nooksack 

Watershed using a calibrated relationship between lidar based surface roughness and age. 

We compare the temporal patterns in the overall landslide chronology to simulated 

landslide frequency histories with and without incorporated coseismic landslide pulses at 

the times of the two most recent earthquakes on the Boulder Creek fault. We assess 

spatial patterns by conducting a regional kinematic analysis to define areas susceptible to 

planar sliding and toppling failures. We find surface roughness values of bedrock 

landslides in Washington’s Cascade Range are consistent with roughness values 

determined for bedrock landslides in the Oregon Coast Range. Our resulting landslide 

frequency history best matches a simulated landslide frequency history that incorporates 

preservation bias as well as coseismic landslide pulses at the times of geologically 

constrained surface rupturing earthquakes on the Boulder Creek fault in the last 4000 
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years. Our regional kinematic analysis demonstrates almost half the landslides in our 

inventory overlay hillslopes where planar sliding and/or flexural toppling are 

kinematically feasible. These findings together support the conclusion that surface 

rupturing earthquakes and bedrock orientations, specifically those conducive to flexural 

toppling, primarily control the spatial and temporal distributions of landslides throughout 

the Nooksack watershed. These findings are important for hazard assessment and 

planning throughout the region and suggest the evolution of the Nooksack watershed is 

heavily influenced by coseismic landslides. 
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1.0  Introduction 

 High-relief mountain ranges are in constant battle with the forces of erosion. 

Outside of wind and frequent freeze and thaw cycles, other agents of erosion such as 

precipitation in the form of snow or rainfall coupled with threshold slopes, or hillslopes 

near their angle of repose, make a recipe for mass wasting events. The latter ingredients, 

in addition to earthquakes, often result in large, catastrophic bedrock landslides with 

volumes ranging from 106 to 108 m3 (Catastrophic Landslides of the 20th Century – 

Worldwide, https://www.usgs.gov/programs/landslide-hazards/science; Wartman et al., 

2016). Landslides of this magnitude contribute to rapid landscape evolution by rapidly 

denuding slopes and regulating the size, amount, and longevity of sediment delivered to 

river channels (Booth et al., 2017). This can result in transient erosion rates that exceed 

the long-term average rates caused by tectonic uplift, emphasizing the important 

contribution landslides have on landscape evolution (Kelsey, 1978; Hovius et al., 1997; 

Malamud et al., 2004b; Blodgett and Isacks, 2007; Parker et al., 2011; Larsen and 

Montgomery, 2012; Booth et al., 2013). Better constraining the spatiotemporal trends of 

large-catastrophic landslides is essential to understanding previous drivers of landscape 

evolution as well as predicting how the landscape will respond in the future.  

Mechanisms responsible for decreasing slope stability can occur over multiple 

time scales (Caine, 1980; Keefer, 1984; Schmidt and Montgomery, 1995; Bilderback et 

al., 2014; Gischig et al., 2015). In general, a landslide will occur when a slope’s shear 

strength drops below the driving shear stress acting on the failure plane. The frictional 

strength of a hillslope is controlled by the effective normal stress, defined as the normal 

stress minus the pore water pressure. Intense rainfall events responsible for increasing 
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pore water pressure may decrease the effective normal stress, leading to slope instability 

(Caine, 1980). Earthquake generated ground movements may also reduce the effective 

normal stress acting on a hillslope by rapidly compacting sediments resulting in elevated 

pore pressures. Pore water pressures aside, ground accelerations may also simply increase 

the driving stress or reduce the normal stress, causing slope failures (Keefer, 1984).  

Although the latter processes predominantly occur over shorter timescales, long term 

strength loss from weathering processes, increased pore water pressure in response to 

changes in climate (Bilderback et al., 2014), and/or recurrent damage to bedrock from 

earthquakes can also jeopardize hillslope stability (Gischig et al., 2015). Where rock 

slopes are in a sufficiently critical state from repeat seismic loading, even small pore 

pressure increases associated with ordinary seasonal water cycles or a minor earthquake 

may be enough to trigger catastrophic failure (Gischig et al., 2015). Other tectonic related 

processes occurring over millennia are responsible for generating swaths of folded and 

faulted bedrock, predisposing hillslopes for failure on geologic structures. Folded and 

faulted heterogenous lithologies within a hillslope also affect hydraulic conductivities and 

the associated groundwater flow fields, which can locally elevate pore water pressures 

and initiate failure (Guglielmi et al., 2005; Jomard et al., 2010). As tectonic uplift 

continues, hillslopes become more susceptible to failure as base level drops and 

subsequent river incision produces topographic relief, increasing a hillslope’s driving 

stress (Schmidt and Montgomery, 1995). Although we have general knowledge of the 

mechanisms responsible for hillslope failures, pinpointing the predominant failure 

mechanisms and triggers throughout a region remains a challenge.  
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Certain regions throughout the world have higher landslide hazard than others, 

especially those with steep topography and frequent rainfall, and those located on 

tectonically active margins. Globally, regions overlaying subductions zones typically 

contain all these characteristics. The tectonic plate movement associated with subduction 

often results in large magnitude earthquakes along the interface of the two plates as well 

as smaller magnitude earthquakes associated with crustal shortening and uplift inland of 

the plate interface. Landslides associated with intense ground shaking are earthquakes’ 

greatest secondary hazard, and can exceed the damages strictly related to the earthquake, 

such as in the case of the January 2001 El Salvador earthquake or the 1987 Ecuador 

earthquake (Bird and Bommer, 2004; Marc et al., 2016). In remote areas, coseismic 

landslides may not have an immediate effect on society, but floodwaters from breached 

landslide dams carry the potential to damage distant infrastructure downstream (Fan et 

al., 2020).  

To determine the catalysts of large prehistoric, deep-seated, bedrock landslides, or 

landslides that fail beneath the rooting depth of trees (~2 m), we must first understand 

their spatiotemporal distribution, which is traditionally accomplished by creating a 

landslide inventory. Accurate inventories rely on high-resolution lidar (light detection 

and ranging) data, especially in areas where the bare earth surface is obscured by dense 

vegetation (Schulz, 2007). Despite the usefulness of high-resolution lidar data for 

creating landslide inventories that are used to determine susceptibility, hazard, 

vulnerability, and risk, they often lack age information (LaHusen et al., 2020). Landslides 

are most commonly dated using radiocarbon analyses or dendrochronology. However, 

these techniques are not feasible at regional scales due to expenses, limited access to 
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landslide deposits, and the lack of datable material within deposits (Pánek, 2014). Recent 

studies in the Oregon Coast Range and the North Fork Stillaguamish River Valley, 

Washington state, have shown that landslide deposit surface roughness measured from 

lidar can be used as a proxy for landslide age to construct regional landslide chronologies 

with a limited number of absolute ages (LaHusen et al., 2016, 2020; Booth et al., 2017).  

 Here, we calibrate and apply a surface roughness dating model to 447 deep-seated 

bedrock landslides in the Nooksack River watershed, Whatcom County, Washington 

(figure 1). With potential seismic, climatic, and base level triggers at play in northwestern 

Washington, we investigate spatiotemporal trends in landsliding to determine their 

primary driving mechanism(s). Better understanding what causes these landslides will 

shed light on how the landscape responds to specific triggers in the context of long-term 

landscape evolution. The more practical results of this research are crucial for hazard 

assessments and risk evaluations as populations continue to increase in areas more 

exposed to landslides.  
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Figure 1. Tectonic setting and geography of study area. Polygon outlined in black and shaded gray 

depicts extent of the study area, defined as the eastern two thirds of the Nooksack Watershed and a few 

smaller adjacent watersheds. The Cascadia Subduction Zone runs roughly north-south ~300 km to the west 

of the study area. Crustal faults in the Boulder Creek Fault Zone are shown as red lines in north-central 

portion of the study area.  
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2.0 Study Area and Background 

2.1 Study Location 

The Pacific Northwest (PNW), United States is prone to extensive landsliding due 

to the combination of regional tectonic setting and climatic conditions. Washington, 

specifically, is situated on an active convergent margin where the Juan de Fuca plate is 

subducting beneath the North American plate. The resulting folded and faulted bedrock 

formations in addition to frequent large rainfall events contribute to the hundreds to 

thousands of landslides each year, making it one of the most landslide prone states in the 

country. Landslide studies in Washington have increased following the devastating Oso 

landslide in 2014 (Iverson et al., 2015; Wartman et al., 2016; Stark et al., 2017; Collins 

and Reid, 2019). This landslide was the deadliest landslide in the history of the 

continental United States, claiming the lives of 43 people as it rapidly inundated the 

Steelhead Haven community (figure S1) (Wartman et al., 2016). From shallow failures to 

catastrophic large, long run-out, deep-seated landslides like the Oso landslide, these 

geologic hazards are a persistent risk to communities and infrastructure throughout 

Washington. Despite their prevalence, the relative importance of various mechanisms 

responsible for deep-seated bedrock landslides throughout Washington remains generally 

unclear, meriting further research efforts to better inform mitigation plans. 

This study focuses on the Nooksack Watershed, Whatcom County, Washington, 

which lies between Skagit County and the United States-Canada border and is 

particularly susceptible to large slope failures because of its high relief, seismic activity, 

and relatively abundant precipitation (figure 1) (Brunengo, 2001). Paleoseismic studies 
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reveal several crustal faults within or adjacent to Whatcom County have ruptured at 

similar times throughout the Holocene, possibly triggering coseismic landsliding. Its high 

susceptibility coupled with high population density and dense infrastructure warranted 

landslide mapping by the Washington Department of Natural Resources (WA-DNR), 

which documented 1,911 landslides over a ~3620 km2 region in western Whatcom 

County (Mickelson et al., 2020). A subset of that landslide inventory consisting of large 

bedrock landslides was used in this study (figure 2A).  

2.2 Tectonic Framework 

On the North American plate, the Sierra Nevada microplate is colliding into southern 

Oregon, resulting in continuous northward progression and clockwise rotation of the 

Cascadia forearc relative to stable North America (figure S2) (Wells and Simpson, 2001). 

The Canadian Coast Mountains act as a rigid backstop, causing the northern forearc, 

between Olympia, Washington and the US-Canadian border, to shorten at a rate of 

approximately 4-7 mm/yr (Wells and Simpson, 2001; Kelsey et al., 2012; Sherrod et al., 

2013). Here, systems of crustal faults are thought to accommodate much of the resulting 

strain (Kelsey et al., 2012), as evident in GPS measurements and paleoseismic studies 

(Wells and Simpson, 2001; Kelsey et al., 2012). 

 In the study area, the Boulder Creek fault zone (BCFZ) partially comprises the 

northern leading edge of the deforming Cascadia forearc and is also thought to 

accommodate north-south shortening (figure 2A-B) (Kelsey et al., 2012). In the BCFZ, 

lidar reveals a scarp on the mapped trace of the Boulder Creek Fault (BCF) and another 

along a fault near Canyon Creek (Sherrod et al., 2013; Sherrod and Gomberg, 2014). 

Four trenches across the scarp of the BCF, one trench across the scarp near Canyon 
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Creek, and plant remains from a scarp-dammed wetland along the BCF reveal three 

distinct ruptures throughout the Holocene, with the most recent surface rupturing 

earthquake occurring between 1165 and 699 cal. years before present (1950) (yrs B.P.), a 

penultimate earthquake occurring between 2990 and 3344 cal. yrs B.P., and an 

antepenultimate earthquake occurring ~7700 cal. yrs B.P. (Barnett, 2007; Sherrod et al., 

2013; Sherrod and Gomberg, 2014).   

2.3 Geologic Framework 

 Whatcom County is underlain by complex geology that can be divided into three 

broad categories: Quaternary deposits, Tertiary rocks, and pre-Tertiary rocks (figure 2B). 

The youngest deposits represent packages of unconsolidated Quaternary post-glacial and 

Pleistocene glacial sediments from the most recent ice-sheet glaciation, the Fraser 

Glaciation (Lapen, 2000). Radiocarbon dates constraining the Fraser glaciation in the 

Pacific Northwest correspond with the mid-continent Wisconsin glaciation, at ~25-10 kya 

(Booth et al., 2003). Sedimentary rocks from the Tertiary have been uplifted and are 

found in the Chuckanut and Huntingdon formations. The Chuckanut formation is divided 

into seven members, ranging in age from late Paleocene to early Oligocene. These rocks 

consist mostly of sandstone, siltstone, conglomerate, and coal and are interpreted as the 

result of a strike-slip pull apart basin with subsequent filling from local uplifts and distant 

sources (Lapen, 2000). The Huntington formation contains moderately well sorted 

conglomerates, sandstones, siltstones, shales, and clays with ages correlative to strata of 

the Chuckanut Formation (Lapen, 2000). Pre-tertiary rocks in the Nanaimo group, consist 

of upper Cretaceous sandstone, conglomerate, shale, and minor coal from four typical 

transgressive cycles (Lapen, 2000). Various sheared and deformed metamorphic, 
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volcanic, metasedimentary, and metaigneous rocks of the Chilliwack Group of Cairnes, 

Nooksack Formation, and Cultus Formation of the northwest Cascade system are also 

present and range in age from Jurassic to pre-Devonian (figure 2B) (Lapen, 2000; Tabor 

et al., 2003).  
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Figure 2. A) Landslide deposits within the study area. Dark green polygons indicate deposits mapped in 

detail by WA-DNR. Orange polygons indicate deposits mapped by WA-DNR (Mickelson et al., 2020), 

following the SLIP protocol (Slaughter et al., 2017). Purple polygons indicate deposits we mapped in 

detail. Blue polygons indicate five of the eight deposits used in our age-roughness model: the Racehorse 

Creek and Church Mountain landslides, dated by Pringle et al. (1998), the Van Zandt landslide, dated by 

Malick (2018), and the Silver Fir and Bald Mountain landslides, dated in this study. The Canyon Creek 

landslide was dated in this study was but not used in our age roughness model. The remaining three 

deposits used in the model do not fall within the extent of our study area boundaries (see section 3.1 and 

figure 4). B) Generalized geology of the study area. Holocene active faults within the study area 

represented as red lines and folds as green lines. The eastern most portion of the Nooksack Watershed 

makes up 1899 km2 of the study area and the smaller surrounding watersheds account for the remaining 

420 km2.  

 

The complex geology underlaying Whatcom County is important to understand 

when assessing landslide driving mechanisms. In general, pre-existing geologic structures 

including foliation, faults, fractures, and bedding plane orientation control the style of 

landsliding on a bedrock slope (Hermanns and Strecker, 1999; Brideau et al., 2005; 

Ganerød et al., 2008; Booth et al., 2014). Landslides in sedimentary units are often 

controlled by bedding plane orientation, where depositional contacts between steeply 

dipping strata resulting from folding and faulting events exhibit low shear strength 

(Roering et al., 2005). If those weak planes dip more steeply than the friction angle and 

project out of the topographic slope, a dip-slope landslide, or planar sliding, is possible. 

Additionally, sub-vertical joints and faults and/or bedding planes often result in forward 

toppling. Overall, a weak unit within a stratigraphic sequence may result in deep-seated 

landsliding, emphasizing the importance of understanding the lithologies within a 

hillslope (Roering et al., 2005).   

2.4 Previous Age-Roughness Models 

 Previous studies have demonstrated surface roughness can be measured from 

high-resolution topographic data to generally reflect several properties of a landslide such 
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as size, activity, type, and material properties (McKean and Roering, 2004; Glenn et al., 

2006; Booth et al., 2009; Berti et al., 2013). Because landslides display higher roughness 

values than surrounding stable terrain, they can be quantitatively distinguished on lidar 

derived hillshade and slope maps. Younger landslides have high roughness values 

resulting from large, displaced blocks, hummocks, and closed depressions. Older 

landslides tend to have a more subdued topographic signature as erosional processes and 

soil diffusion have more time to rework and smooth the deposit’s morphology (Keaton 

and DeGraff, 1996; Booth et al., 2017). Although the idea of using surface roughness as a 

method to generally quantify properties of a landslide has been demonstrated in several 

prior studies, until 2014, none had investigated the accuracy of quantifying surface 

roughness as a proxy for landslide age (Goetz et al., 2014). Goetz et al. (2014) conducted 

an age-roughness study in the Swabian Alb, Germany. They used three different 

measures of surface roughness over a ~200-year timespan and found little to no 

correlation between landslide age and deposit surface roughness. However, they 

suggested lithologic variation and landslide reactivation may have obscured the age-

roughness relationship due to their small sample size of 12 landslides and short period of 

analysis. LaHusen et al. (2016) and Booth et al. (2017) revisited the idea and established 

a significant correlation between landslide age and deposit surface roughness to estimate 

the ages of more than 200 landslides occurring in glacial sediments of the North Fork 

Stillaguamish River Valley, Washington, throughout the Holocene. LaHusen et al. (2020) 

took this concept a step further and used age-roughness analysis to gain insight into the 

driving mechanisms of bedrock landslides in the Oregon Coast Range (OCR). Here, they 

estimated the ages of 9,938 bedrock landslides, and found that locations of bedrock 
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landslides in the OCR are significantly correlated with mean annual precipitation, but 

timing was not related to Cascadia subduction zone (CSZ) earthquakes. Because the 

bedrock, climate, and proximity to faults capable of producing large magnitude 

earthquakes are broadly similar in the Nooksack watershed we use the LaHusen et al. 

(2020) study as the framework for our research. We gathered and obtained the ages of a 

limited number of landslides in Washington’s Cascade Range to create an age roughness 

model and investigated the spatiotemporal trends of landslides in Nooksack Watershed in 

Whatcom County, WA.   
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3.0 Material and Methods  

3.1 Radiocarbon Dating 

 An essential component to creating an age-roughness model is obtaining absolute 

ages of a limited number of landslides where lidar is also available to quantify deposit 

roughness. We gathered the absolute ages of six bedrock landslides in Washington’s 

Cascade Range (WCR) from previous landslide studies (table 1). Pringle et al. (1998) 

refined the ages of eight landslides in the WCR using radiocarbon dating, four of which 

are located in regions with available lidar data: the Church Mountain, Racehorse Creek, 

Damnation Creek, and Day Lake landslides (figures 2A and 4 and table 1). Despite not 

being in our study area, we use the age of the Damnation Creek landslide, ~50 km 

southeast of our study area, and the Day Lake landslide, ~50 km south of our study area, 

because they are in regions with similar topographic, lithologic, and climatic settings. 

Additionally, we use the age of the Bonneville landslide on the Columbia River, ~350 km 

south of our study area, which has been refined through several studies that used 

radiocarbon analyses, dendrochronology, and lichenometry, making it a strong anchoring 

data point for our age-roughness model (figure 4) (Pringle et al., 1998, 2021; Pringle, 

2009; Reynolds et al., 2015).  

 In our study area, Malick (2018) dated the Van Zandt landslide. This landslide 

complex is comprised of three lobes, two of which are thought to have occurred 

simultaneously (Malick, 2018). For our age-roughness model, we use the radiocarbon age 

data from this study that best describes the simultaneous emplacement of the two lobes to 

define the age of the Van Zandt landslide (table 1 and figures 2A and 4) (Malick, 2018).   
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 Additionally, we determined the ages of three landslides within the study area: the 

Silver Fir, Bald Mountain, and Canyon Creek landslides (section 4.1) (table 2 and figures 

2A and 4). We targeted large landslides that ran out into river valleys, where rivers were 

actively eroding the landslide toe, revealing fresh exposures of the deposit (figure 3A). 

We sampled logs at these sites assuming they were killed at the time of the landslide, 

entrained within the deposit, and subsequently exposed by erosion along river cutbanks 

(Pánek, 2014). However, fluvial processes can wedge logs into river cutbanks, and/or 

trees can fall on older landslide deposits and be buried by soil horizons or additional mass 

wasting processes, which would post-date the landslide. To minimize the likelihood of 

obtaining ages younger than or otherwise unrelated to the landslide, we followed a set of 

three criteria. Most importantly, the log or wood fragment must be within the landslide 

deposit, which we determined based on the presence of angular, poorly sorted, gravel to 

cobble sized clasts within a matrix of well compacted muds and clays (figure 3B-C). 

These deposits contrasted with fluvial deposits containing imbricated or rounded gravels 

and/or cobbles. Where logs protruded from the deposit, we made sure they projected far 

back into the deposit, roughly perpendicular to the riverbank face, making them unlikely 

to have been wedged against the bank by fluvial processes. In any case where there was 

more than one log protruding from the deposit, we sampled the stratigraphically lowest 

log to avoid the chance that it may be a fallen tree or from a later mass wasting event. 

Obtaining a sample from an organic source that was mobilized in the landslide event of 

interest would result in a maximum age, while any sample source embedded in a 

reactivation after the larger, main event, would result in a minimum age. 
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We collected multiple samples from the Silver Fir, Bald Mountain, and Canyon 

Creek landslides, and later decided on the two best samples from each based on the 

criteria above (figures 2-4, figures S3 and S4, and table 2). We cleaned the samples of 

sediment and other organic material with deionized water and dried the samples in the 

oven at a 50° C for 24+ hours before sending them to the National Ocean Sciences 

Accelerator Mass Spectrometry (NOSAMS) facility for radiocarbon dating. Upon 

receiving results, we used OxCal (Bronk Ramsey, 2009) to calibrate the radiocarbon ages 

to years before 1950 (yrs B.P.) and years before 2019 (y.b.2019) to compare to LaHusen 

et al. (2020). 
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Figure 3. Bald Mountain landslide sampling locations and field photos. A) Blue deposit polygon for the 

Bald Mountain landslide draped over a hillshade map derived from ~0.9m bare earth lidar imagery obtained 

from WA-DNR’s lidar portal. Sample locations are denoted as red pins with the corresponding sample 

name and GPS coordinates labeled accordingly. B) Heavily deteriorated log we obtained sample AM-log4 

from. Note the heavily compacted clays encasing this log. C) Below the GSA scale and circled in red is the 

small, moderately deteriorated log protruding from deposit that we obtained sample AM-log3 from. See 

appendix C for Silver Fir and Canyon Creek sampling locations. 
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Table 1. Absolute landslide ages obtained from previous studies 

Landslide 

Name 

Calibrated Age 

(years B.P.)* 

Calibrated Age 

(years before 

2019)*** 

Source of Sample Reference 

Church 

Mountain 

Landslide  
2414  315  2483 

Sample from outer 

10 rings under bark 

of cedar log lying 

under CMA-92-2 

Pringle et al. 

(1998) 

Day Lake 

Landslide 
1540  195 1609 

Sample from 90-

cm diameter snag 

in Day Lake; 

estimated >100 

rings missing? 

Pringle et al. 

(1998) 

Racehorse 

Creek 

Landslide 
4234  390 4303 

Sample from 

innermost 10 rings 

of cedar log having 

about 65 rings and 

buried in silt under 

Racehorse Creek 

rockslide deposit.  

Pringle et al. 

(1998) 

Damnation 

Creek 

Landslide 
7839  130 7908 

Organic horizon in 

lacustrine silt 

upstream of 

rockfall and under 

Mazama ash.  

Pringle et al. 

(1998) 

Van Zandt 

Complex 
1300  30 1369 

Terminal growth 

ring of in situ log 

with bark. 

Malick (2018) 

Bonneville 

Landslide 

504** 

 

 

 

 

 

 

 

 

 

 

  

573 

Submerged forest 

trees near the shore 

at Wyeth and 

Perham Creek and 

a bark-bearing log 

exhumed from the 

landslide deposit 

during excavations 

for Bonneville’s 

second powerhouse 

in 1978.  

Pringle et al. 

(2021) 

*Calibrated years before present is before 1950 written as the median  2 standard deviations. 
 

**Bonneville landslide was precisely dated to late 1446 or early 1447 CE  

***Age used in age roughness model  



 
18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Locations of the landslides of known age used in the age-roughness model. Landslide ages 

and references shown in Table 1 and age results for the Silver Fir, Bald Mountain, and Canyon Creek 

landslides shown in Table 2. The Canyon Creek landslide was not used in our age roughness model 

(section 4.1). 

 

3.2 Landslide Inventory and Geomorphic Mapping 

 For our landslide inventory, we modified and expanded upon an existing landslide 

inventory for part of Whatcom County, Washington (Mickelson et al., 2020). In that 

inventory, 1,587 of the 1,911 landslides were mapped in detail following the mapping 

protocol of Slaughter et al. (2017), a modification of the protocol developed by Burns and 

Madin (2009). The detailed mapping focused on areas with dense populations and 

infrastructure, digitizing landslide landforms including deposits, scarps, flanks, and any 
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internal scarps. The remaining 324 landslides were mapped following the Slaughter et al. 

(2017) Streamlined Landslide Inventory Protocol (SLIP), which only included a singular 

polygon depicting the entire landslide (a combination of the deposit, scarps, and flanks). 

The area mapped following the SLIP protocol focused on generally unpopulated areas 

that may contain significant infrastructure and is less complete than the detailed mapping 

area (figure 2A). 

 We first revised the existing inventory based on a set of criteria we hypothesized 

would produce the best results for quantifying surface roughness. Since our age-

roughness model is derived from deep-seated, bedrock landslides, we eliminated 

landslides occurring in unconsolidated sediments as well as landslides characterized as 

shallow flows within the soil column. To distinguish deep-seated, bedrock landslides 

from shallow flows, we omitted landslides with headscarps less than 2 meters.  This 

criterion is important as shallow, channelized earth/debris flows, or any landslide 

occurring in unconsolidated sediments exhibit different failure morphologies than 

bedrock landslides and may therefore be inappropriate to include in our analysis. 

Additionally, we applied a minimum size threshold of 93,000 m2 to ensure the landslide 

deposits were large enough to exhibit characteristic roughness (section 3.2). Filtering the 

existing landslide inventory with these criteria decreased the number of landslides for our 

analysis from 1,911 to 392.  

 To complete the inventory for our study area, following Slaughter et al. (2017), 

we mapped an additional 41 landslides in a 378 km2 area where watersheds crossed the 

Whatcom County boundary that defined the map extent for Mickelson et al. (2020). In 

the SLIP mapping area, we mapped an additional 14 landslides for a more complete 
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inventory, following the same criteria defined above (figure 2A). DEMs and lidar data 

used for mapping were acquired from WA-DNR’s lidar portal.  

3.3 Quantifying Deposit Surface Roughness 

3.3.1 Deposit Preparation 

To define the average surface roughness of each landslide, we further modified 

the inventory to isolate portions of landslides where natural soil transport processes 

would smooth the surface over time. Most importantly, we isolated deposits from their 

head and side scarps, as well as removed any other features that would bias their overall 

roughness. Landslides mapped following the SLIP protocol (Slaughter et al., 2017) were 

modified to isolate the deposit from the generalized polygon. We began modifying each 

deposit polygon by first applying a 20 m buffer to avoid edge effects of deposit 

boundaries. Then, river cutbanks, stream gullies, ponds, reactivations, roads, and/or any 

anthropogenic structures or industrialized land were removed, also with a 20 m buffer 

(figure 5A-4B). This buffer size is the same as the length scale over which roughness was 

calculated (section 3.3.2).  For the eight landslides used to define our age-roughness 

model, we manually removed the above-mentioned features to be as accurate as possible. 

However, manually removing streams and roads from all 447 deposits in our landslide 

inventory was not feasible. Instead, we derived and extracted the stream network by 

applying a drainage area threshold of 1,475 m2, which was estimated visually by 

comparing the results of several drainage area thresholds to the manually identified 

stream gullies, and then applied that to our entire study area. To remove roads, we used 

the WA-DNR database (Washington Department of Natural Resources, last edited 2022). 

Reactivations within larger landslide complexes, including their headscarps and side 
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scarps, were manually removed entirely from deposits if they were smaller than the 

93,000 m2 size threshold. If larger, they were mapped as their own unique landslide.  

 

 

 

 

 

 

 

 
 

Figure 5. Example of original and modified landslide deposit polygons. A) The original landslide 

deposit polygon for the Van Zandt landslide. B) Van Zandt landslide deposit polygon modified to exclude 

edges, roads, river cutbanks, ponds, and other anthropogenic features with a 20 m buffer. The surrounding 

red line represents the extent of the original deposit polygon shown in A. Polygons are draped over 

hillshade maps derived from ~0.9 m bare earth lidar imagery obtained from WA-DNR’s lidar portal.  

 
3.2.2 Roughness: Two-Dimensional Continuous Wavelet Transform 

 Although different metrics and spatial scales can be used to quantify the 

topographic roughness of a landslide deposit, here we use the two-dimensional 

continuous wavelet transform (2D-CWT) with a 20 m Mexican hat wavelet to quantify 

the surface roughness of the 447 deposits in our inventory as well as the 8 landslides of 

known age for our age-roughness model (Booth et al., 2009) (figure S5). The best suited 

roughness metric and spatial scale often depend on characteristic morphologies of 

landslide deposits in the region. For example, a wavelet-based curvature measured at a 15 

m spatial scale performed best at predicting absolute landslide ages of landslides in 

glacial deposits in the North Fork Stillaguamish river valley, while a 20 m spatial scale 
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performed best for bedrock landslides in the Oregon Coast Range (Booth et al., 2017; 

LaHusen et al., 2020). The difference in spatial scales from site to site likely reflects 

differing failure materials, as the landslides in the North Fork Stillaguamish river valley 

occurred in unconsolidated Quaternary post-glacial and Pleistocene glacial deposits, and 

the landslides in the Oregon Coast Range occurred in underlying sedimentary rocks in the 

Tyee and Elkton formations (Booth et al., 2017; LaHusen et al., 2020). The longer 

wavelength metric likely performs best in the Oregon Coast Range because the 20 m 

spatial scale better corresponds to the size of dominant roughness elements, such as 

hummocks and displaced blocks.  

Generally, the 2D-CWT provides information regarding how amplitude is 

distributed over spatial frequency at each position in the data by transforming spatial data 

into position-frequency space (Booth et al., 2009) (figure S5). More specifically, it 

calculates topographic curvature at a specified smoothing length scale by convolving the 

wavelet kernel,  

𝜓 = −
1

𝜋(𝑎∆)4
(1 −

𝑥2+𝑦2

2𝑎2
) 𝑒

−
𝑥2+𝑦2

2𝑎2  ,      (1) 

where a is the wavelet scale, ∆ is grid spacing, and x and y are spatial coordinates, with 

the DEM (Lashermes et al., 2007). The smoothing length scale is  

𝜆 =
2𝜋∆𝑎

√5/2
        (2) 

(Torrence and Compo, 1998). The mean absolute value of the roughness (i.e. curvature 

measured at a 20 m smoothing length scale) for each landslide deposit was then extracted 

from all our mapped deposit polygons. 
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3.4 Modelling Landslide Frequency Histories 

 Using the ages we determined for all 447 landslides in our study area, we created 

landslide frequency histories for the past 32,000 and 4,000 years. We focused on the last 

4,000 years to be able to accurately identify peaks that may represent periods of 

widespread landslide triggering due large earthquakes on the BCF that are otherwise not 

discernable in the 32,000-year age-frequency data. To test whether peaks in our age-

frequency data represent coseismic landslide pulses associated with ruptures on the BCF, 

we simulated landslide frequency histories with and without earthquakes to compare to 

our dataset. To build the simulated chronology composed entirely of “background” 

landslides with no coseismic landslide pulses, we assigned a background rate of 0.2 

landslides/year (20 landslides/century). This rate, after adjusting for preservation bias by 

multiplying the synthetic landslide frequency history with the same exponential decay 

function that fit our observed data, produced a total number of simulated landslides to 

have ages less than 4000 y.b.2019 roughly equal to the total number of observed: 397. 

For the simulated chronology with earthquakes, we generated two coseismic landslide 

pulses at the times of geologically constrained surface rupturing earthquakes on the BCF 

(section 2.2), each with 40, 60, 65, 67, and 80 slides per pulse, and determined 67 

landslides per pulse best matched our observations. Because the model does not account 

for error margins associated with radiocarbon dating, we used the median age of the 

reported earthquakes in years before 2019 (1001 and 3236 y.b.2019) (Barnett, 2007; 

Sherrod et al., 2013; Sherrod and Gomberg, 2014). Here, we adjusted the background rate 

to 0.16 landslides/year so the total number of estimated landslides remained roughly 

equal to the total number of observed landslides with superimposed coseismic landslide 
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pulses. To account for the range of roughness values produced by landslides of the same 

age, we calculated the standard deviation (SD) of roughness values for the Van Zandt 

landslide and multiplied this value by two to address the uncertainty in calculating SD 

from a small sample. Using this SD, a randomly generated, normally distributed set of 

landslide roughness values was added at each model time step, where roughness values at 

each time step correspond to the time step age. We modeled each of these scenarios 104 

times, and the ages were calculated for each run using the best fit age-roughness 

regression we used to calculate the ages of the 447 landslides in the Nooksack 

Watershed. Lastly, we calculated the mean frequency as well as the 10th and 90th 

bounding percentiles for all model runs.   

3.5 Regional Kinematic Analysis  

 To test whether structural orientations of bedrock predominantly control the 

spatial pattern of landsliding throughout the study area, we conducted a regional 

kinematic analysis for planar sliding and flexural toppling (Norrish and Wyllie, 1996) 

(figure S6). We used 444 attitude measurements from the Chuckanut, Huntingdon, 

Nooksack, and Cultus Formations that we obtained from the 1:100,000 scale geologic 

mapping database of Washington State Digital Data to transform dip direction and dip 

angle point data into 30 m grids using inverse distance weighted interpolation 

(Washington Division of Geology and Earth Resources, 2016). We then compared these 

interpolated rasters to slope angle and slope direction (aspect) rasters derived from a 30 m 

DEM to identify areas where planar sliding and flexural toppling are kinematically 

feasible. We assumed a friction angle of 20° (Crider et al., 2009) and a maximum 

difference between dip and slope direction of 50° to define the failure windows. Unlike 
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typical kinematic analyses that focus on a singular or select few landslides, the resulting 

rasters display areas across the landscape that are susceptible to each of these types of 

failures (figure 8B). 
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4.0 Results 

4.1 New Landslide Ages from Radiocarbon Dating 

 Using the OxCal v4.4.4 software online, we calibrated our radiocarbon ages to 

reflect sample age in cal. years before 1950 (yrs B.P.) and before 2019 (y.b.2019), 

consistent with LaHusen et al. (2020) (Bronk Ramsey, 2009) (table 2). Our calibrated 

ages reflect the median and uncertainty of the most likely age range with 95% 

confidence.  For SilverFir-2, the radiocarbon age calibrates to 181 ± 44 cal. yrs B.P. We 

note this young age likely is the result of a recent reactivation just north of where we 

sampled. The radiocarbon age for SilverFir-6 calibrates to 1,959 ± 41 cal. yrs B.P. This 

sample was buried deeper in the deposit, and we interpret that this older age is more 

representative of the mapped landslide. Furthermore, the roughness of the deposit is 

similar to other previously dated landslides of similar age. Of the two samples for the 

Silver Fir landslide, we decided the age that best represents this landslide for our age-

roughness model is sample SilverFir-6 with a median calibrated age of 2,028 y.b.2019 

(table 2). 

 Results for the samples from the Bald Mountain landslide were similar. The 

calibrated ages for AM-log3 and AM-log4 were 83 ± 62 cal. yrs B.P. and 3,593 ± 45 cal. 

yrs B.P., respectively. We rule out the younger age as being representative of the mapped 

landslide deposit, as it likely reflects subsequent surficial erosion or shallow reactivation 

of the deposit.  We therefore use 3,662 y.b.2019 as the absolute age of the Bald Mountain 

landslide in our age-roughness model (table 2).  

 For the Canyon Creek landslide, the calibrated ages for SGLR-6 and SGLR-10 

are 43,899 ± 2,650 cal. yrs B.P. and 47,124 ± 4,925 cal. yrs B.P., respectively. The 
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radiocarbon ages for both samples here date back to the last glacial maximum, implying 

that the wood and deposit that contained it were remobilized by the landslide later. 

Though this landslide does not provide useful data for the age-roughness model, it 

provides us with an upper bounding limit for landslide age in our study area (table 2).  
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4.2 Pacific Northwest Bedrock Landslide Age-Roughness Model 

 By fitting an exponential decay function to the eight landslides described above, 

there was a weak statistically significant correlation between age and deposit surface 

roughness (r2 = 0.45 , p = 0.04), likely due to the small sample size and relatively small 

range of ages (figure 6A). However, we note that the mean roughness values of bedrock 

landslides in the WCR exhibit similar mean roughness values to those in the OCR 

(LaHusen et al., 2020) (table 3 & table S1). This is expected as the source areas for 

landslides in the WCR and OCR have comparable lithologies. Roughness values from the 

OCR fall between 0.00861 m-1 for the oldest landslide at 40,900 ± 1,000 y.b.2019 and 

0.0379 m-1 for the youngest landslide at 7 ± 1 y.b.2019. In our data, the landslide with the 

highest mean roughness value is the Bonneville landslide, with a roughness of 0.0190 m-1 

and an age of 573 y.b.2019. The Damnation Creek landslide, our oldest landslide with an 

age of 7,908 y.b.2019 has the lowest mean roughness value at 0.0143 m-1. We therefore 

decided to combine and fit the age-roughness data from both studies to create a Pacific 

Northwest bedrock landslide age-roughness model (figure 6A). When combined, 

landslide age and deposit surface roughness data display a more robust statistically 

significant correlation (>95% confidence, p =  6.357e-07) when fit by an exponential 

decay function (figure 6A): 

 t=339067e-345.2R,       (3) 

where t is the estimated landslide age in years before 2019, and R is the average 

roughness, in units of m-1 (figure 6A). We use this function to assign ages to the undated 

landslides and develop a landslide chronology of all the mapped landslides in the study 

area.  
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Table 3. Mean roughness values for landslide deposits of known age in Washington’s Cascade 

Range 

Landslide Name  
MEAN Roughness 

(1/m) 

Age (Years before 

1950) 

Age (Years before 

2019) 

Bonneville  
0.0190 

504 
573 

Day Lake  0.0154 1540 1609 

Van Zandt  0.0152 1300 1369 

Racehorse Creek  
0.0163 

4234 
4303 

Church Mountain  
0.0154 2414 2483 

Damnation Creek  
0.0143 

7839 
7908 

Silver Fir   0.0150 1959 2028 

Bald Mountain  0.0148 3593 3662 
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Figure 6. A) Pacific Northwest bedrock landslide age-roughness model. Blue data points indicate 

landslides in WCR, and orange data points indicate landslides in the OCR. B) Same data points and 

regression plotted on a semilog axis with 95% confidence intervals.  

 

4.3 Western Whatcom County Landslide Chronology 

 Overall, the most obvious pattern in our landslide chronology for the region is the 

nonlinear decrease in landslide frequency with age through the Holocene (figure 7A). We 

relate this general trend to a preservation bias, which we expect as younger landslides 

display more readily identifiable morphologies on lidar derived slope and hillshade maps 

and as old slides reactivate (LaHusen et al., 2020). Discerning if and when landslide 

frequency differs from the background trend therefore is not plausible for times more 

than a few thousand years before present. However, zooming into a subset of more recent 

time better highlights undulations in landslide frequency. This reveals a broad peak in 

landslide frequency about 750-1250 years ago, as well as several peaks and troughs from 

about 2000-4000 years ago (figure 7B).  

If the majority of the landslides occurring in the past 4000 years in our study are 

coseismic landslides, we would expect peaks in our landslide frequency history to track 

well with peaks in our modeled scenarios that incorporate landslide pulses at the time of 

ruptures on the BCF. Here, we see the simulated landslide history with coseismic 

landslide pulses most closely follows our observed landslide frequency history (figure 

7B). Most noticeably, the peak around 1000 y.b.2019 in the earthquake model lines up 

with the observed peak, falling almost entirely within the 10th and 90th percentile bounds 

of the earthquake model. Landslide frequency also decreases from then to the present in 

both the simulation and data. In the earthquake model, 9.5% of the total landslides are 

caused by the youngest earthquake on the BCF, with 67 landslides occurring as a result. 
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Because our observed landslide frequency lines up well with that predicted by the 

earthquake model, we infer roughly 9.5% of landslides in our study area occurring in the 

past 4000 years were triggered by the youngest earthquake on the BCF. This observation 

is also supported by spatial clustering of large landslides with ages between 768 and 1234 

y.b.2019 around and to the east of the BCF (figure 8A). For ages older than ~1250 

y.b.2019, landslides in our observed data tend to better match the simulated landslide 

frequency history composed entirely of “background” landslides. This result is expected 

without a major event like an earthquake on the BCF. At around 3200 y.b.2019, the 

earthquake model displays a subdued peak in landslide frequency that is unmatched by 

our observed landslide frequency. Despite clear evidence for coseismic landslides with 

the youngest rupture on the BCF, there is no evidence for coseismic landsliding with the 

penultimate earthquake. Here, the irregular peaks and troughs where we might expect to 

see a pulse of coseismic landslides are likely a result of having low numbers of landslides 

of those ages due to preservation bias.  
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Figure 7. A) Histogram of landslide ages for the past 32,000 years across the study area. B) Comparison of 

observed versus simulated landslide frequency histories for the past 4000 years. Observed frequency 

calculated from age estimates for landslides mapped in the study area is plotted as a red line. Simulated 

landslide frequency for 104 modeled scenarios without earthquake pulses is shown in grey, Simulated 

landslide frequency for 104 modeled scenarios with earthquake pulses where 19% of all landslides occurred 

at the times of the two youngest ruptures on the Boulder Creek fault is shown in blue. Solid lines are the 

mean, and the shaded areas are the lower 10th and upper 90th percentiles of all model runs.  
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Figure 8. A) Location of 93 landslides with ages between 768-1234 y.b.2019. Landslides, especially the 

largest ones, represented as maroon polygons, appear to cluster around traces of the BCF, especially on the 

eastern side of the fault trace. Landslides become smaller and less frequent towards the south, and far 

eastern portion of the study area. B) Areas susceptible to planar sliding and flexural toppling 

determined by our regional kinematic analysis. Areas highlighted in dark red indicate hillslopes 

susceptible to planar sliding and areas highlighted in navy blue indicate slopes susceptible to toppling 

failures. Together, these areas make up ~6.6% of the region of analysis highlighted in light red. Landslides 

overlying these susceptible regions are represented by blue polygons (for flexural toppling), red polygons 

(for planar sliding), and purple polygons (complex failure style, i.e. overlying both types of susceptible 

regions). 
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4.4 Susceptibility to Planar Sliding and Flexural Toppling 

 Our regional kinematic analysis suggests the orientations of bedrock structures 

partly control landslide susceptibility. The areas susceptible to planar sliding or flexural 

toppling together make up ~6.6% of the analyzed region with 203 or 45.4% of landslides 

in our inventory overlying these susceptible regions (figure 8B). Of those, 150 landslides, 

or 33.6% of all landslides in our inventory, overlie hillslopes susceptible to flexural 

toppling while only 38, or 8.5% of all landslides, overlie hillslopes susceptible to planar 

sliding. In the southeastern and south-central portion of the study area, spatial patterns in 

landsliding appear to closely follow denoted areas susceptible to flexural toppling (figure 

8B). An additional 15 landslides overlie hillslopes susceptible to both planar sliding and 

flexural toppling, which we deem complex failures. These 15 landslides generally have 

larger areas and are distributed throughout the study area. Furthermore, 40 of the total 

203 landslides overlying susceptible regions also have ages consistent with the most 

recent earthquake (MRE) on the BCF (between 768 and 1234 y.b.2019), where three 

landslides in this age range occurred on slopes susceptible to both types of failure, six on 

slopes susceptible to planar sliding, and the remaining 31 on slopes susceptible to flexural 

toppling. Overall, bedrock structures may have predisposed slopes for failure and 

promoted more landslides over time than a single earthquake would throughout the study 

area.     
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5.0 Discussion  

5.1 Hazard Implications 

In this study, we demonstrated surface roughness of eight bedrock landslides in 

the WCR track well with age and are comparable to the surface roughness values of 

bedrock landslides in the OCR. We infer this correlation exists because the sedimentary 

rocks of the OCR are mechanically similar to those in our study area, such that they 

behave similarly in generating surface roughness when they fail as deep-seated 

landslides. Because of this, we combined the two datasets and derived the function that 

describes the best fit exponential regression to estimate the ages of 447 bedrock 

landslides in the Nooksack watershed, Washington. Similar to previous studies, the most 

predominant pattern in the resulting landslide chronology was a nonlinear decrease in 

frequency with age (Booth et al., 2017; LaHusen et al., 2020). However, a statistically 

unlikely deviation from this pattern around 1000 y.b.2019 was consistent with the 

simulated landslide frequency history that incorporates a pulse of 67 coseismic landslides 

at the times of the two most recent ruptures on the BCF. This consistency suggests 9.5% 

of all mapped bedrock landslides in the Nooksack Watershed in the past 4,000 years were 

triggered by the youngest earthquake on the BCF. It is likely, however, that this 9.5% is a 

minimum for landslides of all types, as our simulated landslide frequency histories, like 

our data, do not include smaller translational slides, or deep-seated landslides that are 

minimally displaced (head scarp < 2 m in height). Based on landslide frequency scaling 

relationships, these types of landslides, especially landslides smaller than our 93,000 m2 

threshold, may be expected to occur in far greater numbers than larger deep-seated, 

bedrock landslides (Keefer, 1984; Malamud et al., 2004a; Owen et al., 2008; Marc et al., 
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2016). This implies that a greater number of total landslides may occur per earthquake 

event, that the model does not account for. Furthermore, the earthquake model 

incorporates a second pulse of 67 coseismic bedrock landslides at the time of the 

penultimate earthquake on the BCF (3236 y.b.2019) that is unmatched by our landslide 

frequency history. Because these 67 landslides are not reflected in our observed data 

around the time of the penultimate earthquake, they may have been reactivated in the 

younger earthquake. This further supports the likelihood that 9.5% of landslides 

occurring as a result of the MRE on the BCF is a minimum percentage. It is also possible 

these 67 landslides may be dispersed throughout the background of our observed data, 

such that the rate of background landsliding is higher than 0.16 landslides per year as the 

earthquake model suggests.  

The spatial distribution of landslides with ages consistent with the MRE on the 

BCF are important to consider when thinking about hazard assessment. The United States 

Geological Survey (USGS) developed a ShakeMap for a scenario magnitude 6.8 

earthquake on the BCF in which the most intense shaking is predicted to occur around 

Kendall Creek west of Maple Falls, WA (figure 9) (Washington Department of Natural 

Resources, 2012; United States Geological Survey, 2022). The intensity of shaking 

decreases radially with distance from the area immediately surrounding Kendall Creek, 

except in some of the nearby low-lying areas, such as the Nooksack River valley and the 

eastern half of the Puget Lowlands within Whatcom County (figure 9). The results of this 

modeled scenario however do not completely agree with the spatial distribution of 

landslides we determined to be consistent with the MRE on the BCF. Our results suggest 

distinct directionality, with far more particularly large landslides occurring on the steeper 
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slopes east of the BCF than in the bedrock slopes just west of the BCF (figure 8A). Based 

on the ShakeMap, areas predicted to experience very strong to extreme ground shaking in 

the case of a magnitude 6.8 earthquake on the BCF would likely incur moderate to very 

heavy damages. While this may hold true, our results suggest potential damage due to 

coseismic landsliding extends much further east than the ShakeMap suggests.  

 

 

 

 

 

 

 

 

 
Figure 9. ShakeMap for a scenario magnitude 6.8 earthquake on the BCF developed by the USGS. 

Note the radial pattern of intense shaking surrounding the Kendall Creek and Canyon Creek scarps (United 

States Geological Survey, 2022).  

 

With landslides being one of the greatest secondary hazards of earthquakes, it is 

important we continue to evolve our understanding of the complex relationship between 

coseismic landsliding and influencing factors (Keefer, 1984). Common influencing 

factors used in coseismic landslide susceptibility mapping include and are not limited to 

peak ground accelerations (PGA), geomorphometric features, and geologic features 

(Meunier et al., 2007; Owen et al., 2008; Shao and Xu, 2022). Our results reinforce the 

importance of considering PGA in addition to the surrounding geomorphometric features 
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and geologic features when assessing a region’s susceptibility to coseismic landsliding. 

Of the 203 landslides we determined to be overlying hillslopes susceptible to planar 

sliding or flexural toppling, 40 have ages consistent with the MRE on the BCF. Notably, 

these 40 landslides constitute roughly two-thirds of the landslides that would occur in the 

event of an earthquake on the BCF as demonstrated by the earthquake model. This 

suggests structural orientations of bedrock are particularly important for understanding 

susceptibility to coseismic landsliding in the Nooksack watershed. Furthermore, more 

landslides with ages consistent with the MRE on the BCF occurred south or south-east of 

the fault, on the hanging wall. Although we didn’t continue our mapping north of the 

U.S.-Canada border we suspect the apparent clustering on the hanging wall of the BCF is 

no coincidence as it has been observed in other coseismic landslide inventories (Owen et 

al., 2008; Chen et al., 2018; Shao and Xu, 2022). The results of this study point to the 

importance of considering more than just PGA associated with earthquakes when 

assessing for coseismic landslide susceptibility throughout a region.  

5.2 Sources of Uncertainty 

Because radiocarbon ages are the fundamental data needed to develop a landslide 

age-roughness relationship, we must acknowledge the uncertainty associated with 

radiocarbon dating. Obtaining the age of landslides is challenging due to the assumptions 

made when identifying sample sources that accurately reflect the true age of a landslide. 

We reduced the likelihood of large discrepancies between the sample source age and the 

true age of the landslide by following a set of criteria aimed at avoiding sampling sources 

not directly associated with the landslide event of interest, and by dating more than one 

sample per landslide. Having two dates per landslide allowed us to identify the sample 
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source age that most likely reflected the age of the landslide event of interest. Even after 

taking these necessary precautions, depending on whether the sample used to determine 

the age of the landslide was from a Douglas Fir tree, which can live up to at least 500 

years, or a smaller Alder tree, which seldom live longer than 100 years, the difference 

between sampling the outer or inner growth rings of a log can result in tens to hundreds 

of years of uncertainty. However, compared to our newly acquired landslide ages of 1959 

and 3593 cal. yrs B.P., this is uncertainty is still relatively small, on the order of ±10%. 

Aside from this contextual uncertainty, much of the error in radiocarbon dating stems 

from calibrating radiocarbon ages to calendar years (Scott et al., 2007). Calibrating 

radiocarbon ages requires a history of the amount of C14 in atmospheric CO2, which has 

varied substantially in the last few centuries naturally, and due to anthropogenic 

emissions. The frequent peaks and troughs in the modern calibration curves limit the 

precision of our calibration, which is why our calibrated ages typically have about twice 

the uncertainty of the radiocarbon ages (table 2). Additionally, although the analytical 

uncertainty of the lab is much smaller that the latter sources of uncertainty, it is important 

to note that radiocarbon analyses run on the same sample under identical conditions 

would still produce slightly different results each time (Scott et al., 2007).  

Despite the practical nature of the age-roughness model based on radiocarbon 

dates and used in this study, it does not come without error. Ideally, landslides with the 

same age would have the same roughness values, but natural variability in initial 

landslide roughness represents a source of uncertainty. A wide variety of sources such as 

slightly differing failure mechanisms, differing underlying lithology and structural 

orientations, and differing deposit geometries can all cause differences in initial 
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roughness conditions. We see this discrepancy in our analysis, where although the Day 

Lake and Church Mountain landslides have identical roughness values, based on the 

median age of the most likely calibrated age probability distribution, they failed ~874 

years apart. In cases like these, the younger landslide (Day Lake landslide) deposit likely 

had a lower initial surface roughness than the older landslide (Church Mountain 

landslide), allowing time for erosional processes and soil diffusion to smooth the surface 

of the older, rougher landside deposit faster. Geomorphic transport laws and the 

exponential form of the age roughness regression itself support this observation (Roering 

et al., 1999; LaHusen et al., 2020).  

Aside from natural variability in initial landslide deposit surface roughness, there 

are several sources of error in the roughness analysis itself. Calculating the roughness of 

a landslide deposit involves several steps, that may all introduce their own source of 

error. To start, we must have a compiled inventory of mapped landslide deposits. 

Landslide mapping is inherently subjective in nature, introducing human error to the 

analysis (Wills and McCrink, 2002). Here, the WA-DNR mapped most of the deposits 

dated by our age-roughness model, however, of the 392 DNR deposits in our inventory, 

we revised 54 and mapped an additional 55 for a total of 447 mapped landslide deposits. 

Despite following the same mapping protocol, one interpretation of a deposit boundary 

may differ from another, affecting the overall mean roughness of a deposit, biasing the 

age estimate one way or the other. The calculated roughness of the deposit can also be 

biased by the automatic removal of stream gullies and roads. Although we defined a 

drainage area threshold based on comparison to deposits with manually removed stream 

gully networks, removing stream gullies based on this threshold will inherently 
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overpredict the stream gully network for some deposits, and underpredict for others. For 

example, manual removal of stream gullies resulted in a larger total deposit area for the 

Bonneville landslide but a smaller total deposit area for the Day Lake landslide. These 

over and underpredictions suggest we chose a representative drainage area threshold, as it 

doesn’t consistently over predict or underpredict the manually mapped stream gully 

network. Similarly, removing roads from all our mapped deposits using a road layer from 

WA-DNR provides an efficient alternative method to manually removing roads from 

every deposit. However, abandoned logging roads and private ways are not included in 

this dataset, consequently introducing higher roughness values along the roads’ sharp 

edges, biasing the deposits roughness towards a higher value. Furthermore, we must 

consider the error associated with the lidar data used to compute roughness. Here, we use 

0.9 m resolution DEMs, but natural variations in point densities throughout the point 

cloud used to create the DEM’s can result in artifacts and differences in roughness (Berti 

et al., 2013). These areas appear as a mesh of triangulated facets and can result in lower 

roughness values due to their smooth interpolated appearance.  

Considering these sources of uncertainty, we note this roughness dating technique 

is not meant for obtaining precise absolute ages of individual landslides within a 

specified region but is rather a more generalized landslide chronology tool that can be 

used to investigate broadscale spatial and temporal patterns in landsliding. Although the 

age estimates produced by our roughness model are less accurate than using traditional 

geochronology techniques such as radiocarbon dating or dendrochronology to date the 

447 landslides in our study area, we show roughness dating is a powerful and practically 
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feasible tool for estimating the ages of several hundred landslides over broad swaths of 

land to better understand their driving mechanisms. 

Similar to the age-roughness dating technique, our kinematic analysis provides a 

method to better understand what controls landslides, specifically how bedrock 

orientations may or may not control the spatial pattern of landsliding across a large 

region. This analysis is informative for looking at broadscale patterns, however, and may 

not be suitable for identifying the exact failure style of an individual landslide. 

Interpolation techniques heavily rely on dense data. With low data density, error is 

introduced into the interpolated result. In the case of our kinematic analysis, areas lacking 

attitude measurements may be assigned incorrect dip direction and dip angle values, 

which will then translate into our final susceptibility rasters. Furthermore, the 203 

landslides underlain by slopes susceptible to planar sliding or flexural toppling were 

determined based on the criteria that they intersect with any of these susceptible regions. 

In some cases, landslide deposit polygons minimally intersect with cells in the 

determined susceptibility rasters in locations that may not accurately reflect the source 

area of a particular landslide, demonstrating bedrock orientation may not be the 

predominant reason for failure for all 203 landslides. Moreover, the 40 landslides that 

have ages consistent with the MRE on the BCF and also overlie slopes determined to be 

susceptible to planar sliding, flexural toppling, or both, may have existed as threshold 

slopes prior to the EQ event, and then failed at the time of rupture.  
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6.0 Conclusion 

Determining the primary driving mechanisms of landslides within a region 

requires knowledge of the landslide chronology, yet dating landslides using traditional 

radiocarbon and dendrochronology techniques is not feasible at the regional scale. The 

lidar based surface roughness analysis preformed in this study provides means to 

overcome this barrier, allowing for regional scale investigations of landslide driving 

mechanisms. This is especially important in regions like Washington state, where long 

duration and/or high intensity rainfall, landslide conducive geology, and regional 

tectonics are all likely landslide triggers. Using a continuous wavelet transform with a 20 

m Mexican hat wavelet, we quantified deposit surface roughness of eight landslides of 

known age in Washington’s Cascade Range and combined those ages with data from the 

Oregon Coast Range to derive a Pacific Northwest bedrock landslide age-roughness 

model. We used this model to predict the age of 447 mapped bedrock landslides in the 

Nooksack Watershed, western Whatcom County, Washington. Landslide frequency 

broadly decreased nonlinearly with age, which we linked to a preservation bias. 

However, deviations from that overall trend were consistent with a simulated landslide 

frequency that incorporates coseismic landslide pulses at the times of known ruptures on 

the Boulder Creek fault in the past 4,000 years. This suggested roughly 9.5% of the 

landslides in our study area in the past 4,000 years were coseismic with the most recent 

earthquake on the Boulder Creek fault about 1,000 years before 2019. This was further 

supported by visually apparent spatial clustering of larger landslide deposits with ages 

between 768 and 1,234 years before 2019 near the trace of the Boulder Creek fault. Other 

spatial patterns in landsliding appeared to mainly reflect hillslopes where flexural 
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toppling is kinematically feasible. Our results suggest earthquakes and bedrock 

orientations, specifically those conducive to flexural toppling, influenced the spatial 

distribution of landslides throughout the Nooksack watershed, while an earthquake about 

1,000 years before 2019 also made a detectable mark on the temporal pattern.  

 These results are important for hazard assessment and planning, as they suggest a 

surface rupturing earthquake on the Boulder Creek fault will cause roughly 67 additional 

large, deep-seated bedrock landslides throughout the region. In addition to being 

hazardous themselves, these landslides have the potential to inundate rivers creating 

temporary dams that could eventually breach, resulting in catastrophic outburst floods. 

The associated floodwaters could rapidly flow towards Bellingham or smaller towns in 

the Nooksack watershed, resulting in extensive property and economic damage.  

 Our findings suggest the evolution of the Nooksack watershed is dominated by 

non-seismic landslides with occasional pulses of coseismic landslides. We can expect 

erosion rates to exceed the long-term average rates caused by tectonic uplift, especially 

after earthquakes on the Boulder Creek fault.  
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Appendix A. The Oso Landslide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Photo of the Oso landslide taken 42 days after the hillslope failed on March 

22, 2014. Figure adopted from Wartman et al., 2016. Although a landslide in glacial 

sediments, rather than bedrock, this landslide is similar in volume and area to landslides 

used in our study.   
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Appendix B. The Deforming Cascadia Forearc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Revised microplate model showing the overall clockwise motion of the 

Cascadia forearc. Figure from Wells and Simpson, 2001. The area of focus in this study 

is the region labeled N-S shortening, immediately south of the Canadian Coast Mountains 

buttress. As a result. this region hosts several Holocene active crustal faults, including the 

Boulder Creek Fault.  
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Appendix C. Field Work – Sampling: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. A) Blue deposit polygon for the Silver Fir landslide draped over a hillshade 

map derived from ~0.9m bare earth lidar imagery obtained from WA-DNR’s lidar portal. 

Sample locations are denoted as red pins with the corresponding sample name and GPS 

coordinates labeled accordingly. B) Large old growth log with a ~50 cm diameter 

protruding out from far back within the landslide deposit where we obtained sample 

“SilverFir-2” from. Note, for this landslide we could not take a clear picture of the log we 

obtained sample “SilverFir-6” from, as it was completely submerged in the Nooksack 

River.  
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Figure S4. A) Blue deposit polygon for the Canyon Creek landslide draped over a 

hillshade map derived from ~0.9m bare earth lidar imagery obtained from WA-DNR’s 

lidar portal. Sample locations are denoted as red pins with the corresponding sample 

name and GPS coordinates labeled accordingly. B) Moderately deteriorated log 

protruding from basal layer of deposit where we collected sample SGLR-6. C) Burnt 

wood fragment in upper layer of deposit where we collected sample SGLR-10. Note the 

difference in color between the surrounding clays in the basal and upper layers of the 

deposit. GSA scales are 10 cm. 
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Appendix D. Two-Dimensional Mexican hat wavelet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Figure from Booth et al. (2009) displaying a two-dimensional Mexican hat 

wavelet. 
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Appendix E. Landslide Failure Styles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Schematic illustrations displaying planar failure and toppling failure. Figure 

modified from Hearn (2011). 
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Appendix F. Oregon Coast Range Mean Roughness Values (LaHusen et al., 2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Mean roughness values for landslides of known age in 

the Oregon Coast Range (LaHusen et al., 2020). 

Landslide Roughness (1/m) 
Age (Years before 

2019) 

Little Mill  0.0379 7 

NA 0.0197 15 

Cummins Peak  0.0226 15 

NA 0.0205 249 

NA  0.0212 350 

Holt Log Res 0.0212 295 

Sitkum 0.0154 3000 

Drift Creek 0.0195 44 

Loon Lake 0.0163 1500 

Little Lobster 0.0225 268 

Triangle Lake 0.00892 41800 

Burchard Lake 0.0205 129 

Esmond Lake 0.02 129 

Eddy Creek 0.00861 40900 


	Most Recent Rupture on the Boulder Creek Fault Triggered Bedrock Landsliding in the Nooksack Watershed, Whatcom County, Washington
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1674841683.pdf.6Z5vI

