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ABSTRACT 

An abstract of the thesis of Yun Yan for the Master of Science in Electrical and 

Computer Engineering presented on June 5, 1997. 

Title: ERP Analysis Using Matched Filtering, Correlation Coefficient and 

Mann -Whitney Test 

Event related potentials (ERPs) carry very important information that 

relate to the performance of the brain functions of a human being. Further 

studies have identified that the late positive complex (LPC) are affected by the 

memory process. 

The matched filter method is used to improve the signal -to-noise ratio 

of signal ERPs. We use the output of the matched filter to distinguish the dif­

ference of the waveforms. In our study, we found that the peak values of the 

matched filter output differed among normal subjects and memory-impaired 

subjects. 

The correlation coefficient is a statistical value that can be applied to find 

the degree of association between two EEG files. When there is a strong 

association between them, knowing one EEG file helps in predicting the other 

one. 

A nonparametric statistical test, The Mann - Whitney Test, is introduced 

to set up The Filter Bank and The Correlation Bank. These two banks are 

very useful since the recognition percentage or correlation coefficient by the 

elements of the banks can distinguish whether the test subject belongs to the 

normal memory group or to the memory impaired group. 
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CHAPTER 1 

INTRODUCTION 

Event related potentials (ERPs) carry very important information that re­

late to the performance of the brain functions of a human being. A number of 

studies have identified that one component, in particular, the late positive com­

plex (LPC), is affected by the memory process. The small amplitudes ofERPs 

are embedded in the ongoing electroencephalogram (EEG) signal which has an 

amplitude several times larger than ERPs plus other background noise. Thus, 

the signal -to-noise ratio (SNR) is less than 1: 1 ( 0 dB). This small SNR is one 

of the most difficult issues in the field of ERP analysis. 

The matched filter method is used to improve the SNR of signal ERPs. We 

use the output of the matched filter to distinguish the difference between wave­

forms from normal subjects and memory-impaired subjects. The concept of 

recognition percentage for each subject is introduced as one of the two fun­

damental parameters by our research, which we apply for our statistical 

Mann -Whitney test. 

Another parameter we compare while using the Mann -Whitney test is the 

correlation coefficient. Concerning the significant differences between the 

EEG files of all subjects, we want to calculate a value to tell how two EEG files 

relate to each other. The correlation coefficient serves as a measure of the 

extent to which two EEG files are dependent. 
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The Mann -Whitney test is a nonparametric test. From the recognition 

percentages and correlation coefficients of Group A (Normal Memory 

Subjects) and Group B (Impaired Memory Subjects), we apply them in the 

Mann -Whitney test to set up the Filter Bank and the Correlation Bank. The 

Filter Bank is composed of EEG files, which significant level of recognition 

percentage is under 0.05 by Mann-Whitney test. The Correlation Bank con­

sists of EEG files, which significant level of correlation coefficient is under 

0.05 by Mann-Whitney test. 

The last step of this research is to apply both the Filter Bank and the Cor­

relation Bank to the clinical analysis. First, we use each of the averaged EEG 

files by the sample points in the Filter Bank as a filter to calculate the recogni­

tion percentage of the test subject. With the calculation result and the rec­

ognition percentage Mean Value Table for the Filter Bank, we can evaluate 

the memory status of each test subject. Second, we use each EEG average file 

of the Correlation Bank and the EEG average file of test subject to calculate 

their correlation coefficients between them. With the calculation result 

and the Correlation Coefficient Mean Value Table for the Correlation Bank, we 

can analyze the special properties of the test subject. 

1.1 THESIS OUTLINE 

This thesis is organized as follows: 

Chapter 1 : INTRODUCTION - -General introduction about this thesis. 

Chapter 2: EVENT RELATED POTENTIALS- -An introduction of EEG 

signals and ERPs. We focus on the component of the late positive complex 

(LPC) which is related to the memory process. 
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Chapter 3 : EEG ANALYSIS USING MATCHED FILTERS- -A review of 

the theory of the matched filter and the use of the ensemble averaging of EEG 

signals (referred as AVG files) to design a matched filter to improve the signal­

to-noise ratio (SNR) of signal ERPs. After matched filtering, we analyze the 

ERPs by comparing the peak values of the different stimuli to get the value of 

the recognition percentage. The EEG signals of a total of 16 trials, 9 for 

normal subjects and 7 for memory-impaired subjects, are processed. The re­

sults show a comparatively clear pattern. The value tables of recognition 

percentage using each EEG file as a matched filter are given in this chapter. 

Chapter 4 : CORRELATION COEFFICIENT and MANN -WHITNEY 

TEST- -A review of the theories and applications of both correlation coeffi­

cients and Mann -Whitney test. Several related statistics concepts are 

introduced. The value tables of correlation coefficients between the AVG 

files are given in this chapter. We explain why we use the Mann - Whitney test 

here instead of the Student T-test, and how we use it with both Recognition 

Percentage Tables and Correlation Coefficients Tables to get The Filter Bank 

and The Correlation Bank. 

Chapter 5 : COMPARISONS and APPLICATIONS- -A comparison be­

tween P values of Mann-Whitney test for both correlation coefficient and 

recognition percentage. In the application section, we focus on how to use 

The Filter Bank and The Correlation Bank to analyze the test subjects. Anoth­

er brief comparison between Mann - Whitney test and Student T-test. 

1.2 NOTATION 

Z denotes the set of integers. 
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L2 denotes the Hilbert space of measurable, square-integral one dimen­

sional functions such that 

by 

1-1 

We denote the convolution of two functions .f{x) E £ 2 and g(x) E £ 2 as 

+ 00 

f(x) * g(x) = f lf(u) ldu * g(x - u)du 
1-2 

" The Fourier transform of any signal.f{x) is written by/(w) and is denoted 

+ 00 

/(w) = I f(x) * e-;.,,dx 1-3 

For any functionftx),fs(x) denotes the dilation of f(x) by the scale factors 

RP denotes the recognition percentage. 

CC denotes correlation coefficient. 

1-4 

ERPs:Event related potentials (ERPs) carry very important information 

that relate to the performance of the brain functions of the human being. In 

particular, the P300, or the late positive complex (LPC), are affected by the 

memory process. 

Matched Filter: It is a typical signal processing method to obtain the known 

signal from background. It yields a maximum signal-to-noise ratio when the 
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signal with additive noise, if the noise is the white noise, passes through it. We 

use output peak values from matched filter to calculate RP. 

Correlation Coefficient: It is a statistical parameter applied to find the de­

gree of association between two averaged electroencephalogram (EEG) files. 

Mann - Whitney Test: It is a nonparametric statistic test. It is used here 

to distinguish whether there is a significant difference between two group 

means by both recognition percentage and correlation coefficient. 

Recognition Percentage: It is calculated by the peak values of the matched 

filter output. 

EEG: Electroencephalogram is the recording of brain electric potentials 

varying in time at frequencies. ERPs are embedded in EEG signal. 

AVG file: Another most commonly used method to improve the SNR is en­

semble averaging of the signal. AVG file is the averaged EEG file, which can 

show fairly clear pattern for normal and impaired ERP waveforms. 

Nonparametric Test: It is a statistical procedures that doesn't require 

knowledge of the form of the probability distribution from which the measure­

ments come. 

LPC: Late Positive Complex of the long-latency components in the ERP waveforms 

which are affected by the memory process. 

Significant Level: The level of significance refers to the state ofbeing "statis­

tically significant". Once the level of significance is chosen the region of rejec­

tion a, also called the critical region, is decided upon. 

P value: P values report the smallest level at which the observations are 

significant, the level of just significance or the critical value. If the P value is 
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smaller than the nominal level, the observations are significant, and otherwise 

not significant. 

For EEG signals and the corresponding outputs of the matched filter, 256 

sampling points were used to sample each 1.024-second-long sweep, so each 

sampling point corresponds to 0.004 second. 

All EEG signals, including raw data and averaged ERP waveforms used in 

this thesis, were provided by the Erickson Memory Clinic and Research Center. 



CHAPTER 2 

EVENT RELATED POTENTIALS 

2.1 INTRODUCTION 

Brain signals research, which arises from the utilization of brain signal as 

clinical and research tools and its contributions to the basic understanding of 

the functions of the brain, has been a very important research issue. People 

seek to elucidate the fundamental steps for the various functions of the human 

brain and predict the functionally relevant diseases. Brain waves provide a 

classic example of a non-stationary, multi-dimensional signal processing 

problem. Being a main research resource, ERPs (Event Related Potentials) do 

carry very important information, but the low SNR and the variability of the 

latencies and amplitudes of the components make obtaining the information 

of brain function very difficult [1]. 

In this chapter, we introduce, in general, the ERP waveforms and electro­

encephalogram (EEG) signals and the memory event related potential- -the 

P300, or as it is sometimes termed, the late positive complex (LPC). A visual 

paradigm designed to elicit the LPC and the method to measure it and how to 

apply it will be explained in further chapters. 



8 

2.2 EVENT RELATED POTENTIAL WAVEFORMS 

2.2.1 ERP waveforms 

The fact has been confirmed that Event Related Potentials reflect a num­

ber of cognitive variables in a systematic manner. ERPs are elicited by the ap­

plication of sensory stimuli, e.g., visual or auditory, and are of a complicated 

transient nature characterized by a distinct onset and finite duration. 

ERPs may be especially useful for determining how much, or to what 

depth, processing is carried out upon relevant stimuli. The conventional ap­

proach is to model the ERP as a deterministic function for repetitive stimula­

tions, in which case the ensemble average of a number of responses will give 

the best estimate when the noise is random and is of zero mean. However, there 

is much empirical evidence that ERP waveforms vary randomly from stimulus 

and therefore much interest is currently focused on single ERP waveforms. 

2.2.2 Electroencephalogram -EEG Signal 

The Electroencephalogram (EEG) is the recording of brain electric poten­

tials varying in time at frequencies extending up to a few tens of cycles per se­

cond and measuring from a few microvolts up to a few millivolts. They are re­

lated to important aspects of information processing in the brain. These low 

voltages are measured by scalp electrodes placed at various positions and am­

plified by an EEG amplifier, the output of which drives various recording 
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instruments. The raw AVG file is the averaged raw EEG file by each channel. 

The method of averaging EEG signals can show fairly clear pattern for normal 

and impaired ERP waveforms. 

A number of studies have observed that the ERP waveform does not main­

tain a uniform shape. It differs with respect to electrodes distribution. In our 

study, after careful comparison, we use the data recorded from Cz [2] (nomen­

clature is from the International 10-20 System). See Figure 2.1 and the refer­

ence point referenced to a common ground, to be our experimented resource 

[3] [ 4]. Figure 2 .2 shows a frontal view of the skull showing the method of mea­

surement for the central line of electrodes [5] [6]. This method is designed to 

cover various brain regions and lobes, thus the labeling of the electrodes is in 

accordance with their location over brain structures. 
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EAR 

Figure 2.1 A single plane projection of the head, showing all standard positions 

and the location of the rolandic and sylvian fissures. 
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Figure 2.2 Frontal view of the skull showing the method of measurement for the 
central line of electrodes 

ERPs are measured using one or more scalp electrodes and most generally 

referencing the measurements to a body position such as linked ears that is lo­

cated some distance away from the area of the cortex where the response is ex­

pected. The amplitudes of the ERPs vary from tenths of a microvolt to tens of 

microvolts and are embedded in the ongoing EEG waveform whose amplitude 

is typically 10-30 u V, which is the recording of brain electric potentials varying 

in time at frequencies. Thus, in many instances the signal-to-noise ratio 

(SNR) is less than 1: 1 (0dB) [7]. It is this small SNR that makes waveform anal-
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ysis difficult. A segment of raw EEG signal is shown in Figure 2.3, we can not 

see the ERP waveform due to the noise. 
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Electrophysiologic investigations into cognitive process during the past 

two decades have identified certain evoked potential components ( termed 

event-related potentials, or ERPs) which appear sensitive to psychological fac­

tors [8]. Figure 2.4 shows the ERP waveform obtained by averaging 20 single 

trials of the auditory task. Each latency is related to one certain event. 

microvolts 

L 
15.1 

10.-

5 .. 

-10 

5 

-20 

P2 
Pl 

150 

Late Positive Complex 
; 

325 

milliseconds 

500 675 

Figure 2.4 Averaged ERPs of 20 signal EEG trials of low-tone-high-tone task 
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2.2.3 Memory Event Related Potential- - LPC 

Generally, a typical ERP waveform can be divided into three main seg­

ments: (1) Pl-Nl-P2-N2 complex. (2) Late positive complex component and 

(3) a late potential. An average of the 20 target trials is shown in Figure 2.3. 

Of chief interest among these has been the late positive complex, a positive wa­

veform peak having maximum excursion at around 300 milliseconds following 

stimulus presentation. 

Peak analysis is the simplest way of reducing the mass of data in an aver­

aged waveform so that the waveform can be specified in terms of a few num­

bers. Because a peak value usually appears at about 300 ms after stimulus, it 

is also called P300. It is a very important feature in brain waveform analysis. 

The latency varies with the subjects attention, alterness, age, stimulus proces­

sing speed and memory ability. 

The existence of an independent P300 related to specific cognition and stim­

ulus identification is no longer the issue. P300 components have been elicited 

under conditions of uncertainty when the stimulus delivers feedback concern­

ing the accuracy of a guess or of a judgment, in situations where the subject is 

required to make a choice response as soon after stimulus presentation as pos­

sible, and in situations where low probability targets are presented against a 

background of more probable nonsignals. In our research, we use MSprime 

task files to elicit P300, which will be discussed in detail in the next section. 
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The P300 represents a nonspecific reactive change of state subsequent to 

cognitive evaluation of significant stimuli. It is emitted when a subject recog­

nizes an important but unexpected stimulus. Its amplitude also depends very 

much, however, on the likelihoods or expectancies for the different classes of 

stimulus and responses that may be required. Also, it is relatively independent 

of the particular sensory modality, and largely unaffected by stimulus parame­

ters such as intensity, pitch, color, size, etc. Some investigators have postulated 

that P300 latency is a measure of the time required for such processes as stimu­

lus evaluation and categorization. They have found its latency to be relatively 

independent of processes underlying response selection and execution [9]. 
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Figure 2.5 Averaged normal ERPs of 40 single EEG trails of MSprime task 
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The ERP components have different relationships to stimulus probability 

and task relevance. Numerous studies have further distinguished positive 

components with latencies of 400 milliseconds and beyond with various rela­

tionships to processes of stimulus categorization, and response selection and 

execution. Current nomenclature for the series of components with latencies 

from 300-600 milliseconds is the 11late positive complex". Figure 2.5 is the av­

eraged waveform of a normal subject for MSprime task and Figure 2.6 is from 

a memory-impaired subject for the same task. We can easily find the differ-
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ence in the late positive complex between the normal and impaired ones. But 

the P300 component is not clear in Figure 2.6. It is embedded in the late posi­

tive complex. 

-300 .__ _______________ ...... 

0 256 
Sample Point 

Figure 2.6 Averaged memory-impaired subject ERPs of 40 single EEG trails of 

MSprime task 

The method of averaging EEG signals can show fairly clear patterns for 

normal and impaired ERP waveform. But the real challenge is to identify the 

waveform that varies significantly between demented and normal subjects 

from signal trials. 
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2.2.4 Visual Pattern Evoked Potentials and MS prime Task 

1. Visual Pattern Evoked Potentials 

Humans' eyes are an exquisite apparatus representing both an optical and 

a neuronal device. Light entering the eye must pass through transparent me­

dia: the cornea, the aqueous humor, the lens and the vitreous humor to reach 

the retina. The retina is a neuronal membrane lining the back of the eye cham­

ber. 

The most important human visual function is the ability to see and recognize 

objects. The general aim of pattern VEP studies is to advance our understand­

ing of the sensory aspect of this visual function and to clarify its physiological 

basis. 

Later aspects of the VEP incorporate the late positive complex (LPC) which 

is sensitive to processing word meaning, and match or mismatch in meaning 

(Fig 2.5). 

2. MS Prime Task 

In our studies we set up a semantic context by presenting three meaningful 

words visually, one word at a time. After every three related words, subjects 

would be asked to judge if the fourth ( target) word is related to the first three 

words. We want to examine in particular the properties of the LPC that would 

be elicited when the unexpected word that is semantically unrelated with the 
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previous three words is inserted at the end. The subjects were shown a total 

of 160 words on the screen. In one complete experiment, there are four groups 

of 40 sets. In each set we call the first three words "priming words". The fourth 

word, or target word, was presented after a warning tone. The target words 

were randomly interspersed to be related or unrelated along the train of 40 sets. 

Figure 2. 7 shows a example of a segment of the task. 

After the first three priming words: Lady, Clinic and Coat, a beep would in­

dicate to the subject that the target word would come next. The target word, 

"nurse", is related to the three priming words. For the second set, the target 

word, "button", is not related to its priming words: Indian, River, and Boat. 

For data analysis, we call all the priming words condition 1, the related words 

condition 2, and the unrelated words condition 3. 

1 1 2 

Set One 
lady clinic white coat nurse 

1 3 

Set Two Indian river boat button 

Figure 2. 7 Two Segments of the MSprime task. 
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In one single ERP trial, a signal is recorded from 200 milliseconds before 

the stimulus to 824 milliseconds after the stimulus using 256 sampling points 

(one every 4 millisecond). We call this single segment one sweep. One hundred 

and sixty 1.024-second-long EEG sweeps are combined into one file. 

In every set, we report only the ERP responses elicited by the first of the 

three priming stimuli and the corresponding target word. 

2.2.5 EEG Data Structure 

The raw data files from the clinic have two types: one is * .eeg, the other is 

*.avg. 

The structure and format of raw * .eeg files are as follows: 

1. The original data file is binary code. 

2. The content of the data should be integer. 

3. There are 24 channels recorded in each file, each channel has 256 time 

points, and there are 80 trials in one file. 

4. From the very beginning of the files, comes 

a. file header (900 bytes) 

b. 75 bytes subheader for each channel, so together 75 X 24= 1800 

bytes. 

c. data block: 
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first are 13 bytes for labelling the first sweep 

Coming next are data at first time point for 24 channels, 

each time point represented by 2 bytes (integer), low-byte appearing first, and 

then the high-byte (the highest bit is the sign bit). 

And then are the data at the second time point for 24 channels, 

etc., till the 256Th time point. 

Next should be 13 bytes for the second sweep, and then 

data for 24 channels of 256 time points, etc., till the 80 or 160 sweeps are com­

pleted. 

5. So the length of the binary code should be 

900 + 75 X 24 + (13 + 2 X 24 X 256 )X 80 =986780. 

6. Use "eeg" to read the *.eeg file. 

The structure and format of raw *.avg files are as follows: 

1. The original data file is binary code. 

2. The content of the data should be float. 

3. There are 24 channels recorded in each file, each channel has 256 time 

points. 

4. From the very beginning of the files, comes 
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a. file header 900 bytes. 

b. 75 bytes subheader for each channel, so together 7 5 x 24 = 1800 

bytes. 

c. data block: 

first are 5 bytes for labelling the first channel. 

coming next are mean value data of 256 time-point for the 

first channel, each time-point data has 4 bytes(float). 

following are variance value data of 256 time- point for the 

first channel, each time-point represented by 4 bytes (floating 

point). 

next are the 5 bytes for the second channel, and then mean 

value data of 256 time-point data for the second channel, 

etc., till the 24th channel. 

5. So, the length of the binary code should be (suppose only one 

sweep in one file): 

900 + 75 x24 + ( 5 + 4 x256 + 4 x 256) x 24 = 51972 

In our research, we only pick up Channel 4 data from the raw data files to 

apply for our EEG file and AVG files. 



CHAPTER 3 

EEG ANALYSIS USING MATCHED FILTERS 

3.1 INTRODUCTION 

Extraction of Event Related Potentials (ERPs) from the background EEG 

is an important issue in brain research [10]. A major problem in the extraction 

process is the poor Signal-to-Noise Ratio (SNR), which characterizes ERPs 

relative to the ongoing background cerebral activity. The most commonly used 

method to improve the SNR is ensemble averaging of the signal, time- locked 

to some external trigger. Many advanced methods that are currently under in­

vestigation, apply a variety of adaptive filtering techniques aimed at reducing 

the number of repetitions, ideally to a single trial. Some are based on an as­

sumed mean behavior of the underlying signal, by which they design optimal 

filters. Others assume a stationary model for ongoing EEG activity, and apply 

prewhitening techniques to the signal trials, hoping to reduce the noise with 

a minimal signal distortion. However, none of the suggested methods have yet 

become routine in brain research, due to a high complexity required for some, 

or only a minor signal improvement for others. 

In this chapter, the Matched Filter method is introduced and we demon­

strate how it is used to improve the SNR for single trial ERPs and then analyze 
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the ERPs. We also give the definition of the recognition percentage of a fil­

ter, and at the same time calculate recognition percentages by all filters. 

3.2 The MAXIMUM SNR OF THE OUTPUT 

3.2.1 The Maximum SNR of the Output 

Matched Filter is a linear time-invariant filter. Matched filter yields a 

maximum Signal-to-Noise Ratio when the signal with additive noise [11], if 

the noise is white noise, passes through it. Specifically, if the noise is a Gussian 

noise, then the matched-filter detector minimizes the probability of detection 

error when the threshold level is properly set. 

When we set up a system to get its output, we are interested in maximizing 

the peak pulse signal in the presence of additive noise, especially, in the case in 

which the signal pulse additive noise is passed through a linear time-invariant 

filter. Out of all filters, we want to yield a maximum output. 

Let the signal input to the filter be [j(t) + n(t) ], where ftt) is the signal and 

n(t) is the additive noise. The output of the filter is [fe(t) + no(t)] and we wish 

to maximize the ratio lfe(tm) I/ [no2(t)] 112, where t=tm is the best observation 

time ( to be set). Actually, as we shall see, it turns out to be more convenient 

to maximize the square of this ratio. 

Let the Fourier transform of j(t) be q;(ro) and let Jl(ro) be the frequency trans­

fer function of the desired optimum filter. Then we can write 

oc 

fo (t) = in I F(w) H(w) ~ 1dw 3-1 
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"' 

fo (tm) = in f F(w) H(w) ejw'mdw 3-2 

The power spectral density of the noise Sn(ro) , so that 

" 

ntJ(t) = in f s.(w) IH(w) I ejw'mdw 3-3 
-<X 

Dividing the squared magnitude of Equation 3-2 by 3-3, we get 

" f F(w) H(w) ejw1mdw I 

3-4 
" 

2H f s. (w) I H(w)Fdw 

"' 

At this point we make use of the Schwarz inequality 

" " "' 

I J /1(x) / 2(x) d(x) 12 
S f !fh)l2 d(x) I !fi(x)l2 d(x) 3-5 

The equality in Equation 3-5 holds if, and only if, 

3-6 

where 'l( is an arbitrary constant. 

Now we let the two functions in Equation 3-5 be identified with :Jf{ro) 

*[Sn(ro)]l/2 and 'r(ro)eiwtm;[sn(ro)]112, respectively, so that Equation 3-5 be-

comes 

"' " " 

f H(w)F(w) dw 12 s f I H(w)l2dw I I F(w) 12dw 3-7 

- "' 

Substitution of this result into Equation 3-4 gives 



27 

oc " 

f IF(w)l2dw f IH(w)12dw 

oc 

« 3-8 

11r f Sn (w) I H(w)l2dw 

For the special case in which case the noise is white, Sn ( w) = h/2, and we have 

3-9 

where E is the energy in f(t) for a 1-ohm load. The equality in Equation 

3-9 holds only if 

3-10 

or its inverse Fourier transform 

3-11 

The constant k is arbitrary and we assume 1(= 1 for convenience. And for 

the 

We conclude from this result that the impulse response of the optimum sys­

tem is the mirror image of the desired input signal f(t), delayed by an interval 

tm Hence the filter is matched to a particular signal , as conveyed by the ter­

minology "Matched Filter". 

g(t) = f(t) * f (tm - t) 

The result expressed in Equation 3-10 makes good sense intuitively when 

applied to the magnitude characteristic of a filter so that I J{(ro) I = ! 'F(ro) 1- This 
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result states that one should filter in such a way as to attenuate strongly those 

frequency components in frequency intervals having little relative signal ener• 

gy while attenuating very little those components where the relative signal en­

ergy is high [12]. Recall also that we are filtering for signal recognition in the 

presence of noise, not for signal fidelity. 

f(t) 

t 

f(t) 

t 

-T 0 

t=T 

t 

0 T 

Figure 3.1 The Matched Filter for a Physically Realizable System, minimum 
delay 
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The phase response is also very important and Equation 3-10 states that 

the phase shifts in f(t) should be negated in such a way that all frequency com­

ponents in f(t) add in phase at exactly the time t=tm. In contrast, the noise 

spectral components add with random phases so that the peak-signal-to­

rms-noise ratio is maximized. 

The signal representation f(t) is assumed to have a finite duration (O,T). 

The impulse response of the matched filter f(tm_t) can be obtained by folding 

.f( t) about the vertical axis and shifting it to the right by tm seconds. Restricting 

consideration to the physically realizable case with minimum delay, we choose 

tm= T. This is illustrated in Figure 3.1 

At the point t= tm, the signal output of the matched filter is given by substi­

tuting Equation 3-10 in Equation 3-2 with 1(=1: 

~ 

/o ~ f IF(w)l2dw = E 3-12 

Thus the output of the matched filter at t= tm is independent of the particular 

waveform chosen and depends only on its energy. The mean-square noise out­

put of the matched filter [Equation 3-12 in Equation 3-9] is: 

n2(t) = E !]_ 
0 2 3-13 

3.2.2 Test Algorithm 

According to the theory of matched filter, it is a very important step to find 

the reference signal and then build the matched filter which matches the pre-
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dieted nature of the signals that we are going to detect. The algorithm extracts 

the time-varying spectral contents of the reference signal, and uses the in­

formation to filter out the noise outside the relevant band for each component 

of the signals. 

The frequency response of the filter is designed to match content for consec­

utive time segments of the reference signal. Then, each segment of the signal 

trial is filtered by the reference filter. The procedure is applied to a series of 

signal trials, after which the processed trials are analyzed to obtain the clinical­

ly-relevant information [13]. 

1. The reference signal is obtained by ensemble averaging of N single trials 

N 

s(n) == tis,(n) 3-14 
i= I 

where Si(n) represents each single trial. 

2. Find the coefficients of a polynomial Pcxi of degree N that fits the refer­

ence signal 

3-15 

The experimental result showed that the 6th degree P<x) carries the most 

important characteristics of the reference signal. 

3. Using those seven coefficients, an approximate reference signal is eva­

luated as a vector x<n>• 

4. Fold X<11l about the vertical axis and shift it to the right by the duration 

length of this reference signal (L=256 points). This is the waveform that is go­

ing to be used as matched filter h(n)=X(L-n)• 
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5. As we know from section 3.2., the convolution integral Y(n) of X<n) and h<n) 

has the maximum result at time t=T or n=L. It is the same result of the auto­

correlation of X<n)• So 

Y 111(,;c(n) = Y(L) 

= x(n) * h(n) 
+~ 

= f x(1:)h(L - 1:)d1: 

= I x(1:)x(L - 1:)dr 

and / will be used as the normalization coefficient. 
(L) 

3.3 MATCHED FILTERING OF ERPs 

3.3.1 Design of Matched Filter 

In clinics, doctors have run thousands of EEG files, during the last two de­

cades, to obtain averaged ERP waveforms. Their experiments report some rep­

resentative waveforms for normal and memory-impaired subjects. However, 

those waveforms are not available in electronic format. In our limited data of 

EEG signals, we found that the averaged ERP waveform of one of the young 

and normal subjects is closest to the previous average for normal subjects in 

clinics, according to the knowledge of the doctors. The first reference signal to 

design the matched filter in this thesis is obtained by averaging 40 single ERP 

trials of a young and normal subject, shown as Figure 3.2 (a). 

After carefully considering energy distribution of the averaged EEG wave­

form and comparing its approximate polynomial functions at different degrees, 
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we choose a polynomial P(x) of degree 6 to approximately fit the waveform in Fig­

ure 3.2 (a). This is shown in Figure 3.2 (b). Seven coefficients of the 6th degree 

polynomial function are calculated. 
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Figure 3.2 (a)Normal AVG File 
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Figure 3.2 (d): The Matched Filter 



36 

60000 ...-----.---"'T"""--r----r---r---r-, 
I I f t t 

----J-----~----~----J-----~----~-t 1 t I I 

50000 
I I I f t I ----~-----r----1··--~-----r----,-
• I I I 

----~-----~----~----~-----~----~-• I 

40000 
I I I ----~-----r----,----~-----r·---1-
• ' ' 

----~-----► ----►----•-
I - 30000 > 

I t • I 

----~----- ---r·---i-
E - , I I 

----~-----~ ---·----~ ----~----~-
Q.) 

"O 20000 
.. ~ 
ci 
E 

' I f I t I 

----~---- -----1----~-----~----1-• t t I I t 
I I I I 

----~--- -r----T----~--- -r•-·-T· 
I I I I I I 

<( 10000 .... J .. --~----l----J-••• ~----l-
1 I 1 t I 

I I I t t I 

----~ ----r-···T----~-----r ---~-
, I I I t 

0 --- J-----~----~----J-----~-- -~-I I 

I I I I ----~-----r----,----~-----r----1-
I 

-10000 ----~-----~----~----~-----~----~-
' I I 
I I t I i ----~-----r··-·r·---~-----r··--7-

-20000 
0 40 80 120 160 200 240 

Sample Point 

Figure 3.2 (e): Auto-correlation of the matched filter 

Figure 3.2 The design procedure of the matched filter 

a0_ 7 =[0.0000, -0.0000, 0.0000, -0.0031, 0.1121, -1.0840, -2.8531] 

Using these seven coefficients, the 6th degree polynomial function P<n) is 

evaluated at 1 < n < 256, which is shown in Figure 3.2 (b). We found that the 

values of the first half of this waveform are all very low. This means that the 

first half contains very little energy and information. So only the second half 

is chosen as the characteristic waveform (shown in Figure 3.2 (c)) which will 

be used to build the matched filter. 
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Figure 3.2 (d) is the matched filter, after folding and shifting P<x} 128 points 

to the right. Figure 3.2 (e) is the auto-correlation of P<x>· We choose the maxi­

mum value G as the energy normalization constant, where 

+"' 

G Rp(128) I lp(n)l 2 4.405e + 4 3-16 
"' 

The matched filter output Y<n> is obtained by convolutingthe matched filter 

with the signal trial. 

3.3.2 EEG Signal Processing Using Matched Filter 

Figure 3.3 (a) is 20 sweeps of the EEG raw signal of a normal subject and 

Figure 3.3 (b) is the output of the matched filter. Figure 3.4 (a) is 20 sweeps of 

EEG signal of a memory-impaired subject and Figure 3.4 (b) is the matched 

filter output. We can observe that after the matched filtering, the ERP wave­

forms are very clear. Each strip is for one EEG sweep which contains 256 time 

points and there is one high peak in almost every sweep. The peaks with values 

beyond the normalization range [ -1, 1] are considered to be caused by the eye­

blinks. 
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Figure 3.3 The matched filtering result of 20 sweeps of EEG signal of a nor­
mal subject 
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Figure 3.4 The matched filtering result of 20 sweeps of EEG signal of a 
memory-impaired subject-Page 37 
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3.3.3 ERP Analysis 

Now the ERP analysis can be performed by using the output of the matched 

filter. 

1. Find and record the maximum value in each sweep so there are a total 

of 80 peak values, corresponding to the 80 sweeps. The time latencies where 

the peaks occur are also saved in a vector for further analysis. 

2. In each set, we are only interested in the target word and its first priming 

word. While being asked to make a judgement on a relationship or nonrelation 

of the target word after three priming words, the averaged ERPs suggested that 

the normal subjects have larger ERP responses than the impaired subjects. 

3. We compare the peak values between each target word (both related and 

unrelated) and the corresponding to its first priming word. The value 0.1, 

which is the 10 percent of the maximum value of the auto-correlation of the 

reference signal which was modeled from a normal ERP waveform, is chosen 

as a threshold. Medically, there is a significant difference between the two 

conditions. For conditions 2 and 3 , the percentages that the peak values are 

higher than that of their first condition 1 are computed respectively. 

4. If either the condition 1 or the target word causes an eyeblink, then the 

comparison will not be made on that set. The normalization helps to remove 

the peak values that were caused by the eyeblinks, but the normalization 

causes some error. We will discuss it later. 

3.3.4 Analysis Result 
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On Table 3.1, Column one is the patient number, totally 12 patients. Col­

umn 2 is the patient's group number: Group 1 ( normal subjects group and 

Group 2 ( memory impaired subjects group). Column three is the patient's rec­

ognition percentage by filter MAT12. From Table 3.1, we observe that in the 

normal subjects group (Group 1), there are only two exceptions, subject 02 and 

subject 06, whose recognition percentages are below 40%. For all other subjects 

they are above 40%. As for the impaired subjects (Group 2), the recognition 

percentages are obviously lower than those of the normal subjects. Only sub­

ject 11 is an exception. Its recognition percentage is higher than 30%. 

We noticed that for a few cases using the normalization to detect eye blinks 

is not very accurate. On one hand, for some memory-impaired subjects, the 

waveforms are very low, even some eyeblink peaks are still in the range of nor­

malization. And on the other hand, for some very active normal subjects, some 

regular responses are out of range. Even though those are just a few cases, they 

did cause some errors in our results. 
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Group MAT12 

1 1 48.4 

2 1 14.2 

3 1 48.4 

4 1 50.0 

5 1 52.6 

6 I 25.0 

7 1 75.0 

8 I 59.3 

9 1 56.7 

IO 2 12.0 

11 2 31.5 

12 2 26.3 

13 2 16.7 

14 2 8.82 

15 2 20.0 

16 2 5.26 

Table 3.1 The ERP Analysis Result Using Matched Filter MAT12 

3.3.5 Recognition Percentages By Different Matched Filter 

In the last section, we used the averaged ERP waveform of a young and nor­

mal subject as our reference filter. Now, since we are not quite sure if this EEG 

file is a very good reference filter, we want to use each EEG file as a reference 

filter to obtain each recognition percentage value. We will use these results 

in the Mann -Whitney statistics test to get the Matched Filter Bank for our 

clinic application. 
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Group Nl N2 .N3 

1 1 30.3 30.3 9.00 

2 1 10.7 10.7 0.00 

3 I 36.3 36.3 I 8.1 

4 1 50.0 50.0 50.0 

5 1 0.00 0.00 0.00 

6 I 15.0 15.0 7.5 

7 1 50.0 50.0 25.0 

8 1 37.5 37.5 18.7 

9 1 54.0 16.2 2.70 

10 2 14.8 14.8 0.0 

11 2 26.3 26.3 15.7 

12 2 5.26 5.26 2.60 

13 2 5.55 5.55 2.77 

14 2 0.0 0.00 0.0 

15 2 2.85 2.85 2.85 

16 2 0.0 0.00 0.0 

Table 3.2 Recognition Percentage Table for Nl N2 N3 
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Gro Al A2 A3 
up 

1 1 60.6 39.3 45.4 

2 1 32.1 3.57 7.14 

3 1 51.5 33.3 39.3 

4 1 .00 50.0 50.0 

5 1 42.1 36.8 26.3 

6 1 17.5 27.5 27.5 

7 1 66.6 .00 .00 

8 1 62.5 28.0 28.0 

9 1 54.0 8.10 8.10 

10 2 22.2 7.40 7.40 

11 2 42.1 52.6 47.3 

12 2 21.0 23.6 18.4 

13 2 30.5 13.8 8.30 

14 2 16.2 18.9 10.8 

15 2 48.5 40.0 25.7 

16 2 21.0 10.5 5.26 

Table 3.3 Recognition Percentage Table for Al, A2 and A3 
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Gro JMl JM2 EX2 
up 

1 1 21.0 24.0 21.2 

2 I 3.0 3.0 3.57 

3 I 24.0 21.0 33.3 

4 1 0.0 0.0 50.0 

5 1 21.0 21.0 15.7 

6 1 10.0 10.0 12.5 

7 1 0.0 0.0 25.0 

8 1 15.0 15.0 34.37 

9 1 5.0 5.0 8.1 

10 2 0.0 0.0 11.1 

11 2 26.0 26.0 10.5 

12 2 0.0 0.0 5.26 

13 2 2.0 2.0 2.77 

14 2 0.0 0.0 0.0 

15 2 2.8 2.0 5.71 

16 2 5.0 5.0 5.26 

Table 3.4 Recognition Percentage Table for JMl, JM2 and EX2 
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Gro ESl ES2 OWi OW2 AMI 
up 

1 1 18.0 21.0 21.2 33.3 21.2 

2 1 0.0 3.0 3.57 0.0 0 

3 1 21.0 33.0 21.2 12.1 9.0 

4 1 50.0 50.0 34.0 50.0 50.0 

5 1 0.0 15.0 15.8 26.3 31.5 

6 1 12.0 12.0 5.0 7.5 7.50 

7 1 41.0 25.0 8.3 25.0 0.0 

8 1 31.0 34.0 21.8 25.0 3.12 

9 1 8.0 8.0 5.4 5.4 5.40 

IO 2 3.0 11.0 0.0 0.0 0.0 

11 2 10.0 10.0 5.2 l 5.7 5.26 

12 2 2.0 5.0 2.6 0.0 0.0 

13 2 5.0 2.0 5.5 5.5 2.77 

14 2 0.0 0.0 0.0 0.0 0.0 

15 2 2.0 5.0 2.85 2.8 0.0 

16 2 0.0 5.0 0.0 5.26 10.52 

Table 3.5 Recognition Percentage Table for ES!, ES2, OWl, OW2 and AMI 



CHAPTER 4 

CORRELATION COEFFICIENT AND MANN­

WHITNEY TEST 

4.1 INTRODUCTION 

Correlation coefficient is a statistical parameter that allows to find the 

degree of association that exists between two EEG files. A high correlation 

coefficient proves the existence of a close mathematical relationship between 

the two EEG files. The correlation coefficient ranges from -1 to + 1. A 

minus sign indicates negative correlation, and a plus sign indicates a positive 

correlation. 

If there is a strong association between two EEG files, then knowing the 

subject memory status of one subject helps in predicting the other's memory 

status. In the opposite case, the weak association between them makes it diffi­

cult to guess the memory status of one subject by knowing the other one. From 

this point, we calculated the correlation coefficients between all the EEG 

files that were received from the clinic. 

The Mann -Whitney test is a nonparametric statistical test method. As 

for the nonparametric method [14], the population, from whose random sam­

ples are taken, does not have to be normally distributed. This assumption fits 

the properties of EEG signals very well. In our research, the Mann -Whitney 
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test is applied to find whether there exists a significant difference between two 

population means from Group 1 (the normal memory group) and Group 2 (the 

memory impaired group). 

For the Mann-Whitney test, there are two inputs: one is the recognition 

percentages, the other is the correlation coefficients. The significant lev­

el for this research was selected to be 0.05. The outputs from the Mann -Whit­

ney test are shown in the later part of this chapter. With recognition per­

centage mean values or correlation coefficient mean values, the outputs 

can distinguish Group 1 from Group 2. Future applications in the clinic ap­

plication will be discussed in the next chapter. 

4.2 CORRELATION COEFFICIENT 

The statistical techniques that have been developed to measure the amount 

of association between variables are called the correlation methods. A statisti­

cal analysis performed to determine the degree of correlation is called a correla­

tion analysis. The statistics used to measure correlation is the correlation 

coefficient. Therefore, correlation coefficient is a measurement of the 

relationship between two variables. 

4.2.1 The Mean of Sample 

The arithmetic mean, which is simply referred to as "the mean", is the 

most commonly used average [15]. It is the sum of the values observed divided 

by the number of observations summed. The statistical average of a random 

variable X ( or a function of a random variable) is the numerical average of the 

values which X ( or a function ofX) can assume, weighted by their probabilities. 
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If X =x1 is observed n1 times, X =x2 is observed n2 times, etc., until, finally, 

X=xk observed Ilk times, then n1 + n2 + ... + Ilk =N and the observed value 

lS 

N 

X=.l"'x NL., I 

i=I 

4 - l 

4.2.2 The Variance and Standard Deviation of Sample 

The variance of a set of samples give us a method to handle the problem 

of signs of deviations from the mean. Each deviation from the mean, which is 

IXi - XI ( i=l,2 ... n), will be squared, and then the results will be added. By 

the squaring operation, the deviations from the mean will sum not to 0, but to 

a positive number. Each deviation will contribute to the sum of squares, re­

gardless of the sign. This sum of squares can be regarded as a measure of the 

total dispersion of the distribution. By dividing the sum by N, the number of 

items in the sample, we obtain the mean of squares of deviations, a measure 

called the variance of the distribution. As a formula, the variance of a sample 

set X of n observations commonly designated Sx 
2, is 

s 2 
X 

i=I 

n - 1 
4-2 

The standard deviation of a set of samples is the most widely used mea­

sure of dispersion. The value of the standard deviation tells how closely the val­

ues of a data set are clustered around the mean. In general, a lower value of 

the standard deviation for a data set indicates that the values of that data set 

are spreading over a relatively smaller range around the mean. On the other 
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hand, a large value of the standard deviation for a data set indicates that the 

values of that data set are spreading over a relatively larger range around the 

mean. 

The standard deviation is obtained by taking the positive square root of 

the variance. The variance calculated for population data is denoted by s2. 

Consequently, the standard deviation calculated for the sample data is denoted 

by s. Following are the basic formulas that are used to calculate the variance 

of a sample set X. 

s = X 4 - 3 

Because of the operation of squaring, the variance is expressed in the square 

unit, and not in the original unit. It is therefore necessary to extract the square 

root to restore the original unit. The measure of dispersion thus obtained is 

called the standard deviation. 

4.2.3 Sample Covariance and Correlation Coefficient 

For a sample of n elements with the corresponding pairs of data values x1, 

X2, ... , Xn, Y1, Y2, ... , Y,,, similar to the sample variance, the sample covariance 

of samples set X aruf 'Y is defined by the following equation: 

n I (X; - X)(Y; - Y) 
i=l 

n 4 4 
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With defination of sample variance and sample covariance, now we can de­

fine the sample correlation coefficient: 

n I (X; - X)(Y; Y) 
r sx,· i=I 4 5 s,s,. = n n (I (X, X)2 X L(Y; _ f)2]1/2 

i=I i=i 

-1 < r < 1 

The correlation coefficient rserves as a measure of the extent to which 

X and Y are dependent. When r =O, the random variables X and Y are said to 

be uncorrelated . 

From Equations 4-4 and 4-5, we conclude that if two random variables are 

statistically independent, then they are uncorrelated. However, the converse 

is not necessarily true. 

The correlation coefficient r should exhibit two characteristics: 

1. It should be large when the variables are closely associated and small 

small when there is little association. 

2. It must be independent of the units used to measure the variables. 

Summary of correlation coefficient: 

The correlation coefficient is a pure number, without units. It is not 

affected by: 
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1 interchanging the two variables; 

2 adding the same number to all the values of one variables; 

3 multiplying all the values of one variable by the same positive number. 

4.3 CORRELATION COEFFICIENT OF AVG FILES 

Considering that we will use statistical methods to analyze the correla­

tion coefficient, we calculated all the correlation coefficient values of our 

average files. In the later part of this chapter, the Mann - Whitney test will be 

applied for these correlation coefficients. 

We selected 29 independent EEG files to calculate their correlation coef­

ficients. On Table 4.1, Column 1 is the patient number, totally 16 patient. 

Column 2 is the group number of the patient. Column 3 is the correlation 

coefficients between MAT12 and sixteen patients. And so are Column 4 by 

Nl Column 5 by N2 and Column 6 by N3. 

In addition, we calculated the correlation coefficients between Al, A2, ... , 

ES2 and sixteen patients. The results are shown from Table 4.2 to Table 4.8. 

The total number of coefficient column from Table 4.1 to Table 4.8 is 33. 
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Group MAT12 Nl N2 N3 

1 1 -.220 0.00 .000 -.10 

2 2 .08 .020 .020 .200 

3 1 .3 .360 .360 .390 

4 2 .98 .829 .800 .830 

5 1 .58 .290 .290 .330 

6 2 .21 .310 .310 .230 

7 1 .21 -.06 -.06 -.03 

8 1 .80 .380 .380 .440 

9 1 .31 -.45 .210 .220 

10 1 .19 .270 .270 .266 

11 1 12 -.05 -.05 -.20 

12 2 .29 .390 .390 .460 

13 2 .27 -.12 -.12 -.11 

14 2 -.14 .300 .300 .310 

15 1 .13 .020 .000 .000 

16 2 .46 .290 .290 .350 

Table 4.1 Correlation Coefficient Table for MAT12, Nl, N2 and N3 



54 

Group Al A2 A3 JMl JM2 

1 1 .00 .460 .370 .23 .18 

2 2 -.39 .340 .00 -.14 -.15 

3 1 -.28 .310 .00 .0 .0 

4 2 .480 -.99 -.98 .99 .90 

5 1 .510 .470 .490 .63 .60 

6 2 -.14 .070 .00 -.06 .00 

7 1 -.20 .300 .360 .31 .50 

8 1 .200 .500 .00 -.27 -.20 

9 l -.45 .00 16 -.20 -.20 

10 1 19 .200 .190 .0 .04 

11 1 -.36 .240 -.06 13 -.13 

12 2 -.08 .330 .310 .25 .22 

13 2 -.20 13 -.30 -.20 -.25 

14 2 .35 .360 .260 .23 .09 

15 1 -.29 .210 .240 .10 .02 

16 2 .250 .480 .360 .30 .36 

Table 4.2 Correlation Coefficient Table for Al, A2, A3, JMl and JM2 
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Group OWI OW2 JSl JS2 

1 1 -.10 -.11 .33 .28 

2 2 -.19 -.02 -.67 -.73 

3 1 .00 -.17 .86 .86 

4 2 .32 .29 -.05 .05 

5 1 -.06 -.11 .84 .85 

6 2 .27 -.02 -.70 -.64 

7 1 -.04 -.08 1.0 .93 

8 1 .24 -.09 .40 .47 

9 1 .01 -.24 .60 .68 

10 1 .40 .01 .33 .45 

11 1 .17 .00 .70 .73 

12 2 .03 .08 -.71 -.77 

13 2 .23 -.04 .07 .13 

14 2 1 .52 -.04 .03 

15 1 .00 .35 .26 .22 

16 2 -.01 .23 .39 .33 

Table 4.3 Correlation Coefficient Table for OWl, OW2, JSl and JS2 
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Group AMI AM2 EXl EX2 

1 1 .38 1 15 .15 

2 2 .42 .00 -.26 -.31 

3 1 .00 .35 -.01 .05 

4 2 -.26 -.15 1.0 .37 

5 1 -.01 .39 .IO .25 

6 2 -.36 -.33 .32 -.26 

7 1 -.01 .33 -.05 .19 

8 1 -.53 .17 .29 .00 

9 1 -.40 .25 .17 -.07 

10 1 -.57 .07 .47 .03 

11 1 -.26 .28 .33 .25 

12 2 .08 -.16 -.07 -.29 

13 2 -.19 .05 -.01 -.45 

14 2 -.18 -.10 .32 .12 

15 1 -.02 -.13 .20 .51 

16 2 .34 .01 -.05 .44 

Table 4.4 Correlation Coefficient Table for AMl, AM2, EXl and EX2 
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Group MLI HRI HR2 RGI RG2 

1 I .05 .39 .37 -.13 .12 

2 2 .01 -.59 -.60 -.20 -.51 

3 1 .18 .87 .79 -.06 .46 

4 2 -.01 .10 .03 .20 .29 

5 1 .04 1 .82 . 18 .41 

6 2 .20 -.62 -.68 -.35 .19 

7 1 .07 .84 .84 .26 .31 

8 1 .43 .57 .39 .04 .77 

9 1 .47 .69 .55 -.07 .76 

10 1 .36 .50 .38 -.11 .78 

11 1 .23 .83 .70 .18 .64 

12 2 .13 -.64 -.61 -.07 -.23 

13 2 1 .04 -.09 -.28 .49 

14 2 .23 -.06 -.06 .00 .27 

15 1 -.28 .18 .26 1.0 -.24 

16 2 -.43 .20 .34 .30 -.37 

Table 4.5 Correlation Coefficient Table for MLI, HRI, HR2, RG 1 and RG2 
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Group MB2 LM2 SB2 OWl OW2 

1 1 .28 .17 .01 -.10 -.11 

2 2 -.62 -.49 -.30 -.19 -.02 

3 1 .75 .50 .18 .00 -.17 

4 2 .33 .29 -.05 .32 .29 

5 1 .83 .57 .20 -.06 -.11 

6 2 -.33 .04 -.52 .27 -.02 

7 1 .70 .40 .39 -.04 -.08 

8 1 .79 1.0 -.51 .24 -.09 

9 1 .81 .85 -.28 .01 -.24 

10 1 .78 .86 -.37 .40 .01 

11 1 1 .80 -.05 .17 .00 

12 2 -.48 -.15 -.54 .03 .08 

13 2 .23 .43 -.43 .23 -.04 

14 2 .17 .24 -.01 1.0 .52 

15 1 .18 .04 .30 .00 .35 

16 2 -.05 -.51 1.0 -.01 .23 

Table 4.6 Correlation Coefficient Table for MB2, LM2, SB2, OWl and OW2 
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Group MCI MC2 LSI LS2 

1 I 16 -.08 .24 .25 

2 2 .73 .68 -.59 -.63 

3 I -.64 -.53 .62 .71 

4 2 -.07 -.30 .35 .17 

5 1 -.64 -.66 .69 .69 

6 2 .54 .23 -.19 -.18 

7 1 -.70 -.57 .50 .60 

8 1 -.15 -.85 .78 .85 

9 I -.45 -.74 .82 1.0 

10 1 I -.73 .80 .78 

11 1 -.48 -.83 .80 .81 

12 2 1.0 .36 -.49 -.45 

13 2 .13 12 .25 .47 

14 2 .03 -.19 .09 .01 

15 1 -.07 -.39 .00 -.07 

16 2 -.54 .12 19 -.28 

Table 4. 7 Correlation Coefficient Table for MCl, MC, LSI and LS2 
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Group CMl CM2 ESl ES2 

1 1 .00 .13 .10 .35 

2 2 1.0 .86 .44 -.61 

3 1 -.61 -.43 .08 1.0 

4 2 -.26 -.30 -.32 -.01 

5 1 -.59 -.42 .04 .87 

6 2 .24 .14 -.43 -.58 

7 1 -.67 -.53 .09 .86 

8 1 -.49 -.45 -.43 .50 

9 1 -.63 -.55 -.39 .71 

10 1 -.59 -.50 -.52 .50 

11 1 -.62 -.51 -.18 .75 

12 2 .73 .58 .23 -.64 

13 2 .01 -.05 -.12 .18 

14 2 -.19 -.09 -.16 .00 

15 1 -.20 -.37 .19 -.06 

16 2 -.30 -.18 .27 .46 

Table 4.8 Correlation Coefficient Table for CMl, CM2, ESl and ES2 

4.4 MANN-WHITNEYTEST 

4.4.1 Testing of Hypothesis- -Statistical Inference 

Statistical Hypothesis 

A statistical hypothesis is a tentative statement about one or more parame-

ters of a population or a group of populations. We make only tentative state­

ments concerning the parameters, or the state of nature, since we are not per-
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fectly certain about the values of parameters. The primary function of 

inferential statistics is to assist us in reaching sound decisions in spite of uncer­

tainties. As a matter of fact, this function is of such importance that modern 

statistics has been referred to as the "study of decision making in the face of 

uncertainty." 

Hypothesis Testing 

To test a hypothesis in statistics, sample data are collected and used to cal-

culate a test statistic. The symbol Ho designates the null hypothesis, and H1 

designates the alternative hypothesis. In most cases, the null hypothesis is the 

one that asserts the absence of any effect claimed for a certain action or treat­

ment. Depending on the value of the statistic, the null hypothesis HO is ac­

cepted or rejected. The critical region for HO is defined as the range of values 

of the test statistic that corresponds to a rejection of the hypothesis at some 

fixed probability of committing a type I error. A type I error means erroneously 

rejecting the null hypothesis. The test statistic itself is determined by the spe­

cific probability distribution sampled, and by the parameters selected for test­

ing [16]. 

For example, we may test the hypothesis that the population mean m is 

equal to mo against the alternative hypothesis that mm is not to mo; that is, 

Ho: m= mo 
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reject Ho 
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Figure 4.1 Region of rejection for testing Ho: m =mo against H 1 : m mo 

Significant Level 

The level of significance refers to the state of being "statistically signifi­

cant". Once the level of significance is chosen the region of rejection a, also 

called the critical region, is decided upon. See Figure 4.1. 

P Value 

P values report the smallest level at which the observations are significant, 

the level of just significance or the critical value. If the P value is smaller than 

the nominal level, the observations are significant, and otherwise not signifi­

cant [17]. 

The general procedure used for testing a hypothesis is as follows: 
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1. Assume an appropriate probability model to describe the behavior of the 

random variable under investigation. This choice should be based on previous 

experience or intuition. 

2. Formulate a null hypothesis and an alternative hypothesis. This must 

be done carefully to permit meaningful conclusions to be drawn from the test. 

3. Specify the test statistic. 

4. Choose a level of significance a for the test. 

5. Determine the distribution of the test statistic and the critical region for 

the test statistic. 

6. Calculate the value of the test statistic from a random sample of data. 

7. Accept or reject HO by comparing the calculated value of the test statistic 

with the values defining the critical region. 

4.4.2 Nonparametric Test 

This nonparametric method of statistical procedures is one that does not 

require knowledge of the form of the probability distribution from which the 

measurements come. Since nonparametric methods do not require assump­

tions about the form of the population probability distribution, they are often 

referred to as distribution-free methods. 

From this discussion we see that one reason for using nonparametric meth­

ods is that in some situations there is insufficient knowledge about the form 

of the population distribution. Thus the assumptions, which are necessary for 

the use of parametric tests, cannot be made. 
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The second reason for using nonparametric methods concerns the data 

measurement. The nonparametric methods are often applied to the rank or­

dered or preference data. Such data differ from the continuous data that we 

are more familiar with in the sense that the usual numerical measures (e.g., 

mean, standard deviation, etc.) are not applicable. Preference data are the type 

of data generated when people express preference for one product over another, 

one service over another, etc.. Parametric procedures cannot be applied with 

these data, but nonparametric ones can. 

The nonparametric methods, nonetheless, have their advantages by being 

easy to apply. They are relatively simple and easy to explain and understand 

[18]. 

The test, like other nonparametric tests, does not require rigid assump­

tions about the populations from which samples are taken. The only assump­

tion needed is that the values of the random variable on which two groups are 

to be compared are continuously distributed. In actual practice, however, no 

serious difficulty will be encountered even if this assumption is not met. 

In this section we present a nonparametric statistical test to determine if 

there are any differences between the two populations. The nonparametric test 

is based upon independent random samples from each population. 

4.4.3 Mann -Whitney Test Theory 

Test Hypothesis 

The properties of the rank sum will be developed here under the assump-

tion that X 1, X 2, ••• , X,, 1, Y1, Y2, ••• , Y,,2 are independent observations drawn from 
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two populations and for the null hypothesis that the populations are equiva­

lent. 

The hypotheses tested were 

Ho: m = m o The two populations are identical 

H 1: m =pm O The two populations are not identical 

The null hypothesis to be tested is that two samples independently taken 

come from two populations having the same mean. Thus the Mann -Whitney 

test is another useful alternative to the parametric Student T-test when we 

wish to avoid the assumptions required under the Student T-test. It is also 

referred to as the U test since the test statistic U is computed from sample data 

for testing the null hypothesis. 

U Value with its Mean and Variance 

The U test is usually employed when two independent samples are involved 

[ 19]. Suppose that two samples, 1 and 2, with n 1 and n 2 observations respective­

ly, are independently selected and the n 1 + n 2 scores from both samples are ar­

ranged in an array of a descending or ascending order [ 15]. A rank is assigned 

to each score according to its magnitude. That is, the lowest score is assigned 

rank 1, the next lowest rank 2, and so on. Then one of the two samples, say 

sample 1 which has n 1 observations, is chosen, and the sum of its ranks is com­

puted. Let us call this sum RL The test statistic U is defined as 

U = ( Largest Possible Value of RI or R2) - R 

4-6 
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Similarly, U can be obtained by using the formula 

4-7 

where R2 is the sum of the ranks in sample 2 with n 2 observations. The two 

formulas may yield two different values for U. What will be actually used is the 

smaller of the U values. The larger value is designated U'. Before employing 

the test, we should check whether we have found U or U' by comparing it with 

n1 X n,j2. Iftheresultingvalueislargerthan n1 X n,j2, itis then U', and the value 

U can be obtained by applying the equation: 

4-8 

It can be demonstrated that if the two populations are identical, the sam­

pling distribution of U can be approximated for large n 1 and n 2 by a normal dis­

tribution with 

4-9 

and standard deviation 

4-10 

Accordingly, we determine the significance of an observed U value by com­

puting the standardized normal score 
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4.4.4 Mann-Whitney Test Sample 

Sample Test Hypothesis 
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4-11 

As to illustrate how the U test is used, let us suppose that we wish to deter-

mine whether the annual sales volume achieved by salesmen who have gra­

duated from college differs from the volume achieved by have failed to obtain 

a college degree. The null hypothesis is there is no difference between the two 

means. Let G and F stand for two groups of salesman, respectively. Suppose 

further that a random sample of 10 college-graduated salesman (n 1=10) and 

another sample of 21 salesman without a college degree (n 1=21) are indepen­

dently selected. The sales volumes and the ranks are shown in Table 4.9 . Note 

that, for this example, RI = 98 and R2 = 398. The value of U is found by substi­

tuting the observed quantities in Equation 6 as follows: 
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Salesman G Annual sales volume $ Salesmen F Annual sales volume in $ 

1 82 (in thousands) 1 92 

2 75 2 90 

3 70 3 90 

4 65 4 89 

5 60 5 86 

6 58 6 85 

7 50 7 83 

8 50 8 81 

9 46 9 81 

10 42 10 78 

11 76 

12 73 

13 72 

14 71 

15 68 

16 67 

17 66 

18 64 

19 63 

20 52 

21 40 

Table 4.9 Annual sales volumes of college-graduated salesmen, G, and 
salesmen without a college degree, E 
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Sales Volume, $ Salesmen G Salesmen F Rank 

40 21 l 

42 10 2 

46 9 3 

50 7 4.5 

50 8 4.5 

52 20 6 

58 6 7 

60 5 8 

63 19 9 

64 18 10 

65 4 l1 

66 17 12 

67 16 13 

68 15 14 

70 3 15 

71 14 16 

72 13 17 

73 12 18 

75 2 19 

76 11 20 

78 10 21 

81 9 22.5 

81 8 22.5 

82 I 24 

83 7 25 

85 6 26 

86 5 27 

89 4 28 

90 3 29.5 

90 2 29.5 
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92 1 31 

R1=98 R2=398 

Table 4.10 Annual sales volumes and rank of college-graduated salesmen, 
G, and salesmen without a college degree, F 

Sample U Value with its Mean and Variance 

which is greater than n1 Xn/2=10(21)/2=105. Thus the U value that we 

should use is 

U=10(21)-167=43 

You should check that Equation 4-7 will yield the same value for U. 

U = R
2 

- nz(nz 
2 

+ l) = 398 - 231 = 167 

For n 1 and n2 each less than 20, the smaller value of U is referred to the U 

table of critical values for determining whether the null hypothesis of no differ­

ence between the two means should be rejected. Since in this example n 2 is 

greater than 20, the normal approximation, and not the U table, will be 

employed 

and 
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_ jn 1n2 (n1 + n2 + I) 
= ✓10*21 *(I~+ 21 + I) = 23.66 Ou - 12 

thus 

.z = U-µu 
= 43 - 105 = - 2.62 Ou 23.66 

If the level of significance is chosen at a=0.01, the critical Z values are ± 
2.575. Thus we don't reject the null hypothesis, but conclude that the annual 

sales volume achieved by salesman without a college degree is not equal to the 

volume for salesman with such a degree. 

4.5 TEST FOR CORRELATION COEFFICIENTS 

Test Hypothesis 

The hypotheses tested were : 

Ho: m = m0 The correlation coefficient means from two groups are identi­
cal. 

H1: m mo The correlation coefficient means from two groups are not 
identical. 

Test Results for Correlation Coefficient 

From previous research, we have all the correlation coefficients. Since 

we eventually want to select the EEG files that could distinguish between the 

normal memory group and the memory impaired group, the Mann -Whitney 

test is applied here for MAT12, Nl, ... , LSI. The input data is from Table 4.1 

to Table 4.8. 
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After calculating the P value for each averaged EEG file, the test result is 

as follows in Table 4.11. Column One is the number of averaged AVG file. Col­

umn Two is the patient group number. Column Three is the file names we gave. 

Column 4 is the P values from the Mann-Whitney test for the correlation 

coefficients. 

Group AVG File PValue 

1 1 MAT12 .223 

2 I NI .67 

3 1 N2 .31 

4 1 N3 .56 

5 2 Al .9156 

6 2 A2 .83 

7 2 A3 .831 

8 2 JMl .71 

9 2 JM2 .87 

10 1 JSl .0026 

11 1 1S2 .0018 

12 l AMI .42 

13 1 AM2 .0036 

14 2 EXl .71 

15 2 EX2 .22 

16 2 MLl .49 

17 1 HRl .0012 

18 1 HR2 .0012 

19 1 RGI .31 

20 1 RG2 .04 

21 1 MB2 .0026 

22 l LM2 .0129 

23 2 SB2 .22 

24 2 OWi .3 I 



25 2 OW2 .03 

26 2 MCI .009 

27 2 MC2 .0026 

28 1 LSI .005 

29 1 LS2 .0036 

30 2 CMl .0005 

31 2 CM2 .0036 

32 1 ESI .43 

33 1 ES2 .005 

Table 4.11 Mann-Whitney Test Results for Correlation Coefficient 

4.6 TEST FOR RECOGNITION PERCENTAGES 

Test Hypothesis 

The hypotheses tested were 
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H0: m =mo The recognition percentage means from two groups are identi­
cal. 

H1: m =j:.m o The recognition percentage means from two groups are not 
identical. 

Test Result for Recognition Percentage 

From previous research, we have all recognition percentages. In order 

to select the EEG files, which could distinguish between the normal memory 

group and impaired memory group, the Mann-Whitney test is applied here for 

MAT12, Nl, ... , LSl. The input data is from Table 3.1 to Table 3.5. 

After calculating the P value for each filter, the test result is as follows in 

Table 4.12. Column One is the filter number. Column Two is the patient group 

number. Column Three is the subject names we gave. Column Four the P val­

ues from the Mann -Whitney test for the recognition percentages. 
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Group Subject P Value 

1 1 MAT12 .0128 

2 1 Nl .138 

3 1 N2 .0225 

4 1 N3 .09 

5 2 Al .112 

6 2 A2 .957 

7 2 A3 .368 

8 2 JMl .384 

9 2 JM2 .196 

10 1 ESl .216 

11 1 ES2 .454 

12 2 OWl .0049 

13 2 OW2 .0189 

14 1 AMI .0729 

15 2 EX2 .0095 

Table 4.12 Mann-Whitney Test Results for Recognition Percentage 



CHAPTER 5 

COMPARISONS AND APPLICATIONS 

5.1 INTRODUCTION 

With the application of the Mann -Whitney statistic test, we obtained the 

P values for both recognition percentage and correlation coefficient. 

In this chapter, we will discuss how to use these test results and when to use 

them. 

Since different statistical tests need very different assumptions, it may be 

easily confused to use the Student T-test instead of the Mann-Whitney test, 

which happened in our early research. Here we briefly introduce the Student 

T-test, its test results and the comparison between the results from these two 

tests. 

In the clinic applications, we set up two banks: The Filter Bank and The 

Correlation Bank. First, we use every filter in the Filter Bank to calculate the 

test subject's recognition percentage. There is a Mean Value Table for The 

Filter Bank, which can be used to view the test subject's memory status. Sec­

ond, we use all the elements of The Correlation Bank to calculate the correla­

tion coefficients between the test EEG file and all elements in the Correla­

tion Bank. There is also a Mean Value Table for The Correlation Bank to 

analyze the linear correlation between the two subjects. 
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5.2 COMPARISONS OF MANN -WHITNEY TEST RESULTS 

5.2.1 Test Results Analysis 

In this research, the significant level is set at a =0.05 by Dr. Erickson's ex­

perience. The Mann-Whitney test results for 22 filters are in Table 4.12. We 

select the subjects for which the P value is less than 0.05, and build up Table 

5.1. These elements can distinguish the recognition percentage mean value 

of normal group from the recognition percentage mean value of memory 

impaired group at significant level a =0.05. There are five filters in this table 

which are AVG files. We name them The Filter Bank. In our application sec­

tion, we will use each element in this bank to calculate their recognition per­

centages. 

On Table 5.1, Column One is the filter number. Column Two is the group 

number of each filter. Column Three is the the name of each filter. Column 

Four is the P value of each filter by the Mann -Whitney test. 

Group Subject P Value 

1 1 MAT12 .0128 

2 1 N2 .0225 

3 2 OWl .0049 

4 2 OW2 .0189 

5 2 EX2 .0095 

Table 5.1 The Filter Bank 
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In the same way, we observe the Mann -Whitney test results for correla­

tion coefficient in Table 4.11, select 16 elements, which the P value is less 

than 0.05 and set up Table 5.2. These elements can distinguish the correla­

tion coefficient mean value of normal group from the correlation coeffi­

cient mean value of memory impaired group at significant level a =0.05. It 

is named The Correlation Bank. 

On Table 5.2, Column One is the AVG file number. Column Two is the group 

number of each AVG file. Column Three is the the name of each AVG file. Col­

umn Four is the P value of each AVG file by the Mann -Whitney test. 

Group Subject P Value 

1 1 JSl .0026 

2 1 JS2 .0018 

3 1 AM2 .0036 

4 1 HRl .0012 

5 1 HR2 .0012 

6 1 RG2 .04 

7 1 MB2 .0026 

8 1 LM2 .0129 

9 2 OW2 .03 

10 2 MCl .009 

11 2 MC2 .0026 

12 1 LSl .005 

13 1 LS2 .0036 

14 2 CMl .0005 

15 2 CM2 .0036 

16 1 ES2 .005 

Table 5.2 The Correlation Bank 
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From these two tables, we realize that it needs different subjects for differ­

ent functionalities. For instance, concerning the recognition percentage, 

it needs MAT12, NORMAL2, OWl, OW2 and EX2 as filters. Concerning the 

correlation coefficient, it needs JSl, JS2, AM2, HRl, HR2, RG2, MB2, 

LM2, OW2, MCl, MC2, LSl, LS2, CMl, CM2 and ES2 to involve in the correla­

tion operations. 

5.2.2 Comparison between Two Results 

From Table 5.1 and Table 5.2, we can see that both the matched filter meth­

od and the correlation method are efficient in the memory signal processing. 

They both have produced The Filter Bank and The Correlation Bank which can 

work on the test subject's EEG file together. 

Since there are five filters in Table 5.1, and there are sixteen AVG files on 

Table 5.2, it is not difficult to tell that the correlation method is better than the 

matched filter method in this kind of research. However, different methods 

create different ways to analyze the memory signal, which will be applied in dif­

ferent aspects. 

5.3 APPLICATIONS OF MANN-WHITNEY TEST RESULTS 

5.3.1 Filter Bank 

The Filter Bank is a EEG files set, which includes averaged MAT12, N2, 

OWl, OW2 and EX2 files. After a test subject raw EEG file is filtered by each 
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element in the bank, its recognition percentage value will be used to adjust 

whether the subject has normal memory or impaired memory. 

5.3.2 Filter Bank Means 

FILTERS Group RP MEANS RP MEANS 
FOR NOR- FOR IM-
MAL SUB- PAIRED SUB-
JECT JECT 

1 MAT12 1 47.73 22.52 

2 N2 1 29.76 7.8 

3 OWl 2 15.14 2.3 

4 OW2 2 20.51 4.19 

5 EX2 2 22.65 5.8 

Table 5.3 Mean Table for The Filter Bank 

When we analyze the test subject EEG files, the recognition percentage 

after being filtered by the bank element is an important parameter to apply for 

future research. Table 5.3 is the conference table for the recognition per­

centage means. Column One is the filter number. Column Two is the group 

number of each filter. Column Three is the mean values of recognition per­

centage for normal subjects by each filter. Column Four is the mean values 

of recognition percentage for memory impaired subjects by each filter. 

Table 5.4 is almost the same as Table 5.3 except that we create another column 

to fill up the test subject's recognition percentages by each filter so that we 

can compare the distances between Group One and Group Two 
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by: 

D1 = j(MAT12N - RPMAT12)2 + (N2N - RPN2)2 + ... + (EX2N - RPEX2)2 

D2 = j(MAT12/ - RPMAT12)2 + (NU - RPN2)2 + ... + (EX2/ - RPEX2)2 

In the above equations and by Table 5.3: MAT12N is 47.73, N2N is 29.76, 

... , EX2N is 22.65. MAT12I is 22.52, N21 is 7.8, ... , EX2I is 5.8. RPMAT12 is 

the recognition percentage value of the test subject by the filter MAT12, 

RPN2 is recognition percentage value of the test subject by the filter N2, 

... , RPEX2 is the recognition percentage value of the test subject by the fil­

ter EX2. If D 1 is large than D2, the test subject belongs to normal memory 

group. If D2 is larger than D1, the test subject belongs to memory impaired 

group. 

FILTERS GRO RP MEANS RP MEANS RP MEANS 
UP FOR NOR- FOR TEST FOR IM-

MAL SUB- SUBJECT PAIRED 
JECT SUBJECT 

1 MAT12 1 47.73 22.52 

2 N2 1 29.76 7.8 

3 OWl 2 15.14 2.3 

4 OW2 2 20.51 4.19 

5 EX2 2 22.65 5.8 

Table 5.4 Test Sheet for Recognition Percentage 

In clinic application, we first record the raw EEG file of the test subject. Then we 

calculate recognition percentages of this test subject by each filter in the Fil­

ter Bank and fill up Table 5.4. The next step is to calculate D1 and D2 to decide 

which group the test subject belongs to. 
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5.3.3 Correlation Bank 

The Correlation Bank is a averaged set of EEG files, which includes JSl, 

JS2, AM2, HRl, HR2, RG2, MB2, LM2, OW2, MCl, MC2, LSl, LS2, CMl, 

CM2, ES2. The correlation coefficients between the average file of the test 

subject EEG file and each element in the correlation bank will be supplied to 

Dr. Erickson to do further memory analysis. 

5.3.4 Correlation Bank Means 

After Table 5.4 is filled up, we calculate D 1 and D2. We could decide wheth­

er the test subject belongs to the normal memory group or to the memory im­

paired group by comparing D1 and D2. 

Table 5.5 is the conference table for the correlation coefficient means. 

Column One is the average EEG file number. Column Two is the group number 

of each AVG file. Column Three is the mean values of correlation coeffi­

cient for normal subjects by each file. Column Four is the mean values of cor­

relation coefficient for memory impaired subjects by each file. Table 5.6 is 

almost the same as Table 5.5 except that we create another column between two 

mean columns to fill up the correlation coefficients of the test subject with 

each element in the Correlation Bank. 
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CORRELA- CC MEANS CC MEANS 
GROUP TIONSET FOR NOR- FOR IM-

MAL SUB- PAIRED SUB-
JECT JECT 

1 1 JSl .5907 -.2463 

2 1 JS2 .6080 -.2280 

3 1 AM2 .3009 -.0984 

4 1 HRl .6513 -.2234 

5 1 HR2 .5666 -.2387 

6 1 RG2 .4453 .0199 

7 1 MB2 .6791 -.1080 

8 1 LM2 .5764 -.0213 

9 2 OW2 -.0493 .1467 

10 2 MCl -.3994 .2594 

11 2 MC2 -.5976 .1133 

12 1 LSl .5836 -.1081 

13 1 LS2 .6238 -.1263 

14 2 CMl -.4876 .1759 

15 2 CM2 -.4034 .1381 

16 1 ES2 .6079 -.1704 

Table 5.5 Mean Table of The Correlation Bank 

In clinic application, we create the averaged EEG file (AVG file) from the raw EEG 

file of the test subject. Then we calculate correlation coefficients of this AVG 

file with each element in the Correlation Bank and fill up Table 5.6. 

First, when the subject in the Correlation Bank represents some special 

memory characteristic, we predict that this test subject has the same character­

istic if the correlation coefficient between this file in the Correlation Bank 

and the test file is near 1. Second, if the correlation coefficients between 
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the files in the Correlation Bank and the test file is near the mean values, the 

doctor will do further comparisons between both two EEG waveforms and two 

AVG waveforms to analyze the memory status of the test subject. These ap­

plications will be done by the doctor's personal clinic experience. 

COR- CC MEAN CC MEAN CC MEAN 

GROUP RELA- FOR FOR FOR IM-
TIONSET NORMAL TEST PAIRED 

SUBJECT SUBJECT SUBJECT 

1 1 JSl .5907 -.2463 

2 1 JS2 .6080 -.2280 

3 1 AM2 .3009 -.0984 

4 1 HRl .6513 -.2234 

5 1 HR2 .5666 -.2387 

6 1 RG2 .4453 .0199 

7 1 MB2 .6791 -.1080 

8 1 LM2 .5764 -.0213 

9 2 OW2 -.0493 .1467 

10 2 MCI -.3994 .2594 

11 2 MC2 -.5976 .1133 

12 1 LSI .5836 -.1081 

13 1 LS2 .6238 -.1263 

14 2 CMl -.4876 .1759 

15 2 CM2 -.4034 .1381 

16 1 ES2 .6079 -.1704 

Table 5.6 Test Sheet for The Correlation Bank 

5.4 COMPARISONS BETWEEN TESTS 

5.4.1 Comparisons of Two Test Assumptions 
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Student T-test Assumptions: The population variances must be identical. The pop­

ulation from which random samples are taken must be normally distributed. 

Mann-Whitney Test Assumptions: No requirements for both the population vari­

ances and the population distribution from which random samples are taken. 

The nonparametric tests are used to determine if two populations are iden­

tical. The parametric test, such as the Student T-test described before test the 

equality of two population means [19]. When we reject the hypothesis that the 

means are equal with the parametric methods, we conclude that the popula­

tions differ only in their means. When we reject the hypothesis that the popula­

tions are identical using nonparametric tests, we cannot state how they differ. 

The populations could have different means, different variances, and/or differ­

ent forms. Nonetheless, if we had assumed that the populations were the same 

in every way except for the means, a rejection of the null hypothesis using a 

nonparametric method would have implied that the means differed. The major 

advantage of the nonparametric methods, however, is that they don't require 

any assumptions about the form of the probability distribution from which the 

measurements come [20]. 

5.4.2 Student T-test 

One of the Student T-test assumption is that the population from which 

random samples are taken is normally distributed [21]. The normal distribu­

tion is one of many probability distributions that a continuous random variable 

can possess. It is also the most important and most widely used of all the proba­

bility distributions. A large number of phenomena, such as the test scores in 
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a graduate record examination, are normally distributed either exactly or 

approximately. The continuous random variables representing every different 

thing in our world have all been observed to have a (approximate) normal dis• 

tribution. 

The Normal Function : 

f(x) = _l _e-<x-u)2/2a
2

. 

a.fiii 
5-1 

First of all, it must be assumed that the random variable Xis normally dis• 

tributed. 

The Standard Normal Distribution-Z score 

Z = ( X-µ )/cr 5-2 

For the standardized normal variable Z, Equation 5-1 becomes: 

f(Z) = 5-3 

From Equation 5-2, if X is replaced by its estimate X, and er is replaced by its 

estimate s:r 

X-µ 
t = _A....;_. 5-4 

Sx 

Then Equation 5-4 is known as the t ratio. 

5.4.3 Comparison of Two Test Results 

On Table 5.7, Column One are the filter numbers. Column Two is the group number 

of each filter. Column Three is the filter name of each filter. Column Four is the P value 
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of each filter by the Student-T test. Column Five is the P value of each filter by the Mann­

Whitney test. 

TTest M-WTest 

Group Subject P Value P Value 

1 1 MAT12 .0269 .0128 

2 1 N2 .0251 .0225 

3 2 OWl .0318 .0049 

4 2 OW2 .0219 .0189 

5 2 EX2 .0002 .0095 

6 1 NI .0038 

7 1 N3 .0061 

8 1 AMI .0342 

Table 5. 7 Comparison Table for The Filter Bank 

On Table 5.8, Column One are the AVG file numbers. Column Two is the group num­

ber of each AVG file. Column Three is the name of each AVG file. Column Four is the 

P value of each AVG file by the Student-T test. Column Five is the P value of each AVG 

file by the Mann-Whitney test. 
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TTest M-WTest 

Group Subject P Value P Value 

1 1 JSl .0001 .0026 

2 1 1S2 .0001 .0018 

3 1 AM2 .0001 .0036 

4 1 HRl .0001 .0012 

5 1 HR2 .0001 .0012 

6 1 RG2 .026 .04 

7 1 MB2 .0001 .0026 

8 1 LM2 .0065 .0129 

9 2 OW2 .0165 .03 

10 2 MCI .0005 .009 

11 2 MC2 .0018 .0026 

12 1 LSI .0008 .005 

13 1 LS2 .0003 .0036 

14 2 CMI .0032 .0005 

15 2 CM2 .0108 .0036 

16 1 ES2 .0001 .005 

17 2 Al .031 

18 2 A2 .0007 

19 2 A3 .0001 

20 1 MAT12 .0283 

21 1 NI .0001 

22 1 N2 .0001 

23 1 N3 .0001 

Table 5.8 Comparison Table for The Correlation Bank 
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5.5 CONCLUSION 

Since EEG signal analysis is very difficult, our research has involved devel­

oping several quite different methods. As for the successful ones, first we 

introduced the matched filter to improve the signal-to-noise ratio (SNR) of 

ERPs. Removing eyeblinks in the EEG files, before using the matched filter, 

further improved the poor SNR. Recognition percentage of the matched 

filter gives us one parameter concept about a subject's EEG file. 

Second, correlation coefficient is another parameter concept, which 

uses AVG files instead of the original EEG files. It is a statistical analysis meth­

od to measure the degree or the amount of association between two EEG files. 

This parameter is very important as long as we know about one of the subject's 

memory status, also if the correlation coefficient between these two files is 

high, and then we can deduce about the test subject's memory status. 

Third, with the application of the Mann -Whitney statistic test for both 

recognition percentages and correlation coefficients, we set up two 

banks: The Filter Bank and The Correlation Bank. They are very useful in the 

clinic application since the recognition percentage and correlation coef­

ficient by each element of the banks can distinguish whether the test subject 

belongs to Group One ( normal memory group ) or Group Two ( impaired 

memory group ) . 

There have been also many unsuccessful methods that we have used in this 

research for the memory processing like using wavelet transform. With more 

EEG files in the further clinic application, we believe that our Filter Bank and 

Correlation Bank will be improved, and provide more potential applications as 
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we discussed in Section 5.3. Dr. Erickson can discover more useful applications 

from these test results in the further memory processing research. 

With the guidance of Dr. Li and Dr. Erickson in the last three years, I worked at creat­

ing recognition percentages myself (working together with Xueming Li for three 

months), creating correlation coefficients myself, creating eye-blink data 

files myself, applying both the Student-T test and the Mann-Whitney test to 

our research myself and using the Mann -Whitney test results in the clinic ap­

plications myself. 
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