
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1998

Specification-Driven Optimization Specification-Driven Optimization

Sheena Day
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Day, Sheena, "Specification-Driven Optimization" (1998). Dissertations and Theses. Paper 6333.
https://doi.org/10.15760/etd.8187

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6333
https://doi.org/10.15760/etd.8187
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Sheena Day for the Master of Science in Computer Science were

presented May 8, 1998, and accepted by the thesis committee and the department.

COMMITI'EE APPROVALS:

DEPARTMENT APPROVAL:

M. scol
R~presentative of the . ffice of Graduate Studies

Richard Hamlet, C air
Department of Computer Science

ABSTRACT

An abstract of the thesis of Sheena Day for the Master of Science in Computer Science

presented May 8, 1998.

Title: Specification-Driven Optimization.

Traditionally, optimizing transformations have been built into compilers. The end-user

has little or no control over guiding any optimizations that may be applied by the

compiler. Moreover, the compiler-writer does not have a simple way to direct the

optimizations. Thus, many potentially beneficial opportunities for code optimization

may be lost. We have built a system that allows the user to participate in guiding

source-to-source transformations via the specification of rewrite rules. A clean

separation of the rules from the strategy of applying them makes the system easier to

use and modify, compared to other integrated systems. This is especially relevant to

the application-specific improvement of code, which is hard to achieve through the

usual means. We anticipate our system to be a useful aid to both the end-user and the

compiler-writer. A sophisticated end-user might use it very effectively by applying his

knowledge of the problem domain to the rewrite rules. The compiler-writer, in

addition, would benefit from the increased modularity, flexibility and simplicity of use

that it provides. A desirable feature of the design is the ability to express the rewrite

rules in a language closely allied to the source language. We illustrate this with the

help of several examples. Our system is intended to be an extension to the standard

optimizing compiler. To our knowledge, existing compilers do not have this facility.

SPECIFICATION-DRIVEN OPTIMIZATION

by

SHEENA DAY

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
1998

for
Mummy and Papa

Acknowledgments

I feel very privileged to have an advisor like Andrew Tolmach. It is hard to imagine

how any student could have a more sincere or committed mentor. He has enriched not

merely this thesis, but my entire graduate life with his knowledge and experience. I

shall always remember his generosity and the sense of humor that have made the past

few years a time to look back upon with warmth and pleasure.

I would also like to thank the committee members Jingke Li and Mike Driscoll for

their advice and criticism of the thesis.

Eelco Visser has helped greatly by his thoughtful and detailed suggestions on how to

improve the presentation of the material, as well as by referring me to some of the

books I consulted during the time I was writing this thesis.

Finally, I cannot forget the support and encouragement of my husband Bikram,

without whom so much might never have been.

ii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. OPTIMIZATION BY REWRITING .. 6

2.1 CONSTANT FOLDING ... 10

3. SYSTEM ARCHITECTURE ... 14

3.1 COMPILER ARCHITECTURE ... 14
3. 1.1 Generation of the optimizer .. 14
3.1.2 Compilation of the source program .. 18

3.2 SYSTEM COMPONENTS .. 19
3.2.1 RML Source Language ... 19
3.2.2 Templates .. 20
3.2.3 Rule Expression Language ... 23

4. EXAMPLES ... 28

4.1 STRENGTH REDUCTION ... 28
4.2 MATRIX ADDRESSING ... 29
4.3 VECTOR LOOP RJSION .. 33

5. IMPLEMENTATION DETAILS ... 42

5.1 EXTENSIONS NEEDED TO THE RML COMPILER42
5.2 GENERATION OF THE OPTIMIZER FROM USER SPECIFICATIONS43
5.3 OPTIMIZATION VIA PATTERN-MATCHING45

5.3.1 Termination ... 47
5.3.2 Confluence .. 48

5 .4 OPTIMIZA TION OF RML ABSTRACT CODE48
5.5 TESTING .. 49

6.. DISCUSSION .. 51

6.1 RELATEDWORK ... 51
6.2 OUR APPROACH ·················· .. 53
6.3 FUTURE WORK .. 56

7. CONCLUSION .. 58

8. REFERENCES ... 59

iii

LIST OF FIGURES

Figure 1. Template definition for optimizing operations on integers 12

Figure 2. Overall architecture of the RML compiler .. 15

Figure 3. Generation of the extended RML compiler ... 17

Figure 4. A template definition for the rule specification language 25

Figure 5. An RML library for matrix manipulation .. 31

Figure 6. A template definition of primitives for vectors of integers 32

Figure 7. An RML implementation of the conjugate gradient method 36

Figure 8. A library of primitive operations for matrix and vector manipulation 38

Figure 9. An optimized version of the conjugate gradient method41

Figure 10. Speedup obtained as a result of optimizing matrix address arithmetic 50

IV

1. Introduction

Optimizing compilers have become an integral part of modem-day computing. The

fundamental role of a compiler is to translate source programs written in a higher-level

language into machine language. An optimizing compiler, in addition, attempts to

analyze the program and apply various transformations to it in order to create a more

efficient target program, with a smaller size or running time. Thus, it enables the

programmer to be less concerned with the underlying architectural details and to write

higher-level, more intuitive and problem-oriented programming constructs.

A program can be optimized at several levels. These can range from improving the

source code to optimizing it at the machine level. As compilation proceeds, newer

opportunities for code optimization may be discovered as a result of previous

transformation phases. It is then the responsibility of the compiler to detect and

implement these optimizations. Typically, the programmer can only intervene at the

source level. However, it is not always possible to perform certain types of

transformations at the source-code level. For example, high-level languages often

insulate the programmer from the details of memory management. A language like C

may allow a programmer to manipulate pointers directly, but this is not the case with

other languages. Moreover, even if it is possible for a programmer to improve the

source code, it may not be desirable, since it is an error-prone task and may result in an

unclear source program.

Therefore a good optimizing compiler can make a significant difference to the overall

program development time. Compilers often apply transformations to an intermediate

language between the source and target language. Among the types of optimizations

that may be applied here are "partial-evaluation" style optimizations like constant

folding or function inlining.

Partial evaluation is the general technique of performing part of a computation at

compile time, producing a simplified program. In constant-folding, computations on

constants are performed at compile time by replacing the value of an expression with

the constant to which it evaluates. Inlining consists of replacing a function call by the

body of the function, substituting each formal parameter with its value at the point of

the call. Traditionally, constant-folding and other optimizing transformations have

been hard-coded into compilers. This is unfortunate because the programmer has no

control over the optimizations and the conditions under which they are enabled and

thus cannot take advantage of specialized knowledge of any source language

constructs. Moreover, the compiler writer has no foreknowledge of them since they

may vary from one application to another. Therefore many opportunities for

optimizing these kinds of application-specific constructs may be lost. Arguably, a

2

programmer should not have to be concerned with the internal implementation details

of the compiler. However, having a knowledgeable programmer direct the compiler at

a suitably high level can make a significant difference to the efficiency of the resulting

code.

We use rewrite rules to specify optimizations to the program. We have provided a

means to specify rewrite rules for the source language within a module that is separate

from the main compiler. We distinguish between the specification for a problem and

its implementation. A good specification abstracts away from the details of the

underlying system architecture and enables one to define the problem in a language

closer to the application domain. The rewrite rules are specified in a language similar

to the application-development language. Moreover, they are specified in a manner

independent of the mechanism by which they are integrated with other compiler

transformations and applied to the source program.

The system we have developed enables both the end-user and the compiler-writer to

participate in describing the kinds of transformations that may be applied to the source

program. Our approach is conceived of as an extension to the traditional optimizing

compiler. User-described transformations can be applied along with those already in

place in the compiler itself. Designing a compiler in this modular fashion has several

advantages. It is easier to write, debug, test, maintain and extend. The additional

3

transformations applied to the source code may lead to a significant improvement in

runtime code efficiency without sacrificing the generality of the core compiler. The

compiler can be built with optimizations in-place for operators that are common across

all applications. The more general-purpose optimizations are thus hard-coded

beforehand by the compiler writer. The more specialized ones can be linked in as and

when necessary. An example is the application of constant-folding directives to

primitives that are specific to an application and thus cannot be optimized by the core

compiler. See §4.2 with reference to optimizing address arithmetic in matrix

computations.

A facility for extending the core compiler gives us a way to specify and apply

optimizing directives that are only marginally relevant in most situations and may

therefore be impossible to predict. Via this system, the optimizations can be applied in

an incremental fashion, without requiring the compiler writer to foresee all possible

opportunities for optimization at once. Separate specification modules can be

developed for each application domain and integrated with the core compiler as

required. A module created for one application may be shared by another, reducing

development time.

In addition, user-specified rewriting rules can supplement standard optimizations

already applied by the compiler. For example, most optimizing compilers perform

4

some variety of function inlining. Inlining eliminates the expense of a procedure call

and may uncover more opportunities for program simplification. However, the

conditions under which this is attempted may be very restricted because aggressive

inlining can lead to code blow-up. A conservative compiler may perform inlining

solely in situations where the function is applied once. Therefore, in special cases

where performance is critical, it might be a good idea to have a system that allows the

user to guide the compiler to inline specific functions, ignoring its normal criteria for

doing it. Our system is not suitable for achieving this directly in all situations.

However, if the source code of a function is available, the user can replace each call by

the function body via appropriate rewrite rules. He may also be able to rewrite the

definitions of arbitrary functions, which qonform to some known format, to include

inlining directives. The latter are normally optional to a function definition.

We would like to perform optimizations early on in the compilation process without

sacrificing retargetability. The results of many important optimizations like constant

folding may be platform-dependent. However, it is often desirable to apply the

optimization in the early stages of the computation to take advantage of the other

simplification opportunities that result. This indicates that it is preferable to factor out

this transformation into a separate module, rather than to have it as an intrinsic part of

the core compiler. Such a facility is simple to use and can be a very valuable aid to

cross-platform compilation.

5

However, the modular approach is not without its drawbacks. The compile-time

overhead due to the translation of the rules, their integration with the main compiler

and the additional simplification passes that are needed for their effective application,

can result in an increase in compilation time. This is the price we pay for being able to

have increased flexibility within the framework of a general-purpose compiler. Hard

coded optimizations, though typically much more efficient, can only be incorporated to

a limited degree within such a compiler.

The remainder of this thesis will discuss these and other issues involved in the

development of the system, in greater detail, and explore the limitations of the

implementation. §2 describes the fundamental basis of our optimization strategy and

gives a motivating example. §3 outlines the layout of the compiler and the languages

involved in specifying the optimizations. §4 presents a detailed discussion of how to

optimize a domain-specific problem. The implementation details and results are

discussed in §5. §6 presents related work, the unique features of our system and future

enhancements to it. Finally §7 concludes our discussion.

2. Optimization by rewriting

We use term reduction systems for specifying optimizations to the program. Reduction

systems are a class of formal computational structures [5]. Each such system consists

6

of a set of possible computation states and a relation that determines the transitions

from one state to the next. A term rewriting or term reduction system is a reduction

system where the states of computation are represented by terms. In our case, the terms

describe program text.

The optimization of a source program by rewriting its abstract syntax tree is carried

out by specifying directives to guide the rewrite process and then using them to

implement the optimizations. The designer of the optimizer uses the rewrite system to

specify one or more rules for optimizing source programs. These rules are generally

specified just once for an entire class of applications to which they may be relevant.

The actual process of rewriting the program involves several phases. The source

program is parsed to generate an abstract syntax tree. A redex is any point in the tree

that can be rewritten according to some rule. The rewrite system examines this abstract

syntax tree via pattern-matching, to find possible redeces. Once a reduction point is

discovered, the system uses some heuristics to select a matching rule, since it is

possible that more than one such match exists. It then rewrites the redex as indicated

by the rule and repeats this process as often as necessary until it can no longer be

transformed according to any existing rules. After the rewriting phase is completed,

the rewritten abstract syntax tree is compiled further to generate the target language.

Designing a rewrite system involves a variety of decision-making steps:

7

(i) Choosing an efficient internal representation of the source program.

(ii) Designing a language in which to express the rewrite rules.

(iii) Constructing an algorithm to detect redeces by pattern-matching on the abstract

syntax tree of the program.

(iv) Selecting a strategy to traverse the program tree and apply the pattern-matching

algorithm to it.

(v) Inventing an algorithm for selecting the specific rule to apply at each step. This

may be trivial in the ordinary case when only one possible rule matches the

redex, but would need a predefined strategy when more than one possibility for

rewriting exists.

Our design has been dictated by the underlying system and source language. We have

implemented our rewrite system as an extension to the front-end of the RML

(Restricted ML) compiler [12], which compiles concrete RML source code to C or

Ada 83 target code. The compiler is written in SMIJNJ (Standard ML of New Jersey)

and runs under the SMIJNJ system. RML is very similar to Revised SML (SML '97)

[10]. We describe it in more detail in §3.2.1. We have solved the issues outlined above

m vanous ways:

(i) The internal representation of the program is important because reduction leads

to repeated structural changes to the original expression tree. The source

program is represented internally in RML abstract syntax, which is produced

8

from parsmg the source concrete RML program. This abstract syntax is

transformed through the application of the rewrite rules and other simplification

processes.

(ii) The choice of a language for specifying the rules has been motivated by the

source-program language and the implementation language of the compiler. The

rules are expressed in a form of RML concrete expression syntax interspersed

with SML syntax.

(iii) We have not written a specialized pattern-matching algorithm to detect redeces.

Instead, we have borrowed the pattern-matching power of SML (Standard ML).

The rules are compiled to produce an SML function that does the actual work of

pattern-matching and transforming the expression.

(iv) The implementation of the rewriting strategy is separate from that of the pattern

matching module. The SML rewrite function mentioned in step (iii) is applied to

the nodes of the abstract syntax tree of the program in a bottom-up manner. For

each expression node, the children are examined first for possible redeces and

rewritten if such an opportunity exists, before any attempt is made to rewrite the

parent node.

(v) For selecting the next rule to apply at each reduction point, our approach is

straightforward. If more than one rule exists for potentially rewriting a particular

redex, we choose to apply the first one specified.

9

We use rewrite rules as the basis of our optimization strategy because they are simple

to understand and specify. They make it easier to reason about the optimizations being

carried out by making them more evident. However, we do not worry about standard

issues related to rewrite systems. Some key issues for formal term reduction systems

are to prove the termination and confluence properties. However, like many such

systems, termination for our rewrite system is in general undecidable. Also, we do not

have the notion of a unique normal form. These issues are discussed in more detail in

§5.3.

2. 1 Constant Folding

We begin by presenting a simple example to give a flavor of our rule specification

language and how to express constant-folding through it. Constant folding can be

classified as a "shrinking" optimization as it is guaranteed to make the program

smaller. Moreover, folding of constants, followed by their propagation, can uncover

more opportunities for program simplification. This can result in the evaluation of a

significant portion of the program at compile time. Our rules define a natural and

easily comprehensible way of specifying how to perform this optimization.

Figure 1 is a template definition of some common primitive operations on integers and

the rules that may be used to perform constant-folding on them. A template defines the

interface between the RML and 3GL (third-generation language) components of a

IO

program. Templates are described in detail in §3.2.2. Primitive operations are defined

in terms of the target language, i.e., the language to which the source (RML) code is

compiled. The template library of primitives is a fixed set available for the user of our

system and can be invoked from within the rules. The rules actually describe how to

optimize the operations involving these primitives. We will ignore the details for now

and try to explain the general nature of the specification.

The first part of the template defines primitive types and their target language

representation. Notice that the type integer (line 2) is a primitive type, defined to be

represented in C by the type int. For each operation, the template provides

information about the name of the function to be used in the source RML program, the

number of arguments, the types of the argument and return values and the target

language definition of the function. Thus, for example, + is a primitive function that

takes two arguments of type integer and returns a result of type integer.

Similarly, ~ or unary minus, is another primitive function that takes a single argument

of type integer and returns a result of type integer. In the interest of simplicity,

Figure 1 omits the target language definitions (macros) of any of the primitive

functions.

11

1 template IntegerCfoldTemplate
2 type integer "int"

3 (* some basic operations on integers*)

4 val+ (xO:integer, xl:integer)
5 val (xO:integer, xl:integer)
6 val* (xO:integer, xl:integer)

(res:integer)
(res:integer)
(res:integer)

7 (* unary minus*)
8 val - (xO:integer) (res:integer)

9 rules

10 -0 => 0
11 -(-(%a)) => %a
12 -(%a) %% (isintegerLit a) %% => % (let val i = SmlintegerLit a
13 in mkintegerLit (-i) end %)

14 %a + 0 => %a
15 0 + %a => %a
16 %a + %b %% (isintegerLit a andalso isintegerLit b) %% =>

17 % (let val i = SmlintegerLit a
18 val j = SmlintegerLit b
19 in mkintegerLit (i+j) end %)

20 %a * 0 => 0
21 0 * %a => 0
22 %a * 1 => %a
23 1 * %a => %a
24 %a * 2 => %a + %a
25 2 * %a => %a + %a
26 %a * %b %% (isintegerLit a andalso isintegerLit b) %% =>

27 % (let val i = SmlintegerLit a
28 val j = SmlintegerLit b
29 in mkintegerLit (i *j) end %)

30 %a - 0 => %a
31 0 - %a => -(%a)
32 %a - %b %% (a = b) %% => 0
33 %a - %b %% (isintegerLit a andalso isintegerLit b) %% =>

34 % (let val i = SmlintegerLit a
35 val j = SmlintegerLit b
36 in mkintegerLit (i-j) end %)

Figure 1 Template definition for optimizing operations on integers

12

The second part of the template specifies rewrite rules involving the primitives.

Essentially, each rule consists of a left-hand side, an => and a right-hand side. The

left-hand side specifies a pattern that may occur in an un-optimized program and the

right-hand side describes how to rewrite it. For example, the rule on line 10 simply

rewrites ~O to 0.

Next, consider the rules that describe constant-folding operations on +. Obviously, this

set can be extended to incorporate more of the standard constant-folding operations.

The rules on lines 14 and 15 rewrite an expression consisting of a + operation on two

integers, to one of the integers, if the other integer happens to be 0. The only thing here

that is different from the first rule we mentioned, is the % which indicates a meta

pattern. The meta-pattern %a will match any argument in a call to the + function.

We claim that in the typical case, our language is quite straightforward to use,

especially for someone who is familiar with the source language RML. There may be

cases, as the other rules in Figure I and in the later examples demonstrate, when the

specifications become complicated by the embedding of arbitrary SML expressions.

For example, the rule on lines 16 to 19 checks to see whether both the arguments to

the + function are literals. If they are, it proceeds to perform constant-folding on them.

This evaluation involves expressing the computation process in SML. Finally, the

result of the addition operation is converted back into RML. Thus the power of the

13

design lies in its expressiveness. However, we do pay a price for allowing such

expressiveness. To explore the full functionality of the rule language, the author of the

rules would need to be familiar with both RML and SML.

3. System Architecture

3.1 Compiler Architecture

We present a diagram of the various parts of the RML compiler in Figure 2 to

demonstrate how our rewrite system interfaces with the rest of the compiler. The

architecture of the compiler resembles a pipeline operating on a series of typed

intermediate representations. Each step in the transformation preserves both semantics

and types. A detailed description of the RML compiler can be found in [12].

There are two distinct phases in compiling an RML concrete source text - generation

of the optimizer and compilation of the source with the optimizer.

3.1.1 Generation of the optimizer

The optimizer is generated once for each set of rewrite rules. It is then integrated with

the main compiler. After that, it can be used as many times as required, to compile a

source. The same optimizer can be used to compile many different source programs. A

set of rules consists of all the rules that are specified in a template definition

14

I

i Template specification :

\

C code

RML concrete syntax

Parsing and type
inference

Typed RML abstract
code

User-directed rewriting

Partially-typed RML
abstract code

_ Type inf~renc~

Typed RML abstract
code

1
(More transformations

Code generation

I Ada code

Figure 2 Overall architecture of the RML compiler

15

(§3.2.2). There are no semantic restrictions imposed on the transformations the rules

may specify. The rules are typically specified just once for one or more related

application areas that may use the optimizations defined by them. They are then used

to generate the optimizer which is used hereafter exactly like a regular compiler. The

optimizer needs to be recompiled only if the set of rewrite rules changes. The change

could be due to the addition of new rules to the original set, or abandoning the old set

in favor of an entirely new set. However, the generation of the optimizer is rarely

repeated, as the role of this process is comparable in the traditional case to writing a

new compiler. Of course, it is much easier and faster to use our system to generate an

optimizer than to write an entire compiler by hand. We provide a diagram of the

generation process in Figure 3. The optimizer must be produced by compiling the

template (§3.2.2) before the execution of the pipeline described below in Figure 2. The

template is the unit of the compiler where the rules are described. The generated

optimizer is compiled and linked in with the rest of the compiler, and with a library of

SML functions that is provided for use in the rewrite rules. We discuss this SML

library later (§5.1) in detail. This compilation and linking process produces the

specialized compiler which is used to compile the source in the usual manner as

described later.

16

SML library

Template

I
:t

(
Parsing of rules ~ _ ~

Syntactic and
semantic checks

Generate optimizer
function)

~

I
SML file

~~~~~~---J 

l Compile generated 

'--- optimizer ~ 

1 
Compiled optimizer 

Integrate with RML 
compiler 

Generated RML 
compiler 

Old RML compil::7 
tree-traversal module I 

Figure 3 Generation of the extended RML compiler 

l7 



3.1.2 Compilation of the source program 

We have added steps (iii) and (iv), described below, to the original version of the RML 

compiler [12]. The main steps in the compilation process are: 

(i) RML code is parsed from a concrete text representation or loaded from a binary 

representation produced by a separate generator tool. The concrete 

representation is transformed to RML abstract syntax. Subsequent steps operate 

on this abstract form. 

(ii) The RML abstract code is annotated with type information using conventional 

Hindley-Milner type inference [9]. 

(iii) The RML code is optimized by the repeated application of partial-evaluation 

style optimizations. These include inlining of functions used only once or 

marked for inlining (conservative function inlining), case-of-constructor 

simplification, propagation of variables and constants and elimination of dead 

bindings (dead code elimination). 

(iv) Each round of step (iii) is followed by a round of optimization driven by user 

specification. This is the place where our rewrite-specification system integrates 

with the core compiler. Each round of applying the simplifier in step (iii) 

alternates with step (iv), thereby possibly uncovering further opportunities for 

rewriting in either step. 

18 



(v) The partial evaluation style optimizations are followed by another round of type

inferencing. This is essential because the rewrites may lead to a partially un

typed program. 

(vi) The annotated code undergoes further transformations and optimizations before 

it is finally translated into C or Ada83 using the template macros. 

3.2 System Components 

3.2.1 RML Source Language 

RML is very similar to the pure subset of core Revised SML (SML '97), if primitives 

are not considered. It is an eager, higher-order language with algebraic datatypes, true 

multi-argument functions and data constructors and parametric (Hindley-Milner) 

polymorphism. Unlike SML, it does not support nested patterns or many derived 

forms. Also, there are no records or tuples, but these can be built as datatypes with a 

single constructor. Datatypes can be marked as flat to indicate that they should not be 

heap-allocated. Primitives may have side-effects and can be used to implement 1/0 

operations, arrays or mutable references. All functions are passed parameters by value. 

The primary difference between concrete and abstract RML syntax is that the former is 

not annotated with types. The type-annotated 'abstract form is obtained from the 

concrete by standard Hindley-Milner type inference. 

19 



Each source program consists of a single RML component. It is translated w.ith ccspc<-t 

to a template to generate some 3GL code. The RML component may be formally 

defined as an environment mapping 3GL names to RML types and values. Each 

component has an export clause that describes the types and values to be exported for 

use by the 3GL components of the program and 3GL names for them. The main 

program or driver for an executable is always written in the target 3GL and invokes 

RML code via the exported functions defined in the RML component. 

3.2.2 Templates 

A template provides the interface between the RML and 3GL components of a 

program. Every RML component is translated with respect to a specialized template. 

Of course, several components may share the same template. Templates usually 

contain definitions relevant to a particular application. For example, one could imagine 

the template definition in Figure 1 as a subset of a more elaborate definition to specify 

a library of primitive operations on integers and some rewrite rules to guide constant

folding on integers. Some of the definitions were part of the pre-existing RML core 

system [ 12], whereas we have introduced the others to support the extended system. 

The latter are described below in (iv) and (v). 

(i) Abstract and primitive types, values and operators whose representation and 

implementation are specified in terms of the target 3GL. The template specifies 

which of these are to be visible to RML code. This information is essential for 

20 



the parsing and type checking of RML components. The operators are 

implemented via macro definitions in 3GL code fragments. Primitive types 

include both general-purpose (e.g., integer, real, string, etc.) and 

application-specific types (e.g., vector, matrix). They must be 

monomorphic. Their definition supplies information about the RML name for 

the type (e.g., integer) and the conesponding 3GL type name, built-in or 

user-defined, that provides its concrete realization (e.g., int). Primitive value 

declarations include the RML type of the value and the corresponding 3GL 

macro expansion string. Operation definitions specify formal names and types 

for the arguments (e.g., xO of type integer) and result (e.g., res of type 

integer) and a macro expansion string. 

(ii) Algebraic datatype declarations (e.g., bool), monomorphic instances of which 

may appear in the type signatures of primitive operators. They may also be used 

in the corresponding RML template. Monomorphic datatype declarations may 

include 3GL strings for type names (e.g., "int") and constructors (e.g., "1" 

and "0 "). These, if present, will then be used in the generated 3GL code. 

(iii) Header declarations of 3GL library (Ada package or C file) names (e.g., 

ma tr ix_pr ims. h) that are referenced by the 3GL code fragments mentioned 

before. This is done to bring the names defined in the library into the scope of 

the 3GL code that uses them. 

21 



(iv) Rules to specify transformations that may be applied to the intermediate 

representations to optimize and produce more efficient code. The rules described 

in the template are written in a concrete RML-like expression language with 

embedded SML meta-expressions. Therefore, the user merely needs to be 

familiar with the RML concrete expression language and basic SML, in order to 

be able to describe the optimizations. Thus the source language for rule 

specification and program coding is very similar. Some instances of rule patterns 

have already been presented in Figure 1 and we will discuss them in more detail 

later. These rule patterns are aggregated together to form the optimizer. The 

rules may involve the invocation of various SML auxiliary functions, some user

defined and some general-purpose library routines. The user-defined functions 

are specified in the template. The SML library routines are provided separately 

and linked in automatically during the compilation process. We have not 

presented their actual definition, though library routines (e.g., 

SmlintegerLi t ()) have been mentioned in the right-hand sides of rules in 

examples like that described in Figure I. We discuss the nature of this library 

later (35.1). Now, the SML expressions embedded in the concrete RML must 

evaluate to RML abstract syntax. They can do so either by explicitly invoking 

library functions like mkintegerLi t () to construct the RML abstract 

expressions, or by having embedded RML concrete expressions inside them. 

The latter are translated to the abstract form during parsing of the rules. 

22 



(v) User-defined SML functions that may be invoked from within the rules. There 

may be any number of these functions defined in the template. The reason that 

we have a separate section for the user-defined functions is that they may be 

invoked from more than one rule. The only place where these functions are 

visible is from within the rules. The examples presented in this thesis do not 

make any use of these functions. 

We would like to emphasize the fact that in order to use our system, the only 

definitions that the user needs to specify are the rules and possibly the SML functions 

described above in (iv) and (v). Our system provides everything else necessary to aid 

in the specification as well as the implementation of the optimizations. 

3.2.3 Rule Expression Language 

The syntax of rule expressions is described below. A precise grammar follows in 

Figure 4. Essentially, a rule expression is a pair of concrete RML expressions and an 

optional conditional expression. The only difference is that a rule expression may 

contain meta-constructs prefixed by% or enclosed within%( and%). 

Rule ::= rml__pattem % % cond_exp % % => rml_action 

23 



1 Rule Specification Syntax : 

2 (template) templ .. 
3 (header declaration) 
4 (primitive types) 
5 (algebraic types) 
6 
7 (primitive values) 
8 (user-specified rules) 
9 (user-specified functions) 

10 (user specified rule) rule 

11 (SML boolean expr) cond_exp 
12 c_exp .. 
13 c_exp 

14 (embedded RML expr)rml_exp 

15 (RML concrete expr) exp 
16 exp 

template name 
{header "string "J 
{type K (size) "string"} 
{datatype [(t {, t})] D 
{" string "J {flat] = rator {! rator} } 
{primdef} 
[rules rule {I rule}] 
[functions%% string%%] 

exp {cond_exp] => exp 

- %% c_exp 
string %% 
string rml_exp c_exp 

.. exp 

expl 
fn inlflag mpvnl => exp 

17 exp case exp of calt r I calt} 
18 exp -

19 expl -
20 expl 
21 expl 

22 exp2 -
23 exp2 
24 exp2 : := 

25 exp2 .. -
26 exp2 

27 (SML meta pattern) sml_pa t 

28 (SML meta expr) 
29 

30 
31 

32 
33 

34 
35 
36 
37 

sml_exp 
sml_exp 

meta_var 
meta_var 

s_exp 
s_exp 

calt 
calt 
calt 
calt 

-
-

-

expl : : exp 

{expl] exp2 
expl ( [{exp , } exp, 
V ({exp , } exp I exp) 

sml_pat OR sml _exp 
const 
V 

let {decs ; } 

(exp {; exp}) 

% meta_var 

% meta_var 
%( s_exp 

- V 

string%) 

in exp {; 

string rml_exp s_exp 

exp] 
exp2 

exp} end 

% meta_ var {(mpvname {, mpvname}) J 
v{(mpvname {, mpvname}) ]=> exp 
mpvname .. mpvname => exp 
[ ] => exp 

24 

=> exp 



38 
39 

40 

41 
42 

43 
44 
45 

46 

47 (constructor) 
48 
49 

50 (types) 
51 
52 
53 

54 
55 
56 
57 

58 (primitive value) 

mpvname 
mpvname 

% meta_var 
V 

mpvnl : : ( {mpvname {, mpvname}]) 

decs .. - val V = exp 

decs fun fdecl 

fdecl : : = fdec and fdecl 

fdecl fdec 

fdecl catamarker fdec 

fdec : := V flag mpvnl} inlf lag mpvnl 

rator .. C {" string "1 
rator C {" string "1 of ty 
rator C {" string II] of tuple_ty 

ty - ty ➔ ty 

ty - tuple_ty ➔ ty 

ty ty' 

tuple_ty ::= ty' * ty' {* ty'} 

ty' - t 
ty' - ({ty , } ty , ty) D 

ty' - ( ty ) 

ty' [ty' l D 

exp 

59 
primdef 
primdef .. 

val k: K" string" 
val p ( {k:K , J) : (k:K) [pure] "string" 

60 inlflag .. {(*I inline l*)J 

Figure 4 A template definition for the rule specification language. 

Identifiers and symbols in bold-face refer to terminal symbols. All terminals usually stand for the actual 
word they represent. For example pure indicates the occurrence of the word itself as a keyword. The 
exceptions are listed below: 
v => variable K => primitive (abstract) type name 
D => name of datatype k => primitive constant name 
t => type variable p => primitive function name 
c => type constructor string => lexical string 
OR => Indicates that its arguments are mutually exclusive. t applies to exp2 for the 
left-hand side of the rules while sml_exp is for the right-hand side. 

25 



Rml_pattern (e.g., %a * 0 on line 20, Figure 1) is the pattern against which source 

language constructs are compared to detect opportunities for rewriting. It is defined to 

be an RML concrete syntax expression, possibly with embedded meta-variables or 

identifiers (e.g., %a on line 20, Figure 1) and wildcards. The only valid wildcard is 

%_. The meta-variables act as placeholders for an actual construct and provide a 

means of referring to the variable or expression within cond_exp or nnl_action. They 

are replaced by actual literals, variables or expressions during pattern matching. 

Rml_action describes the result of the expression to be substituted when the pattern 

matches. 

Cond_exp is a conditional expression that is evaluated during pattern-matching (e.g., 

( a = b) on line 31, Figure 1 ). One of the prerequisites for a correct match is that 

this must evaluate to true. It may contain any boolean-valued SML expression which 

in turn may have RML concrete expressions embedded inside it. 

Rml_action specifies the result of transforming an expression if a match succeeds. The 

syntax of rml_action is very similar to that of rml_pattern. However, it is more general 

in nature because the embedded constructs within RML concrete expressions are not 

restricted to be identifiers or wildcards. On the contrary, these may be arbitrary SML 

expressions. In the most general case, these in turn may have RML concrete 

expressions embedded in them to arbitrary levels. Thus the footnote in Figure 4 

26 



mentions the fact that the left hand side of the rule can merely contain a meta-variable 

whereas the right hand side can be a meta-expression. We have drawn our inspiration 

for the meta-expression syntax from the SML/NJ Quote/ Antiquote mechanism. Quotes 

('%') enclose SML expressions and Antiquotes (''') enclose RML concrete 

expressions. However, Antiquotes are implicit at the outermost level of specification, 

i.e., they are not written. In the simplest case, nnl_action can be almost trivial (e.g., 0 

on line 10, Figure 1). It is necessary that rml_action should evaluate to an RML 

abstract expression, this translation from concrete RML to the abstract form being 

taken care of by the optimizer-generator. 

An invalid nnl_action, i.e., one which does not result in an RML abstract expression, 

is rejected at the time of compilation of the generated SML optimizer function, before 

it is integrated with the main compiler. An invalid cond_exp is checked for in the same 

way. 

The rule meta-expressions or patterns are ultimately compiled to SML patterns. 

However, unlike SML, our language allows duplicate meta-identifiers to appear within 

a single pattern. The semantics of duplicate meta-variables require that they match the 

identical actual construct. Thus, the rule on line 31 (Figure 1) can also be expressed as 
' 

%a - %a=> 0. 

27 



The use of a specialized expression language (RMUSML), rather than pure SML, to 

describe rules confers several benefits. The syntax is very similar to the source 

language syntax and should be fairly simple for the programmer to master. Moreover, 

the ability to nest SML within RML expressions to potentially unlimited levels, makes 

the rewrite actions very powerful. In theory, this can make the right-hand sides of the 

rules arbitrarily complex, but, as our examples demonstrate, this need not be the case 

in practice. Some potential complexity in the system is tolerable in view of the 

flexibility and expressiveness it provides. Moreover, the primary target is the 

knowledgeable user, either the end-user or the compiler-writer, who has the requisite 

experience to deal with sophisticated systems. 

4. Examples 

We present a series of examples to demonstrate some of the different ways in which 

our system can be utilized. 

4. 1 Strength Reduction 

Let us take a closer look at our previous example and see if it does anything other than 

the constant-folding we discussed. We mentioned before that constant-folding is a 

"shrinking" optimization i.e. it reduces the size of the transformed code. However, our 

rules are not restricted in any way to perform only shrinking optimizations. 

28 



Sometimes, it might be a good idea to replace an instruction sequence by a more 

optimal one. The rules in lines 24 and 25 (Figure I) perform strength reduction. They 

replace a multiplication by 2 operation by an addition. This will speed up the object 

code if multiplication takes more time than addition, as is the case on many machines. 

Obviously, this is an improving transformation only if the target machine has the 

appropriate architecture. As such it requires knowledge of low-level details. Thus, it is 

one way in which the compiler-writer can exploit his knowledge of the underlying 

machine, to optimize the code in a modular and simple manner. 

4.2 Matrix Addressing 

Now, we shall discuss our system with respect to performing some important 

optimizations that are dependent on the memory layout of the application-specific data 

structures. An area that responds very favorably to optimizations is that of matrix 

addressing schemes. The elements of the matrix can be accessed very quickly if they 

are known to be stored in a block of consecutive locations. 

For such a matrix M, stored in row-major form, the relative address of M[i1][i2] may 

be calculated by the formula 

where base is the relative address of the storage allocated for the matrix, 

low1 and low2 are the lower bounds of the values i1 and i2, 

29 



w is the width of each matrix element and 

n2 = high2 - low2 + L 

If we are compiling to a target language like C, where lower bounds are always 0, the 

above expression can be simplified even further to 

base + ((i1 * n2) + i2) * w 

where n2 = high2 + 1. 

We present an application that allocates memory for a two-dimensional array of 

integers and initializes each element to O (Figure 5). A number of RML functions are 

defined to manipulate matrices. Common operations on matrices include 

subscript () and update () that access a matrix with reference to a particular 

row and column number. We intend to use our knowledge of the fact that the matrix 

elements have been allocated contiguously, to optimize references to it. get_addr (} 

calculates the address of a particular element from the base address and the row and 

column numbers. 

In Figure 6 we describe an interface for operations on matrices of integers. This set of 

primitive functions is used to allocate a contiguous chunk of memory for a matrix and 

to access its elements. Calls to get_ val () and set_ val () can be used in the 

RML source, provided the address of the element is known. 

30 



1 (*! template "tmatrix_template. 
2 (*! exports 
3 val doit: unit "doit" !*) 

4 datatype (*! flat !*) param = 

• ! *) 

5 Param of integer* integer* integer* integer* integer 
6 datatype (*! flat !*) matrix= Matrix of address* param 

7 (* library of rml functions to manipulate matrices *) 

8 fun get_addr (*! inline !*) m r c 
9 case m of 
10 Matrix(b,p) => (case p of 
11 Param(w,11,12,hl,h2) => 
12 let val n = h2 - 12 + 1 
13 val q = (r*n+c) - (ll*n+l2) 
14 val a= to_addr(b,q) 
15 in a end) 

16 fun subscript (*! inline !*) m r c 

17 fun update (*! inline !*) m r c i 

(get_addr m r c) 

((get_addr m r c),i) 

18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
37 
38 

fun create_matrix ( * ! inline ! *)p 
case p of 

Param(w,11,12,hl,h2) => let val r hl - 11 + 1 
val C - h2 - 12 + 1 
val d r * C * w 

in newVector(d) end 

(* program to create an initialized matrix *) 
val doit = let val w 4 and 11 = 0 and 12 = 0 

val hl = 1999 and h2 1999 
val p 
val b 
val m 

Param(w,11,12,hl,h2) 
create_matrix p 
Matrix(b,p) 

fun init_all r = 
let fun do_cols c 

if (c <= h2) then 
(update m r c O; do_cols (c + 1)) 

else () 
in if (r <= hl) then 

(do_cols 12; init_all (r + 1)) else () 
end 

in init_all 11 end 

Figure 5 An RML library for matrix manipulation. 

31 



template MatrixTemplate 1 
2 header "#include \"matrix_prims.h\"" 

3 

4 
5 

6 
7 

(* veclor of integers *) 

type integer(4) II int II 
type address(4) "int *" 

datatype bool II int II true "111 

datatype unit II int II = Eunit 11 Q n 

(* basic integer operations *) 
val (xO: xl:integer) 
val+ (xO:integer, xl:integer) 

xl:integer) 

I false 0 0 11 

(res:integer) 
(res: integer) 
(res: integer) 

8 
9 
10 
11 
12 
13 

val* (xO:integer, 
val (xO:integer) 
val<= (xO: 

(res:integer) 
, xl:integer) (res:bool) 

14 (* add an integer to an address*) 
15 val to_addr (xO:address, xl:integer) (res:address) 

16 (* vector creation *) 
17 val newVector (xO:integer) (res:address) 

18 (* subscripting operations*) 
19 val get_val (xO:address) (res: 

20 (* updating an existing vector*) 
21 val set_val (xO:address, xl: (res:unit) 

Figure 6 A template definition of primitives for vectors of integers. 
(also includes the rules defined in Figure I) 

32 



The program has been designed so that the primitive functions operate on low-level 

raw memory, while the RML functions impose the structure of a matrix on top of the 

allocated memory. 

The functions listed in Figure 5 are intended for converting matrix accesses to 

references to an explicit address, relative to the base address. As a result of various 

simplification passes and inlining, update () and subscript () are replaced by 

calls to the corresponding routines that require explicit addresses as parameters. 

Following this, a call to ge t_addr () is replaced by the actual expression to 

calculate the address of an element, relative to the base address. This is where the 

constant-folding rules specified in Figure I come into play. They are used to evaluate 

the address expression as much as possible at compile time, as we discussed above. 

4.3 Vector Loop fusion 

Scientific and engineering problems often involve solving large systems of linear 

equations. Iterative methods for solving linear systems work by repeatedly improving 

an approximate solution until a sufficiently accurate solution is obtained. They are 

very suitable for solving large systems where direct methods may not succeed in 

finding an accurate solution. Efficiency becomes crucial as the problem size may be 

very large. 

33 



Sophisticated mathematical libraries exist for this problem as well as for performing 

standard operations on vectors and matrices. However, in areas which demand high

performance computing, general-purpose routines are simply not adequate. It is often 

necessary to write custom software, tailored for the system at hand. The reasons for 

this include the absence of the desired functionality in existing routines, data structures 

that are not natural for the problem and existing routines that are inefficient when 

applied to special instances. 

The computational kernels of the iterative methods are a key criterion in determining 

performance [3]. They are typically coded to execute as fast as possible on the target 

architecture. Iterative schemes share most of their computational kernels. Some of the 

most time-consuming kernels are: 

• vector updates 

• inner products 

• matrix-vector products. 

The conjugate gradient method belongs to the class of iterative methods described 

before. It is very effective for solving linear systems where the coefficient matrix is 

symmetric positive definite. We present here (Figure 7) an implementation of the 

conjugate gradient method [ 11] that uses all the kernels we have mentioned and 

demonstrate how we can use our rewrite scheme to optimize it further. The 

34 



optimization rules that are applicable here are described in Figure 8. We would like to 

add that this is not intended to be a completely realistic or particularly efficient version 

of the algorithm. Rather, the aim is to demonstrate the applicability of our system to 

optimize situations similar to those arising here. 

The method proceeds by generating successive approximations to the solution (vector 

sequences of iterates), corresponding residuals and search directions used in updating 

the iterates and residuals. 

The heart of the computation is done by do_calc () which describes the work done 

in each iteration. It invokes several basic primitive routines that are defined in the 

template (Figure 8). Our template also contains some highly optimized routines which 

are specialized for this application area and are much more efficient than the general 

matrix/vector operations. Both these libraries are fixed and available to the user of our 

system for describing the rewrite rules. Moreover, they are separate and independent of 

each other. The intention is that in the usual case the source program would be written 

using the basic primitives. The latter could then be optimized by rewriting the original 

source program to use the more optimized versions. The automation of the 

optimization could be necessary for a variety of reasons, some of which are discussed 

in §6.2. 

35 



1 ( * ! template II cgrad_template. specs 11 ! *) 

2 (*! exports 
3 val cgrad: matrix->integer->integer->vector->unit 11 

II ! * l 

4 (* 

5 
6 
7 
8 
9 
10 
11 
12 
13 *) 

a - coefficient matrix of linear system 
b - right-hand side of equations 
x - solution vector 
d - direction vector 
g - gradient vector 
n - size of linear system 
e - convergence criterion 
s - step size 
denom 1,denom2,num 1,num2 - temporary variables 

14 fun cgrad an e b 

15 let val d initv(n,0) 
16 val X = initv (n, 0) 
17 val g = negv(b) 

18 fun do_calc nl = 
19 if (nl > 0) then 
20 let val denoml (g,g) 
21 val g= addv(matrix_vector _ __product(a,x) ,negv(b)) 
22 val numl = (g,g) 
23 in if (e > numl) then ( l 
24 else 
25 (let val s = div(numl,denoml) 
26 val d addv(scalar_mulv(d,s),negv(g)) 
27 val num2 inner_product(d,g) 
28 val denom2 inner_product(d, 
29 matrix_vector_product(a,d)) 
30 val s = div(num2,denom2) 
31 val x = addv(x,negv(scalar_mulv(d,s))) 
32 in (do_calc (nl ll l end) 
33 end) 
34 else () 

35 in do calc n end 

Figure 7 An RML implementation of the conjugate gradient method. 

36 



1 (* some operations on matrices and vectors of integers *) 
2 template CgradTemplate 

3 type integer ( 4) "int" 
4 type vector(4) "vector" 
5 type matrix ( 4) "matrix" 

6 datatype bool "int" = true "l" \ false "0" 
7 datatype unit "int" Eunit "O" 

8 (* arithmetic operations on integers *) 
9 val (xO:integer) (res:integer) 
10 val (xO:integer,xl:integer) (res:integer) 
11 val> (xO:integer,xl:integer) (res:bool) 
12 val* (xO:integer,xl:integer) (res:integer) 
13 val div (xO:integer,xl:integer) (res:integer) 

14 (* some basic library operations on vectors*) 

(* allocate a vector of integers of size xO,each element initialized to x I *) 
val allocv (xO:integer,xl:integer) (res:vector) 
val negv (xO:vector) (res:vector) 
val addv (xO:vector,xl:vector) (res:vector) 

15 
16 
17 
18 
19 
20 
21 

val scalar_mulv (xO:vector,xl:integer) (res:vector) 
val inner_product (xO:vector,xl:vector) (res:integer) 
val matrix_vector_product (xO:matrix,xl:vector): (res:vector)" ... " 

22 (* an optimized library of some fused functions *) 

23 (* x0*xl*x2 *) 
24 val conj_mvp_ip (x0:matrix,xl:vector,x2:vector) (res:integer) 

25 (* add xO*x2 to xi *x3 *) 
26 val scaled_addv (x0:vector,xl:vector,x2:integer,x3:integer) 

(res:integer) 

27 (* add xO*x l *x3 to x2*x4 *) 
28 val scaddv_mv_prod 
29 (x0:matrix,xl:vector,x2:vector,x3:integer,x4:integer) 
30 (res:integer) 

31 (* ~(xO * xi) *) 
32 val neg_mv_product (xO:matrix,xl:vector) (res:vector) 

33 (* negate xO and then calculate xO * x 1 *) 
34 val ip_negv (xO:vector,xl:vector) (res:integer) 

37 



(* rules to replace basic vector operations with the more optimized versions *) 

35 rules 

36 inner_product (%v1, matrix_vector_product (%m,%v2)) 
conj_mvp_ip (%m,%v2,%v1) 

37 addv ( %v1, %v2 ) => scaled_addv (%v1,%v2,1,l) 

38 scaled_addv (negv (%v1) ,%v2,%s1,%s2) => 
scaled_addv (%vl,%v2,-(%sl),%s2) 

39 scaled_addv (%v1,negv (%v2),%s1,%s2) => 
scaled_addv (%v1,%v2,%s1,-(%s2)) 

40 scaled_addv (scalar_mulv(%v1,%i) ,%v2,%s1,%s2) => 
scaled_addv (%v1,%v2, (%s1*%i),%s2) 

41 scaled_addv (%v1,scalar_mulv(%v2,%i) ,%s1,%s2) => 
scaled_addv (%v1,%v2,%s1, (%s2*%i)) 

42 I scaled_addv (matrix_vector_product (%m,%v1) ,%v2,%s1,%s2) => 

43 
44 
45 
46 

47 

48 
49 

50 
51 

negv (initv (%n,%i)) 

negv (negv (%v)) => %v 

scaddv_mv_prod {%m,%v1,%v2,%s1,%s2) 

=> let val a= -(%i) 
in initv (%n,a) end 

negv (matrix_vector_product (%m,%v)) => neg_mv_product (%m,%v) 

inner__product (matrix_vector__product (%m,%v2) ,%v1) 

inner__product (negv (%v1) ,%v2) 
inner__product (%v1,negv (%v2)) 

conj_mvp_ip (%m,%v2,%v1) 
=> ip_negv (%vl,%v2) 
=> ip_negv (%v2,%vl) 

matrix_vector__product (%m,negv (%v)) => neg_mv__product (%m,%v) 
scaled_addv (%v2,matrix_vector__product (%m,%v1),%s2,%s1) => 

scaddv_mv__prod (%m,%v1,%v2,%s1,%s2) 

Figure 8 A library of primitive operations for matrix and vector manipulation. 

38 



In line 21 (Figure 7), the calls to matrix_vector_product (} and negv() 

create entirely unnecessary temporaries, since their only purpose is to create vectors to 

add to each other. We can replace the calls with a call to a single routine that takes a, 

x and b, multiplies the former two, negates b, adds them together and returns the 

result. We achieve this optimization via a series of rewrite rules. The rule on line 37 

(Figure 8) rewrites the call to addv () to that of the optimized routine 

scaled_addv (). This is then further rewritten by the rules on lines 39 and 42 

(Figure 8) to finally use the optimized routine scaddv_mv_prod (). Note that we 

are saving not only time spent in allocation, but also an entire pass over a vector by 

using such an optimized routine. As these are common operations in vector 

manipulation and could make a significant difference to the computation time where 

the size of the vectors is large, providing fused routines makes a lot of sense. 

Similarly, on line 26, the calls to scalar_mul v () and negv () create unnecessary 

intermediate vectors, only to add them together. We use the rules on lines 37, 39 and 

40 (Figure 8) in order to completely specify the optimization possible in this case. 

Once agam, on line 28 (Figure 7), the call to matrix_vector _product() creates an 

entirely unnecessary temporary. We rewrite it according to the rule on line 36 (Figure 

8), so that conj_mvp_ip() takes the matrix a and the vector d and does the actual 

computation. This routine can be written to perform this operation in the most 

39 



optimum way for the target architecture and to take advantage of the data layout of the 

matrix. 

The final optimization opportunity exists on line 31 (Figure 7). This is executed by 

using the rules on lines 37, 39 and 41 (Figure 8). The optimized program is presented 

in Figure 9. 

All these functions are called during each iteration and so optimizing them should 

make a measurable difference to the overall computation. Now, it might be possible 

for an optimizing compiler to perform some of the loop fusions described above, 

during the course of its standard optimization phase. To do this, it would need access 

to the library implementation code. However, as we noted before, these primitive 

routines are typically coded in a fairly low-level language for maximum efficiency. For 

example, they could be written to take advantage of the availability of vector 

processors. Thus the library code is not the same as that of the source language and 

often not available. This is a typical situation where our rules could prove useful. 

Our library could have other optimized operations to support common functions which 

compose. In our listing, we have provided merely a subset of the possible 

combinations. The remaining rule patterns have been created to perform some other 

possible rewrites, though this particular algorithm does not use these rules. While all 

40 



1 (*! template "cgrad_template.spec5" !*) 
2 (*! exports 
3 val cgrad: matrix->integer->integer->vector->unit "cgrad" !*) 

4 
5 
6 
7 
8 
9 
10 
11 

(* a - coefficient matrix of linear system 
b right-hand side of equations 

12 
13 *) 

x - solution vector 
d - direction vector 
g - gradient vector 
n - size of linear system 
e - convergence criterion 
s step size 
denom 1,denom2,num 1,num2 - temporary variables 

14 fun cgrad an e b 

15 let val d initv(n,0) 
16 val X initv(n,0) 
17 val g = negv(b) 

18 fun do calc nl == -
19 if (nl > 0) then 
20 let val denoml == inner__product(g,g) 
21 val g scaddv_mv__prod(a,x,b,1,-1) 
22 val numl == inner__product(g,g) 
23 in if (e > numl) then () 

24 else 
25 (let val s == div(numl,denoml) 
26 val d == scaled_addv(d,g,s,-1) 
27 val num2 inner__product(d,g) 
28 val denom2 == conj_mvp_ip(a,d,d) 
29 val s div(num2,denom2) 
30 val X == scaled_addv(x,d,1,-(l*s)) 
31 in (do_calc (nl 1) ) end) 
32 end) 
33 else ( ) 

34 in do calc n end -

Figure 9 An optimized version of the conjugate gradient method. 

41 



these rules do not introduce new fused operations, they do eliminate procedure-call 

overheads and redundant computations by rewriting. The idea behind the design of 

such a library is to have a set of operations and rules for each specialized application 

domain, in order to rewrite frequently occurring patterns in the code. 

5. Implementation Details 

5. 1 Extensions needed to the RML compiler 

We have built our system to extend the capabilities of the RML compiler [ 12]. In order 

to do this we had to design and implement 

(i) A language for the specification of the rewrite rules. 

(ii) A parser for the rule-specification language. It translates the rules to RML 

abstract syntax. 

(iii) An SML post-processing module that performs syntactic and semantic checks on 

the rules. It removes duplicate variables from the left-hand sides, replacing them 

with fresh names and inserting an appropriate conditional check to determine if 

the actual expressions bound to the variables are identical. It does error-checking 

on the left-hand sides of the rules to ensure that they contain valid meta-patterns. 

(iv) A library of general-purpose SML functions that aid in describing how to 

perform the rewrites. 

42 



(v) An SML optimizer generator that takes as input the processed rule patterns, the 

template definitions including the user-defined functions and the library 

routines. It then proceeds to generate a SML routine to perform the pattem

matching, decide which rule to apply, and subsequent rewrite the redex. 

(vi) An SML module that implements our optimization strategy to traverse the 

abstract syntax tree of the program in a bottom-up manner. It compiles and 

invokes the routine described in (v), to perform each reduction. 

(vii) A simplifier (§5.4) for the abstract RML code, which performs standard 

optimizations like dead code elimination, inlining, value and variable 

propagation, etc. This was necessary, because we use our generated optimizer, 

together with these other simplifications, to improve the effectiveness of the 

optimization phases. The simplifier may uncover opportunities for applying the 

user-specified optimizations. These are then exploited by the optimizer to 

implement further reductions. 

5.2 Generation of the Optimizer from User Specifications 

The optimizer is produced from the rules and functions defined in the template. The 

result of the translation is an SML file. This contains the user-defined auxiliary 

functions and the actual optimizer function that matches each input RML abstract 

expression against the rule patterns. The SML optimizer function is compiled before 

being linked with the rest of the compiler. In addition, a library is available for the use 

43 



of the rule-writer. This library is linked in with the generated optimizer. It provides 

some general-purpose SML functions that may be invoked in the cond_exp and 

rml_action part of the rule. These routines are useful for constructing abstract RML 

expressions from within the embedded SML expressions and for converting abstract 

RML literal expressions to SML literals. This facility is important because we require 

the right-hand sides of all rules to evaluate to an abstract RML expression. At the same 

time, we do not wish to burden the rule-writer with having to know the details of the 

intermediate representation we are actually transforming. Having the rule-writer deal 

with these problems would complicate the specification and require exposing internal 

implementation details, which is not in the spirit of our specification language. 

The library contains functions to construct abstract RML literal expressions (e.g., 

mklntegerLit(), mkCharLit(), mkStringLit(), mkRealLit()) and deconstruct an RML 

literal to an SML literal (e.g., SmllntegerLit(), SmlCharLit(), SmlStringLit(), 

SmlRealLit( )). It has been developed for the purpose of providing implementations for 

tasks that are essential to the optimization process, but are not really a part of the high

level specification of the rules. The rules should describe "what to do" whereas the 

automatically generated optimizer and the library routines take care of "how to do it". 

As more functionality is added, via our system, to the kinds of optimizations the core 

compiler can perform, the library too should be extended to support them. Thus, to use 

44 



our system to perform inlining "by hand", for example, it would be necessary to add a 

routine to rename the bound variables in an expression. 

The RML concrete source program is compiled into RML abstract syntax. Each rule 

expression is parsed to RML abstract syntax. The compiled rules are aggregated to 

form the optimizer function. This function is an SML function that takes an RML 

abstract expression as input and produces a possibly optimized RML abstract 

expression as output. 

5.3 Optimization via Pattern-matching 

This generated function is the heart of the optimizer. It is applied to the RML 

intermediate program to optimize it according to user directives. We have separated 

the specification of the rules from the strategy of how to apply them to build the 

resulting optimizer. The generated function encodes the actual transformations to be 

performed. It is compiled before being integrated with the core compiler. The tree

traversal strategy is implemented by an SML driver routine which invokes the 

optimizer function to do the actual rewriting. Our current implementation follows a 

fixed bottom-up strategy for traversing the program syntax tree. We rewrite each child 

node once, before rewriting the parent node. We may be able to improve the efficiency 

of the optimizer by modifying the driver so that each child node is rewritten 

repeatedly, before turning to the parent node. 

45 



The mechanics of pattern matching are implemented roughly as follows: 

Each RML abstract expression in the compiled source program is compared to the 

compiled rule patterns (rml_pattem) according to the strategy discussed before in 12. 

The rules are examined in the order they have been listed in the template. If the pattern 

matches, then the conditional expression, if any, is evaluated. The match succeeds only 

if the condition is true. Then the input expression is rewritten according to the action 

encoded in rml_action. 

However, if a match fails, then the next rule is investigated and so on, until a match 

occurs or all the rules have been exhausted. A match may fail, either because the 

pattern does not match, or the conditional evaluates to false. If none of the rules match 

the input expression, the original expression remains un-transformed. If there is more 

than one potential match, the first rule specified in the template is actually chosen for 

the rewrite. 

The rewriting strategy is type-oblivious, i.e., it does not consider the types of the 

expressions before reducing them. Therefore, this phase is followed by a round of type 

inference. 

46 



5.3.1 Termination 

The rewrite rules are applied in several passes, each pass potentially uncovermg 

further opportunities for rewriting, until no more changes are observed. This would 

normally guarantee termination. However, since the rml_action part of the rules can be 

arbitrarily complex, there exists the opportunity for writing code that does not 

terminate. This is a significant drawback of general rewrite systems like ours. 

Arguably, any problems that arise would be due to a misuse of the expressive powers 

of the rule language, rather than any inherent weakness in our design. We chose to 

implement the rewrite rules using SML to take advantage of its expressiveness and 

powerful pattern-matching facility and also because the underlying compiler itself is 

written in this language. 

Non-terminating right-hand sides would result if the code itself contained ill-defined 

constructs like a call to a recursive function that does not have a well-formed base 

condition to check termination. We have no way of detecting such cases. 

Another situation where non-termination occurs is when the right-hand side of a rule 

overlaps with some left-hand side, leading to cycles in the reduction graph. We make 

no attempt to prevent such situations. 

47 



5.3.2 Confluence 

A desirable feature of any term reduction system is the ability to prove confluence. 

Since our optimizer has been implemented using term rewriting, we would like to 

compare it with other similar systems. The Church-Rosser or confluence property 

states that whenever an expression A may reduce to two different expressions B and C, 

then there exists another expression D, to which both B and C reduce. The existence of 

this property is required to guarantee uniqueness of normal forms. A normal form is a 

state from which no more transitions are possible. 

Confluence depends on the properties of the rules in a rewrite system. We make no 

attempt to analyze the rules and therefore cannot guarantee confluence in our system. 

In fact, we do not expect confluence in an optimizer, although special sets of rules may 

produce confluence [2]. 

5.4 Optimization of RML Abstract Code 

We have written an optimizer for the RML abstract code, to be used along with the 

user-directed optimizer. The motivation is to use the former to uncover further 

opportunities for rewriting, which can then be detected and implemented by the latter. 

One complements the other. Since both are separate modules, invoked in an 

appropriate order by the top-level driver, it is easy to apply each independently, and 

48 



observe the effects, should the need arise. We have used the output of one to feed the 

input of the other, in a controlled fashion. 

The optimizer carries out a variety of standard partial-evaluation style improvements 

on the RML abstract syntax. They are similar to those described in [ 12]. These 

standard rewriting techniques, together with the user rules, are applied repeatedly until 

no changes are observed or a predetermined number of passes have been reached. 

The optimizer guarantees not to reorder, duplicate, or eliminate any primitive 

applications or calls to potentially non-terminating functions. Only pure expressions 

can be eliminated. This is essential because RML has strict semantics and templates 

may include impure operators. For simplicity, all user function calls are treated as 

impure. Pure primitive operators are marked as such in the template function 

definition. 

5.5 Testing 

It is obviously not a trivial task to formally and exhaustively benchmark a system with 

the scope of applicability that our system has. The aim of this thesis has been to 

explore an attractive compiler design decision and to see if we could implement a 

useful tool in the limited time period available to us. To implement and test a realistic 

problem domain, together with its optimizations and realizations, is a separate project 

49 



in itself. Moreover, the potential gain in efficiency is dependent on many complicating 

factors like the nature of the problem domain, the scope of optimization opportunities 

within it, the manner in which the rules are specified, and the particular strategy being 

used. 

However, we have tested our optimizer on the examples we have presented. We have 

examined the transformed intermediate code to satisfy ourselves that it is indeed 

performing the optimizations that we expect and claim it does. Moreover, we have 

implemented the matrix address optimizations used in the program of Figure 5. We 

tested this program, with the primitives written in C and used it to compare the 

running time of the optimized C code with the running time of the un-optimized 

version. As expected, the results show that the optimized program executes faster. The 

averages in Figure 10 were obtained by running the program five times, discarding the 

maximum and minimum run times and then calculating averages for the remaining 

three run times. 

Before optimization 
After optimization 

Percentage speedup 

Average Run time (User + System) 
(seconds) 

1.74 
1.64 

5.7 

Figure 10 Speedup obtained as a result of optimizing matrix address arithmetic. 
The program was tested on a 133MHz Pentium with 80MB of memory, running Linux version 2.0.27, 
for a matrix of size 2000 * 2000. The C code was compiled by gee version 2.7.2. l using the -02 flag. 

50 



6. Discussion 

6. 1 Related Work 

Many attempts have been made to write systems for program optimizations, some 

using rewriting strategies similar to ours. We indicate some of those more relevant to 

our discussion. 

Appel and Jim [2] have studied a shrinking rewrite system. It implements only those 

optimizations that are guaranteed to make the program smaller, such as dead-variable 

elimination, constant folding and inlining of functions called just once. Their set of 

rules is fixed, unlike ours. They have been able to prove confluence for their system. 

They also show some efficient algorithms for implementing the optimizations. Our 

system is more general in nature, since the rewrite rules are not restricted to those that 

reduce the code size. 

TXL [4], Puma [7] and KHEPERA [6] all provide languages for specifying tree 

transformations and mechanisms for matching sub-trees. TXL has a variety of 

"searching" primitives, that encapsulate both the rewriting rules and match-application 

strategies into a single unit. The system allows the application of a rule to be 

controlled, either replacing the first occurrence of a match in a sub-tree or all 

occurrences. In our system, we have simplified the design, by separating the tree-
51 



traversal strategy from the facility for specifying the transformations. Thus, unlike 

some of the other systems, we do not require the programmer to explicitly program the 

traversal strategy. 

Visser, Benaissa and Tolmach [13] describe a language for specifying program 

transformations via rewrite rules and explicit strategies and how to use it to build 

optimizers. Their strategy language is much more powerful than ours and uses 

operators like choice, sequential composition and recursion to develop transformations 

from some basic un-conditional rewrite rules. Moreover, their basic language can be 

extended with side-conditions and contextual rules, making their system more suitable 

for performing realistic compiler optimizations. However, they have not yet integrated 

their rewrite system into a compiler as we have successfully accomplished. The way 

we separate our rules from the strategy of applying them, is similar to their approach. 

They too have a flexible set of rules like us. Unlike them, we have not yet 

experimented with different strategies in the implementation of our optimizer. This 

and other related work is something we intend to do in the future. 

Intentional Programming [ 1] is a system for program transformation that is similar in 

spirit to ours in that it allows domain-specific optimizations to be applied in an 

extensible manner. Since the system does not guarantee confluence, the authors 

emphasize controlling the order of transformation, so that it can be specified in a 

52 



compositional manner. Their rules may be dependent on other rules and the 

surrounding context. This requires the programmer to have some control over the 

transformation order by explicitly declaring dependencies between the rules he 

introduces and the existing ones. We have built our system so that the rules can be 

added incrementally, without making any assumptions about how they might interact 

with each other. This makes it easier to comprehend our design and frees the 

programmer from the burden of deciding how to implement the optimizer. Of course, 

complete absence of any guidance might lead to a less efficient optimization strategy 

in some cases. 

Aspect-Oriented Programming (AOP) [8] suggests a generalized way of optimizing 

programs, using domain-specific aspect languages. Programs are sub-divided into 

components and aspects. Aspects are then merged with components, relying on a 

particular aspect language to specify the transformations and a weaver to integrate the 

optimizations into the original program. For each application area, new weavers and 

aspect languages need to be developed. Our rewrite rule specification might be viewed 

as one particular kind of aspect language. 

6.2 Our approach 

The goal of programming in a high-level language is to be able to write efficient, 

platform-independent programs in a simple and easily comprehensible language. 

53 



Unfortunately, highly optimized programs often tend to be obscure, hard to write and 

hence, difficult to develop and maintain. Therefore, we attempt to separate the tasks of 

program writing and optimizing as much as possible. 

Our system has a dual purpose. It allows the end-user to use his know ledge of the 

problem domain to indicate possible optimizations to the source program. It also 

facilitates the task of the compiler-writer. We demonstrated some applications of how 

the end-user can use our system in the matrix examples. These optimizations, by their 

very nature, are specialized and so unlikely to be implemented within the core 

optimizing modules of a general-purpose compiler. 

The complexity of the system may not permit a naive end-user to use it very 

effectively or easily. Rather, we anticipate it to be more useful in allowing intervention 

by the sophisticated programmer who is likely to have the most significant knowledge 

of the problem area. Thus, nai·ve code can later be rewritten to be more efficient 

without sacrificing readability or ease of writing at the source-code level. 

This approach also provides a great deal of flexibility to the compiler-writer. 

Optimization directives can be added or removed easily as required without modifying 

the rest of the compiler. This is a great benefit for developing a retargetable compiler. 

54 



Platform-specific optimizations like constant-folding can be performed in a modular 

fashion, very early in the compilation process. 

We must emphasize the fact that having a system like ours to optimize the program is 

important because it may not always be possible for even a sophisticated programmer 

to edit the source code directly. A variety of reasons may be responsible: 

• The patterns specified in the left-hand sides of the rules may not occur in the 

original source code. Rather, they could have been uncovered as a result of other 

simplification passes that perform transformations like inlining. 

• Optimized libraries may not have been developed at the time the application was 

written. Our system enables these to be linked in as and when they become 

available. 

• It is often simpler to write source code in an incremental fashion, using several 

smaller function calls rather than writing a highly optimized construct. 

Transforming the naively written program automatically, preserves readability but 

does not sacrifice runtime efficiency. 

• The template mechanism promotes reuse of the rules and primitives. 

A nice feature of the design is the clean separation of the specification rules from the 

strategy of applying them to the program tree. This should make it easier to reason 

about the properties of the rules in isolation from the implementation strategy. Perhaps 

55 



more relevant to us is the fact that development time for the optimizer can be reduced 

in this way. A set of rules can be reused by the generator, with different strategies for 

applying them, resulting in optimizers of varying efficiencies. In optimizers where the 

rewriting rules and application strategies are closely inter-woven, there really is no 

easy way to modify them to implement essentially a different set of optimizations. 

Also, debugging and testing the optimizer becomes much easier. 

The specification language we have designed is very similar to the program 

development language. This should make it easier for the programmer to learn how to 

use the system. Moreover, since the user does not have to write the actual code for 

implementing the optimizations, he can use his time more effectively in making 

higher-level decisions to fine-tune the code, rather than in the more laborious, 

repetitive and error-prone task of writing the entire optimizer by hand. 

6.3 Future work 

A logical extension to this system would be to add parsing support for the application

specific constants. Our current system does not have an extensible parser and this 

limits its usefulness. A parser capable of recognizing all types of constants would 

certainly make it easier to express constant-folding rules and uncover optimization 

opportunities. 

56 



Our system separates the mechanism of rule specification from the strategy for 

applying the rules to the abstract syntax tree of the program. However, currently we 

have a fixed strategy for applying the rules. We would like to extend this system to 

enable the user to choose from one of several different strategies for rule application. 

This would lead to a faster optimizer. 

An area worth exploring is to use this system for performing standard optimizations 

like hoisting, dead code elimination and inlining. However, to be truly useful for doing 

this, we would have to provide supporting routines in the SML library. These could be 

routines to determine if an expression is pure, for generating fresh variables, for 

determining the free variables in an expression and for renaming of variables in an 

express10n. 

Another area that needs further work is the development of good benchmarks to test 

the applicability and efficiency of our system in different areas, including that of 

standard compiler optimizations. This could involve testing the effects of separate rule 

application strategies on the efficiency of the resulting optimizer as well as measuring 

the execution speed of the optimizer-generated code for domain-specific applications. 

We would like to test our rules to see whether they can be used to transform the true 

intermediate language of the RML compiler [12]. At the moment, we are transforming 

57 



the abstract syntax tree of the program. There are various complicating factors that 

make it hard to directly translate the rules to this intermediate language. It would be 

interesting to see if we can find a solution to this problem in the future. 

7. Conclusion 

We have attempted to demonstrate the advantage of designing a compiler with a 

facility for incorporating user-specified optimizations as a separate module. In doing 

so, we had to deal with various issues of language design and integration with the core 

compiler. We have certainly achieved our basic implementation goals, though in doing 

so we have come to realize its limitations and found new ways of improving the 

system. Since we have realized our main objective of designing a modular compiler, 

this facility will prove very useful in making these improvements. Thus, though we 

chose to implement the idea in the world of functional programming, we think that this 

feature would be a welcome addition to any general-purpose compiler. As such, the 

benefits might very well justify the development effort. 

The simplicity and modular nature of our design is what makes it different from that of 

other systems of this kind. Moreover, unlike other existing monolithic systems, our 

optimizer can be extended fairly easily, to enhance its usefulness and efficiency in 

implementing a wider range of optimizations. 

58 



8. References 

1. Aitken, W. and Dickens, B. and Kwiatkowski, P. and de Moor, 0. and Richter, D. 
and Simonyi, C. Transformation in Intentional Programming. In Proc. ICRS5, June 
1998 (to appear). 

2. Appel, A. and Jim, T. Shrinking Lambda Expressions in Linear Time. Journal of 
Functional Programming, Volume 7, Number 5, pages 515-540, September 1997. 

3. Barrett, R. and Berry, M. and Chan, T. and Demmel, J. and Donato, J. and 
Dongarra, J. and Eijkhout, V. and Pozo, R. and Romine, C. and Vorst, H. 
Templates for the Solution of Linear Systems, 2nd Edition. SIAM 1994. 
(http://netlib2.cs.utk.edu/linalg/htm1_templates/report.html). 

4. Cordy, J. and Carmichael, I. and Halliday, R. The TXL Programming Language, 
Version 8. Legasys Corp., April 1995. 

5. O'Donnell, M. Equational Logic as a Programming Language Chapter 18. MIT 
Press, 1985. 

6. Faith, R. and Nyland, L. and Prins, J. KHEPERA: A System for Rapid 
Implementation of Domain-Specific Languages. In Proc. USENIX Conference on 
Domain-Specific Language, pages 243-255, October 1997. 

7. Grosch, J. Puma - A Generator for the Transformation of Attributed Trees. 
Technical Report 26, Gesellschaft fur Mathematik und Datenverarbeitung mbH, 

Forschungsstelle an der Universitat Karlsruhe, November 1991. 

8. Kiczales, G. and Lamping, J. and Mendhekar, A. and Maeda, C. and Lopes, C. and 
Loingtier, J. and Irwin, J. Aspect-Oriented Programming. Technical report, Xerox 
Palo Alto Research Center, 1997. 

9. Milner, R. A Theory of Type Polymorphism in Programming. Journal of 
Computer and Systems Sciences, vol. 17, pp. 348-375, 1978. 

10. Milner, R. and Tofte, M. and Harper, R. and MacQueen, D. The Definition of 
Standard ML (Revised). MIT Press, 1997. 

11. Quinn, M. Parallel Computing Theory and Practice Second Edition Chapter 9. 
McGraw-Hill, Inc., 1994. 

12. Tolmach, A. and Oliva, D. From ML to Ada: Strongly-typed language 
interoperability via source translation. Journal of Functional Programming, 1998 
(to appear). 

13. Visser, E. and Benaissa, and Tolmach, A. Building Program Optimizers with 
Rewriting Strategies. Submitted to ICFP, 1998. 

59 


	Specification-Driven Optimization
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1682638993.pdf.q2dTK

