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ABSTRACT 

An abstract of the thesis of Terrence Chadwick Smith for the Master 

of Science in Mechanical Engineering presented June 13, 1997 

Title: Limitations of Methods for Determining the Position of the 

Center of Mass of a Human Subject Performing a Sit-Up 

The knowledge of the position of the center of mass of a human 

subject performing a sit-up could help us understand the 

coordination of the sit-up motion. This thesis investigates the limits 

in three methods of determining the center of mass of a human 

subject. The three methods are the anthropometric method, the 

dynamic method, and the static torque method. The anthropometric 

method is a standard method that uses measurements of the subject 

to estimate the mass properties of individual segments of the body. 

The center of mass of the body is calculated from the mass and 

positions of the center of mass of the segments. A Monte Carlo 

simulation was executed to calculate the uncertainty of using the 

anthropometric method. Estimated errors were introduced in the 

Monte Carlo simulation to determine the uncertainty of the center of 

mass calculation. The results of the analysis show that the 

uncertainty of the center of mass calculation is + 2.66 cm for this 

model. The largest contribution of the uncertainty is the estimation 

of the mass of the segment. The dynamic method used the relations 

between the mass properties, the motion and ground reaction forces 

to solve the least squares approximation for the mass and moments 



of inertia of the segments. The least squares approximation resulted 

negative masses and moments of inertia for some of the segments. 

The static method does not require separate knowledge of the mass 

and location of the center of mass. This method determines two 

coefficients per segment that combine the mass and its location. The 

center of mass of the body can be calculated from the location and 

angle of orientation of the segments. This method was determined to 

be limited by the precision of the force platform measurements. 
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Chapter 1 

Introduction 

Sitting-up is a voluntary active movement of the body axis 

performed in two stages, flexion of the upper body followed by 

flexion of the hips. Many neuromuscular disorders affect the 

coordination of axial movement, yet most of our knowledge on 

motor coordination has come from studies of limb movement. It 

is hypothesized that, during the sit-up, the central nervous 

system controls the location of the body center of pressure to 

coordinate the two stages of sitting-up. 

The center of pressure has static and dynamic components. To 

differentiate these two components, knowledge of the body 

center of mass is required. The goal of the project presented m 

this thesis was to identify an accurate method of determining the 

body center of mass. This study shows that the standard method · 

using anthropometric measurement does not produce accurate 

results. Two other methods based on static and dynamic 

analysis were developed in the course of this study that also did 

not yield satisfactory results. The three methods have different 

approaches and different strengths, but the limitations of the 

mass estimates in the anthropometric method and measurement 

precision in the dynamic and static methods must be resolved 

before the accuracy is improved. 
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The separation of the static and dynamic contributions to the 

center of pressure will only be meaningful if the resolution of the 

center of mass is less than the resolution of the center of 

pressure. The distance between the center of pressure and the 

center of mass cannot be directly measured, but the magnitude of 

the static and dynamic forces can be estimated by comparing the 

magnitude of the force platform measurements to the weight of 

the subject. In an average sit-up of a subject weighing 740 N, the 

range of reaction forces acting on the table is 680-800 N. The 

contribution of the static forces to the center of pressure is 

significantly greater than the contribution of the dynamic forces, 

and the maximum deviation of the center of pressure from the 

center of mass due to the dynamic forces is approximately 3.5 

cm. The resolution of the center of pressure is + 1.2 cm, which is 

large in comparison to other measurements. The maximum range 

in of the center of pressure during the sit-up movement is 25-30 

cm. Therefore, the uncertainty of the center of pressure is 4-5% 

of the range. The coordination of the sit-up movement involves 

timing of muscle activation. The precision of the muscle 

activation timing is obtained from eletromyogram (EMG) 

recordings, and it is significantly better than the uncertainty of 

the movement time of the center of pressure. Therefore, for the 

separation of the contributions of the dynamic and static 

components to be meaningful, the precision of the center of mass 
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should not be greater than the resolution of the center of 

pressure. 

The goal of this study is to determine if the location of the center 

of mass of a subject performing a sit-up can be determined with 

a sufficient resolution. The location of the center of mass can be 

used to differentiate the contributions of the static and dynamic 

forces to the center of pressure. Therefore, the resolution of the 

center of mass should be less than the resolution of the center of 

pressure. Whole body motion involves a complex system of joints 

and muscles controlled by the central nervous system. The joints 

act as axes of rotation for the segments of the body. The muscles 

cause the segments to rotate about the joints. The forces on the 

segments are due to the internal forces of the muscles and joints, 

external ground reaction forces, force due to gravity, and inertial 

forces due to the acceleration of the segments. The sum of the 

forces over the segments of the body results in the total ground 

reaction force acting at the center of pressure. Assuming that all 

ground reaction forces act upward, the center of pressure must 

lie inside the points that are in contact with the ground. 

Therefore, to lift a segment off the ground, the center of pressure 

must not be located under it. The central nervous system 

controls the motion of the body parts during a sit-up such that 

the center of pressure takes a series of favorable positions, the 

segments are lifted, and the sit-up succeeds. The initial position 

of the center of pressure is located between the pelvis and the 
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ribs. Therefore the sit-up requires two stages. The first stage, 

shown in Figure 1-1, is a series of upper body flexions that move 

the center of pressure (COP) through the hip joint. 

Direction of 
Rotation 

COP 

Hip 
Joint 

Direction of COP 
& COM Movement 

.._ Support Base 

Figure 1-1 First Stage of the Sit-up Movement 

The first stage of the sit-up begins with the head, which is lifted 

and rotated toward the feet. Head rotation causes the centers of 

mass and pressure to shift in the direction of the feet. After the 

head begins to rotate, the shoulders are lifted and rotated, agam 

moving the centers of mass and pressure toward the feet. This 

sequence of body movements continues with the trunk until the 

center of pressure is moved through the hip joint. At this point 

the second phase, shown in Figure 1-2, of the sit-up begins. 

4 



Direction of 
Trunk Rotation 

Hip Joint 

COM 

COP 

Direction of COP 
& COM Movement 

,,.. Support Base 

Figure 1-2 Second Stage of the Sit-up Movement 

The center of pressure is .in a favorable position to permit hip 

flexion, and the trunk is raised. The center of mass position has 

the largest influence over the position of the center of pressure, 

but the dynamic effects due to movements of the mass also 

contribute. The separation of the static and dynamic 

contributions to the location of the center of pressure could 

increase the understanding of how the central nervous system 

coordinates whole body motion. Therefore, this study attempts to 

define an accurate method of determining the position of the 

center of mass of a human subject performing a sit-up motion. 

The contributions of the static and dynamic forces to the location 

of the center of mass can be determined from knowledge of the 

position of the centers of mass and pressure and the weight of 
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the subject. Therefore, the calculation of the center of mass 

should not be worse than the measurement of the center of 

pressure. 

Mathematical models of the human body are fundamental to the 

study of human movement dynamics. An accurate description of 

the position and motion of the center of mass, the mass 

distribution, and the moments of inertia of the body can 

contribute to the understanding of coordination. The study of the 

physical properties of the body has been the focus of research for 

the past 300 years [McConville 1980]. One of the most common 

methods of determining the position of the center of mass 

developed by Clauser et al. was reported in 1969. This method 

relates anthropometric measurements to segment mass 

properties in cadavers. The body was divided into segments that 

were assumed to have rigid body characteristics. The 

measurements related the cadaver's weight, height, and segment 

measurements to the mass, location of the center of mass, and 

moment of inertia of individual segments. 

Biomechanists apply the anthropometric relationships to living 

subjects. The body is modeled with multiple rigid segments, and 

the joint and ground reaction forces can be predicted if the 

motion of the segments is known. The accuracy of this method 1s 

limited to the accuracy of the estimates of the physical properties 

of the segments and the resolution of the motion recording 
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system used to determine the positions and accelerations of the 

segments. The static and dynamic methods developed in this 

study investigate different ways of determining the mass 

properties of the segments using a force platform and motion 

recording system. The limitations of these methods are based on 

the measurement resolution. A description of the measurement 

equipment and their sources of uncertainty are discussed in 

Chapter 2. 

The anthropometric method is commonly used to estimate 

reaction forces in the limbs and to perform gait analysis. The 

uncertainty associated with this method, which has not been well 

documented [Andrews 1996], is the focus of Chapter 3. This 

study investigated the accuracy of the anthropometric method 

applied to a human subject performing a sit-up. A simple three 

segment rigid body model was developed using the motion 

analysis software package Working Model 2D 4.0. The three 

segments of the model represented mass properties of the torso, 

thighs and shanks of an average male subject. The two joints 

were given torque inputs that cause the model to sit-up from a 

supine position. The motion and ground reaction forces were 

recorded similarly to the acquisition during a laboratory 

experiment with the exception that there were no errors in the 

model or the measured position and ground reaction forces. A 

Monte Carlo analysis was performed on the recorded data to 

determine the uncertainty range of the model's center of mass 
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calculation using MATLAB 5.0. The random noise and systematic 

errors of the hypothetical measurement systems and estimates of 

the segment mass properties were superimposed on 'clean' data 

and the resulting center of mass of the body was calculated. 

Noise was added to the Working Model data to simulate the 

effects of normal laboratory conditions. One source of error 

produced by the external measurement system examined in this 

study is the resolution of the motion recording system. Sources 

of error (see Chapter 3) include estimates of the masses of the 

segments, locations of the centers of mass, estimations of the 

moments of inertia, and skin slippage relative to the skeletal 

structure. Sources of error not considered in this study are the 

movement of the internal organs and muscles relative to skeletal 

structure. This is a potentially large source of error especially in 

the torso region [Kingma 1995]. The sit-up motion requires large 

flexion of the torso, and therefore, it is prone to errors in the 

estimations of the mass properties. This uncertainty is difficult to 

model, and there has not been a significant amount of research 

investigating the effects of this error. 

The results of the uncertainty analysis in the anthropometric 

method show that 95% of the results would lie within + 2.66 cm 

of the actual center of mass of the model. The resolution of the 

center of pressure calculated from the force platform 

measurements is 1.2 cm. Therefore, the anthropometric model 
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does not satisfy the resolution requirements. The actual error in 

a human subject would be larger because the subject has more 

segments than the three modeled in this study. Movement of the 

soft tissues and muscles would also contribute error. The most 

significant source of error was due to the uncertainty in the 

estimate of the segment mass. The analysis of the three segment 

model that only superimposed the error due to the mass estimate 

predicted an uncertainty of + 2.56 cm for a 95% confidence level. 

Therefore, this study shows that the largest reduction in the 

uncertainty could be achieved by reducing the uncertainty of the 

segment mass. 

Chapter 4 of the study outlines a dynamic approach for 

determining the mass properties of individual segments of a 

human subject. The goal of this approach was to reduce the error 

due to the uncertainty of the masses of the segments that were 

found in the anthropometric model and increase the number of 

segments in the torso to better estimate the flexibility of the 

torso. First, a theoretical solution was formed that related the 

ground reaction forces, motion, and mass properties of three 

segment body performing a sit-up motion. The solution resulted 

in a set of linear equations written in matrix form, which can be 

solved using a least squares approximation approach. The 

generalized equations were written in matrix form and applied to 

a set of real motion and force platform data. The resulting 

solution for the masses and moments of inertia was found to be 

9 



unrealistic. The solution to the least squares fit of the data 

returned non-positive masses and moments of inertia for some of 

the segments. One of the sources of unrealistic results was 

attributed to the small magnitude of the terms of the relative 

accelerations of the segments in comparison to the precision of 

the measurement devices. The study shows that the independent 

terms that relate the mass and acceleration of the trunk segments 

have a maximum magnitude of 0.8 N. This is considerably 

smaller than the force platform precision of 2.5 N. The moment 

of inertia results are dependent on the angular accelerations and 

the resultant moments applied to the force platform. The 

maximum magnitude of the moment of inertia and angular 

acceleration product of the segments is 4.8 Nm applied by the 

thighs. This is only 2.5 times the 1.9 Nm precision of the force 

platform torque measurement. The smallest product, 0.03 Nm, IS 

contributed by the trunk segments, and is considerably less than 

the precision of the platform. The resolution of the force 

platform and the small magnitude of the independent forces have 

a significant effect on the calculation of the mass properties. The 

magnitude of this error in comparison to other sources of error IS 

not included in this study. Further investigation in this area is 

needed before this method is abandoned or successfully applied. 

Chapter 5 outlines and evaluates the static torque method of 

determining the center of mass of a subject. The location of the 
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center of mass of the body can be determined by dividing the 

sum of the static torque of the segments by the sum of their 

weights. The position of the center of mass is not dependent on 

the dynamic motion and properties of the segments. Therefore, 

at each point in time, the center of mass can be determined if the 

position of the body segments are known. The advantage of the 

static approach over the anthropometric and dynamic approaches 

is that it does not require specific knowledge of the mass or the 

location of the center of mass of the segment. The disadvantage 

is the reliance on highly accurate force platform measurements 

which are not currently available. The static method uses force 

platform measurements of a subject in different static positions 

to determine the coefficients that relate the location and 

orientation of the segments to the static torque. The application 

of this technique to the two largest and most definable segments, 

the thighs and shanks, while considering the uncertainty of the 

force platform measurements as the only source of error, results 

in an uncertainty margin of + 2. 7 cm for the legs of the body. 

This margin is larger than that obtained from the three segment 

model of the whole body using the anthropometric method 

outlined in Chapter 3. The uncertainty of the static method could 

be reduced by increasing the precision of the force platform, but 

the errors increase dramatically when the method is applied to 

the trunk segments. The segments of the trunk are not well 

defined and the joint motion range is much smaller than the hip 

and knee joints. The conclusion of this section is that the 
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accuracy of the force platform limits the accuracy of the method 

to large segments with definite axes of rotation and large ranges 

of motion. 

The final chapter of the thesis summarizes the analysis and 

limitations of the previously outlined methods of determining the 

location of the center of mass. The analysis shows that these 

three methods in the form presented result in an inadequate 

resolution of the center of mass of a human subject performing a 

sit-up. 
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Chapter 2 

Equipment, Methods, and Error 
Description 

The following section outlines the measurement devices used and 

description of the errors that will be discussed and analyzed in 

the following chapters. The goal of this chapter is to familiarize 

the reader with the terms and measurement devices that are 

used in the analysis of the three methods of determining the 

center of mass. 

Force Platform 

The ground reaction forces are recorded while a human subject 

performs a sit-up on a force platform. The force platform is a 

rigid 66 x 142 cm aluminum plate supported at the corners. 

There are two end plates that are bolted on that increase the total 

support surface to 192 cm. The reaction forces are determined 

by strain gages attached to the load cells. The strain gages are 

arranged to measure the displacement and the proportionate 

force in the vertical and horizontal directions as shown in Figure 

2-1. 
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Figure 2-1 Forces measured by the force platform. 

The voltages of the strain gages are sampled at 500 Hz and are 

used to determine the forces and torque acting on the platform. 

The forces and torques are calculated from the difference in the 

strain gage voltages of a known load and a reference load. For 

example, in a sit-up experiment the weight of the subject is 

measured independently of the force platform using a scale. The 

weight of the subject is used as the reference. Any changes m 

the forces applied to the platform are measured as changes in the 

strain gage voltages relative to the reference voltages when no 

dynamic forces are acting on the platform. The uncertainty in the 

horizontal and vertical force measurement is + 2.4 N. The torque 

acting on the platform is defined about the z axis at the left end 

supports. The uncertainty of the torque measurements is + 1.9 

Nm. For more details on the construction and accuracy of the 

force platform refer to the Force Platform Appendix. 
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Position Measurement 

The position and motion of the subject are also measured. A 

motion analysis system (Elite manufactured by BTS, Milan, Italy) 

is used to record the position of reflective markers affixed to the 

subjects side. Infrared light is reflected off of the markers and 

captured by two cameras. The position is determined in three 

dimensional space. The motion of the markers for the duration of 

the sit-up is planar, and therefore, only the x and y coordinates 

are used. The software records the position of the markers 

within + 0.5 mm in the xy plane at 50 Hz. 

Anthropometric Measurements 

The use of anthropometric measurements is one of the most 

common methods of determining the center of mass of a subject. 

Total body weight, height, and segment dimensions of a subject 

can be directly measured. The anthropometric method developed 

by Clauser et al. uses these measurements to estimate the mass, 

location of the center of mass, and the moment of inertia for 19 

segments of the body [McConville 1980]. The 19 segments 

include both the right and left side of the body. For sit-up 

analysis, the right and left halves of the body are considered to 

have identical mass properties and motion. Therefore, the 

number of segments is reduced. The analysis of this method 1s 
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the subject of Chapter 3, where the analysis is simplified by 

combining the mass properties and errors to produce three 

segments. The position and acceleration of the three resulting 

segments and their estimated mass properties are used to 

determine the position of the center of mass. 

Error Definition 

Uncertainty Related to Measurement Devices and 
Techniques 

There are three sources of error considered in this study related 

to the measurement devices and techniques. The three errors are 

the marker position error, the force plate precision, and the skin 

slippage. 

The marker position error referred to in the measurement 

methods section was reported to be 0.5 mm in the xy plane (Elite 

manufactured by BTS, Milan, Italy). This is an error in position 

that becomes significant when it is used to calculate the 

acceleration. The acceleration is the second derivative of the 

position. The error in the acceleration could be as large as twice 

the precision divided by the square of the sample interval or 2.5 

m/ s 2. The positional error and consequentially the acceleration 

error is reduced by smoothing the sampled position data usmg 

the low pass Butterworth filter described in Appendix A. The 
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error in marker position is considered in the analysis of the 

anthropometric method. The marker position error is added to 

the 'clean' marker location data and the filter characteristics are 

included as part of the analysis. The dynamic method also 

smoothes the position data before it is used to calculate the mass 

properties of the segments. 

Force plate precision was also mentioned in the measurement 

methods section. The uncertainty in the force measurements is + 

2.4 N. The uncertainty of the torque measurements is + 1.9 Nm. 

These errors contribute to the difficulties in the least squares 

approximation of the mass properties using the Dynamic Method 

described in Chapter 4. The uncertainty also defines the limits of 

the usefulness of the Static Torque Method described in Chapter 5 

of this paper. 

The measurement technique used to locate the joints is also a 

source of systematic error. Marker positions shift due to skin 

movement, as the body moves and the skin stretches. This error, 

referred to as skin slippage error, can cause a marker 

displacement as large a 20 mm [Cappozzo 1993]. The segments of 

the body are defined by the joints located at the extremes of the 

segment, and the center of mass of the segment is defined 

relative to the positions of the joints. Therefore, the skin slippage 

could cause an error in the location of the joint, and as a 

consequence, an error in the location of the center of mass of the 
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segment. Skin slippage error is used to determine the 

uncertainty of the center of mass of the body using 

anthropometric methods. 

Uncertainty Related to Segment Mass Properties 

Estimations of the mass properties of the segments using the 

anthropometric measurement method also introduce some 

uncertainty. The anthropometric method uses the measurements 

of the body to estimate the mass, location of the center of mass 

and the moment of inertia of the segments. The estimation is 

based on cadaver studies performed by Clauser et al. in 1969 

[McConville 1980]. The uncertainties associated with the 

estimates of the mass properties are not easily determined. To 

determine the actual properties of the segments, each segment 

would have to be separated from the rest of the body. Clauser 

( 1969) reported the standard deviation of the sample used in his 

study, and this is commonly used as an estimate of the error. 

Several studies have attempted to increase the accuracy of 

segmental mass properties, but it is difficult to determine if the 

results of these studies achieved their goal. For the analysis 

presented in this study, the standard deviations of Clauser's 

results will be used to model the uncertainty as normally 

distributed error of the mass and moment of inertia. The 

uncertainty of the location of the center of mass of + 5% of the 

segment length and width is used [Andrews 1996]. These 
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uncertainties are used to determine the uncertainty in the center 

of mass of a human subject performing a sit-up using the 

anthropometric method. 
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Chapter 3 

Error Analysis 
Applied to the 

of Anthropometric 
Sit-up Motion 

Method 

This section describes the use of anthropometric modeling to 

determine the position of the center of mass of a human subject 

performing a sit-up. The goal of this analysis was to determine if 

the accuracy of the anthropometric method is sufficient to 

determine the center of mass of a subject within the + 1.2 cm 

precision of the center of pressure. The analysis uses a three 

segment rigid body model designed in Working Model 2D to 

generate a mathematical description of the motion and ground 

reaction forces of an average male subject performing a sit-up. 

An accurate mathematical model of the body allows the number 

and magnitude of the errors entering the system to be controlled. 

For example, the effect of the marker position error can be 

introduced as the only source of error without including the 

errors due to the uncertainties in the mass properties. 

The errors considered in this investigation of the anthropometric 

model were due to the errors in the estimated mass properties 

and the measurement methods and devices. The human body 

consists of soft tissues enveloping a rigid skeleton. Therefore, 

movement of soft tissues relative to the skeleton hinders the 

definition of rigid segments and introduces errors in the rigid 
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body assumptions. Skin slippage error and joint characteristics 

combined make it difficult to define the segment axes of rotation 

and location of the center of mass. The location of the centers of 

rotation of the joints are also not easily defined, and m some 

joints there is no single point that can be considered the center of 

rotation [Leva 1996]. Therefore, for this analysis the joints of the 

body are modeled as simple mechanical joints. 

Soft tissue characteristics are also responsible for the errors 

associated with the estimates in the location of the center of 

mass, the magnitude of the mass, and the moment of inertia. This 

is especially true in the torso. The model simplifies the problem 

by defining rigid segments, well defined joints, and eliminating 

measurement noise from the system. A Monte Carlo analysis is 

used to estimate the combined uncertainty in the center of mass 

of the body. The real environment is simulated by adding noise 

to the 'clean' signal as an approximation of the error associated 

with the uncertainties of the mass, location of the center of mass, 

moment of inertia, skin slippage, and segment marker position 

resolution. The center of mass is then calculated using the noisy 

data. This process is repeated until the standard deviation of the 

result converges. 
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Three Segment Model Description 

A three segment model of a body performing a sit up is used to 

analyze the effects of the previously mentioned uncertainties. 

The model was constructed using the motion simulation software 

Working Model 2D. The axial motion of the sit-up is considered 

to be symmetrical across the median plane of the body, and as a 

result, only planar motion is considered. Therefore, a two 

dimensional model is used. The three segments of the model 

represent the upper body, the thighs, and the shanks as shown m 

Figure 3-1. 

Upper Body Thighs 

Force Platform 

Figure 3-1 The Three Segment Model Used for the 

Anthropometric Method Analysis 

To reduce the complexity of the model, the divisions used by the 

anthropometric method are combined into three segments. The 

upper body segment represents the mass and inertia properties 

of the head, neck, trunk, and torso. Divisions included in the 

upper body segment are assumed to be rigid and the joints are 
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locked. The model of the shanks includes the mass properties of 

the foot. The model assumes that the right and left leg have 

identical mass properties and movements, and therefore, both 

thighs are modeled as a single segment. The same assumption 1s 

used for the shanks. The mass properties, given in Table 3-1, of 

the model are similar to the mass properties of an average male 

[Mcconville 1980]. 

Table 3-1 Average Male Mass Properties of the Three Segment 

Model Used for the Anthropometric Method Analysis 

Segment Mass (kg) 

Torso 45 

Upper Leg 1 5 

Lower Leg 8.8 

The motion of the model is shown in Figure 3-2. 

Figure 3-2 The Motion of the Three Segment Model Used for the 

Anthropometric Method Analysis 
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The motion of the three segment model is approximately the 

same as a subject performing the trunk rotation of the second 

phase of a sit-up. The second phase of the sit-up occurs after the 

center of pressure has passed through the hip joint and 1s m a 

favorable position for torso rotation. The trunk flexion of the 

first phase of the sit-up would require a more complex model and 

the model of the second phase is adequate to demonstrate the 

accuracy of the anthropometric method of determining the center 

of mass. Segment masses and joint torques were defined to give 

the range of segment motion, acceleration and ground reaction 

forces present in an average sit-up. The time required for the 

model to complete the second phase was two seconds. The knee 

joint applies a constant torque of 6.25 Nm which is less than the 

15.5 Nm static torque of the lower leg, which allowed the model 

to use the lower leg as a counter balance. The joint at the hip was 

assigned a constant angular velocity of 45 deg/s. The vertical 

force, horizontal force and torque of the support surface were 

determined from the model. The motion of the markers at the 

extremities of the segments were also determined. This 1s 

equivalent to the data that is recorded during a sit-up 

experiment. 

The numerical results of the forces and motion calculated using 

Working Model was 'clean', that is, there were no errors in the 

numerical results or the model. The joint location and axes of 

rotation were well defined. The segments are rigid, and 
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therefore, there are no errors in the model due to soft tissue 

movement or estimates of the mass, location of the center of 

mass, or moments of inertia. The resulting data was then used to 

add error in a controlled environment. The effects of individual 

errors were studied as well as the combined effects of all of the 

errors. The errors analyzed in this study are described in the 

following section. 

Error Description 

This section outlines the errors that were considered in this 

study. The source, significance, and magnitude of each error 1s 

summarized in the following sections. The introduction of the 

error into the Monte Carlo simulation is also described. 

The first error considered was the marker position error. The 

motion analysis systems commonly used have an error range of 

+1.0 mm in a viewing range of 1.0 m [Borget 1996]. The motion 

analysis system used in this analysis has an uncertainty of +0. 5 

mm (Elite manufactured by BTS, Milan, Italy). The marker 

position error becomes significant when it is differentiated to 

calculate the acceleration of the markers [Koopman et al. 1995; 

Kingma 1995]. The sampling rate of the marker position is 50 Hz. 

Therefore, the error in the acceleration calculation could be as 

high as + 2.5 m/s2. The data is filtered using the low pass 

Butterworth filter in Appendix A to eliminate the noise due to the 
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marker position uncertainty. The marker position error 1s 

introduced into the model as normally distributed random n01se, 

magnitude + 0.5 mm, at each marker point for each sample. After 

the filter is applied the error has been reduced, but other errors 

my have entered the system due to the characteristics of the 

filter. Therefore, the filtered data has any error the filter 

introduced in addition to the attenuated original n01se. 

The second error considered is due to skin slippage. The skin is 

not firmly attached to the skeletal structure and moves relative 

to the bony landmarks used to define the segments. The skin 

slippage at the major joints is as large as 2.0 cm [Cappozzo 1993]. 

The magnitude of this slippage is related to the angle of joint 

rotation. It is assumed that the maximal error will occur at the 

maximal joint rotation. The error introduced in this study is 

defined as a uniformly random magnitude between 0 and 2.0 cm 

multiplied by the ratio of the joint angle to 90 degrees. 

Therefore, for each iteration in the Monte Carlo simulation the 

magnitude is a constant between 0 and 2.0 cm multiplied by the 

ratio of the angle. This accounts for the fact that the amount of 

skin slippage of specific a joint and person is unknown. So the 

random error is the magnitude of the slippage, and the 

systematic error is related to the joint angle. Since this error 1s 

systematic it does not introduce noise into the acceleration 

calculation. 
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The third set of errors relate to the physical properties of the 

segments. These properties include the mass and the location of 

the center of mass of each segment. For this analysis, the 

uncertainties reported by Mcconville et al. ( 1980) on the 

moment's of inertia, volume, and densities of Clauser's segments 

were used. The uncertainties in the density and volume are used 

to determine the uncertainty in the mass. For the three segments 

defined in this analysis, the error estimate must reflect the 

combined error of the parts that are included in the segment. For 

example, the torso's estimated error properties must include the 

error associated with the anthropometric method's torso, head, 

neck, arms and hands. In the same way the shanks must include 

the error estimates of the feet. Since divisions are set in a fixed 

orientation with respect to each other, the error estimates can 

also be combined to reflect the total error of the larger segment. 

The uncertainties of the mass properties for the three segments 

used in this analysis are shown in Table 3-2. 
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Table 3-2 Uncertainties in the Mass Properties Used for the 

Anthropometric Method Analysis 

Segment Mass CoM CoM 

Location Location 

Long Axis Short Axis 

Torso 10.32% 5% x Length 5% x Width 

Upper Legs 8.29 5% x Length 5% x Width 

Lower Legs 7.65 5% x Length 5% x Width 

The error in the location of the segment center of mass was 

assigned a deviation of + 5% of the length and width of the 

segment along the long and short axis respectively [Andrews 

1996]. The mass property errors were considered to be normally 

distributed because they are derived from the standard deviation 

of a sample population. 

Analysis 

The analysis of the error propagation was done by comparing the 

actual measurements of the force platform reaction forces, and 

the center of mass to the calculated results after the error has 

been added. The force platform reaction forces were determined 

from the following equations. 
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Vertical Forces 

FY= 
# of Segments 

Lm;ay, 
i=l 

Horizontal Forces 
# of Segments 

Fx = Imiax, 
i=l 

Torque 
# of Segments 

T = L ( m;yax, + m;xaY, + I;a;) 
i=l 

(Eq 3-1) 

(Eq 3-2) 

(Eq 3-3) 

The location of the center of mass along the x axis is determined 

by the following equation. 

Center of Mass 
# of Segments 

Lm;gx; 
i=l CoM = # of Segments 

Imig 
i=l 

(Eq 3-4) 

The direct calculation of the uncertainty of the center of mass, 

center of pressure, and the force platform reaction forces would 

be very laborious. Therefore, a Monte Carlo analysis was used to 

simulate the errors and calculate the uncertainty. The Monte 

Carlo analysis allows the errors to be introduced independently. 

The flow chart in Figure 3-3 shows the process used for each 

iteration in the analysis. 
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I Numerical Model I 
I Clean Data I 

Introduce Normally Distributed 
Marker Position Error 

I Butterworth Digital Filter I 
Introduce Normally Distributed 
CM Position, Mass, and Inertia Error 

I Calculate Resulting COM I 

I Subtract Result from Actual I 
I Accumulate Results I 

Calculate Mean and STD 
for each Point in Time 

Figure 3-3 Flow Chart of Monte Carlo Simulation 
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The simulation kept track of the previous 100 iterations of the 

center of mass mean standard deviation. The maximum 

difference between iterations was used as a measure of the 

convergence. If the maximum difference in the standard 

deviation of the last 100 iterations was not greater than 0.001 cm 

then the simulation was considered to have converged. Figure 3-

4 shows a plot of the convergence. 

Convergence Plot of Maximum Difference 

5 
X 10-4 -----.--------.--~~ 

in Previous 100 Iterations 
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Figure 3-4 Convergence Plot of Monte Carlo Simulation 
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The error due to the skin slippage, marker position, and 

estimated center of mass caused a deviation from the actual 

center of mass of the segment. The scatter of the location of the 

center of mass of the thigh segment for 1000 iterations is shown 

in Figure 3-5. 
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x coordinate (m) 

Figure 3-5 Error Scatter of the Center of Mass of the Second 

Segment 
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The Monte Carlo simulation was performed using MATLAB 5.0. 

The m-file is shown in Appendix B, includes the introduction of 

the error, the filtering of the marker position data, the calculation 

of the center of mass, and a comparison to the center of mass 

calculated from the 'clean' data. The program calculates the 

standard deviation of the error in the center of mass. 

Resulting Uncertainty 

The total uncertainty in the position of the center of mass 

resulted in the following standard deviation of the error. The 

magnitude of the error was dependent on the orientation of the 

segments of the model. The projection of the error due to the 

location of the center of mass and the magnitude of the mass was 

much larger for a horizontally oriented segment than for a 

vertical segment. The skin slippage error also depends on the 

joint angle. Therefore, the error changed with the orientation of 

the segments. The average and range of the standard deviation is 

shown in the Table 3-3 for the duration of the sit-up. 
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Table 3-3 Standard Deviation of the Center of Mass 

Determined By Monte Carlo Analysis 

Mean STD Min STD Max STD 

(cm) (cm) (cm) 

All Sources of Error 1.33 1.02 1.50 

Mass Error Only 1.28 0.95 1.45 

Segment CoM Error Only 0.34 0.26 0.38 

Skin Slippaj?;e Error Only 0.16 0.00 0.30 

Marker Position Error Only 0.00 0.00 0.01 

The results show the average standard deviation of the center of 

mass calculation to be 1.33 cm when all of the errors are 

considered. Therefore a 95% confidence range of the uncertainty 

of the center of mass is + 2.66 cm, or two standard deviations. 

The error due to the mass alone is + 2.56 cm for the same 

confidence level. The error in the position of the center of mass 

of the individual segments also has a significant effect on the 

error of the location of the center of mass of the whole body. 

Figure 3-6 shows the center of mass bounded by the uncertainty 

margin of two standard deviations of the error due to all sources 

of uncertainty considered in this study. 
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Figure 3-6 Location of the Center of Mass of the Model and the 

Two Standard Deviation Error Band 

Figure 3-6 shows the change in the error margin as the sit-up 

progresses, demonstrating the effect of segment orientation on 

the magnitude of the error. 

Conclusions 

The uncertainty in the marker position, skin slippage, location of 

the estimated center of mass, and mass of the segments results m 

a + 2.66 cm average uncertainty in the body center of mass 
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location during the sit-up. The majority of this uncertainty 1s 

attributed to the uncertainty of the estimated mass of the 

segments. Improvement on the estimated mass of the segments 

would reduce the uncertainty of the body center of mass. Some 

studies have investigated more accurate methods of determining 

the mass properties of body segments. One study used magnetic 

resonance imaging to reduce the mass estimate to 6.9% for 

baboon segments [Martin et al. 1989], but this is only marginally 

better than the 7.7, 8.3, and 10.3% error used in this study. 

Another source of error that contributes to the error in the center 

of mass location is the estimation of the torso center of mass. The 

sit-up motion begins with near maximal torso flexion which 

distorts the soft tissues of the abdomen. Any error in the location 

of the center of mass of the torso would cause a significant error 

in the body center of mass [Kingma 1995]. The anthropometric 

method does not take this into consideration, and therefore, this 

error was not included in this study. The anthropometric method 

limits the division of the trunk into one or two segments. This is 

most likely inadequate to model the mass· properties of the torso 

when large amounts of flexion are involved in the motion. 

Thus, the anthropometric method would not result in an accurate 

estimate of the center of mass of a subject performing a sit-up. 

The analysis shows the majority of the error of this method 

results from inaccurate estimates of the mass of the segments. 

The anthropometric method estimates the masses of the 
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segments by using an average density of the cadaver segments 

used in Clauser's study (1969). The estimates are based on the 

average of a population. Therefore, there will always be an 

uncertainty associated with the standard deviation of the 

population. The accuracy needed for this application requires a 

much smaller uncertainty than the population data can provide. 

The mass properties used for this analysis must be subject 

specific to increase the certainty of the calculation of the center of 

mass. 
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Chapter 4 

Dynamic Method 

The previous chapter showed that the use of the anthropometric 

method to determine the center of mass of the body is not as 

accurate as the 1.2 cm precision of the center of pressure 

measurement. The largest source of error considered was due to 

the estimation of the mass of the segments. The dynamic method 

attempts to reduce this source of error by using ground reaction 

forces and segment motion to solve directly for the mass and 

moment of inertia of each segment. Another source of error 

mentioned, but not considered in the analysis of the 

anthropometric method, was the error due to the flexibility of the 

torso. The anthropometric model divides the torso into one or 

two segments that are assumed to be rigid, but this 

approximation of the flexible portion of the torso is prone to 

criticism when motions involving large flexion are analyzed 

[Kingma 1995]. The dynamic method does not limit the number 

of segments, and therefore, a higher order model of the torso is 

used to better approximate the flexion that occurs in the sit-up 

movement. 

The goal of this chapter is to outline the theoretical solution of a 

set of linear equations relating the ground reaction forces, motion, 

and mass properties of a multiple segment body performing the 
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sit-up motion, and to define the limitations of applying this 

approach to a human subject performing a sit-up. A three 

segment rigid body model is used to demonstrate the theoretical 

solution, and the resulting equations are written in matrix form 

that can be solved for any number of segments using a least 

squares approach. This method is applied to existing human 

subject data collected at the Robert S. Dow Neurological Sciences 

Institute in the laboratory of Dr. Paul Cordo. The least squares 

approximation resulted in negative masses and moments of 

inertia for several segments. It is suggested that one of the 

reasons the results are unreliable is due to the small magnitude 

of the independent terms of the forces due to the acceleration of 

the segments in comparison to the precision of the force 

measurement devices. The independent force terms are defined 

as the forces due to segment motion with respect to the adjacent 

segments. The independent terms are especially small for the 

torso segments. The relative rotation of the segments of the torso 

are significant enough to cause errors in the static calculation of 

the center of mass, but they are not significant enough to be 

distinguished in the dynamic calculations. The small independent 

force to precision ratio is one source of error that leads to an 

inaccurate solution of the least squares approximation. 
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Theoretical Solution of a Multiple Segment Body 

The following is an outline to the solution of the mass properties 

of individual segments of a body that are subjected to the 

external forces of the ground, the force due to gravity, and the 

internal forces of the muscles. The results are used to determine 

the relations between the positions, accelerations, masses, 

moments of inertia of the segments, and the ground reaction 

forces. During a sit-up experiment, the ground reaction forces are 

measured, and the motion is recorded. Therefore, only the mass 

and inertia properties need to be determined in terms of the 

measured forces and motion. The force and moment balance 

equations are determined using the following equations. 

# of Supports # of Segments 

LFx
1 
= Lm;ax; (Eq 4-1) 

j=l i=l 

# of Supports # of Segments 

LFYj = Lm;aY; (Eq 4-2) 
j=l i=I 

# of Supports # of Segments 

LMaj = L(a; (Eq 4-3) 
j=l i=I 

Where: 
i = Number of the segment 
m = The mass of the segment 
a = The absolute acceleration of the center of mass of the segment 
I = Moment of inertia about the center of mass of the segment 
a = Angular acceleration fo the segment 
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The following section outlines the derivation of the equations of 

motion and force for a three segment body. Figure 4-1 shows the 

model. 

Hinge Joints 
Markers (4 Total) 

Segment 3 I 
Segment l 

Support Surface 

Figure 4-1 Three segment model used for the theoretical solution 

The forces acting on each segment include the force due to 

gravitational acceleration, reaction forces from adjacent segments, 

active forces due to muscle contractions, and ground reaction 

forces (if applicable). For this model, all internal forces (i.e. 

muscle forces) are transferred between the segments as moments 

and joint reaction forces applied at the hinge joints. The ground 

reaction force is included at each end of the segment (it may be 

zero for joints not in contact with the ground). The segments are 

modeled as rigid bodies to simplify the derivation. The free body 

diagram of Segment 1 is shown in Figure 4-2. 
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(x1,Y1) 

81 

y 

Rgy1 ,1 

X 

Segment 1 

..... 
W 1 = m lg Rx2 

Figure 4-2 Free body diagram of Segment 1 

Where: 
xi, y i = Position of joint i 
xcm, Yem = Position of segment centers of mass 
ax, aY = Acceleleration of the centers of mass 

0 = Angle of orientation 
a = Angular acceleration 
W = Force due to the weight 
Rgxi.i, RgyI,I = Ground reaction forces at joint 1 acting on segment 1 

Rgx2,1, Rgy 2,1 = Ground reaction forces at joint 2 acting on segment 1 

Ryi, Rxi, Mi = Internal reaction forces between segments at joint i 
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The force and moment balance equations for the first segment 

are as follows. The moments are summed about the segment 

center of mass. 

# of Horz. Ground 
Reaction Forces Segment # 

LFxj = Imiax; 
j=l 

Rgxl,l + Rgx2,I + Rx2 = mlaxl 

# of Vert.Ground 
Reaction Forces Segment # 

LFYj = Lm;ay, 
j=l 

Rgyi.i + Rgy2.1 + RY2 - m,g = m1ay, 

Rgy1.1 + Rgy2.1 + Ry2 = m, ( ay1 + g) 

# of Moments Segment # 

LMa
1 
= IJ;a; 

j=l 

Rgyl,I ( X1 - xcml) + Rg:,-2,1 (x2 - xcml) + Rgxl.l (Yi - Ycml) + Rgx2.I (Y2 - Yem!) 

+ Rv2(X2 - xcml) + Rx2(Y2 - Ycml) + M2 = /Jal 

(Eq 4-4) 

(Eq 4-5a) 

(Eq 4-5b) 

(Eq 4-6a) 

(Eq 4-6b) 

The second and third segments are shown in the following 

figures. 
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y 
-Ry2 

W2 =m2g 

X 

Figure 4-3 Free body diagram of Segment 2 

Segment 3 

Rgy4,3 

y [ f • z:::::::__TT'== lit ---

X 

W3 = m3g 

Figure 4-4 Free body diagram of Segment 3 
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Equations for Segments 2 and 3 can be generated similar to the 

equations generated for Segment 1. 

Segment 2 

# of Horz.Ground 
Reaction Forces Segment # 

LFxj = ImiaX; 
J=I 

Rgx2.2 + Rgx3.2 - Rxz + Rx3 = m2ax2 

# of Vert.Ground 
Reaction Forces Segment # 

LFYj = Lm;aY; 
J=I 

Rgy2,2 + Rgy3,2 - ~2 + ~3 - m2g = m2ay2 

Rgy2.2 + Rgy3.2 - Ry2 + ~3 = m2 ( ay2 + g) 

# of Moments Segment # 

LMGj = L1;a; 
j=l 

Rgy2,2 ( X2 - xcm2) + Rgy3,2 ( X3 - xcm2) + Rgx2,2 (Y2 - Ycm2) + Rgx3,2 (y3 - Ycm2) 

- R~.z(xz - xcm2)-Rx2(Y2 - Ycm2) + ~3(x3 - xcm2) + Rx3(y3 - Ycmz) . . 

- M2 + M3 = I2a2 
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Segment 3 

# of Horz.Ground 
Reaction Forces Segment # 

LFxj = ImiaX; 
j=l 

Rgx3,3 + Rgx4.3 - Rx3 = m3ax3 

# of Vert.Ground 
Reaction Forces Segment # 

L FYj = L m;ff'i; 
j=I 

Rgy3.3 + Rgy4,3 - Ry3 - m3g = m3ay3 

Rgy3,3 + Rgy4,3 - ~-3 = m3 ( ay3 + g) 

# of Moments Segment # 

LMaj = L(a; 
j=I 

Rgy3,3(x3 - xcm3) + Rgy4,3(x4 - xcm3) + Rgx3,3(y3 - Ycm3) + Ri:x4,3(Y4 - Ycm3) 

- Ry3(x3 - xcmJ-Rx3(Y3 - Ycm3)-M3 = l3a3 

(Eq 4-10) 

(Eq 4-lla) 

(Eq 4-llb) 

(Eq4-12) 

The total forces and torques are obtained by adding the equations 

for each link. The sum of the horizontal force equations, 4-4, 4-7, 

4-10, results in equation 4-13a. 
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# of Horz. Ground 
Reaction Forces # of Segments 

L Fxj = L m;ax, 
j=I i=l 

Rgxl,I + Rgx2,I + Rxz = mlaxl 

R 8x2.2 + Rgx3.2 - Rxz + Rx3 = mzaxz 

Rgx3,3 + Rgx4,3 - Rx3 = m3ax3 

(Eq 4-4) 

(Eq 4- 7) 

(Eq 4-10) 

Rgxl,I + ( Rgx2,I + Rgx1,2) + ( RgxJ,2 + Rgx3,3) + Rgx4,3 + ( Rx1 - Rxz) + ( Rx3 - Rx3) = 
m 1ax1 + m 2ax 2 + m 3ax3 (Eq 4 - 13a) 

Rgxl,l + ( Rgx2,I + Rgx1,2) + ( Rgx3,2 + Rgx3,3) + Rgx4,3 = mlaxl + mzax2 + m3ax3 (Eq 4-13b) 

The internal joint reaction force cancel, and the result is equation 

4-13b. The vertical force balance equations, 4-5, 4-8, 4-11, are 

summed in a similar manner resulting in equations 4-14 a and b. 

Again the internal reaction forces cancel. 

# of Vert.Ground 
Reaction Forces # of Segments 

""' Fv. = ""' m;av ·} ., 
j=l i=l 

Rgyl,1 + ( Rgy1,1 + Rgy2,2) + ( Rgy3,2 + Rgy3,3) + Rgy4,3 + ( Ry1 -' ~1) + ( ~3 - Ry3) 

- m 1g - m 2g - m 3g = m 1aY1 + m 2aY2 + m 3aY3 (Eq 4-14a) 

Rgy1.1 + ( R 8y2.1 + Rgy2.2) + ( R 8y3,z + Rgy3.3) + Rgy4.3 = mi ( ay1 + g) + mz ( ayz + g) + m3 ( ay3 + g) 
(Eq 4-14b) 

The sum of equations 4-6b, 4-9b, 4-12b, results in the sum of the 

moments in equation 4-15 a and b. The internal reaction 
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moments applied at the joints cancel in equation 4- l 5a to result 

in equation 4- l 5b. 

# of Moments # of Segments 

,LMGj = ,Ll;a; 
j=l i=l 

XI ( Rgyl,I) + Yi ( Rgxl,I) + X2 ( Rgy2,I + Rgy2,2 + Ry2 - Ry2) + Y2 ( Rgx2,I + Rgx2,2 + Rx2 - Rx2) 

+ X3 ( Rgy3,2 + Rgy3,3 + ~3 - ~3) + Y3 ( Rgx3,2 + Rgx3,3 + Rx3 - Rx3) + X4 ( Rgy4,3) 

+ Y4 ( Rgx4,3 )- Xcml ( Rgyl,I + Rgy2,I + ~2 )- Ycml ( Rgxl,I + Rgx2.I + Rx2) 

- Xcm2 ( Rgy2,2 + Rgy3,2 - ~2 + ~3 )- Ycm2 ( Rgx2,2 + Rgx3,2 - Rx2 + Rx3) 

- xcm3 ( Rgy3.3 + Rgy4,3 - Ry3 )- Ycm3 ( Rgx3,3 + Rgx4,3 - Rx3) + M2 - M2 + M3 - M3 

= I 1a, + I 2a 2 + l 3a 3 (Eq 4-15a) 

XI ( Rgyl,I) + Yi ( Rgxl,I) + Xz ( Rgy2,I + Rgy2,2) + Y2 ( Rgx2,I + Rgx2,2) + X3 ( Rgy3,2 + Rgy3,3) 

+ Y3 ( Rgx3,2 + R!ix3,3) + X4 ( Rgy4,3) + Y 4 ( Rgx4,3) 

- Xcml ( Rgyl,I + Rgy2,I + Ry2 )- Ycml ( Rgxl,I + Rgx2,I + Rx2) 

- Xcm2 ( Rgy2,2 + Rgy3,2 - ~2 + ~3 )- Y cm2 ( Rgx2,2 + Rgx3,2 - Rx2 + Rx3) 

- xcm3( Rgy3,3 + Rgy4,3 - Ry3 )- Ycm3( Rgx3,3 + Rgx4,3 - Rx3) = /Jal + I2a2 + l3a3 

(Eq 4-15b) 
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The summation of moments can be simplified using the following 

equations. 

Rgxl,I + Rgx2,I + Rx2 = mlaxl 

R 8x2,2 + Rgx3,2 - Rxi + Rx3 = m2ax2 

Rgx3.3 + Rgx4,3 - Rx3 = m3ax3 

Rgy1.1 + R8y2,1 + R.;2 = m1 ( ayt + g) 
Rgy2,2 + Rgy3,2 - Ry2 + Ry3 = m2 ( ay2 + g) 
Rgy3,3 + Rgy4,3 - Ry3 = m3 ( ay3 + g) 

(Eq 4-4) 

(Eq 4- 7) 

(Eq 4-10) 

(Eq 4-5b) 

(Eq 4-8b) 

(Eq 4- llb) 

X1 ( Rgyl,I) + Yt ( Rgxl,I) + Xi ( Rgy2,I + Rgy2,2) + Y2 ( Rgx2,I + Rgx2,2) + X3 ( Rgy3,2 + Rgy3,3) 

+ Y3 ( Rgx3,2 + Rgx3,3) + X4 ( Rgy4,3) + Y 4 ( Rgx4,3) 

- xcm1!ni(ayl + g)- Ycmlmlaxl -xcm2m2(ay2 + g) 
- Ycm2m2ax2 - xcm3m3 ( ay3 + g )- Ycm3m3ax3 

= I1a1 + I2a2 + I3a3 (Eq4-16) 

The remaining terms involving the reaction forces can be related 

to the measured reaction forces by determining the force balance 

equations of the force platform. The following figure shows the 

forces exerted by the body on the top of the platform and the 

reaction forces of the supports under the platform. 
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Agx1, 1 

Agx4,3 (x4, Y4) 

Rgy1 ,1 Rgy4,3 

R1h 

Where: 

(Rgy2, 1 + Rgy2,2) 

R1v 

\ 

(Rgy3,2 + Rgy3,3) R2h 

wt 

Figure 4-5 Platform Free Body Diagram 

Rlh, Rlv = Horizontal and vertical reaction forces of the first supports 
R2h, R2v = Horizontal and vertical reaction forces of the second supports 
W1 = Weight of the table acting at x, 

cm 

x, = Location of the center of mass of the table 
,·m 

Rgxi,i, RgyI,i, . . . = Ground reaction forces at joint 1 acting on segment 1 

Rgx2,1, Rgy 2,1, • • • = Ground reaction forces at joint 2 acting on segment 1 

R2y 

The previous figure shows the ground reaction forces for all of 

the joints. The joints that are not in contact with the table would 

not have a reaction force associated with them, but they are 

included in the derivation for completeness. 
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The force balance equations of the platform are as follows. 

# of Horz. Forces 

LFxi =0 
j=I 

Rlh + Rih -( Rgxl,I + Rgx2,I + Rgx2,2 + Rgx3,2 + Rgx3,3 + Rgx4,3) = 0 

Rlh + Rih = Rgxl,l + Rgx2,l + R/!,X2,2 + Rgx3,2 + Rgx3,3 + Rgx4,3 

# of Vert. Forces 

LFYj =0 
j=l 

Riv + Riv - ( Rgyl,l + Rgy2,l + Rgy2,2 + Rgy3,2 + Rgy3,3 + Rgy4,3 + W,) = 0 

Riv + Riv - wt = Rgyl,l + Rgy2,l + Rgy2,2 + Rgy3,2 + Rgy3,3 + Rgy4,3 

# of Moments 

LMi=O 
j=l 

(Eq 4-17a) 

(Eq 4-17b) 

(Eq 4- 18a) 

(Eq 4-18b) 

XRIRlv + XR2!liv + YRIRlh + YR2Rih -( Xi ( Rgyl.l) + Yi ( Rgxl,l) + Xz ( Rgy2,l + Rgy2,2) 

+ Y2 ( Rgx2,I + Rgx2,2) + X3 ( Rgy3,2 + Rgy3,3) + Y3 ( Rgx3,2 + R/iX3,3) + X4 ( Rgy4,3) 

+y4 ( Rgx4.3 ) + xtcm Wt)= 0 (Eq 4-19a) 

XRIRlv + XR2Riv + YRIRlh + YR2Rih - xtcm wt = X1 ( Rgyl,I) + Y, ( Rgxl,]) + x2( Rgy2,l + Rgy2,2) 

+ Y2 ( Rgx2,l + Rgx2,2) + X3 ( Rgy3,2 + Rgy3,3) 

+ Y3 ( Rgx3,2 + Rgx3,3) + X4 ( Rgy4,3) + Y 4 ( Rgx4,3) 

(Eq 4-19b) 

The total forces measured by the force platform can be combined 

into three components, the horizontal reaction force (Rx), the 

vertical reaction force (Ry), and the torque (T). These are shown 

in the following equations. The constant terms in the force and 

moment balance equations involving the weight of the platform 
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are accounted for when the reaction forces are calculated from 

the load cell voltages (see Appendix A). 

Rx= Rlh + 'Rih 

= Riv + 'Riv - W, 

T = xRIRlv + XR2'Riv + YR!Rlh + YR2Rih - x,cm w, 

(Eq 4-20) 
(Eq4-21) 

(Eq 4-22) 

The previous equations relate the body reaction forces to the 

forces measured by the force platform. These equations are 

substituted into equations 4-13b, 4-13b, and 4-16 to result in a 

relation between the masses, centers of mass, accelerations of the 

centers of mass of the segments, and the measured reaction 

forces of the force platform. 

For the horizontal forces the left hand side of equation 4-13b is 

equivelent to the right hand side of equation 4-17b. Therefore, 

the left hand side of equation 4-13b is replaced by the left hand 

side of equation 4-17b. Then equation 4-20 is used to relate the 

total horizontal force to the sum of the masses times the 

horizontal acceleration in equation 4-23b. 

Horizontal Forces 

Rgxl,I + ( Rgx2,I + Rgx2,2) + ( Rgx3,2 + Rgx3,3) + Rgx4.3 = ml axl + mzax2 + m3ax3 (Eq 4 - 13b) 

Rlh + 'Rih = R//Xl,1 + Rgx2,I + Rgx2,2 + Rgx3,2 + Rgx3,3 + Rgx4,3 (Eq 4 -17b) 
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R,h + Rzh = mlaxl + m2ax2 + m3ax3 
Rx= R,h + Rzh 
Rx= mlax, + m2ax2 + m3ax3 

(Eq 4-23a) 
(Eq 4-20) 
(Eq 4-23b) 

The verical forces are derived in a similar way using equations 4-

14b, 4-18b, and 4-21. 

Vertical Forces 

R1 v + !lzv - W1 = m1 ( aY, + g) + m2 ( ay2 + g) + m3 ( aY3 + g) 
RY = m1 ( aY, + g) + m2 ( aY2 + g) + m3 ( aY3 + g) 

(Eq 4-24a) 

(Eq 4-24b) 

Moment equations are related to the torque using equations 4-16, 

4-19b, and 4-22. 
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Moments about the ongm 

xRIRlv + XR2Riv + yRIRlh + YR2Rih - xlcm WI - xcmlml ( ayl + g )- Ycmlmlax, 

- xcm2m2 ( ay2 + g )- Ycm2m2ax2 - xcm3m3 ( ay3 + g )- Ycm3m3ax3 

= I1a1 + I2a2 + I3a3 (Eq 4-25a) 

XRIRlv + XR2Riv + YRIRlh + YR2Rih - xlcm WI = xcmlml ( ayl + g) + Ycm,m,ax, 

+ xcm2m2 ( ay2 + g) + Ycm2m2ax2 + xcm3m3 ( ay3 + g) + Ycm3m3ax3 

+ 1,a1 + I2a2 + l3a3 (Eq 4-25b) 

T = xcmlml ( ayl + g) + Ycmlmlaxl + xcm2m2 ( ay2 + g) + Ycm2m2ax2 + xcm3m3 ( ay3 + g) 
+ Ycm3m3ax3 + I,a1 + l2a2 + l3a3 (Eq 4-25c) 

The equations 4-23b, 4-24b, and 4-25c can be written as follows. 

# of Segments 

Rx = Imjaxj 
j=I 

# of Segments 

RY= lmAayj + g) 
j=l 

# of Segments 

T = LXcmjmA ayj + g) + Ycmjmjaxj + Ijaj 
j=l 
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(Eq 4-26) 

(Eq 4-27) 

(Eq 4-28) 



And written in matrix form as: 

ml 

a a O ... 0 n X1 X 11 X 

( aY1 + g) ( aY. + g) 0 · · · 0 ~n = R; 
((aY1 +g)xcm; +ax1Ycm1) ... ((aY. +g)xcm. +ax.Yem.) al ... an =1 T 

In 
(Eq 4-29) 

The resulting matrix form of the equations shows that the 

number of segments is not limited by the theory of the dynamic 

method, nor is the number of equations. 

The location of the center of mass of a segment was defined 

relative to the markers used to define the segment ends. The 

acceleration of the center of mass was calculated from the 

position data of the markers associated with the segment. The 

location of the centers of mass of the segments had to be 

determined before the equations could be solved. The previous 

chapter showed that errors associated with the estimate of the 

location of the center of mass were less significant than the errors 

associated with the estimation of the mass of the segment in the 

anthropometric method. Therefore, the anthropometric estimates 

of the locations of the center of mass of the segments were used. 

The anthropometric measurements can be used with confidence 

for the head and limb segments in comparison to the location of 

the center of mass of the torso [Kingma 1995]. The torso in this 

model has been divided into several segments in comparison to 
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the two used in most anthropometric models. The center of mass 

of each of the torso segments is assumed to be located midway 

between the markers. 

Application of the Theory to the Sit-Up Experimental 
Data 

The sit-up data used in this analysis was provided by the Robert 

S. Dow Neurological Sciences Institute. The sit-ups were 

performed on the force platform and the motion was recorded 

using the Elite motion analysis system described in Chapter 2. 

The sampling rate of the motion analysis system was 50 Hz, and a 

horizontal, vertical and torque balance equation was written for 

each sample frame. Therefore, a total of 600 equations were 

written from the data collected during a four second sit-up. The 

experimental recording of a human performing a sit-up used 17 

markers to define 16 body segments resulting in 16 unknown 

masses and 16 unknown moments of inertia. A least squares fit 

algorithm was used to solve for the unknown mass and inertia 

properties. Figures 4-6, 4-7, and 4-8 show the reaction forces of 

the force platform for a sample trial. 
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Figure 4-6 Horizontal reaction force of the force platform. 
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Figure 4-7 Vertical reaction force of the force platform. 
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Figure 4-8 Reaction torque of the force platform 

about the reference point. 

5 

The motion of the subject is recorded by the reflective markers. 

Figure 4-9 shows the motion of the individual markers. 

58 



0.8 

0.6 

e 
- 0.4 

0.2 

0 

0 

Marker Position for Sit-up 

/ .,,./_,,./-

J)J~ 

0.2 0.4 0.6 0.8 
(m) 

1 1.2 

Figure 4-9 Marker position for sit-up. 

1.4 

The marker data is used to determine the vertical, horizontal and 

angular accelerations of the segments. These accelerations are 

used to build the matrix on the left hand side of equation 4-29, 

and are shown in Figures 4-10 and 4-11. 
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Figure 4-10 Horizontal Acceleration of a Torso Marker 
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Figure 4-11 Vertical Acceleration of a Torso Marker 
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The vector on the right hand side of the equation is built usmg 

the reaction forces of the force platform. Once the matrix and the 

vector have been built the vector containing the masses and 

moments of inertia are calculated using a least squares 

approximation. The results are shown in the following table. 

Table 4-1 Calculated Mass and Moments of Inertia 

for the Segments. 

Segment Mass (kg) Moment of Inertia 

(kg m2) 

Head 9.1 -0.76 

Neck 7.0 0.33 

Torso 1 7.3 0.01 

Torso 2 3.2 -0. 71 

Torso 3 6.7 -0.58 

Torso 4 6.9 -0.82 

Torso 5 2.1 0.44 

Torso 6 -0.8 0.63 

Torso 7 1.2 0.66 

Torso 8 2.7 0.37 

Pelvis 1 4.2 0.76 

Pelvis 2 4.2 0.63 

Pelvis 3 9.7 -0.70 

Thighs 13.2 -5.36 

Shanks 9.4 -2.96 
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The application of the theoretical solution using data collected 

from a real sit-up experiment resulted in unreliable magnitudes 

of mass and moments of inertia. The previous sample shows that 

some of the properties have negative values which are obviously 

an inaccurate description of the mass properties of a subject. 

One possible source of the inaccuracy is attributed to the 

relatively small deviation of the trunk from rigid body dynamic 

characteristics. One of the goals of this approach was to reduce 

the error associated with trunk flexion. The model attempts to 

reduce the error by dividing the trunk into several segments 

from the shoulder to the pelvis instead of the one or two 

segments used in Clauser's anthropometric model [McConville 

1980]. One result of partitioning the torso into more segments 1s 

the reduction of relative motion between the segments. The 

relative rotation of the torso segments is significant enough to 

cause an error in the static calculation of the center of mass, but 

the relative angular acceleration is not significant enough to 

determine the segment mass properties using the dynamic 

method. The result of the small relative angular acceleration was 

a small magnitude of the independent terms of the forces in 

comparison to the precision of the force platform measurements. 

The accuracy of the least squares fit solution of the segment mass 

properties relies on the accuracy and magnitude of the terms 

used in the approximation. For the sit-up, the accuracy of the 

force platform and the magnitude of the independent 
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relationships between the translational and angular accelerations 

of the segments are significant factors in the calculation of the 

mass properties. This is demonstrated in the following section. 

Figure 4-12 shows the angular orientation (0), velocity (ffi) and 

acceleration (a) of two adjacent segments. 

Segment 2 

Segment 1 

Markers 

Figure 4-12 Two Adjacent Trunk Segments 

The vertical reaction forces of the two link model results in the 

following equations. 

63 



# of Segments 

F = Lm;a; = m1r1( a1 + m1
2)+ m2((a1 + m1

2 + a2 + m2
2)r2 + a1z1) (Eq 4-30) 

i=I 

F=m I rI (aI +m/)+m2(aI +m/)(4 +ri)+m2r2(a2 +m/) (Eq 4-31) 

Where: 
F = Force 
m1 = Mass of Segment 1 
m2 = Mass of Segment 2 
a 1 = Angular acceleration of Segment 1 relative to the ground 
a2 = Angular acceleration of Segment 2 relative to Segment 1 
m1 = Angular velocity of Segment 1 relative to the ground 
m2 = Angular velocity of Segment 2 relative to Segment 1 
r1 = Distance from marker to center of mass of Segment 1 
r2 = Distance from marker to center of mass of Segment 2 
11 = Length of Segment 1 

If the two segments were rigidly joined, the equation would be as 

follows. 

F = m1 r1 ( a1 + m/) + m2 ( a1 + m/ )( 4 + r i) (Eq 4-32) 

The difference of the rigid and non-rigid equations is equal to the 

magnitude of the force of the independent term. 

-(F=mI rI (a1 +m/)+m2(aI +m/)(l1 +r2 )) (Eq 4-30) 

+(F=mI rI (aI +m/)+m2(aI +m/)(4 +r2 )+m2r2(a2 +m/)) (Eq 4-31) 

M' = m2r2 ( a2 + m2 
2

) (Eq 4 - 33) 
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Therefore the deviation from the rigid body is due to the angular 

velocity and acceleration of the second segment relative to the 

first segment. The data shows that the relative angular velocity 

is less than 0.4 rad/sec and the maximum relative angular 

acceleration is 2 rad/sec2. The maximum force due to the non-

rigid term is 0.8 N. This is less than the 2.5 N precision of the 

force platform. 

The term that relates the moment of inertia to the torque is also 

not significantly greater than the 1.9 Nm precision of the torque 

measurement. The thigh segment has the largest moment due to 

the product of the moment of inertia and angular acceleration. 

The approximate moment of inertia is 1.21 kgm2 for the two 

thighs, and the maximum angular acceleration is 4 rad/sec2. 

Therefore the largest product is 4.8 Nm and only 2.5 times the 

precision of the force platform. The smallest moment would be 

the product of the moment of inertia and the angular acceleration 

of on of the torso segments. The moment of inertia for one of 

these segments is approximately 0.00602 kgm2. The maximum 

angular acceleration is approximately 4.5 rad/s2. Therefore the 

maximum moment of a torso segment due to angular acceleration 

is 0.03 Nm. The magnitude of the independent terms is not 

significantly greater than the precision of the force platform 

measurements. This is likely the source of the unreliable results 

of the least squares problem. Further investigation would be 

necessary to prove that this was the most significant source. 
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Conclusions 

The magnitude of the forces and moments resulting from the 

dynamic motion of the body are not significantly greater than the 

resolution of the force platform measurements. This 1s one 

source of uncertainty that is significant and could be the cause of 

the inaccurate solution to the least squares approximation. Other 

sources of error that would contribute to the inaccuracy include 

the errors in the position of the segment center of mass, marker 

position errors that result in acceleration errors, and the error 

due to the skin slippage at the marker locations. 

The analysis of the dynamic method is somewhat inconclusive 

due to the inaccuracy of the results. One likely source of the 

inaccuracy has been outlined, but further investigation would be 

necessary to determine if this was the only dominant source of 

error. The dynamic method would have some advantages over 

the anthropometric method if the least squares approximation 

was improved. The mass properties estimated using the dynamic 

method are subject specific and not based on population samples. 

The largest source of uncertainty found in the analysis of the 

anthropometric method was due to the estimation of the mass 

properties using population samples. Another advantage of the 

dynamic method is that the mass properties are directly 

calculated. The anthropometric method required calculating the 
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mass properties of the segments based on 248 dimensions of the 

subject. Therefore, the dynamic method does have some 

significant advantages, but further investigation into the 

inaccuracy of the least squares approximation of the mass 

properties is necessary before the feasibility of this approach can 

be determined. 
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Chapter 5 

Static Torque Measurement Method 

This section outlines and evaluates a method of determining the 

center of mass of a subject using the static torque of the segments 

of the body. The location of the center of mass can be 

determined by dividing the sum of the static torques of the 

segments by the sum of the weights. Static torque is related to 

the constant physical properties of the segments. These include 

the mass of the segment and its location and orientation with 

respect to the supporting platform. The constant terms are 

combined into two coefficients. The two constant coefficients 

combined with the orientation of the segment define the static 

torque. The orientation of the segment can be measured by the 

motion recording system. Therefore, the two coefficients can be 

determined for the segments of the body by placing the body into 

numerous static positions and measuring the resulting torque on 

the force platform. The advantage of this method is that it does 

not require specific knowledge of the mass or the location of the 

center of mass of the segment. One disadvantage of this method 

is that it relies on highly accurate force measurements. A rigid 

body model of the thighs and shanks of a human subject is used 

to evaluate this technique. Application of this technique to the 

two largest and most definable masses, the thighs and the shanks, 

and considering only the measurement uncertainty of the force 
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platform and the motion recording system, results in a larger 

uncertainty than the anthropometric model analyzed in Chapter 

3. 

Theory 

The body is divided into segments defined by the location of the 

markers attached to the subject's side. Each segment has a 

definable center of mass and moment of inertia. If the body 1s 

not moving relative to the force platform, then the measured 

center of pressure is coincident with the center of mass. 

Therefore, the center of mass position relative to the platform can 

be determined by summing the static torques and dividing by the 

sum of the weights. Figure 5-1 shows the position of the center 

of masses of individual segments and the body center of mass. 

Where ml is the mass of the first segment, etc. and g is the 

gravitational acceleration. The reaction forces of the platform are 

denoted by Rlh and R2h for the horizontal and RI v and R2v for 

the vertical. 
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Figure 5-1 Position of the Center of Mass in a Supine Position 

The center of pressure of the platform is calculated in the global 

coordinate system using the reaction forces at the four corners of 

the platform. The origin of the global coordinate system 1s 

located on the surface of the platform at the head of the force 

platform. The location of the center of pressure is calculated as 

follows. 
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Resultant Force 

Rlv R2v 
I • xcp • It 

Figure 5-2 Force platform resultant and reaction forces. 

x - R2 l 
cp - Vt RIV + R2 (Eq 5 -1) 

V 

Where: 
xcp = Location of platform center of pressure in global coordinates 

R2v = Vertical reaction force at the foot of the force platform 
Rlv = Vertical reaction force at the head of the force platform 
[1 = Distance between reaction forces 

The location of the center of mass of the whole body in the global 

coordinate system is the sum of the static torques of the body 

segments divided by the sum of their weights. 
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n 

Ix;mig 
X = ..:.i_=l,..._ __ cm n (Eq 5-2) 

Imig 
i=I 

Where: 
xcm = Location of body center of mass in global coordinates 
xi = Location of segment center of mass in global coordinates 

m; = Mass of segment 
g = Acceleration due to gravity 
n = Number of segments 

In static conditions the center of pressure and the center of mass 

are coincident. Therefore, these two equations can be combined 

and reduced as follows. 

n 

xcp = xcm and Rlh + R2h = Imig 
i=I 

Therefore, 
n 

R2 l Ix;mig 
__ ..:.,h....!t_ - i=l 

Rlh + R2 -h 
n 

Imig 
i=I 

n 

R2hl, = Ixim;g 
i=I 

(Eq 5-3) 

(Eq 5-4) 

(Eq 5-5) 

The previous equation can also be described as the sum of the 

moments about the axis that intersects the supports at the head 

gages. The moment due to the reaction force will be referred to 

as the static torque of the platform, T. 
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lM=O 
n 

R2hl, - LX;m;g=O (Eq 5-6) 

(Eq 5- 7) 
i=I 

T = R2hl, 

The position of the center of mass of each segment can be 

described relative to a local coordinate system defined by two 

markers fixed to the segment. The position in the local 

coordinate system is defined by 0cm and rem. The local 

coordinate system is defined in the global coordinate system by 

the location of one of the markers (xp,Yp) and the angle 0g. 

Figure 5-3 shows the position of the center of mass of a single 

segment. 

(xp,yp) 

Local Coordinate System 

Figure 5-3 Position and Center of Mass of a Single Segment 
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The location of the center of mass in the global coordinate system 

is as follows. 

xcm,g = xp,g + rem cos( 08 + 0cm) (Eq 5-8) 

Ycm,g = Yp.g + rem sin( 0g + 0cm) (Eq 5-9) 

Where: 
Ycm,g = Vertical position of center of mass in global coordinates 

xcm = Horizontal position of center of mass in global coordinates ,g 

yP = Vertical position of the marker in global coordinates ,g 

xP = Horizontal position of the marker in global coordinates ,g 

rem= Distance to the center of mass from the marker 
0cm = Angle of center of mass in local coordiantes 
0g = Angle of Segment in global coordiantes 

Therefore, the resulting torque due to each segment in reference 

to the global coordinate system is: 

Ti = ximig (Eq 5 -10) 

xi = xp + ri cos( 0g; + 0cm,) (Eq 5-11) 

Ti= ( xP + r; cos( 0g; + 0cm;) )m;g (Eq 5 -12) 
n n 

T = LTi = I(xP + ri cos( 0g; + 0cmJ)m;g (Eq 5-13) 
i=I i=I 

In the previous set of equations the location of the marker, (xm, 

ym), and the angle, 8 g, are determined from the marker position 

data and are therefore considered as known variables. The 

variables that describe the location of the center of mass in the 
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local coordinate system, 0cm and rem, and the mass of the 

segment, m, are unknowns. The previous equation can be 

expanded to give the following result. 

Substituting 

cos( 08; + 0cm;) = cos( 08; )cos( 0cm; )- sin( 08; )sin( 0cm;) 

Ti = ( xP + ri( cos( 08; )cos( 0cm; )- sin( 08; )sin( 0cm;)) )mig 

Ti= xpm;g + r;migcos( 0cm; )cos( 08; )- rim;gsin( 0cm; )sin( 011;) 

(Eq5-14) 

(Eq 5-15) 

(Eq 5-16) 

The previous equation can be simplified by defining the following 

two constants that contain the three unknowns, m, r, and 0cm. 

The static torque of a segment is defined by these two constants 

and the orientation of the segment. 

C1 = r;m;gcos( 0cm;) 

C2 = rim;gsin( 0cm;) 

(Eq 5-17) 

(Eq 5-18) 

The center of mass of the body is defined as follows. 

T 
xcm = w (Eq 5-19) 

n 

Iximig + cl cos( 0gJ- C2 sin( 0gJ 
X =~i-~I ____________ _ 

cm n (Eq 5-20) 
Imig 
i=l 
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The resulting equation contains three unknown terms, C1, C2, and 

m, for each segment. If these unknowns can be determined 0c m 

and rem can be calculated using the following relationships. 

0,. = arctan( ~: J (Eq 5-21) 

C r= I 
mg cos( 0cm) 

(Eq 5-22) 

However, the three unknowns cannot be determined for each 

segment because the terms that relate them are not linearly 

independent, but the constants C 1 and C2 can be determined for a 

single segment. The following section outlines the method for 

determining these values. 

Solution of Shank and Thigh Segments 

The coefficients C 1 and C2 can be determined if there are three 

linearly independent equations per link. To demonstrate the 

process to determine these coefficients the linked body model 

will be used. A model representing the trunk, thighs and shanks 

is shown in Figure 17 below. 
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es 
(x1,y1) Shank 

Trunk Segments (x3,y3) 

Figure 5-4 Model Used to solve for the Thigh and Shank Static 

Torque Coefficients 

To simplify the procedure only the links representing the thighs 

and shanks will be allowed to move. In these positions the only 

change in the torque will be due to the change in orientation of 

the leg segments. Therefore two equations can be created by 

subtracting the equations defined by placing the body in three 

different positions. The result is two equations with two 

unknowns. This is shown in the following equations. The first 

subscript on 0 represents the segment (s = shank and t = thigh). 

The second subscript represents the position number. The first 

subscript on the constants, C1 and C2, represents the segment. 

The subscript on the torque, T, represents the position number. 

Tl - Tz = C,.1 ( cos( 0.,,1 )- cos( 0.,,2) )- cs,2 ( sin( es.I)- sin( 0 .. ,2)) 
T1 - T3 = C,. 1 ( cos( 0.,, 1 )- cos( 0.,,3 ) )- Cs.z ( sin( 0,.1 )- sin( 0.,,3 )) 
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The previous equations are used to determine C 1 and C2 for the 

shank. The results are shown in the following equations. 

C = (Tl -T2) + c,,2(sin( 0,,1 )- sin( es,2)) 
s,I ( Cos( es,I )- COS( 0,.2)) (Eq 5-25) 

C = (T1 -T3)(cos(e.,,1)-cos(e,.2 ))-(T1 -T2 )(cos(e.,,1)-cos(0,.3)) _ 

"·
2 

( sin( e.,,1 )- sin( e.,,2 ) )( cos( es.i )- cos( 0.,, 3 )) + ( sin( 0,.1 )- sin( 0,. 3 ) )( cos( 0.,,1 )- cos( 0,,2 )) 

(Eq 5-26) 

The static torque of the shank can now be determined relative to 

the marker located at the knee. A similar method is used to 

determine the constants relating to the static torque of the thigh. 

Again the orientation of the trunk is held constant and its effects 

are eliminated when the difference of two positions is considered. 

The difference in torque of two positions includes the terms 

relating to the translation of the thigh center of mass as it rotates 

about the hip joint, the shank center of mass as it rotates about 

the knee, and the shank as the knee translates with the thigh 

rotation. If the shank is held at a constant angle relative to the 

platform the change in the static torque due to its rotation will 

also be eliminated. Assuming the trunk and the rotation of the 

shank are constant the equation relating the difference in torque 

will be as follows. 

t:..T = C,,1(t:..cos( 01 ))- C1, 2 (t:..sin( 01 )) + m,gl,(t:..cos( 01 )) (Eq 5-27a) 
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The terms relating C 1 of the thigh and the mass of the shank are 

not linearly dependent and therefore cannot be separately 

determined. Therefore, they are combined into a single constant 

C 1 as is shown in the following equations. 

tiT = ( C1.1 + m,gl1 )(ti cos( 01 ))- C1•2 (tisin( 01 )) 

Redefine C1•1 to be 

C1•1 = m1gr1 cos( 0cm,i) + m5gf1 

!1T = C1•1(ticos( 01 ))- C1•2(tisin( 01 )) 

(Eq 5-27b) 

(Eq 5-28) 

(Eq 5-27c) 

The solution for the two constants is the same as the solution 

determined for the shank segment. Three additional positions 

are needed to determine the two constants. 

C = (T4 -T5 )+C1•2 (sin(01•4 )-sin(01J) 
1
•
1 

( cos( 01•4 )- cos( 01•5 )) 
(Eq 5-29) 

C = ( T4 - T6 )( cos( 01•4 )- cos( 01•5 ) )- ( T4 - T5 )( cos( 01•4 )- cos( 01•6 )) 

1
•
2 

( sin( 01•4 )- sin( 01•5 ) )( cos( 01•4 )- cos( 01•6 )) + ( sin( 01•4 )- sin( 01•6 ) )( cos( 0,. 4 )- cos( 01•5 )) 

(Eq 5-30) 

Analysis 

The previous section outlines the method for determining the 

constants relating the orientation of the leg segments to the static 
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torque and center of mass. This section outlines the method used 

to determine the accuracy of this approach. The model is limited 

to the thighs and shanks of the body. These segments have the 

largest masses and most definable geometries, and therefore 

have the least amount of error. Consideration of uncertainties IS 

limited to the accuracy of the force platform and the motion 

recording system. The uncertainty of the force platform torque 

measurements is 1.9 Nm. The uncertainty associated with the 

marker locations determined by the motion analysis system is 0.5 

mm. Errors associated with changing mass properties due to soft 

tissue movement and skin slippage are not considered. 

Model Definition 

The model consists of two ideal links representing the thighs and 

the shanks. Since the movement associated with a sit-up IS 

considered to be symmetrical the properties include both legs. 

The mass properties of the links shown in Table 5-1 are for an 

average male [Kingma 1996; Andrews 1996]. 
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Table 5-1 Mass Properties of Thighs and Shanks 

Thighs Lower Legs 

Mass 14.80 kg 8.40 kg 

0cm 7.5 deg. 5 deg. 

rem 0.27 m 0.26 m 

Length 0.54 m 0.52 m 

For this analysis the trunk does not move and therefore, the 

torque due to the trunk is constant for each position, and can 

therefore be eliminated from the total torque calculations. For 

convenience, the coordinate system can be moved to the location 

of the hip joint. 

Y global 

Trunk Segments 

(x1 ,y1) 
x global 

Figure 5-5 Adjusted Global Coordinate System 

The actual values of the constants are calculated from the 

following equations, and shown in the Table 5-2 below. 

8 1 

Shank ,,,, 
(x3,y3) 



C:,,1 = rsm.,gcos( 0cm,s) 

c,.2 = rsm.,gsin( 0cm,s) 

c,,1 = m,gr, cos( 0cm,I) + m.,glt 

ct.2 = rrm,gsin( 0cm,t) 

(Eq 5-17) 

(Eq 5-18) 

(Eq 5-28) 

(Eq5-18) 

Table 5-2 Actual Values of the Static Torque Constants 

Constant Actual Value 

Cs,1 21.3 Nm 

Cs,2 1.9 Nm 

Ct,l 83.3 Nm 

Ct,2 5.1 Nm 

The total torque of the legs can be calculated from the following 

equation, and the total torque of the legs in six different positions 

is shown in Table 5-3. 

Ti = c,,1 cos( 01,i )- c,,2 sin( 01,i) + cs.I cos( 0.,,; )- c,,2 sin( 0.,,;) (Eq5-31) 
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Table 5-3 Leg Torque in Static Positions 

Position Angle of Angle of Total Torque 

Thighs ( deg) Lower Legs of Legs (Nm) 

(deg) 

1 45 0 76.6 

2 45 -60 67.6 

3 45 -90 57 .2 

4 0 0 104.7 

5 60 0 58.6 

6 90 0 16.2 

The uncertainty in the calculation of the constants is determined 

from the following equation. 

Uc= iL(8C Ux.J2 8x. l 
l 

(Eq 5 - 32) (Figliola and Beasley pg. 180) 

The resulting uncertainties in the calculation of the constants, the 

torque and the center of mass of the legs are shown in Table 5-4. 
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Table 5-4 Uncertainty in Static Coefficients 

Constant Uncertainty 

Cs,1 4.6 Nm 

Cs,2 3.8 Nm 

Ct,1 4.6 Nm 

Ct,2 3.8 Nm 

T 7.1 Nm 

Xcm 3.1 cm 

Conclusions 

The results show that the uncertainty in the position of the center 

of mass of the two most accurate segments of the body is + 3 .1 

cm. This is larger than the three link analysis of the current 

measurement methods in chapter 3 of this study. Therefore, this 

method does not present an improvement to the existing 

methods. If this method were applied to the trunk segments of 

the body that have smaller masses and less flexibility the margin 

of error would increase. In this study improvements on this 

method are limited by the accuracy of the force platform. There 

are other sources of error that are not considered in this study, 

that would also limit the effectiveness of this method. One of the 

sources of error would be the location of the markers. The ideal 

marker location would be at the point of the joint rotation, but 
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several studies have shown that defining these joint centers can 

result a large source of error [Leva 1996; Hinrichs 1990]. Skin 

slippage changes the marker position relative to the skeleton by 

as much as 2.0 cm [Cappozzo 1993]. Another source of error 

would be caused by the soft tissue movement relative to the 

skeleton [Kingma 1995]. Given the known uncertainty due to the 

precision of the force platform and the additional sources of error 

this method does not result in an improved estimate of the mass 

properties. 
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Chapter 6 

Summary and Conclusions 

When the center of pressure passes through the hip joint the 

subject can contract the hip flexor muscles and lift the torso into 

a sitting position. One of the goals of the sitting-up experiments 

in Dr. Cordo's laboratory is to show that the timing of the hip 

flexor activity is coordinated with the coincidence of the center of 

pressure and the hips. It is also important to distinguish the 

static and dynamic components of the center of pressure to 

account for the contribution of the forces on the sitting-up 

motion. 

The goal of this study was to determine if the location of the 

center of mass of a subject performing a sit-up can be 

determined with a sufficient resolution. This study shows that 

the anthropometric, dynamic, and static methods investigated in 

this study, as they are presented, cannot be used to calculate the 

position of the center of mass with the same precision as the 

center of pressure is measured. In a sit-up, the center of 

pressure and mass move about 25 cm in an individual with 

average dimensions. Approximately 75% of this distance or about 

18 cm lies between the starting location (i.e. mid torso) and the 

hip joint. The center of pressure measurements have a relatively 

large uncertainty of + 1.2 cm, which represents 5-10% of the total 
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distance moved to the hips. The most precise center of mass 

calculations have an uncertainty twice as large (10-20%). In a 

sit-up where the center of pressure took 2 seconds to reach the 

hips, the timing uncertainty related to the location of the center 

of mass would be 10-20% of the total time, or 200-400 ms. This 

amount of uncertainty would make it impossible to identify a 

correlation between the timing of muscle activation and the 

coincidence of the center of mass and the hip joint. 

The anthropometric model uses measurements of the subject's 

height, weight and segment dimensions to calculate the mass 

properties of the segments. The analysis of the uncertainty m 

using the anthropometric method resulted in an average 

uncertainty of + 2.66 cm. The investigation showed that the 

largest source of error was due to the uncertainty of the 

estimation of the segment masses. The error due to the 

uncertainty of the mass alone resulted in an average center of 

mass location uncertainty of + 2.56 cm. 

The dynamic method used a different approach to solve for the 

mass properties of the segments. This method attempted to solve 

for the mass properties of the segments from the motion of the 

segments and the ground reaction forces. The force and torque 

balance equations written in matrix form and solved using a least 

squares approach. The motion and ground reaction forces of a 

real experiment were used to solve for the mass and moments of 
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inertia of the subject. The results were found to be unreliable. 

The solution contained negative values for the mass and moment 

of inertia for some of the segments. The most likely source of the 

inaccuracies is due to the small magnitude of the independent 

force terms in comparison to the precision of the force platform. 

Verification of this hypothesis would require further 

investigation and it is beyond the scope of this thesis. 

The final method discussed in this thesis is the static method. 

This approach used static relationships to determine the 

coefficients of the static torque of the individual segments. The 

coefficients relate the position and orientation of the segments to 

the static torque. The center of mass can be determined by 

dividing the sum of the static torque by the weight of the subject. 

This method is limited by the precision of the force platform. The 

application of this method to a rigid body model of the thighs and 

shanks resulted in an uncertainty of 3.1 cm which is larger than 

the whole body model analyzed for the anthropometric method 

uncertainty. The uncertainty using the static method would 

increase if it was applied to all of the segments of the body. 

The study has shown that the uncertainty of the mass property 

estimates and the measurement devices limit the accuracy of the 

location of the center of mass. Improvements in the estimates of 

the mass properties would decrease the uncertainty using the 

anthropometric method, and improvements in the measurement 
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devices would improve the accuracy in the static and dynamic 

methods. However, there is another source of error that is not 

considered in this study or addressed in the literature. All of the 

efforts to determine the center of mass model the segments as 

rigid bodies. During movement the soft tissues of the body move 

and change the distribution of the mass within the segments. The 

effect of these changes is unknown, and should be investigated 

before the results are relied upon to give an accurate estimate of 

the center of mass location. 
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Appendix A 

Force Platform 

Force Platform Reaction Forces 

The force platform is designed to measure the reaction forces m 

three directions. This allows us the calculation of the 

perpendicular and parallel forces, and the relative torques. 

Figure A 1 shows the platform and the measurement recorded at 

each support. 

I\ I\ 

- - - - - - ---,- -- .. -------------------------f~ f ,. ;, 
f~, F\ 

F\ 

Figure Al Force platform force measurements. 

The force platform is designed to measure the voltages of 

Wheatstone bridges located on each of the four corners of the 

platform. The figure above shows the corresponding reaction 

forces. The upper right and lower left corners have gages that 

measure force in three directions. The other two corners only 
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measure the force in the vertical direction. The four supports are 

machined aluminum columns with stain gages attached. 

The platform is made of aluminum. The top surface is flat and 

smooth and the underside is a web of 5 cm flanges designed for 

rigidity. The length of the platform is 192 cm including two end 

plates, each 25 cm, and the width is 66 cm. The distance between 

the supports is 117 cm. The rigid plate is designed to resist 

bending, but it is expected that there will still be a very small 

amount of deflection in the plate. This is one of the properties of 

the system that influences the accuracy. 

The force is transferred through the supports at the four corners 

of the platform. Strain gages are attached to these machined 

aluminum columns. Figure A2 shows the column located at the 

lower left corner of the platform. 
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Figure A2 Support Column 

The dimensions of the four columns are identical. 

Strain Gage Readings 

The strain gage locations are identical for the diagonal corners. 

Figure A 1 shows that the upper right and lower left corners 

measure force in three directions and the strain gages are 

oriented as shown in the previous figure. The opposite two 

corners only measure the force in the vertical direction and only 
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I 
1 
i 

have the center set of gages. The strain gages are wired into a 

Wheatstone bridge. The gages are specified as linear for the 

region that this platform operates in. 

Strain Gage Conditioners 

Figure A3, on the following page, shows the strain gage 

conditioner wiring. The wide bandwidth strain gage signal 

conditioner, 1B31AN, is used. 
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The figure shows the configuration used for this set up. The 

advantages of using this set up is that the offset can be 

eliminated by adjusting the 1 0kn potentiometer wired to the 

INPUT OFFSET ADJ. terminal. The output offset can be adjusted 

as well using the 50kn potentiometer wired across the OUTPUT 

OFFSET ADJ. terminals. This allows us to eliminate the effect of 

the weight of the platform. The configuration also includes a low 

pass filter set at lKhz to eliminate noise. The resulting output 

voltage range is set to O to 10 volts corresponding to O to 400 N 

force. This gives a 40 N/V resolution. 
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Calibration 

We are interested in three table reaction forces, the vertical 

force, the horizontal force, and the torque. Therefore, the 

table must be calibrated such that the appropriate gains can 

be determine to translate the output voltages of the load cells 

into the three reaction forces. The following figure shows a 

two dimensional side view of the forces acting on the 

platform. The platform reaction forces (Rlx, Rl y, R2x, R2y) 

are shown at the center of the load cells where they are 

measured. 

Fy 
y 

Fx 

YR R1x 

R1y 

XF 

XR2 
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Where: 

F y = vertical force applied to the surface of the platform 

F x = horizontal force applied to the surface of the platform 

R 1 x, R 1 y = reaction forces measured at the load cells closest to 

the reference point 

R2x, R2y = reaction forces measured at the load cells farthest 

from the reference point 

The force balance equations for the platform are as follows. 

LFx=O 

Fx - ( R1x + Rix) = 0 

Fx = Rix +Rix 

LFY=O 

FY -( Rly + Rly) = 0 

FY= Rly +Rly 

IM=O 
-xFFv + YR( Rix+ Rix)+ XRIRlv + XR2Riv = 0 . . . 

xFFy = YR(Rix + Rix)+ XR1R1y +xR2Riy 

The output of the force table is the voltages of the strain gage 

bridges attached to the support beams. These output voltages 

are processed by a digital Butterworth filter. The filtered 

voltage data is translated into force data. In order to apply 
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this conversion the transformation gains have to be 

determined. The transformation gains relate the table output 

voltages to the vertical forces, the horizontal forces along the 

length of the table, and the torques about the axis 

perpendicular to the measured forces. There are a total of six 

outputs from the table, four vertical bridge voltages, and two 

horizontal bridge voltages. The transformation matrix 

composed of the gains is designed such that when it is 

multiplied by the six voltages measured from the table it 

results in the vertical force, the horizontal force, and the 

torque. The equation in matrix form is shown below. 

gyl Q gTI 

gy2 0 gT2 

[ ]I gv3 o gT3 I [ l 
Vy! vy2 vy3 vy4 vxl v.x2 g. 0 g = FY Fx T 

y4 T4 

Where: 
FY = the total vertical force 

F x = the total horizontal force 
T = the total torque 
v = the bridge output voltages 
g = the gains 

Q gxl gT5 

Q gx2 gT6 

A series of fifteen loads are used to determine the gains. The 

horizontal loads are applied using a pulley fixture attached to 

the end of the table. The table is vertically loaded using the 
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calibration frame. This frame as shown in the following 

figure allows the weight to be precisely applied to a specific 

point. 

Calibration Load Frame 

- - - - - - -,-,~ - - - -- - - -~~- - iit - - - -:: ----,- Ill . I 

- - - - ":.' Load Plate ~Ill '.:.w, 
'

1 

-- 111 

" "' • I ,,_ :., • "'' d Bearing Pom - n1'Loa 

Weight 

The loads are translated to their total horizontal forces, 

vertical forces, and torques, and the corresponding voltages 

are measured. A set of equations is now formulated that 

relates the differences in torque and load. These equations 

are of the following form. 

T1 -T2 = (vy1,1 -vy1.2)gn + (vy2.1 -vy2.2)gn + (vy3,1 -vy3.2)gn + (vy4,t -vy4.2)gT4 

+ (Vxl,I -Vxl,2)gT5 + (Vx2,I -Vx2,2)gT6 

FYI - FY 2 = (vyl.l -vy1,2)gy1 + (vy2.1 -vy2.2)gy2 + (vy3,t - vy3.Jgy3 + (vy4.1 - Vy4,2)gy4 

Fxl - Fx2 = (vxl,I - Vx1,2)gxl + (vx2,l -Vx2,2)gx2 
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For the calibration procedure the maximum number of 

difference equations are formulated from the set of fifteen 

loads. A least squares method is used to solve these 

equations for the gains. 

The difference equations eliminates the need for a zero offset, 

and it eliminates the effects of the constant weight of the 

platform. Each of the gains relates the change in volts of a 

channel to the corresponding change in the reaction load. 

Therefore, a known load at a known voltage can be used 

instead of a zero load. The reference voltage and load are 

used in conjunction with the gain matrix to calculate the total 

load on the platform. 

gyl Q gTI 
gy2 0 gT2 

[ ]I gy3 0 gT3 
Vvl - Vrvl Vv2 - Vry2 Vy3 - Vrv3 Vy4 - Vrv4 Vxl - Vrxl Vx2 - Vrx2 . . . . . gy4 Q gT4 

+[Fry Frx Tr]=[FY Fx T] 

Where: 
Fr Y = the reference vertical force 

F x = the reference horizontal force 
T = the reference torque 
vr = the reference output voltages 
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The accuracy of the static calibration is determined 

calculating the standard deviation of the difference between 

the known force load and the calculated force load using the 

gain matrix and the fifteen calibration trials. Two standard 

deviations is considered to be the accuracy of the calibration. 

The following table shows the accuracy of the static 

calibration. 

Uncertain tv 

Horizontal Force + 2.4 N 

Vertical Force + 2.4 N 

Torque + 1.9 Nm 

Dynamic Verification 

To verify that the table also records accurate information for 

dynamic movement it is required that a known dynamic force 

be applied to the table. To accomplish this a pendulum of 

known mass and arm length was attached to the table and the 

forces and torque were measured. The following figure shows 

the pendulum used. 
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Rx1 
Ry1 Ry2 

The pendulum is described by the following differential 

equation. 
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d10 cl d0 mgl . (O) O 
dt1 + ( ml1 + I) dt + ( ml1 + I) sm = 

Where: 
0 = Angular Displacement 

dO = Angular Velocity 
dt 
d10 
-

2
- = Angular Acceleration 

dt 
c = Damping Constant ( due to friction and air resistance) 
m = Mass of Pendulum 
I = Moment of Inertia 
l = Length of Pendulum Arm 
g = Acceleration due to Gravity 

The previous equation is solved for the angular displacement. 

The angular velocity, and angular acceleration are calculated 

form the result. The initial conditions are a known initial 

displacement and zero initial angular velocity. Once the 

motion is determined the resulting forces and torque can be 

calculated using the following equations. 
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( d
2
0 (d0)2 J Fz = m g + l dt2 cos( 0)- dt rsin( 0) 

( d
2

0 (d0)2 J Fv = m l-2 sin( 0)- - rcos( 0) 
- dt dt 

( d
2
0 (d8)2 J T=m g+l dt2 cos(0)- dt rsin(0) (lsin(0)) 

( 
d

2
0 (d0)2 J +m l dt2 sin(0)- dt rcos(0) (h-lcos(0)) 

Where 
h = Height of Pivot Point 

The results show that the dynamic measurements are within 

the uncertainty of the static measurements. 
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Table Vibrations 

Introduction 

We are interested in ensuring that the natural frequencies of the 

force platform are above the measured forces. To determine the 

natural frequencies we excite the platform in with an impact 

force and record the load cell voltage measurements after the 

impact. The resonant frequencies are determined by performing 

a spectral analysis of the voltage outputs. An accelerometer 1s 

used to determine if the voltage output from the load cells 

correspond to actual vibrations of the surface of the platform. 

Resonant frequencies are the result of the mechanical and 

electrical characteristics of the system. 

Sources of vibration that could interfere with measurements 

include the force platform, the two end plates, the two supporting 

frames, the foam pads, the floor, and the electronics. The pads 

are designed to filter out the high frequency oscillations of the 

building. 
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End Plates 

Lower Frame Frame 

The forces of interest applied by a human subject are present 

below 15 Hz. Therefore, any resonant frequencies below 15 Hz 

are of concern. The spectral analysis is used to determine the 

frequencies at which the platform is oscillating. Comparison 

between spectra for this experiment is limited to the frequencies 

at which there is a signal. The magnitude of the power should 

not be relied on for comparison because it changes with factors 

that are not sufficiently controlled in this experiment, such as the 

length of time in the trial after the impact and intensity of the 

impact. So the frequencies of the signals of two trials can be 

compared, but not the magnitudes of the signals at those 

frequencies. 
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Experiment 

The goal of the experiment is to excite the natural frequencies of 

the platform and record the voltage outputs of the load cells and 

the accelerometer. A power spectrum analysis of the outputs 

reveals the natural frequencies of the platform. The vertical 

platform excitation was achieved by dropping a 0.5 kg elastic ball 

from a height of approximately 1.25 m. A device used to 

measure point of contact was used to record the end of the 

impact time. The platform was excited horizontally by hitting the 

end of the table with the same ball. The reaction forces of the 

table and the accelerometer were recorded for five seconds. 

After the recorder was started, the ball was dropped onto the 

surface or tossed at the end of the platform. The contact device 

shows the end of the impact time for the vertical impact. The 

end of the horizontal impact was determined to be after the 

voltage has returned to its pre-impact magnitude. A frequency 

analysis was performed on the accelerometer and strain gage 

voltage outputs for the portion of the trial after the ball had left 

the table. 

Results 
1~ 11 

The first observations showed that the power spectrum 1s 

consistent for all four vertical supports. This was determined by 
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evaluating the power spectrum of the four voltage outputs from 

the strain gage configurations on the load cells. A similar result 

was found when the horizontal voltages were analyzed. The 

accelerometer was used to determine if the voltage readings 

corresponded to actual accelerations of the platform. To test this 

it was attached to the surface of the platform directly above one 

of the load cells. The result showed a very strong correlation 

between the voltage signal of the load cells and the accelerometer 

for both the vertical and horizontal directions. 

The analysis showed that there are resonant frequencies in the 

system below 15 Hz when the platform is fully assembled and 

the pads are placed under the feet. 

The following two figures show the horizontal and vertical 

natural frequencies present in the strain gage readings with the 

pads in place. 
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Power Spectrum Horz 1 (horz pertubation with pads) 
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The previous figure shows that there is a signal at approximately 

7 Hz in the horizontal strain gage recordings. 

x 1 o·3 Power Spectrum Vert 2 (vert pertubation with pads) 5~---~-------~---~---~--~ 

4 

(J' 
3 

0 
... 
Cl> 
): 2 
0 
a. 

1 

Q IL ::6n .._.._ ... zMW, all 

0 10 20 30 40 
Frequency (Hz) 

50 60 

There are no signals below 20 Hz in the vertical direction. 

Further investigation revealed that the recorded low frequency 
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vibrations in the horizontal direction are the result of the foam 

pads placed under the feet of the lower frame. These pads are 

designed to filter out the higher frequency signals in the building, 

but the elastic properties of the pads introduce a new low natural 

frequency characteristic into the system. Therefore, the pads 

were removed from the feet and the platform was reevaluated. 

The following figures show the power spectrums after the pads 

were removed. 

Power Spectrum Horz 1 (horz pertubation with no pads) 
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The previous figure shows that there is a significant signal at 24 

Hz in the horizontal channel. The following figure magnifies the 

y-axis to see if there are any other signals of significance below 

15 Hz. 
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Power Spectrum Horz 1 (horz pertubation with no pads) 
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The previous figures show that there is a significant signal at 24 

Hz that appears when the pads are removed. However, the 

signal at 7 Hz. has been eliminated. The vertical power spectrum 

shows that no low frequency vibrations appear in this case. 

Power Spectrum Vert 2 (vert pertubation with no pads) 
0.05 ~------.----.......------,-----r---,--,------, 

0.04 

ff"' 
2 0.03 
0 
2:. ... cu 

0.02 
a. 

0.01 

0 ----~-----'---_____ ...._ __ ___......_. 
20 30 40 0 10 

Frequency (Hz) 

115 

50 60 



Conclusion 

The results show that the removal of the pads eliminates all 

resonant frequencies below 20 Hz. It does, however, allow 

vibration from the floor to enter into the system at just above 20 

Hz. Therefore the pads can be removed and a digital filter can be 

designed to eliminate all frequencies above 15 Hz. 
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Filter Design 

The system needs a digital filter to eliminate the higher 

frequency components in the output signals. The analysis of the 

frequency response of the system shows that there is a 

significant signal in the horizontal channels at 24 Hz. The 

measurement requirements state that it is desirable to preserve 

the signals below 15 Hz. Therefore, the digital filters 

requirements are to preserve the signal below 15 Hz and 

eliminate the signal above 20 Hz. 

The voltage measurement range of the amplified strain gage 

signals is + 5 V. The error resulting from the static calibration of 

the table is currently greater than 1.0 cm in terms of the center 

of pressure measurement. The error associated with 1.0 cm 

center of pressure measurement corresponds to 0.1 V in the 

strain gage voltage. Therefore, the attenuation in the pass band 

should be no greater than + 0.05 V. This is equivalent to 0.086 

dB. Further improvements in the calibration procedure may call 

for a revision of this value. 

In the stop band the attenuation should be large enough to 

reduce the signals above 20 Hz to less than 0.05 V. The signal in 

the horizontal channels at 24 Hz has a magnitude of 

approximately 0.6 V when the table is unloaded. However, when 

the table is loaded with 300 N, the magnitude of the signal is 
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reduced to 0.08 V. Therefore, the signal must be reduced by a 

factor of 0.625, which is equivalent to 4.1 dB of attenuation in the 

stop band. 

A classic Butterworth filter was chosen for two reasons. The first 

reason is that it has a very smooth and flat pass band, and the 

second reason is that it has a smooth and steep cutoff slope. Also 

to preserve the time sequence a double filtering technique is 

used that has zero phase distortion. 

Pass Band: 0-15 Hz 

Stop Band: 20-oo Hz 

Maximum Attenuation in Pass Band: 0.086 dB 

Minimum Attenuation in Stop Band: 4.1 dB 

Filter Order: 8 

Filter Natural Frequency: 19.4 Hz 
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The following figure shows the magnitude and frequency plots of 

the filter. 

Magnitude and Frequency Plot of Digital Filter 
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The filter is applied using the following difference equation in the 

forward direction and then the data is reversed and the filter is 

applied again. This eliminates all phase distortion in the filtered 

signal. 

y(n) = b(l )*x(n) + b(2)*x(n-1) + ... + b(nb+ 1 )*x(n-nb) 

- a(2)*y(n-1) - ... - a(na+ 1 )*y(n-na) 

119 



The coefficients used in this filter are shown in the following 

table. 

a 
1.00000000000000 

-6.74753777266655 
20.00402127588237 
-34.02313166097544 
36.30154206684909 
-24.87559370070418 
10.68892431516036 
-2.63276494975526 
0.28454749504166 

120 

b 
0.00276126251838 e-05 
0.02209010014700 e-05 
0.07731535051451 e-05 
0.15463070102903 e-05 
0.19328837628629 e-05 
0.15463070102903 e-05 
0.07731535051451 e-05 
0.02209010014700 e-05 
0.00276126251838 e-05 



Marker Filter Design 

The marker position data error becomes significant when it is 

differentiated twice to calculate the acceleration data. Therefore, 

it is necessary to smooth the data before it is used to determine 

the acceleration. The following figure shows the power spectrum 

of the position data of a marker. 
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The previous figure shows that there are definitely low 

frequency signals. The following figure expands the y axis to 

make sure that there are not any higher frequencies that have a 

significant magnitude. 
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From the previous two figures we can conclude that there are not 

any significant signals above 3 Hz. If the unfiltered position data 

is differentiated twice to calculate the acceleration the power 

spectrum of the result would be as follows. 
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The previous figure shows that the higher frequencies dominate 

the signal. If the position data is filtered first and then used to 

calculate the acceleration then the signal would not have the 

higher frequency components. This is shown in the following 

figure. 
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A classic Butterworth filter was chosen as the filter design. To 

preserve the time sequence a double filtering technique is used 

that has zero phase distortion. The characteristics of the filter are 

shown below. 

Pass Band: 0-3 Hz 

Stop Band: 5 - 00 Hz 

Maximum Attenuation in Pass Band: 0.01 dB 

Minimum Attenuation in Stop Band: 10 dB 

Filter Order: 8 

Filter Natural Frequency: 4.4 Hz 
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The following figure shows the magnitude and frequency 

response of the filter. 

_ Magnitude end FrequencyResponse of Digital Filter 
!g 200.-----------..------.-----..--------, 

Cl.) 

2 0 ............... ; ............... ............................ ., 
0 
Q. 

~00 · · · c! - : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : '•:::::::::::::: '•: .. 
Cl.) 

]-400 ··············:···············:···············~···············~·············· 
·c 
Cl> q;j -600 ...__ ___ ___. ____ __,_ _________ ...... 

0 5 10 15 20 
Frequency (Hertz) 

25 

0 ...-------,,-----,-------,,-------,,-------, 

~-200 
Cl.) .... 
Cl> 

-400 -Cl.) 

]-600 
a.. 

················••:••············· 

: : : : : : :~::::: ~:::::::::::::::::: ~:::::::: •••• : •••••••••••••• :: •••••••••••••• 
-800....__ ___________________ __ 

0 5 10 15 20 25 
Frequency (Hertz) 

The filter is applied using the following difference equation in the 

forward direction and then the data is reversed and the filter is 

applied again. This eliminates all phase distortion in the filtered 

signal. 

y(n) = b(l)*x(n) + b(2)*x(n-1) + ... + b(nb+l)*x(n-nb) 

- a(2)*y(n-1) - ... - a(na+ 1 )*y(n-na) 
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The coefficients used in this filter are shown in the following 

table. 

a 
1. 00000000000000 

-5.17412639916459 
12.06400450613629 

-16.46278060825211 
14.32829042946610 
-8.12269786191790 
2.92298398801270 
-0.60945504380905 
0.05629615395204 
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b * l.0e-03 
0.00982486102914 
0.07859888823312 
0.27509610881591 
0.55019221763182 
0. 68 77 402 7203977 
0.55019221763182 
0.27 509610881591 
0.07859888823312 
0.00982486102914 



Appendix B 

Monte Carlo Simulation m-file 'stderror' 

function 
[CoMstd,CoMa,STDResults,MinResults,MaxResults,CoMtrack] 

=stderror(t,xo,yo,mo,Io,Fx,Fy, T) 

% Inputs: 
% x = Matrix of x's 
% y = Matrix of y's 
% m = Matrix of actual masses 
% Fx = Actual Horizontal Reaction Forces 
% Fy = Actual Vertical Reaction Forces 
% T = Torque 
% 
% Outputs: 
% CoMstd = Center of Mass Std for each position in time 
% CoMa = Actual Center of Mass Location 
% STDResults = Average Std 
% MinResults = Minimum Std 
% MaxResults = Maximum Std 
% CoMtrack = Record of each iteration's Center of Mass 
% 
% 

g=9.80665; 

% Subtract the forces and moments associated with the table 

tablemass=0.1264; 
tablecm=0. 79; 
Fy=Fy-tablemass*g; 
T=T-tablecm*tablemass*g; 

% Calculate the actual Center of Mass 
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xcm=(diff(xo')'). *( ones(length(xo ), 1 )* [ 43/80, 1/2, 1/2]) ... 
+xo(:, 1 :length(xo(l ,:))-1 ); 

ycm=(diff(yo')'). *( ones(length(yo ), 1 )* [ 43/80, 1/2, 1/2]) ... 
+yo(:, 1 :length(yo( 1,:))-1 ); 

CoMa=xcm *mo'/sum(mo ); 

len=length(CoMa); 

seglength=sqrt( diff(xo( 1, :)). "2+diff(yo( 1,:) ). "2); 

% Uncertainties in x and y, mass, and inertia 

% Marker Position ( +/- 0.0005 m) 
ux=0.0005; 
uy=ux; 
% Skin Slipage (0-0.02 m) 
uxslip=0.02; 
uyslip=uxslip; 
% Center of Mass Location ([5,5,5]) 
% 
uxcm=[5,5,5]/l 00; 
lengthx=[0. 36,0.43,0. 39]; 
lengthy=[0.15,0.13,0.1]; 
% Mass ([10.32,8.29,7.65]) 
% 
um=mo. *[10.32,8.29,7.65]/100; 
% Moment of Inertia ([8.8,13.1,11.0]) 
ul=lo.*[8.8,13.1,11.0]/100; 

[N, Wn] = BUTTORD(7/25,ll/25, .1, 10); 
[B,A] = BUTTER(N,Wn); 

% These variables are used to set the stability criteria in the 
% Monte Carlo Simulation 
% They are now set to get the loop started. 

iterations=0; 
CoMstdpast=0: 100:9900; 
conv=[]; 
CoMerror2=zeros( 1,length(xo)); 
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CoMerror=zeros( 1,length(xo) ); 
CoMtrack=[]; 
xcm40=[]; 
ycm40=[]; 

figure(2) 
elf 
hold 

count=0; 
tic 

while max(abs(diff(CoMstdpast))) > 0.00001 & iterations<20000; 
iterations=iterations+ 1; 

% Calculate the orientation angle of the three segments 
% clean data 

thetasego=atan2( diff(yo')' ,diff(xo')'); 

% Set the error deviations 

% Marker Position Error 
dx=randn(size(xo ))*ux/3; 
dy=randn(size(yo) )*uy/3; 

% Skin Slipage Error 
dxslip=ones(length(xo ), 1 )*rand( 1,length(xo(l,:)) ... 

-2). * ( diff(thetasego')'/(pi/2)) *uxslip; 
dyslip=ones(length(xo ), 1 )*rand( 1,length(yo( 1,:) ) ... 

-2). * ( diff(thetasego') '/(pi/2)) *uyslip; 

% Mass Error and Rescale the masses to match 
% total sum of the mass 
m=(mo+randn(l,3). *um); 
m=m *(sum(mo )/sum(m)); 

% Moment of Inertia Error 
l=lo+randn( 1,3 ). *ul; 
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% Add the Marker Position Error 
x=xo+dx; 
y=yo+dy; 

% Filter the Result 
if ux > 0 

for k=l :length(x(l ,:)) 
x(:,k)=myfilt(B,A,x(:,k)); 
y(:,k)=myfilt(B,A,y(:,k)); 

end 
end 

% Add the Skin Slippage Error 
x(: ,2:length(x( 1,:) )-1 )=x(: ,2:length(x( 1, :) )-1 )+dxslip; 
y(: ,2:length(y( 1,:) )-1 )=y(: ,2:length(y( 1, :) )-1 )+dyslip; 

% Calculate the orientation angle of the three segments 
% filtered data 

thetaseg=atan2( diff(y')' ,diff(x')'); 

% Calculate the Angular Acceleration 
alphaseg=diff( diff(thetaseg) )/. 02"2; 
alphaseg=[alphaseg( 1,: );alphaseg; ... 

alphaseg(length(alphaseg),:)]; 

% Calculate the Center of Mass Location relative to the 
% first marker 
xcml=( diff(x')'). *( ones(length(x), 1 )* [ 43/80, 1/2, 1/2]); 
ycml=( diff(y')'). *( ones(length(y), 1 )* [ 43/80, 1/2, 1/2]); 

% Calculate the Center of Mass Location relative to the 
% global coord. system 
xcm=xcml+x(:, 1 :length(x( 1,:))-1 ); 
ycm=ycml+y(:, 1 :length(y( 1,:))-1 ); 

% Center of Mass Location Error 
devxcm=(randn( 1,3 )/3. *uxcm). *lengthx; 
devycm=(randn( 1,3 )/3. *uxcm). *lengthy; 

% Add the Center of Mass Location Error in Global 
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% Coordiantes 
xcmd=xcm+ones(length(thetaseg), 1 )*devxcm. *cos(thetaseg) ... 
-ones(length(thetaseg), 1) *devycm. * sin(thetaseg); 
ycmd=ycm+ones(length(thetaseg), 1 )*devycm. *cos ... 
(thetaseg)+ones(length(thetaseg), 1 )*devycm. *sin(thetaseg); 

% Store the Resulting Center of Mass Coord. for future 
% reference 
xcm40=[xcm40;xcmd( 40,: )] ; 
ycm40=[ycm40;ycmd( 40,:)]; 

if length(xcm40) >= 200 

end 

count =count+ 1; 

figure(2) 
plot(xcm40,ycm40,['b','+']) 
disp(['Current Count is: ', num2str(count*200)]) 
disp(['Time for last 200 was: ',num2str(toc)]) 
disp(['Convergence is at (0.00001): ... 

',num2str(max( abs( diff( CoMstdpast))))]) 
disp(['Maximum and Minimum CoMstd for last 100', ... 

' iterations: ',num2str([max(CoMstdpast) ... 
,min(CoMstdpast)])]) 

tic 
conv=[ conv;max(abs( diff(CoMstdpast)))]; 
xcm40=[]; 
ycm40=[]; 

% Calculate the Accelerations 
ax=diff( diff(xcmd) )/ .02 "2; 
axcm=[ax( 1, :);ax;ax(length(ax),:)]; 
a y=diff ( diff ( ycmd) )/. 02 "2; 
aycm=g+[ay( 1,:);ay;ay(length(ay),:)]; 

% Center of Mass 
CoMx=xcmd*m' ./sum(m); 
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end 

% Calculate the standard deviation of the center of mass 
% error 
CoMstdpast(2: 1 00)=CoMstdpast( 1 :99); 
CoMerror2=CoMerror2+((CoMa-CoMx)').A2; 
CoMerror=CoMerror+( CoMa-CoMx)'; 
CoMmean=CoMerror/iterations; 
CoMstdpast( 1 )=mean(sqrt( l/(iterations)*(CoMerror2 ... 

-2*CoMmean.*CoMerror+iterations*CoMmean."2))); 
CoMtrack=[CoMtrack;CoMstdpast( 1 )] ; 

iterations 
convergence=max(abs( diff(CoMstdpast))) 

% Calculate the Standard Deviation 

CMmean=CoMerror/i terations; 
CoMstd=sqrt( 1/(iterations-1 )*(CoMerror2-2*CoMmean. * ... 

CoMerror+iterations *CoMmean. "2))'; 

% Display results 

STDResults=mean([CoMstd]); 
MaxResults=max([CoMstd]); 
MinResults=min([CoMstd]); 
<lisp('( [CoMstd])') 
[STDResults;MinResults;MaxResults] 

% Plot Results 

figure( 1) 
elf 
hold 
plot(t,[CoMa]) 
plot(t,[2*CoMstd+CoMa,-2*CoMstd+CoMa],'--') 
title('Center of Mass and 2*STD error') 

figure(2) 
plot(xcm40,ycm40,['b','+']) 
plot(xcm( 40,:),ycm( 40,:),['W', '*']) 
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figure(3) 
plot( [( 1 :count)' *200;iterations], [conv;convergence]) 
title('Convergence Plot of Maximum Difference in Previous 100 
Iterations') 
ylabel('Max Difference in STD (m)') 
xlabel('Number of Iterations') 
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