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Abstract 

This research focuses on the investigation of two machine learning 

methodologies, Reconstructability Analysis (RA) and Bayesian Networks (BN).  Both 

methods are probabilistic graphical modeling (PGM) methodologies. RA was developed 

in the systems community and has applications including time-series analysis, 

classification, decomposition, compression, pattern recognition, prediction, control, and 

decision analysis. BNs have origins in path models and have applications similar to those 

of RA. BNs are another graphical modeling approach for data modeling that is closely 

related to RA; where BN overlaps RA the two methods are equivalent, but RA and BN 

each has distinctive features absent in the other methodology. 

The primary aim of this research is to make theoretical contributions through the 

unification of the RA and BN methods by developing and integrating the RA and BN 

neutral and directed system lattices and developing an algorithm to generate the joint 

RA-BN neutral system lattice of structures for any number of variables. This analysis is 

done exhaustively for four variables, which is sufficient to elucidate the formal 

relationship between these two PGM approaches. 

The secondary aim of this research is to apply RA and BN to a real world problem 

in the electricity industry to identify predictive variables and obtain a new stand-alone 

model that improves prediction accuracy and reduces the INC and DEC Resource 

Sufficiency Requirements for Western Energy Imbalance Market participants. 
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The primary research aim was addressed by developing a lattice of structures for 

RA and BN that offers an expanded set of models to represent complex systems more 

accurately or more simply. The conceptualization of this lattice also offers a framework 

for additional innovations. Specific contributions include integrating RA and BN by 

developing and visualizing: (1) a BN neutral system lattice of general and specific graphs, 

(2) a joint RA-BN neutral system lattice of general and specific graphs, (3) an augmented 

RA directed system lattice of prediction graphs, and (4) a BN directed system lattice of 

prediction graphs. Additionally, it (5) extends RA notation to encompass BN graphs and 

(6) offers an algorithm to search the joint RA-BN neutral system lattice to find the best 

representation of the structure of the system variables. All lattices are for four variables, 

but the theory and methodology presented are general and apply to any number of 

variables. These methodological innovations are contributions to machine learning and 

artificial intelligence and more generally to complex systems analysis. These innovations 

also suggest extensions of RA and BN modeling that could enhance their power and 

flexibility. 

The secondary aim was addressed by applying RA and BN, as well as Neural 

Networks and Support Vector Regression, to build predictive models of Net Load 

Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western 

Energy Imbalance Market. This research identified predictive variables wind forecast, 

sunrise/sunset and the hour of day as primary predictors of net load imbalance, among 
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other variables, and show that the average size of the INC and DEC capacity 

requirements can be reduced by over 25% with the margin of error currently used in the 

industry while also significantly improving closeness and exceedance metrics. The 

reduction in INC and DEC capacity requirements would yield an approximate cost 

savings of $4 million annually for one of nineteen Western Energy Imbalance market 

participants. Reconstructability Analysis performed best among the machine learning 

methods tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

To my wife, Bryanna. Thank you for your unwavering support of my academic 

pursuits, and helping me stay the course even when work and life seemed to be taking 

over. You gave of your time and priorities to create space for me to pursue and 

complete it. For that, and many other reasons, I am forever grateful for your love and 

support. 

To my children, Ella, Abigail, Jackson, and Lucy. Thank you for your ongoing 

interest in my academic work. Thank you for asking lots of questions and questioning 

whether what I was doing was ‘really math’. Thank you also for your patience, it has felt 

like a long time to me, and I can imagine it seemed even longer to you. My hope for you 

in academics is simply to pursue things you are interested in and enjoy the process, 

even if it takes a long time.  If you are interested and enjoy the process, your time will 

be well spent. 

To Dr. Martin Zwick. Thank you for your many years of steadfast instruction and 

commitment to my success. Thank you for your patience to explain concepts until you 

were certain I had a sufficient understanding. Thank you for making the process 

stimulating and holding to the highest standards. You saw more in me than I saw in 

myself and drew the best out of me. That is a reflection of your world class academic 

instruction and of your incredible leadership. I would not be here without your 

guidance, instruction, and commitment over many years.  



v 
 

To my parents. Patrick and Janis Harris. Thank you for your unconditional love 

and support. Thank you for your genuine interest in everything that I do.  

To Dr. Wayne Wakeland, Dr. Rajesh Venkatachalapathy, Dr. Joe Fusion, Dr. 

Alexandra Nielsen, Dr. Teresa Schmidt, Dr. Amanuel Melekin, and my other Systems 

Science peers. Thank you for creating a rich and creative learning environment in pursuit 

and advancement of the many facets of Systems Science. 

To Elizabeth Kirby, and Francis Puyleart. Thank you for investing in me and 

passing on your extensive industry knowledge and expertise on balancing reserves and 

allowing me to try out some lesser heard of machine learning methods on your critical 

ancillary services issues.  

To my committee Dr. Jonathan Bird, Dr. Cliff Joslyn, Dr. Marek Perkowski, and Dr. 

Martin Zwick. Thank you for your steadfast commitment to my academic pursuit and 

seeing me through to the finish.  

 

 

 

 

 



vi 

Table of Contents 

ABSTRACT ................................................................................................................... i 

ACKNOWLEDGEMENTS .............................................................................................. iv 

LIST OF TABLES .......................................................................................................... ix 

LIST OF FIGURES ......................................................................................................... x 

INTRODUCTION .......................................................................................................... 1 

CHAPTER 1 ............................................................................................................... 20 

PAPER 1 - JOINT LATTICE OF RECONSTRUCTABILITY ANALYSIS AND BAYESIAN NETWORK GENERAL

GRAPHS ............................................................................................................................ 20  
ABSTRACT ......................................................................................................................... 21  
INTRODUCTION .................................................................................................................. 22  
RA LATTICE ....................................................................................................................... 24  
BN LATTICE ....................................................................................................................... 26  

Generating the lattice of BN general and specific graphs ......................................... 29 
Procedure to generate the BN general and specific graph lattice for any number of 
variables ..................................................................................................................... 30  
Additional representations of BN general graph equivalence classes ...................... 31 

INTEGRATING THE RHO, RA AND BN LATTICES ......................................................................... 31 
Lattice of four variable Rho graphs ........................................................................... 32  
Equivalent RA and BN general graphs ....................................................................... 33  
Non-equivalent RA and BN general graphs ............................................................... 34 

JOINT LATTICE OF RA AND BN GENERAL GRAPHS....................................................................... 35 
CONCLUSIONS .................................................................................................................... 36  

CHAPTER 2 ............................................................................................................... 38 

PAPER 2 - GRAPHICAL MODELS IN RECONSTRUCTABILITY ANALYSIS AND BAYESIAN NETWORKS ......... 38 
ABSTRACT ......................................................................................................................... 39  
INTRODUCTION .................................................................................................................. 40  
RA LATTICE ....................................................................................................................... 46  

RA Neutral Systems ................................................................................................... 46  
Searching the RA Neutral System Lattice .................................................................. 50  

RA DIRECTED SYSTEMS ........................................................................................................ 53  
Conventional Directed System Lattice ...................................................................... 53  



vii 

Augmented Directed System Lattice ......................................................................... 57  
BN LATTICE ....................................................................................................................... 61  

BN Introduction ......................................................................................................... 61  
BN Neutral Systems ................................................................................................... 63  
BN Directed Systems ................................................................................................. 81  

JOINT RA-BN NEUTRAL SYSTEM LATTICE ................................................................................ 85 
Joint RA-BN Neutral System Lattice Introduction ..................................................... 85  
RA-BN Rho Neutral System Graphs ........................................................................... 86  
Rho and Equivalent RA and BN General Graphs ....................................................... 88 
Rho and Non-Equivalent RA and BN General Graphs ............................................... 96 
Lattice of Rho, RA, BN Neutral System General Graphs ............................................ 97 
Joint RA-BN Lattice Algorithm ................................................................................... 98  

COMPARING RA AND BN DIRECTED SYSTEM GRAPHS ............................................................. 102 
DISCUSSION ..................................................................................................................... 106  

Neutral Systems ....................................................................................................... 106  
Directed Systems ..................................................................................................... 108  

CHAPTER 3 ............................................................................................................. 112 

PAPER 3 - MACHINE LEARNING PREDICTIONS OF ELECTRICITY CAPACITY ...................................... 112 
ABSTRACT ....................................................................................................................... 113  
INTRODUCTION ................................................................................................................ 113  
MATERIALS AND METHODS ................................................................................................ 119 

Data .......................................................................................................................... 119  
METHODS ....................................................................................................................... 124  

Industry Model ........................................................................................................ 125  
Reconstructability Analysis ...................................................................................... 127  
Bayesian Networks .................................................................................................. 132  
Support Vector Regression ...................................................................................... 135  
Neural Networks ...................................................................................................... 136  

RESULTS OF DV PREDICTION: COMPARING ML METHODS TO INDUSTRY MODEL............................ 138 
Best point estimate predictions and comparison of methods ................................ 138  
Best RA Model point estimate results ..................................................................... 140 
Best BN model point estimate results ..................................................................... 144 
BN Comparison to RA Best Model ........................................................................... 147  
SVM and NN point estimate results ........................................................................ 150  

RESULTS OF INC/DEC PREDICTION: COMPARING RA MODEL TO INDUSTRY MODEL ...................... 151 
RA INC and DEC prediction procedure .................................................................... 151  
Metrics for comparing INC and DEC predictions efficacy ....................................... 155 
Industry Model and RA Model INC and DEC predictions results ............................ 161 



viii 

RA Backup Model INC and DEC prediction results .................................................. 163 
DISCUSSION ..................................................................................................................... 165  
CONCLUSIONS .................................................................................................................. 168  

AFTERWORD .......................................................................................................... 171 

SUMMARY OF ORIGINAL CONTRIBUTIONS .............................................................................. 171 
SUMMARY OF POSSIBLE RESEARCH EXTENSIONS ..................................................................... 176 

REFERENCES ........................................................................................................... 183 

APPENDICES ........................................................................................................... 189 

APPENDIX A.1 RA LOOP DETECTION PROCEDURE ................................................................... 189 
APPENDIX A.2 D-SEPARATION PROCEDURE ........................................................................... 191 

Example 1 ................................................................................................................ 191  
Example 2 ................................................................................................................ 194  

APPENDIX B INPUT PARAMETERS FOR RA, BN, SVR, AND MLP ANALYSIS IN CHAPTER 3 ................ 195 



ix 

List of Tables 

Table 1 Example data for ABZ ............................................................................................. 8  
Table 2 Calculated Probability Distributions A:B:Z ............................................................. 9  
Table 3 Calculated Probability Distribution AZ:BZ ............................................................ 10 
Table 4 Calculated Probability Distribution ABZA:B ........................................................... 11 
Table 5 Calculated Probability Distribution AB from ABZA:B ............................................. 11 
Table 6 Calculated Probability Distribution AB:AZ:BZ ....................................................... 12 
Table 7 Iterative Proportional Fitting Procedure Example for AB:AZ:BZ .......................... 13 
Table 8 Model Transmission ............................................................................................. 15  
Table 9 Rho, RA and BN equivalent graphs ...................................................................... 34 
Table 10 RA and BN terminology ...................................................................................... 66  
Table 11 Four-variable independence statements ............................................................ 73 
Table 12 Probability distribution and independencies of BN specific graph examples .... 80 
Table 13 BN directed system graphs ................................................................................. 82  
Table 14 Equivalent Rho, RA and BN neutral system general graphs .............................. 95 
Table 15 BN directed system graphs and RA equivalent example .................................. 104 
Table 16 Variable Names and Definitions ....................................................................... 120 
Table 17 Cross Fold Validation ........................................................................................ 130  
Table 18 k = 12 features used in SVR and NN models..................................................... 137 
Table 19 Results of Industry Model and Machine Learning Methods ............................ 139 
Table 20 Best RA Model tested on all folds ..................................................................... 141  
Table 21 RA best model Independent Variables ............................................................. 142 
Table 22 Rank order of variables for Fold 5 Best Overall Model .................................... 144 
Table 23 Test of different prior link probabilities ............................................................ 147 
Table 24 RA and BN Toy Example Results ....................................................................... 149  
Table 25 IVs found in Best RA, NN/SVR, RA Backup Models ........................................... 151 
Table 26 Observed Net Load Imbalance and INC and DEC predictions for each interval 
from Figure 46 ................................................................................................................. 159  
Table 27 Calculated metrics from Figure 46 example .................................................... 161 
Table 28 Final Results ...................................................................................................... 163  
Table 29 RA Backup Model Point Estimate Summary Statistics ..................................... 164 
Table 30 RA Backup Model INC and DEC Predictions Compared to RA Model ............... 165 



x 

List of Figures 
Figure 1 RA and BN graph examples ............................................................................................................... 7  
Figure 2 RA General Graph Lattice .................................................................................... 25  
Figure 3 BN General Graph Lattice ................................................................................... 28  
Figure 4 Rho Lattice .......................................................................................................... 32  
Figure 5 RA G7 and BN2* general and specific graph example ........................................ 33 
Figure 6 Joint Lattice of RA and BN General Graphs ......................................................... 37 
Figure 7 Lattice of four-variable RA neutral system general graphs. ............................... 48 
Figure 8 RA specific graph G15, AD:BD:CD ....................................................................... 49  
Figure 9 RA specific graph G13 ......................................................................................... 50  
Figure 10 Lattice of RA neutral system general and specific graphs ................................ 52 
Figure 11 Conventional RA directed system lattice .......................................................... 56 
Figure 12 Conventional RA directed system lattice and additional predictive specific 
graphs ............................................................................................................................... 57  
Figure 13 Augmented RA directed system lattice ............................................................. 60 
Figure 14 Lattice of BN neutral system general graphs .................................................... 64 
Figure 15 Examples of Markov equivalence tests ............................................................. 68 
Figure 16 BN2*, BN2b, BN2c ............................................................................................. 69  
Figure 17 PDAGs for graphs in Figure 14 insert ................................................................ 70 
Figure 18 RA and BN notation example, without subscripts ............................................ 71 
Figure 19 BN notation examples with subscripts. (a) BCDB:C:A; (b) ABCDAC:BC .................. 72 
Figure 20 Lattice of general and specific BN neutral system graphs ................................ 76 
Figure 21 Probability distribution for BN2* example........................................................ 80 
Figure 22 BN directed system lattice ................................................................................ 84 
Figure 23 G15 and BN11* specific graph example ........................................................... 86 
Figure 24 Lattice of four-variable Rho graphs .................................................................. 87 
Figure 25 Rho1, G1 and BN1 specific graph ...................................................................... 88 
Figure 26 Rho2, G7, and BN2* example ........................................................................... 89 
Figure 27 Rho3, G10, and BN5* specific graph example .................................................. 90 
Figure 28 Rho5, G13, and BN10* specific graph example ................................................ 91 
Figure 29 Rho 6, G15 and BN11* specific graph example ................................................ 92 
Figure 30 Rho7, G16 and BN14* specific graph example ................................................. 92 
Figure 31 Rho 8, G17 and BN16* specific graph example ................................................ 93 
Figure 32 Rho 9, G18 and BN18* specific graph example ................................................ 94 
Figure 33 Rho, 10, G19 and BN19 specific graph example ............................................... 94 
Figure 34 Rho 11, G20 and BN20 specific graph ............................................................... 95 
Figure 35 Lattice of 4-variable general Rho, RA and BN neutral system graphs .............. 98 
Figure 36 Example, Rho 2 .................................................................................................. 99  
Figure 37 Rho 2 example, with associated BNs general graphs ..................................... 100 



xi 

Figure 38 RA and BN directed system lattice comparison .............................................. 103 
Figure 39 BN Directed System Prediction Example ......................................................... 106 
Figure 40 Joint RA-BN lattice of 4 variable general and specific graphs ........................ 111 
Figure 41 Industry Model calculation of INC and DEC requirement example................. 126 
Figure 42 Best Overall BN ............................................................................................... 145  
Figure 43 Best RA Model equivalent BN ......................................................................... 148  
Figure 44 RA and BN Toy Examples ................................................................................ 150 
Figure 45 RA calculation of INC and DEC for a given IV state ......................................... 155 
Figure 46 FRST Industry Model and RA Model Predictions Example .............................. 158 
Figure 47 Test Results, Total Error and MW magnitude ................................................. 163 
Figure 48 Relationship of Wind Power Output to Wind Speed ....................................... 167 
193 



1 

Introduction 

Reconstructability Analysis (RA) and Bayesian Networks (BN) are machine 

learning (ML) methodologies that have many similarities. Both are probabilistic 

graphical modeling (PGM) methodologies that are qualitatively very different from 

neural networks, arguably the dominant machine learning approach in use today. In 

PGM methodologies, a model is a hypergraph that connects variables and a probability 

distribution defined on joint states of the variables. Although RA and BN are similar, no 

systematic examination has previously been made of the relationship between the two 

formalisms, and no comparison has previously been made of their relative efficacies as 

machine learning methods. This dissertation addresses both issues. It explores the 

formal relationship between the methods, and by showing where RA and BN overlap 

and give equivalent calculated distributions and also how RA and BN differ, it points to 

the possibility of a PGM approach that combines the unique features of both. This 

dissertation also reports a comparison of the relative performance of these two 

methods on Bonneville Power Administration data where predictive efficacy has 

potential practical value, while also comparing the performance of RA and BN to two 

other widely used ML methodologies.  

RA was developed in the Systems community by Ashby (1964), Klir (1976, 1985, 

1986), Conant (1981, 1988), Krippendorff (1981, 1986), Broekstra (1979), Cavallo (1979), 

Zwick (2001, 2004), and others.  BNs have origins in path models originally described by 

Wright (1921, 1934), but it was not until the 1980s that BNs were more formally 
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established (Pearl, 1985, 1987, 1988; Neapolitan, 1989). This dissertation research 

centered on the theory and application of RA and BN and was developed through three 

published papers:  

1. Joint Lattice of Reconstructability Analysis and Bayesian Network General 

Graphs1  

2. Graphical models in Reconstructability Analysis and Bayesian Networks2  

3. Machine Learning Predictions of Electricity Capacity3 

Papers 1 and 2 provide the primary theoretical contributions, unifying the RA 

and BN methodologies. Paper 2 builds on the findings in paper 1 and is really two papers 

fused into one: the first part develops the joint RA-BN lattice of neutral system general 

and specific graphs; the second part develops the RA augmented directed system lattice 

of general and specific graphs, among other new contributions. Paper 3 applies RA and 

BN to a real world industry problem to better predict electricity capacity requirements 

using these methods. Paper 3 also uses real and toy examples to further support and 

                                                      
1 Harris, M.; Zwick, M. Joint Lattice of Reconstructability Analysis and Bayesian Network 
General Graphs. In Proceedings of the Tenth International Conference on Complex 
Systems; Springer: Cham, Switzerland, 2021. 

2 Harris, M.; Zwick, M. Graphical Models in Reconstructability Analysis and Bayesian 
Networks. Entropy 2021, 23, 986. https://doi.org/10.3390/e23080986 

3 Harris M, Kirby E, Agrawal A, Pokharel R, Puyleart F, Zwick M. Machine Learning 
Predictions of Electricity Capacity. Energies. 2023; 16(1):187. 
https://doi.org/10.3390/en16010187  
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elaborate the theoretical findings in Papers 1 and 2.  Paper 3 has two parts: the first part 

is an empirical comparison of RA and BN and two other more widely-used ML methods 

(neural networks and support vector machines); the second part applies the best 

performing ML method, which was RA, to industry data and shows that using RA 

predictive modeling a better solution can be obtained to an important industry problem 

than the industry approach currently used.  The link between the first two papers and 

the third paper is theoretical. The first two papers point out that there are some models 

that are equivalent between RA and BN and some that are unique to each methodology. 

In the third paper it is found that the best RA model is in the group of RA models that 

are equivalent to some BNs which supports the finding from the first two papers.  

RA is designed especially for nominal variables, but continuous variables can be 

accommodated if their values are discretized. (RA could in principle accommodate 

continuous variables, but this extension of the methodology has yet to be formalized.) 

Graph theory specifies the structure of the model: if the relations between the variables 

are all dyadic (pairwise), the structure is a graph; if some relations have higher 

ordinality, the structure is a hypergraph. Graph structures are independent of the data 

except for their needing to be supplemented by specification of variable cardinalities. In 

RA, information theory uses the data to characterize the precise nature and the strength 
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of the relations. Data applied to a graph structure yields a probabilistic graphical model 

of the data.4 

RA can be applied to “neutral” and “directed” systems, and for both allows 

models that contain loops or do not contain loops. "Loops” in this dissertation refer to 

undirected graphs; “cycles” refer to directed graphs. Neutral systems characterize the 

relation among all variables, and applications are common in network analysis and 

image processing. Directed systems characterize the relationship between IVs and the 

DV. (In principle, RA could accommodate multiple DVs, but the specific implementation 

of RA used in this research (the Occam software package) allows only a single DV.  5 For 

the data analysis work in this dissertation, RA directed systems are used because the 

primary goal is to predict the DV from the IVs. 

Graphs are general or specific. A general graph identifies relations among 

variables that are unlabeled, i.e., variables whose identity is not specified; a specific 

graph labels (identifies) the variables. For example, for a system consisting of variables 

A, B, and C, AB:BC is a specific graph where nodes A and B are linked and B and C are 

also linked. Specific graphs AB:BC, BA:AC and AC:CB are all instances of the same 

general graph that has a unique independence structure regardless of variable labels. In 

this notation, the order of variables in any relation is arbitrary, as is the order of the 

relations. For example, CB:BA is identical to AB:BC. Relations include all of their 

                                                      
4 Paragraph from Harris and Zwick, 2021. 
5 Paragraph from Harris, et. al., 2022. 
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embedded relations. For example, ABC includes embedded relations AB, AC and BC and 

the univariate margins A, B, and C.  For directed systems, where the relationship of a 

single target variable (dependent variable) is the primary focus, the dependent variable 

is typically notated as “Z” and IVs are A, B, C and so on. The lattice of graphs for a 

neutral or a directed system with or without loops depends upon the number of 

variables in the data. For a three-variable neutral system allowing loops there are five 

general graphs and nine specific graphs; for four variables there are 20 general graphs 

and 114 specific graphs. 6 As the number of variables increases further, the numbers of 

general graphs and specific graphs go up hyper-exponentially.  

The lattice of four variable RA neutral systems is described in Chapter 2 “RA 

Lattice” and the four variable RA directed system lattice is also described in Chapter 2 

“RA Directed Systems.” Here we define through a series of examples some of the key 

tenets of RA and BN structures, including marginal and conditional independence, as 

well as show how calculated probability distributions are derived for RA and BN graphs 

with unique independence structures for graphs with and without loops. These 

descriptions are related to information theoretic (probabilistic) RA, not set theoretic 

(crisp probabilistic) RA. Here we use directed systems; for neutral systems replace 

variable “Z” with variable “C” – the results would be the same in these examples. 

                                                      
6 Paragraph from Harris and Zwick, 2021. 
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The following RA and BN graph examples show representative structures with 

marginal or conditional independence, or complete dependence in the case of ABZ, 

their calculated probability distributions, and their independence structures. These 

examples illustrate some of the foundational elements of RA and BN graphs that will be 

expanded upon in much greater detail in Chapters 1 and 2.  First we define three 

variables, A, B, Z to be used throughout the following examples.  Variables are 

dichotomous with two states, 0 and 1. 

Figure 1 shows a visual representation of the five examples to follow.  These 

examples show RA and BN graphs that are equivalent, for example ABZ, A:B:Z, and 

AZ:BZ, a graph that is unique to RA, AB:AZ:BZ, that contains a loop, and a graph that is 

unique to BN, ABZA:B, that contains a V-structure.  The examples that follow walk 

through these RA and BN structures, and use toy data to compute their calculated 

probability distributions in order to highlight some of the basic differences and 

similarities between certain graphs and the procedure for performing calculations when 

data is applied. 
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Model RA Graph BN Graph 
Independence 

Statement 

Probability 

Distribution 

1 ABZ 

 

n/a  p(ABZ) 

2 ABZA:B n/a (unique to BN) (A ⊥ B) 
p(Z|AB)p(A)

p(B) 

3 
AB:AZ:B

Z 

 

n/a (unique 
to RA) 

(B ⊥ Z | A),  

(A ⊥ B | Z),  

(A ⊥ Z | B) 

n/a (no 
analytic 
solution, 

contains a 
loop) 

4 AZ:BZ (A ⊥ B | Z) 
p(AZ)p(BZ)/

p(Z) 

5 A:B:Z 

  

(A ⊥ B),   

(A ⊥ Z),  

(B ⊥ Z) 

p(A)p(B)p(Z) 

Figure 1 RA and BN graph examples 

 

Table 1 shows example data for these three variables for RA graph ABZ (RA 

structures, which are hypergraphs, are referred to here using the more general term 

“graph.”). ABZ, shown below, is the raw data.  To be more precise, usually the raw data 

is a contingency table of frequencies, and these frequencies when normalized by the 

sample size yield a probability distribution. The sample size is relevant for assessing the 

A          

B          

Z          

A          Z          B          
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statistical significance of deviations of a calculated model probability distribution from 

some reference distribution, but statistical considerations are not under discussion in 

this Introduction.  All variables are dependent upon each other, therefore there are no 

independencies among variables. The probability (marginal value) of A0 is .6, which is 

the sum of the values in the p(ABZ) table in the first row of all four columns. The 

probability of B0 is .555, which is the sum of the values in the p(ABZ) table in the first 

and third columns. The probability of Z0 is .415, which is the sum of the values in the 

p(ABZ) table in the first two columns.   

Table 1 Example data for ABZ 

 

If one were using the data as one’s model, one would do prediction 

(classification), given values for the IVs, by generating and using the conditional 

probability distribution p(Z|AB) = p(ABZ)/p(AB). One generally doesn’t use the data as 

one’s model, however, to avoid overfitting. Instead one selects a simpler model based 

on some selection criterion. One does prediction (classification) for this selected simpler 

p(ABZ)

B0 B1 B0 B1
A0 0.125 0.100 0.250 0.125
A1 0.040 0.150 0.140 0.070

1.00

p(AB) p(Z)
B0 B1

A0 0.375 0.225 0.600 Z0 Z1
A1 0.180 0.220 0.400 0.415 0.585

0.555 0.445 1.000 1.000

Z0 Z1
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model in the same way: by using the conditional q(Z|AB) generated from the joint 

calculated probability distribution, q(ABZ), for the model. 

The RA graph A:B:Z represents marginal independence between all three 

variables, A, B, and Z. The colon, in RA notation, signifies marginal or conditional 

independence between variables – in this case marginal independence. That is, (A ⊥  B), 

(A ⊥ Z), (B ⊥ Z) and these independence relations yield the calculated distribution 

q(A:B:Z) = p(A)p(B)p(Z) shown in Table 2.  

Table 2 Calculated Probability Distributions A:B:Z 

 

For example, the first column and row (A0B0Z0) with value .138 is calculated by 

p(A0)p(B0)p(Z0) = (.600)(.555)(.415) = .138. A0B1Z1 is calculated by p(A0)p(B1)p(Z1) = 

(.600)(.445)(.585) = .156, and so on. 

The RA graph AZ:BZ represents conditional independence between A and B, 

given Z. That is, (A ⊥ B | Z). This is a Naïve-Bayes-like graph structure and is common to 

both the RA and BN neutral system lattices, however it was not included in the RA 

directed system lattice until now. The RA augmented directed system lattice and the 

addition of this structure to this lattice are discussed in Chapter 2.  The colon in the RA 

notation represents conditional independence between A and B given Z because Z is 

q(A:B:Z)

B0 B1 B0 B1
A0 0.138 0.111 0.195 0.156
A1 0.092 0.074 0.130 0.104

1.00

Z0 Z1
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included in the AZ term and the BZ term. This conditional independence relation yields 

the calculated distribution q(AZ:BZ) =  p(AZ)p(BZ)/p(Z) shown in Table 3. For example, 

the first column and row (A0B0Z0) with value .089 is calculated by p(A0Z0)p(B0Z0)/p(Z0) 

= (.125+.100)(.125+.040)/(.415) = .089.   

Table 3 Calculated Probability Distribution AZ:BZ 

 

Related to the AZ:BZ structure is AB:BZ that is also found in the RA and BN 

lattices. AZ:BZ and AB:BZ both have the same general independence structure (. ⊥ .. | 

…), but given data produce different calculated probability distributions: for AZ:BZ,  

q(AZ:BZ) =  p(AZ)p(BZ)/p(Z) and for AB:BZ, q(AB:BZ) = p(AB)p(BZ)/p(B).    

The Bayesian Network graph ABZA:B represents marginal independence between 

A and B within the triadic ABZ relation. That is,  (A ⊥ B). This independence relation 

yields the calculated distribution q(ABZA:B) = p(Z|AB)p(A)p(B) where p(Z|AB) = 

p(ABZ)/p(AB) = (p(ABZ)/p(AB))*p(A)p(B).  This BN contains what is called a “V-structure” 

where A is directed to Z and B is directed to Z.  BNs with V-structures are unique to BN 

graphs and not found in RA and these V-structures result in a different factorization and 

thus calculated probability distribution than that of any RA graphs. While all non-V-

structure BN graphs have an equivalent RA counterpart, all V-structure BNs are unique 

to BN. BN graphs and their relation to RA graphs are discussed in depth in Chapter 2, 

q(AZ:BZ)

B0 B1 B0 B1
A0 0.089 0.136 0.250 0.125
A1 0.076 0.114 0.140 0.070

1.00

Z0 Z1
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section “BN Lattice.” The calculated distribution for ABZA:B is shown in Table 4. For 

example, the first column and row (A0B0Z0) with value .111 is calculated by 

(p(ABZ)/p(AB))*p(A)p(B) = A0B0Z0/A0B0*A0*B0 = (.125/.375)(.6)(.555) = .111.   

Table 4 Calculated Probability Distribution ABZA:B 

 

That in this calculated distribution q(ABZA:B), A and B are marginally independent 

is shown by the AB distribution in Table 5. For example, A0B0 from Table 5 is generated 

from Table 4 by A0B0Z0 (.111) + A0B0Z1 (.022) = .333. The fact that A0B0Z0 (qABZA:B) + 

A0B0Z1 (q ABZA:B) = A0 (pAB) * B0 (pAB) demonstrates that A and B are in fact 

marginally independent within the q(ABZA:B) calculated distribution (.111 + .222 = .600 * 

.555). 

Table 5 Calculated Probability Distribution AB from ABZA:B 

 

RA graphs can have loops as illustrated by the RA graph AB:AZ:BZ 

(independencies - (B ⊥ Z | A), (A ⊥ B | Z), (A ⊥ Z | B). Whereas A:B:Z and AZ:BZ examples 

shown previously do not have loops, AB:AZ:BZ has a loop. The loop within this structure 

does not depend on assigning any directed arrows to the relations AB, AZ, or BZ. (That 

q(ABZA:B)

B0 B1 B0 B1
A0 0.111 0.119 0.222 0.148
A1 0.049 0.121 0.173 0.057

1.00

Z0 Z1

q(AB)
B0 B1

A0 0.333 0.267 0.600
A1 0.222 0.178 0.400

0.555 0.445 1.000
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is, the order of the variables in these relations is arbitrary, as is also the order of the 

relations in this structure. Because the structure has a loop, the calculation of the 

AB:AZ:BZ probability distribution is not amenable to analytic solutions as in the prior 

examples.  Rather, the calculated distribution for an RA graph with loops is done via 

iterative proportional fitting (IPF).  An ‘iteration’ is defined here as the sequential 

imposition of all the relations in the graph, namely AB, AZ, and BZ.  Table 6 shows the 

calculated distribution of AB:AZ:BZ using the p(ABZ) data from Table 1. 

Table 6 Calculated Probability Distribution AB:AZ:BZ 

 

The calculated distribution for AB:AZ:BZ  is generated by IPF. This procedure first 

starts with the uniform distribution for all states, i.e. .125.  This can be seen in Table 7, 

Iteration 0 (the starting distribution). Then a series of iterations are performed imposing 

AB (Iteration 1.1), AZ (Iteration 1.2), and BZ (Iteration 1.3) distributions from p(ABZ) in 

Table 1, then imposing AB again (iteration 2.1), AZ again (iteration 2.2), BZ again 

(iteration 2.3), and so on until the calculated distribution converges, where convergence 

is defined as the change in the probability distributions in successive iterations falling 

under some specified threshold.  

For example, in order to impose the AB distribution onto the uniform 

distribution from Iteration 0. (A0B0Z0(p-Iteration 0) * A0B0(pABZ)) / (A0B0Z0(p-

q(AB:AZ:BZ)

B0 B1 B0 B1
A0 0.105 0.120 0.270 0.105
A1 0.060 0.130 0.120 0.090

1.00

Z0 Z1
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Iteration 0) + A0B0Z1(p-Iteration 0)) = .125*(.125+.25)/(.125+.125) = .188 = A0B0Z0 

Iteration 1.1. This procedure is continued for the remaining states of the ABZ 

distribution in iteration 1.1. For Iteration 1.2, the p(AZ) distribution is imposed on the 

calculated distribution from Iteration 1.1.   

Table 7 Iterative Proportional Fitting Procedure Example for AB:AZ:BZ 

  

p(ABZ)
B0 B1 B0 B1

A A0 0.125 0.100 0.250 0.125
A1 0.040 0.150 0.140 0.070

1.00      
Iteration 0 (uniform)

B0 B1 B0 B1
A A0 0.125 0.125 0.125 0.125

A1 0.125 0.125 0.125 0.125
1.00      

Iteration 1.1 p(AB)
B0 B1 B0 B1

A A0 0.188 0.113 0.188 0.113
A1 0.090 0.110 0.090 0.110

1.00      
Iteration 1.2 p(AZ)

B0 B1 B0 B1
A A0 0.141 0.084 0.235 0.141

A1 0.086 0.105 0.094 0.115
1.00      

Iteration 1.3 p(BZ)
B0 B1 B0 B1

A A0 0.103 0.112 0.278 0.107
A1 0.062 0.138 0.112 0.088

1.00      
Iteration 2.1 p(AB)

B0 B1 B0 B1
A A0 0.101 0.115 0.274 0.110

A1 0.064 0.135 0.116 0.085
1.00      

repeat until convergence
Iteration n

B0 B1 B0 B1
A A0 0.105 0.120 0.270 0.105

A1 0.060 0.130 0.120 0.090
1.00      

Z0 Z1

Z0 Z1

Z0 Z1

Z0 Z1

Z0 Z1

Z0 Z1

Z0 Z1



14 
 

Iterations continue until the calculated distribution converges or iteration might 

be halted upon reaching some preset maximum number of iterations. In this example, 

after 7 iterations, the calculated distribution was exactly the same as the prior iteration 

calculated distribution out to 10 significant digits.  

All of the above examples in tables 2 through 7 represent RA or BN models with 

unique independence structures and thus unique calculated probability distributions of 

the data in Table 1. These models, along with the full set of four variable unique RA and 

BN models described in Chapter 2 convey different information about the data because 

each has a unique independence structure which represents the relationship between 

variables.   

A variable relation is quantified by its uncertainty which in information theoretic 

RA is Shannon entropy. Shannon entropy for distribution p(ABZ) is H(ABZ) = -∑ p(ABZ) 

log2 p(ABZ) (Krippendorff, 1986 ).  The difference between the uncertainty in one graph, 

given data, relative to another graph, represents information gain or loss; information 

loss relative to the data is model error known as Transmission.  For the independence 

model, H(A:B:Z) = H(A) + H(B) + H(Z), and Transmission T(A:B:Z) is the uncertainty gain 

H(A:B:Z) – H(ABZ), i.e., the error in model A:B:Z. 

Table 8 shows Transmission in terms of information lost between the data 

p(ABZ) and the example RA or BN graphs previously discussed.  Here you can see that 

A:B:Z has the greatest information loss (error, uncertainty gain), which is as expected 
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because it represents complete variable independence. Conversely ABZA:B represents 

the least information loss, which is also as expected as this graph structure contains only 

one independency (A ⊥ B). 

Table 8 Model Transmission 

 

BNs have a similar interpretation for neutral system general and specific graphs; 

these are called in the literature “essential graphs” and “labeled essential graphs” 

respectively (Andersson, 1997), among other naming conventions. BN essential graphs, 

here called BN general graphs, can have multiple directed acyclic graph (DAG) 

representations while retaining the same unlabeled independence structure.  For 

example, the BN A→B→C has the same independence structure as A←B→C. In more 

complex structures with any number of variables, DAGs with different edge topologies 

can produce the same unlabeled independence structures, i.e. general graphs. This is 

discussed in Chapters 2 and 3, and has implications that may be initially unanticipated. 

For example, one might expect that a four variable maximally interconnected BN, which 

includes six directed edges, like BN 1 discussed in Chapter 1, would have six child graphs 

because a child graph results from the deletion of one edge from the parent graph. 

However this is not the case. BN1 has three child general graphs, not six, because 

deleting some of the edges from BN1 result in the same independence structure, and 

are thus redundant. 

T(ABZ) T(ABZA:B) T(AB:AZ:BZ) T(AB:BZ) T(AZ:BZ) T(A:B:Z)

Transmission -            0.019          0.022         0.024       0.038          0.097     
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Prior to this research the BN literature did not have the concept of directed 

system general or specific graphs.  In papers 1 and 2, BN essential graphs and labeled 

essential graphs are named using the RA notation for neutral system general and 

specific graphs, and BN directed system prediction graphs are developed for general and 

specific graph structures.  

In Paper 1, RA neutral system general graphs are compared with BN neutral 

system general graphs, and a visualization of their lattice of graph structures for four 

variables is developed. This work shows that there are some RA general graphs with 

probability distributions unique to RA, there are some BN graphs with probability 

distributions unique to BN, and there are RA and BN graphs whose probability 

distributions are the same.  This analysis also showed how these general graphs 

structures can been integrated into a unified lattice. This expands the set of general 

graphs with unique structures beyond what was previously available by either RA alone 

or BN alone, thus allowing for representations of complex systems which are (i) more 

accurate relative to data and/or (ii) simpler and thus more comprehensible and more 

generalizable than would be possible by modeling only with RA or only with BN. 

Paper 1 is restricted to general graphs and to neutral systems.  Paper 2 builds on 

the ideas from Paper 1 to expand the theoretical comparison between RA and BN by 

also considering specific graphs and directed systems. Paper 2’s first new contribution is 

to develop a BN neutral system lattice of general and specific graphs and to compare 

that to the RA neutral system lattice of general and specific graphs. The BN four variable 



17 
 

lattice was developed by evaluating all 543 possible directed acyclic graphs for four 

variables, grouping graphs with the same unlabeled independence structures into 20 

general graph equivalence classes, and identifying the 185 unique specific graphs 

associated with the 20 general graph equivalence classes. Paper 2 concretizes the 

general graph findings in Paper 1 by showing that when data is applied to RA or BN 

general graphs structures resulting in specific graph structures, some RA specific graphs 

have unique probability distributions, some BN specific graphs have unique probability 

distributions, and some RA and BN specific graphs are equivalent in their probability 

distributions.  

Second, Paper 2 develops the four variable BN lattice of directed systems. In 

contrast to neutral systems, directed systems are focused, or ‘directed’, to a single 

variable of interest whereas neutral systems focus on the relationship among all 

variables. Directed systems are predominately used for predictions of a single 

dependent variable (DV), i.e., response variable, from independent variables (IVs), i.e., 

explanatory variables.  In order to compare to RA directed systems, Paper 2 further 

expands the conventional RA directed system lattice to add “BN-like” -specifically Naïve-

Bayes-like - graph structures that are found in the RA neutral systems lattice. Thus, 

Paper 2 expands the conventional RA directed system lattice creating a new augmented 

RA directed system lattice, and this lattice is compared and integrated with the BN 

directed system lattice also newly developed in this paper. 
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Third, in Paper 2, RA notation is extended to encompass BN graphs and an 

algorithm to generate the RA and BN joint lattice of general and specific graphs is 

developed.  

Paper 3 applies real electrical system data to real and toy graph structures to 

give concrete examples of two theoretical findings in papers 1 and 2; specifically, that (i) 

there are multiple BN general graphs that are equivalent to a single RA general graph 

and that (ii) while the RA graph with the highest prediction efficacy on real data can be 

represented exactly by a BN graph, the BN search algorithm of a widely used software 

package is unable to find this graph within the BN lattice and thus would need to be 

improved to be able to do so.  

In the application portion of this research in Paper 3, machine learning methods 

were used to make better predictions of the necessary electricity capacity requirement 

to participate in the California Independent System Operators Western Energy 

Imbalance Market (WEIM).  Four methods are examined and compared: RA, BN, Support 

Vector Regression, and Neural Networks. These four methods are used to analyze data 

provided by the Bonneville Power Administration to build point estimate prediction 

models of observed net load imbalance, the dependent variable (DV.)  These methods 

are compared to each other for prediction efficacy and compared to the current 

industry model. From this first step, the best performing method, which is RA, is used to 

develop a predictive model of the WEIMs Flexible Ramp Sufficiency Test (FRST) INC and 

DEC uncertainty requirement.  
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The findings in Paper 3 show that RA performs best among the four method 

tested; the next best method is neural networks. The RA model more than doubles the R 

squared statistic relative to the industry model and reduces the size of the capacity 

requirement by 25.4%. This has real world significance in the amount of energy 

flexibility (capacity) that needs to be held by WEIM participants.   Additionally, Paper 3 

identifies highly predictive variables that increase prediction efficacy.  

The following three chapters include the three published papers. The final 

chapter, the Afterword, includes a summary of the important findings and also of many 

possible extensions of this research.  
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Chapter 1 

Paper 1 - Joint Lattice of Reconstructability Analysis and Bayesian Network General 
Graphs 

 

Harris, M.; Zwick, M. Joint Lattice of Reconstructability Analysis and Bayesian Network 

General Graphs. In Proceedings of the Tenth International Conference on Complex 

Systems; Springer: Cham, Switzerland, 2021. 

 

Co-authored by Marcus Harris and Martin Zwick. 

 

Author contribution statement: Marcus Harris performed the conceptualization, formal 

analysis, writing original draft, and visualization. Dr. Martin Zwick performed 

conceptualization, writing review and editing, and supervision.  

 

DOI: https://doi.org/10.3390/e23080986  

Link to published paper: https://archives.pdx.edu/ds/psu/33724 

 

 

 

 



21 
 

Abstract 

This paper integrates the structures considered in Reconstructability Analysis 

(RA) and those considered in Bayesian Networks (BN) into a joint lattice of probabilistic 

graphical models. This integration and associated lattice visualizations are done in this 

paper for four variables, but the approach can easily be expanded to more variables. 

The work builds on the RA work of Klir (1985), Krippendorff (1986), and Zwick (2001), 

and the BN work of Pearl (1985, 1987, 1988, 2000), Verma (1990), Heckerman (1994), 

Chickering (1995), Andersson (1997), and others. The RA four variable lattice and the BN 

four variable lattice partially overlap: there are ten unique RA general graphs, ten 

unique BN general graphs, and ten general graphs common to both RA and BN. For 

example, the specific graph having probability distribution p(A)p(C)p(B|AC) is unique to 

BN, the RA specific graph AB:AC:BC,  which contains a loop, is unique to RA, and the 

specific graph ACD:BCD with probability distribution p(A|CD)p(B|CD)p(D|C)p(C) is 

common to both RA and BN. The joint RA-BN lattice of general graphs presented in this 

paper expands the set of general graphs with unique independence structures beyond 

what was previously available by either RA alone or BN alone, thus allowing for 

representations of complex systems which are (i) more accurate relative to data and/or 

(ii) simpler and thus more comprehensible and more generalizable than would be 

possible by modeling only with RA or only with BN.  
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Introduction 

Reconstructability Analysis (RA) is a data modeling approach developed in the 

systems community (Ashby, 1964; Klir, 1976, 1985, 1986; Conant, 1981, 1988; 

Krippendorff, 1981, 1986; Broekstra, 1979; Cavallo, 1979; Zwick, 2001, 2004; and 

others) that combines graph theory and information theory.  Its applications are diverse, 

including time-series analysis, classification, decomposition, compression, pattern 

recognition, prediction, control, and decision analysis (Zwick, 2004).  It is designed 

especially for nominal variables, but continuous variables can be accommodated if their 

values are discretized. Graph theory specifies the structure of the model (the set of 

relations between the variables), which is independent of actual data (except for 

specification of variable cardinalities); information theory uses the data to characterize 

the strength and the precise nature of the relations. Data applied to a graph structure 

yields a probabilistic graphical model of the data.  

In RA, graphs are undirected, although directions are implicit if one variable is 

designated as the response variable (dependent variable), while all other variables are 

designated as explanatory variables (independent variables). In this paper, such IV-DV 

designations are not made, so we are concerned with only what are called “neutral 

systems.” Graphs are either general or specific. A general graph identifies relations 

among variables that are unlabeled; a specific graph labels the variables. For example, 

for a system consisting of variables A, B, and C, AB:BC is a specific graph where nodes A 

and B are linked and B and C are also linked. In this notation, the order of variables in 
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any relation is arbitrary, as is the order of the relations. Relations include all of their 

embedded relations. For example, the relation ABC includes embedded relations AB, AC 

and BC and the univariate margins A, B, and C. Specific graphs AB:BC, BA:AC and AC:CB 

are all instances of the same general graph that contains a unique independence 

structure regardless of variable labels.  

For a three variable neutral system with loops there are 5 general graphs and 9 

specific graphs; for four variables there are 20 general graphs and 114 specific graphs.  

The number of graphs increases hyper-exponentially with the number of variables.   

A Bayesian Network (BN) is another graphical modeling approach for data 

modeling that is closely related to RA; indeed where it overlaps RA the two methods are 

equivalent, but RA and BN each has distinctive features absent in the other 

methodology. BNs have origins in the type of path model originally described by Wright 

(1921, 1934), but it was not until the 1980s that BNs were more formally established 

(Pearl, 1985, 1987, 1988; Neapolitan, 1989).  

As does RA, BN combines graph theory and probability theory; graph theory 

provides the structure and probability theory characterizes the nature of relationships 

between variables.  BNs are represented by a single type of graph structure; a directed 

acyclic graph, which is a subset of chain graphs, also known as block recursive models 

(Lauritzen, 1996). For a three variable BN lattice, there are 5 general graphs and 11 

specific graphs; for four variables there are 20 general graphs and 185 specific graphs.     
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This paper integrates RA and BN and visualizes their joint lattice of general 

graphs for four variables.  

RA Lattice 

The lattice of four variable RA general graphs of Figure 2 (adapted from Klir, 

1985; Krippendorff, 1986) represents all four variable RA graphs with unique 

independence structures. In these graphs, lines (which can branch) are variables; boxes 

are relations between variables. Where only two lines extend from a box, the relation is 

dyadic. If more than two lines extend from a box, the graph is a hypergraph. Bolded 

general graphs in Figure 2 are acyclic whereas non-bolded general graphs have cycles. 

The figure shows all 20 general graphs for four variables. G1 is the most complex general 

graph, in which all four variables are connected in a tetradic relation. Graphs below G1 

are increasingly less complex decompositions of G1, ending with G20, the least complex 

graph, representing complete independence  

among all four variables. 
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A general graph represents a unique independence structure which disregards all 

possible ways that variables could be labeled. For example, the left-most and right-most 

variables in G7 in Figure 2 are independent of one another given the two central 

G1

G2

G3

G4

G5

G6

G7

G8

G9G10

G11 G12G13

G14
G15 G16

G17 G18

G19

G20

Figure 2 RA General Graph Lattice 
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variables that connect both relations, where these four variables have not been 

assigned any specific identities.  

When, in RA or BN, the variables of a general graph are labeled, it is called a 

specific graph equivalence class or specific graph and is synonymous with a Markov 

equivalence class (Andersson, 1997). A specific graph, given data, produces a unique 

probability distribution. (This is the case for RA; as explained below, two different 

directed specific BN graphs can have the same distribution.) Since the number of graphs 

increases hyper-exponentially with the number of variables, searching the entire lattice 

for the best model can be very computationally expensive as the number of variables 

increases. 

The colon notation for RA specific graphs represents marginal or conditional 

independence between variables. For example, G20 from Figure 2, having notation 

A:B:C:D, has the independence structure (A ⊥ B, C, D), (B ⊥ C, D), (C ⊥ D); A, B, C, and D 

are all marginally independent of each other. G17, having notation AB:BC:D, has the 

independence structure (D ⊥ A, B, C), (A ⊥ C | B); A, B, and C are all marginally 

independent of D, and A is conditionally independent of C given B. The overlap of B in 

the AB and BC relations encodes the conditional independence of A and C given B. 

BN Lattice 

The primary differences between RA and BN are two-fold: (1) BNs are directed 

and acyclic whereas RA graphs are undirected and can be cyclic or acyclic, and (2) some 
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BN graphs contain converging edges, called a V-structure, which encodes a unique 

independence structure not found in RA general graphs.  

As in RA, there are BN general graphs and BN specific graphs, in the BN literature 

referred to as essential graphs and Markov equivalence classes respectively (Anderson, 

1997).  BN general graphs of Figure 3 represent unique independence structures of 

variables, edges, and edge orientations, where specific identities are not assigned to the 

variables. Figure 3 shows the hierarchy of BN general graphs for four variables. There 

are 20 BN general graphs in the lattice, i.e., 20 unique general independence structures 

for four variable BNs.  

In Figure 3, general graphs are labeled BN1, BN2…BN19, BN20.  Solid squares 

represent variables, edges are represented by directed arrows from one square to 

another. The dashed lines with arrows from one general graph to another represent the 

hierarchy of general graphs, with parent graphs being above child graphs. Child graphs 

result from the deletion of one edge from the parent graph. The bottom-right addition 

to the lattice that tabulates equivalent general graphs is discussed in the section titled 

“Additional representations of BN general graph equivalence classes.” 
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The alphabetic notation that we use for BN specific graphs is derived from the RA 

notation described previously. For a BN graph without a V-structure, the notation is 

identical to the RA notation. As in RA, the colon represents marginal or conditional 

BN3

BN8 BN9*

BN10 BN11* BN13 BN14*BN12

BN17BN16* BN18

BN19

BN20

BN15*

BN2*

BN1

BN4*

BN5* BN6 BN7

BN4b

BN9b BN11b BN14b

BN15b BN16b

BN2b BN2c

BN5b BN5dBN5c

*equivalent general 
graphs with additional 
unique edge orientations

Figure 3 BN General Graph Lattice 
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independence among variables. For a BN graph with a V-structure, the notation adds 

subscripts to represent the independence relations encoded by the V-structure, which 

are unique to BNs and not found in RA. For example, BN17 from Figure 3, with labels A, 

B, C, D in order of top left, top right, bottom left, bottom right respectively, is given the 

notation BCDB:C:A, where the colon between BCDB:C and A states the independency (A ⊥ 

B, C, D), namely that A is marginally independent of B, C, and D. The subscript B:C 

encodes marginal independence between B and C within the triadic BCD relation.  

Generating the lattice of BN general and specific graphs 

The BN literature on lattices predominately focuses on search algorithms to find 

the best BN given a scoring metric. Implicit in these search algorithms is a lattice of 

candidate graphs being explored in search of the best model. Chickering (2004) and 

others have shown the search problem to be NP-hard, with four variables there are 543 

possible BNs, with 10 variables there are O(10^18) (Murphy, 1998).  Because of this, the 

BN literature has focused less on the description of the exhaustive lattice of BN 

structures, and more on advancing search heuristics to efficiently identify the best BN 

given a scoring metric (Buntine, 1991a, 1991b; Cooper, 1992; Bouckaert, 1994; 

Heckerman, 1994; Chickering, 1995, 1997; Friedman, 1996, 2003; Larranaga, 1996; 

Koivisto, 2004; Malone 2011; and others). 

Heckerman (1994) first showed that BNs with differing edge topologies can have 

the same independence structure and thus the same probability distribution, herein 

described as specific graphs. In contrast to heuristics that search all BNs, search 
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heuristics for BN specific graphs have proven to be more efficient because they reduce 

the dimensionality of search space (Chickering, 1995, 2002; Andersson, 1997; Gillispie, 

2001; Studený, 2010; Tian, 2010; Zhang, 2012; Chen 2016; and others).  For four 

variables, this reduces the search space from 543 BNs to 185 specific graphs (Anderson, 

1997). Removing variable labels, these specific graphs can be summarized by 20 general 

graphs. 

Building from the RA work of Klir (1986) and Zwick (2001), and the BN work of 

Pearl (1985, 1987, 1988, 2000), Verma (1990), Heckerman (1994), Chickering (1995), 

Andersson (1997), and others, the following procedure was used to generate the four 

variable BN general and specific graph lattice in a way that can be integrated with the 

four variable RA general graph lattice.  While this procedure is applied in this paper to 

four variables, it could be used for any number of variables.  

Procedure to generate the BN general and specific graph lattice for any number of 

variables 

1. Generate all graphs for n variables by permuting all possible variable labels, edge 

connections and edge orientations.  Eliminate any graphs with loops. The result 

is the set of all directed acyclic graphs for n variables. 

2. For each directed acyclic graph, evaluate the specific independence structure 

following the d-separation procedure (MIT, 2015) to generate the exhaustive list 

of independencies for each graph. 
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3. Organize graphs with the same labeled independencies into specific graph 

equivalence classes. 

4. From each specific graph equivalence class, select a single edge topology to 

represent the general graph equivalence class. List any additional equivalent 

general graphs with unique edge topologies separately, as done in Figure 3. 

5. Organize general graphs into levels based upon the number of edges in each 

general graph and link nested general graphs in the lattice to reflect parent-child 

general graphs. 

Additional representations of BN general graph equivalence classes 

There are 20 general graphs in the four variable BN lattice. However eight of 

these, marked with asterisks in Figure 3, can be represented by additional unique edge 

topologies which, however, result in identical probability distributions when applied to 

data.  These are BN2*, BN4*, BN5*, BN9*, BN11*, BN14*, BN15*, and BN16*.  Thus, for 

example, BN2b has edge orientations that are different from (and cannot be mapped 

onto) those of BN2*, but when variables are labeled in BN2* and BN2b, identical 

probability distributions result. This property is unique to BN and is not found in RA, in 

which there is a single unique representation of each RA general graph.  

Integrating the Rho, RA and BN Lattices 

This section integrates the RA and BN general graph lattices using the four 

variable Rho lattice (Klir, 1985).  The joint RA-BN lattice of general graphs presented in 

this paper expands the set of general graphs with unique independence structures 
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beyond what was previously available by either RA alone or BN alone. The lattice 

identifies general independence structures unique to RA, general independence 

structures unique to BNs, and general independence structures that are equivalent 

across RA and BNs.  Where two or more RA or BN graphs have the same general 

independence structure regardless of variable labels, they are equivalent.   

Lattice of four variable Rho graphs 

The four variable Rho (ρ) lattice of Figure 

4 (adapted from Klir, 1985, p. 237) is a 

simplification of the RA lattice of general graphs 

of Figure 2. The Rho lattice represents all 

possible undirected relations between four 

variables, an even more general lattice than that 

of the RA general graph lattice and general 

enough to map both RA and BN four variable 

general graphs to one of the eleven represented 

structures. Solid dots represent variables; lines 

connecting dots represent relations between 

variables. In terms of the RA general graph lattice 

of Figure 2, if two variables are directly connected by any box (a relation of arbitrary 

ordinality), a line connects them in the Rho lattice. Arrows from one Rho graph to 

another represent hierarchy, i.e., the generation of a child graph from a parent graph. 

r1 

r2

r3 r4

r5 r6 r7

r8 r9

r10

r11

Figure 4 Rho Lattice 
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The graph ρ1 represents maximal connectedness, or interdependence, between 

variables, and the graph ρ11 represents independence among all variables.  Graphs in-

between ρ1 and ρ11 represent a mix of dependence and independence among 

variables. Each RA or BN graph corresponds to one, and only one, of the eleven Rho 

graphs.  

Equivalent RA and BN general graphs 

Out of 20 RA general graphs and 20 BN general graphs, there are 10 RA general 

graphs, comprising all of the acyclic graphs in the RA lattice that are equivalent to BN 

general graphs. Each of these RA-BN equivalent pairs corresponds to one of the 11 Rho 

graphs from Figure 4, with the exception of ρ4.  ρ4 has corresponding RA and BN 

general graphs, but these do not have equivalent independence structures, and are 

discussed in the following section on non-equivalent RA and BN general graphs. 

Figure 5 shows an example of equivalent RA and BN graphs, namely G7 and 

BN2*, respectively. Labeled variables in G7 results in independencies (A ⊥ B | C, D) and 

thus the RA specific graph notation ACD:BCD. Assigning labels to BN2* yields the same 

independencies and thus the same specific graph ACD:BCD.   

 

Figure 5 RA G7 and BN2* general and specific graph example 

r2 RA G7 BN2*

(A _|_ B | C, D)

Specific Graphs

A B

C D

A B

C D

A B
C

D

r2 RA G7 BN2*

( . _|_ .. | … , ….)

General Graphs
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Table 9 shows the list of all equivalent Rho, RA and BN four variable general 

graphs, an example of their specific graph notation, and their independences. These 

specific graph examples align with the BN general graphs of Figure 3 assuming labeling 

of nodes A, B, C, D in the order of top left, top right, bottom left, bottom right. 

Table 9 Rho, RA and BN equivalent graphs 

 

Non-equivalent RA and BN general graphs 

In addition to the 10 equivalent RA and BN general graphs, there are 10 general 

graphs unique to the RA lattice and 10 general graphs unique to the BN lattice. All 10 

non-equivalent RA general graphs in the four variable lattice are cyclic and require 

iteration to generate their probability distributions. BNs are acyclic and have analytic 

solutions, so there are no BN graphs that are equivalent to these cyclic RA graphs.  Since 

cyclic RA graphs are undirected, one might think that there could be some equivalent 

directed acyclic BN graphs, but this is not the case, because BN graphs that are acyclic 

when directions are considered but cyclic if directions are ignored have V-structure 

Rho graph
RA general 

graph
BN general 

graph

Specific Graph 
Example 

(RA notation)
Independencies

ρ1 G1 BN1 ABCD no independencies
ρ2 G7 BN2* ACD:BCD (A _|_ B | C, D)
ρ3 G10 BN5* BCD:AD (A _|_ B, C | D)
ρ5 G13 BN10 BCD:A (A _|_ B, C, D)
ρ6 G15 BN11* AD:BD:CD (A _|_ B, C | D), (B _|_C | D)
ρ7 G16 BN14* AD:BC:BD (A _|_ B | D), (C _|_ A, D | B)
ρ8 G17 BN16* BD:CD:A (B _|_ C | D), (A_|_B, C, D)
ρ9 G18 BN18 AD:BC (A, D _|_ B, C)
ρ10 G19 BN19 CD:A:B (B _|_ C, D), (A _|_ B, C, D)
ρ11 G20 BN20 A:B:C:D (A_|_B, C, D), (B_|_ C, D), (C_|_D)
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interpretations, as described previously. All 10 non-equivalent BN graphs have such V-

structures, which encode independence relations unique to BNs.  

To illustrate: the structure AB, BC, CD, DA is cyclic and not a legitimate 

BN structure, but the directed structure of AB, BC, CD, AD, which has the same 

undirected links, is not cyclic, and is a legitimate BN structure, namely BN9b. However, 

this latter structure is not interpreted as a set of dyadic relations, which would be 

written in RA notation as AB:BC:CD:AD. Rather, the V-structure consisting of CD and 

AD is interpreted as a triadic relation, which contributes a p(D|AC) to the probability 

expression, p(A) p(B|A)p(C|B) p(D|AC), which does not correspond to any RA structure.  

Joint lattice of RA and BN general graphs  

The joint lattice of RA and BN general graphs is organized using the Rho lattice 

(Klir, 1985) of Figure 4, the RA general lattice of Figure 2 (Klir 1985, Krippendorff 1986) 

and the BN general lattice of Figure 3. All 20 RA general graphs and all 20 BN general 

graphs for each Rho graph are shown in the joint lattice of RA and BN general graphs of 

Figure 6. 

In Figure 6, within each Rho graph, where RA and BN general graphs are 

equivalent, that is, their independence structures are identical, the BN graph is placed 

underneath the RA equivalent graph. Where RA or BN graphs are not equivalent, 

representing an independence structure unique to RA or to BN, they stand alone side-
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by-side. Arrows from one graph to another in the joint lattice represent the hierarchy of 

the RA lattice only. 

Conclusions 

The joint lattice of RA and BN general graphs for four variables increases the 

number of general graphs with unique independence structures from 20 in the four 

variable RA lattice and 20 in the four variable BN lattice to 30 in the joint RA-BN lattice, 

and when variable labels are added, increases the number of unique specific graphs 

from 114 in the RA lattice and 185 in the BN lattice to 238 in the joint lattice.  

The integration of the two lattices offers a richer and more expansive way to 

model complex systems leveraging the V-structure unique to BN graphs and the 

allowability of cycles in RA graphs. The joint RA-BN lattice of general graphs presented in 

this paper expands the set of general graphs with unique independence structures (or, 

equivalently, with unique interdependence structures) beyond what was previously 

available by either RA alone or BN alone, thus allowing for representations of complex 

systems which are (i) more accurate relative to data and/or (ii) simpler and thus more 

comprehensible and more generalizable than would be possible by modeling only with 

RA or only with BN. This joint lattice thus demonstrates how these two related 

frameworks – RA and BN – both members of the family of probabilistic graphical 

modeling methodologies, can be integrated into a unified framework. Extension of this 

work will include designing algorithms to search this joint RA-BN lattice, analysis of RA 
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and BN predictive models in which the IV-DV distinction is made, consideration of 

“hybrid” RA-BN models, and other topics. 

 

Figure 6 Joint Lattice of RA and BN General Graphs 
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Abstract 

Reconstructability Analysis (RA) and Bayesian Networks (BN) are both 

probabilistic graphical modeling methodologies used in machine learning and artificial 

intelligence. There are RA models that are statistically equivalent to BN models and 

there are also models unique to RA and models unique to BN. The primary goal of this 

paper is to unify these two methodologies via a lattice of structures that offers an 

expanded set of models to represent complex systems more accurately or more simply. 

The conceptualization of this lattice also offers a framework for additional innovations 

beyond what is presented here. Specifically, this paper integrates RA and BN by 

developing and visualizing: (1) a BN neutral system lattice of general and specific graphs, 

(2) a joint RA-BN neutral system lattice of general and specific graphs, (3) an augmented 

RA directed system lattice of prediction graphs, and (4) a BN directed system lattice of 

prediction graphs. Additionally, it (5) extends RA notation to encompass BN graphs and 

(6) offers an algorithm to search the joint RA-BN neutral system lattice to find the best 

representation of system structure from underlying system variables. All lattices shown 

in this paper are for four variables, but the theory and methodology presented in this 

paper are general and apply to any number of variables. These methodological 

innovations are contributions to machine learning and artificial intelligence and more 

generally to complex systems analysis. The paper also reviews some relevant prior work 

of others so that the innovations offered here can be understood in a self-contained 

way within the context of this paper. 
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Introduction 

Reconstructability Analysis (RA) and Bayesian Networks (BN) are both 

probabilistic graphical modeling methodologies. A probabilistic graphical model uses a 

graph (or hypergraph) to encode independencies and dependencies between variables 

and probability theory to encode the precise nature of the relations between variables. 

Graphs are either undirected or directed. RA graphs include undirected graphs (or 

hypergraphs) that have loops or do not have loops. BN graphs are directed graphs that 

do not have cycles. (“Loops” here refer to undirected graphs; “cycles” refer to directed 

graphs.) RA and BN graphs can represent independence structures that are unique to 

each methodology, and also independence structures that are the same in both 

methodologies. For RA models without loops and for all BN models, variable 

independencies can be represented in closed algebraic (factorized) form. For RA models 

with loops, solutions require iterative calculations. The value of integrating these two 

methodologies lies in the fact that the RA lattice of structures offers potential models of 

complex systems not found in BNs, while BNs are a more widely used analytical 

approach than RA and also include unique models. Combining the candidate models of 

the two methodologies thus offers a more expressive framework than either alone. It 

also does so in an organized and coherent way that allows for future possible extensions 

discussed in the section titled “Discussion”. 

RA is a data modeling approach developed in the systems community (Ashby, 

1994; Broekstra, 1979; Cavallo, 1979; Conant, 1981, 1988; Klir, 1976, 1985, 1986; 
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Krippendorff, 1979, 1981, 1986; Willet, 2004; Zwick, 2001, 2004a, 2004b, 2010, 2018) 

that combines graph theory and information theory. Its applications are diverse, 

including time-series analysis, classification, decomposition, compression, pattern 

recognition, prediction, control, and decision analysis (Zwick, 2001). It is designed 

especially for nominal variables, but continuous variables can be accommodated if their 

values are discretized. RA could in theory accommodate continuous variables; however, 

this extension of the methodology has yet to be formalized. Graph theory specifies the 

structure of the model: if the relations between the variables are all dyadic (pairwise), 

the structure is a graph; if some relations have higher ordinality, the structure is a 

hypergraph. In speaking of RA, the word ‘graph’ will henceforth include the possibility 

that the structure is a hypergraph. The structure is independent of the data except for 

specification of variable cardinalities. In RA, information theory uses the data to 

characterize the precise nature and the strength of the relations. Data applied to a 

graph structure yields a probabilistic graphical model of the data.  

RA has three primary types of models: variable-based models without loops, 

variable-based models with loops and state-based models (where individual states of 

variables specify model constraints) that nearly always have loops. Models that do not 

have loops have closed-form algebraic solutions; those that have loops require iterative 

proportional fitting. In RA, graphs are undirected, although directions are implicit if one 

variable is designated as the response variable (dependent variable or DV), while all 

other variables are designated as explanatory variables (independent variables or IVs). 
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In principle, there could be more than one DV, but in the discussion that follows, a single 

DV is assumed. If the IV-DV distinction is made, the system is ‘directed’ and the primary 

aim is prediction of the DV given the IVs; if no IV-DV distinction is made, the system is 

‘neutral’ and the primary aim is to characterize the nature of relations among all 

variables.  

RA models are undirected graphs that either have or do not have loops, where a 

‘loop’ is the presence of circularity in a set of undirected links. We reserve the word 

‘cycle’ and ‘acyclic’ for circularity or lack thereof in directed graphs, which are used in 

BN and not in RA. An undirected graph having a loop can become an acyclic graph for 

certain assignments of link directions. For example, an RA model that posits relations 

between A and B, between B and C, and between A and C has a loop, but if directions 

are assigned in a BN model so that these relations are A → B, B → C, and A → C, the 

resulting graph is acyclic.  

Graphs are general or specific. A general graph identifies relations among 

variables that are unlabeled, i.e., variables whose identity is not specified; a specific 

graph labels (identifies) the variables. For example, for a system consisting of variables 

A, B, and C, AB:BC is a specific graph where nodes A and B are linked and B and C are 

also linked. Specific graphs AB:BC, BA:AC and AC:CB are all instances of the same 

general graph that has a unique independence structure regardless of variable labels. In 

this notation, the order of variables in any relation is arbitrary, as is the order of the 

relations. For example, CB:BA is identical to AB:BC. Relations include all of their 
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embedded relations. For example, ABC includes embedded relations AB, AC and BC and 

the univariate margins A, B, and C.  

The lattice of graphs for a neutral or a directed system with or without loops 

depends upon the number of variables in the data. For a three-variable neutral system 

allowing loops there are five general graphs and nine specific graphs; for four variables 

there are 20 general graphs and 114 specific graphs. The number of graphs increases 

hyper-exponentially with the number of variables. In the confirmatory mode, RA can 

test the significance of a single model—a hypothesis being tested—relative to another 

model used as a reference. In the exploratory mode, RA can search the lattice of graphs 

for models that are statistically significant and best represent the data with maximal 

information captured and minimal complexity.  

Bayesian Networks (BN) are another probabilistic graphical modeling approach 

to data modeling that is closely related to RA. Indeed, where BN overlaps RA the two 

methods are equivalent, but with respect to neutral systems, RA and BN each has 

distinctive features absent in the other methodology. For directed systems; however, 

where prediction of a single dependent variable is the aim, RA encompasses all models 

found in BN under the convention used in this paper that all nodes except for parent 

nodes within a V-structure are allowed to be the variable being predicted; this inclusion 

of the BN directed system lattice within the RA lattice will be shown later in this paper.  
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BNs have origins in the type of path model described by Wright (1921, 1934), but 

it was not until the 1980s that BNs became more formally established (Neapolitan, 

1989; Pearl, 1985, 1987, 1988). As does RA, BN combines graph theory and probability 

theory: graph theory provides the structure and probability theory characterizes the 

nature of relationships between variables. BNs are represented by a single type of graph 

structure; a directed acyclic graph, which is a subset of chain graphs, also known as 

block recursive models (Lauritzen, 1996). BNs can be represented more generally by 

partially directed acyclic graphs (PDAG), a subset of chain graphs where edge directions 

are removed when directionality has no effect on the underlying independence 

structure. Discrete variables are most common in BNs, but BNs accommodate 

continuous variables without discretization (Driver, 1995). In principal RA could also 

accommodate continuous variables but this feature has not yet been implemented. For 

a three variable BN lattice, there are 5 general graphs and 11 specific graphs; for four 

variables there are 20 general graphs and 185 specific graphs with unique probability 

distributions. In the confirmatory mode, BNs can test the significance of a model relative 

to another model used as a reference (Tang, 2012); in the exploratory mode, BNs can 

search for the best possible model given a scoring metric. BNs are used to model expert 

knowledge about uncertainty and causality (Neapolitan, 1989; Pearl, 1985) and are also 

used for exploratory data analysis with no use of expert knowledge (Rebane, 1987). Like 

RA, BN applications in machine learning and artificial intelligence are broad including 
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classification, prediction, compression, pattern recognition, image processing, time-

series, decision analysis and many others. 

The joint RA-BN lattice of neutral system general and specific graphs and the 

accompanying search algorithm developed in this paper expands both RA and BN 

beyond what was previously available by either RA alone or BN alone, thus providing a 

more complete ensemble of models for the representation of complex systems. When 

prediction of a single dependent variable (DV) is the aim, the RA directed system lattice 

encompasses the BN directed system lattice under the strict convention used in this 

paper that excludes a parent node with a V-structure being the DV. However, we also 

show that when this constraint is relaxed so that a parent node within a V-structure can 

be the DV, BN models can offer predictions unique to BN. We also show that (under the 

above convention) the BN directed system lattice reduces the size of the full BN neutral 

system lattice by retaining only graphs that give unique predictions of the DV, 

significantly reducing the search space to find the best BN when prediction of a single 

DV is the aim. Finally, this paper develops an augmented RA directed system lattice 

which expands the conventional RA lattice of prediction graphs to include naïve Bayes 

equivalent graphs. This augmented lattice encompasses graphs in the BN directed 

system lattice and allows for models of complex systems which are (i) more predictive 

and/or (ii) simpler and thus both more comprehensible and more generalizable than 

models restricted to the conventional RA directed system lattice.  
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RA Lattice 

RA Neutral Systems 

All lattices shown in this paper are for four variables, but the theory and 

methodology presented in this paper are general and apply to any number of variables. 

RA neutral systems include only independent variables, i.e., there is no concept in such 

systems of a dependent variable. A neutral system model thus represents the 

relationships, graphically and probabilistically, between all the (independent) variables. 

The graphical representation specifies the independencies among variables. When data 

are then applied, probabilities represent the strength of the relationships between 

dependent variables. Neutral system graphs are commonly used in applications where 

variable clustering is important, such as computer vision and social and biological 

network analyses. Neutral system analysis is more computationally demanding than 

directed system analysis, so when one is really interested in predicting specific variables, 

directed system models are more convenient.  

The four-variable RA lattice of neutral system general graphs (Figure 7), (Klir, 

1985; Krippendorff, 1979), represents all four-variable RA graphs with unique 

independence structures. Bold graphs do not have loops while non-bold graphs have 

loops. In these graphs, lines (including branching lines) are variables; boxes are 

relations. Where only two lines extend from a box, the relation is dyadic. If more than 

two lines extend from a box, the graph is a hypergraph. Where two or more specific 

graphs have the same independence structure, regardless of variable labels, they are 
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part of the same general graph equivalence class. For example, the left-most and right-

most variables in G7 are independent of one another given the two central variables 

that connect both relations; this results in the general independence structure (. ⊥ .. | 

…, ….), where each different number of dots indicates a different variable, but does not 

specify its actual identity. The expression says that the first variable is independent (“⊥” 

is the symbol used in this paper for independence) of the second variable given (“|” is 

the symbol used in this paper for “given”) the third and (the comma “,” represents a 

logical “and”) fourth variables. 

G1 is the most complex general graph, in which the variables are connected in a 

tetradic relation. Graphs below G1 reflect increasingly less complex decompositions of 

G1, ending with G20 which has complete independence among the variables. Arrows 

from one general graph to another represent hierarchy such that going from the parent 

graph (the source of the arrow) to the child graph (the terminus of the arrow) results 

from deleting one relation from the parent graph. 

In this paper, when the variables of a general graph are labeled in RA or BN, it is 

called a specific graph, which is a unique probabilistic model given the data. For RA, 

given data and after labeling all the variables, there is only one specific graph for any 

general graph. By contrast, as explained in the section titled “BN Lattice,” (beginning in 

the sub-section titled “BN neutral systems: Lattice of BN general graphs”), two or more 

topologically different BN general graphs can have the same probability distribution; 

such equivalent graphs have the same underlying set of independencies even though 
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they are topologically different; they are said to constitute a ‘Markov equivalence class’ 

(Verma, 1990). 

 

Figure 7 Lattice of four-variable RA neutral system general graphs.  
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RA graphs can include pairwise and non-pairwise relations. For example, graph 

G15 has four lines (variables) and three boxes (relations). One line connects to all three 

boxes, meaning one variable is included in all three relations, and separately a single line 

representing one of the other three variables extends from each box. Because only two 

lines extend from any given box, all relations in G15 are pairwise (dyadic). Figure 8 

shows G15 with labels (A, B, C, D) added for the variables, yielding a specific structure 

having dyadic relations AD, BD, and CD. In RA notation, this graph is AD:BD:CD, the 

colon represents independence among relations. The notation AD:BD:CD encodes the 

independencies (𝐴 ⊥  𝐵, 𝐶 | 𝐷), (𝐵 ⊥  𝐶 | 𝐷). The example in Figure 8 represents one 

of four specific graphs for the general graph G15, the other possible permutations are 

AB:AC:AD, BA:BC:BD, CA:CB:CD. These permutations have the same general 

independence structure (. ⊥.., … | ….), (… ⊥ … | ….), but given data, produce different 

conditional probability distributions.  

 

Figure 8 RA specific graph G15, AD:BD:CD 

In contrast to graph G15 which includes dyadic relations only, graph G13 in 

Figure 9 is a hypergraph, with three lines extending from one box and a single line 

extending from the other. This could, for example, represent four variables A, B, C and 

D, where A, B, and C label the three lines extending from one box, and D labels the 
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single line extending from the other box. Figure 9 shows this specific graph, which in RA 

notation is ABC:D with the independence structure of (𝐷 ⊥  𝐴, 𝐵, 𝐶). This example 

represents one of four specific graphs for general graph G13, the other three being, 

ABD:C, ACD:B, and BCD:A with independencies of (𝐶 ⊥  𝐴, 𝐵, 𝐷), (𝐵 ⊥  𝐴, 𝐶, 𝐷), and 

(𝐴 ⊥  𝐵, 𝐶, 𝐷), respectively. Given data, each of these four specific graphs (ABC:D, 

ABD:C, ACD:B, and BCD:A) generates a unique probability distribution. 

 

Figure 9 RA specific graph G13 

Figure 10 shows all of the general graphs from Figure 7 as well as all of the 

specific graphs associated with each general graph. There are 20 general graphs in the 

RA lattice and 114 specific graphs.  

Searching the RA Neutral System Lattice 

The data are the top of the lattice, i.e., G1 ABCD, and one searches the lattice to 

find a good representation of the data. The lattice can be searched from the top down 

or from the bottom up or from some other starting model. Typically, a reference model, 

a specific graph, is selected to begin the search. Commonly, it is the independence 

(bottom) model, G20 A:B:C:D from Figure 10, that is selected as the reference model, 

and the lattice is searched upward to find the best model. The lattice may also be 

searched downward starting from the saturated (top) model, G1, or from a reference 
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model in-between the bottom or top, searching up or down. The starting model does 

not have to be the reference model, but this is often the case. 

Commonly, when the lattice is being searched, the goal is to find a model (a 

specific graph) that adequately represents but is less complex than the data. This best 

characterizes a search downwards that (typically) starts from G1. When searching down 

the lattice, the goal is to search as far down the lattice as possible, resulting in the 

greatest complexity reduction from the reference model, while incurring the least 

amount of information loss, so that the model still adequately represents the data. 

Finding a simpler representation of the data reduces the complexity of the system under 

observation, allowing for greater understanding of the most important underlying 

relations. Alternatively, the goal is to find a model, a specific graph, that captures as 

much of the information in the data as possible, as long as its difference from mutual 

independence of the variables, i.e., G20 in Figure 10, is defensible, so the model is not 

overfit, and its application to new data is likely to be more successful. This best 

characterizes a search upwards that (typically) starts from G20. For directed systems 

where prediction of a single DV is the aim, a high information model is one that gives 

maximal reduction of the Shannon entropy (uncertainty) of the DV.  
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Figure 10 Lattice of RA neutral system general and specific graphs 

Given data, specific graphs can be tested for statistical significance. The Chi 

square statistical test can be used to test the difference between any candidate model 
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and a reference model, usually the data, G1, or the independence model, G20. As an 

alternative or in addition to such a statistical test, the Bayesian Information Criteria (BIC) 

and the Akaike Information Criteria (AIC) are among the other measures that can be 

used to decide on the best model.  

RA Directed Systems 

Conventional Directed System Lattice 

The RA lattice of directed systems shown in Figure 11 is a sub-lattice of the 

complete neutral system lattice of Figure 7. The purpose of the directed system lattice is 

to organize models that make an IV-DV (explanatory-response) distinction and where 

prediction of the DV is the sole aim. In contrast, the neutral system lattice organizes 

models that do not make any IV-DV distinction; these models do not focus on a single 

response variable. There are fewer general graphs in the directed system lattice 

compared to the neutral system lattice because, by convention, we care only about 

models whose predictions of the DV are different and are not interested in identifying 

relations among the IVs. The word ‘directed’ in RA ‘directed systems’ has a meaning that 

is different from the meaning of the same word in BN ‘directed acyclic graphs’. In RA 

‘directed systems’, this word means that the focus of modeling is on the relation of the 

dependent variable to the independent variables. It does not imply directionality of 

edges from the IVs to the DV as this word means in BN ‘directed acyclic graphs’. 

In the neutral system lattice of Figure 7, any of the variables can be part of any 

relation. In contrast, in the standard directed system lattice, by convention, all of the IVs 
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are always included in one of the relations (the “IV relation”); the other relations in the 

model include predictive IV-DV interactions (or the DV alone if there are no such 

interactions). In this paper, the DV in directed system specific graphs is called “Z” and 

the IVs are called A, B, C, and so on. For example, the first specific graph listed under G3 

from Figure 11, ABC:ABZ:ACZ, has all three IVs in the first relation, followed by two IV-

DV relations. Aside from allowing for the presence of relations among the IVs (without 

specifying any such relations), the model says that there is a relation in which A and B 

might predict Z and another relation in which A and C might predict Z; the net predictive 

relation between A, B, C and Z is a maximum entropy fusion of these two predictive 

relations.  

General graph G13 (ABC:Z) from Figure 11 represents independence between 

the IVs (ABC) and the DV (Z), thus there is no relation between the IVs and the DV, and 

graph G1 (ABCZ, which is not written as ABC:ABCZ because ABC is embedded in ABCZ) 

represents complete dependence among the IVs and the DV. It should be noted; 

however, that the directed system lattice of Figure 11 is not entirely exhaustive. What 

restricts this lattice is that all models include the “IV relation”; this makes these models 

hierarchically nested, and amenable to standard statistical tests. There are additional 

predictive graphs where this restriction is dropped that produce different predictions of 

Z than the models of Figure 11; these additional graphs are discussed in the following 

section titled “Augmented directed system lattice”.  
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Figure 11 shows all directed system general and specific graphs for four 

variables. The graphs that are greyed represent graphs from the neutral system lattice 

from Figure 11 that are not part of the directed system lattice because they do not offer 

unique predictions of the DV. There are nine directed system general graphs and 19 

specific graphs in contrast to the neutral system lattice, which has 20 general graphs and 

114 specific graphs.  



56 
 

 

Figure 11 Conventional RA directed system lattice  
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Augmented Directed System Lattice 

Figure 12 augments the conventional directed system lattice (on the left) of 

Figure 11 with a lattice of additional predictive graphs (on the right). These additional 

graphs offer unique analytical results, but that are not typically included when searching 

the hierarchically restricted directed system lattice.  

 

Figure 12 Conventional RA directed system lattice and additional predictive specific graphs 

In Figure 12, the graphs in the Additional Predictive Graphs lattice are denoted 

by an apostrophe to identify that the original graph was altered by removing the IV 
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relation. For example, the bottom relation in graph G2, interpreted as the IV relation, 

ABC, was removed to produce an additional predictive graph G2′. This general graph has 

only one specific graph, ABZ:ACZ:BCZ, which is analytically different from G2 

(ABC:ABZ:ACZ:BCZ) because the ABC term in graph G2 imposes a constraint among the 

IVs that is not imposed in graph G2′. Because G2′ does not follow the standard directed 

system convention of including the IV terms in a first relation, it produces a different 

prediction of Z. The apostrophe-marked graphs are less complex than the graphs from 

which they are derived, and so should also be considered in searches for good predictive 

models. G5′ and G8′ from Figure 12 represent naïve Bayes equivalent RA graphs; G4′ is 

also a naïve Bayes-like graph. This is discussed in the section titled “BN directed 

systems”.  

A merger of the conventional directed system lattice with the additional 

predictive graphs of Figure 12 gives the augmented directed system lattice in Figure 13. 

The specific graphs from G2′ and G3′ from Figure 12 are members of general graphs G3 

and G7, respectively. Three general graphs are added to the augmented lattice, namely 

G10, G15 and G17; these are G4′, G5′, and G8′ from Figure 12, the naïve Bayes or naïve 

Bayes-like equivalent RA general graphs. All of the specific structures that are added to 

the augmented lattice are denoted in bold letters in Figure 13. G13 is the independence 

model for the conventional directed system graphs. The augmented lattice also includes 

G20 A:B:C:D, which is the natural independence model for the additional predictive 

graphs that do not include the IV term (ABC). Including these additional predictive 
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graphs in the directed system lattice increases the number of predictive general graphs 

from nine in the conventional directed system lattice to 12 in the augmented lattice and 

19 specific graphs in the conventional lattice to 31 in the augmented lattice. 
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Figure 13 Augmented RA directed system lattice 
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BN Lattice 

BN Introduction  

A Bayesian Network model, like an RA model, is a type of probabilistic graphical 

model. BN modeling originated from path models in the early 1900s (Wright, 1921, 

1934) and was expanded as a field of study in the late 1900s by Pearl (1985), Neapolitan 

(1989) and others.  

BNs are directed graphs: nodes represent variables, and edges represent 

relations. The graph structure or topology (variables, edges, orientations of edges) 

encodes independencies, and thus also dependencies, among the variables identified in 

a particular graph. Since BNs are directed graphs, edges typically have arrows or some 

form of notation representing directionality: A→B means that variable B is dependent 

upon variable A. (This dependency might be interpreted as a causal influence of A on B, 

but in this paper, we will not address such causal interpretations of BNs.) A is the 

‘parent’ of B, which means that they are dependent. One variable is independent of all 

other variables given its parents. For example, in the BN A→B→C, variable C is 

independent of A given B, since B is the parent of C. 

A BN graph provides the structure from which a probability expression can be 

derived that describes the relation between variables. For example, the graph A→B 

provides the structure identifying the dependence between A and B, and probability 

values define the nature and strength of the relation between A and B. A unique feature 

of BNs versus other graphical models is in the independencies that are encoded when 
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two edges converge. For example, in A→B←C the edges converge on variable B. If A and 

C are not directly connected by an edge, this convergence is called a V-structure 

(Chickering , 2002). This V-structure is interpreted as yielding the conditional 

distribution p(B|A,C)p(A)p(C), which encodes dependence among A, B, and C, but 

marginal independence between A and C. The interpretation is that together, but being 

independent of one another, A and C influence or cause or allow one to predict B.  

BNs are also acyclic graphs, meaning they have no closed paths following the 

arrows. For example, graph A→B→C→A is disallowed because it contains a cycle. 

Because BNs are acyclic, inference on all BN graphs can be performed in closed algebraic 

form.  

The primary differences between RA and BN are two-fold: (1) BNs are directed 

and acyclic whereas RA graphs are undirected and can have loops or not have loops and 

(2) some BN graphs contain converging edges, that is one or more V-structures that 

encode unique independence relations not found in RA graphs. The absence of a V-

structure in a BN graph results in this graph being equivalent to some (loopless) RA 

graph. The presence of a V-structure results in the graph not having an RA equivalent 

and thus being unique to BN. This is discussed below in the section titled “BN Neutral 

System General and Specific Graph Procedure” in connection with Table 12.  
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BN Neutral Systems  

Lattice of BN General Graphs  

As in RA, there are general BN graphs and specific BN graphs; in the BN literature 

general graphs are referred to as maximally oriented graphs (Meek, 1995), essential 

graphs (Andersson, 1997), equivalence classes of directed acyclic graphs (Gillispie, 

2001), and partially directed graphs (PDAG) (Chickering, 2002).  

In BN general graphs, the graph structure (variables, edges, and orientations of 

edges) results in a unique independence structure, where specific identities are not 

assigned to the variables. Figure 14, developed by Harris and Zwick (2021), shows all BN 

general graphs with four variables and their hierarchy. There are 20 BN general graphs 

in the lattice, i.e., 20 unique independence structures. The procedure to generate this 

lattice is outlined in the section titled “BN Neutral System General and Specific Graphs 

Procedure”. 
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Figure 14 Lattice of BN neutral system general graphs 
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In Figure 14, general graphs are labeled BN1, BN2…BN19, BN20. Solid squares 

represent variables; edges are represented by directed arrows from one square to 

another, representing a parent–child dependency relationship. The dashed lines with 

arrows from one general graph to another represent the hierarchy of general graphs, 

with parent graphs being above child graphs. Child graphs result from the deletion of 

one edge from the parent graph7. The insert on the bottom right indicates structures 

that are topologically different from graphs in the lattice marked with asterisks but have 

identical independence structures to these marked graphs and thus are Markov 

equivalent (the topological difference cannot be removed by any labeling of the 

variables). For example, BN2b and BN2c in the insert are topologically different but have 

the same independence structure as BN2* in the lattice. These additional 

representations are discussed below in the section titled “Additional representations of 

BN general graphs”. 

 

 

 

 

                                                      
7 Not included in the published paper: unlabeled graphs in the four variable BN lattice are representative 
of equivalence classes, i.e. unique unlabeled independence structures. A “child” general graph in the 
lattice is generated by the deletion of one edge from any member of a parent equivalence class. For 
example, deletion of an edge from BN2*, BN2b, or BN2C, all members of the same equivalence class, 
results in child graphs BN5*, BN7, BN8, and BN9*.   
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Table 10 RA and BN terminology 

 

Table 10 summarizes the RA and BN terminology and supports the discussion of 

BN that follows. Entries in the table for RA general and specific graphs (the lattices of 

general and specific graphs from Figure 7 and Figure 10, respectively) have already been 

discussed above. The discussion that follows this table will explain the additional 

 
Our 

Terminology 
Literature Terminology 

Lattice Name, 

RA-like Notation 
Visuals 

RA 
General RA 

graph 
G-structures (Klir, 1985) G15 (Figure 7) 

 

 
Specific RA 

graph 
Specific RA graph (Zwick, 2004) 

G15 (Figure 10), 

AD:BD:CD 

 

BN 
General BN 

graph 

Maximally oriented graphs, 

essential graphs, equivalence 

classes of directed acyclic 

graphs, partially directed 

graphs ( Andersson , 1997;  

Chickering, 2002;  Gillispie, 

2001; Meek, 1995)  

BN11* & BN11b 

(Figure 14) 
 

 

Specific BN 

graph (no-V-

structure) 

Labeled maximally oriented 

graphs, essential graphs, 

equivalence classes of directed 

acyclic graphs, partially directed 

graphs  

BN11*, BN11b 

(Figure 20), 

AD:BD:CD 

Specific BN 

graph (V-

structure) 

BN17 (Figure 20), 

BCDB:C:A 

 

 G15

 G15

A

B

C
D

AD

BD

CD
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representations of BN general graphs in the insert of Figure 14, and will derive the 

lattice of specific BN graphs summarized in Figure 20 presented below in the section 

titled “Lattice of BN General and Specific Graphs.”  

Additional Representations of BN General Graphs  

There are 20 general graphs in the BN lattice. However, eight of these, marked 

with asterisks in Figure 14, namely BN2*, BN4*, BN5*, BN9*, BN11*, BN14*, BN15*, and 

BN16*, represent Markov equivalence classes that include additional unique edge 

topologies that have identical probability distributions when applied to data. These 

additional topologies, shown in the insert at the bottom right of Figure 14, cannot be 

made equivalent to the representative graphs (those with asterisks) by any 1:1 mapping 

of unlabeled variables. This property, described by Heckerman (1994), who showed that 

BNs with differing edge topologies can have the same independence structure and thus 

the same probability distribution, is unique to BN and is not found in RA, where there is 

a single unique representation of each RA general graph. All general graphs in Figure 14 

without an asterisk have no Markov equivalent representations.  

Two Bayesian Networks are Markov equivalent if and only if they have the same 

skeleton and the same V-structure (Verma, 1990), resulting in the same underlying 

independence structure. The skeleton of a graph is its undirected representation. As 

already defined, a V-structure occurs when two or more directed edges that are not 

themselves directly connected by an edge converge on a single node. Figure 15 shows 
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an example of Markov non-equivalent (Example 1) and equivalent (Example 2) BN 

general graphs. 

 

Figure 15 Examples of Markov equivalence tests 

BNs that are Markov equivalent define an equivalence class; this is illustrated by 

BN2* in Figure 16 for which two other general graphs (BN2b and BN2c) included in the 

insert at the bottom of Figure 14 are in the same equivalence class. All three general 

graphs are Markov equivalent because they have the same skeleton and V-structures, 

and thus the same independence structure, but they have semantically different edge 

orientations. BN2* was chosen arbitrarily to represent this equivalence class and its 

unique independence structure. BN2b and BN2c have the same independence structure, 

and for corresponding variable labels, have identical probability distributions. 
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Figure 16 BN2*, BN2b, BN2c 

A BN general graph is represented in the literature by an unlabeled PDAG 

(Chickering, 2002), also known as a Maximally Oriented Graphs (Meek, 1995), Essential 

Graph (Andersson, 1997) and equivalence classes of directed acyclic graphs (Gillispie, 

2001). In a PDAG, edges can be directed, undirected or a mix of directed and undirected. 

A PDAG includes edge direction when a V-structure is present and removes edge 

direction when no V-structure is present. If there are no V-structures in a given BN, all 

edges are undirected in its PDAG representation. Figure 17 shows the PDAG 

representation of the graphs shown in the insert at the bottom of Figure 14. (PDAG2 

encompasses BN2b and BN2c, etc.) Undirected edges can have either direction as long 

as a cycle is not created and also a V-structure is not created that is represented by 

another BN general graph. For example PDAG16, labeling variables A, B, C, D in order of 

left to right, top to bottom could be oriented as B←D→C (BN16*) or B→D→C (BN16b) 

(or its mirror image) but could not be oriented as B→D←C, because that creates a V-

structure resulting in a different independence structure represented separately by 

BN17. 
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Figure 17 PDAGs for graphs in Figure 14 insert 

Although representation of an entire Markov equivalence class in a single PDAG 

is useful, the PDAG does not visibly display the fact that semantically different edge 

topologies inhere in many BN general graphs (in 8 of 20 general graphs in the four-

variable lattice). Use of Figure 14 to display the BN general graph lattice opts instead to 

show representatives of these classes and also their alternative topologies in the insert 

at the bottom of the figure. 

BN Specific Graph Notation 

A BN specific graph is simply a labeled BN general graph. As summarized in Table 

10, we use the terminology of “specific graph” for what in the BN literature is called a 

labeled maximally oriented graph or essential graph or equivalence class of directed 

acyclic graphs or partially directed graph; these four different terms all refer to the same 

thing. All specific graphs for a given BN general graph class can be generated by 

permuting all possible variable labels. Given data, two BN specific graphs with different 

labels from the same BN general graph class will produce different probability 

distributions.  

The notation that we use for BN specific graphs is derived from the RA notation 

described previously. As in RA, the colon represents marginal or conditional 

independence among variables and relations. For example, Figure 18, shows a labeled 
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version of RA general graph G15 and BN general graph BN11* which can also 

equivalently be represented by BN11b, both of which have the same independencies 

(𝐴 ⊥ 𝐵, 𝐶 | 𝐷), (𝐵 ⊥ 𝐶 | 𝐷), the same conditional probability distribution 

𝑝(𝐴|𝐷)𝑝(𝐵|𝐷)𝑝(𝐶|𝐷)𝑝(𝐷) and thus the same notation AD:BD:CD. 

 

Figure 18 RA and BN notation example, without subscripts 

RA notation must be modified to accommodate the V-structures that are unique 

to BNs and not found in RA; this is done by adding subscripts that specify the 

independence relations encoded by the V-structures. (For a BN graph without a V-

structure, BN notation is identical to the RA notation.) For example, BN17 in Figure 19 

(a) has the notation BCDB:C:A, where the colon between BCDB:C and A states the 

independency (𝐴 ⊥  𝐵, 𝐶, 𝐷), namely that A is marginally independent of B, C, and D. 

The subscript B:C states marginal independence between B and C within the triadic, 

dependent, BCD relation. Figure 19 (b) shows the more complex BN4, which has a V-

structure in which A, B, and C have arrows going to D; this means that it has a tetradic 

dependency between A, B, C and D, which will be reflected in a 𝑝(𝐷|𝐴𝐵𝐶) in the 

probability expression for this graph. The graph also has the single independency (𝐴 ⊥

 𝐵 | 𝐶). The notation for this graph is thus ABCDAC:BC, which preserves the dependency 
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between A, B, C, and D, and also encodes the conditional independence between A and 

B given C. (In RA, this conditional independence is expressed by saying that 

𝑇(𝐴𝐶: 𝐵𝐶)  =  𝑇C(𝐴: 𝐵)  =  0, where T is information-theoretic transmission.) 

 

Figure 19 BN notation examples with subscripts. (a) BCDB:C:A; (b) ABCDAC:BC 

BN Independencies and Probability Distributions 
As has been repeatedly stated in the above discussion, the marginal or 

conditional independence between variables and relations is what uniquely specifies an 

RA or BN model. “It is known that the statistical meaning of any causal model can be 

described economically by its stratified protocol, which is a list of independence 

statements that completely characterize the model” (Pearl, 1987, 1988; Verma, 1990). 

The method to determine BN independencies is known as D-separation, and is 

described in Appendix A.2. To determine the list of independence statements that 

completely describe any BN, D-separation is applied to all possible independence 

statements for a given BN. Those satisfying independence among variables are retained 

and represent the set of independencies that fully describe the structure of relations 

within a given BN. For four variables, Table 11 provides all possible independence 

statements. For a given BN, with node labels and directed edges, all independence 
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statements from this table need to be tested. Independence statements that are 

satisfied are kept, and represent the set of independencies that fully describe that BN.  

Table 11 Four-variable independence statements8 

 Marginal Independence Conditional Independence 

General Expression (. ⊥ . . ) (. ⊥ . . , … ) (. ⊥ . . , … , … . ) (. ⊥ . . | . . . ) (. ⊥ . . |  … , … . ) 

Specific Expression 

1 

 

(𝐴 ⊥  𝐵) 

 

(𝐴 ⊥  𝐵, 𝐶) 

 

(𝐴 ⊥  𝐵, 𝐶, 𝐷) 

 

(𝐴 ⊥  𝐵 | 𝐶) 

 

(𝐴 ⊥  𝐵 | 𝐶, 𝐷) 

2 (𝐴 ⊥  𝐶) (𝐴 ⊥  𝐵, 𝐷) (𝐵 ⊥  𝐴, 𝐶, 𝐷) (𝐴 ⊥  𝐵 | 𝐷) (𝐴 ⊥  𝐶 | 𝐵, 𝐷) 

3 (𝐴 ⊥  𝐷) (𝐴 ⊥  𝐶, 𝐷) (𝐶 ⊥   𝐴, 𝐵, 𝐷) (𝐴 ⊥  𝐶 | 𝐷) (𝐴 ⊥  𝐷 | 𝐵, 𝐶) 

4 (𝐵 ⊥  𝐶) (𝐵 ⊥  𝐴, 𝐶) (𝐷 ⊥   𝐴, 𝐵, 𝐶) (𝐵 ⊥  𝐴 | 𝐶) (𝐵 ⊥  𝐴 | 𝐶, 𝐷) 

5 (𝐵 ⊥  𝐷) (𝐵 ⊥  𝐴, 𝐷)  (𝐵 ⊥  𝐴 | 𝐷) (𝐵 ⊥  𝐶 | 𝐴, 𝐷) 

6 (𝐶 ⊥  𝐷) (𝐵 ⊥  𝐶, 𝐷)  (𝐵 ⊥  𝐶 | 𝐷) (𝐵 ⊥  𝐷 | 𝐴, 𝐶) 

7  (𝐶 ⊥   𝐴, 𝐵)  (𝐶 ⊥  𝐴 | 𝐵) (𝐶 ⊥  𝐴 | 𝐵, 𝐷) 

8  (𝐶 ⊥   𝐴, 𝐷)  (𝐶 ⊥  𝐴 | 𝐷) (𝐶 ⊥  𝐵 | 𝐴, 𝐷) 

9  (𝐶 ⊥   𝐵, 𝐷)  (𝐶 ⊥  𝐵 | 𝐷) (𝐶 ⊥  𝐷 | 𝐴, 𝐵) 

10  (𝐷 ⊥   𝐴, 𝐵)  (𝐷 ⊥  𝐴 | 𝐵) (𝐷 ⊥  𝐴 | 𝐵, 𝐶) 

11  (𝐷 ⊥   𝐴, 𝐶)  (𝐷 ⊥  𝐴 | 𝐶) (𝐷 ⊥  𝐵 | 𝐴, 𝐶) 

12  (𝐷 ⊥   𝐵, 𝐶)  (𝐷 ⊥  𝐵 | 𝐶) (𝐷 ⊥  𝐶 | 𝐴, 𝐵) 

 

D-separation can also be used to test the Markov equivalence of any labeled 

BNs. If two BNs have the same independencies as revealed by D-separation tests, they 

                                                      
8 The table includes typographically-different independence statements without regard to possible 
equivalences, thus some independencies are redundant. 
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are in the same Markov equivalence class and thus the same BN general graph. The 

prior section, however, provided a simpler way, illustrated above in Figure 15, to test for 

Markov equivalence of two BNs with different edge topologies. 

Lattice of BN General and Specific Graphs 

The BN literature on lattices predominately focuses on search algorithms to find 

the best BN given a scoring metric. Implicit in these search algorithms is a lattice of 

candidate graphs being explored in search of the best model. Chickering (2004) and 

others have shown the search problem to be NP-hard, with four variables there are 543 

possible BNs, with 10 variables there are O(10^18) (Murphy, 1998). Because of this, 

research in this area has focused less on characterizing exhaustively the lattice of BN 

graphs, and more on advancing search heuristics to efficiently traverse the lattice to 

identify the best BN given a scoring metric (Bouckaert, 1994; Buntine, 1991a, 1991b; 

Chickering, 1995; Cooper, 1992; Friedman, 1996, 2003; Koivisto, 2004; Larranaga, 1996; 

Malone; and others).  

Heckerman (1994) first showed that BNs with differing edge topologies can have 

the same independence structure and the same probability distribution, herein 

described as BN specific graphs. In contrast to heuristics that search all BNs, search 

heuristics for BN specific graphs have proven to be more efficient because they reduce 

the dimensionality of search space (Andersson, 1997; Chen, 2016; Chickering, 1995, 

2002; Gillispie, 2001; Studený, 2010; Tian, 2010; Zhang, 2004; and others). For four 

variables, this approach reduces the search space from 543 BNs to 185 BN specific 
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graphs (Andersson, 1997). These 185 BN specific graphs can be summarized by 20 BN 

general graphs all with unique independence structures when variable labels are 

removed.  

Building from the RA work of Klir (1986) and Zwick (2001), and the BN work of 

Pearl (1985, 1987, 1988, 2000), Verma (1990), Heckerman (1994), Chickering (1995a, 

1995b, 1997, 2002, 2004), Andersson (1997), Rubin (1978), and others, the following 

procedure was used to generate the four variable BN general and specific graph lattice 

of Figure 20 in a way that can be integrated with the RA general graph lattice. While this 

procedure is applied in this paper to four variables, it could in principle be used for any 

number of variables, although of course as the number of variables increases the effort 

required increases exponentially.  
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Figure 20 Lattice of general and specific BN neutral system graphs 

BN Neutral System General and Specific Graph Procedure 

The procedure to generate the BN neutral system general and specific graph lattice 

for any number of variables is as follows: 
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1. Assign labels arbitrarily to the n solid squares representing variables. 

2. Generate all graphs for these n variables by permuting all possible edge 

connections and edge orientations. Eliminate graphs with cycles. The result is the 

set of all labeled directed acyclic graphs for n variables. 

3. For each directed acyclic graph, determine its independence structure using the 

D-separation procedure (MIT, 2015) detailed in Appendix A.2. This identifies 

which of the independence statements in Table 11 apply to the graph. 

4. Collect together all graphs with the same unlabeled independencies. The set of 

these DAGs comprise a general graph equivalence class. 

5. For each general graph equivalence class, collect together all graphs with the 

same labeled independencies into specific graph equivalence classes. List the RA 

notation for each of these specific graphs.  

6. Select one specific graph equivalence class to represent the general graph, and 

from this specific graph equivalence class, select a single edge topology to 

represent the general graph. List any additional equivalent general graphs with 

unique edge topologies separately, as was done in the insert in Figure 14 and 

Figure 20. 

7. Organize general graphs into levels based upon the number of edges in each 

general graph and link hierarchically nested general graphs in the lattice to 

reflect parent-child general graphs. 
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Figure 20 shows the result of following this procedure for four variables. This BN 

general and specific graph lattice can be directly compared with the RA general and 

specific graph lattice. The RA lattice can also be extended to include the BN lattice. The 

comparison and extension will be discussed in the section titled “Joint RA-BN Neutral 

System Lattice”. 

Table 12 lists specific graph representatives for each of the general graphs in Figure 

20. These specific graphs, highlighted in bold in Figure 20, assume that nodes are 

labeled in the order A, B, C, D from left to right, top to bottom, which is the labeling 

convention throughout this paper. The notation for a BN specific graph without a V-

structure is identical to the RA notation. As in RA, the colon represents marginal or 

conditional independence among variables. For a BN graph with a V-structure, the 

notation adds subscripts to represent the independence relations encoded by the V-

structure, which are unique to BNs and not found in RA. (See the section titled “BN 

specific graph notation” for more details on this notation.) Thus, graphs in Table 12 

without subscripts are equivalent to an RA graph and graphs with subscripts are unique 

to BN. Equivalence and non-equivalence between RA and BN graphs will be discussed in 

the section titled “Joint RA-BN Neutral System Lattice”. 

Table 12 shows for each BN general graph from Figure 20 a specific graph with its RA 

notation, probability distribution, and minimal list of independencies resulting from the 

D-separation procedure. The probability distribution is obtained as follows: (1) For each 

labeled node of a BN specific graph, list each node’s individual probability expression as 
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the probability of the node given its parents, i.e., 𝑝(𝑛𝑜𝑑𝑒 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠); if there are no 

parents, simply the 𝑝(𝑛𝑜𝑑𝑒). (2) Join the list of probability expressions. For example, for 

BN2* in Figure 21, the individual probability expressions are 𝑝(𝐴|𝐶, 𝐷) for A, 𝑝(𝐵|𝐶, 𝐷) 

for B, 𝑝(𝐶) for C, and 𝑝(𝐷|𝐶) for D. Joining these gives 

𝑝(𝐴|𝐶, 𝐷)𝑝(𝐵|𝐶, 𝐷)𝑝(𝐶)𝑝(𝐷|𝐶). (The table omits the commas for variables that are 

given in conditional probability terms.) 
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Table 12 Probability distribution and independencies of BN specific graph examples 

BN general graph 
Specific Graph Example 

RA notation Probability Distribution Independencies 

BN1 ABCD p(B|A)p(A)p(C|AB)p(D|ABC) none 

BN2 ACD:BCD p(A|CD)p(C)p(B|CD)p(D|C) (A ⊥ B | C, D) 

BN3 ABCDA:B p(C|AB)p(A)p(B)p(D|ABC) (A ⊥ B) 

BN4 ABCDAC:BC p(A|C)p(C)p(B|C)p(D|ABC) (A ⊥ B | C) 

BN5 BCD:AD p(A|D)p(D)p(B|CD)p(C|D) (A ⊥ B, C | D) 

BN6 ABCDBC:A p(B|C)p(C)p(D|ABC)p(A) (A ⊥ B, C) 

BN7 BCD:ABDA:B p(C|BD)p(B)p(D|AB)p(A) (A ⊥ B), (A ⊥ C | B, D) 

BN8 ACDC:D:BCDC:D p(A|CD)p(C)p(D)p(B|CD) (C ⊥ D), (A ⊥ B | C, D) 

BN9 ABD:ABCAC:BC p(A|C)p(C)p(B|C)p(D|AB) (A ⊥ B | C), (C ⊥ D | A, B) 

BN10 BCD:A p(B|C)p(C)p(D|BC) (A ⊥ B, C, D) 

BN11 AD:BD:CD p(A|D)p(D)p(B|D)p(C|D) (A ⊥ B, C | D), (B ⊥C | D) 

BN12 ABCDA:B:C p(D|ABC)p(A)p(B)p(C) (A ⊥ B, C), (B ⊥ C) 

BN13 ACDA:C:BD p(B|D)p(D|AC)p(A)p(C) (A ⊥ C), (B ⊥ A, C |D) 

BN14 AD:BC:BD p(A|D)p(D)p(B|D)p(C|B) (A ⊥ B | D), (C ⊥ A, D | B) 

BN15 ABDA:B:BC p(C|B)p(B)p(D|AB)p(A) (A ⊥ B, C), (C ⊥ D | A, B) 

BN16 BD:CD:A p(B|D)p(D)p(C|D)p(A) (B ⊥ C | D), (A ⊥ B, C, D) 

BN17 BCDB:C:A p(D|BC)p(B)p(C)p(A) (B ⊥ C), (A ⊥ B, C, D) 

BN18 AD:BC p(C|B)p(B)p(D|A)p(A) ( A, D ⊥ B, C) 

BN19 CD:A:B p(D|C)p(C)p(A)p(B) (B ⊥ C, D), (A ⊥ B, C, D) 

BN20 A:B:C:D p(A)p(B)p(C)p(D) (A ⊥ B, C, D), (B ⊥ C, D), (C ⊥ D) 

 

Figure 21 Probability distribution for BN2* example 

p(A|C,D)p(B|C,D)p(C)p(D|C) 
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The equivalence or non-equivalence of RA and BN graphs is discussed in detail in 

the section titled “Joint RA-BN Neutral System Lattice”, below, but Table 12 provides an 

advanced look at this issue. Any BN general graph with a specific graph example whose 

RA notation does not include subscripts is equivalent to some general RA graph; there 

are 10 of these BN general graphs. Any BN general graph with a specific graph example 

whose notation includes subscripts is not equivalent to any general RA graph; there are 

also 10 of these BN general graphs, which all have V-structures.  

BN Directed Systems 

The BN discussion so far has focused on BN neutral systems in which an IV-DV 

distinction is not made. This section narrows the focus to BN predictive graphs, 

analogous to RA directed systems, where the aim is to predict a single DV given the IVs. 

As in RA, we define Z as the dependent variable in the BN directed system lattice, 

replacing variable D in the neutral system lattice. We designate as the DV in a given BN 

any node with the exception of a parent node within a V-structure. That is, we do not 

consider here the possibility that a parent node within a V-structure could be 

designated as a DV; this will be discussed further in the section titled “Comparing RA 

and BN directed system graphs”. As is the case for RA, many graphs in the neutral 

system lattice are redundant when the aim is only to predict the DV. The BN directed 

system lattice of Figure 22, where only graphs with unique predictions of Z are 

highlighted, is thus a subset of the BN neutral system lattice of Figure 20. For each 

general graph in Figure 22 with a unique prediction, associated specific graphs are listed. 
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Specific graphs that are bolded correspond to the displayed BN edge orientation and 

edge connections assuming labeling of nodes from top left, top right, bottom left, 

bottom right as A, B, C, Z respectively. These bolded specific graphs also correspond to 

the examples below in Table 13. Graphs not highlighted in Figure 22 are equivalent in 

their predictions to highlighted graphs. (Asterisks in this figure have the same meaning 

they have in BN Figure 14 and Figure 20.) For two graphs with identical predictions, the 

graph with the least degrees of freedom was selected. There are eight general graphs 

and 18 specific graphs in the BN directed system lattice; this is a significant compression 

of the BN neutral system lattice that includes 20 general graphs and 185 specific graphs.  

Table 13 BN directed system graphs 

BN general 

graph 

Predictively 

equivalent 

simpler graph 

Specific graph 

example 

RA notation 

Specific graph example 

Probability distribution 

BN1 BN12 ABCZ p(Z|ABC)p(C|AB)p(B|A)p(A) 

BN2 

BN7 

BN17 

ABZ:BCZ 

ABC:BCZ 

p(C|BZ)p(Z|AB)p(A|B)p(B) 

p(Z|BC)p(B|CA)p(A|C)p(C) 

BN3 BN12 ABCZA:B p(Z|ABC)p(C|AB)p(A)p(B) 

BN4 BN12 ABCZAC:BC p(Z|ABC)p(A|C)p(B|C)p(C) 

BN5 

BN13 

BN19 

ACZ:BZ 

ABC:CZ 

p(Z|AC)p(B|Z)p(C|A)p(A) 

p(Z|C)p(B|CA)p(C|A)p(A) 

BN6 BN12 ABCZBC:A p(Z|ABC)p(B|C)p(C)p(A) 

BN7 

 

BN17 

BCZ:ABZA:B 

BCZ:ABCA:C 

p(C|BZ)p(Z|AB)p(B)p(A) 

p(Z|BC)p(B|CA)p(C)p(A) 
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BN8 BN17 ABCB:C:BCZB:C p(Z|BC)p(A|BC)p(B)p(C) 

BN9 BN17 BCZ:ABCAB:AC p(Z|BC)p(B|A)p(C|A)p(A) 

BN10 BN17 BCZ:A p(Z|BC)p(B|C)p(C)p(A) 

BN11  

BN19 

AZ:BZ:CZ 

AC:BC:CZ 

p(A|Z)p(B|Z)p(C|Z)p(Z) 

p(Z|C)p(B|C)p(C|A)p(A) 

BN12 

 

ABCZA:B:C p(Z|ABC)p(A)p(B)p(C) 

BN13 

 BN19 

ACZA:C:BZ 

ABCA:B:CZ 

p(Z|AC)p(B|Z)p(A)p(C) 

p(Z|C)p(C|AB)p(A)p(B) 

BN14 

BN16 

BN19 

AB:BZ:CZ 

AB:BC:CZ 

p(Z|B)p(C|Z)p(B|A)p(A) 

p(Z|C)p(B|A)p(A)p(C|B) 

BN15 

BN17 

BN19 

BCZB:C:AB 

ABCA:C:CZ 

p(Z|BC)p(A|B)p(B)p(C) 

p(Z|C)p(B|CA)p(A)p(C) 

BN16 

 BN19 

BZ:CZ:A 

BC:CZ:A 

p(B|Z)p(C|Z)p(Z)p(A) 

p(Z|C)p(C|B)p(B) 

BN17 

 

BCZB:C:A p(Z|BC)p(B)p(C)p(A) 

BN18 BN19 AB:CZ p(Z|C)p(B|A)p(A)p(C) 

BN19 

 

CZ:A:B p(Z|C)p(C)p(A)p(B) 

BN20 

 

A:B:C:Z p(Z)p(A)p(B)p(C) 
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Figure 22 BN directed system lattice 

Table 13 lists all BN directed system general graphs. When BN graphs are greyed 

in column 1 it means the graph is equivalent in terms of prediction to a simpler (fewer 



85 
 

degrees of freedom) general graph. Column 2 identifies which simpler graph it is 

equivalent to. General graphs with a blank row in column 2 have no simpler equivalently 

predicting graph, and are included in the directed system lattice of Figure 22. Column 3 

provides specific graph examples of these general graphs and column 4 shows the 

specific graph probability distributions. Within column 4, only the expressions that are 

used to predict the dependent variable are highlighted in black. All other non-predictive 

relations are greyed. For example, BN1, BN3, BN4, and BN6 and BN12 all predict Z in the 

same way, i.e., 𝑝(𝑍|𝐴𝐵𝐶), thus they are all equivalent in terms of prediction. However, 

BN12 has the least degrees of freedom and is therefore selected to represent all five of 

these equivalent general graphs. 

Joint RA-BN Neutral System Lattice 

Joint RA-BN Neutral System Lattice Introduction 

This section integrates the RA and BN neutral system general graph lattices using 

the four variable Rho lattice (Klir, 1985). Combining the Rho, RA and BN lattice creates a 

larger and more descriptive lattice than any previously identified in the literature. The 

lattice identifies independence structures unique to RA or to BNs, and independence 

structures that are equivalent across RA and BN. Equivalence is in terms of 

independence structure as described separately for RA in the section titled “RA Lattice” 

and BN in the section titled “BN Lattice”. Where two or more graphs, RA or BN, have the 

same general independence structure regardless of variable labels, they are equivalent. 

General independence structure is represented with independence statements without 
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labels. For example, (. ⊥ . . |  … ), one variable is independent of another, given a third. 

Consider, for example, RA general graph G15 and BN general graph BN11 have the same 

general independence structure (. ⊥ . . , … | … ), (. . ⊥. . . |  … ), thus they are equivalent. 

Two specific graphs are equivalent if they have the same independence structure given 

variable labels. For example, using RA general graph G15 and BN general graph BN11 

again, Figure 23 shows these general graphs with variable labels added making them 

specific graphs. Given these labels, they have equivalent general and specific 

independence structure, (. ⊥ . . , … |  … . ), (. . ⊥. . . |  … ) and (𝐴 ⊥ 𝐵, 𝐶 | 𝐷), (𝐵 ⊥  𝐶 | 𝐷) 

respectively. 

 

Figure 23 G15 and BN11* specific graph example 

RA-BN Rho Neutral System Graphs 

The Rho (ρ) lattice of Figure 24 (adapted from Klir, 1985, p. 237) is a 

simplification of the RA lattice of general graphs and is used here to integrate the RA 

neutral system lattice with the BN neutral system lattice. The Rho lattice is an even 

more general lattice than the RA general graph lattice and can map both RA and BN 

general graphs to one of its eleven structures. A solid dot represents a variable; a line 

connects variables in the Rho lattice if these two variables are directly connected by any 

box (relation) in the RA general graph lattice. Arrows from one Rho graph to another 
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represent hierarchy, i.e., the generation of a child graph from a parent graph. ρ1 

represents maximal connectedness, or dependence, between variables, and ρ11 

represents independence among all variables. Graphs in-between ρ1 and ρ11 represent 

a mix of dependence and independence among variables. Each RA or BN general or 

specific graph corresponds to one, and only one, of the eleven Rho graphs.  

 

Figure 24 Lattice of four-variable Rho graphs 
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Rho and Equivalent RA and BN General Graphs  

Out of 20 RA neutral system general graphs and 20 BN neutral system general 

graphs, there are 10 RA general graphs, comprising all of the graphs with no loops in the 

RA lattice that are equivalent to BN general graphs. Each of these RA-BN equivalent 

pairs corresponds to one of the 11 Rho graphs from Figure 24, with the exception of ρ4. 

ρ4 has corresponding RA and BN general graphs, but these do not have equivalent 

independence structures, and are discussed in the following the section titled “Rho and 

non-equivalent RA and BN general graphs”. 

ρ1reflects maximal connectedness among all four variables. For both the RA 

general graph G1 and the BN general graph BN1 from Figure 7 and Figure 14 

respectively, there are no independencies among the variables and thus the graphs are 

equivalent. Both graphs have only one specific graph, ABCD. This is summarized in 

Figure 25.  

 

Figure 25 Rho1, G1 and BN1 specific graph 

ρ2corresponds to RA general graph G7 and BN general graph BN2*, as shown in 

Figure 26. It is clear how BN2* corresponds to Rho graph ρ2because visually they are 
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represented in the same way with the exception that the Rho graph has undirected 

edges. There are two additional BN general graphs (BN3 and BN4*) that correspond to 

ρ2however they have no equivalent RA general graph, so they are discussed in the 

next section which concerns non-equivalent RA and BN general graphs. ρ2 G7, and 

BN2* represent two three-variable relations with conditional independence between 

two variables, with general independence structure (. ⊥ . . |  … , … . ). Assigning labels to 

variables makes it easier to interpret the RA association with ρ2. Figure 26 shows an 

example with variable labels (one of six possible permutations of variable labels) 

assigned to RA graph G7 which results in RA specific graph ACD:BCD, in which A is 

independent of B given C and D, (𝐴 ⊥  𝐵|𝐶, 𝐷). Assigning labels to the BN graph in 

Figure 26 yields the same specific graph. Other label permutations yield five other 

equivalent RA and BN specific graphs: ABC:ABD, ABC:ACD, ABC:BCD, ABD:ACD, 

ABD:BCD. 

 

Figure 26 Rho2, G7, and BN2* example 

ρrepresents RA graph G10 and BN graph BN5* which have the same 

independence structure, (. ⊥ .., … |….). Figure 27 shows an example of one of eight RA 
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G10 and BN5* specific graphs, BCD:AD, with independencies (𝐴 ⊥  𝐵, 𝐶 |𝐷). The full list 

of eight specific RA G10 and BN5* specific graphs are: ABC:AD, ABC:BD, ABC:CD, 

ABD:AC, ABD:BC, ABD:DC, ACD:AB, ACD:CB, ACD:DB, BCD:BA, BCD:CA, and BCD:DA. G10 

has been previously characterized as naïve BN-like. 

 

Figure 27 Rho3, G10, and BN5* specific graph example 

ρis discussed later in the section on non-equivalent RA and BN general graphs. 

ρrepresents RA graph G13 and BN graph BN10 which have the same 

independence structure, (. ⊥ .., …, ….) in that they have no independencies in the triadic 

relation and the fourth variable is independent of all three variables in the triadic 

relation. Figure 28 shows an example of one of four RA G13 and BN10 specific graphs, 

BCD:A, with independencies (𝐴 ⊥  𝐵, 𝐶, 𝐷). The full list of RA G13 and BN10 specific 

graphs are: ABC:D, ABD:C, ACD:B, and BCD:A.  
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Figure 28 Rho5, G13, and BN10* specific graph example 

ρrepresents RA general graph G15 and BN graph BN11* which have the same 

independence structure, (. ⊥ .., … | ….), ( .. ⊥ … | ….). There are three dyadic relations in 

these graphs with one variable present in all three dyadic relations and the other three 

variables present in only one of three dyadic relations.  

This graph is described in the literature (Zhang, 2004) as a naïve BN, simple 

Bayes, or independence Bayes, because of its simple dyadic relations among variables. 

What is also clear is RA general graph G15 represents a naïve BN because of its 

equivalent independence structure. Figure 29 shows an example of one of RA G15 and 

BN11* specific graphs, AD:BD:CD, with independencies (𝐴 ⊥  𝐵, 𝐶 | 𝐷), (𝐵 ⊥ 𝐶 | 𝐷), 

and conditional probability distribution 𝑝(𝐴|𝐷) 𝑝(𝐵|𝐷)𝑝(𝐶|𝐷)𝑝(𝐷).The full list of 

specific RA G15 and BN11* specific graphs are: AB:AC:AD, AB:BC:BD, AC:BC:CD, and 

AD:BD:CD. 
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Figure 29 Rho 6, G15 and BN11* specific graph example 

ρrepresents RA graph G16 and BN graph BN14* which have the same 

independence structure, (. ⊥ .. | ….), (… ⊥ ., …. | ..). Figure 30 shows an example of one 

of twelve RA G16 and BN14* specific graphs, AD:BC:BD, with independencies (𝐴 ⊥

 𝐵 | 𝐷), (𝐶 ⊥  𝐴, 𝐷 | 𝐵) and conditional probability distribution 

𝑝(𝐴|𝐷)𝑝(𝐵|𝐷)𝑝(𝐶|𝐵)𝑝(𝐷). The full list of specific RA G16 and BN14* specific graphs 

are: AB:AC:BD, AB:AC:CD, AB:AD:BC, AB:AD:CD, AB:BC:CD, AB:BD:CD, AC:AD:BC, 

AC:AD:BD, AC:BC:BD, AC:BD:CD, AD:BC:BD, and AD:BC:CD. 

 

Figure 30 Rho7, G16 and BN14* specific graph example 

ρrepresents RA general graph G17 and BN general graph BN16* which have 

the same independence structure, (.. ⊥ … | ….), (. ⊥ .., …, ….). There are two dyadic 

relations in these graphs with one variable present in both dyadic relations, and the 
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fourth variable not present in either dyadic relation, and thus independent of the three 

other variables. This graph is also representative of a naïve BN. Figure 31 shows an 

example of one of twelve RA G17 and BN16* specific graphs, BD:CD:A, with 

independencies (𝐵 ⊥  𝐶 | 𝐷), (𝐴 ⊥  𝐵, 𝐶, 𝐷), and conditional probability distribution 

p(B|D) p(C|D)p(D). The full list of specific RA G17 and BN16* specific graphs are: 

AB:AC:D, AB:BC:D, AC:BC:D, AB:AD:C, AB:BD:C, AD:BD:C, AC:AD:B, AC:CD:B, AD:CD:B, 

BC:BD:A, BC:CD:A, and BD:CD:A. 

 

Figure 31 Rho 8, G17 and BN16* specific graph example 

ρrepresents RA general graph G18 and BN general graph BN18 which have the 

same independence structure, (. , …. ⊥ .., …). There are two dyadic relations in these 

graphs with two variables included in one dyadic relation and the other two included in 

the other. Figure 32 shows an example of one of three RA G18 and BN18 specific graphs, 

AD:BC, with independencies (𝐴, 𝐷 ⊥  𝐵, 𝐶), and conditional probability distribution 

𝑝(𝐶|𝐵)𝑝(𝐵)𝑝(𝐷|𝐴)𝑝(𝐴). The full list of specific RA G18 and BN18 specific graphs are: 

AB:CD, AC:BD, and AD:BC. 
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Figure 32 Rho 9, G18 and BN18* specific graph example 

ρ1represents RA graph G19 and BN graph BN19 have the same independence 

structure, (.. ⊥ …, ….), (. ⊥ .., …, ….). There is one dyadic relation and two variables 

independent of all other variables. Figure 33 shows an example of one of six RA G19 and 

BN19 specific graphs, CD:A:B, with independencies (𝐵 ⊥  𝐶, 𝐷), (𝐴 ⊥  𝐵, 𝐶, 𝐷) and 

conditional probability distribution 𝑝(𝐷|𝐶)𝑝(𝐶)𝑝(𝐴)𝑝(𝐵). The full list of specific RA 

G19 and BN19 specific graphs are: AB:C:D, AC:B:D, AD:B:C, BC:A:D, BD:A:C, and CD:A:B. 

 

Figure 33 Rho, 10, G19 and BN19 specific graph example 

ρ11 represents RA graph G20 and BN graph BN20 which have the same 

independence structure (. ⊥.., …, ….), (..⊥ …, ….), (…⊥....) in which all variables are 
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independent of one another, (𝐴 ⊥  𝐵, 𝐶, 𝐷), (𝐵 ⊥  𝐶, 𝐷), (𝐶 ⊥  𝐷). Figure 34 shows 

the only specific graph for RA G20 and BN20, A:B:C:D.  

 

 

Figure 34 Rho 11, G20 and BN20 specific graph 

Table 14 summarizes all equivalent RA and BN general graphs, with their 

associated Rho graph, an example of their specific graph notations and their 

independences. These specific graph examples align with the BN general graphs of 

Figure 14 assuming labeling of nodes A, B, C, D in the order of top left, top right, bottom 

left, bottom right. 

Table 14 Equivalent Rho, RA and BN neutral system general graphs 

Rho RA BN Specific Graph Independencies 
ρ1 G1 BN1 ABCD no independencies 
ρ2 G7 BN2* ACD:BCD (A ⊥ B | C, D) 
ρ3 G10 BN5* BCD:AD (A ⊥ B, C | D) 
ρ5 G13 BN10 BCD:A (A ⊥ B, C, D) 
ρ6 G15 BN11* AD:BD:CD (A ⊥ B, C | D), (B ⊥ C | D) 
ρ7 G16 BN14* AD:BC:BD (A ⊥ B | D), (C ⊥ A, D | B) 
ρ8 G17 BN16* BD:CD:A (B ⊥ C | D), (A ⊥ B, C, D) 
ρ9 G18 BN18 AD:BC (A, D ⊥ B, C) 
ρ10 G19 BN19 CD:A:B (B ⊥ C, D), (A ⊥ B, C, D) 
ρ11 G20 BN20 A:B:C:D (A ⊥ B, C, D), (B ⊥ C, D), (C ⊥ 
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Rho and Non-Equivalent RA and BN General Graphs 

In addition to the 10 equivalent RA and BN general graphs, there are 10 general 

graphs unique to the RA lattice and 10 general graphs unique to the BN lattice. All 10 

non-equivalent RA general graphs in the four variable lattice have loops and require 

iteration to generate their probability distributions. BNs are acyclic and have analytic 

solutions, so there are no BN general graphs that are equivalent to the RA graphs with 

loops. Since RA graphs are undirected, one might think that there could be some 

equivalent acyclic directed BN graphs, but this is not the case, because BN graphs that 

are acyclic when directions are considered but cyclic if directions are ignored have V-

structure interpretations, as described previously. All 10 non-equivalent BN general 

graphs have such V-structures, which encode independence relations unique to BNs. To 

illustrate: the structure A→B, B→C, C→D, D→A is cyclic and not a legitimate BN 

structure, but the directed structure of A→B, B→C, C→D, A→D (BN9b from Figure 14), 

which has the same undirected links, is not cyclic, and is a legitimate BN structure. 

However, this latter structure is not interpreted as a set of dyadic relations, which would 

be written in RA notation as AB:BC:CD:AD and contains a loop (RA general graph G12 

from Figure 7). Rather, the V-structure consisting of C→D and A→D is interpreted as a 

triadic relation, which contributes a 𝑝(𝐷|𝐴𝐶) to the probability expression, 

𝑝(𝐴)𝑝(𝐵|𝐴)𝑝(𝐶|𝐵) 𝑝(𝐷|𝐴𝐶), which does not correspond to any RA structure.  
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Lattice of Rho, RA, BN Neutral System General Graphs 

The lattice of Rho, RA and BN equivalent and non-equivalent general graphs in 

Figure 35 was developed from the RA lattice in Figure 7 and the BN lattice in Figure 14. 

This lattice includes all 10 unique RA general graphs, 10 unique BN general graphs, and 

10 RA and BN equivalent general graphs, for a total of 30 unique general graphs. The 

lattice is organized using the Rho lattice (Klir, 1985). All 20 RA general graphs and all 20 

BN general graphs for each Rho graph are represented in the joint lattice. Within each 

Rho graph, where RA and BN graphs are equivalent, that is, when their independence 

structures are identical, the BN graph is placed under the RA equivalent graph. Where 

RA or BN graphs are not equivalent, representing an independence structure unique to 

RA or BN, they stand alone. 

Arrows from one graph to another in the joint lattice represent the hierarchy of 

the RA lattice only. As can be seen in the section titled “BN Lattice”, the hierarchy of the 

BN lattice has many more links from parent to child graphs and thus is not a useful 

representation in the joint lattice. Additionally, Figure 40 includes the Joint RA-BN lattice 

of general and specific graphs. This lattice shows 53 unique RA specific graphs, 124 

unique BN specific graphs, and 61 RA-BN equivalent specific graphs, for a total of 238 

combined, unique, RA and BN specific graphs. 
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Figure 35 Lattice of 4-variable general Rho, RA and BN neutral system graphs 

Joint RA-BN Lattice Algorithm 

This section defines an algorithm for generating the Joint RA-BN lattice of neutral 

system general and specific graphs. 



99 
 

Procedure to Generate the RA Neutral System General and Specific Graphs from a Single 

Rho Graph 

This is done in three steps: in Step 1, generate the most complex set of specific 

graphs that correspond to the Rho graph; in Step 2, generate all their less complex 

specific graph descendants; in Step 3, specific graphs are collected together in general 

graphs.  

Step 1 begins with (Step 1.1) labeling the Rho graph, as shown in Figure 36. The 

most complex specific graph that corresponds to this labeled Rho graph is obtained 

(Step 1.2) by representing each clique9 with a single relation encompassing all the 

variables in the clique and then joining these relations with a “:”. For example, in Figure 

36, A, B, and C are in a clique, i.e., are fully linked to one another and this is also the 

case for B, C, and D, but A and B are not linked. The resulting specific graph is ABC:BCD, 

which is encompassed in RA general graph G7. Next (Step 1.3), permute all the variables 

in this specific graph, which generates the other five specific graphs that are 

encompassed within G7, as shown in RA lattice of Figure 10.  

 

Figure 36 Example, Rho 2 

                                                      
9 “Cliques” here refer to “maximal cliques.” 
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Step 2 then generates the simpler RA representations of G7 that map to Rho2, 

namely the specific graphs that are encompassed within the RA general graphs G8 and 

G9. Klir (1985, p.231) details the procedure for this step. In Step 3, specific graphs with 

the same independence structure are then collected together in general graph 

equivalence classes. Doing this for Rho 2 results in general graphs G7, G8 and G9 and 

their specific graphs as shown in Figure 10.  

Procedure to Generate the BN Neutral System General and Specific Graphs from a Single 

Rho Graph 

In contrast to RA graphs, BNs are just Rho graphs with directions added to edges, 

as shown in Figure 37. To generate all BN specific graphs for a given Rho graph, simply 

permute all possible edge directions and variable combinations, and follow the BN 

neutral system general and specific graph procedure outlined above in the section titled 

“BN Neutral System General and Specific Graph Procedure”. Essentially, the process 

entails discarding redundant specific graphs and graphs with cycles from all these 

permutations, and collecting together BN specific graphs with unique independence 

structures into a general graph. 

 

Figure 37 Rho 2 example, with associated BNs general graphs 

 

r2  
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Generating the Joint RA-BN General and Specific Graph Lattice 

The following provides a general algorithm to generate the joint RA-BN lattice of 

neutral system general and specific graphs for any number of variables from some 

specific starting graph, either downwards or upwards.  

1. Identify a starting Rho graph 

2. Generate all possible RA and BN specific graphs for the given Rho graph.  

a. For RA, follow the procedure detailed in the prior section titled 

“Procedure to generate the RA neutral system general and specific 

graphs from a given Rho graph” 

b. For BN, follow the procedure detailed in the prior section titled 

“Procedure to generate the BN neutral system general and specific 

graphs from a given Rho graph” 

c. Organize all RA and BN general graph equivalence classes into three 

categories: RA graphs with loops, BN graphs with V-Structures, and 

equivalent RA-BN graphs containing no loops or V-structures.  

3. If searching the lattice upward, add an edge to the prior Rho graph. If searching 

the lattice downward, delete an edge from the prior Rho graph. 

4. Repeat steps 2 and 3 until the top or bottom of the lattice is reached.  

Consider for example the results of the RA and BN procedures for Rho 2. Organizing 

these results via step 2c gives the following six general structures: G8 and G9 for RA 

graphs with loops, BN3 and BN4* for BN graphs with V-structures, and G7 and BN2* for 
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equivalent RA-BN graphs. Specific structures can be simply obtained from these general 

structures by listing all permutations of variable labels. Following these procedures for 

any number of variables will result in the exhaustive, non-redundant, lattice of joint RA-

BN neutral system general and specific graphs. 

Comparing RA and BN Directed System Graphs 

Figure 38 shows side-by-side for comparison the RA augmented directed system 

lattice from Figure 13 and the BN directed system lattice from Figure 22. To the left or 

right of each BN directed system general graph is the equivalent RA directed system 

general graph. For example, BN7 is equivalent to RA general graph G7. Equivalence in 

this context is in terms statistical equivalence of prediction results given data. Two 

directed system general graphs are equivalent if they predict the DV (Z) in the same 

way. Each of the BN directed system general graphs in the lattice is equivalent to an RA 

general graph in the augmented RA directed system general graph lattice. In addition, 

the RA directed system lattice includes additional predictive graphs, those with loops 

that are not found in the BN lattice. Thus, restricting BN directed systems to those 

where the DV is not a parent in a V-structure, the RA augmented directed system lattice 

fully encompasses the BN directed system lattice and offers additional predictive 

graphs.  
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Figure 38 RA and BN directed system lattice comparison 

Table 15 shows all BN directed system general graphs and their RA equivalents 

as well as specific graph examples with their associated probability distributions. In 

these probability distributions, only the terms used to predict the DV (Z) are highlighted 



104 
 

in black; non-predictive terms are greyed. All equivalences necessarily involve loopless 

RA models; half of these involve RA graphs in the standard directed system lattice, 

where every model has an IV component, and the other half involve graphs in the 

augmentation of this lattice. Prior to development of the BN directed system lattice in 

this paper, the RA directed system lattice did not include naïve Bayes equivalent graphs, 

e.g., G15 and G17, and the naïve Bayes-like graph, G10. The development of the BN 

directed system lattice in this paper in part inspired the augmentation of the standard 

RA directed system lattice to include naïve Bayes type graphs. 

Table 15 BN directed system graphs and RA equivalent example 

BN 

general 

graph 

BN 

Specific 

graph 

example 

RA 

notation 

BN Specific graph 

example 

Probability distribution 

Equivalent RA 

graph 

Equivalent 

RA  

graph 

notation 

Equivalent RA graph 

Probability distribution 

BN7 BCZ:ABZA:B p(C|BZ)p(Z|AB)p(B)p(A) G7 (augmentation) BCZ:ABZ p(C|BZ)p(Z|AB)p(B|A)p(A) 

BN11 AZ:BZ:CZ p(A|Z)p(B|Z)p(C|Z)p(Z) G15 (augmentation) AZ:BZ:CZ p(A|Z)p(B|Z)p(C|Z)p(Z) 

BN12 ABCZA:B:C p(Z|ABC)p(A)p(B)p(C) G1 ABCZ p(Z|ABC)p(ABC) 

BN13 ACZA:C:BZ p(Z|AC)p(B|Z)p(A)p(C) G10 (augmentation) ACZ:BZ p(Z|AC)p(B|Z)p(C|A)p(A) 

BN16 BZ:CZ:A p(B|Z)p(C|Z)p(Z)p(A) G17 (augmentation) BZ:CZ:A p(B|Z)p(C|Z)p(Z)p(A) 

BN17 BCZB:C:A p(Z|BC)p(B)p(C)p(A) G7 ABC:BCZ p(Z|BC)p(B|CA)p(A|C)p(C) 

BN19 CZ:A:B p(Z|C)p(C)p(A)p(B) G10 ABC:CZ p(Z|C)p(ABC) 

BN20 A:B:C:Z p(Z)p(A)p(B)p(C) G13 ABC:Z p(Z)p(ABC) 
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However, as pointed out above, the BN directed system lattice developed in this 

paper was constrained to disallow any DV that is a parent node within a V-structure. If 

this constraint were to be relaxed to allow DVs that are parent nodes in V-structures, 

then there are BN predictive models that give different analytical results than RA 

predictive models. Therefore, the BN directed system lattice developed in this paper is 

preliminary and incomplete. 

To illustrate this point, consider BN17 from Figure 22 with its specific graph 

ABZA:B:C, and removing variable “C” for simplicity resulting in ABZA:B with edge 

orientations A→Z←B and with probability distribution 𝑝(𝑍|𝐴𝐵)𝑝(𝐴)𝑝(𝐵). Here, Z is the 

DV and is the child node within the V-structure and is thus included within the BN 

directed system lattice developed in this paper. This graph is equivalent in terms of 

prediction to RA directed system graph G7 with specific graph ABC:ABZ. In contrast, 

consider BN17 with its specific graph ABZA:Z:C. Again, for simplicity and comparability, 

removing variable “C” results in ABZA:Z with edge orientations A→B←Z and with 

probability distribution 𝑝(𝐵|𝐴𝑍)𝑝(𝐴)𝑝(𝑍). Here, Z is the DV, and is a parent node 

within the V-structure; therefore, this specific graph was not considered in the BN 

directed system lattice developed in this paper. However, the predicting components 

within the probability distribution are different and thus will result in a different 

statistical result. The differences between ABZA:B and ABZA:Z are illustrated in Figure 39, 

in which a hypothetical joint probability distribution 𝑝(𝐴𝐵𝑍), shown in (a), yields a 
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conditional distribution 𝑝(𝑍|𝐴𝐵) for RA model ABZ and BN model ABZA:B, shown in (b), 

that is different from the conditional distribution 𝑞(𝑍|𝐴𝐵) for BN model ABZA:Z, shown 

in (c). ABZA:Z is an unconventional BN model in its choice of the parent node Z as the DV. 

These non-conventional BN models are not considered in this paper, but are a promising 

topic for future research that will extend the work reported here.  

 

Figure 39 BN Directed System Prediction Example 

Discussion 
Neutral Systems 

This paper builds on the RA work of Harris and Zwick (2021), which developed 

the BN neutral system general graph lattice of Figure 14, expanding it here to offer the 

BN neutral system specific graph lattice of Figure 20. This paper also builds on the joint 

RA-BN neutral system general graph lattice of Figure 35 developed in that earlier work, 

expanding it here to offer the joint RA-BN neutral system specific graph lattice of Figure 

40.  In developing these new lattices, this paper extends RA notation to encompass BN 

graphs (see the section titled “BN specific graph notation”).  

(a) p(ABZ), joint  distribution for ABZ 

                 Z0                   Z1 
           B0       B1        B0        B1 
A0    0.01    0.19    0.06    0.14 
A1    0.17    0.31    0.03    0.10 
                                                                          (c) q(Z|AB), conditional distribution for ABZA:Z 
(b) p(Z|AB), conditional distribution                where q(ABZ)   = p(B|AZ) p(A) p(Z) 
      for ABZ & ABZA:B                                             and      q(Z|AB) = q(ABZ) / q(AB) 

                 Z0                    Z1         Z0                Z1 
           B0        B1        B0        B1                B0        B1        B0        B1 
A0    0.11    0.58    0.89    0.42     A0    0.21    0.74    0.79    0.26 
A1    0.83    0.75    0.17    0.25     A1    0.74    0.64    0.26    0.36  
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For four variables, the joint RA-BN neutral system general graph lattice increases 

the number of general graphs from 20 in the RA lattice and 20 in the BN lattice to 30 in 

the joint RA-BN lattice, and unique specific graphs from 114 in the RA lattice and 185 in 

the BN lattice to 238 in the joint lattice. The integration of the two lattices offers a richer 

and more expansive way to model and represent complex systems leveraging the V-

structure unique to BN graphs and the ability accommodate loops and hypergraphs in 

the RA lattice.  

This paper also develops an algorithm to generate the joint RA-BN neutral 

system general and specific graph lattices for any number of variables in both upward 

and downward directions (section “Joint RA-BN algorithm”). The exhaustive and non-

redundant RA and BN lattices follow the more general Rho lattice. Figure 40 shows the 

results of this algorithm for four variables. Although this algorithm is exhaustive, it does 

not create a hierarchical nesting of general or specific graphs. Such nesting is a desirable 

feature, so future extensions of this work could enhance the algorithm by enabling it to 

develop sequentially with each new graph being hierarchically nested. Given data, such 

an extension would allow statistical significance tests to be performed at each 

incremental step of lattice generation. Additionally, the current algorithm produces the 

exhaustive lattice, but searching the exhaustive lattice to find best candidate graphs is 

inefficient, so algorithms to efficiently search the joint lattice for best candidate graphs 

would be a useful extension. 



108 
 

Another promising extension of this work would be to develop hybrid RA-BN 

general graphs (Zwick, 2010) for neutral systems to further extend the expression of the 

joint RA-BN neutral system lattice developed in this paper. Such hybrid graphs could 

incorporate directed edges to encode BN V-structures with loops and hypergraphs 

found in RA. Other possible extensions of this work could explore the application of 

Bayesian networks to hypergraphs (Javidian, 2020) and under appropriate conditions to 

certain types of cycles (Forre, 2019).  

Directed Systems 

This paper develops the RA augmented directed system lattice (Figure 13), which 

is an extension of the conventional RA directed system lattice (Figure 11). While the 

conventional RA directed system lattice encompasses all prediction graphs in the BN 

directed system lattice (under the restriction that DVs in BN models are not parent 

variables in V-structures), the RA conventional directed system lattice did not include 

naïve Bayes graphs. Doing so, as shown in Figure 13, increases the number of general 

graphs from nine in the conventional RA lattice to 12 in the augmented lattice, and the 

number of specific graphs from 19 to 31. The augmented RA directed system lattice thus 

offers more candidate graphs, and this allows for the possibility of more accurate or 

simpler and thus more generalizable RA prediction models. Augmentation of the 

conventional RA directed system lattice was inspired in part by the BN directed system 

lattice developed in this paper. 
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Future extension of this work could examine whether BN graphs with predictions 

equivalent to RA models but with fewer degrees of freedom than RA predictive 

equivalents (because of independence constraints among the IVs) offer any advantage 

in calculations of statistical significance. If so, such BN graphs might replace their RA 

equivalents in the augmented directed system RA lattice. A related statistical issue that 

should be explored is how to compare augmenting directed RA models whose natural 

reference is A:B:…, the neutral system independence reference, with conventional 

directed systems models whose natural reference is AB…:Z, i.e., a reference that has an 

IV component that joins together all IVs in a single relation.  

This paper develops the BN directed system lattice of prediction graphs for four 

variables (Figure 22), reducing the number of possible specific graphs from 185 in the 

BN neutral system lattice to 18 in the BN directed system lattice—a significant 

compression of the BN neutral system lattice when prediction of a single DV is the goal. 

This paper also shows that all of the graphs in the BN directed system lattice (where this 

lattice disallows graphs where the DV is a V-structure parent) are equivalent in their 

predictions to RA graphs, although many of them have fewer degrees freedom than 

their RA-equivalent counterpart. The augmented RA directed system lattice thus 

encompasses all of the BN directed system general graphs in terms of prediction, and 

offers additional predicative graphs, those including loops, that are not in the BN lattice. 

However, the restriction that disallows BN graphs where the DV is a V-structure parent 

might be relaxed, so a future extension of this work could consider expanding the BN 
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directed system lattice to include such unusual BN predictive graphs. An additional 

extension could be to develop an algorithm to generate the BN directed system lattice 

of general and specific graphs for any number of variables allowing for efficient search 

of the BN lattice for graphs that uniquely predict a single DV. 
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Abstract 

This research applies machine learning methods to build predictive models of 

Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the 

Western Energy Imbalance Market. Several methods are used in this research, including 

Reconstructability Analysis, developed in the systems community, and more well-known 

methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. 

The aims of the research are to identify predictive variables and obtain a new stand-

alone model that improves prediction accuracy and reduces the INC (ability to increase 

generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements 

for Western Energy Imbalance Market participants. This research accomplishes these 

aims. The models built in this paper identify wind forecast, sunrise/sunset and the hour 

of day as primary predictors of net load imbalance, among other variables, and show 

that the average size of the INC and DEC capacity requirements can be reduced by over 

25% with the margin of error currently used in the industry while also significantly 

improving closeness and exceedance metrics. The reduction in INC and DEC capacity 

requirements would yield an approximate cost savings of $4 million annually for one of 

nineteen Western Energy Imbalance market participants. Reconstructability Analysis 

performs the best among the machine learning methods tested. 

Introduction  

The California Independent System Operator (CAISO) Western Energy Imbalance 

Market (WEIM) is an intra-hour electricity market with a footprint across much of the 
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Western US, including participants in California, the Pacific Northwest, the Southwest, 

and other areas. The market aims to balance supply and demand of electricity across 

this footprint on a 5-minute basis in the most economical way while satisfying a variety 

of constraints (CAISO, 2022a). Each participant must enter the market each hour with 

sufficient energy for its anticipated electricity demand (commonly referred to as “load”) 

and also with capacity to meet some amount of uncertainty in supply and demand. Prior 

research has shown that variable generation like wind and solar, and load forecasts 

(Ghosal, 2022; Jost, 2015; Lu, 2010; Obando-Ceron, 2018) are primary drivers of supply 

and demand uncertainty. The focus of this paper is on the appropriate amount of 

uncertainty that the CAISO should plan for each WEIM participant; more precisely, on 

the difference between actual supply and demand in a given time period that a WEIM 

participant should be able to compensate for with its INC and DEC capacities without 

assistance from other WEIM participants. This difference between supply and demand 

(commonly referred to as “imbalance”) is the dependent variable (DV, observed net 

load imbalance) being predicted in this study. (This DV is described section titled 

“Data”). 

In order to establish the pool of generators that can be adjusted up or down, 

participants bid into the market INC and DEC capacity on an hourly basis to indicate the 

amount they are willing to adjust energy output up or down in the coming hour (along 

with a price for such adjustments). INC capacity is the capacity to respond to situations 

when demand exceeds supply. It is the ability to increase energy output within a certain 
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timeframe and is deployed when loads come in higher than expected and/or generators 

produce lower energy than expected. Participants called upon to increase generation 

are compensated for this deployment of energy. DEC capacity is the inverse, the 

capacity to respond to situations when supply exceeds demand. Specifically, it is the 

ability of generators to decrease energy output within a certain timeframe, called upon 

by the market operator and deployed by the participant when loads come in lower than 

expected and/or generators produce more energy than expected. Participants called 

upon to decrease generation save money because their sale to serve load is served by a 

cheaper market resource. 

To participate fully in the WEIM for each hour, WEIM participants must meet 

four separate Resource Sufficiency Tests (FERC, 2022). Meeting these requirements 

provides the entire market with access to a large enough pool of adjustable generation 

and guarantees that participants are not relying on other market participants for their 

INC and DEC capacity needs. This pool of adjustable capacity ensures that generation 

supply can reliably meet load for all market participants in every time interval. 

The Flexible Ramp Sufficiency Test (FRST) is one of the four Resource Sufficiency 

Tests (FERC, 2022; CAISO 2022b). This test establishes the minimum amount of INC and 

DEC reserves a participant must bid into the market in order to participate. Participants 

can bid more if they choose. This test is the focus of the analysis in this paper. The FRST, 

specifically the uncertainty component of the FRST, currently requires a participant to 

bid an amount of DEC capacity equal to the 2.5 percentile of “observed net load 
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imbalance” (which is Variable 1, the dependent variable, defined further in the section 

titled “Data”) for that participant, for the given hour, over the prior 40 weekdays, and to 

bid an amount of INC capacity equal to the 97.5 percentile over the same period. For 

weekends, the 2.5 and 97.5 percentiles are determined for the given hour, from the 

prior 20 weekend days (CAISO, 2022b). Setting the threshold at this level assumes that 

recent historical observations of net load imbalance are a good predictor of the 

potential range of imbalance in a coming hour. The goal of this approach is to create an 

INC and DEC upper and lower bound to ensure each participant is bringing enough INC 

and DEC capacity to support their historical net load imbalance. This approach is 

referred to as the Industry Model throughout the paper. 

Prior research has shown that probabilistic methods like Bayesian Networks (Lu, 

2010) and Monte Carlo simulation (Ghosal, 2022) improved the accuracy of net load 

imbalance forecasts. Further, prior research has shown different ML methods have 

advantages and disadvantages in predicting wind energy, solar energy and load 

forecasts (Sheraz, 2021). 

Reconstructability Analysis (RA), Bayesian Networks (BN), Support Vector 

Regression (SVR), and Neural Networks (NN) are machine learning methodologies. RA 

and BN are both probabilistic graphical modeling methodologies and SVR and NN are 

other more commonly used machine learning methods. These four methods are applied 

in this paper to data provided by the Bonneville Power Administration to build point 

estimate prediction models of observed net load imbalance, the DV (point estimate 
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prediction models are described in the section titled “Results of DV prediction: 

comparing ML methods to Industry Model”). All of these methods underwent a 5 fold 

cross validation to ensure each model generalized well to new data. Midpoint 

predictions of the Industry Model and machine learning methods are compared in the 

section titled “Results of DV prediction: comparing ML methods to Industry Model” 

using three statistics: R squared, mean squared error, and mean absolute error. 

The primary purpose of the first part of this study, where we used ML methods 

to build point estimate predictions of observed net load imbalance was to pick a good 

ML method for the second part of the study where, more importantly, INC and DEC 

predictions are made and compared to the Industry Model. That is, we do not here 

undertake a general comparison of the four ML methods, which would require applying 

them to multiple data sets; our aim in the first part of the study is primarily to identify a 

promising ML method for INC and DEC predictions. 

The results of the point estimate predictions from the first part of the study 

show that three of the four methods do significantly better than the current Industry 

Model (CAISO, 2022b), and RA performed best overall; and the results of the second 

part of the study where RA is applied to make INC and DEC predictions show that the RA 

Model does significantly better than the Industry Model. 

Metrics used to compare the RA INC and DEC prediction model to the Industry 

Model operationalize the general definitions published by the CAISO (CAISO, 2022c) and 
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are: Average Requirement (the average INC and DEC requirement over all observations 

in the dataset), Coverage (a measure that is the inverse of error, where error is how 

many times actual imbalance is outside the INC and DEC requirement), Closeness (how 

close the actual imbalance is to the INC and DEC requirement, whether greater or less 

than these requirements), and Exceedance (when, more specifically, imbalance is 

greater than the INC or DEC requirement, how much does it exceed the INC or DEC 

requirement). These metrics are described in detail in the section titled “Metrics for 

comparing the INC and DEC prediction efficacy”. 

Of all the analyses in the paper, the results of the RA Model INC and DEC 

predictions have the greatest potential practical significance for the CAISO and WEIM 

participants. As shown in the test described in the section titled “Industry Model and RA 

Model INC and DEC prediction results,” the RA Model allows the FRST INC and DEC 

Average Requirement (the average amount of INC and DEC reserves that must be held) 

to be reduced by a total of 150.9 MW (To provide a sense of the scale of this reduction, 

1 MW (one million watts) can power between 400 and 900 homes (NERC, 2012) 

depending on a number of factors), a 25.4% total reduction; specifically, 62.7 MW for 

INC reserves, a 23.0% reduction, and 88.2 MW DEC reserves, a 27.3% reduction while 

producing the same level of Coverage (the inverse of error) as the Industry Model. 

Additionally, Closeness and Exceedance metrics are also improved by the RA Model. 

These findings show that if the best RA model were used, the CAISO can retain the same 

Coverage as it has currently, while significantly lowering the INC and DEC requirement 
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for WEIM participants. Ultimately this has benefit to both the CAISO and WEIM 

participants in the form of lower cost. Conservatively, reducing the reserve requirement 

by this amount would result in approximately $4 million (INC savings would be 

$168/MW – day × 365 days × 62.7 MW = $3.84 million. DEC savings would be $12/MW – 

day × 365 days × 88.2 MW = $386 thousand) in annual savings for the Bonneville Power 

Administration which is one of nineteen WEIM participants and which is the focus of the 

data analysis in this paper. 

The following sections of this paper are organized as follows. The materials and 

methods section provides a description of the data used to perform the analysis and 

describes the four machine learning methods applied to the data as well as the Industry 

Model that is in current use. Results are then reported in two parts: an across-method 

comparisons of point estimate results and the RA Model INC and DEC predictions 

compared to the Industry Model. The last sections offer a discussion and conclusion 

focused on key findings and observations, and future possible research extensions. 

Materials and Methods  
Data 

The data used in this analysis came from the Bonneville Power Administration 

which is a wholesale electric utility that began participation in the WEIM in the summer 

of 2022. The data is time series, in 15 min increments from January of 2014 to 

December of 2018. There are 172,175 observations, and there are no missing data. 
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There are 22 independent variables (IV) and one dependent variable (DV). 18 of the IVs 

are continuous, 4 are discrete. The DV is continuous. 

 

Table 16 below lists the IVs and the DV, including characteristics about each 

variable and a short definition. 

Table 16 Variable Names and Definitions 

Variable 
Number Variable Name 

Variable 
Name Single 

Letter 
Abbreviation 

 DV or 
IV 

Continuous 
or Discrete 

For RA/BN, 
number of 

bins Time Lag Short Description 

1 NLFCErrorBoth_A Z DV Continuous 6 0 

Observed Net Load Imbalance. 
Positive values represent use 
of INC reserves to meet load 

requirements. Negative values 
represent use of DEC reserves 

to meet load requirements. 

2 LoadRTD A IV Continuous 3 
48 hour 

lag 

Five-minute load 
measurement used in EIM 5-
minute market optimization.  

3 VERRTD B IV Continuous 3 
48 hour 

lag 

Five-minute VER 
measurement used in EIM 5-
minute market optimization.  

4 Net Load RTD C IV Continuous 3 
48 hour 

lag 

Five-minute measurement of 
load net VERs. Equal to 

LoadRTD - VERRTD. 

5 NLMaxRTD D IV Continuous 3 
48 hour 

lag 

For each 15-minute interval, 
the maximum of the three 5-
minute Net Load RTD values. 

6 NLMinRTD E IV Continuous 3 
48 hour 

lag 

For each 15-minute interval, 
the minimum of the three 5-
minute Net Load RTD values. 

7 LoadFMM F IV Continuous 3 
48 hour 

lag 

Fifteen-minute load forecast 
used in EIM 15-minute market 

optimization.  
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8 VERFMM G IV Continuous 3 
48 hour 

lag 

Fifteen-minute VER forecast 
used in EIM 15-minute market 

optimization.  

9 NLFMM H IV Continuous 3 
48 hour 

lag 

Fifteen-minute forecast of 
load net VERs. Equal to 
LoadFMM - VERFMM. 

10 VERFCFHfrtegt I IV Continuous 3 0 

Forecast of wind generation 
for the 15 minute time period 

the DV is being predicted, 
forecast made 48 hours prior 

11 VERFCFHsvntwo J IV Continuous 3 0 

Forecast of wind generation 
for the 15 minute time period 

the DV is being predicted, 
forecast made 72 hours prior 

12 VERFCFHninsx K IV Continuous 3 0 

Forecast of wind generation 
for the 15 minute time period 

the DV is being predicted, 
forecast made 96 hours prior 

13 VERFCFHonetwty L IV Continuous 3 0 

Forecast of wind generation 
for the 15 minute time period 

the DV is being predicted, 
forecast made 120 hours prior 

14 HLH/LLH M IV Discrete 2 0 

Heavy Load Hour - 6 a.m. to 
10 p.m., Monday through 

Saturday, Light Load Hour - 10 
p.m. to 6 a.m. Monday 

through Saturday and all day 
Sunday. 

15 Season N IV Discrete 4 0 

Winter (Dec 1 - Feb. 28), 
Spring (Mar. 1 to May 31), 
Summer (June 1 - Aug. 31), 

Fall (Sept. 1 - Nov. 30) 

16 Sunrise/Sunset O IV Discrete 2 0 
Sunrise (5am-7am), Sunset 

(5pm-7pm) 

17 
 Hour of Day (2hr 

groups) P IV Discrete 12 0 

Hours of the day grouped into 
2 hour groups, e.g. hours 1 
and 2 grouped as 1, hours 3 

and 4 grouped as 2, etc.) 

18 
NLFCErrorBothx2x

1dayx Q IV Continuous 3 
48 hour 

lag 
1 day average of the DV 

"NLFCErrorBoth_A" 

19 
NLFCErrorBothx2x

20dayx R IV Continuous 3 
48 hour 

lag 
20 day average of the DV 

"NLFCErrorBoth_A" 



122 
 

20 
LoadRTD 24 Hr 

Avg S IV Continuous 3 
48 hour 

lag 
24 hour average of IV "Load 

RTD"  

21 LoadRTD24hrstdv T IV Continuous 3 
48 hour 

lag 
24 hour standard deviation of 

IV "Load RTD" 

22 
LoadRTD 7 day 

Avg U IV Continuous 3 
48 hour 

lag 
7 day average of IV "Load 

RTD" 

23 LoadRTD7daystdv V IV Continuous 3 
48 hour 

lag 
7 day standard deviation of IV 

"Load RTD" 

        

The DV (NLFCErrorBoth_A which is synonymous with the term “observed net 

load imbalance”) is the difference between demand and supply (net load—generation), 

of electricity measured every 15 min. Positive values represent load in excess of 

generation and negative values represent generation in excess of load. The FRST 

establishes an INC and DEC range for each hour for each WEIM participant. For all the 

analysis in this paper, INC and DEC predictions described in the section titled “Results of 

INC/DEC prediction: comparing RA Model to Industry Model” and midpoint predictions 

described in the section titled “Results of DV prediction: comparing machine learning 

methods to Industry Model” are made in 15 min increments. That is, when any one of 

the machine learning methods makes a forecast for the following day, for a given hour, 

it is for a given 15 min increment within that hour, and the actual observed net load 

imbalance for that specific 15 min increment is compared to the prediction made for the 

same 15 min increment. For the Industry Model, the INC and DEC predictions and mid-

point predictions for a given hour are the same for each of the four 15 min increments 

within that hour. 
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The IVs were selected based upon expert judgement gathered by surveying 

electrical engineers from the Bonneville Power Administration who are familiar with the 

variables that impact the DV, the Resource Sufficiency Tests, and WEIM operating 

requirements. In addition, in a survey of prior literature, Wind Forecast, Solar and Load 

Forecasts were shown to be primary predictors of net load imbalance (Ghosal, 2022; 

Jost, 2015; Lu, 2010; Obando-Ceron, 2018) and are included the dataset in Table 16. The 

IV list of Table 16 is not exhaustive, as there may be other predictive variables that were 

not included, but it does provide a robust sampling of potentially predictive IVs. 

Most IVs were lagged 48 h from the DV. Exceptions were time based IVs, for 

example the IV “Season” which represents one of four seasons (Winter, Spring, 

Summer, Fall). Another exception was “Wind Forecast” because the forecast was 

produced at least 48 h in advance. Lagging most variables was necessary in order to 

replicate the FRST INC and DEC prediction process (and the information available at the 

time the forecast is made) of the market operator (CAISO). The market operator needs 

to make the forecast (establishing the INC and DEC reserves requirement) at least 24 h 

in advance of the actual occurrence in order to be able to tell the WEIM participants 

what their minimum INC and DEC requirement is. A 48 h lag of the IVs was chosen in this 

study to be conservative, so that the data would definitely be available in time for the 

operator to use in the forecast establishing the INC and DEC requirement. Thus it is not 

unreasonable to expect that if the variables were lagged only 24 h, the machine learning 

method results would be even better than what is reported here. 
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Time based variables do not need to be lagged because they are known exactly. 

For example, what “Season” is 48 h ahead is known. The operator also knows, for 

example, what “hour of the day” is 48 h ahead. Similarly, for the Wind Forecast, the 

operator has a forecast of Wind Generation 48 h ahead, 72 h ahead, 96 h ahead, and 

120 h ahead. All these forecast time frames are at, or greater, than the 48 h forecast the 

operator makes. 

For both RA and BN, continuous data were binned into equal count bins, i.e., 

there were roughly an equal number of samples in each bin. For most IVs, three bins 

were used, i.e., low, medium, and high. By contrast, for SVR and NN, the continuous 

values were used. For all methodologies, the data was randomly divided into five equal 

folds (A, B, C, D, E) with 34,435 samples each. The original data had N = 5 × 34,435 cases 

(172,175), each case separated from what preceded and what followed it by 15 min. 

There are no missing values for any of the IVs or the DV in the dataset. These folds were 

used for cross validation, and were used in the same way across all machine learning 

methods discussed in the following sections. 

Methods 

Four machine learning methods were applied to the data in addition to the 

standard Industry Model: RA, BN, SVR, and NN10. These methods were applied in order 

to produce the most accurate prediction of the DV possible that also generalizes well to 

                                                      
10 Input parameters for all methods are detailed in Appendix B. 



125 
 

withheld data, and these four methods were applied consistently, so that they could be 

compared for prediction efficacy to each other and to the Industry Model. For SVR and 

NN, we did not perform a hyper-parameter exploration as that would have been an 

entire study of its own, not warranted for the actual purpose of the first part of the 

study which was to use point estimate prediction success to select a machine learning 

method to model INC and DEC predictions in the second part of the study. Our use of RA 

and BN was similar in that we used the simplest form of RA and did not perform any 

preprocessing for RA or BN. We did not apply any elaborate pre-processing procedures 

in any of these four ML methods. Their results may thus be fairly compared. 

Industry Model 

The Industry Model establishes an upper and lower INC and DEC requirement 

based on the 2.5th and the 97.5th percentile of the DV over the prior 40 weekdays, for a 

given hour and for weekends and holidays over the prior 20 day weekend/holidays 

(CAISO, 2022b). The Industry Model INC and DEC predictions for a given hour are the 

same for all four 15 min increments within that hour. 

Figure 41 shows an example of observed net load imbalance over a prior 40 day 

period, for a given hour of the day. This is an illustration of the type of data the Industry 

Model uses to establish the uncertainty component of the FRST, for the given hour, for 

the following day. The upper redline represents the INC requirement for the following 

day for the given hour, namely 400 MW. This is derived by taking the 97.5th percentile 

of observations over the prior 40 weekdays (circled in black) for the given hour. 
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Correspondingly, the DEC requirement is established the same way, the 2.5th percentile 

(circled in black) over the prior 40 weekdays establishes the DEC requirement, namely 

500 MW. For weekends, the same procedure is applied, except the lookback is only 20 

weekend days. 

 

Figure 41 Industry Model calculation of INC and DEC requirement example 

A midpoint prediction was derived from the Industry Model in order to compare 

to the machine learning (ML) methods assessed in this paper. The midpoint prediction 

for a given hour for the following day, is derived by taking the midpoint of the INC and 

DEC prediction. Using the example in Figure 41, the midpoint prediction would be −50 

MW (midpoint of 400 MW INC and 500 MW DEC). 

For the purpose of comparing the Industry Model to machine learning models, a 

two-step procedure is used. First, a point prediction is defined for the Industry Model 

that is the midpoint of the upper and lower INC and DEC thresholds, and the accuracy of 
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this point prediction is compared to the accuracy of the four machine learning point 

predictions. The results of this comparison are reported in the section titled “Results of 

DV prediction: comparing ML methods to Industry Model.” To be clear, the Industry 

Model does not on its own produce a midpoint prediction, it only produces an upper 

(INC) and lower (DEC) threshold prediction. Developing the midpoint prediction was 

necessary in order to compare the Industry Model to the midpoint predictions of the 

four other methods. In the second step, reported in the section titled “Results of 

INC/DEC prediction: comparing RA Model to Industry Model,” the Industry Model INC 

and DEC predictions are compared to the RA Model INC and DEC predictions, where the 

RA model was chosen over the other three machine learning methods because it gave 

the best point prediction results. The RA Model outperformed the Industry Model in 

both the first step of point prediction and the second step of INC and DEC prediction. 

Reconstructability Analysis 

RA is a data modeling approach developed in the systems community (Ashby, 

1964; Broekstra, 1979; Cavallo, 1979; Conant, 1981, 1988;  Klir, 1976, 1985, 1986; 

Krippendorff, 1979, 1981, 1986; Willett, 2004; Zwick, 2004a, 2004b, 2010, 2018) that 

combines graph theory and information theory. Its applications are diverse, including 

time-series analysis, classification, decomposition, compression, pattern recognition, 

prediction, control, and decision analysis (Zwick, 2001). RA is well suited for a problem 

in this domain, which is inherently probabilistic, and in which understanding the 

variables used to make predictions is important to system operators and WEIM 
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participants. RA and the other machine learning methods explicitly identify the 

independent variables (IVs) that are most predictive. 

RA is designed especially for nominal variables, but continuous variables can be 

accommodated if their values are discretized. (RA could in principle accommodate 

continuous variables, but this extension of the methodology has yet to be formalized.) 

Graph theory specifies the structure of the model: if the relations between the variables 

are all dyadic (pairwise), the structure is a graph; if some relations have higher 

ordinality, the structure is a hypergraph. In speaking of RA, the word “graph” will 

henceforth include the possibility that the structure is a hypergraph. Graph structures 

are independent of the data except for necessary specification of variable cardinalities. 

In RA, information theory uses the data to characterize the precise nature and the 

strength of the relations. Data applied to a graph structure yields a probabilistic 

graphical model of the data (This paragraph from Harris, 2021). 

RA can be applied to “neutral” and “directed” systems, and for both allows 

models that contain loops or do not contain loops. Neutral systems characterize the 

relations among all variables, and applications are common in network analysis and 

image processing. Directed systems characterize the relationship between IVs and the 

DV. (In principle, RA could accommodate multiple DVs, but the specific implementation 

of RA used in this study allows only a single DV.) For this application, RA directed 

systems are used because the primary goal is to predict the DV from the IVs. Further, for 

this analysis RA Models with no loops were used because the gain in using models with 
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loops was minimal and their computational cost was high. The computational time of 

models with loops is hyper-exponential with the number of variables whereas models 

without loops scale roughly polynomially with the sample size. Given the number of IVs 

under consideration, models without loops were the only models considered. 

In RA, a lattice of structures is built given the number of variables under 

consideration (Zwick, 2004c). The lattice is typically searched from the bottom up, 

where the bottom is the independence model which is chosen as the reference. The 

goal is to find the model with the greatest amount of information content whose 

difference from this reference model is statistically significant. Alternatively, the model 

is searched downward from some starting model, typically the data, which is chosen as 

the reference model. In such downward search, the goal is to remove as many 

predictive relations as possible, thus reducing the complexity of the model, but where 

the model is statistically still not different from the data. For this application, a bottom 

up search was performed using the RA software OCCAM (Willett, 2004). In this upward 

search, a beam search11 was used, where a search width of three was established as an 

input parameter. At the first level of search, the three most predictive models are 

retained, each using a single IV to predict the DV. So this first level identifies the three 

most predictive IVs. The second level of search begins with the results from the prior 

                                                      
11 Not in the published paper: other algorithms to search the lattice could in principle be used, but Occam, 
the RA software, only implements a beam search. 



130 
 

level, and adds a best second predictive IV to each of the level one models, and so on to 

higher levels until a best model is found. Choice of the best model is done as follows. 

As discussed previously, the data was divided into five equal folds. These 5 folds 

(A, B, C, D, E) were organized into five sets of training, validation, and test data as shown 

in Table 17. These fold names should not be confused with the single letter 

abbreviations of variables shown in Table 16. 

Table 17 Cross Fold Validation 

Fold Train Validation Test 
1 ABC D E 
2 ABE C D 
3 ADE B C 
4 CDE A B 
5 BCD E A 

 

For each of the five folds, the best RA Model was selected using the percent of 

the DV predicted correctly in the validation data. This best model, using parameters 

learned on training data only, was then applied to test data to compute the final results 

that are reported in the section titled “Results of DV prediction: comparing ML methods 

to Industry Model.” 

As shown in the section titled “Data”, some of the data is discrete and some is 

continuous. For both RA and BN, continuous data were binned into equal count bins, 

i.e., there were roughly an equal number of samples in each bin. (By contrast, for SVR 

and NN, the continuous values were used.) The data contains no missing values, but for 
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more complex RA and BN models some IV states are not represented in the data or in 

some cases the IV state is not logically possible and therefore is absent from the data. 

This is common with very complex (high number of IVs and thus high degrees of 

freedom) RA or BN models. In the best models for the five folds, the number of missing 

IV states (Missing IV states defined as the percentage of individual IV states represented 

in the training data but not in the validation data) was on average 11%. To generate DV 

predictions for missing states, RA uses a simpler “backup model” chosen based on three 

criteria: 1. Highest average percent correct across all five folds based on validation data, 

2. Its IVs are included in the best model for the fold, and 3. No missing IV states for the 

backup model. This resulted in a single backup model applied to all five folds; this is 

discussed further in Section titled “Best RA Model point estimate results.” The backup 

model is relevant only for making continuous predictions for missing IV states and for 

predicting the INC and DEC requirements; it was not used for selecting the best RA 

Model for the fold. 

For the best RA Model, the B-Systems approach (Zwick, 2011) is applied to 

generate a continuous DV prediction for each IV state. This approach computes an 

expected value DV prediction from the conditional distribution of the model calculated 

(train data) given the IV state (Zwick, 2011), as follows: 

DV prediction (IV୩)  =  ∑ p൫DV୨หIV୩൯ rcv୨୨ , where, for the conditional 

probability p൫DV୨หIV୩൯, DV୨ is jth bin of the DV, IV୩ is kth bin of the IV, and where rcvj is 
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a representative continuous value for each DV୨ which is chosen to be the median 

continuous value for cases binned in this particular DV୨. The DV prediction result is thus 

the expected median DV value for a given IV state. 

Bayesian Networks 

BNs have origins in path model described in the 1930s (Wright, 1921, 1934) but 

it was not until the 1980s that BNs became more formally established (Neapolitan, 

1989; Pearl, 1985, 1987, 1988). As does RA, BN combines graph theory and probability 

theory: graph theory provides the structure and probability theory characterizes the 

nature of relationships between variables. BNs are represented by a single type of graph 

structure; a directed acyclic graph, which is a subset of chain graphs, also known as 

block recursive models (Lauritzen, 1996). BNs can be represented more generally by 

partially directed acyclic graphs, a subset of chain graphs where edge directions are 

removed when directionality has no effect on the underlying independence structure. 

Discrete variables are most common in BNs, but BNs accommodate continuous variables 

without discretization (Driver, 1995) (As has been noted, in principle RA could also 

accommodate continuous variables but this feature has not yet been implemented.) For 

a three variable BN lattice, there are 5 general graphs and 11 specific graphs; for four 

variables there are 20 general graphs and 185 specific graphs with unique probability 

distributions (Harris, 2021). In the confirmatory mode, BNs can test the significance of a 

model relative to another model used as a reference (Tang, 2012); in the exploratory 

mode, BNs can search for the best possible model given a scoring metric. BNs are used 
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to model expert knowledge about uncertainty and causality (Neapolitan, 1989, Pearl, 

1985) and are also used for exploratory data analysis with no use of expert knowledge 

(Rebane, 1987). Like RA, BN applications in machine learning and artificial intelligence 

are broad including classification, prediction, compression, pattern recognition, image 

processing, time-series, decision analysis and many others (This paragraph from Harris, 

2021). 

Augmented Naïve Bayesian Network 

An augmented naïve Bayesian network (ABN) is an extension of the classic naïve 

Bayesian network classifier in which all IVs are independent of each other. ABNs relax 

the IV independence constraint to allow for IVs to be conditionally dependent upon 

each other given the DV. ABNs have been shown to produce better classification results 

than a naïve Bayesian network classifier (Friedman, 1997) and therefore were used in 

this paper as the BN prediction method. 

The ABN algorithm uses parameters to restrict [or add] IV-IV edge connections 

based on how much they increase the maximum likelihood (or percent correct) results. 

For this analysis, standard input parameters were used. There was no restriction placed 

on the number of IV-IV edge connections and the prior link probability was set to 0.001. 

As discussed in the “Results” section, variations of the prior link probability do not 

produce materially better results. Varying the prior link probability increases the 

likelihood of adding or subtracting edge connections between IVs if the prior link 

probability is increased or decreased, respectively. 
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The data contains no missing values, however, for more complex BNs, there are 

some IV states that are not represented. For these missing states, BNs use the 

Expectation-Maximization (EM) algorithm (Dempster, 1977) to impute values for 

missing states. This differs from our implementation of RA, in which a simpler backup 

model, which is embedded in the best RA Model, is used to impute values for missing 

states as discussed previously. The EM algorithm is iterative, and more computationally 

costly than the purely analytic RA approach. This point is discussed in greater detail in 

the section titled “BN Comparison to RA Best Model.” 

Genie Smile Software 

The academic version of Genie Smile (BayesFusion, 2020) was the software used 

to apply ABNs to the data. An ABN search was applied to all 5 data folds. For BNs, in the 

same way as in RA, training data was used to define the model. The learned parameters 

on training data were used to compute results on the validation data. The best BN in 

terms of percent correct prediction accuracy on validation data was chosen as the best 

BN model. The best BN model, using parameters learned on training data only, was then 

applied to test data to compute the final results that are reported in the “Results” 

section. 

To generate a continuous value BN prediction of the DV, the RA B-systems 

approach was applied in the same way using the representative continuous value of 

each DV bin multiplied by the model-calculated conditional probability of a that bin 

given the IV state. 
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Support Vector Regression 

Support vector machines (SVM) were introduced in the late 1980s, but they 

came to prominence in 1995 (Vapnik, 1995). Over time, they became more and more 

popular with access to increasing computing power. Given a set of data points from two 

classes, in a two-dimensional plane, SVM draws a hyperplane that attempts to separate 

these data points into two categories. A margin is drawn on both sides of the 

hyperplane at an equal distance in such a way that the margin touches the closest point 

across both the classes of data points. The target of SVM is to maximize this distance 

between the hyperplane and the margin. Likewise, for SVR, there are data points on a 

two-dimensional plane, and a line is drawn such that it fits along the path of the data 

points and the points are as close to the hyperplane as possible. The margins around the 

hyperplane are drawn such that the points lying outside the margin are penalized. In 

short, the aim of SVR is to minimize the error (distance between the hyperplane and 

data points) for better generalization. 

The data points are transferred to a higher dimension if there are more than two IVs. 

Whether the data points are linearly separable or separable in any other way is 

determined by the function used which is called the kernel. Four different kernels were 

used in this analysis: radial basis function (rbf), linear, polynomial, and sigmoid. 

Performance results are found in the section titled “Results of DV prediction: comparing 

ML methods to Industry Model.” 
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Neural Networks 

The history of neural networks (NN) dates back to the late 1960s. Primitive 

neural networks were called perceptrons. Each perceptron resembles a biological 

neuron, i.e., it has inputs, a processing unit, and an output. The input values are 

assigned weights. The processing unit is a function that outputs a value after processing 

the input data. This function is called the activation function. These single-layer 

perceptrons could solve simple problems like “OR” gate and “AND” gate, but they could 

not solve an “XOR” gate problems. Later on, a backpropagation technique was 

introduced that updated the weights associated with the input after each iteration 

(Werbos, 1974). This technique led to the development of neural networks that are 

common today. Having many layers in between the input and output layers, an 

architecture called a multi-layer perceptron (MLP), also known as neural networks, 

allows one to model the XOR gate. MLPs are the model used for analysis in this 

research. Specifically, we implemented an MLP regressor built with 2 hidden layers each 

with 100 neurons. 

Before SVM or MLP models were analyzed, an IV selection technique (feature 

selection) was used to select the k best IVs from the 22 IVs included in the dataset. The 

features were normalized using the MinMaxScaler preprocessing module from Sklearn 

to scale the values between 0 and 1. Then, the transformed data was fed to the f-

regression model that calculates the correlation scores for each feature: the higher the 

score, the better the association between the IV and the DV. 
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Table 18 shows the 12 best features (i.e., k = 12, listed in alphabetical order) that 

were selected to be included in the SVR and MLP models. Out of 22 possible IVs, k = 12 

was found to perform best for SVR and MLP on validation data and the list in Table 18 

shows the 12 best that were used. These selected features were subjected to a second 

normalization, using the Sklearn MinMaxScaler. 

Table 18 k = 12 features used in SVR and NN models 

1 HourofDayx2hrxgroups 
2 Net Load RTD 
3 NLFCErrorBothx2x1dayx 
4 NLMaxRTD 
5 NLMinRTD 
6 Season 
7 Sunrise/Sunset 
8 VERFC_FH48fill 
9 VERFC_FH72fill 

10 VERFC_FH96fill 
11 VERFC_FH120fill 
12 VERFMM 

 

Both the SVR and MLP regressor models were implemented from the Sklearn 

python library (Pedregosa, 2011). All of the hyper-parameters were set to default 

values. These features are compared below to the predictors used in the RA and BN 

calculations. 
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Results of DV prediction: comparing ML methods to Industry Model 

Best point estimate predictions and comparison of methods  

The four machine learning methods and the Industry Model were assessed for 

their point estimate prediction efficacy based upon three performance statistics: R 

squared, Mean Average Error (MAE) and Mean Squared Error (MSE). For R squared, 

higher values are better; for MAE and MSE, lower values are better. The results in Table 

19 show performance on test data from all five folds for the four prediction methods; 

for the Industry Model, the results are for all historical observations in folds A, B, C, D, E 

taken together. 
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Table 19 Results of Industry Model and Machine Learning Methods 

R Squared 

Method 
ABC Train E 

Test 
ABE Train D 

Test 
ADE Train C 

Test 
CDE Train B 

Test 
BCD Train A 

Test 
Average 

Standard 
Deviation 

Industry Model n/a n/a n/a n/a n/a 7.5% n/a 

BN 13.3% 13.7% 14.2% 13.7% 14.4% 13.9% 0.5% 

RA 33.5% 33.2% 35.2% 33.2% 34.1% 33.8% 0.9% 

SVR-rbf 7.5% 7.5% 7.5% 7.2% 8.0% 7.5% 0.3% 

SVR-Linear 6.3% 6.4% 6.5% 6.1% 6.9% 6.4% 0.3% 

SVR-poly 6.6% 6.7% 6.8% 6.3% 7.1% 6.7% 0.3% 

SVR-sigmoid 0.4% 0.1% 0.1% 0.4% 0.4% 0.3% 0.2% 

MLP 16.8% 18.2% 17.9% 18.2% 19.3% 18.1% 0.9% 

MAE 

Method 
ABC Train E 

Test 
ABE Train D 

Test 
ADE Train C 

Test 
CDE Train B 

Test 
BCD Train A 

Test 
Average 

Standard 
Deviation 

Industry Model n/a n/a n/a n/a n/a 121.7 n/a 

BN 103.0 102.2 102.4 103.4 102.7 102.7 0.5 

RA 86.6 86.7 85.8 87.6 86.8 86.7 0.6 

SVR-rbf 108.4 107.9 108.3 109.2 108.6 108.5 0.5 

SVR-Linear 109.6 109.0 109.4 110.3 109.7 109.6 0.5 

SVR-poly 109.1 108.6 109.0 109.9 109.4 109.2 0.5 

SVR-sigmoid 588.3 579.6 580.7 600.5 582.8 586.4 8.5 

MLP 100.5 99.2 99.8 100.4 99.7 99.9 0.5 

MSE 

Method 
ABC Train E 

Test 
ABE Train D 

Test 
ADE Train C 

Test 
CDE Train B 

Test 
BCD Train A 

Test 
Average 

Standard 
Deviation 

Industry Model n/a n/a n/a n/a n/a 27,339.7 n/a 

BN 21,717.9 21,038.1 20,962.8 21,710.6 21,509.5 21,387.8 364.3 

RA 16,717.4 16,425.5 15,894.2 16,904.0 16,616.8 16,511.6 386.0 

SVR-rbf 23,164.5 22,576.3 22,603.6 23,361.5 23,164.7 22,974.1 359.9 

SVR-Linear 23,470.0 22,822.8 22,860.1 23,631.9 23,410.9 23,239.2 372.2 

SVR-poly 23,395.3 22,765.9 22,790.8 23,581.3 23,360.2 23,178.7 375.1 

SVR-sigmoid 699,725.9 703,145.2 709,064.7 743,823.7 697,264.0 710,604.7 19,090.9 

MLP 20,831.0 19,953.1 20,064.1 20,580.2 20,290.0 20,343.7 363.0 

 

The results show that the RA method performed best on all measured statistics. 

The first table within Table 19 shows that RA performed better than the Industry Model, 
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as follows. For the R squared statistic, the RA Model was on average 26.3% (33.8% − 

7.5%) better than the Industry Model. For the MAE statistic, the RA Model was on 

average 35.0 better. For the MSE statistic, the RA Model was on average 10,828.4 

better. The second to fourth tables within Table 19 compare RA to BN, the four types of 

SVR, and MLP, and these tables show that RA performed better than any of these other 

methods. 

Note that our goal in this first analysis is not to accurately predict the DV time 

series, for which a low R squared would indeed be disappointing, but rather to pick the 

best machine learning method to use for the second part of the analysis described in the 

section “Results of INC/DEC prediction: comparing RA Model to Industry Model,” which 

is to analyze INC and DEC reserve requirements that must be held. In the first analysis 

we want to identify the ML method that best predicts the time series, but the precise 

accuracy of its predictions is not critical. 

Best RA Model point estimate results 

The RA Fold 5 model (BCD train, E validation, A test) performed best overall 

based on the percent correct statistic on validation data. Therefore, this model was 

chosen as the overall best RA Model (the best of the best models for all the folds). Table 

20 shows results of training the best Fold 5 model on all 5 training sets, and statistics 

reported on all 5 test folds, including the use of a backup model where the overall best 

model did not offer predictions for some IV states. It is clear from the results that the 

model generalizes well to the withheld test data. The variance on all statistics reported 
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is very low across all five folds. Note that using the RA Fold 5 Model on the test data for 

all five folds slightly improves the three metrics: R Squared increases from 33.8% (Table 

19) to 34.1% (Table 20); MAE decreases from 86.7 to 86.6; and MSE decreases from 

16,511.6 to 16,451.8. 

Table 20 Best RA Model tested on all folds 

Summary 
Statistic 

ABC Train E 
Test 

ABE Train D 
Test 

ADE Train C 
Test 

CDE Train B 
Test 

BCD Train A 
Test 

Average 
Standard 
Deviation 

R Squared 34.0% 33.7% 34.9% 33.5% 34.1% 34.1% 0.5% 

MAE 86.3 86.4 86.1 87.2 86.8 86.6 0.4 

MSE 16,591.6 16,266.2 15,981.2 16,803.5 16,616.8 16,451.8 326.5 

 

Table 21 shows the individual IVs that resulted from the best model on all five 

folds. An RA Model throughout the paper is defined as the set of IVs used to predict the 

DV. For all five folds, the best model had 15 IVs. These are listed in Table 21, but it is 

important to realize that this list implies a 16-way interaction effect involving the 15 IVs 

and the DV. That is, if these 15 IVs were given single letter abbreviations from A to V 

from  

Table 16 and if the DV were called Z, then the overall RA Best Model would be 

written as BFHIKLMOPQRSTUVZ. Table 21 orders the variables to see where they are the 

same and different across all five folds. Of these 15 IVs, 12 (variables 4 through 15) were 

identical in the best models of all five folds. Only 3 IVs (variables 1 to 3) differed among 

these five best models. Bolded variables are the variables used in the backup model and 

are the same variables for all 5 folds. As noted and discussed below, an “overall best 
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model” was selected from these five best models; this overall best RA Model was the 

model for Fold 5. 

Table 21 RA best model Independent Variables 

 Fold 1 Fold 2 Fold 3 Fold 4 
Fold 5 Best 

Overall Model 

1 NLMinRTD NetLoadRTD NLMinRTD NetLoadRTD VERRTD 

2 LoadRTD LoadFMM LoadFMM LoadRTD LoadFMM 

3 VERFMM VERFMM VERFMM VERFMM NLFMM 

4 VERFCFHfrtegt VERFCFHfrtegt VERFCFHfrtegt VERFCFHfrtegt VERFCFHfrtegt 

5 VERFCFHninsx VERFCFHninsx VERFCFHninsx VERFCFHninsx VERFCFHninsx 

6 VERFCFHonetwty VERFCFHonetwty VERFCFHonetwty VERFCFHonetwty VERFCFHonetwty 

7 HLHLLH HLHLLH HLHLLH HLHLLH HLHLLH 

8 SunriseSunset SunriseSunset SunriseSunset SunriseSunset SunriseSunset 

9 HourofDayx2hrxgrou
ps 

HourofDayx2hrxgroup
s 

HourofDayx2hrxgroup
s 

HourofDayx2hrxgroup
s 

HourofDayx2hrxg
roups 10 NLFCErrorBothx2x1d

ayx 
NLFCErrorBothx2x1da

yx 
NLFCErrorBothx2x1da

yx 
NLFCErrorBothx2x1da

yx 
NLFCErrorBothx2

x1dayx 11 NLFCErrorBothx2x20
dayx 

NLFCErrorBothx2x20d
ayx 

NLFCErrorBothx2x20d
ayx 

NLFCErrorBothx2x20d
ayx 

NLFCErrorBothx2
x20dayx 12 LoadRTD24hravg LoadRTD24hravg LoadRTD24hravg LoadRTD24hravg LoadRTD24hravg 

13 LoadRTD24hrstdv LoadRTD24hrstdv LoadRTD24hrstdv LoadRTD24hrstdv LoadRTD24hrstdv 

14 LoadRTD7dayavg LoadRTD7dayavg LoadRTD7dayavg LoadRTD7dayavg LoadRTD7dayavg 

15 LoadRTD7daystdv LoadRTD7daystdv LoadRTD7daystdv LoadRTD7daystdv LoadRTD7daystdv 

 

Of the variables that differed among the five folds, VERFMM is found in four of 

five folds. LoadFMM is found in three of five folds. NLMinRTD, LoadRTD, and 

NetLoadRTD are found in two of five folds. VERRTD and NLFMM are unique to fold 5. 

Even though variables 1–3 are not the same across all five folds, these variables are 

related to each other. For example, NLMinRTD and NetLoadRTD are variations of the 

same information; NLMinRTD is the minimum of NetLoadRTD; LoadRTD is the EIM 5 min 

load optimization forecast (for each 15 min time interval, there are 3, 5-minute load 

optimization forecasts, the value in the dataset is equal to the average of these 3 

values); LoadFMM is the EIM 15 min load optimization forecast. Similarly, VERRTD is the 
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five minute EIM VER forecast, and VERFMM is the fifteen minute EIM VER forecast. In all 

folds, the model included one Net Load value (NetLoadRTD, NLMinRTD, or NLFMM), one 

Load value (LoadRTD, or LoadFMM), and one VER value (VERRTD or VERFMM). 

Table 22 shows Fold 5 variables ranked in order of prediction efficacy of the DV 

using the information theoretic measure of percent reduction of uncertainty in the DV 

given the IV on training data. In the first table under “Joint Prediction Efficacy”, the 

ranking is based on the joint (cumulative) ability of the IVs to predict the DV. For 

example, if the model was allowed only one IV, it would be HoursofDayx2hrxgroups 

(Hour of the day). If the model was only allowed two IVs, HourofDayx2hrxgroups and 

VERFCFHfrtegt (48 Hour Wind Forecast), ranked 1 and 2, respectively, would best 

predict the DV, reducing uncertainty in the DV by 7.47% jointly. If only allowed three IVs, 

HourofDayx2hrxgroups, VERFCFHfrtegt, and SunriseSunset would best predict the DV, 

reducing uncertainty in the DV by 7.76% jointly, and so on. In the second table under 

“Individual Prediction Efficacy,” the IVs from the best fold 5 model are ranked based on 

their individual ability to predict the DV. For example, on its own, 

HourofDayx2hrxgroups reduces uncertainty in the DV by 5.36%, SunriseSunset reduces 

uncertainty in the DV by 1.98%, and so on. One can also see that, for example, variable 

15 (LoadRTD7daystdv) individually only reduces uncertainty in the DV by 0.02%, 

however jointly in the first table, when combined with the prior 14 variables, reduces 

uncertainty in the DV by 2.18% (60.90–58.72%). Note that the variables in the backup 
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model (shown in bold) are not the first five individually predictive variables as may be 

expected due to the condition that the backup model must have 0% missing data. 

Table 22 Rank order of variables for Fold 5 Best Overall Model 

 Joint Prediction Efficacy Individual Prediction Efficacy 

 Variable Name 

Variable 
Name 
Single 
Letter 

% Reduction 
Uncertainty in 
the DV Given 

IVs 

Variable Name 

Variable 
Name 
Single 
Letter 

% reduction 
Uncertainty in 
the DV Given 

IVs 

1 HourofDayx2hrxgroups P 5.36% HourofDayx2hrxgroups P 5.36% 

2 VERFCFHfrtegt I 7.47% SunriseSunset O 1.98% 

3 SunriseSunset O 7.76% VERFCFHfrtegt I 1.32% 

4 HLHLLH M 8.01% VERFCFHninsx K 1.05% 

5 NLFCErrorBothx2x20day
x 

R 9.00% VERFCFHonetwty L 0.73% 

6 LoadRTD7dayavg U 10.52% NLFCErrorBothx2x1dayx Q 0.51% 

7 NLFCErrorBothx2x1day
x 

Q 13.48% NLFCErrorBothx2x20dayx R 0.32% 

8 VERRTD B 19.39% HLHLLH M 0.30% 

9 LoadRTD24hrstdv T 29.43% LoadFMM F 0.22% 

10 VERFCFHonetwty L 39.55% NLFMM H 0.14% 

11 LoadFMM F 46.27% LoadRTD7dayavg U 0.09% 

12 VERFCFHninsx K 51.39% LoadRTD24hravg S 0.08% 

13 NLFMM H 55.35% LoadRTD7daystdv V 0.03% 

14 LoadRTD24hravg S 58.72% VERRTD B 0.03% 

15 LoadRTD7daystdv V 60.90% LoadRTD24hrstdv T 0.02% 

 

Best BN model point estimate results 

Theoretically the BN method has the potential to perform as well as RA loopless 

models (Harris, 2021) which were used in this analysis. However, the ABN algorithm 

resulted in a simpler BN (less degrees of freedom) than the best RA Model. The prior link 

probability restrictions discussed in the section titled “Methods” result in a BN that is 

simpler in terms of model complexity and correspondingly give worse prediction results 
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than the RA Models. The best BN for each fold resulted in an average R squared of 

13.9%, an MAE of 102.7 and an MSE of 21,387.8. 

Figure 42 shows the best overall BN from Fold 5 which performed best across all 

five folds on the percent correct statistic. In this model, the IV LoadRTD7dayAvg (single 

letter notation: U) is the most interconnected IV, with seven IV-IV edge connections. In 

RA notation (Harris, 2021), using the single letter abbreviations of the variables listed in  

Table 16, this best BN model is: 

ABFENUSZ : BGUAERZ : CFDAERZ : DQHCFZ : ERCQBPATZ : FDCAZ : GLBZ : HKDQZ : IJLZ : 
JIKOZ : KJHZ : LIGZ : MPUZ : NUVZ : OJSPZ : POEAMZ : QHDZ : RCBEZ : SOUAZ : TEVZ : 
UMSBANZ : VNUABTZ. 

 

Figure 42 Best Overall BN 
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This includes all 22 IVs, which can be compared to the overall best RA Model, 

which includes only 15 IVs. That the RA model performed better than the BN model is, 

however, not actually surprising. In the RA Model, all 15 IVs are connected to one 

another and with the DV in a single very high ordinality predictive relation, while in this 

BN model there are 22 relations, of which the one with the most variables includes only 

8 IVs, and most relations have many fewer IVs. Thus, while the best BN model includes 

all possible IVs as predictive, their interconnections are less extensive than variable 

interconnections in the RA Model; this lesser interconnectedness results in lower 

complexity in terms of degrees of freedom and lower prediction efficacy. Although the 

RA and BN methods have the potential to produce identical analytical results, the search 

algorithms specific to the particular Genie BN software produce significantly different 

results. These search algorithms implemented in the Genie BN software are, however, 

standard BN search algorithms. 

A secondary test was performed to vary the prior link probability restriction from 

0.001 to 0.002, 0.005, 0.01, and 0.0005, which has the effect of adding or removing 

edge connections between IVs, however this did not improve the models performance 

based on percent correct on validation data.  

 

Table 23 shows the results of this test. Therefore, the standard link probability of 

0.001 was used and resulted in the best BN model shown above. 
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Table 23 Test of different prior link probabilities 

 Link Probability Percent Correct Validation 
Best Model 0.0010 30.8% 

Test 1 0.0020 30.3% 
Test 2 0.0050 30.4% 
Test 3 0.0100 30.2% 
Test 4 0.0005 30.7% 

 

BN Comparison to RA Best Model 

As a further supplementary analysis, the 15 IVs from the best RA Model were 

used to construct a BN that is similar to the best loopless RA Model. To do this, all IVs 

were connected to all other IVs, in addition to the standard IV-DV edge connection. This 

construct shown in Figure 43 is nearly analytically equivalent to the best Fold 5 RA 

Model. In RA notation (Harris, 2021), this BN model would be exactly the same as the 

overall best RA model, namely BFHIKLMOPQRSTUVZ. The only difference is that the BN 

model uses the EM algorithm to impute missing values, or in this case missing IV states 

(there are no missing values in the raw dataset), whereas the RA Model uses a simpler 

backup model that is embedded in the best model to impute values for missing IV 

states. The prediction results of this show that RA and BN are nearly equivalent, as 

expected. The BN test was performed on the BCD training fold, and results on the A Test 

fold. For RA, the results are, 34.1% for R squared, 86.8 for MAE, and 16,616.8 for MSE. 

For the fully connected BN, the results are, 33.8% for R squared, 87.0 for MAE, and 

16,719.7 for MSE. The RA and BN results are nearly identical, and for BN, these results 
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are far superior to the best ABN model found which had performance statistics of: 

14.4% for R squared, 102.7 for MAE, and 21,509.5 for MSE. This analysis shows that BNs 

have the potential to produce models equivalent or nearly equivalent to RA. However, 

restrictions on IV interconnections, as well as significantly more computational cost for 

more complex BN models due to use of the EM algorithm, typically prevent the best BN 

model from allowing fully interconnected IVs which is standard and computationally 

very fast in loopless RA Models. 

 

Figure 43 Best RA Model equivalent BN 

To further illustrate this point, a simpler toy model was developed below to 

show that BNs with different edge orientations are equivalent in terms of prediction, 
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and that they are also fully equivalent to their RA counterpart. The theoretical basis for 

this concept was described extensively in prior work (Harris, 2021). This simpler toy 

example with only four variables was used to illustrate this feature of RA and BN 

because there are no missing states or missing values, thus the EM algorithm is not 

used, and a backup model also is not needed in RA to impute these missing values, so 

the calculated results for RA and BN are expected to be exactly equivalent. The results in 

Table 24 shows they indeed are equivalent. 

Table 24 RA and BN Toy Example Results 

 R Squared MAE MSE 
RA ABC:ABZ 12.935% 103.738 21,842.710 

BN1 12.936% 103.739 21,842.952 
BN2 12.936% 103.739 21,842.952 
BN3 12.936% 103.739 21,842.952 
BN4 12.936% 103.739 21,842.952 
BN6 12.936% 103.739 21,842.952 

BN12 12.936% 103.739 21,842.952 
 

Four variables were chosen for the toy example: NLFCErrorBothA as the DV, 

HourofDay, HLH/LLH, NLFCErrorBothA2 × 1dayx as IVs. Figure 44 shows the RA specific 

graph G1 with these four variables and BN1, BN3, BN4, BN6 and BN12 described in prior 

work (Harris, 2021) and their corresponding network structures. All of these graphs have 

the same independence structure and thus, when data is applied, produce the same 

calculated conditional probability distributions and thus equivalent performance 

statistic results. 
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Figure 44 RA and BN Toy Examples 

Table 24 shows the R squared, MAE, and MSE performance statistics for these 

graphs. Fold BCD was used to train each model, results shown are on validation Fold E. 

There is only a slight difference between the RA performance results and the BN 

performance results shown in Table 24. This is due to the OCCAM software using five 

significant digits for the RA calculations and the Genie Software that uses six significant 

digits. 

SVM and NN point estimate results 

As shown in the performance results in Table 19, among the four SVM kernels, 

rbf performed best, with an average R squared of 7.5% which is near identical to the 

Industry Model at 7.5%. MAE was 108.5 and MSE 22,974.1 compared to the Industry 

Model of 121.7 and 27,339.7, respectively. Rbf, although the best performing among 

SVR kernels, performed worse than RA, BN and MLP. MLP performed better than the 

Industry Model, BN, and SVR, but not as well as RA. MLP resulted in an average R 
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squared of 18.1%, MAE of 99.9 and MSE of 20,343.7 compared to the Industry Model of 

7.5%, 121.7 and 27,339.7, respectively. 

Comparing to the best RA Model which included 15 of 22 possible IVs, SVR and 

MLP performed best with 12 of 22 IVs as shown in Table 18. Of the 12, six were found in 

the best RA Model, four were also found in the RA backup model. Table 25 summarizes 

IVs found in the Best RA Model, SVR/MLP Model, and RA Backup Model, showing only 

those IVs that occur in at least two of these three models. 

Table 25 IVs found in Best RA, NN/SVR, RA Backup Models 

 
Fold 5 Best Overall RA 

Model 
MLP/SVR RA Backup Model 

1 VERFC_FH48fill VERFC_FH48fill VERFC_FH48fill 
2 Sunrise/Sunset Sunrise/Sunset Sunrise/Sunset 
3 HourofDayx2hrxgroups HourofDayx2hrxgroups HourofDayx2hrxgroups 
4 NLFCErrorBothx2x1dayx NLFCErrorBothx2x1dayx NLFCErrorBothx2x1dayx 
5 VERFC_FH96fill VERFC_FH96fill  
6 VERFC_FH120fill VERFC_FH120fill  
7 HLHLLH  HLHLLH 

 

Results of INC/DEC prediction: comparing RA Model to Industry Model 

RA INC and DEC prediction procedure 

The previous section reports point estimate results for the four machine learning 

predictive methods. This section uses the RA Model, which performed best overall in 

point estimate predictions relative to the other machine learning methods, to generate 

INC and DEC predictions so that they can be compared to the results of the Industry 

Model INC and DEC predictions. 
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The Industry Model generates an upper INC requirement and the lower DEC 

requirement for a given future hour. As described previously, it uses the DV values over 

the prior 40 days, given the hour of the day, and establishes the INC requirement as the 

97.5th percentile over the prior 40 day results and the DEC requirement as the 2.5th 

percentile over the prior 40 day results for weekdays. For weekends and holidays the DV 

is captured over the prior 20 weekend days. Although not a statistical prediction, this 

approach makes a persistence prediction (a prediction based on the prior history of the 

DV) about the future uncertainty of the DV. The Industry Model is not an analytical 

model that uses IVs to predict the DV; it is a purely empirical model that looks at past 

values of the DV. 

As described in the “Best RA Model point estimate results” section, the overall 

best RA Model (from here forward called the “primary RA Model” to distinguish it from 

the backup model), is the best performing model among the machine learning methods 

tested for point estimate prediction efficacy. The midpoint (median) point estimate 

prediction of this primary RA Model for a given IV state is used as the reference point 

from which to generate an upper INC and lower DEC range prediction which is then 

tested against the performance of the INC and DEC threshold for each hour from the 

Industry Model. 

However, the RA INC and DEC predictions were determined not from the 

primary RA Model itself, but rather from the backup model that was derived from 

(embedded in) this primary RA Model, its IVs being a subset of those in the primary 
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model. This is because the average frequency for individual IV states in the primary RA 

Model is too low for useful statistics. For the primary RA Model, the frequency of 

occurrence for a given IV state, averaged over all IV states, is 2.6 observations; for the 

backup model the average frequency is 425. The backup model offers a much higher 

frequency of observations for a given IV state, thus sampling an upper and lower 

threshold from this sample space is more robust. 

From the primary RA Model, to generate the upper INC and lower DEC threshold 

predictions for a given IV state, the following RA INC and DEC prediction procedure was 

applied: For any given IV state, 

1. Use the primary RA Model to predict the “primary” expected median value of 

the DV using the B-Systems procedure described in the section titled “Methods.” 

2. Use the backup model (derived from the primary RA Model) to predict the 

expected median value for the DV using the B-Systems procedure. 

3. Using the backup model, sample an upper and lower percentile (percentile 

amounts to be discussed in the paragraph below). 

4. Subtract the lower percentile amount from the backup median found in step 2, 

and add it to the primary RA Model median found in step 1. 

5. Subtract the upper percentile amount from the backup median found in step 2, 

and add it to the primary RA Model median found in step 1. 
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The following pseudocode is intended to further clarify the RA INC and DEC 

prediction procedure above. 

Definitions: 

 n = the number of IV states (all possible combinations of independent variable 

states) 

 PEM = primary expected median = expected median DV value for an IV state 

(step 1 “primary”) 

 BEM = backup expected median = expected median DV value for an IV state 

(step 2 “backup”) 

 LPV = lower percentile value = lower percentile value for an IV state (step 3) 

 UPV = upper percentile value = upper percentile value for an IV state (step 3) 

Pseudo code for INC and DEC requirements for IV state j: 

For IV state j from 1 to n. 

INC(j) = UPV(j) – BEM(j) + PEM(j)  

DEC(j) = LPV(j) – BEM(j) + PEM(j)  

The result is a predicted upper INC and lower DEC threshold for each given IV 

state. The prediction is anchored on the median prediction for the IV state from the 

primary RA Model, but the range of uncertainty for a given IV state is generated from 

the backup model. 
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This procedure is represented in Figure 45. On the left of the graphic in Figure 

45, “A”, for a given IV state, is the difference between the backup model median 

prediction for that IV state and the 97.5th percentile for the give IV state. “B” is the 

difference between the backup model median prediction and the 2.5th percentile. On 

the right hand side of the graphic, the INC prediction for a given IV state is the median 

prediction from the primary RA Model plus “A” and the DEC prediction for the same IV 

state is the primary RA Model median prediction less “B”. 

 

Figure 45 RA calculation of INC and DEC for a given IV state 

The resulting model from this procedure will simply be called the “RA Model” for 

the remainder of the section. 

Metrics for comparing INC and DEC predictions efficacy  

The Industry Model is compared to the RA Model using four metrics the CAISO 

(CAISO, 2022c) uses to assess the efficacy of the Industry Model predictions of the FRST 

INC and DEC requirement. These four metrics are calculated and compared between the 

Industry Model and the RA Model. The four metrics are: 
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Average Requirement—The average INC requirement and average DEC 

requirement in MW over all observations in a given fold. Computed the same for the 

Industry Model and the RA Model. The higher the average requirement, the higher the 

cost of maintaining enough capacity to access the market. The equation for this metric is 

as follows: 

1. Average INC Requirement =
1

n
 INC Requirement୨

୨

  

2. Average DEC Requirement =
1

n
 DEC Requirement୨

୨

  

where j is a given observation, n is the total number of observations in each fold 

(34,435). 

Coverage—A measure of (the inverse of) error. Measured as the percentage of 

time that the observed net load imbalance falls within the model-produced INC and DEC 

requirement. The lower the coverage, the higher the frequency that the net load 

imbalance falls outside the INC and DEC requirement. The thresholds are set at 2.5% 

and 97.5% based on historical data, so the coverage aims at 95% or an error of 5%, but 

when applied to unseen data, the Industry Model is actually in error 7% of the time. 

Closeness—The average difference in MW between the observed net load 

imbalance and the model-produced requirement when the observed net load imbalance 

falls either inside or outside the INC or DEC requirement. If the observed net load 

imbalance is positive, it is measured against the INC requirement; if negative, it is 
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measured against the DEC requirement. This metric measures how much the model is 

either over-estimating or under-estimating the capacity need, so the metric is actually 

an inverse of closeness. In this way, the metric can be thought of as Exceedance plus 

lost opportunity cost. The Closeness metric is reported separately for the INC and DEC 

requirements. 

Exceedance—The average difference in MW between the observed net load 

imbalance and the model-produced requirement only when the observed net load 

imbalance falls outside the requirement, i.e., how much is the model under-estimating 

the need. The higher the exceedance value, the larger the gap between the INC or DEC 

capacity a participant contributed and what they actually needed, which can result in 

reliability issues if other market participants do not have unused capacity bid into the 

market. The Exceedance metric is also reported separately for the INC and DEC 

requirements. 

For these metrics, one wants Average Requirement to be low, Coverage to be 

high, Closeness to be low, and Exceedance to be low. 

To illustrate these metrics, Figure 46 provides 16 hypothetical examples of the 

INC and DEC requirements for the same time period of the RA Model and Industry 

Model, using the same 2.5%/97.5% thresholds, and of the (hypothetically) observed net 

load imbalance (the DV) for this time period. Each time period represents a different IV 

state for the RA Model and different historical data for the Industry Model; both the RA 
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Model and the Industry Model thus have different INC and DEC requirements in 

different time periods. 

 

Figure 46 FRST Industry Model and RA Model Predictions Example 

For example, in Figure 46, the Average Requirement metric for INC reserves is 

computed by taking the average of all the light blue bars for the RA Model and the 

average of all the light orange bars for the Industry Model.  

Table 26 shows the data from Figure 46 in tabular form for ease of review. 

Where bolded, the RA or Industry Model INC or DEC prediction is less than actual 

Observed Net Load Imbalance which results in an error and therefore a reduction in the 

Coverage metric. When not bolded, the RA or Industry Model INC or DEC prediction is 

greater than actual Observed Net Load Imbalance meaning the INC or DEC capacity 

requirement was sufficient to meet the Observed Net Load Imbalance in that interval. 

Note that Figure 46 and the accompanying Table 26 are illustrative, and do not show the 
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advantages of the RA Model over the Industry Model; these advantages are clearly 

shown the Section titled “Industry Model and RA Model INC and DEC Prediction 

Results.” 

Table 26 Observed Net Load Imbalance and INC and DEC predictions for each interval from Figure 46 

  Observation number from Figure 46 
    1 2 3 4 5 6 7 8 
1 RA Model INC 187 MW 295 MW 118 MW 396 MW 275 MW 182 MW 593 MW 258 MW 
2 Obs. Net Load 

Imb. 
171 MW 363 MW -57 MW 106 MW 65 MW -422 MW 425 MW -132 MW 

3 RA Model DEC -318 
MW 

-472 MW -276 
MW 

-165 MW -124 
MW 

-586 MW -324 MW -388 MW 
            
4 Industry INC 310 MW 242 MW 152 MW 323 MW 120 MW 253 MW 192 MW 232 MW 
5 Obs. Net Load 

Imb. 
171 MW 363 MW -57 MW 106 MW 65 MW -422 MW 425 MW -132 MW 

6 Industry DEC -608 
MW 

-581 MW -286 
MW 

-115 MW -316 
MW 

-278 MW -333 MW -356 MW 
            
    9 10 11 12 13 14 15 16 
7 RA Model INC 326 MW 423 MW 51 MW 125 MW 166 MW 93 MW 104 MW 188 MW 
8 Obs. Net Load 

Imb. 
91 MW 193 MW -384 

MW 
59 MW -16 MW 143 MW -139 MW -95 MW 

9 RA Model DEC -185 
MW 

-90 MW -340 
MW 

-171 MW -108 
MW 

-130 MW -341 MW -579 MW 
            

10 Industry Model 
INC 

268 MW 434 MW 192 MW 101 MW 493 MW 261 MW 421 MW 197 MW 
11 Obs. Net Load 

Imb. 
91 MW 193 MW -384 

MW 
59 MW -16 MW 143 MW -139 MW -95 MW 

12 Industry Model 
DEC 

-287 
MW 

-276 MW -376 
MW 

-383 MW -602 
MW 

-276 MW -316 MW -327 MW 
          

The Coverage metric is computed by summing the number of times the observed 

net load imbalance falls within the INC and DEC range over all time periods. Time period 

7, in Figure 46 or Table 26, shows where the RA Model has Coverage and the Industry 

Model does not as the observed net load imbalance is within the RA INC Requirement 

but greater than the Industry Model INC requirement. For the 16 time periods in the 

figure, the RA Model has Coverage in 13 time periods, while the Industry Model has 

Coverage in 12 periods. 
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The Closeness metric for INC reserves is computed as the difference between the 

observed net load imbalance and the INC requirement when the observed net load 

imbalance is positive, and the average over all time periods. The Closeness metric is the 

same for DEC except it’s applied against the DEC requirement when the observed net 

load imbalance is negative. Time period 14 in Figure 46 or Table 26 provides an example 

where the RA INC Closeness is slightly better than the Industry Model INC Closeness. 

However, this highlights the fact that Coverage is more important than Closeness 

because in this example even though the RA Model INC requirement is closer to the 

observed net load imbalance, the RA Model is in error whereas the Industry Model is 

not. 

The Exceedance metric is the average difference between observed net load 

imbalance and the INC requirement when the observed net load imbalance is greater 

than the INC requirement. The same is computed for DEC when the observed net load 

imbalance is less than the DEC requirement. Time period 2, in Figure 46 or Table 26, 

shows an example where both the observed net load imbalance exceeds the RA Model 

INC requirement and the BN Model INC requirement but it is exceeded more for the 

Industry Model than the RA Model. 

Table 27 shows summary statistics for the four metrics computed based on the 

16 samples from Figure 46. For these metrics, one wants Average Requirement to be 

low, Coverage to be high, Closeness to be low, and Exceedance to be low. 
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Table 27 Calculated metrics from Figure 46 example 

 Industry Model RA Model Delta RA Less Industry 

 INC DEC Total INC DEC Total INC DEC Total 

Avg. Requirement 261.9 357.1 619.1 236.2 287.3 523.5 (25.7) (69.8) (95.6) 

Coverage 87.5% 87.5% 75.0% 87.5% 93.8% 81.3% 0.0% 6.3% 6.3% 

Closeness 149.2 228.8 N/A 148.1 208.9 N/A (1.1) (19.8) N/A 

Exceedance 177.1 75.9 N/A 59.3 43.3 N/A (117.9) (32.6) N/A 

 

Industry Model and RA Model INC and DEC predictions results 

A test was performed on the RA Model to compare the prediction efficacy to 

that of the Industry Model. The Average Requirement, Coverage, Closeness, and 

Exceedance metrics are reported for the Industry Model and the RA Model and the 

delta between them. 

The test scaled the RA Model upper and lower threshold percentiles so that the 

RA INC and DEC produced the exact same Coverage between the two models. For 

example, referring to Figure 46, this would have meant scaling the RA upper and lower 

thresholds so that of the 16 observations, there were the exact same number of INC 

errors and DEC errors between the Industry Model and the RA Model: when the 

observed net load imbalance was positive, it fell outside the INC requirement the same 

number of times in both the Industry Model and the RA Model, and when the observed 

net load balance was negative, it fell outside the DEC requirement the same number of 

times in both the Industry Model and the RA Model. This test is intended to see if after 

fixing Coverage of the RA Model to be identical to the Industry Model the Average 
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Requirement, Closeness and Exceedance metrics are reduced under the RA Model 

relative to the Industry Model. 

Reduction in all three other metrics for the RA Model is indeed found. Table 28 

shows the resulting statistics. As can be seen in Table 28, while Coverage is held the 

same for the Industry and RA Model, the Average Requirement, Closeness and 

Exceedance are all reduced relative to the Industry Model. This test shows that if the 

Industry Model Coverage (error rate) is acceptable, because the RA Model makes a 

more accurate prediction of the upper and lower INC and DEC thresholds, the Average 

Requirement for INC and DECs can be reduced. On average, 62.7 MW less INC, 88.2 MW 

less DEC, and 150.9 MW less total capacity would have to be held, while still maintaining 

the same Coverage. Further, Exceedance is also lower, 7.1 MW lower for INC, 12.3 MW 

lower for DEC. Even though Coverage is the same as the Industry Model, when the 

observed net load imbalance exceeds the RA Model INC or DEC requirement, it exceeds 

by less, on average, than the Industry Model. 
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Table 28 Final Results 

 Industry Model RA Model Delta RA Less Industry 

 INC DEC Total INC DEC Total INC DEC Total 

Avg. Requirement 272.8 322.4 595.3 210.1 234.3 444.3 (62.7) (88.2) (150.9) 

Coverage 95.4% 97.6% 93.0% 95.4% 97.6% 93.0% 0.0% 0.0% 0.0% 

Closeness 190.2 249.1 N/A 153.1 200.3 N/A (37.1) (48.8) N/A 

Exceedance 99.6 121.3 N/A 92.4 109.0 N/A (7.1) (12.3) N/A 

 

Figure 47 shows more detail about the results of Test 1 and the Exceedance 

metric. Given the same 93% Coverage (7% error) for the RA and Industry Model, when 

the RA Model (blue bars) is in error, the error is smaller than the Industry Model. 

 

Figure 47 Test Results, Total Error and MW magnitude 

RA Backup Model INC and DEC prediction results 

The RA backup model was also tested by itself to show that the point estimate 

and using the RA INC and DEC prediction procedure is superior to using the backup 

model by itself. The model was tested on BCD training data and A test data. The backup 

model performed better than the Industry Model on the single point prediction, but 
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worse than the RA Model in terms of R squared, MAE, and MSE, as expected. Table 29 

shows a comparison of the resulting summary statistics. On this fifth fold, the RA Backup 

Model also performed better on R squared, MAE, and MSE than the BN model and all 

SVR models, but not as well as the MLP model. 

Table 29 RA Backup Model Point Estimate Summary Statistics 

 Industry Model RA Model Backup RA Model 
R squared 7.5% 34.1% 15.0% 

MAE 121.7 86.8 102.4 
MSE 27,339.7 16,616.8 21,409.9 

 

The backup model was also assessed for its ability to predict INC and DEC 

capacity using the same test previously applied to the RA Model. The test held Coverage 

equal to the Industry Model to see if the Average Requirement was reduced.  

Table 30 shows how the backup model performed relative to the RA Model. The 

three numbers shown are deltas from the best RA Model. For the same Coverage, the 

backup model required 64.8 MW more Total capacity than the RA Model. This 

comparison shows that the backup model (where INC and DEC are applied to the 

backup model point prediction) did not perform as well as the Best RA Model (where 

the INC and DEC of the backup model are applied to the Best RA Model point 

prediction). 
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Table 30 RA Backup Model INC and DEC Predictions Compared to RA Model 

 Increase in Avg. Requirement 
Total Avg. 64.8 
INC Avg. 30.3 
DEC Avg. 34.5 

 

Discussion 

The RA method performed better than the other machine learning methods 

applied in this research when comparing single point estimate predictions for a given 

observation (section titled “Results of DV prediction: comparing ML methods to Industry 

Model”). Our presumption is that RA performed better than the other methods because 

it is able to efficiently determine the optimal set of IVs to be used in the model whereas 

MLP and SVR used f-regression to select the predictive IVs, and the BN algorithm is 

limited in network complexity by the computational cost of the EM algorithm to make 

predictions about missing values or missing states. Although we did not perform a 

hyper-parameter exploration for SVR and NN as that would have been an entire study of 

its own, it was not warranted for the actual purpose of the first part of the study which 

was to use point estimate prediction success to select a machine learning method to 

model INC and DEC predictions in the second part of the study. Our use of RA and BN 

was similar in that we used the simplest form of RA and did not perform any 

preprocessing for RA or BN. Thus all four ML methods did not utilize an elaborate pre-

processing and were thus treated equally. 
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The best RA Model resulted in 15 of the 22 possible IVs being included in the 

model. Of these, the most predictive variables are hour of day (HourofDayx2hrxgroups), 

the 48 hour wind forecast (VERFCFHFrtegt), and Sunrise/Sunset (SunriseSunset) found in  

Table 22. These variables were also found and included in the best SVM and MLP 

models. The Sunrise/Sunset IV is a time based IV that reflects 5 a.m.–7 a.m. PST and 5 

p.m.–7 p.m. PST. It is a simple variable that was intended to capture some of the 

morning and evening solar and load ramp uncertainty. 

Similar to the Sunrise/Sunset variable, the 48 hour wind forecast variable reflects 

times of energy imbalance uncertainty. Its information content is useful since knowing 

the wind forecast provides information about the maximum amount of INC that could 

be needed and maximum amount of DEC that could be needed. Additionally, the 

relationship between wind power output and wind speed shown in Figure 48 illustrates 

why the wind forecast is an important predictive variable. The greatest uncertainty in 

wind power output is when the wind forecast is in the middle of the nameplate (total 

possible output) of a plant. At low and high wind power output, the output changes 

little for small changes in wind speed, whereas at medium output, the output changes 

more significantly for the same small change in wind speed. Thus, actual wind power 

output is more variable when forecast output is around half of the plant nameplate. The 

RA Model is improved relative to the Industry Model by encompassing the wind 

forecast. The CAISO has been considering adjusting its methodology to account for the 

wind forecast, and the RA Model results and empirical results suggest that the 
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predictive information contained in the wind forecast has the potential to significantly 

improve INC and DEC predictions. 

 

Figure 48 Relationship of Wind Power Output to Wind Speed 

Additionally, interesting, the best RA Model, and each best model from all 5 folds 

shown in Table 21 included the 48 h wind forecast, 96 h wind forecast and 120 h wind 

forecast. This is an indication that there is additional, significant information, contained 

in the 96 and 120 h wind forecasts not contained in the 48 h wind forecast. This is 

supported by work previously done at Bonneville Power Administration. This work 

found that larger differences in wind power output forecasts of different time durations 

result in increased uncertainty in actual wind power output, while smaller differences in 

wind power output forecasts of different time durations result in reduced uncertainty in 

actual wind power output. Our presumption is that the differences between forecasts of 

wind power output of different time durations is a result of greater or less uncertainty in 

the weather pattern. While the CAISO has considered adjusting their model to account 

for the wind forecast, this research suggests that including the closest-in wind forecast is 



168 
 

useful and also including forecasts of longer time durations could further improve the 

prediction results. 

Last, it was surprising that each of the best fold models from Table 21 contained 

an RTD variable, Load variable and FMM variable but never two of the same type of 

variables in a single model. For example, the best Fold 1 model contained NLMinRTD 

and Fold 2 contained NetLoad RTD, which are related but different IVs, but no best fold 

model included both of these Net Load variables, nor both Load or FMM variables. 

Conclusions 
The primary aim of this research was to build an INC and DEC capacity prediction 

model that improves upon the current Industry Model. The results in this paper (section 

titled “Results of INC/DEC prediction: comparing RA Model to Industry Model”) show 

that the best RA Model does in fact do that. As shown in the test results, the best RA 

Model reduces Total reserves relative to the Industry Model by 150.9 MW on average, a 

reduction of 25.4%; INC reserves are reduced on average 62.7 MW, a reduction of 23.0% 

relative to the Industry Model, while DEC reserves are reduced on average 88.2 MW, a 

reduction of 27.3. Additionally, Closeness and Exceedance metrics are also reduced 

significantly relative to the Industry Model. Conservatively, reducing the reserve 

requirement by this amount would result in approximately $4 million (INC savings would 

be $168/MW-day × 365 days × 62.7 MW = $3.84 million. DEC savings would be 

$12/MW-day × 365 days × 88.2 MW = $386 thousand) in annual savings for the 
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Bonneville Power Administration which is one of nineteen WEIM participants and which 

is the focus of the data analysis in this paper. 

This paper also discusses the results and theoretical comparisons between RA 

and BN as they are both machine learning methods that are analytically very similar. 

This research built on prior work (Harris, 2021) and used a concrete example to show 

that the best RA Model identified in this research can be replicated exactly in a BN. 

However, the BN search algorithm, in particular the computational cost of the EM 

algorithm, prevent such complex BN models from being found by standard BN search 

algorithms. Further, this research (Figure 44) used toy examples to show that several 

BNs with different edge topologies are analytically equivalent to a single RA graph, these 

toy examples further amplify and illustrate prior work (Harris, 2021). 

Another aim of this research was to identify predictive variables of net load 

imbalance. This research also accomplishes this aim showing that wind forecast, 

sunrise/sunset, and hour of day are primary predictors of net load imbalance and should 

be considered for inclusion in any future industry application. 

Logical extensions of the methods comparison could test other pre-processing 

steps and hyper-parameter exploration for MLP and SVR such as z-score (Buzau, 2018), 

clustering evaluation criteria (Buzau, 2018; Kong, 2021) and other techniques (Avila, 

2018; Ramos, 2016) or using the IVs determined by the best RA model as the IVs used in 

MLP and SVR. Additionally, other ML methods could be tested for prediction efficacy. 
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Additionally, the use of more complex RA models, such as models with loops and state-

based models, could be investigated. Prior research on electricity data has shown that 

different ML methods have certain advantages and disadvantages given the particular 

application (Sheraz, 2021). Further extensions could also refine the Sunrise/Sunset 

variable to capture the optimal Sunrise/Sunset timeframe for each WEIM participant 

where solar penetration is the highest, or more acutely a focus on the window of time 

of peak net load ramp or decline. 
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Afterword 

Summary of Original Contributions 

Paper 1 develops the joint lattice of RA and BN general graphs for four variables 

which increases the number of general graphs with unique independence structures 

from 20 in the four variable RA lattice and 20 in the four variable BN lattice to 30 in the 

joint RA-BN lattice, and when variable labels are added, increases the number of unique 

specific graphs from 114 in the RA lattice and 185 in the BN lattice to 238 in the joint 

lattice.  

The integration of the two lattices offers a richer and more expansive way to 

model complex systems leveraging the V-structure unique to BN graphs and the 

allowability of cycles in RA graphs. The joint RA-BN lattice of general graphs presented in 

this paper expands the set of general graphs with unique independence structures (or, 

equivalently, with unique interdependence structures) beyond what was previously 

available by either RA alone or BN alone, thus allowing for representations of complex 

systems which are (i) more accurate relative to data and/or (ii) simpler and thus more 

comprehensible and more generalizable than would be possible by modeling only with 

RA or only with BN. This joint lattice thus demonstrates how these two related 

frameworks – RA and BN – both members of the family of probabilistic graphical 

modeling methodologies, can be integrated into a unified framework.  

Paper 2 builds on Paper 1, which developed the BN neutral system general graph 

lattice, expanding it to offer the BN neutral system specific graph lattice. Paper 2 also 
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builds on the joint RA-BN neutral system general graph lattice developed from Paper 1, 

expanding it to offer the joint RA-BN neutral system specific graph lattice. In developing 

these new lattices, Paper 2 extends RA notation to encompass BN graphs. 

For four variables, the joint RA-BN neutral system specific graph lattice 

developed in Paper 2 increases the number of unique specific graphs from 114 in the RA 

lattice and 185 in the BN lattice to 238 in the joint lattice. The integration of the two 

lattices offers a richer and more expansive way to model and represent complex 

systems leveraging the V-structure unique to BN graphs and the ability to accommodate 

loops and hypergraphs in the RA lattice.  

Paper 2 also develops an algorithm to generate the joint RA-BN neutral system 

general and specific graph lattices for any number of variables in both upward and 

downward directions. The exhaustive and non-redundant RA and BN lattices follow the 

more general Rho lattice proposed by Klir (1985).  

Even though Papers 1 and 2 focus on graphs with only four variables, the findings 

are general, and apply to any number of variables. This general applicability applies to 

both the lattice integration and the search algorithm that was developed.  The four 

variable analyses are sufficient to establish the formal relationship between RA and BN. 

Performing an exhaustive analysis for five or more variables is not only unnecessary but 

would also be too burdensome because of the exponential combinatorial expansion 

that would result. 
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Paper 2 also develops the RA augmented directed system lattice for four 

variables, which is a new extension of the conventional RA directed system lattice. 

While the conventional RA directed system lattice encompasses all prediction graphs in 

the BN directed system lattice (under the restriction that DVs in BN models are not 

parent variables in V-structures), the RA conventional directed system lattice did not 

include naïve Bayes graphs. Doing so increases the number of general graphs from nine 

in the conventional RA lattice to 12 in the augmented lattice, and the number of specific 

graphs from 19 to 31. The augmented RA directed system lattice thus offers more 

candidate graphs, and this allows for the possibility of more accurate or simpler and 

thus more generalizable RA prediction models.  

Paper 2 also develops the BN directed system lattice of prediction graphs for 

four variables, reducing the number of possible specific graphs from 185 in the BN 

neutral system lattice to 18 in the BN directed system lattice—a significant compression 

of the BN neutral system lattice when prediction of a single DV is the goal. Paper 2 also 

shows that all of the graphs in the BN directed system lattice (where this lattice 

disallows graphs where the DV is a parent in a V-structure) are equivalent in their 

predictions to RA graphs, although many of them have fewer degrees freedom than 

their RA-equivalent counterpart. The augmented RA directed system lattice thus 

encompasses all of the BN directed system general graphs in terms of prediction, and 

offers additional predicative graphs, those including loops, that are not in the BN lattice.  
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Paper 3 has as one of its primary aims the application of machine learning 

methods to build a capacity prediction model that improves upon the current Industry 

Model. The results show that the best RA Model does in fact do that.  The best RA 

Model reduces the required total reserves relative to the Industry Model by 150.9 MW 

on average, a reduction of 25.4%. INC reserves are reduced on average 62.7 MW, a 

reduction of 23.0% relative to the Industry Model, while DEC reserves are reduced on 

average 88.2 MW, a reduction of 27.3.  These results are for one of nineteen WEIM 

participants. If the RA Model was used for all participants, it would result in a significant 

reduction in capacity reserves that would need to be held. For BPA alone, a 62.7 MW 

reduction of INC reserves is enough to power approximately 25,000-50,000 homes. 

Conservatively, reducing the reserve requirement by this amount would result in 

approximately $4 million12 in annual savings for the Bonneville Power Administration 

which is 1 of 19 WEIM participants and which was the focus of the data analysis in Paper 

3. 

Paper 3 also reports a comparison of point estimate prediction results for four 

different machine learning methods. Among these methods, RA performed significantly 

better than the other ML methods. Based on the R squared metric, RA resulted in 

33.8%, MLP 18.1%, BN 13.9%, SVR-rbf 7.5% and the Industry Model 7.5%.  Our 

presumption is that RA performed better than the other methods because it is able to 

                                                      
12 INC savings would be $168/MW-day *365 days * 62.7 MW = $3.84 million. DEC savings would be 
$12/MW-day*365 days * 88.2 MW = $386 thousand. 
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efficiently determine the optimal set of IVs to be used in the model whereas MLP and 

SVR used f-regression to select the predictive IVs. We do not rule out the possibility that 

the performance of MLP and SVR might have been improved if a better feature selection 

procedure had been employed. It should be noted, however, that feature selection is 

built in to RA: it’s the result of using the simplest type of RA models, namely variable-

based models without loops. The BN algorithm gave results inferior to RA in part 

because its algorithms are not optimal for exploratory search and in part because 

network complexity is limited by the computational cost of the EM algorithm which is 

used to make predictions about missing values or missing states.   

Paper 3 also discusses the results and theoretical comparisons between RA and 

BN as they are both machine learning methods that are analytically very similar as 

shown extensively in Papers 1 and 2. Paper 3 built on prior research from Paper’s 1 and 

2 and used a concrete example to show that the best RA Model identified in Paper 3 can 

be replicated exactly in a BN. However the BN search algorithm, in particular the 

computational cost of the EM algorithm, prevent such complex BN models from being 

found by standard BN search algorithms. Further, Paper 3 used toy examples to show 

that several BNs with different edge topologies are analytically equivalent to a single RA 

graph, these toy examples further amplify and illustrate the prior work from Paper 2. 

In Paper 3, the best RA Model resulted in 15 of the 22 possible IVs being included 

in the model. Of these, the most predictive variables are hour of day 

(HourofDayx2hrxgroups), 48 hour wind forecast (VERFCFHFrtegt), and Sunrise/Sunset 
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(SunriseSunset).  These variables were also found and included in the best SVM and MLP 

models. The 48 hour wind forecast and Sunrise/Sunset variable reflect times of energy 

imbalance uncertainty, thus their information content is useful in making predictions 

about the INC and DEC reserves requirement.  Also interesting, the best RA Model, and 

each best model from all 5 folds included the 48 hour wind forecast, 96 hour wind 

forecast and 120 hour wind forecast.  This is an indication that there is additional, 

significant information, contained in the 96 and 120 hour wind forecasts not contained 

in the 48 hour wind forecast.  

Summary of Possible Research Extensions 

Future extensions of the research identified in Paper 1 were carried out in Paper 

2. Specifically, the paper pointed to the desirability of developing an algorithm to search 

the joint RA-BN lattice. Paper 1 was also restricted to neutral systems, and pointed to 

the desirability of analyzing RA and BN directed system prediction graphs.  These two 

tasks that were not done in paper 1 were later accomplished in paper 2. 

Extensions identified in Paper 2 centered on advancing the lattice search 

algorithm to generate a hierarchical nesting of graphs to allow statistical significance 

testing at each incremental lattice level as well as making the algorithm more efficient in 

its search of optimal models. The algorithm developed in Paper 2 results in an 

exhaustive search, which is much more computationally demanding than a more 

efficient search algorithm that may optimize based upon a pre-determined scoring 

metric.  One possible search approach could mimic the RA beam search, where the best 
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scoring models at the next higher or lower level (depending on whether the search is 

upward or downward through the lattice) would be trimmed based on a defined scoring 

metric. Only the highest scoring models would be kept. This would significantly reduce 

the computation cost and time of searching the lattice for the best representative 

model. Further, an interesting extension could be to generate a BN lattice of partially 

directed acyclic graphs and compare that to the RA lattice.  

Another promising extension of the theoretical work in Paper 2 would be to 

develop hybrid RA-BN structures. It is possible to create such hybrid RA-BN graphs that 

have mathematical structures that are different than those found in RA or BN, and these 

would add to the current joint RA-BN lattice, offering an even greater expansion of 

possible complex system representative structures.  Such structures would extend BNs 

to allow for hypergraphs or cycles which are both common to RA and extend RA to allow 

for V-structures, whose independence relations are not encompassed in RA models. A 

further extension could look at state-based RA and investigate how it relates to 

structures common to both RA and BN and also to structures that are unique to BN.   

Paper 2 also showed that BN general graph representations use a single 

representative member from the class of equivalent general graphs. An extension could 

be to develop a representation of the lattice that instead uses a single Partially Directed 

Acyclic Graph that has some non-directed edges to represent the whole equivalence 

class.  
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Further, Paper 2 showed that certain BN graphs are equivalent in terms of 

prediction to certain RA graphs, but that the BN graph can do so with less degrees 

freedom. An extension of this work could analyze whether this reduction in degrees of 

freedom offers an advantage in calculations of statistical significance.  

A related issue that could benefit from additional research is to integrate 

statistical tests of augmented directed RA models whose reference posits independence 

between IVs with statistical tests of standard directed RA models whose (conventional) 

reference posits all the IVs joined in a single relation.  This is necessary because 

augmented models whose reference posits independence between IVs are not 

hierarchically nested with conventional directed system models whose IVs are joined in 

a single relation. If a directed system (augmented) model were statistically significant 

relative to a reference that posits inter-IV independence, it might be possible to do 

additional tests to discern if this difference was due to the presence in the model of 

dependence between the IVs or to the presence in the model of statistically significant 

predictive relations between the IVs and the DV. A further extension would be to 

develop an efficient search algorithm to generate and search the augmented RA 

directed system lattice.    

Other possible extensions in Paper 2 include relaxing the restriction that does 

not allow DVs to be parent nodes in V-structures. This extension would expand the BN 

directed system lattice to include such unusual BN predictive graphs. As shown in Figure 

39, relaxing this restriction results in models that have unique probability distributions, 
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and thus make unique predictions not found in the conventional BN directed system 

lattice. Thus, this extension would expand the lattice of candidate graphs.   

 Pearl (2000) argues that BN models can represent causal interactions, not 

merely statistical associations. This could be investigated in the context of RA, to see 

under what conditions similar claims might be made for some RA models.  Studený 

shows that there is no system that completely describes all conditional independence 

statements (Studený, 1992, 2005) however his method of structural imsets has known 

computational limitations when variables exceed five (Bouckaert and Studený, 2005). 

The new contributions in this dissertation that combine RA and BN lattices to more 

broadly express conditinal independencies may benefit from further exploring Studený’s 

work.   

Paper 3 applied machine learning methods to predict electricity capacity 

requirements. It wasn’t the purpose of this study to do a systematic comparison of 

methods, but doing such a study would be a desirable extension of the limited study 

done in this dissertation. From a methods perspective, future extensions or 

improvements would assess additional pre-processing techniques for MLP and SVR such 

as principal competent analysis to ensure the optimal set of IVs is used in these models 

as well as more advanced implementations of MLP, for example testing the optimal 

number of hidden layers.  Another related extension would be to give MLP and SVR the 

IVs that RA found as a form of preprocessing, and see how well MLP and SVR do with 

the larger set of IVs that RA actually used. Other machine learning methods could be 
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also tested, such as decision trees, genetic algorithms, and regression models and one 

could also investigate how continuous variables are handled in the BN literature and try 

to apply this to RA.  Testing these other methods was not the focus of the dissertation 

(the focus was primarily RA and BN), but more extensive comparison of RA/BN to other 

methods could be done as well as to the continuous application of BNs.  

Further, for RA, only loopless models were used, whereas past RA work 

(Froemke, 2017, Nunes, 2020) generally found that models with loops performed better 

on training data. However, this study differs from past work in dividing data into three 

parts – training, validation, and test – and selecting models based on their performance 

in the validation data. Loopless models performed well because the sample size was 

large, resulting in loopless models that generalized better to the validation data than 

models with loops picked by metrics such as BIC or AIC. This could be explored to 

understand this finding better. Additionally in this study a backup model was used to 

make RA predictions for missing IV states, and specific requirements were adopted for 

the choice of this backup model. Other sets of requirements could be explored to 

investigate what might be the optimum backup model for predicting missing IV states. 

(The RA OCCAM software allows the user to identify a backup model, but currently 

provides no assistance in its choice.) Conceivably BN software might be modified to 

allow users to employ the fast RA backup model procedure instead of the much slower 

EM algorithm. 
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Further, additional extensions of Paper 3 could include adding or refining existing 

variables to more accurately represent the appropriate signal. For example, improving 

the Sunrise/Sunset variable to capture the optimal time of highest solar generation 

ramping and decline, or more acutely a focus on the window of time of peak net load 

ramp or decline.  The predictive modeling that was done in Paper 3 could be adopted by 

the industry, and as shown, would result in a significant (25.4%) reduction in the INC and 

DEC capacity requirement for BPA.  Adoption would result in material energy cost 

savings to end use consumers. There are some barriers to adopting machine learning 

models for this type of application. The first is an understanding by decision makers of 

the models results and limitations.  RA and BN both identify the variables that are being 

used to make predictions and for each IV state the probability of the DV, given the IVs is 

known, and can be investigated for understanding. This is not common among all 

machine learning methods, like MLP or SVR, where variables are known, but underlying 

weightings are difficult to interpret. Another challenge generally for predictions on the 

electrical grid, and for any critical infrastructure operation, is the fact that if predictions 

are wrong, they can have severe consequences. The impact of error is much more 

significant than in other industries where human safety and wide spread negative 

economic impact are not at play. Thus to fully implement machine learning methods for 

this type of application, further education of decision makers is likely needed on how 

these models make predictions, how well they generalize to new data, and the potential 

consequences of these models being in error. Further, if adopted, it would not be 
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unreasonable to start with a conservative, less complex model, or to start by running a 

model in parallel to the conventional approach to further validate the model results and 

gain comfort with its accuracy and generalizability.  
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Appendices 
Appendix A.1 RA Loop Detection Procedure 

The contents of Appendix A.1 and A.2 are the work of other researchers 

(Krippendorff, 1986;  MIT, 2015) and are included here to allow Paper 2 to be 

understood in a self-contained way. 

In the RA graphs of Figure 6 and Figure 10 of Paper 2, graphs that do not have 

loops are highlighted in bold, while graphs that have loops are non-bold. Graphs without 

loops are fitted algebraically, whereas graphs with loops are fitted using iterative 

proportional fitting. To determine if a graph has a loop, the following procedure is 

performed: 

Given the set of relations of a specific graph: 

1. Remove all variables that are unique to any individual relation

2. Remove any relation that is equal to or embedded in any other relation of the

(remaining) set

3. Repeat 1 and 2 until either

4. No variables remain, in which case there are no loops, or

5. The remainder is unalterable by steps 1 or 2, in which case there are loops

For example, in Figure 10, graph G7, illustrated by specific graph ABC:ABD does not 

have a loop. Krippendorff’s loop detection algorithm (Krippendorff, 1986) produces the 

following results. First, removing variables unique to both ABC and ABD removes C from 

ABC and D from ABD. What remains is AB:AB, for which the second AB is redundant and 
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thus removed, leaving AB. Then, removing the variables unique to AB removes both A 

and B, leaving the null set, and thus this specific graph does not contain a loop. 

By contrast, in Figure 10, graph G8, illustrated by specific graph ABC:AD:BD, does 

have a loop. Krippendorff’s loop detection algorithm (Krippendorff, 1986) produces the 

following results. First, removing variables unique to one relation removes C from ABC. 

What remains is AB:AD:BD. There is no redundant relation, i.e., no relation that is 

repeated or embedded in another relation. There are also no variables unique to one 

relation. Therefore, nothing further can be removed; because the remaining set is 

unalterable, the specific graph has a loop. 
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Appendix A.2 D-Separation Procedure  
The following provides the procedure for determining all independencies for a 

BN (MIT, 2015). 

Step 1. List all possible independence statements for a given BN.  

Step 2. For each independence statement, construct the ‘ancestral graph’ 

(Rebane, 1987) for the variables mentioned in the independence statement.  

Step 3. ‘Moralize’ the ancestral graph by adding an undirected edge between 

two nodes if they have a common child. 

Step 4. ‘Disorient’ the moralized, ancestral graph, by making all edges 

undirected.  

Step 5. Delete the givens (nodes) and any of their edges from the independence 

statement being tested. 

Step 6. Read the answer to the independence statement question from the 

remaining graph, if the variables are disconnected in the remaining graph, the 

answer to the independence statement is in the affirmative.  

The following provides examples of the D-separation procedure for BN12 and 

BN9*:  

Example 1 
Step 1. List all possible independence statements for a given BN. For four 

variables, Table 11 is the complete list.  
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Step 2. For each independence statement, construct the ‘ancestral graph’ 

(Rebane, 1987) for the variables mentioned in the independence statement.  

An ancestral graph of the probability expression includes all nodes listed in the 

independence statement that is being tested and all parents, grandparents, great-

grandparents, etc., of those nodes. 

BN12 and the independence statement (A ⊥ B | D) will be used as an example 

throughout the remaining procedure (Steps 2–5, Figures 49-52). 

 

Figure 49 Step 2, create the ancestral graph 

 

Step 3. ‘Moralize’ the ancestral graph by adding an undirected edge between 

two nodes if they have a common child. 

 

Figure 50 Step 3, moralize the ancestral graph 
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Step 4. ‘Disorient’ the moralized ancestral graph by making all edges undirected.  

 

Figure 51 Step 4, disorient the moralized, ancestral graph 

Step 5. Delete the givens from and any of their edges. In the continuing example, 

D is the ‘given’ (A ⊥ B | D), thus D and its connected edges to A, B, and C are removed. 

 

Figure 52 Step 5, delete the givens 

 

Step 6. Read the answer to the independence statement question from the 

remaining graph, if the variables are disconnected in the remaining graph, the answer to 

the independence statement is in the affirmative. In this example, the independence 

statement being tested is the assertion that A and B are independent given D. This 

assertion is false because A and B are connected in the remaining graph; thus, they are 

not conditionally independent given D. 
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Example 2 
Consider a second example, using BN9*. The independence statement being 

tested here is the assertion: C independent of D given A and B (C ⊥ D|A, B). Figure 53 

shows all steps in the procedure for this example, affirming C and D are indeed 

independent given A and B. 

 

Figure 53 Example, full D-separation procedure for independence statement (C⊥ D|A, B) 
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Appendix B Input parameters for RA, BN, SVR, and MLP analysis in Chapter 3 
 

 

 

 

 

 

 

Reconstructability Analysis Support Vector Regression
Program OCCAM Program Python Sklearn
Search Width 3 Preprocessing MinMax Scalar
Search Levels 50 Hyper-parameter default values
Loops No Kernels radial basis function, linear, polynomial, and sigmoid

Bayesian Networks Multi-layer Perceptron
Program Genie Program Python Sklearn
BN Type Augmented Bayesian Network Preprocessing MinMax Scalar
Link Probability 0.1 Hyper-parameter default values
Prior Link Probability 0.001 Hidden Layers 2 with 100 neurons each
Max Parent Count 22
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