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Abstract

Quantum computing is a paradigm of computing using physical systems, which

operate according to quantum mechanical principles. Since 2017, functioning quan-

tum processing units with limited capabilities are available on the cloud. There are

two models of quantum computing in the literature: discrete variable and continuous

variable models. The discrete variable model is an extension of the binary logic of

digital computing with quantum bits |0⟩ and |1⟩ . In the continuous variable model,

the quantum state space is infinite-dimensional and the quantum state is expressed

with an infinite number of basis elements.

In the physical implementation of quantum computing, however, the quantized

energy levels of the electromagnetic field come in multiple values, naturally realizing

the multi-valued logic of computing. Hence, to implement the discrete variable model

(binary logic) of quantum computing, the temperature control is needed to restrict the

energy levels to the lowest two to express the binary quantum states |0⟩ and |1⟩. The

physical realization of the continuous variable model naturally implements the multi-

valued logic of computing because any physical system always has the highest level of

quantized energy observed i.e., the quantum state space is always finite dimensional.

In 2001, Knill, Laflamme, and Milburn proved that linear optics realizes univer-

sal quantum computing in the qubit-based model. Optical quantum computers by

Xanadu, under the phase space representation of quantum optics, naturally realizes

the multi-valued logic of quantum computing at room temperature. Optical quan-

tum computers use optical signals, which are most compatible with the fiber optics

communication network. They are easily fabricable for mass production, robust to

noise, and have low latency.

Optical quantum computing provides flexibility to the users for determining the
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dimension of the computational space for each instance of computation. Additionally,

nonlinear quantum optical effects are incorporated as nonlinear quantum gates. That

flexibility of user-defined dimension of the computational space and availability of

nonlinear gates lead to a faithful implementation of quantum neural networks in

optical quantum computing. This dissertation provides a full description of a multi-

class data quantum classifier on ten classes of the MNIST dataset.

In this dissertation, I provide the background information of optical quantum

computing as an ideal candidate material for building the future classical-quantum

hybrid internet for its numerous benefits, among which the compatibility with the

existing communications/computing infrastructure is a main one. I also show that

optical quantum computing can be a hardware platform for realizing the multi-valued

logic of computing without the need to encode and decode computational problems

in binary logic. I also derive explicit matrix representation of optical quantum gates

in the phase space representation. Using the multi-valued logic of optical quantum

computing, I introduce the first quantum multi-class data classifier, classifying all ten

classes of the MNIST dataset.
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1 INTRODUCTION

Digital computing has been successful in solving computational problems since 1945

[37]. Since 2017, quantum computing has entered the scene of practical computational

tools when IBM launched the first working quantum processing unit (QPU) [45]. The

mathematical formalism of quantum mechanical systems offers a higher-dimensional

computational space in quantum computing than in digital computing 1[35, 49, 178,

241]. Additionally, the properties unique to quantum mechanics, not available in

classical mechanics, are incorporated as components of computation. They include

superposition, entanglement, and interference [120, 135, 178]. Superposition is a

projective complex linear combination of the computational basis elements, which

allows for parallel processing [47]. Entanglement is a phenomenon in which the state

of the entire system cannot be described by its components independently [10, 51,

64, 85]. Interference is a phenomenon in which the electromagnetic waves of multiple

computational channels affect the overall wave of the system by interacting either

constructively or destructively [10, 79]. These properties, along with the extended

computational state space, allow for the processing of computational tasks intractable

with classical computers or for conducting computations much faster.

The current landscape of quantum computing is defined as Noisy Intermediate-

Scale Quantum (NISQ) or near-term quantum [28, 74, 120, 188], where functioning

QPUs with limited capabilities are available on the cloud. These QPUs are called

near-term devices because they are characterized by small-scale and shallow circuits

[203] to minimize hardware errors until they become fully fault-tolerant. For quantum

computers to be considered viable computational resources, they need to be

1In digital computing, the computational space is a two-point space {0, 1}. In quantum com-
puting, the computational space is the surface of a higher-dimensional sphere, which is a projective
Hilbert space.
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• Fault-tolerant: the level of fidelity to true output needs to be above a certain

threshold value.

• Universal: capable of carrying out most of the operations necessary for compu-

tation.

The available QPUs follow either of the following two models of quantum com-

puting: discrete variable and continuous variable models [35, 120, 241]. The discrete

variable model implements the binary logic of computing with two computational

basis |0⟩ and |1⟩ as quantum bits [4, 15, 28, 178]. Hence, it is referred to as qubit-

based model in this dissertation. This model is implemented using superconductors,

trapped-ions, neutral atoms, and quantum dots [45, 19, 40, 5] 2. The continuous

variable model refers to the mode of quantum computing where the computational

space is infinite-dimensional [35, 120, 241]. However, a physical quantum system with

an infinite-dimensional state space is a theoretically ideal system since the quantum

state space of a physical system is always finite-dimensional. This is because the

quantized energy levels used as computational basis is always finite with a distinctive

highest level of energy. Thus the implementation of the continuous variable model of

quantum computing realizes radix−n multi-valued logic.

The availability of working QPUs on the cloud and their simulators has opened

a new era of quantum algorithms, specific to near-term devices [3, 28, 74, 106]. The

active areas of quantum algorithm research include quantum chemistry, quantum ma-

chine learning, and graph theory problems optimization [11, 12]. In most quantum al-

gorithms, the inherent higher dimensionality of the computational space and quantum

mechanical properties are explored to solve some of the problems that are intractable

in classical computers [12, 52, 68, 92, 103, 134, 213, 215]. In machine learning, how-

2Quantum optics is suggested to be another physical system to implement the discrete variable
model. However, there is no working QPU readily available to users yet.
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ever, classical computers are successfully carrying out tasks with great results. Hence

quantum machine learning algorithms are researched to enhance classical algorithms

by tapping into the properties of quantum mechanics [30, 49, 71, 72, 98, 106, 120, 247].

With QPUs emerging as a viable tool for computation beyond digital computing,

scientists at the National Science Foundation (NSF) and the National Institute of Sci-

ence and Technology (NIST) are organizing multiple programs to work with academia

and industry experts to develop a blueprint for future quantum interconnects (QuIC)

[18]. The schematic includes quantum communication, quantum memory, quantum

computing, quantum transducers, and quantum sensing as sub-ecosystems within the

framework of the existing classical interconnect infrastructure [18]. In this scheme,

data transfer among communications devices, quantum computing devices, and quan-

tum sensor devices plays an important role.

To actualize quantum computing, a physical system needs to be created whose

state can be described quantum mechanically. The goal is to maintain the fidelity of

quantum states as units of computation. Controlled change of quantum states of the

system along with readout of the resulting state is regarded as quantum computation

[178]. There are several modes of physical systems considered for implementing quan-

tum computing: superconductors [45, 259], neutral atoms [190], trapped ions [41, 210],

quantum optics [11, 34], and quantum dots [5, 150]. These quantum mechanical sys-

tems are considered for the implementation of quantum computing as stand-alone

solutions. In considering quantum computing as a component of the QuIC, quan-

tum optics offers seamless integration into the existing communications/computing

infrastructure.

In both fiber optical communications systems and optical quantum computing,

the information carriers are light signals [10]. In today’s communications, different

forms of signals from multiple devices are converted to light signals compatible with

3



the fiber optics network [266]. Using light signals as information carriers in quantum

computing greatly reduces the number of transducers needed for signal conversion.

It is my observation that the active research on quantum memory for quantum com-

munications [78, 112, 131, 152, 153, 154, 155, 162, 267] can be used in future optical

quantum computers to add the memory component. Memory component is neces-

sary in computer processing units to store intermediary computational states and

complex programs. Additionally, optical sensors are widely used to measure different

quantities such as temperature, wave signals, bio-metrics, distances, and tomography

[10]. Existing optical sensors can be converted to quantum sensors through the pro-

cess called ”squeezing”, which converts classical light expressed in terms of waves to

quantum light expressed in terms of discrete energy quanta [241].

Optical quantum computers have the advantage of operating at room temper-

ature and being integrable into the existing communications infrastructure for mul-

tiplexing and networking [233]. Photons are known to be the most stable and ro-

bust to decoherence, i.e., stable in the presence of environmental noise [1]. Optical

quantum computing naturally incorporates the interference phenomenon among in-

teracting photons as a component of information processing. In the traditional qubit

model 3, interference is something they have to suppress to keep the integrity of the

computational states.

In addition to physical benefits, quantum optics offers a new paradigm of infor-

mation processing from the logic implementation perspective. Quantum optics has

properties of higher-dimensional state space that can be used for multi-valued logic

realization and flexibility to users to determine the dimension of the computational

3The traditional model of quantum computing is based on realizing the binary logic of computing.
In optical quantum computing the multi-valued logic of computing naturally arises at room tempera-
ture. The distinction is explained more in detail in Chapter 4. Logic Implementation: Multi-Valued
Logic.
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space [49]. Multi-valued logic and binary logic are naturally embedded within the

notion of the cutoff dimension 4. The cutoff dimension is the highest level of en-

ergy that the user has the flexibility of determining for each instance of computation

5. The same cutoff dimension is applied across all the quantum channels used for

computation 6. Employing the cutoff dimension of three realizes ternary logic and of

two, binary. The theoretical underpinning of quantum optics allows the binary logic,

ternary logic, and multi-valued logic with higher radices implementations of quantum

computing in optical quantum devices.

The concept of ”cutoff dimension” is referred to only in one paper in the lit-

erature, as a side note to an experiment [120]. The power this concept provides in

determining the dimension of the computational space in each instance of computa-

tion and the subsequent realization of the multi-valued logic of computing are not

known in the research community.

With the working QPUs and their corresponding circuit-building 7 and quan-

tum algorithm developing software tools 8 research in quantum machine learning

has become very active. Quantum machine learning models can be developed us-

ing variational circuits, wherein the constituent quantum gates are parameterized

[61, 183, 207]. The process of ”learning” consists in finding an optimal set of param-

eters for the parameterized quantum gates [49]. A quantum circuit is a collection

of quantum gates, which induce a change of states on the original quantum data

as quantum computation [207]. Quantum algorithms are implemented on quantum

circuits and the computational results are evaluated on classical circuits for opti-

4See Section 4.2.2. Multi-Valued Logic Model for a detailed explanation.
5This realization is one of my contributions.
6In using Xanadu’s QPU X8, which is the only known optical quantum computer to which the

notion of cutoff dimension can be applied.
7Google’s Cirq, IBM’s Qiskit, and Xanadu’s Strawberry Fields
8Google’s TensorFlow Quantum, IBM’s Qiskit, and Xanadu’s PennyLane
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mization. Within the framework of classical circuits, the machine learning algorithm

component is outsourced to QPUs and the resulting vectors are then evaluated on

CPUs. Because of this natural integration of classical and quantum, hybrid algo-

rithms combining classical and quantum algorithms together yield successful results.

In implementing quantum machine learning, optical quantum computing offers

more types of quantum gates that are not available in the qubit model [49]. Especially

in implementing quantum neural networks, the availability of nonlinear quantum

gates in addition to linear quantum gates allows optical quantum computers to be

able to directly translate classical neural networks into the quantum domain [49,

120, 212]. Multi-valued logic-based optical quantum computers provide additional

flexibility in controlling the length of the output vectors of quantum circuits, using

different methods of measurement and the notion of cutoff dimension 9 [49].

Optical quantum computing is a viable solution for implementing universal fault-

tolerant quantum computing from the physical implementation perspective and the

logic realization perspective 10. Light is abundant, robust to decoherence, has low

latency, easy to multiplex and network, and is compatible with the existing com-

munications/computing infrastructure [10]. Optical quantum computers are easily

fabricable for mass production at a low cost and operate at room temperature. It

naturally realizes the multi-valued logic of computing and avails the users to define the

dimension of the computational space for each instance of computing. Additionally,

it offers nonlinear quantum gates that are not available in other modes of quantum

computing.

Using the advantages of optical quantum computing, I created a multi-class data

quantum classifier on all ten classes of the MNIST dataset [49]. The architecture

9See Section 6.3 My Research on Quantum Multi-class Data Classifier.
10The phase space representation of quantum optics, realized as quantum computing by Xanadu,

realizes the multi-valued logic of computing.
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supports data with nm classes where n is the dimension of the computational space

for each qumode 11 (cutoff dimension) and m is the number of qumodes used for

computation. In Xanadu’s X8, using the cutoff dimension 10 and eight qumodes

result in the dimension 108 = 100, 000, 000 for the overall computational space. That

means datasets with 100, 000, 000 classes can be classified as easily as datasets with 2

classes using my architecture. The multi-class data classifiers in the literature classify

only up to four classes [32, 140].

This dissertation is organized as follows: Chapter 2 outlines the research prob-

lems this dissertation is addressing, Chapter 3 examines QuIC as defined by the NIST

for building future classical-quantum internet, Chapter 4 reviews the mathematical

foundation of quantum computing and the multi-valued nature of optical quantum

computing, Chapter 5 presents matrix representation of optical quantum gates, and

Chapter 6 describes the multi-class data quantum classifier that I created.

11Quantum mode which is a channel for light signals to travel through.
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2 BACKGROUND

Quantum computing uses the quantized energy levels of electromagnetic fields as a

computational basis. There are two models of quantum computing in the literature

today: discrete variable and continuous variable models. The discrete variable refers

to binary logic and the continuous variable model refers to a quantum computing

model endowed with an infinite-dimensional computational space.

The difference between these two models in physical implementation is the num-

ber of quantized energy levels selected to represent the computational basis for quan-

tum information processing. To implement the discrete variable model, the lowest

two energy levels are selected to represent |0⟩ and |1⟩. To implement the continuous

variable model, multiple levels of quantized energy naturally occurring in the system

are used to represent |0⟩ , |1⟩ , . . . , |n⟩.

This distinction between the two models is not widely known in the research

community, however. The term ”quantum computing” is generally used to mean the

discrete variable model of quantum computing realized with the binary system of

|0⟩ and |1⟩ . In 2001, Knill, Laflamme, and Mulburn proved that optical quantum

computing implemented with beamsplitters and phase shifters is universal under the

discrete variable model. In the actual implementation of optical quantum computing,

Xanadu implemented the phase space representation 12, which is described following

the principles of the continuous variable model. The theoretical continuous variable

model cannot be actualized in physical systems, however, since the quantum state

space of any physical system is not infinite-dimensional. This is due to the fact that

no physical system contains an infinite amount of energy. The model realized by

Xanadu’s X8 implements the multi-valued logic of computing instead of the contin-

12A representation using the position and momentum observables.
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uous variable model. This distinction between the theoretical continuous variable

model and its realization of the multi-valued logic in physical implementation is not

widely known in the research community.

The idea of using a physical system whose state can be described quantum

mechanically for information processing has first been introduced by Yuri Manin and

Paul Benioff separately in 1980 [24, 25, 159]. In 1982, Richard Feynman suggested

that a computing device that can accurately simulate nature has to be built on the

principles of quantum mechanics. His idea was an extension of the binary logic

of digital computing using two different polarization states of photons to represent

classical bits as quantum bits (qubits) [76].

Now with working QPUs made available by companies like IBM, Google, Rigetti

13, and Xanadu 14, quantum computing has emerged from the domain of theoretical

research into the practical realm of carrying out actual quantum computations [11,

15, 45]. The current landscape of quantum computing is termed ”Noisy Intermediate-

Scale Quantum” (NISQ) because the available QPUs are not fully fault-tolerant [28,

188, 242]. This means they are prone to hardware errors. Additionally, they are

not capable of solving meaningful real-life computational problems yet because they

are characterized by short and shallow circuits [120]. Most of the computational

problems require more computing power in terms of the number of computational

units available and longer series of gate operations. Today’s QPUs are equipped with

Arithmetic Logic Units (ALU), controlled by classical signals, but lack the memory

component to store reusable programs.

Nevertheless, they serve as proof-of-concept for future universal fault-tolerant

13QPUs by these companies are implemented under the discrete variable model (binary logic,
qubit-based) of quantum computing.

14Xanadu’s X8 is implemented under the continuous variable model, physically realizing the multi-
valued logic of computing.
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quantum computing. The availability of functioning QPUs and simulators has opened

up a new landscape for quantum information and computation. These devices 15 and

associated software tools 16 stimulated research on quantum algorithms for solving

real-life problems within the framework of quantum computing.

The goal of today’s quantum computing is developing fully universal and fault-

tolerant devices [66, 170]. Once it is achieved, those devices need to be multiplexed

for more computing power and networked for communications. To achieve this goal,

there are several areas of research that need clearer solutions on. Among those, my

dissertation addresses the following areas.

• Physical implementation: There are several modes of quantum mechanical sys-

tems considered for implementing quantum computing [5, 11, 20, 34, 41, 150,

157, 190, 212, 252, 259]. Out of these candidate materials, which is most cost-

effective, easy to operate, and compatible with the existing communications/-

computing infrastructure?

• Logic implementation: Optical quantum computing offers a way of realizing the

multi-valued logic of computing, bypassing the need to encode computational

problems in binary logic.

• Matrix representation of optical quantum computing: In phase space represen-

tation 17 of optical quantum computing, the matrix exponential formulas for

various optical quantum gates are found in the literature. However, there is no

explicit matrix representation of these gates that would allow designers to use

them as gate descriptions similarly as it is done in standard quantum computing

in technologies such as superconducting.

15e.g., Google’s Sycamore, IBM’s Osprey, and Xanadu’s X8 and Borealis
16Google’s Cirq and TensorFlow Quantum, IBM’s Qiskit, and Xanadu’s Strawberry Fields and

PennyLane.
17See Section 4.2.2 Multi-Valued Logic Model
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• Multi-class data quantum classifier: Most of the quantum machine learning

classifiers are binary classifiers [31, 106, 120]. The multi-class data quantum

classifiers in the literature classify up to four classes on the MNIST dataset

[32, 140].

In the following subsections, I will outline the background of each of the research

problems listed above.

2.1 Physical Implementation of Quantum Computing

With the idea of quantum computing no longer residing in the domain of theoretical

research, the NSF and the NIST are putting in concerted efforts to build a blueprint

for a quantum computing ecosystem that can be integrated into the existing commu-

nications/computing infrastructure [18]. Today’s communication system is built on

fiber optics cables, to which individual nodes are connected [58, 107, 145, 169, 234,

240]. Electrical signals coming from computing devices are converted to light signals

and propagated through fiber optics to reach the destination computing device [266].

To build fault-tolerant universal quantum computers that can seamlessly be

integrated into the existing communications/computing infrastructure, the physical

material used needs to have the following characteristics:

• Easily integrable into the existing communications/computing infrastructure.

• Easily fabricable for mass production.

• Cost-effective to be accessible to the masses.

• Easily controllable for computation.

• Portable and easily embeddable.

11



• Easy to be multiplexed for added computing power.

• Easy to be networked for communications.

• Accommodating to the quantum memory component.

• Robust to environmental noise.

• Low-latency.

In the quantum computing research community, there is yet to be established

a uniform agreement as to the physical mode that would meet all the criteria men-

tioned above. In the physical implementation of quantum computing, the quantum

computing research community is exploring several different modes of physical sys-

tems: superconductors [259], trapped ions [41], quantum optics [11, 34, 157, 212, 252],

microwave [20], neutral atoms [190], and quantum dots [5, 150]. Out of these, the

question of which choice would enable the most seamless integration with the exist-

ing infrastructure has not been fully explored yet. While the quantum computing

research community as a whole is finding solutions to engineering challenges and de-

veloping quantum algorithms, there is a lack of unified research effort for selecting the

most suitable physical implementation mode with consideration of integrating future

quantum computing into the existing infrastructure.

Therefore, there is a need to have an integrated unified system of communica-

tions/computing that would encompass available computing resources such as CPU,

QPU, GPU, and classical and quantum embedded systems. According to NSF and

NIST, the research on building a quantum communications/computing infrastructure

on the foundation of existing architectures is one of the top priorities in quantum in-

formation and science research [18].
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For quantum data transfer and communications, the goal is to use the existing

fiber optics network [18]. Fiber optical communications system transmits information

using pulses of infrared light as signal carriers [10]. For the last-mile connections to

end-users, the preferred way of connecting is via fiber optics as well. Existing coaxial

cables based on copper are being replaced with fiber optics [58].

2.2 Logic Implementation

In digital computing, binary logic based on the ON and OFF switches of transistors is

used for computation. As a natural extension of digital computing in the framework

of quantum computing, most of the research has been done on realizing the binary

logic model of quantum computing. However, with the advent of optical quantum

computing, direct processing of computational problems without the need to encode

in binary logic is availed. I briefly outline the history of the binary logic of digital

computing below.

With the idea of an abstract computation machine that Turing proposed in

1936, we have been able to realize his notion of computing device [229]. The first pro-

grammable digital computer ENIAC (Electronic Numerical Integrator and Computer)

was introduced in 1945 [37]. A programmable digital computer EDVAC (Electronic

Discrete Variable Automatic Computer), equipped with the memory component to

store programs, was developed in 1949 [37]. With the advent of integrated circuits

(IC), different digital components necessary for carrying out computations became

nano-scale, allowing for desktop computers and embedded systems. Now with the

internet, the world has become one interconnected computing unit exchanging and

processing information interactively. With quantum near-term devices available to

researchers, we are ready to enter into yet another information revolution phase.

The binary logic that digital computing is based on has its root in practical
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hardware considerations [37]. The first programmable digital computer ENIAC was

based on decimal logic, using the binary operations of the ON and OFF switches with

vacuum tubes, crystal diodes, relays, capacitors, and resistors. EDVAC switched from

decimal to binary logic for hardware efficiency purposes. In IC, the ON and OFF

switches in transistors are natural implementations of the binary logic. Binary digits,

rather than other forms of multi-valued logic such as decimal digits, are easier for

electronics-based digital computers to store and process information.

From the computer science perspective, it is only natural to limit the concept

of quantum computing to the binary logic model since it is a quantum version of the

already successful classical computing paradigm. Hence, with the possibility of using

the two distinct states of particles as a computational basis, the field of research in

the binary logic of quantum computing was very active and kept expanding. The first

quantum algorithm demonstrating the power of quantum computing over classical was

presented by Deutsch and Jozsa on a theoretical problem [67]. Thereafter, a rich body

of literature has been developed in additional algorithms such as Shor’s algorithm

for prime factorization [213], phase estimation for finding eigenvalues of matrices

[122], Simon’s algorithm [215] for a query problem, and most notably Grover’s search

algorithm [92]. A way of solving systems of linear equations using quantum circuits

was added to the literature [97].

The success of these algorithms is due to the superposition property of quantum

mechanics wherein all the basis states within the computational space are considered

simultaneously, leading to parallelism. The superposition property arises from the

entanglement property of quantum mechanics wherein the state of the whole system

cannot be described separately as a collection of each individual qubit state [10]. Most

of the quantum research has been done under the binary logic (qubit-based) model

of quantum computing, as a natural quantum extension of classical computing.
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Now, existing optical QPUs offer an opportunity to encode computational prob-

lems in a whole new way, using multi-valued logic. The computational basis in optical

quantum computing under the phase space representation is a set of integer states

{|0⟩ , |1⟩ , . . . , |n⟩ , . . .}, describing different quantized energy levels of the electromag-

netic field of light [35, 239, 241]. Although it is infinite in theory under the continuous

variable model, it is a finite set since there is a maximum number of energy levels

observed in reality. This finite set of integer values can be used as a basis for multi-

valued logic implementation. With optical quantum computers connected via fiber

optics, two distant computing nodes can function as one computer. For example, the

reading from quantum sensors can be directly used as inputs in quantum algorithms

run on separate computing units. The quantum state inputted from a quantum sen-

sor in Mexico can be transmitted via quantum internet and processed by a quantum

algorithm in Belgium.

With improved technology in future optical QPUs, higher numbers of photons

can be expressed in an optical system, allowing for a yet higher radix-based multi-

valued logic of computation. In the multi-valued logic literature, the practical gates

were developed for only ternary 18 and quaternary 19 due to the limitations of hardware

platforms. The availability of logic with high radices in optical quantum computing

offers a new possibility for both theoretical and applications-related research in which

computational problems will be represented using multi-valued variables with high

radices. This opens up a possibility of developing algorithms, which operate on such

data, expressed in terms of high-radix multi-valued logic.

For each instance of computation, the user can determine the dimension of the

computational space using the notion of ”cutoff dimension” in Xanadu’s X8. Setting

18base three
19base four
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the cutoff dimension at n realizes the multi-valued logic of radix-n for each qumode

uniformly 20. With the advent of optical quantum computers whose dimension of the

computational space can be controlled by users, the freedom to choose among binary

logic and multi-valued logic of quantum computing for the computational problems

at hand is available to users. However, this concept of realizing the multi-valued

logic of computing using the cutoff dimension (by controlling the dimension of the

computational space) is not recognized by the research community. The multi-valued

logic research community has been looking for classical hardware solutions. The

quantum computing research community has been focusing on realizing the binary

logic of computing. The optical quantum computing research community has been

focusing on the infinite-dimensional nature of the quantum state space of light-quanta.

This concept of realizing the multi-valued logic of computing is used in different

experiments I performed: classical-quantum hybrid auto-encoder 21 and hybrid multi-

class data classifier [49] that will be discussed in detail in later sections.

The idea of using the electromagnetic field of light for quantum computing was

first introduced by Lev Vaidman in 1993 for quantum teleportation [232]. Walls and

Milburn outlined ways for using quantum optical principles for quantum information

in 1994 [236]. Richard Feynman first proposed the idea of using two distinct states

of polarization of photons for the binary logic model of quantum computing (1980)

[76]. In 2001, Knill, Laflamme, linear optics is universal under the qubit-model of

quantum computing. In 2011, Scott Aaronson and Alex Arkhipov proposed that if

we can produce indistinguishable photons arriving at the photon detector at the same

time, we can use the system for information processing by sampling multiple shots of

the operation. The process is called Gaussian Boson Sampling (GBS) 22 [1]. Although

20In current technology, it is not feasible to set different cutoff dimensions for different qumodes.
The same cutoff dimension is applied to all the qumodes used for computation.

21Architecture proposed in ”Continuous variable quantum neural networks [120].
22This model is just a formal description of the probabilistic nature of quantum computing. The
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Aaronson and Arkhipov’s model was for the qubit-model of quantum computing, their

idea of using indistinguishable photons through a linear optical network for quantum

information processing became a basis for realizing the multi-valued logic of quantum

computing. In 2019, Xanadu introduced an optical QPU, called X8, which operates

on the principle of GBS under the phase space representation 23 of quantum systems

[11]. It contains eight quantum modes (qumodes) which are eight separate optical

channels. The state of each channel is described with a finite number of light-quanta

energy states. In X8, the number of light-quanta observed is 18, including the ground

energy state representing zero-point energy. In the new time-domain multiplexed

QPU, Borealis by Xanadu, registering events with up to 219 photons and a mean

photon number of 125 are observed [157]. That means X8 can realize up to radix-19

multi-valued logic and Borealis up to radix-126.

Although the optics-based quantum computing has been considered from the

theoretical perspective since the 1990s, there is only a small body of literature on

actual algorithms that are testable and can be expanded upon [49, 120]. Most of the

quantum research has been done under the binary logic (qubit-based) model of quan-

tum computing, as a natural quantum extension of classical computing. There is a

very small body of literature using ternary or quaternary logic for quantum comput-

ing from the theoretical perspective [158]. With the multi-valued quantum computing

physically implemented on optical QPUs, there is a potential for formulating com-

putational problems with a greater degree of flexibility than just in binary logic. In

Chapter 4 of this dissertation, I present the mathematical formalism of the binary

logic and the multi-valued logic of quantum computing.

implementation was suggested using quantum optics, but the general process applies to any physical
implementation of quantum computing.

23The phase space representation refers to the representation using the position and momentum
observables. This is achieved using the Wigner function.
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2.3 Optical Quantum Gates

Quantum gates are mathematical expressions of controlled operations in a quantum

mechanical system for the purpose of information processing. The quantum states

used for quantum computation are physically manipulated to mirror the operation of

quantum gates expressed in mathematical forms.

Optical quantum gates are expressed as matrix exponential of the Hamiltonian,

describing the energy of the system [120]. There are matrix exponential forms of

the optical gates given in literature [35, 239, 241]. However, their explicit matrix

representation is missing. In Chapter 5 of this dissertation, I will present some matrix

representations of standard optical quantum gates built from the constructor and

annihilator matrices, which are building blocks of optical quantum gates.

2.4 Quantum Data Classification

In quantum machine learning (QML), the mapping of data samples is done in a

higher-dimensional Hilbert space and then the computational results are brought back

down to the classical domain via a measurement operator [201]. A QML circuit is

composed of a data encoding circuit, a quantum algorithm circuit, and a measurement

operation [49]. The output from the quantum circuit is sent to a CPU wherein all

the optimization calculation is done [207]. The updated parameters are sent to the

QPU and the quantum gates are recalibrated.

Since the goal of quantum deep learning is to extract hidden features of data

from a higher-dimensional computational space, it would be natural to explore the

quantum computing model which offers a higher-dimensional computational space.

Due to the limited computing capacities of near-term devices, data samples with

a number of features exceeding the capacity cannot be directly encoded to quantum

states. Instead, they are preprocessed classically to reduce the size of input vectors
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[32, 49, 106, 120, 140]. Therefore, all the existing quantum classifiers on data with a

high number of features are classical-quantum hybrid networks.

The multi-class data quantum classifiers in the literature are up to four classes

on the MNIST dataset using quantum convolutional neural networks [32, 140]. I

invented a ten-class quantum classifier using optical quantum computing motivated

by Killoran et al.’s work [120]. The architecture is capable of accommodating up

to 188 = 11, 019, 960, 576 classes, using eight qumodes 24. In a qubit circuit, it

would require log2(11, 019, 960, 576) ≃ 34 qubits. This flexibility of determining the

size of the output availed in optical quantum computing is not widely known in the

research community. Although we can speculate that this technology can also lead to

a much-improved accuracy, sensitivity, and confidence matrices in machine learning,

no further research has been done in this area to my knowledge. The published

papers referencing Killoran’s paper are exploring the qubit-based machine learning

algorithms for classification. In Chapter 6 of this dissertation, a detailed explanation

of related works and the multi-class data quantum classifier is presented.

24Using the maximum radix possible in X8 which is 18.
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3 PROPOSED ARCHITECTURAL SOLUTION: QUANTUM INTER-

CONNECT

In concert with the advances in quantum computing research, NSF and NIST are

envisioning the paradigm of integrated classical and quantum computing as part of

the classical-quantum hybrid internet. Within that framework, quantum comput-

ing devices are regarded as components of a worldwide network, called Quantum

Interconnect (QuIC) [18]. QuICs are processes and devices which connect all quan-

tum computing and sensor devices to the quantum communications network. Since

quantum effects are naturally occurring phenomena in optics, they are envisioning a

scheme to use the currently existing fiber optics communication networks for quantum

communications as well. The information carriers for fiber optical communications

are the electromagnetic fields of light [58, 107, 169].

Therefore, physical systems implementing quantum computing that are most

easily integrable into the existing infrastructure are those that use quantum optics.

Optical quantum computing has the following properties:

• Easily integrable into the existing communications/computing infrastructure.

• Easily fabricable for mass production.

• Cost-effective to be accessible to the masses.

• Easily controllable for computation.

• Portable and easily embeddable.

• Easy to be multiplexed for added computing power.

• Easy to be networked for communications.

• Accommodating to the quantum memory component.

20



• Robust to environmental noise.

• Low-latency.

• Easily multiplexed and networked using optical fibers.

In today’s computing, no individual computing device can exist in isolation to

fully tap into the availability of rich data and applications offered via connectivity

to a broader information community. The interconnected system of communications

network, large-scale computers in data centers, individual nodes of end users, and

embedded systems all work in concert to compute, process, and exchange information.

Future quantum computing devices are going to be connected to the classical-quantum

hybrid communications/computing infrastructure. Quantum data transfer between

connected devices and the communications network needs to keep the integrity of the

quantum state as the correct computational state.

NIST is spearheading a multi-disciplinary research program to this end including

Information Technology Laboratory (ITL), Communications Technology Laboratory

(CTL), Material Measurement Laboratory (MML), and Physical Measurement Labo-

ratory (PML) [266]. In September 2018, the National Science and Technology Council

released a report, “National Strategic Overview for Quantum Information Science,”

which stated, “Through developments in [quantum information science], the United

States can improve its industrial base, create jobs, and provide economic and national

security benefits.” [258]. Research in quantum information science is among the top

priorities in scientific research at the federal government level. Quantum optics as re-

lated to the envisioned quantum communications network is one of the leading areas

of research.
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3.1 Components of Quantum Interconnect

Today’s communication system is built on fiber optics cables, to which individual

nodes are connected [58, 107]. Electrical signals coming from computing devices are

converted to light signals and propagated through fiber optics to reach the destination

computing device [10]. For an integrated quantum information system to interconnect

the world the way classical computing does today, it should be built on the foundation

of the existing communications network [18]. The core objective of QuIC is build-

ing interconnected quantum information processing architecture on the foundation

of the existing classical communications/computing infrastructure. The classical in-

terconnect is composed of communication networks, computing devices, transducers

for signal conversion across different devices, and embedded systems. The quantum

equivalent of the process is envisioned to be composed of similar components: quan-

tum communications, quantum memory, quantum computing, quantum transducers,

and quantum sensors (metrology) [18].

In November of 2019, NSF sponsored a workshop to identify the scientific and

community needs, opportunities, and significant challenges for QuIC over the next

2-5 years [18]. The resulting schematic from the workshop on QuIC is depicted in

Figure 1.

The main components of QuIC, as envisioned by NSF and NIST are:

• Quantum communications: Connecting quantum computing devices to a net-

work for data transmission and reception.

• Quantum memory: For optical signal regeneration in fiber optics, the memory

component is needed to store optical signals. Optics-based quantum memory

research is one of the research focus areas by NIST [78, 112, 131, 152, 153, 155].

I believe the research findings in communications memory can be utilized for
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Figure 1: Quantum Interconnect (QuIC) architecture [18]

the memory component in future QPUs as well.

• Quantum computing: Individual computing devices carrying out quantum in-

formation processing need to be connected to the communications network.

• Quantum transducers: The devices and processes for converting quantum sig-

nals from a quantum computing device to compatible signals to connecting

devices [266].

• Quantum sensors (metrology): Quantum devices for measuring physical quan-

tities such as temperature, distance, and topography [268].

3.1.1 Quantum Communications

Quantum communications refer to the process and devices that facilitate data ex-

change and transfer between quantum computational devices. It is envisioned that

the communications networks would carry both classical signals and quantum signals

[18].

Today’s communications infrastructure is built on fiber optical cables, which are

bundled cables of optical fibers [107]. Fiber optical communications system transmits
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Figure 2: Fiber optics communications network [image source]

information using pulses of infrared light as signal carriers [10]. Figure 3 illustrates

the existing submarine fiber optical communications network for intercontinental con-

nections. For the last-mile connections to end-users, the preferred way of connecting

is via fiber optics as well [58].

Optical fibers are channels of light paths, composed of ultra-thin glasses as seen

in Figure 3. Bundles of optical fibers make a fiber optical cable. Optical fibers fit for

long-distance communications were first developed by Corning Glass in 1970, capable

of transmitting optical waves with low information loss [10]. In the same year, GaAs

(Gallium Arsenide) semiconductor lasers (Light Amplification by Stimulated Emission

of Radiation) were developed by an Italian company for transmitting light through

fiber optical cables at room temperature [10]. Lasers produce coherent light, whose

frequency and waveform can be controlled. The advent of the laser facilitated the

transmission of information carrying light over low-loss optical fibers for long-distance

optical information transmission.

The laser is an optical device wherein light is amplified via oscillation around a

medium placed between two reflecting mirrors. The atoms in the medium, stimulated
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Figure 3: Optical Fiber (Encyclopedia Britannica)

by oscillating light emit light of the same frequency in the same direction. This pro-

duces a coherent, monochromatic, and highly directional beam of light, which can be

controlled and manipulated as information carriers in long-distance communications

[10].

This simultaneous availability in the same year of compact optical sources and

low-loss optical fibers led to an efficient worldwide fiber-optics communications sys-

tem [10]. Since then, optical fiber technology has gone through multiple generations

of communication advances with increased bandwidth and negligible latency [107].

”Among the benefits of optical communication systems are their high reliability over

long-distances, low attenuation, low interference, high security, very high information

capacity, longer life span and ease of maintenance” [107]. Therefore, optical commu-

nications systems are widely used to transmit voice, video, computation data, and

television signals [58].

Since most computing devices today are using electrical signals, transmitting

information over fiber optical cables is composed of the following four steps:

• converting an electrical signal to an optical signal using a transmitter

• relaying the signal along the fiber, ensuring that the signal does not become too

distorted or weak (repeaters)
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• receiving the optical signal

• converting it into an electrical signal

There are two types of optical fibers: single-mode fibers and multi-mode fibers

[107]. This provides a potential for transmitting multi-mode quantum computing

signals directly over fiber optics cables without the need to encode data. There

may be signal attenuation issues that will need to be resolved. However, connecting

quantum computing devices through a communication cable consisting of the same

number of qumodes provides a way for connecting two quantum computing devices

not just for information exchange, but for combining them as one computing unit.

3.1.2 Quantum Memory

Quantum memory is a device that can store quantum states and retrieve them on de-

mand with high fidelity [62, 155]. Optical quantum memories are actively researched

for long-distance communications systems. For long-distance signal transfer, overcom-

ing the attenuation of signals is important. For optical signals to travel long-distance

through fiber optical cables, repeaters are used to regenerate attenuating signals to

maintain fidelity [99, 152]. Repeaters are placed at a certain distance interval in

fiber optical cables. The idea of quantum repeaters is based on repeating the same

quantum state as a signal within shorter intervals of the communications channel [62].

One of the main components of repeaters is the memory component, storing

information carried in optical signals [10, 78, 99, 112, 131, 153, 154]. Under the

umbrella of QuIC, NIST has a designated subarea of research for quantum memory

and repeaters for long-distance communications [267].

A quantum repeater, for a quantum communications network as envisioned by

NIST, requires quantum memories. The role of quantum memory in quantum com-
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puting and quantum communication systems is analogous to the role of electronic

memories in classical communication and computing systems. The primary goal of

quantum memory research is to develop the memory component for long-distance op-

tical quantum signal transmission on fiber optics networks. Thus, the primary areas

of research for implementing quantum memory are all optics based: trapped ion [119],

electromagnetically induced transparency (EIT) [154], and atomic-ensemble [86].

Out of these areas, the research in EIT is the most advanced in terms of technical

readiness, both experimentally and theoretically [267]. EIT works on the principles

of cancellation of photon absorption by the medium atoms controlling the electro-

magnetic field. Such cancellation results in a large degree of transparency [111]. Re-

searchers have demonstrated the ability to control the group velocity of light pulses:

ultrafast, ultraslow, or bring light to a full stop. This capability to control light

propagation allows for light storage, thus information storage in the form of light.

The principle of EIT is storing information carried by photons in medium atoms

by exciting the state of the atoms [111]. An optical pulse is applied to the atom

resting at ground state |g⟩, which excites it to a higher energy level state |e⟩. In

the process, the photon is absorbed by the atom including the information it carries.

When a control pulse is applied to the atom in a higher energy state, the absorbed

photon is released with the original information contained within it.

The duration of time needed for the photon to be absorbed by the medium atom

and its release through the application of a pulse is considered ”storage” of optical

information. The light and atom interaction in terms of energy level changes is

depicted in Figure 4. It is observed in experiments that light pulses can be coherently

stored in medium atoms for up to one minute [154]. This demonstrates that optical

memories can successfully store the information carried in optical signals.

Currently, the existing QPUs are basic Arithmetic Logic Units or other special-
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Figure 4: Information storage in EIT [154]

ized processing elements and systems for carrying out computations but are devoid of

the memory component capable of storing complex programs. For quantum comput-

ers to be practical tools for computation to end users, they need to be equipped with

memory components. The schematic of the internal memory component in CPUs is

shown in Figure 5.

Figure 5: CPU architecture as applied to future quantum computing [image source]

The addition of the memory component will enable QPUs to store programs,

hence performing much more complex computations than that is done in the current

quantum computing architectures. It is my observation that active research in op-
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tical quantum memory can be used for the memory component in optical quantum

computers since optical quantum memories are capable of strong light signals.

Xanadu’s Borealis, which is built on the principle of time-domain multiplexing

has three time-delayed gate operations [157]. Each gate operation is composed of

rotation gates and beamsplitters 25. This is another way of realizing quantum memory

by holding computational quantum states for a duration of time. The buffer of time

is acting as memory, holding the quantum state until the next operation. The first,

second, and third delay loops have a round-trip time of 1τ , 6τ , and 36τ , respectively

[271].

Figure 6: Borealis time buffer as memory (Xanadu website)

3.1.3 Quantum Computers

Quantum computers are devices that carry out information processing using some

physical systems whose states are described based on the principles of quantum me-

chanics. As criteria for the physical implementation of quantum computing, David

DiVincenzo proposed the following criteria which have become the main guideline for

building quantum computers [19, 70]:

• Well-characterized and scalable qubits. Many of the quantum systems that we

find in nature are not qubits, so we must find a way to make them behave as

such. Moreover, we need to put many of these systems together.

25See Section 4.2.2 for optical quantum gates.
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• Qubit initialization. We must be able to prepare the same state repeatedly within

an acceptable margin of error.

• Long coherence times. Qubits will lose their quantum properties after interacting

with their environment for a while. We would like them to last long enough so

that we can perform quantum operations.

• Universal set of gates. We need to perform arbitrary operations on the qubits.

To do this, we require both single-qubit gates and two-qubit gates.

• Measurement of individual qubits. To read the result of a quantum algorithm,

we must accurately measure the final state of a pre-chosen set of qubits.

To actualize quantum computing, a controllable physical system operating under

the principles of quantum mechanics is used. Controlled change of quantum states of

the system and readout of the resulting state is regarded as quantum computation.

Current physical systems being explored for realizing future quantum computers in-

clude superconductors [259], trapped ions [41], quantum optics [11, 34, 157, 212, 252],

microwave [20], neutral atoms [190], and quantum dots [5, 150]. All these candidate

systems are explored to realize the binary logic model of quantum computing. The

lowest two states of the electromagnetic fields within the system are selected to ex-

press the quantum basis states |0⟩ and |1⟩. This requires restricting higher levels of

energy states to only two, i.e. the ground state and one level higher excited state. A

dilution refrigerator is used for this purpose to keep the ambient temperature to near

absolute zero [256].

In the following pages are short descriptions of the physical materials being ex-

plored for the implementation of quantum computing.
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Superconductor

A superconductor is any material that has no electrical resistance and does not allow

magnetic fields to penetrate [222]. They are normally implemented with lossless ca-

pacitors, inductors, and Josephson junctions [20]. The electric current in this stable

system, in theory, can exist forever [222]. This system with negligible resistance and

fluctuation can be used for quantum information processing. The electric current in a

superconductor flows without dissipation, i.e, resistance, keeping the electron waves’

phase coherence. Below a critical temperature, called the superconducting transition

temperature, superconductors exhibit zero-resistance [135].

Figure 7: Superconduting quantum computing [image source]

Some of the materials exhibiting superconducting properties include chemical

elements such as mercury or lead, alloys such as niobium–titanium, ceramics, and

superconducting pnictides [214]. Google, IBM, and Rigetti use superconductors for

their quantum computers. The material used to realize the superconducting model

of quantum computing may vary from company to company.

However, all the superconductors need to be kept below the superconducting
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transition temperature, hence the need for a custom-made dilution refrigerator per

material used, which is costly. The schematic of a dilution refrigerator housing qubits

is shown in Figure 7. The electron waves used for quantum computations are then

accessed via wires from outside, in which a rapid change of temperature occurs.

Maintaining the fidelity of quantum computational result states classically at room

temperature requires highly sophisticated engineering schemes [256]. In the future

universal and fault-tolerant quantum computing era, it would be hard to contain a

dilution refrigerator in a personal device such as a desktop, laptop, cell phone, or

quantum sensor.

Trapped Ion

Quantum computers using trapped ions are implemented by companies like Honeywell

and IonQ [19]. Ions are atoms with a missing electron, created by evaporating a metal

and trapped to form a qubit register [41]. The manipulation of the quantum state of

ions is done via the use of lasers, which affect the electromagnetic fields of the ions

[135]. The schematic of trapped ions is demonstrated in Figure 8.

Figure 8: Trapped ion for quantum computing [135]

Trapped ions have a relatively long coherence time and interact easily with neigh-
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bors for multiplexing. An ion chain is a one-dimensional array of many ions confined

in their respective trap and forms a basis for multi-qubit quantum computing [19].

To manipulate the quantum states of the ions for computation, laser pulses are used.

To reduce unwanted fluctuations of the qubit ions from photons or interactions with

neighbors, the trapped ions need to be cooled down using laser cooling. For the read-

out, a laser beam is applied to the ions to excite the energy state briefly. The ions

emit photons while returning to the ground state and the information in the emitted

photons is interpreted as the result of the quantum computation [135]. Collecting the

emitted photons for readout is done through a lens and a photomultiplier, a device

that transforms weak light signals into electric currents [19].

Neutral Atoms

The use of neutral atoms is the technology for quantum computing adopted by Zapata,

a quantum computing company based in Massachusetts [217]. Neutral atoms are

atoms that have an equal number of protons and electrons, resulting in a neutral net

charge. These atoms can be trapped using the standing light waves of an optical

lattice created by a network of crossed laser beams, called optical tweezers [135].

The trapped atoms are suspended in an ultrahigh vacuum through the laser cooling

process to near absolute zero [40]. They are manipulated for quantum information

processing using laser beams. Measurements are based on imaging near-resonant

scattered light onto an electron multiplying CCD (Charged-Coupled Device) camera

[190].

Neutral atoms are characterized by long coherence times and inherent scalabil-

ity [190] and are gaining popularity in the research community [40]. The potential

materials for realizing neutral atom quantum computing include alkaline-earth atoms

and ytterbium.
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Quantum Optics

Light is one of the most abundant resources in nature. Depending on the surrounding

condition, light exhibits either classical mechanical attributes or quantum mechani-

cal attributes. In quantum optics, the electromagnetic field of light is expressed in

terms of light-quanta, which are discrete packets of light-wave, expressing the energy

level of the field [69]. The quantum mechanical phenomena of light occur at room

temperature and light is robust to noise and decoherence [10].

From the engineering perspective, optical quantum computers are easy to fabri-

cate due to technological advances in fiber optics and lasers. Quantum optical systems

can be created using lasers, mirrors, beamsplitters, waveplates, diffraction gratings,

and other optical instruments. In quantum optical systems, nonlinear effects as well

as linear effects are observed. Linear optics refers to optical systems in which the

input light frequency and the output frequency are the same. In nonlinear optical

systems, the frequency of the output light is different from that of the input light.

These nonlinear effects have been incorporated into Xanadu’s X8 and the available

nonlinear quantum gates can be used in building quantum algorithms using Penny-

Lane 26 [27].

Optical quantum computers have the advantage of operating at room tempera-

ture for binary and multi-valued logic, being integrable into the existing communica-

tions infrastructure for multiplexing and networking [233], robust to decoherence, and

having low-latency. Optical signal processing is more efficient than electrical signal

processing for amplification, multiplexing, demultiplexing, switching, filtering, and

correlation [107].

26Python library by Xanadu for building quantum algorithms on Xanadu’s QPUs.
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Quantum Dots

Quantum dots are artificially fabricated nano-scale solid-state structures whose size

does not exceed 1µm in each spatial direction [5]. In this structure the motion of

charge carriers (electrons and holes) is limited in all three spatial dimensions [150].

Quantum dots are called artificial atoms and their electronic properties can be mod-

ified and controlled with modern electronic devices by applying external electromag-

netic fields. The electrons confined in this structure exhibit their energy levels in

discrete (quantized) units. Either the charge states or spin states of quantum dots

can be used to realize quantum bits [150].

3.1.4 Quantum Transducers

Transducers are devices that convert one form of signal from one device to another

form of signal that can be used in different devices [266]. Different processes and

materials used for quantum computation, storage, and transmission need to be fused

for information exchange. For example, with the fiber optic communications system,

the electrical signals are converted into optical signals using optical transmitters,

transmitted across the fiber optics network, and then converted back to electrical

signals at the receiving end. Even within the same optical devices, the frequency and

wavelengths of light signals may differ from one device to another. Transducers are

used to convert the input energy of one form to the output energy of another form.

Quantum transducers are converters between different quantum state encoding

schemes. This is especially necessary for long-distance quantum information transmis-

sion across communication networks where the electromagnetic wavelengths between

the quantum computing devices and fiber optical networks are different. Various con-

nection points at which quantum transducers may be needed are depicted in Figure
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9 27.

Figure 9: Hybrid quantum network

Fiber optic communication systems consist [107]:

• An optical transmitter to convert an electrical signal to an optical signal

• A cable containing several bundles of optical fibers

• Optical amplifiers to boost the power of the optical signal

• An optical receiver to reconvert the received optical signal back to the original

transmitted electrical signal.

If we can build quantum computers based on quantum optics, then the conver-

sion process from electrical signals to optical and the reverse process can be vastly

simplified. This will reduce the complexity and number of transducers involved in

the entire QuIC infrastructure.

27NIST website, credit: Ivana Slattery
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3.1.5 Quantum Sensors

Sensors are devices that measure different quantities such as temperature, wave sig-

nals, bio-metrics, distances, and tomography. Quantum sensing is measuring these

quantities using physical devices employing the use of quantum mechanical proper-

ties. According to the subcommittee on Quantum Information Science Committee

on Science of the National Science and Technology Council, sensing is arguably the

most mature subcategory of quantum technology [268].

Some of the existing quantum sensors identified by the committee include:

• Atomic clocks for positioning, navigation, networking, and metrology.

• Atom interferometers, e.g., gravimeters for remote sensing and accelerometers

for navigation.

• Optical magnetometers for bioscience, geoscience, and navigation.

• Devices utilizing quantum optical effects for local and remote sensing, networks,

and fundamental science.

• Atomic electric field sensors, e.g., Rydberg atoms for GHz-THz radiation detec-

tion.

In NSF’s vision of QuIC, quantum sensors (metrology subsystems) for measuring

physical quantities, equipped with quantum embedded systems are included [18]. In

today’s sensor technology, optical sensors are widely used because optical metrology

has the properties of high precision and non-intrusiveness to the physical environment

of objects being measured [10]. Some of the applications of optical metrology include

semiconductor chip production, fiber optics cable defect check, and medicine [79].

Especially in medicine, optical fibers are used extensively for minimally invasive

surgeries, endoscopes, biomedical sensors, and Optical Coherence Tomography (OTC)
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[73]. Endoscopes are fiber optics cables that allow medical practitioners to view

internal organs as seen in Figure 10.

Figure 10: Endoscope: fiber optics are attached to a monitor. [image source]

For quantum sensors, several modes of quantum optics are being considered.

They include [268]:

• Quantum biophotonic: fundamental light–matter interactions and spectroscopy

of biological systems

• quantum-enhanced remote sensing

• quantum spectroscopy

• subwavelength quantum microscopy

In addition to standard quantum image processing, the future quantum chip will

add to the functionality of image processing based on advanced quantum algorithms.

In all these areas, quantum computers realized as embedded systems can enhance

the quality of data collection or enable information processing. In all these areas,

the quantum sensors’ capabilities will be vastly enhanced with the use of embedded
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quantum computing systems for data collection or information processing. This ten-

dency to embed advanced machine learning and control mechanisms to multi-modal

sensors is already leading in classical measurements so no doubt the same will happen

in future advanced quantum sensors.

3.2 Optical Quantum Computing

The quantization of the electromagnetic field of light is termed quantum optics [236].

Optical quantum computing refers to the mode of quantum computing using quantum

optics. In optical quantum computing, the energy of the electromagnetic field of light

described in units of discrete energy called light-quanta is used as an information

carrier [125]. Classical light is expressed in terms of waves and quantum light is

expressed in terms of quantized packets of light energy, namely photons [10].

There have been suggested two different logic models of optical quantum com-

puting: the qubit-based model [232, 76, 124, 236] and the continuous variable model

[35, 59, 148, 185, 241]. The definition of the continuous variable model is using a

physical quantum system whose quantum state space is infinite-dimensional [241].

In the physical realization of quantum computing, the infinite-dimensional nature of

the continuous variable model never gets actualized since there is always the highest

level of energy quanta observed. Hence, the physical implementation of the contin-

uous variable model of quantum computing naturally realizes the multi-valued logic

of computing, instead. There have been missing a practical way of actualizing a

quantum optical system for the multi-valued logic of quantum computing.

In 2011, Scott Aaronson and Alex Arkhipov introduced the concept of Gaussian

Boson Sampling (GBS) in the qubit-based model for realizing optical quantum com-

puting. Their idea is to approach quantum computing from the sampling and search

problem perspective rather than the decision problem perspective. In Xanadu’s im-
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plementation of GBS using quantum optics, each qumode contains a multiple number

of photons instead of zero or one, naturally implementing the multi-valued logic of

computing. Xanadu’s X8 emerged as a hardware platform for the realization of multi-

valued logic of computing.

In optical quantum computing, a guided path for the information-carrying light

signal to travel through is created using a laser. Laser is an acronym for Light

Amplification Stimulated Emission Radiation. The amplification is achieved through

oscillation around a medium ring placed between two reflectors as seen in Figure 11.

Hence a laser is an oscillator.

Figure 11: Light Amplification Stimulated Emission Radiation [image source]

When a coherent directed beam of light is emitted from the laser, the process

called ”squeezing” is applied to convert classical light to quantum [11]. The light

beam is directed to pass through a guided path for quantum computations to be

performed on. The light path is called quantum mode (qumode), which acts as a

basic unit of computing just like digital or quantum bits. A single qumode can be

interpreted as a wire in a quantum circuit. Information processing in a qumode is

done in time not in space, the same as in standard quantum computing.

The quantum state of a qumode is described as a projective complex linear

combination of the light-quanta [49]. Change of quantum states of the field constitutes

information processing. The results of quantum computation in optical systems are
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extracted via measuring the energy level of the state in number basis [241]. The

energy level is interpreted as representing the number of photons in the system after

all the computational operations are performed. The notion of photons is proposed as

a convenient way of visualizing the energy units of the electromagnetic field. Dirac’s

original notion of light-quanta is the measure of energy levels of the field in an optical

system [69].

These quantized levels of energy are used as computational basis states of optical

quantum computing and they naturally implement multi-valued logic of information

processing. One of the most notable advantages of optical quantum computing is

that these quantized energy levels are exhibited at room temperature. Therefore,

optics-based quantum computing is operable at room temperature [11].

Light is abundant in nature and known to be the fastest substance, providing

ways for low-latency computation and communications. controllable for both binary

and multi-valued computation because it operates at room temperature. Due to

the unique properties of quantum optics, optical quantum computers are capable of

realizing multi-valued logic of computing, i.e., each variable can have multiple basis

states as opposed to just zero and one as in the binary model.

In the current framework of the qubit-based model, most of the algorithms use

ancillary qubits for readout of the computation [3, 22, 57, 74, 255]. In optical QPUs,

information processing and measurement are done on the same information carriers,

bypassing the need for additional wires.

With the advance in optical technology due to fiber optics-based communication

systems, more sophisticated optical instruments are being invented and fabricated.

In the modern fabrication of VLSI, optical fibers are the material of choice for inter-

connects [115]. The components of optical interconnects include optical waveguides,

vertical cavity surface emitting lasers, and multiple quantum well modulators. The
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schematic of an optical system for global on-chip communication is shown in Figure

12.

Figure 12: Schematic of optical system for global on-chip communication [115]

This is an example of areas in which technological advances in optics are being

propelled. On-going advances in optical instrument technology in multiple areas will

bring the cost and barrier down for the fabrication of highly sophisticated optical

quantum computers.

3.2.1 Optical Quantum Processing Unit: X8

The Canadian company Xanadu has launched two QPUs using quantum optics called

X8 with eight spatial qumodes and Borealis 28 with 216 time-division multiplexed

qumodes.

X8 is made of silicon nitrade for photon conductance. It is housed in a conven-

tional server at room temperature and is accessible to the user via Python-based

Strawberry Fields from a personal computer. For building quantum algorithms,

Xanadu offers a Python-based library, PennyLane [27].

A master controller, connected to a personal computer, controls the number of

28See Appendix C.
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qumodes to be used, quantum circuit building, information processing, and readout

of the measurement results back to the user. For computation, classical light is

pumped into the qumodes on the chip, converted into quantum light, is sent through

a series of quantum state changes based on a user-defined quantum circuit, filtered,

and measured.

Figure 13: Xanadu’s 8-qumode chip [11]

The functional components of X8 are Pump I/O, pump distribution, squeez-

ing, filtering, interferometer, and programmable quantum gates. Pump I/O is a

custom-modulated pump laser source that produces a regular pulse train. The pump

distributor directs the photons in classical states to appropriate qumodes.

The process of squeezing converts the classical light into a quantum squeezed

state. The quantum light is run through a filter to suppress unwanted light, passing

only wavelengths close to the signal. The interferometer portion of the chip performs

quantum circuit operations. Then the photon counter reads the number of photons

in each qumode and sends the result of the computation back to the user.

The general information flow of light is depicted in Figure 14. In this figure,

the red arrows indicate classical light propagated through light guides 29. The first

block indicates a block of squeezers realized with ring resonators. The squeezing block

29They can be viewed as information channels used as computational wires.
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converts classical light into quantum light. The middle block indicates quantum gate

operations controlled by classical registers. The measurement is done via photon

detectors at the end of the circuit, measuring the exact photon count in each qumode

as a computational result.

Figure 14: Optical quantum processing unit architecture [11]

Figure 15 illustrates the probability distribution of the number of photons in

a qumode generated by X8. All the operations are set to the identity to discount

for any quantum operational changes in photon count. The red continuous line indi-

cates the theoretical prediction and the bars indicate the probabilities obtained from

experimental samples. For the experiment, 12 runs of 105 samples are sampled [11].

Figure 15: Probability distribution for the total number of photons generated by the
device. [11]
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3.2.2 Multiplexing

In an optical QPU, the information carrier light coming from a single source needs to

be multiplexed to create multiple qumodes for computation. To go from the current

NISQ era to the future universal fault-tolerant quantum computing era, multiplexing

is one of the areas that need to be improved to accommodate the computing power

required to process complex computational problems.

Optical multiplexing is widely used in fiber-optics communications systems.

Xanadu’s X8 uses spatial-division multiplexing and Borealis uses time-division mul-

tiplexing. It is my observation that the optical multiplexing knowledge base and

techniques currently employed in communication systems can be adapted for optical

QPUs.

Spatial-Division Multiplexing

Spatial-division multiplexing (SDM) is the most natural way of multiplexing a QPU

by creating multiple optical guided paths (i.e., qumodes) for light signals to travel

through. SDM is used in fiber optical communication systems to accommodate con-

tinuing increases in internet data traffic [10]. Within a single optical fiber, multiple

optical channels are shared by confining each individual channel to a unique spa-

tial location. These channels can operate at exactly the same wavelength as well as

differing wavelengths [173].

Xanadu’s X8 has etched-in light paths, each of which constitutes a qumode. The

engineering challenge is the increased number of digital registers to control quantum

gate operations on each qumode as the number of qumodes increases [34]. As steady

technological advances continue in fiber-optical communications systems and laser-

based optical sensors, some of the engineering challenges may be overcome in the
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future.

Time-Division Multiplexing

This is a scheme that combines multiple time-delayed signals in a single optical chan-

nel [240]. To overcome the engineering challenges of dealing with digital registers

as the number of qumodes increases, Xanadu’s Borealis achieves 216 qumodes using

time-division multiplexing [34]. From the same light source, when the pulses are ap-

plied with different time intervals, each pulse forms a qumode, which then collectively

forms a multiplexed optical QPU.

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM) is a technique used to transmit multiple

channels at different wavelengths through the same fiber. Its use enhanced the ca-

pacity of fiber-optic communication systems so dramatically that data transmission

at 1 Tbit/s was realized by 1996 [10]. The benefits of WDM as cited from [94] are :

• Capacity upgrade: To upgrade the capacity of existing ”point to point” fiber

optics transmission links.

• Transparency: The light path can carry data in any transmission format like

asynchronous and synchronous digital data or analog information.

• Wavelength reuse: Multiple light paths in the network can use the same wave-

length if the wavelength is limited, as long as they do not overlap on any other

link.

• Wavelength routing.

• Wavelength conversing.
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Although WDM is not currently employed in today’s near-term QPUs, it remains a

viable technique for multiplexing in future QPUs.
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4 LOGIC IMPLEMENTATION: MULTI-VALUED LOGIC

The two models of quantum computing in the literature are the discrete variable model

and the continuous variable model [120]. The discrete variable model mainly refers

to the qubit-based model with two basis states |0⟩ and |1⟩ . The continuous variable

model refers to a model of quantum computing using a continuous variable system. A

continuous variable system is a quantum system with an infinite-dimensional Hilbert

space represented by bosonic 30 modes 31 [241]. The information carriers in quantum

computing are electromagnetic fields expressed in discrete energy quanta. To imple-

ment the discrete variable (qubit-based) model of quantum computing, near subzero

temperature is needed to select only the lowest two levels of quantized energy. Im-

plementing the continuous variable model of quantum computing is not practically

possible since any physical quantum system always comes with a finite-dimensional

Hilbert space. A quantum system exhibits multiple levels of energy quanta, whose

mathematical description leads to a finite-dimensional Hilbert space. The state of a

natural quantum system is described with a finite number of multiple basis elements,

naturally leading to the multi-valued logic of quantum computing.

The logic basis of digital computing is binary logic. This is due to the hard-

ware configuration using the ON and OFF switches realized in transistors inside ICs

[37]. As a natural extension of the transition from classical computing to quantum

computing, most of the current research effort in industry is in realizing the binary

logic of quantum computing [5, 15, 19, 20, 28, 34, 40, 45]. However, using the nat-

ural state of quantum mechanical systems wherein multiple levels of energy quanta

are observed realizes the multi-valued logic of quantum computing 32. Especially in

30Bosons are elementary particles with spins expressed in integer increments.
31Channels or wires.
32See Section 4.2.2
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optical quantum computing where the components are built with inexpensive optical

instruments, this natural realization of the multi-valued logic of computing occurs at

room temperature. This new paradigm of computing away from the need to encode

information in binary bits may be an added benefit of quantum computing, when we

employ optical quantum computing.

4.1 Multi-Valued Logic

The binary logic of computing is based on the semiconductor-based switching circuit

technology [8]. Therefore, in modeling real-life problems for the purpose of computa-

tion in digital computing, we encode them in binary logic. For example, the ternary

states YES, NO, and UNDECIDED cannot be directly computed but are encoded as

00, 01, and 10 with two bits for example. The decimal logic of 0, 1, . . . , 10 are encoded

as 0000, 0001, . . . , 1010 using four bits.

There has been a growing number of researchers, realizing the limitations of the

binary logic of computing both in logic implementation as well as in representing

complex digital systems [8, 163, 168, 198, 219]. When signals in a circuit represent

more levels than just 0 and 1 with higher radix multi-valued logic, they contain more

information leading to data compression. The multi-valued logic of computing can be

viewed as compact representations of the information content of signals. Higher radix

means fewer digits to represent binary information [8]. The formula for the number

of digits needed to represent binary information is given by [8]

d = ⌈logp (2n)⌉ (1)

where d is the number of digits, p is the radix, and n is the number of bits for binary

logic. For example, in decimal logic of radix−10, only one digit is needed to express
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8 while three digits are needed in binary logic as seen in Equation (2).

⌈log10
(
23
)
⌉ = ⌈log10 (8)⌉ = ⌈0.90⌉ = 1 (2)

Hence, the basic computational units used in higher radix systems contain more

information than in binary logic. This results in the complexity reduction in space,

time, and interconnects [8]. In addition, if a memory cell stores more than one bit of

information, this increases the density of information per area unit [8].

Optical computers, DNA computers, and quantum computers have been recog-

nized as potential technologies for realizing the multi-valued logic of computing. Op-

tical quantum computing is emerging as a viable hardware platform for actualizing

this new mode of information processing, which is not yet widely recognized. Perhaps

in the future, the research community will recognize optical quantum computing as a

practical hardware platform for the realization of the multi-valued logic of computing

and there will be active research in quantum algorithms based on high-radix logic

beyond the binary.

4.2 Quantum Computing

In quantum computing, the quantum state of the electromagnetic field of the system

is used as a basis of quantum computation. Controlled change of states of the field

constitutes ”quantum computation”. The energy state of the electromagnetic field

is expressed in terms of the discrete quanta levels of excited states. The quantized

energy levels are used as basis states for computation. Currently, the QPUs by

IBM, Google, Rigetti, Honeywell, IonQ, and Zapata all use the binary logic model of

quantum computing. This means that the ground state and one higher-up excited

state are used as the qubit basis states |0⟩ and |1⟩. Xanadu’s X8 implements the
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multi-valued model of quantum computing, which means more energy levels of the

electromagnetic field are used as basis states. However, Xanadu’s goal is to realize

the binary logic model of quantum computing by limiting the number of naturally

occurring energy quanta [34]. With more recognition of the natural realization of

the multi-valued logic in optical quantum computing, the research community may

embrace its full expressive power in processing computational problems.

Here, we examine the mathematical formalism of the qubit-based model and the

multi-valued model of quantum computing.

Under the mathematical formalism of quantum mechanics, any possible state of

a quantum mechanical system is represented by a unit vector in a complex projective

Hilbert space [178]. A Hilbert space is a vector space equipped with the inner product

operation. To represent a quantum state vector in a Hilbert space, it is customary to

use Bra-ket notation, also known as Dirac notation. Column vectors are denoted by

kets |x⟩ and the corresponding complex conjugate transpose row vectors by bras ⟨x|.

Suppose |x⟩ is an n−dimensional column vector, |x⟩ =



x0

x1
...

xn−1


∈ Cn. Its conjugate

transpose row vector is ⟨x| = |x⟩† =

[
x∗0, x

∗
1, . . . x

∗
n−1

]
. The inner product of two

vectors |x⟩ , |y⟩ ∈ Cn is expressed as

⟨x|y⟩ = |x⟩† |y⟩ =
[
x∗0, x

∗
1, . . . x

∗
n−1

]


y0

y1
...

yn−1


=

n−1∑
k=0

x∗kyk (3)
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The inner product of the vector |x⟩ with itself is then

⟨x|x⟩ =
n−1∑
k=0

x∗kxk =
n−1∑
k=0

∥xk∥2 = ∥ |x⟩ ∥2, (4)

which is the norm squared of the original vector. Then the length (norm) of |x⟩ is

simply the square root of its inner product.

∥ |x⟩ ∥ =
√

∥ |x⟩ ∥2 =

√√√√n−1∑
k=0

∥xk∥2 =
√

⟨x|x⟩. (5)

This allows the distance between two vectors to be defined as the norm of the

difference vector of the two:

dist(|x⟩ , |y⟩) = ∥ |x− y⟩ ∥

=
√

⟨x− y|x− y⟩,
(6)

which turns the space into a metric space [47]. We can also define the angle between

two vectors, using the formula [243]

⟨x|y⟩ = ∥ |x⟩ ∥∥ |y⟩ ∥ cos θ

=⇒ θ = arccos

(
⟨x|y⟩

∥ |x⟩ ∥∥ |y⟩ ∥

) (7)

A clear definition of the distance and angle between two vectors as shown in Equations

(6) and (7) allows the generalization of linear algebra and calculus within a quantum

state space.

The projective part comes from the nature of quantum mechanical systems where

the coefficients ck ∈ C defining a quantum state have to meet the condition
∑

∥ck∥2 =

1. For any quantum state that does not meet the condition, we can simply normalize
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it with the normalizing constant 1∑
∥ck∥2

. For a quantum state expressed with a unit

vector |ψ⟩, it is equivalent to any other state of the form γ |ψ⟩ for some non-zero

γ ∈ C i.e., 1
γ
is the normalizing constant for γ |ψ⟩ ∈ Cn, where n = 2 for the qubit

model and n =cutoff dimension for the multi-valued model. Here, γ ∈ C∗ is called the

global phase, and the original complex Hilbert space is modded out by C∗, producing

a complex ”projective” Hilbert space [47].

4.2.1 Binary logic Model (Qubit-based Model) [178]

The binary logic model of quantum computing is a natural extension of binary logic

digital computing. In realizing the binary logic in a quantum system, the lowest two

levels of energy of the system are selected to represent the basis states |0⟩ and |1⟩.

The computational basis {|0⟩ , |1⟩} is a quantum version of digital computing bits 0

and 1, hence is called a quantum bit.

Quantum Bits

Embed the classical states 0, 1 ∈ R as two-dimensional vectors in C2 using Dirac

notation:

0 7→

1
0

 = |0⟩ , 1 7→

0
1

 = |1⟩ (8)

Any quantum state in this quantum state space is expressed as a projective complex

linear combination of |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ = α

1
0

+ β

0
1

 =

α
β

 (9)

where α, β ∈ C and |α|2 + |β|2 = 1. This complex linear combination is called

superposition. Here α and β are called probability amplitudes.
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The concept of ”projective” is based on the notion of the global phase in quantum

mechanics, where two quantum states are considered to be equal when they differ by

a non-zero complex factor.

|ψ⟩ = α |0⟩+ β |1⟩ = γ (α |0⟩+ β |1⟩) , γ ∈ C∗. (10)

Any non-unit vector is equivalent to its normalized version, i.e., of length 1.

The state space of a qubit, then, is a 2-dimensional complex Hilbert space minus the

origin, which is then modded out by the space of all possible global phase values. We

take out the origin (0, 0) from the space since the |α|2 + |β|2 = 1 condition prohibits

both α and β to be zero at the same time. The resulting space is C2− (0, 0), modded

out by C∗, which is the space of all possible global phase values, obtaining [47]

(
C2 − {(0, 0)}

)
/C∗ ∼=

(
S3 × R+

)
/
(
U(1)× R+

)
= S3/U(1) ∼= CP 1. (11)

Geometrically the resulting projective space is of the surface of a spherical space,

equivalent to S2. It is called the Bloch Sphere with |0⟩ as the North Pole and |1⟩ as

the South Pole.

Figure 16: Quantum state space of a qubit (Generated on IBM simulator using Qiskit)

Now any quantum state, which is a point on the Bloch sphere, can be expressed

in spherical coordinates: |ψ⟩ = cos θ
2
|0⟩ + eiϕ sin θ

2
|1⟩, where θ represents the angle
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with the z−axis and ϕ with the x−axis. The value eiϕ is called relative phase [178].

Any state of one qubit would lie on the Bloch sphere as a point, a representative of

the entire global phase space C∗.

Compare this qubit space of the Bloch sphere to the classical bit space of {0, 1},

consisting of two points. This expanded space used for quantum information process-

ing is one of the areas believed to be giving more power to quantum computing than

classical.

Multiple Qubits

Increasing the computing power is achieved by adding more qubits. In multiple-qubit

systems, the state space is the tensor product space of the individual qubit spaces

and the computational basis, the set of all possible combinations of individual qubit

computational basis, i.e., the tensor product of the basis states. For example, in a two-

qubit system, the set of all possible combinations of the computational basis states

would be {|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩} where ⊗ denotes a tensor product.

For simplicity, it is customary to omit the tensor product notation: |ψ⟩⊗ |ϕ⟩ = |ψϕ⟩.

In vector representation,

|00⟩ = |0⟩ ⊗ |0⟩ =

1
0

⊗

1
0

 =


1

1
0


0

1
0




=



1

0

0

0


(12)

Notice the size of the computational basis and the length of the basis vectors

is 22 = 4. The state space of n qubits is a 2n−dimensional Hilbert space with its

computational basis being the set of all combinations of the state each qubit can
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be found in. For example, the computational basis of a 3-qubit system is the set

{|000⟩ , |001⟩ , . . . , |111⟩} of size 23 = 8, with each basis vector of length 8. The

quantum state in a system of multiple qubits is represented by the tensor product of

the individual qubits. Let |ψk⟩ = αk |0⟩+βk |1⟩ , k ∈ {0, 1, . . . , n−1} be the quantum

state of the kth qubit. Then any quantum state in the whole system can be expressed

as

ϕ0 ⊗ ϕ1 ⊗ . . . ϕn−1 =

α0

β0

⊗

α1

β1

 . . .⊗
αn−1

βn−1

 =



α0α1 . . . αn−1

α0α1 . . . βn−1

...

β0β1 . . . αn−1

β0β1 . . . βn−1


. (13)

Each |ψk⟩ is a vector of length 2, hence the tensor product of n vectors of length 2

gives us a vector of length 2n. The resulting tensor product space is The geometric

representation of an n−qubit system is then [47]

CP n =
(
Cn+1 − {(0, 0)}

)
/C∗ ∼=

(
S2n+1 × R+

)
/
(
U(1)× R+

)
= S2n+1/U(1) ∼= S2n. (14)

Quantum Gates

Quantum gates inducing a change of states for information processing are represented

by 2×2 rotation matrices on the Bloch sphere. They are of the form UU † = U †U = I

called unitary matrices, which means U † = U−1. The inverse operation of a unitary

matrix is its reverse rotation on the Bloch sphere. Notice all unitary matrices are
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invertible, hence all quantum gates in the qubit model are reversible, unlike some

classical gates such as the AND and OR gates. The Hadamard gate is used to put

the zero state |0⟩ in uniform superposition of |0⟩ and |1⟩.

H |0⟩ = 1√
2

1 1

1 −1


1
0

 =
1√
2

1
1

 =
1√
2


1
0

+

0
1


 =

|0⟩+ |1⟩√
2

(15)

The Pauli-X, Y, Z gates are used to induce half rotations about the x, y, z−axis re-

spectively.

X = NOT =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 , (16)

Parametrized gates are used to rotate a qubit state according to the given pa-

rameter. Examples of parameterized gates are

Rx(θ) =

 cos
(
θ
2

)
− sin

(
θ
2

)
− sin

(
θ
2

)
cos
(
θ
2

)
 , P (θ) =

1 0

0 eiθ

 (17)

Quantum gates acting on multiple qubits are tensor products of component uni-

tary gates. Suppose we have n-qubits for computation, each with a unitary gate

acting on it. The corresponding unitary gates acting on the entire system are rep-

resented by 2n × 2n matrices as tensor products of n 2 × 2 unitary matrices. For

example, in a two-qubit system, when we apply the Hadamard gate on the first and

the T gate on the second, the tensor product of the two matrices acts on the entire

system:
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H ⊗ T =
1√
2

1 1

1 −1

⊗

1 0

0 ei
π
4



=
1√
2


1

1 0

0 ei
π
4

 1

1 0

0 ei
π
4


1

1 0

0 ei
π
4

 −1

1 0

0 ei
π
4





=
1√
2



1 0 1 0

0 ei
π
4 0 ei

π
4

1 0 −1 0

0 ei
π
4 0 −eiπ4



(18)

In a multi-qubit system, we can use one or more qubits as a control for an op-

eration on other qubits. For example, the Pauli−X gate which is equivalent to the

classical NOT gate on one qubit can be controlled by another qubit.

Phase Kickback [29]

Unlike in classical computing, the quantum state of the control qubit is affected by

the state of the other qubit, on which the controlled operation is performed. This

phenomenon called phase kickback, unique to quantum computing, is used to record

the evolution of the state change of a quantum circuit on the ancillary qubit. Phase

kickback plays an important role in many quantum algorithms including quantum

machine learning.

Let U be an arbitrary unitary matrix and |ψk⟩ be one of its eigenvectors. Then for

its corresponding complex eigenvalue λk = eiα expressed in Euler formula, U acting on

|ψk⟩ is equal to multiplying the eigenvector by its eigenvalue eiα : U |ψk⟩ = λk |ψk⟩ =
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eiα |ψk⟩ = eiαI |ψk⟩. Hence the effect of the gate operation U on one of its eigenvectors

is equivalent to the identity operation multiplied by its corresponding eigenvector.

However, by the projective nature of the quantum state space, the eigenvalue acts as

a global phase, returning us the original state as though no operation was applied.

That picture changes when we apply a controlled U gate instead. Consider a two-qubit

circuit where an arbitrary unitary gate U is applied to the second qubit controlled by

the first. The U operation will be applied only when the control qubit is in the state

|1⟩. The Hadamard gate is applied to the first qubit, initialized to the |0⟩ state, to

obtain the uniform superposition of |0⟩ and |1⟩.

The states |0⟩ and |1⟩ can be expressed by their outer product matrices up to

phase 1√
2
. The operation of the U gate on the second qubit, when its state is one of

the eigenvectors of U , conditioned on the |1⟩ state of the first qubit is then given by

|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ eiαI

=

1
0

[1 0

]
⊗

1 0

0 1

+

0
1

[0 1

]
⊗

eiα 0

0 eiα



=



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


+



0 0 0 0

0 0 0 0

0 0 eiα 0

0 0 0 eiα



=



1 0 0 0

0 1 0 0

0 0 eiα 0

0 0 0 eiα


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=

1 0

0 eiα

⊗

1 0

0 1

 (19)

Notice the first matrix which applies eiα rotation on |1⟩ on the first qubit and the

identity matrix on the second. It is as though the operation of U = eiαI on the second

qubit is kicked back to the first qubit when its state is |1⟩.

When this operation is applied to |0⟩+|1⟩√
2

⊗ |ψ⟩, we get

1 0

0 eiα

 1√
2

1
1

⊗

1 0

0 1

 |ψ⟩ = |0⟩+ eiα |1⟩√
2

⊗ |ψ⟩ (20)

where the original state |ψ⟩ is not affected and the phase eiα is ”kicked back” to the

|1⟩ state of the first qubit.

Measurement

The last stage of a quantum circuit is measurement, a readout of computational

results classically. It is a projection of the quantum computational resulting state

onto one of the classical computational basis. Let

|ψ⟩ = c0 |00 . . . 0⟩+ c1 |00 . . . 1⟩+ . . .+ c2n−1 |11 . . . 1⟩ (21)

be the final state of computation in an n−qubit system. The probability of getting

the kth computational basis state is given by “Born Rule” [178] as

prob(k) =
|ck|2∑
j |cj|2

= ⟨ϕ|k⟩ ⟨k|ϕ⟩ = | ⟨k|ϕ⟩ |2 (22)

In the circuit diagram in Figure 17, each line represents the evolution of the

state of one qubit in time, boxes represent quantum gates, and the black arrow
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Figure 17: Quantum circuit diagram with measurement (Generated on IBM simulator
using Qiskit)

boxes represent measurement. Readout qubits are connected to classical wires for

measurement.

In each instance of measurement, we get one of the computational basis elements

once. To extract the probability value of the kth element, which is a projection of |ψ⟩

onto |k⟩, we perform multiple shots of the circuit operation. Figure 18 is a histogram

of a 4-qubit circuit run for 1000 shots. The higher the number of shots, the closer the

result will be to the true probability distribution over the computational basis states.

Figure 18: Measurement result of 1000 shots (Generated on IBM simulator using
Qiskit)
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4.2.2 Multi-valued Logic Model

Another model of quantum computing in the literature is the continuous variable

model of quantum computing wherein the computational space is infinite-dimensional

[35, 120, 241]. The continuous variable model of quantum computing can be imple-

mented using optical systems, trapped ions, or microwaves [6, 35, 59, 75, 120, 148,

170, 185, 186]. In optical quantum computing, the quantum state of a quantum

harmonic oscillator is expressed as a complex linear combination of multiple levels

of energy quanta, naturally realizing the multi-valued logic of quantum computing

[49]. Theoretically, the quantum state of an optical system is expressed as the sum

of an infinite number of basis [241]. However, in the physical implementation of this

model, there is always the highest level of energy of real-life physical systems. This

means that the quantum state of the system is expressed with a finite number of basis

states. Depending on the highest level of energy observed in the system, an optical

quantum system is described based on multi-valued basis states |0⟩ , |1⟩ , . . . , |n⟩ as an

implementation of radix−n logic. Thus the ”continuous variable” theoretical model

is always realized as the multi-valued logic of computing.

In Xanadu’s X8, for each instance of computation, the user defines the maximum

energy level used for information processing. The maximum energy level allowed for

computation defines the dimension of the computational space, and it is called the

”cutoff dimension”. The notion of ”cutoff dimension” is used to control the dimension

of the computational space and the size of the output vectors.

More detailed explanations of optical quantum computing and its natural real-

ization of the multi-valued logic of quantum computing are given in following pages.
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Quantum Modes

A quantum harmonic oscillator is used as one computational unit in optical quantum

computing [35, 125, 241]. It is constructed using a laser for oscillation and a resonator

for feedback-loop [11]. The quantum state of its electromagnetic field is used as a

unit of quantum computing (qumode) [10]. It can be viewed as a wire The state is

described as a projective complex linear combination of the basis states, which are

quantized packets of energy 33.

Classical light is converted into quantum light through the process called squeez-

ing [11, 120]. The idea of squeezing is based on the Uncertainty Principle of quantum

mechanics. It states that the product of the standard deviation σx of position x

and the standard deviation σp of momentum p has a clearly defined lower bound:

σxσp ≥ ℏ
2
for the reduced Planck’s constant ℏ = h

2π
. Squeezing the momentum stan-

dard deviation σp as close to zero as possible will increase the value of the position

standard deviation because of the ℏ
2
lower bound. A qumode initialized to the vac-

uum state has no photon present and the Gaussian distribution of the position and

momentum of the zero-photon state is clearly defined. The visual representation on

the position-momentum plane is depicted in Figure 19.

Figure 19: Quantizing classical light: squeezed light [174]

33which are called photons, when light is viewed as particles rather than waves.
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Then the state of the optical system is expressed as a complex linear combination

of number basis. The squeezing process parameterized with the squeezing parameter

z on the vacuum state |0⟩ is given by [241]

S(z) |0⟩ = 1√
cosh z

∞∑
n=0

√
(2n)!

2nn!
tanhn z |2n⟩

=
1√

cosh z
(|0⟩+ tanh(z) |2⟩+ · · ·+ tanhn(z) |2n⟩+ · · · )

(23)

Notice the squeezing operation converted classical light into an infinite sum of

even number Fock basis 34, i.e., quantum light:

|0⟩ →
√

2

ez + e−z
(c0 |0⟩+ c2 |2⟩+ . . . c2n |2n⟩+ . . .) (24)

where c2k =

√
(2k)!

2kk!

(
ez−e−z

ez+e−z

)k
for k = 0, 1, 2, . . . n . . ., as k goes to infinity. Here,

the states |0⟩ , |2⟩ , . . . , |2n⟩ , . . . represent the number of photons found in the optical

system.

Once classical light is converted into quantum light as a complex projective

linear combination of even Fock (number) basis, optical quantum gate operations are

applied to create even and odd Fock (number) basis. Repeated application of the

constructor creates a higher number of photons 35. Notice the process of squeezing

processes even numbers of photons in the system. The application of constructor and

annihilator operators produces odd numbers of photons.

In phase space representation of quantum optics, the basis states can be rep-

resented as functions of the position and momentum observables using the Wigner

function [44].

34Please see the section Fock basis on this page.
35See Section 5. Matrix Representation of Optical Quantum Gates
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Fock Basis (Number Basis)

A photon is a form of electromagnetic radiation, whose properties are described quan-

tum mechanically [10]. The position wave function describes the light wave electro-

magnetic strength of the qumode depending on the number of photons present. It is

a complex-valued function on real-valued variables: Ψ : R → C : x 7→ α [120]. As the

light waves from different photons interact either constructively or destructively, the

wave function with more than one photon displays the constructive and destructive

interactions between the light waves of the photons.

Another way of describing an optical quantum system is via the phase space

representation wherein both the position and momentum observables are simultane-

ously used [35, 120, 241]. Consider the lowest energy state of a qumode, where there

is no photon present in the system, i.e., the vacuum state. Its wave function of the

position variable is given by [44]

Ψ0(x) =
1

4
√
π
√
a
e−

x2

2a2 . (25)

Using the wave function of the position variable and the momentum variable,

we can derive a Gaussian distribution of the state on the position - momentum plane.

The Wigner function as a function of position and momentum is given [44] by

W (x, p) =
p

h
=

1

h

∫ ∞

−∞
e−

ipy
ℏ Ψ

(
x+

y

2

)
Ψ∗
(
x− y

2

)
dy (26)

where h is the Planck constant and ℏ is the reduced Planck constant. The position

wave function Ψ(x) for each number of photons and its momentum p is used on the

position-momentum plane.

Using the wave function Ψ0(x), we can derive the Wigner function of the lowest
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energy state [44].

W0(x, p) =
1

h

∫
1

a
√
π
e−

ipy
ℏ e−

(x+
y
2 )2

2a2
(
e−(x − y

2
)2/2a2)∗

dy

=
2

h
e
−
(
(ap

ℏ )
2
+(x

2 )
2
) (27)

where a =
√

ℏ
mω

, m = angular momentum, and ω = angular frequency. It can be

simplified by setting a, h = 1 as W0(x, p) = 2e(−( pℏ )
2−x2). The plot of the function

W0(x, p) on the xp−plane is shown in Figure 2.5.

Figure 20: The Wigner function W0(x, p) on the xp−plane [44]

As the value σx spreads farther in the x−axis, the mathematical description of

the qumode can be expressed as a superposition of the numbers of photons that can

be found in the system, using Fock basis i.e., number basis. Fock basis is derived

from the Wigner functions of the position and momentum variables depending on the

number of photons present in the system. The projection of the resulting Wigner

functions W (x, p) onto the x-axis gives the probability amplitude of the position x

and onto the p-axis gives that of the momentum p. The resulting plot of each energy

state is depicted in Figure 21.

The collection of the projection of W (x, p) onto the xp− plane for each energy

state is called Fock basis or number basis: {|0⟩ , |1⟩ , . . . , |n⟩ , . . . } [120].
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Figure 21: Fock basis [image source]

Quantum States

The quantum state |ψ⟩ of the system of a qumode is expressed as an infinite sum

(superposition) of Fock basis states [17]:

|ψ⟩ = c0 |0⟩+ c1 |1⟩+ . . .+ cn |n⟩+ . . . , where
∞∑
k=0

∥ck∥2 = 1 (28)

and ck is the probability amplitude of basis |k⟩. The probability of finding the qumode

with k− photons is given by ∥ck∥2 when |ψ⟩ is normalized. A single qumode, realized

with a harmonic oscillator system, can be in zero particle state |0⟩, 1 particle state |1⟩,

2 particle state |2⟩, so on, and an infinite number of particle state. The coefficients

ck represent the probability amplitude, which gives the probability distribution at

measurement.

In a multiple qumode system, the quantum state of the system is represented

by the tensor product of the individual qumode states. The resulting space is yet

another infinite-dimensional Hilbert space. Let the quantum states of two qumodes

be represented each as |ϕ⟩ and |ψ⟩.

|ϕ⟩ = b0 |0⟩+ b1 |1⟩+ . . .+ bn |n⟩+ . . .

|ψ⟩ = c0 |0⟩+ c1 |1⟩+ . . .+ cn |n⟩+ . . . .

(29)

Then the tensor product of the entire system is
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|ϕ⟩ ⊗ |ψ⟩ = (|ϕ⟩ = b0 |0⟩+ b1 |1⟩+ . . .+ bn |n⟩+ . . .)

⊗ (c0 |0⟩+ c1 |1⟩+ . . .+ cn |n⟩+ . . .)

= b0c0 |00⟩+ b0c1 |01⟩+ . . .+ b0cn |0n⟩+ . . .

+ b1c0 |10⟩+ b1c1 |11⟩+ . . .+ b1cn |1n⟩+ . . .

+ . . .

+ bnc0 |n0⟩+ bnc1 |n1⟩+ . . .+ bncn |nn⟩+ . . .

+ . . .

(30)

Cutoff Dimension

In physical reality, we know that we are not going to have an infinite number of

photons in any system, thus also in a qumode. Depending on the technology, there

is the highest level of energy observed: in X8, it is 18 photons and in Borealis, 219

36. That means the quantum state of an optical system is expressed as a linear

combination of a finite number of basis elements.

For each instance of computation using Xanadu’s X8, the user is asked to define

the ”cutoff dimension” as one of the parameters for building a quantum circuit.

Figure 22: Number of wires and cutoff dimension as parameters for building a quan-
tum circuit in Xanadu’s X8

In order for us to better understand the notion of the cutoff dimension, we look

at the definition of the basis and the dimension of a vector space.

Definition 4.1 (Basis) A basis is a set B of vectors in a vector space V wherein

36Although registering events with up to 219 photons are observed, a mean photon count is 125.
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every element of V may be written in a unique way as a finite linear combination of

elements of B.

Definition 4.2 (Cutoff Dimension) The cutoff dimension is the number of Fock

basis 37 elements in describing the quantum state of an optical system 38 for each

instance of computation.

By Theorem 1.3 of [166], every set F = {f1, f2, . . . , fn} of linearly indepen-

dent vectors in an n−dimensional vector space V forms a basis of V . Let n be

the cutoff dimension. Then the quantum state |ψ⟩ is in superposition of the set

{|0⟩ , |1⟩ , . . . , |n− 1⟩}.

|ψ⟩ = c0 |0⟩+ c1 |1⟩+ . . .+ cn−1 |n− 1⟩ , where
n−1∑
k=0

∥ck∥2 = 1 (31)

In vector representation, the state is expressed as a vector of size n =cutoff dimension

as

|ψ⟩ =



c0

c1
...

cn−1


= c0



1

0

...

0


+ c1



0

1

...

0


+ · · ·+ cn−1



0

0

...

1


. (32)

Notice the vectors representing {|0⟩ , |1⟩ , . . . , |n− 1⟩} are linearly independent.

Suppose cutoff dimension = 3 on a 2 qumode-system. Then for each qumode,

the state of the quantum system is represented by a superposition of three Fock basis

states: |ϕ⟩ = b0 |0⟩ + b1 |1⟩ + b2 |2⟩ and |ψ⟩ = c0 |0⟩ + c1 |1⟩ + c2 |2⟩. The quantum

state of the entire system is the tensor product of both qumodes:

37See P. 55 Fock basis.
38So far, it is realized only in Xanadu’s X8.
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|ϕ⟩ ⊗ |ψ⟩ = b0c0 |00⟩+ b0c1 |01⟩+ b0c2 |02⟩

+ b1c0 |10⟩+ b1c1 |11⟩+ b1c2 |12⟩

+ b2c0 |20⟩+ b2c1 |21⟩+ b2c2 |22⟩

(33)

Notice the Fock basis {|00⟩ , |01⟩ , |02⟩ , |10⟩ , |11⟩ , |12⟩ , |20⟩ , |21⟩ , |22⟩} has 9 = 32

elements.

In an m−qumode system, the quantum state of the entire system defined by

cutoff dimension n is

|ψ0⟩ ⊗ |ψ1⟩ ⊗ . . .⊗ |ψm−1⟩ =

d0 |00 . . . 0⟩+ d1 |00 . . . 1⟩+ cnm−1 |n− 1, n− 1, . . . , n− 1⟩
(34)

Assertion 1 The cutoff dimension defines the dimension of the computational space.

By definition, the cutoff dimension defines the number of Fock basis elements for

a quantum optical system. The number of basis elements is the dimension of the

computational space in optical quantum computing. Hence the cutoff dimension

defines the dimension of the computational space.

Definition 4.3 (Radix) The number of independent digits used in the number system

is known as Radix or Base of the number system [272].

Assertion 2 The dimension of the computational space leads to radix−n multi-

valued logic.

By definition, the number of basis elements is the dimension of the computational

space. For the quantum state |ψ⟩ = c0 |0⟩ + c1 |1⟩ + . . . + cn−1 |n− 1⟩ expressed as

a complex projective linear combination of {|0⟩ , |1⟩ , . . . , |n− 1⟩} has n independent

digits, realizing radix−n logic.
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The quantum computing research community has been focusing on algorithm

development in binary logic because it was a natural extension of digital comput-

ing. However, with working optical QPUs demonstrating multi-valued computational

spaces, we are given additional tools to expand our computational problems in more

accurate ways than in binary logic. Theoretically, the quantum state space of an opti-

cal harmonic oscillator, realizing optical quantum computing, is infinite-dimensional.

In real-life physical systems, the space is finite-dimensional with a clearly defined

level of the highest energy quanta. In using optical quantum computers, there comes

the power for users to define the dimension of the computational space by setting the

cutoff dimension. In a multiple qumode system, the size of the computational basis

equals nm where n represents the cutoff dimension and m, the number of qumodes

used. Additionally, using different measurement methods in optical quantum com-

puting gives the user the possibility to determine the size of the output of a quantum

circuit. This added flexibility of ”defining” the size of the computational space and

the size of the output vectors can be used as a tool for the exploration of different

solution spaces for a given computational problem.

In Xanadu’s Borealis, we are able to realize radix-126 logic. With the advance of

future optical technology, the increased number of varying light-quanta will mean an

increased dimension of computational spaces to the user. With the notion of cutoff

dimension, at each instance of quantum computation, the user can limit the number

of light-quanta as the number of computational basis states [49].

The term ”cutoff dimension” is used as one of the parameters for building quan-

tum circuits with PennyLane on Xanadu’s X8. The documentation does not go into

detail as to its meaning. The only place wherein the term cutoff dimension is referred

to is Killoran’s ”Continuous variable quantum neural networks”. Recognizing the use

of cutoff dimension to determine the dimension of computational space, leading to
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the realization of the multi-valued logic of computing is one of my contributions.

Quantum Gates

In phase space representation of quantum space in optical quantum computing, the

standard quantum gates are represented by matrix exponential of the form U = e−iHt

[120], where H is the Hamiltonian of the system, describing the total energy as the

sum of kinetic and potential energy.

When describing the action of an optical quantum gate with Hamiltonian ex-

pressed as some matrix M , the resulting operation U on the quantum state is repre-

sented by the matrix exponential expressions:

U = exp(itM)

=
∞∑
k=0

(itM)k

k!

= I + itM +
(itM)2

2!
+ · · ·+ (itM)n

n!
+ · · ·

(35)

The Hamiltonians for various optical gates are expressed using the constructor â†

and the annihilator â of photons within a qumode [239]. For the purpose of quantum

computation, setting a boundary to the energy levels allowed in the system is crucial

since we cannot have an infinite-dimensional matrix. In constructing optical quantum

gates, the building blocks are the constructor â† and the annihilator â as seen in the

standard gates below.

Squeezer with parameter z : S(z) = exp
(

z∗â2+zâ†
2

2

)
Rotation with parameter ϕ : R(ϕ) = exp

(
iϕâ†â

)
Displacement with parameter α : D(α) = exp

(
αâ† − α∗â

)
[114]

In addition to these gates, optical quantum computing offers nonlinear gates

which are not available in the binary logic (qubit-based) model. These nonlinear gates
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include the Kerr gate and the cross Kerr gate. The nonlinear gates implemented in

PennyLane include Controlled addition, Controlled phase, Cross Kerr, Cubic phase,

Kerr, Quadratic phase, and Two mode squeezing.

The matrix representation of the constructor and annihilator and various gates

is presented in Section 5 of this dissertation.

Measurement

Measurement is done by counting the number of photons present in each qumode with

a photon detector. At the end of the quantum circuit, a photon detector is attached

to each qumode. The quantum state |ψK⟩ =
∑n−1

i=0 ci |i⟩ of the kth qumode, where

n = cutoff dimension, collapses to one of the classical states i ∈ {0, 1, . . . , n−1} when

measured with a photon detector.

Let |ψ⟩ =

ψ0

ψ1

 be the quantum state of a single qubit or qumode system

after desired quantum computational operations are performed. The expectation

value measurement method returns ⟨ψ|M |ψ⟩ where the operator M is usually the

Pauli−X, Pauli−Y , or Pauli−Z gate. The expectation value of the Pauli−X matrix

is

⟨ψ|X |ψ⟩ =
[
ψ∗
0 ψ∗

1

]0 1

1 0


ψ0

ψ1


=

[
ψ∗
0 ψ∗

1

]ψ1

ψ0


= ψ∗

0ψ1 + ψ∗
1ψ0

= 2 (Re(ψ0)Re(ψ1) + Im(ψ0)Im(ψ1)) ∈ R,

(36)

which is a real number. Let |ψk⟩ be the quantum state of the kth qubit in a multi-

qubit system with m qubits. The expectation value measurement method yields
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[⟨ψ0|M |ψ0⟩ , ⟨ψ1|M |ψ1⟩ , . . . , ⟨ψm−1|M |ψm−1⟩] of lengthm, whereM is the quantum

gate used for measurement. Similarly, we get a vector of size m for an m−qumode

system.

Xanadu’s QML tool, PennyLane, additionally offers the probability measure-

ment method, which yields an approximation of the probability distribution over the

Fock basis states. With the cutoff dimension n and the number of qumodes m, the

output vector is of size nm. Therefore, when using m−qumodes for a QML circuit,

the user is availed the flexibility of getting an output vector of size m or of size nm.

Gaussian Boson Sampling [1]

There are two elementary particles in the universe: bosons and fermions. Bosons

are subatomic particles with integer spin (i.e., 0, 1, 2, . . .) 39 and include photons and

carriers of nuclear forces [1]. Fermions are subatomic particles with odd half-integral

spin (i.e., 1
2
, 3
2
, . . .) 40 and include quarks and electrons [1]. The idea is to create

identical photons, pass them through optical elements, and measure the number of

photons in each qumode. Aaronson and Arkhipov’s model is a model of quantum

computing with non-interacting bosons. Aaronson and Alex Arkhipov introduced

the concept of Gaussian Boson Sampling (GBS) as a practical way of implementing

optical quantum computing. For the physical implementation of their model, they

suggest the use of linear optics: to generate identical photons, send them through a

linear-optical network composed of beamsplitters and phase shifters (rotation gates),

and then measure the number of photons in each qumode [1]. The term stems from

Gaussian matrices related to the process, photons being bosons, and the model involv-

ing sampling bosons (photons). Although the concept was based on the qubit-based

39Encyclopedia Britannica.
40Encyclopedia Britannica.
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model, the idea of utilizing identical photons as information carriers was utilized in

Xanadu’s implementation of quantum computing, using quantum optics.

The general information flow of GBS in Xanadu’s QPU is demonstrated in Figure

23. In this figure, the blocks R denote rotation gates and the blocks BS denote

beamsplitters, forming a linear interferometer. In Xanadu’s X8, nonlinear phenomena

in quantum optics are incorporated as nonlinear quantum gates as well.

Figure 23: Linear optical architecture with a single linear interferometer [11]

The inspiration comes from Galton’s board, where n identical balls are dropped

one by one into equally spaced slots as seen in Figure 24. The results exhibit Gaussian

distribution 41 with sufficient sample size.

Aaronson and Arkhipov’s model, unlike Galton’s board, has different locations

for photon sources, namely different qumodes. The model constructs m qumodes and

n photons where n ≤ m. Each qumode is allowed to have either 0 or 1 photon, hence

this is a qubit-based model 42.

The computational basis state |S⟩ is given by

|S⟩ = |s1, s2, . . . , sm⟩ where si ∈ {0, 1}
∑

si = n (37)

41More specifically Binomial Distribution of which Gaussian is a subset.
42If each qumode is allowed to have more than one photon, say p, it would be an implementation

of radix−p logic.
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Figure 24: Galton’s board as a demonstration of Binomial Distribution

One variant of |S⟩ may be |1, 0, 0, 1, . . . , 1⟩ where there are n ones.

By Lemma 14 of [194], any m × m unitary matrix can be decomposed as a

product U = UT ◦ · · · ◦U1 where each UT is an optical element. An optical element is

a unitary matrix that acts non-trivially on at most two qumodes and as the identity

on the remainingm−2 qumodes. The action of an optical element (e.g., beamsplitters

and/or rotation gates) on a basis element is given by

|s1, s2, . . . , sm⟩ 7→ eiθsi |s1, s2, . . . , sm⟩ (38)

The quantum state |ψ⟩ of the entire system is

|ψ⟩ =
∑

αs |S⟩ where
∑

∥αs∥2 = 1, (39)

meaning it is in superposition of all the possible combinations of qumodes containing

one photon.

Measurement is done with photon detectors to count the number of photons

found in each qumode. The probability of finding the state in the basis element |S⟩
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is given by

Pr(S) = ∥αs∥2 = |⟨ϕ|S⟩|2. (40)

Notice relaxing the condition n ≤ m and allowing more than one photon per

qumode changes the original GBS into a multi-valued model. In Xanadu’s X8, the

maximum photon count experimentally observed is 18 where the number of qumodes

is 8. Hence X8 can be viewed as an implementation of Aaronson and Arkhipov’s

model with the modification that n ≥ m, n = 18 × 8 = 144, and m = 8. By the

nature of the quantized electromagnetic fields, the multi-valued model of GBS nat-

urally occurs in optical quantum computing whereas the qubit-based model requires

additional engineering feats such as temperature control [34].

Example: Optical Quantum Auto-encoder

This section is an illustration of the use of multi-valued logic and quantum computing.

Under the qubit-based model, the basis states are only |0⟩ and |1⟩ for a single qumode.

When using the multi-valued logic in optical quantum computing, we can employ

the ternary logic or higher-radix logic of computing. The circuit in Figure 25 takes

advantage of ternary logic by setting the cutoff dimension at three. We can realize

radix-n logic by setting the cutoff dimension at n on a single qumode.

Auto-encoder is a network, composed of an encoder that encodes data in a

compact manner and a decoder that retrieves the original data. The classical and

quantum hybrid auto-encoder, proposed by Killoran et al. [120] is composed of a

classical encoder and a one-qumode quantum decoder. The classical encoder com-

presses the input vectors of length 3 into vectors of length 2. The quantum decoder

takes in the vectors of length 2 and outputs vectors of length 3. The training process

is to find optimal parameters for the encoding matrices and the decoding quantum
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circuit so that the output vectors are as close to the original data as possible. The

architecture of the proposed hybrid network is shown in Figure 25.

Figure 25: Auto-encoder hybrid network architecture [120]

The classical encoder has 6 hidden layers, each with 5 neurons using Exponential

Linear Unit (ELU) as an activation function. The quantum circuit takes in the vectors

of length 2 and encodes them in quantum states by using the entries of the vectors

as parameters of a displacement gate. The quantum decoder is composed of 25 layers

of quantum neural network using squeezers, rotation gates, displacement gates, and

Kerr gates. To get output vectors of dimension 3, I set the cutoff dimension to 3 and

use the probability method for measurement. The TensorFlow 43plug-in feature of

PennyLane allows us to convert the PennyLane quantum layers into a Keras layer.

Then Keras’s built-in loss functions and optimizers can be used for training. Mean

43”TensorFlow is a free and open-source software library for machine learning and artificial intel-
ligence. It can be used across a range of tasks but has a particular focus on training and inference
of deep neural networks. TensorFlow was developed by the Google Brain team for internal Google
use in research and production. The initial version was released under the Apache License 2.0 in
2015. Google released the updated version of TensorFlow, named TensorFlow 2.0, in September 2019.
TensorFlow can be used in a wide variety of programming languages, including Python, JavaScript,
C++, and Java. This flexibility lends itself to a range of applications in many different sectors.”
source: Wikipedia

78



Squared Error loss function was used for the data vector x and the output vector y.

MSE = ((x0 − y0)
2 + (x1 − y1)

2 + (x2 − y2)
2)/3 (41)

One of the Keras’ built-in optimizers, Adam optimizer, with learning rate (i.e.,

step size) = 0.01 is used as an optimizer. After 300 epochs with batch size 50, the

model achieves loss= 0.0736 and accuracy= 90.54%.

Figure 26: Auto-encoder experimental results

This was Killoran et al.’s demonstration of the power of the use of the cutoff 

dimension n as the realization of the radix−n multi-valued logic of computation. 

However, the authors did not relate the results to the concepts or notations of multi-

valued logic. 
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5 DERIVATION OF MATRIX REPRESENTATION OF OPTICAL

QUANTUM GATES

In this section, I present a matrix representation of optical quantum gates in phase

space representation. Explicit matrix representation of optical quantum gates in the

literature is limited to the qubit-model [124], the position and momentum observables

representation [120], and the Heisenberg representation.

For example, the unitary matrix representing a beamsplitter operating on two-

qumodes under the qubit-model is given by

B(θ, ϕ) =

 cos θ −eiϕ sin θ

e−iϕ sin θ cos θ

 (42)

by Knill, Laflamme, and Milburn [124]. The entries in the corresponding vector of

length two would represent the state of each qumode, implementing a qubit.

The same beamsplitter is represented by yet another matrix by Aaronson and

Arkiphov [1]: α′
S

α′
T

 :=

cos θ − sin θ

sin θ cos θ


αS

αT

 (43)

Here, αS is the probability amplitude for the state |10⟩ and αT is for |01⟩. This

matrix can be viewed as a special case of the matrix presented by Knill, Laflamme,

and Mulburn where ϕ = 0.

Yet another matrix representation of the beamsplitter presented by Samuel

Braunstein and Peter van Loock has a different form [35]:

B(θ) =

sin θ cos θ

cos θ − sin θ

 (44)
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The matrix representation of the beamsplitter under the position and momentum

observables is given by Nathan Killoran et al. in [120]:



x1

x2

p1

p2


7→



cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ





x1

x2

p1

p2


(45)

In Xanadu’s documentation, yet another version of the matrix representation of

the beamplitter is given: the Heisenberg representation. The Heisenberg representa-

tion is a formalism in which the operators depend on time while the wave functions

do not [262]. The matrix representation under this formalism is given by



1 0 0 0 0

0 cos θ 0 − cosϕ sin θ − sinϕ sin θ

0 0 cos θ sinϕ sin θ − cosϕ sin θ

0 cosϕ sin θ − sinϕ sin θ cos θ 0

0 sinϕ sin θ cosϕ sin θ 0 cos θ


(46)

These matrices under different formalism are fundamentally different from the

formula for the beamsplitter under the phase space representation of optical quantum

computing wherein the quantum state of a system is expressed in terms of Fock basis

[241]:

B(θ, ϕ) = exp
(
θ
(
eiϕâb̂† + e−iϕâ†b̂

))
(47)

Numerical matrices are usually the starting point to derive practical realizations

of quantum circuits from elementary gates [116, 117, 118, 171]. Therefore, my pre-

sented result can hopefully help to derive circuits of ternary basic universal gates that
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can be used for Grover and other traditional quantum algorithms, implemented in the

presented variant of the quantum formalism. For instance, matrices and equations

for elementary ternary quantum gates are presented in [118].

In phase space representation of the quantum state in optical quantum comput-

ing, a quantum state |Ψ⟩ is a projective complex linear combination of Fock basis

{|0⟩ , |1⟩ , . . . , |n− 1⟩} when the cutoff dimension is set to be n. In vector forms, |Ψ⟩

is a vector of length n with each kth entry representing the quasi-probability of the

state being found in |k⟩.

The matrix representing a quantum gate is a matrix exponential U = exp(−itH)

[120] of size n × n, where the Hamiltonian H is an n × n matrix itself. The matrix

exponential is given by

U = exp(−iHt) = I + (−iHt) + (−iHt)2

2!
+ · · ·+ (−iHt)n

n!
+ · · · (48)

where I is the identity matrix of size n× n.

The list of optical quantum gates available on Xanadu’s website includes:

• Identity

• Beamplitter: B(θ, ϕ) = exp
(
θ
(
eiϕâb̂† + e−iϕâ†b̂

))
• Controlled Addition: CX(s) = e−isx̂⊗ p̂

ℏ

• Controlled Phase: CZ(s) = eisx̂⊗
x̂
ℏ

• Cross Kerr: CK(κ) = eiκn̂1n̂2

• Cubic Phase: V (γ) = ei
γ
3
x̂3/ℏ

• Displacement: D(α) = exp
(
αâ† − α∗â

)
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• Kerr: K(κ) = eikn̂
2

• Quadratic Phase: P (s) = ei
s
2
x̂2/ℏ

• Rotation: R(ϕ) = exp
(
iϕâ†â

)
• Squeezing: S(z) = exp

(
z∗â2+zâ†

2

2

)
• Two Mode Squeezing: exp

(
r
(
e−iϕâb̂− eiϕâ†b̂†

))
The Hamiltonians for various optical gates are expressed using the constructor

â† and the annihilator â of photons within a qumode [239]. The constructor can

be interpreted as a mathematical expression of the action of exciting the energy

level of the electromagnetic field to the next excited state or emission of a photon.

Similarly, the annihilator describes the action of decrementing the energy level by one

or absorption of a photon. The constructor and annihilator operators are building

blocks for mathematically describing the Hamiltonian of the system to express various

operations as optical quantum gates. Therefore, the matrix representation of these

operators is essential in describing optical quantum gates. Some of the standard

optical quantum gates in phase space representation 44 and their matrix exponentials

are shown below 45 [114]:

Squeezer with parameter z:

S(z) = exp

(
z∗â2 + zâ†

2

2

)

= I +

(
z∗â2 + zâ†

2

2

)
+

(
z∗â2+zâ†

2

2

)2
2!

+ · · ·+

(
z∗â2+zâ†

2

2

)n
n!

+ · · ·

(49)

44operating on quantum states expressed in terms of Fock basis
45In the reference paper, just the exponential formulas are listed, not the explicit matrix expo-

nential expressions.
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Rotation with parameter ϕ:

R(ϕ) = exp
(
iϕâ†â

)
= I +

(
iϕâ†â

)
+

(
iϕâ†â

)2
2!

+ · · ·+
(
iϕâ†â

)n
n!

+ · · ·
(50)

Displacement with parameter α:

D(α) = exp
(
αâ† − α∗â

)
= I +

(
αâ† − α∗â

)
+

(
αâ† − α∗â

)2
2!

+ · · ·+
(
αâ† − α∗â

)n
n!

+ · · ·
(51)

Equations (37) through (39) clearly illustrate that in order to find the matrix expo-

nential of these gates, the matrix representation of the constructor and the annihilator

is foundational.

The constructor operator â† increases the energy level |k⟩ by one to |k + 1⟩ with

the coefficient
√
k + 1. The mathematical definition of the constructor is [35, 241]

â† |k⟩ =
√
k + 1 |k + 1⟩ for k ≥ 0. (52)

In a quantum system with cutoff dimension n, â† is represented by an n× n matrix

as

â† =



0 0 0 . . . 0 0
√
1 0 0 . . . 0 0

0
√
2 0 . . . 0 0

0 0
√
3 . . . 0 0

... . . .
. . .

...

0 0 0 . . .
√
n− 1 0


. (53)
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Notice this matrix is not linearly independent. However, the matrix exponential

form with the first term being the identity matrix renders all optical quantum gates

linearly independent. With cutoff dimension n, the vector representation of the state

|k⟩ is of length n with all zeros but one in the kth entry. The action of the constructor

on the Fock state |2⟩ returns us the Fock state |3⟩ as shown in Equation (54).

â† |2⟩ =



0 0 0 . . . 0 0
√
1 0 0 . . . 0 0

0
√
2 0 . . . 0 0

0 0
√
3 . . . 0 0

... . . .
. . .

...

0 0 0 . . .
√
n− 1 0





0

0

1

0

...

0


=



0

0

0
√
3

...

0


=

√
3 |3⟩ . (54)

Notice â† indeed allows a Fock basis state to construct the next Fock basis state.

â† |0⟩ =
√
1 |1⟩ , â† |1⟩ =

√
2 |2⟩ , . . . , â† |n⟩ =

√
n+ 1 |n+ 1⟩ , . . . (55)

The annihilator â is the inverse operator of the constructor â† where it decre-

ments the energy level of the basis state by one with the coefficient
√
k. The annihi-

lator â is defined by [35, 241]

â |0⟩ = 0, â |k⟩ =
√
k |k − 1⟩ for k ≥ 1. (56)

The matrix representation of â is the conjugate transpose of the constructor â†. Here,
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since the coefficients are all real numbers, it simply is the transpose of â† shown as

â =



0
√
1 0 0 . . . 0

0 0
√
2 0 . . . 0

0 0 0
√
3 . . . 0

... . . .
. . .

...

0 0 0 0 . . .
√
n− 1

0 0 0 0 . . . 0


(57)

An example of the application of its matrix representation on the state |3⟩ is

â |3⟩ =



0
√
1 0 0 . . . 0

0 0
√
2 0 . . . 0

0 0 0
√
3 . . . 0

... . . .
. . .

...

0 0 0 0 . . .
√
n− 1

0 0 0 0 . . . 0





0

0

0

1

...

0


=



0

0
√
3

0

...

0


=

√
3 |2⟩ . (58)

Notice â indeed annihilates a single photon in a qumode from a 3−photon state to a

2−photon state as seen in â |3⟩ =
√
3 |2⟩.

The product of â† and â returns the square matrix called the number operator

n̂ [35, 241], whose eigenstates are the Fock basis states |k⟩.
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n̂ = â†â =



0 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 2 0 . . . 0

... . . .
. . .

...

0 0 0 0 n− 2 0

0 0 0 0 0 n− 1


(59)

The matrix clearly shows n̂ |k⟩ = k |k⟩ where k ∈ {0, 1, . . . , n−1} for cutoff dimension=

n, illustrating that the number basis states |k⟩ are eigenstates of the number operator

[241].

5.1 Qubit-based Gates

For each instance of computation, the dimension of the computational space is deter-

mined by the cutoff dimension n. Then the quantum state of the system is represented

by a vector of length n. The corresponding matrices representing quantum gate op-

erations are of size n× n.

In this section are presented 2× 2 matrices for cutoff dimension 2, representing

binary logic, i.e., qubit-based quantum computing.

Displacement Gate

The matrix representation of displacement with parameter α is given by:

D(α) = exp(αâ† − α∗â)

= exp

α
0 0

1 0

− α∗

0 1

0 0



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= exp


0 −α∗

α 0




=

1 0

0 1

+

0 −α∗

α 0

+
1

2!

0 −α∗

α 0


2

+ · · ·+ 1

n!

0 −α∗

α 0


n

+ · · ·

=

a b

c a



(60)

where the diagonal entries are the same. The expressions for the entries a, b, and c

are given in Equations (61), (62), and (63).

a = 1 +
−αα∗

2!
+

(αα∗)2

4!
+

−(αα∗)3

6!
+ · · ·

=
∞∑
k=0

(−1)k

(2k)!

√
αα∗2k

= cos
√
αα∗

(61)

b = −α∗ +
αα∗2

3!
− α2α∗3

5!
+
α3α∗4

7!
+ · · ·

= −α∗
(
1− αα∗

3!
+

(αα∗)2

5!
− (αα∗)3

7!
+ · · ·

)
= −α∗

∞∑
k=0

(−1)k

(2k + 1)!
(αα∗)k

(62)

c = α− α2α∗

3!
+
α3α∗2

5!
− α4α∗3

7!
+ · · ·

= α

(
1− αα∗

3!
+

(αα∗)2

5!
− (αα∗)3

7!
+ · · ·

)
= α

∞∑
k=0

(−1)k

(2k + 1)!
(αα∗)k

(63)
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Rotation Gate

The matrix representation of the rotation with parameter ϕ is given by:

R(ϕ) = exp
(
iϕâ†â

)
= exp

iϕ
0 0

0 1




=

1 0

0 1

+

0 0

0 iϕ

+
1

2!

0 0

0 iϕ


2

+ · · ·+ 1

n!

0 0

0 iϕ


n

+ · · ·

=

1 0

0 1 + (iϕ)2

2
+ (iϕ)3

3!
+ · · ·+ (iϕ)n

n
+ · · ·


=

1 0

0 eiϕ



(64)

With the rotation gate, we can implement Pauli-Z gate by setting ϕ = π.

1 0

0 eiπ

 =

1 0

0 cos π + i sin π

 =

1 0

0 −1

 = PauliZ (65)

Setting ϕ = π
2
implements the S gate or

√
Z gate.

1 0

0 i

 (66)

Setting ϕ = π
4
implements the T gate, also known as 4

√
Z

1 0

0 ei
π
4

 (67)
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Two-qumode Gates

Beamsplitters are 2-qumode gates over a pair of qumodes with parameters θ and ϕ.

For the matrix representation of beamsplitters, we decompose each term to find our

Hamiltonian matrix to find its matrix exponential:

B(θ, ϕ) = exp
(
θ
(
eiϕâb̂† + e−iϕâ†b̂

))
= exp

(
θeiϕâb̂† + θe−iϕâ†b̂

) (68)

In the expressions âb̂† and â†b̂ one operator is applied to the first qumode while

the other is to the second. In a qumode system, the application of an operator to one

qumode while no operator is applied to the other equates the tensor product of the

operator and the identity operator to the other.

θeiϕâb̂† = θeiϕ (â⊗ I)
(
I ⊗ b̂†

)
(69)

Hence, we calculate the matrices âb̂† and â†b̂ first. The term âb̂† represents an

application of the annihilator on the first qumode and the constructor on the second

qumode. While the annihilator â is applied to the first qumode, the operation on

the second is the identity matrix. Then the application of the annihilator on the first

qumode is the tensor product of the annihilator and the identity matrix is shown as:

â⊗ I =

0 1

0 0

⊗

1 0

0 1



=


0

1 0

0 1

 1

1 0

0 1


0

1 0

0 1

 0

1 0

0 1




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=



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


(70)

The application of the constructor b̂† on the second qumode while the identity

operation is applied to the first is

I ⊗ b̂† =

1 0

0 1

⊗

0 0

1 0



=


1

0 0

1 0

 0

0 0

1 0


0

0 0

1 0

 1

0 0

1 0





=



0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0



(71)

Multiplying them together, we get

θeiϕâb̂† = θeiϕ



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


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=



0 0 0 0

0 0 θeiϕ 0

0 0 0 0

0 0 0 0


(72)

By the same procedure, we get

θe−iϕâ†b̂ = θe−iϕ
(
â† ⊗ I

) (
I ⊗ b̂

)

=



0 0 0 0

0 0 0 0

0 θe−iϕ 0 0

0 0 0 0


(73)

Hence

B(θ, ϕ) = exp
(
θ
(
eiϕâb̂† + e−iϕâ†b̂

))

= exp





0 0 0 0

0 0 θeiϕ 0

0 θe−iϕ 0 0

0 0 0 0





=



1 0 0 0

0 cosh θ eiϕ sinh θ 0

0 e−iϕ sinh θ cosh θ 0

0 0 0 1



(74)

If we apply two rotation gates on a two-qumode system, parameterized by ϕ0

and ϕ1, we get the tensor product of the two rotation gates:
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R(ϕ0)⊗R(ϕ1) =

1 0

0 eiϕ0

⊗

1 0

0 eiϕ1



=



1 0 0 0

0 eiϕ1 0 0

0 0 eiϕ0 0

0 0 0 ei(ϕ0+ϕ1)


(75)

According to [120], the operation of beamsplitters followed by rotation gates

constitutes an interferometer. The matrix representation of an interferometer on a

two-qumode system is then

B(θ, ϕ) ◦ (R(ϕ0)⊗R(ϕ1)) =



1 0 0 0

0 cosh θ eiϕ sinh θ 0

0 e−iϕ sinh θ cosh θ 0

0 0 0 1





1 0 0 0

0 eiϕ1 0 0

0 0 eiϕ0 0

0 0 0 ei(ϕ0+ϕ1)



=



1 0 0 0

0 eiϕ1 cosh θ ei(ϕ0+ϕ) sinh θ 0

0 ei(ϕ1−ϕ) sinh θ eiϕ0 cosh θ 0

0 0 0 1


(76)

If we were to apply rotation gates first and then a beamsplitter, we get

(R(ϕ0)⊗R(ϕ1)) ◦B(θ, ϕ) =



1 0 0 0

0 eiϕ1 cosh θ ei(ϕ1+ϕ) sinh θ 0

0 ei(ϕ0−ϕ) sinh θ eiϕ0 cosh θ 0

0 0 0 1


(77)
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5.2 Ternary Gates

By setting the cutoff dimension, we are able to implement multi-valued logic. To

realize ternary logic computations in optical quantum computing, we set the cutoff

dimension at three.

In implementing the ternary logic of base three, the quantum state of the system

is expressed as a complex projective linear combination of three basis states as:

|Ψ⟩ = α0 |0⟩+ α1 |1⟩+ α2 |2⟩ , (78)

where
∑2

k=0 ∥αk∥2 = 1. In a two-qumode system, the quantum state of the entire

system is

|Ψ0⟩ ⊗ |Ψ1⟩ = (α00 |0⟩+ α01 |1⟩+ α02 |2⟩)⊗ (α10 |0⟩+ α11 |1⟩+ α12 |2⟩)

= β0 |00⟩+ β1 |01⟩+ β2 |02⟩+ · · ·+ β8 |22⟩
(79)

where βk = α0k0α1k1 and |k0k1⟩ is the state with the first qumode being in the |k0⟩

state and the second qumode in |k1⟩.

Ternary logic displacement gate:

D(α) = exp(αâ† − α∗â)

= exp

α

0 0 0

1 0 0

0
√
2 0

− α∗


0 1 0

0 0
√
2

0 0 0




= exp



0 −α∗ 0

α 0 −
√
2α∗

0
√
2α 0



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=


1 0 0

0 1 0

0 0 1

+


0 −α∗ 0

α 0 −
√
2α∗

0
√
2α 0

+
1

2!


0 −α∗ 0

α 0 −
√
2α∗

0
√
2α 0


2

+ · · ·

=


a b c

d e f

g h i


(80)

where

a = 1 +
∞∑
n=1

3n−1(−αα∗)n

(2n)!
(81)

b =
∞∑
n=0

α∗ (−1)n+1(3αα∗)n

(2n+ 1)!
(82)

c =
∞∑
n=1

√
2 (α∗)2

(−3αα∗)n−1

(2n)!
(83)

d =
∞∑
n=0

α
(−3αα∗)n

(2n+ 1)!
(84)

e =
∞∑
n=0

(−3αα∗)n

(2n)!
(85)

f =
∞∑
n=0

√
2α∗ (−1)n+1(αα∗)n

(2n+ 1)!
(86)

g =
∞∑
n=1

√
2α2 (−1)n(αα∗)n−1

(2n)!
(87)

h =
∞∑
n=0

√
2α

(−αα∗)n

(2n+ 1)!
(88)

i =
∞∑
n=0

2
(−αα∗)n

(2n)!
− 1 (89)
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The ternary logic rotation gate is:

R(ϕ) = exp
(
iϕâ†â

)

= exp

iϕ

0 0 0

0 1 0

0 0 2




=


1 0 0

0 1 0

0 0 1

+


0 0 0

0 iϕ 0

0 0 2iϕ

+
1

2


0 0 0

0 iϕ 0

0 0 2iϕ


2

+ · · ·+ 1

n!


0 0 0

0 iϕ 0

0 0 2iϕ


n

+ · · ·

=


1 0 0

0 1 + iϕ+ (iϕ)2

2
+ · · · (iϕ)n

n!
+ · · · 0

0 0 1 + 2iϕ+ (2iϕ)2

2
+ · · · (2iϕ)n

n!
+ · · ·



=


1 0 0

0 eiϕ 0

0 0 e2iϕ


(90)

We can generalize that the rotation gate Rn with parameter ϕ on multi-valued

logic of radix-n would yield an n× n matrix

Rn(ϕ) =



1 0 . . . 0

0 eiϕ . . . 0

. . .

0 0 . . . e(n−1)iϕ


(91)
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Ternary squeezer when the parameter r is a real number:

S(r) = exp
(
r
(
â2 − â†2

)
/2
)

= exp

r


0

√
1 0

0 0
√
2

0 0 0


2

−


0 0 0
√
1 0 0

0
√
2 0


2 /2



= exp

r


0 1 0

−1 0 2

0 −2 0

 /2


= exp




0 r
2

0

− r
2

0 r

0 −r 0




=


1 0 0

0 1 0

0 0 1

+


0 r

2
0

− r
2

0 r

0 −r 0

+
1

2


0 r

2
0

− r
2

0 r

0 −r 0


2

+

· · ·+ 1

n!


0 r

2
0

− r
2

0 r

0 −r 0


n

+ · · ·

(92)

The matrices representing rotation gates will be of size 3 × 3 for each qumode.

The tensor product of the rotation gates is of size 9× 9.
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R(ϕ0)⊗R(ϕ1) =


1 0 0

0 eiϕ0 0

0 0 e2iϕ0

⊗


1 0 0

0 eiϕ1 0

0 0 e2iϕ1



=



1


1 0 0

0 eiϕ1 0

0 0 e2iϕ1

 0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1

 0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1



0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1

 α0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1

 0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1



0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1

 0


1 0 0

0 eiϕ1 0

0 0 e2iϕ1

 α1


1 0 0

0 eiϕ1 0

0 0 e2iϕ1





=



1 0 0 0 0 0 0 0 0

0 eiϕ1 0 0 0 0 0 0 0

0 0 e2iϕ1 0 0 0 0 0 0

0 0 0 eiϕ0 0 0 0 0 0

0 0 0 0 eiϕ0eiϕ1 0 0 0 0

0 0 0 0 0 eiϕ0e2iϕ1 0 0 0

0 0 0 0 0 0 e2iϕ0 0 0

0 00 0 0 0 0 0 e2iϕ0eiϕ1 0

0 0 0 0 0 0 0 0 e2iϕ0e2iϕ1



(93)

98



6 QUANTUM MULTI-CLASS DATA CLASSIFIER

Machine learning is a method of extracting hidden patterns from data without ex-

plicitly programming. A machine learning algorithm ”learns” the hidden patterns

in data through the process called ”training”. The ”learned” model can be applied

to new data samples for predictions. A parameter-based machine learning algorithm

is a mathematical expression, whose parameters can be trained to best describe the

hidden patterns of data. An algorithm with a set of optimized parameters through

training that minimizes the given cost function is called a machine learning model.

Classifiers are supervised machine learning algorithms in which the class label

of a new data sample is predicted based on the learned parameters of the model. The

quantum classifiers in the literature are mainly binary classifiers. I created a quantum

multi-class data classifier capable of classifying up to 11 billion classes in Xanadu’s

X8 technology.

6.1 Quantum Machine Learning

In supervised machine learning, data samples defined by a finite number of features

are mapped to labels:

f : Rn → Rm : x 7→ y (94)

where x is a feature vector of length n and y is either a single-valued label or a one-hot

encoded vector of length m, where m is the number of classes. The goal is to extract

an optimal set of parameters defining the map f from data to labels, minimizing the

given objective function.

Machine learning algorithms such as support vector machine, naive Bayes, lin-

ear regression, k-nearest neighbors, and stochastic gradient descent have been suc-

cessfully used for pattern extraction from data. In employing these algorithms in
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quantum computing, the inherent higher-dimensionality of the computational space

of quantum computing offers the possibility of naturally processing higher-order fea-

tures of data. Additionally, there are properties of quantum mechanical systems not

present in classical systems, which are used as components of quantum computing:

superposition, entanglement, and interference. These unique properties of quantum

computing may further aid in finding additional features of data that may not be

readily available in classical computing.

Quantum machine learning (QML) can be viewed as a way of mapping data into

a higher-dimensional Hilbert space for pattern extraction [201]. In classical support

vector machines, the kernel method is used to find a separating hyperplane in a

higher-dimensional feature space as seen in Figure 27 [127].

Figure 27: Separating hyperplane in a higher dimension [image source]

In QML, the mapping of data samples is done in a higher-dimensional Hilbert

space and then the computational results are brought back down to classical via a

measurement operator [201]. Then the classical map f can be viewed as a composition

map of data encoding (S), quantum computation (U), and measurement (M).
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S : Rn → Cm : x 7→ |ϕ(x)⟩

U : Cm → Cm : |ϕ(x)⟩ 7→ |Uϕ(x)⟩

M : Cm → R : |Uϕ(x)⟩ 7→ ⟨ϕ(x)|U †MU |ϕ(x)⟩ = ⟨M⟩ = y

M ◦ U ◦ S : Rn → R : x 7→ y

(95)

Notice that although the composition map takes x ∈ Rn to y ∈ R, the interme-

diary computation is happening in Cm ∼= (R2)
m
. In the qubit model, the dimension

m of the computational space is defined by m = 2q where q represents the number

of qubits. In optical quantum computing, m = nq where n represents the cutoff

dimension and q is the number of qumodes. Since n can be any integer, the computa-

tional space in optical quantum computing can be much larger than that of the qubit

model. The enlarged computational space, used as a feature space, offers a potential

for finding hidden patterns not readily available in lower-dimensional computational

spaces.

In implementing quantum machine learning algorithms, there are three main

components: data encoding, quantum algorithm circuit, and measurement as seen in

the composition map [149]. The dataflow in executing an algorithm is

• Data encoding: Classical data samples need to be converted into quantum states

to be processed by a quantum machine learning circuit. This is usually done by

using sample entries as parameters of parameterized quantum gates.

• Quantum circuit: We want the circuit to ”learn” the parameters that best

fit the hidden features of the data. Hence we use parameterized (variational)

gates whose actions are defined by the parameters of the gates. A quantum

circuit composed of parameterized (variational) gates is called a parameterized

(variational) circuit.
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• Measurement: The results from measurement are interpreted as labels.

The schematic of the quantum machine learning circuit, composed of the three

distinct components is shown in Figure 28 (The red blocks represent the measurement

component).

Figure 28: Quantum machine learning circuit (Google Quantum Talk)

The output from the quantum circuit is sent to a CPU wherein all the opti-

mization calculation is done. The updated parameters are sent to the QPU and the

quantum gates are recalibrated. Since the entire circuit is composed of classical and

quantum, the input data x can be pre-processed using classical machine learning

algorithms. By the same token, the output from the quantum circuit can be post-

processed classically. In this way, the quantum circuit can be viewed as a sub-circuit

inside an overall classical machine learning algorithm, whose component is farmed

out to a QPU.

In implementing QML algorithms on near-term devices, there is a limitation of

computing power for data encoding of datasets with a large number of features. The

current QPUs or simulators are not capable of providing enough qubits or qumodes

for accommodating data encoding of all the feature variables. Hence, the QML al-

gorithms in the literature adopt classical dimensionality reduction methods such as
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Principal Component Analysis, convolutional neural networks (CNN), or feedforward

neural networks to reduce the number of features to be converted to quantum states

by a QML circuit.

6.1.1 Data Encoding

The first step in building a QML model is data encoding: converting classical data

into quantum states. They are used as input to a quantum circuit, hence the process

is also called quantum state preparation. The prepared states are processed through

a quantum circuit, which is realized by multiple layers of quantum logic gates.

6.1.2 Variational Quantum Circuit

In QML, training is the process of ”learning” optimal parameters of the gates that

would produce the classification of new data samples as accurately as possible. In

supervised QML, the circuit produces ”prediction”, which is a close approximation

of the true label of patterns, from the measurement operator. The prediction result

from the quantum circuit is then processed on a classical circuit for the computation

of the objective function, gradients, and new parameters. The updated parameters

from the classical circuit are then fed back to the quantum circuit for subsequent

iterations.

For a machine learning algorithm to ”learn” optimal parameters, its correspond-

ing circuit needs to have parameterized components whose parameters are tunable for

optimal results. Hence the quantum circuit for learning is composed of parameterized

quantum gates, also called variational quantum gates.

In executing a QML on a QPU, each qubit or qumode is initialized to the |0⟩

state. Then using ”state preparation” gates, classical data input x is converted to a

quantum state |ψ⟩. State preparation or data encoding is the process of embedding a
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classical input x ∈ Rn as a quantum state |ψ⟩ ∈ CP n−1, which is the n−dimensional

surface space of a higher dimensional sphere S2n. Then a variational circuit, i.e.,

parameterized circuit, composed of parameterized quantum gates implements a QML

algorithm.

6.1.3 Measurement

The measurement operator functions as a projection map from a higher-dimensional

Hilbert space to a lower-dimensional classical space Rt. There are several ways of

controlling the number t depending on the objective function we want to use for a

QML algorithm.

Both in the binary logic and the multi-valued logic model of quantum computing,

the expectation value measurement method returns output vectors of size m where

m is equal to the number of qubits or qumodes.

Employing the probability measurement method yields the output vectors of

length nm, where n is the cutoff dimension andm is the number of qumodes used. The

output vectors of various sizes based on the number of qumodes with cutoff dimensions

two, three, and six are shown in Table 1. Notice that with the same number of

qumodes, the higher-radix results in the output vectors of greater length. This is a

demonstration of the expressive power of the cutoff dimension as the dimension of

the computational space.
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Number of Qumodes Used Qubit-based Ternary Radix-6
1 2 3 6
2 22 = 4 32 = 9 62 = 36
3 23 = 8 33 = 27 63 = 216
4 24 = 16 34 = 81 64 = 1, 296
5 25 = 32 35 = 243 65 = 7, 776
6 26 = 64 36 = 729 66 = 46, 656
7 27 = 128 37 = 2, 187 67 = 279, 936
8 28 = 256 38 = 6, 561 68 = 1, 679, 616

Table 1: Varying output vector sizes based on the number of qumodes with cutoff
dimensions two, three, and six.

The output vectors of various sizes based on the cutoff dimension in an eight-

qumode circuit are shown in Table 2.

Cutoff Dimension Output vector size
5 58 = 390, 625
6 68 = 1, 679, 616
7 78 = 5, 764, 801
8 88 = 16, 777, 216
9 98 = 43, 046, 721
10 108 = 100, 000, 000
11 118 = 214, 358, 881
12 128 = 429, 981, 696

Table 2: Varying output vector sizes in an 8−qumode circuit based on the cutoff
dimensions ranging from five to twelve.

In Xanadu’s X8, up to 18 photons are observed, realizing radix−19 multi-valued

logic. Then with cutoff dimension 20 46, classification of data with up to 208 =

25, 600, 000, 000 classes is feasible in theory.

Using a higher radix logic greatly reduces computational resources. For example,

to achieve the same computing power as using radix-20 on an eight qumode system,

we would need log225, 600, 000, 000 ∼ 35 qubits.

46including the ground state |0⟩.
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6.1.4 Optimization

To get an optimal set of parameters for the quantum gates in the circuit, the following

calculations are performed on a CPU:

• loss as per the given loss function

• gradients

• optimization

• parameter update

Then the updated parameters are used as new parameters for the variational quantum

circuit in the subsequent iteration until an optimal set of parameters is learned.

The QPU and CPU interaction with the training process on a QML circuit and the

optimization process on a CPU is depicted in Figure 29.

Figure 29: QPU and CPU interaction in variational quantum circuits
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6.2 Quantum Deep Learning

Deep learning is one of the machine learning algorithms to extract higher-order hidden

features from data, inspired by the workings of the brain [142]. The multi-layered

cerebral information processing structure of the neocortex inspired neural networks,

modeling the information processing flow of the brain. As in sensory cortices in the

brain, deep learning networks use hidden layers to progressively extract higher-order

features from data. Deep learning algorithms such as feedforward neural networks,

CNN, recurrent neural networks, and deep belief networks are examples that have

been implemented in quantum circuits.

To capture the multi-layer structure of the biological neocortex, the deep learn-

ing algorithms stack layers of neurons between input data and output of the network.

These added layers are called hidden layers and they help the network to progres-

sively process higher-order features. The resulting network is called Artificial Neural

Network, Multi-layer Perceptron, or Feedforward Neural Network.

The transition from classical computing to quantum computing is a natural

extension of computational spaces from two points (i.e., 0 and 1) to the surface of

the Bloch Sphere (qubit-based model) or higher-dimensional spheres (multi-valued

model). Hence quantum computing offers its inherent high-dimensional space in

which hidden features of data can be explored and extracted [201]. Since the goal of

deep learning is to extract hidden features of data from a higher-dimensional feature

space, it would be natural to explore quantum computing models which offer higher-

dimensional computational spaces. This is a strong argument for multi-valued logic

with higher radices.
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6.2.1 Quantum Neural Networks

Among deep learning algorithms are neural networks, whose architecture is inspired

by the workings of the brain. It mimics the neuronal communication networks, com-

posed of multiple layers, wherein the communication between two layers of neurons

is activated by the action potential.

A physical neuron gets input signals from neighboring neurons through many

branches called dendrites. The signals are collected into the nucleus of the cell body

and then the sum of the signal impulses is propagated to the axon. The electrical

pulse coming from the cell body is cascaded down to axon terminals to be passed down

to the next cells based on the strength of the pulse. The mechanism in which the

pulse reaches the action terminal is nonlinear and is called action potential [100]. This

nonlinearity of action potential plays an important role in artificial neural networks.

When the signal reaches the threshold of the action potential, it travels through the

axon and is cascaded through axon terminals to be passed to other neurons. The

whole process is summarized in the following steps:

• summation of input signals

• bias addition to the sum

• nonlinear action potential (activation function).

The synaptic weights wki represent the strength of the connection between two

neurons for passing impulses [197]. The collection of synaptic weights in the kth layer

can be expressed as a row vector wk = [wk1, wk2, . . . , wkm] and the sample inputs

as a column vector xk. Then the dot product of the two vectors is gathered at the

summing junction to which a bias value is added. Thereafter a nonlinear activation

function is applied, modeled after the nonlinear action potential in biological neurons.
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The mathematical expression of the nonlinear function on the affine transforma-

tion of original data in each layer is captured in L(x) = ϕ(Wx+b) whereW represents

the matrix of synaptic weights, b bias addition, and ϕ(·) a nonlinear activation func-

tion. Each kth row of the matrix contains the synaptic weights applied to the input

being summed up to the kth neuron of the subsequent layer. The result of the appli-

cation of the weight matrix is a linear transformation on the input vector. Together

with the bias addition component, Wx+ b results in the affine transformation of the

input x.

• linear transformation: W changes the input state linearly.

• affine transformation: translation by +b on Wx.

• nonlinear activation function: transforms Wx+ b nonlinearly.

Different nonlinear functions are used on the affine transformation of input vec-

tors. For the output vectors, it is customary to use the softmax function whose range

is [0, 1] so that the results can be interpreted as the probability of getting each entry

of the output vector.

In the artificial neural network architecture, there are multiple layers of feature

maps between the input layer and output layer. These additional layers can be viewed

as extended computational feature space. Instead of mapping input data vectors into

output vectors f : Rd → Rn : x 7→ y, where x is an d−dimensional feature vector

and y, its corresponding n−dimensional label, in employing hidden layers, we are

mapping the input vectors to intermediary feature spaces.

f : Rd → Rh1 → · · · → Rn : x 7→ xh1 7→ · · · 7→ y, (96)

where hk is the dimension of the kth hidden layer.
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Two main elements of deep learning, which make deep learning unique, are map-

ping data features into higher-dimensional space and nonlinear activation functions

between two layers [7]. The higher-dimensional space to which original features are

mapped via feature maps allows for operations that are not readily feasible in the

original feature space [201]. Nonlinear activation functions process features beyond

linear transformations and provide solutions that may not be linear [253].

In implementing a quantum version of artificial neural networks, the goal is

to convert each classical layer L(x) = ϕ(Wx + b) to a quantum state L(|x⟩) =

|ϕ(Wx+ b)⟩ using available gates in the model. A quantum circuit is composed

of a data encoding circuit, a quantum neural network circuit, and the measurement

operation.

Qubit-based Model

In the binary logic (qubit-based) model of quantum computing, these extended hidden

feature spaces can be expressed as

f :Rd → C2s → C2h1 → · · · → Rn : (97)

x 7→ |xs⟩ 7→ |xh1⟩ 7→ · · · 7→ y,

where s is the number of qubits used for data encoding (state preparation) and h1
47,

for the hidden layers 48. In this model, all the gates are unitary, representing rotations

on the Bloch Sphere as linear transformations. Each kth layer can be represented as

Lk(|x⟩) = |Uk(x)⟩ where Uk is a unitary linear transformation, missing bias addition

and nonlinear activation function. The composition of multiple unitary matrices

47In most of the circuits in the literature, s = h1 = · · · = hn.
48We are not taking the projective nature of the computational space into account for the purpose

of examining the degree of freedom in the feature space
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is a single unitary matrix. Therefore, employing multiple unitary gates to represent

multiple hidden layers of the classical neural networks results in a single layer of linear

transformation. Hence, it is not possible to faithfully implement the notion of ”deep

learning” in the qubit-based model because of the inherent computing framework.

Various models of quantum deep learning have been proposed based on the qubit-

based model of quantum computing [3, 22, 57, 74, 98, 255].

The quantum neural networks proposed in the literature are mainly built on the

binary model. Since all the gates in the qubit-based model are unitary, the nonlinear

activation function component of classical neural networks can be implemented only

through the measurement operation. However, measurement terminates one cycle of

the quantum circuit by projecting the quantum computational result into classical ba-

sis states. Hence the notion of ”deep learning” cannot be implemented in the discrete

variable model. Additionally, there is no direct way to perform affine transformations

representing biases.

The architecture of a qubit-based quantum neural network proposed by Farhi

et al. is depicted in Figure 30 [74]. Most of the networks proposed in the literature

follow the same pattern of multiple layers of parameterized linear transformations and

accessing the results using a single readout qubit for binary classification [1, 11, 22, 98].

Figure 30: Quantum neural network architecture in the qubit-based model [74]
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In this circuit, there are multiple layers of parameterized unitary gates applied,

denoted by Uk(θk) for the kth layer operation. However, the composition of the

matrices each representing one layer is still a unitary matrix, which is a linear trans-

formation. Let Uk(θk) be the kth layer of the network parameterized by the set of

parameters θk. The unitary gate Uk(θk) is an implementation of some linear transfor-

mation W . The composition U(θ) = Uk(θk)◦Uk−1(θk−1)◦ . . .◦U1(θ1) is still a unitary

matrix representing a single layer of a neural network. The result of the computation

is transferred to a single ancillary qubit for readout.

In this framework, if one were to modify this network to classify datasets of

multi-classes, one will need to add more ancillary qubits for readout. For example,

to classify datasets of 10 classes like MNIST and Cifar10, the ceiling of log2(10) = 4

qubits is needed. In the optical quantum computing network architecture, the readout

is done on each computing qumode, hence the need for extra qumodes is inherently

absent in Xanadu’s optical quantum computers.

Optical Quantum Neural Networks

The use of nonlinear gates in optical computing was first introduced by Shen et al.

[212]. The authors implemented classical neural networks in optical hardware, realiz-

ing the nonlinear activation component with nonlinear optical operations. Killoran et

al. expanded on Shen’s architecture to include bias addition using the displacement

gate in a quantum environment [120]. In optical quantum computing, because of

the availability of the displacement gate and nonlinear gates, it is possible to build

quantum layers that faithfully implement a quantum version of nonlinear activation

on the affine transformation of quantum data.

In quantum optics are observed linear optical phenomena as well as nonlinear.

When both of these properties are utilized as elements of information processing, there
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is a potential for processing information nonlinearly without the need of approximat-

ing it with linear expressions. Xanadu has incorporated the linear and nonlinear

effects of quantum optics in their QPU, X8 [11, 120]. The modes here can be inter-

preted as separate electromagnetic fields, whose change in states is used for processing

quantum information [125]. In Xanadu’s X8, the readout is done on each computing

qumode, hence the need for ancillary qumodes is inherently absent.

In building quantum deep learning circuits, implementing the true notion of

”deep learning” is feasible in optical quantum computing because of the nonlinear

gates available. Shen et al. proposed an architecture for faithfully implementing the

neural network layer L(x) = ϕ(Wx + b) as a quantum state L(|x⟩) = |ϕ(Wx+ b)⟩

on photonic quantum computers [212]. Killoran et al. implemented the idea into

practical examples: curve-fitting, classical and quantum hybrid auto-encoder, and

hybrid quantum neural network for binary classification on the fraudulent credit card

transaction dataset [120]. The author proposed the first multi-class quantum classi-

fier by expanding on Killoran’s idea for binary classification [49]. The flexibility of

defining the dimension of the computational space (feature map space) allows for the

flexibility of determining the size of the output vectors used for inference. Hence,

optical quantum computing allows for the classification of nm classes of labels where

n is the cutoff dimension and m, the number of qumodes used.

In optical quantum computing, there is a direct translation of the notion of affine

transformations and non-activation functions. The linear transformation W portion

of an affine transformation Wx + b is achieved with the composition of interferom-

eters and squeezing gates. The bias addition +b portion is achieved with a set of

displacement gates. The non-activation function component is achieved with a set

of Kerr gates. A quantum circuit can perform multiple layers of a quantum neural

network before producing measurement results.
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Architecture

Naturally embedded in optical quantum computing are quantum gates to directly

implement the expression L(|x⟩) = |ϕ(Wx+ b)⟩. Let Uk denote the k
th interferometer,

S a set of m squeezers, D a set of m displacement gates, and ϕ a set of m Kerr gates,

where m is the number of qumodes.

On an m−qumode system, m − 1 beamsplitters on pairs of adjacent qumodes

and m rotation matrices form an interferometer as seen in the Figure 31.

Figure 31: Make-up of an interferometer

The affine transformationWx+b is implemented by the compositionD◦U2◦S◦U1

and the nonlinear activation function ϕ by the Kerr gates. The composition ϕ◦D◦U2◦

S ◦U1 acting on a quantum state |x⟩ gives us the desired state L(|x⟩) = |ϕ(Wx+ b)⟩.

The schematic of the circuit is shown in Figure 32.

The composition of the gates U2 ◦ S ◦ U1 implements a quantum version of the

linear transformation matrix W . Any matrix M can be factorized using singular

value decomposition (SVD) as M = UΣV ∗, where U and V are orthogonal and Σ

is diagonal [257]. The action of a phaseless interferometer U on the quantum state

|x⟩ = ⊗m
k=1 |xk⟩ has an effect of an orthogonal matrix acting on |x⟩.

The parameterized squeezer S(rk) acts on the quantum state |xk⟩ of each kth

qumode as S(rk) |xk⟩ =
√
e−rk |e−rkxk⟩. Collectively they have an effect of a diagonal
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Figure 32: Optical quantum neural network architecture [120]

matrix S = S(r1)⊗ S(r1)⊗ . . .⊗ S(rm) acting on |x⟩ = ⊗m
i=1 |xk⟩.

Orthogonal matrices are just unitary matrices with real entries, inducing length-

preserving rotations. Then the transpose of an orthogonal matrix represents the

reverse rotation of the original matrix, thus orthogonal. Then the composition U2 ◦

S ◦ U1 can be considered as the composition O2 ◦ Σ ◦
(
OT

1

)T
, where O2 and OT

1 are

orthogonal and Σ diagonal. Together, the interferometers and squeezers implement

an SVD form of some linear transformation W [120].

The bias addition is realized with displacement gates D. The displacement gate

has an effect

D(αk) |ψk⟩ = |ψk +
√
2αk⟩ (98)

for each kth qumode. ThenD(α) |ψ⟩ = |ψ +
√
2α⟩ collectively for αT = [α1, α2, . . . , αm].

For some desired bias b, let α = b√
2
, then the collection of displacement gates imple-

ments the bias addition. The composition D◦U2 ◦S ◦U1 acting on the quantum state

|x⟩ gives us the affine transformation

D ◦ U2 ◦ S ◦ U1 |x⟩ = |O2ΣO1x+ b⟩ = |Wx+ b⟩ . (99)

The nonlinear activation function ϕ(·) is realized with Kerr gates. The Kerr gate,
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parameterized by the parameter κ, is a nonlinear transformation gate. Let n be the

cutoff dimension and m the number of qumodes. For the quantum state |ψ⟩ of one

qumode, which is a superposition of n Fock basis states, the Kerr gate with parameter

κ has an effect

K(κ) |ψ⟩ =



eiκ0
2

0 . . . 0

0 eiκ1
2
. . . 0

...
. . .

...

0 0 . . . eiκ(n−1)2





ψ0

ψ1

...

ψn−1



=



ψ0

eiκ1
2
ψ1

...

eiκ(n−1)2ψn−1



=



ψ0

(cosκ+ i sinκ)ψ1

...

(cosκ(n− 1)2 + i sinκ(n− 1)2)ψn−1


,

(100)

which is nonlinear.

Together, the circuit L = Φ◦D◦U2 ◦S ◦U1 gives us a quantum version L (|x⟩) =

|Φ(Wx+ b)⟩ of a classical neural network L(x) = Φ(Wx+ b).

The quantum version of a neural network is composed of encoding given feature

vector x into a quantum state and performing a series of quantum operations equiva-

lent to the classical transformation L(x). The objective is to implement the classical

network L(x) = ϕ(Wx+ b) as a quantum state L(|x⟩) = |ϕ(Wx+ b)⟩ using available
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quantum gates. In converting classical neural networks into quantum circuits, the

key components are the affine transformation Wx + b and the nonlinear activation

function ϕ(·).

The nonlinear activation function ϕ(·) is realized with nonlinear Kerr gates,

parameterized by the parameter κi.

Together, the circuit L = Φ◦D◦U2 ◦S ◦U1 gives us a quantum version L (|x⟩) =

|Φ(Wx+ b)⟩ of a classical neural network layer L(x) = Φ(Wx+b) [120]. Since all these

operations are performed at a gate level without being interrupted by measurement

operation, it is possible to stack the interferometer - squeezers - interferometer -

displacement gates - Kerr gates sequence in multiple layers. Hence the notion of

quantum ”deep learning” is directly implemented in optical quantum computing.

The complex parameters of the squeezer and the displacement gate, when viewed

as α = aeiθ = a (cos(θ) + i sin(θ)), where a is the magnitude and θ the phase, can be

treated as two-parameter gates.

Deep learning algorithms have been successful in extracting higher-order features

from data through multiple layers of feature maps 49. One of the deep learning

algorithms, artificial neural networks are inspired by the neocortex, in which the

input signals are processed through six layers of neurons progressively processing

signal into higher-order features [172].

In optical quantum computing, the expression of extended hidden feature spaces

is given by

f :Rd → Cms → Cmh1 → · · · → Rn : (101)

x 7→ |xs⟩ 7→ |xh1⟩ 7→ · · · 7→ y,

49Deep learning algorithms include artificial neural networks, CNN, recurrent networks, and spike
networks. In this paper, we limit our discussion to artificial neural networks.
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where m is the cutoff dimension. The cutoff dimension m can be set to any value

higher than 2 that technology allows, hence optical quantum computing avails a much

higher-dimensional feature space for processing higher-order features from data.

The availability of nonlinear gates along with the displacement gate in optical

quantum computing allows for a direct translation of a layer of classical neural net-

works into a quantum state L(|x⟩) = |ϕ(Wx+ b)⟩. This is achieved with a sequence of

interferometers, squeezers, interferometers, displacement gates, and Kerr gates [120].

Stacking the sequence multiple times achieves the notion of multiple hidden layers.

In applying the notion of ”deep learning” in the quantum computing paradigm,

optical quantum computing avails multiple layers of the quantum neural network

circuit without the measurement operation [120]. In the qubit-based model, multiple

layers of the quantum neural network reduce to a single layer mathematically.

Most of the data on which machine learning is applied for pattern extraction

contain features that are continuous in nature. Then optical quantum computing

will be a better tool to use than the discrete variable model in extracting patterns

utilizing the properties of quantum mechanics. To implement the notion of quantum

deep learning for extracting higher-order patterns from data, I built upon the quantum

neural network architecture proposed in the paper from 2019 [120].

The advantage of using optical quantum computing for deep learning is manifold:

• User can define the dimension of the computational space.

• Quantum gates not available in the discrete variable model can be used for

computation: displacement gate and nonlinear gates.

• User can define the dimension of the practical computational space.

• No ancillary qumodes are needed for readout.
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6.2.2 Quantum Convolutional Neural Networks

CNNs were first introduced by Yann LeCun as a supervised classifier on data com-

posed of image matrices [147]. They are bio-inspired neural networks modeled after

the visual cortex of the brain. The local attention in the visual cortex is achieved with

the idea of receptive fields [104, 105]. Receptive fields are local clusters of neighboring

cells to process localized sensory input information. This concept is implemented in

artificial neural networks as a ’filter’. A filter is a smaller sub-matrix mask applied to

an input matrix. The entries of the sub-region of the matrix, when a filter is applied,

are element-wise multiplied and summed up to produce a single output from the filter

region. This operation is called ’convolution’. Several iterations of convolution reduce

the size of the input data sample with entries representing higher-order patterns from

the sample [80].

In general, a CNN is composed of three types of sub-networks: convolution lay-

ers, pooling layers, and fully-connected layers.

Convolution Layers

For each receptive field, a filter of the same size is used to apply a special mathematical

operation called convolution. The convolution operation is defined by the sum of

element-wise multiplications. The visual representation of the operation is depicted

in Figure 33.

For an n × n image matrix, a kernel (filter) of size m ×m with fixed values is

applied where m < n. Starting from the top left corner of the image matrix, the

kernel is overlaid with element-wise multiplications to create a convolution matrix.

The concept of stride is used to determine how to slide over for the subsequent con-

volution operation. The resulting feature matrix is going to be of a smaller size than
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Figure 33: Convolutional operation [image source]

the original. Bias addition and nonlinear activation functions are optional.

Pooling layers

These optional layers are used to reduce the size of the convolution layers. The most

commonly used size is 2× 2. For each receptive field of 2× 2, either max pooling or

average pooling is used to reduce the 4 values to a single value. Max pooling selects

the maximum value out of the four. Average pooling takes the average of the four.

The resulting image matrix is a reduced matrix with a higher-order pattern extracted

from the resulting matrix of the convolution layer.

Fully connected layers

The 2D feature matrix is flattened as one vector. When there are multiple feature

map matrices, the flattened vectors are concatenated as one vector. Then traditional

feedforward neural network layers are applied wherein every neuron is fully connected

to every neuron of the next layer via matrix multiplication.

The way how convolutional operations are implemented in machine learning

libraries such as TensorFlow and PyTorch 50 is realized as follows:

50PyTorch is a machine learning framework based on the Torch library, used for applications such
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• Flatten the entries of the receptive field.

• Concatenate the flattened vectors as rows of a new data matrix of size number

of groups × kernel size.

• Initialize a filter matrix with size kernel size × number of filters.

• Left multiply the data vector with the filter vector.

• Each column of the resulting matrix is created as new convoluted values of the

new image matrix. Each row contains different values of kth image matrices

corresponding to the number of filters.

In converting classical CNNs into quantum networks, the main goal is effectively

implementing the convolution operation. The quantum operation sequence of data

encoding, quantum gate operation, and measurement should mirror the convolutional

layer, pooling layer, and fully connected layer sequence. The fully connected layers

are just feed-forward neural network layers, which are implemented with linear matrix

multiplications. The main component in consideration is the convolutional layers.

Quantum convolutional neural networks (QCNN) implement the idea of con-

volution by applying filters to adjacent qubits. To reduce the number of qubits for

computation, a pooling layer is implemented usually using controlled gates. The

quantum states from the control qubits are used for subsequent layers and the other

qubits are discarded. The first such architecture in the qubit-based model was in-

troduced by Cong et al. as seen in Figure 34 [57]. Each Ui block in the diagram is

a convolution circuit producing a state change as a result of the operation. The Vi

as computer vision and natural language processing, originally developed by Meta AI and now part
of the Linux Foundation umbrella. It is free and open-source software released under the modified
BSD license. Although the Python interface is more polished and the primary focus of development,
PyTorch also has a C++ interface. PyTorch provides two high-level features: Tensor computing
(like NumPy) with strong acceleration via graphics processing units (GPU). Deep neural networks
built on a tape-based automatic differentiation system.” source: Wikipedia
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blocks represent the pooling operations that reduce the size of the overall number of

qubits progressively. The F block represents the fully connected neural network layer.

In most of the literature, classical pre-processing steps are applied for dimensionality

reduction.

Figure 34: Quantum convolutional neural network architecture [57]

Another way of implementing a QCNN was proposed by Henderson et al. as a

data pre-processing technique for classical networks [98]. In this framework, a filter

applied to local receptive fields of the input data samples produces multiple channels

of feature maps through the use of a random quantum circuit. The resulting feature

maps are used as inputs to a CNN. Its architecture is shown in Figure 35.

The (A) layer is a classical CNN with the pre-processing quantum circuit, using

QCNN. The actual training is done by the classical network. The (B) layer is a de-

tailed snapshot of the QCNN process. The entries of the image matrix corresponding

the 2 × 2 filter is encoded as quantum states in four qubits. Thereafter, a random

quantum circuit is applied to induce a change of states. The measurement is per-

formed on all four qubits, producing an output vector of length four. Then a pooling

layer is applied, reducing the output vector of length four to one. The reduced image

matrix is used as input to a classical CNN circuit. Training is done purely on the
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Figure 35: Quantum convolutional neural network as a pre-processing tool [98]

classical circuit.

There are various implementations of quantum neural networks and QCNN in

the literature for the purpose of data classification. Due to the computing limitations

of the near-term devices, they are classical-quantum hybrid networks. In the next

section, we have a closer look at these quantum networks for MNIST data classifica-

tion.

6.3 Quantum Multi-class Data Classifier

Classifiers are supervised machine learning algorithms providing predictions of the

class of given data points, based on the hidden patterns of the given features. Quan-

tum classifiers are quantum machine learning algorithms where data features are

mapped into the higher-dimensional quantum computational space. However, due

to the limitations of the near-term devices, the datasets with a high number of fea-

tures cannot be directly processed with quantum circuits only. The shallow circuits

in today’s technology cannot encode all the values of input data features as quantum

states. Quantum classifiers for these datasets are mostly classical-quantum classifiers
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where various classical machine learning algorithms are employed for dimensionality

reduction.

Among these quantum machine learning algorithms are quantum binary clas-

sifiers based on the binary logic of quantum computing. There are, however, only

a handful of multi-class data quantum classifiers [32, 49, 140]. We examine various

classifier models on the MNIST dataset.

6.3.1 Previous Quantum Classifiers on MNIST Dataset

To my knowledge, there are six quantum classifiers with actual experiments on the

MNIST dataset. They can be grouped into three categories: data pre-processing

network [98], binary classifiers [106], and multi-data classifiers [32, 140].

Andrea Mari implemented the QCNN pre-processing circuit proposed by Hen-

derson et al. in 2011 [98].

The binary classifiers are:

• Google implementation [269] using TensorFlow Quantum 51 [36].

• IBM implementation using Qiskit [270]

• Hur et al. using QCNN [106]

The multi-class data classifiers in the literature classify only four classes of the

MNIST dataset. They both use the qubit-based QCNN architecture:

• Lazzarin et al. using QCNN [140]

51”TensorFlow Quantum (TFQ) is a quantum machine learning library for rapid prototyping of
hybrid quantum-classical ML models. Research in quantum algorithms and applications can lever-
age Google’s quantum computing frameworks, all from within TensorFlow. TensorFlow Quantum
focuses on quantum data and building hybrid quantum-classical models. It integrates quantum com-
puting algorithms and logic designed in Cirq, and provides quantum computing primitives compatible
with existing TensorFlow APIs, along with high-performance quantum circuit simulators.” source:
TensorFlow.org
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• Bokhan et al. using QCNN [32]

This section outlines a brief description of each classifier.

Quantum Convolutional Neural Network for Pre-processing [160]

This model is a quantum-classical hybrid model wherein training occurs in a classical

neural network with one layer. A QCNN is used to pre-process input images, which

are saved and loaded as input to the classical layer. The pre-processing network is

an implementation of the network proposed in ”Quanvolutional Neural Networks:

Powering Image Recognition with Quantum Circuits” [98]. It is implemented with

Xanadu’s PennyLane using the qubit-based model simulator.

The filter of size 2×2 is encoded as four qubits and the image pixel values in the

filter are encoded into quantum states as parameters of the Ry gates. The outputs

from the four qubits are interpreted as four channels, producing four different filter

outputs. The four separate pre-processed images are flattened as one vector and fed

as input to a fully connected feed-forward layer. Although this model classifies all

ten classes, the classification is done by a classical neural network, not by a quantum

one.

Google Implementation [269]

The Google implementation of a quantum neural network using the MNIST dataset

is a binary classifier using the classes 3 and 6. It is implemented using Google’s

TensorFlow Quantum. The original image samples of size 28 × 28 are truncated

to 4 × 4 matrices and then the entries are binarized to 0s and 1s. A 4 × 4 qubit

grid is initialized to |0⟩ and the Pauli-X gate (NOT-gate) is applied to the qubits

corresponding to the value 1 of the input matrix as seen in Figure 36.
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Figure 36: Simplified and binarized data encoding

The network is a pure quantum circuit, composed of XX 52 and ZZ 53gates

with a total of 32 parameters, which are optimized through the ”learning” process.

An additional qubit for readout is added, which is the only qubit measured after

computation. The output of the circuit is single expectation values between [−1, 1].

The output values are interpreted as either class 3 or 6. The whole quantum cir-

cuit is wrapped as a Keras layer and is run using Hinge loss 54 and Adam optimizer

55. The training process involves finding optimal values of the parameters for the XX

gates and ZZ gates. On 10,338 samples, the model achieves 89.92% training accuracy.

IBM [270]

This binary classifier is a quantum data encoding circuit composed of the Hadam

-ard gate and a single Ry gate as seen in Figure 37. It is implemented using IBM’s

Qiskit 56 and PyTorch 57.

52a two-qubit gate with two X-gates in parallel
53a two-qubit gate with two Z-gates in parallel
54explain Hinge loss
55”Adam optimization is a stochastic gradient descent method that is based on adaptive estimation

of first-order and second-order moments”, Keras documentation
56IBM’s quantum circuit and algorithm building software
57Python-based open-source machine learning framework
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Figure 37: Data encoding circuit for single inputs

It uses a classical CNN to produce a single real-valued output. The output

from the CNN is then used as the parameter for the Ry gate. The classical CNN is

composed of two convolutional layers each with kernel size (5,5), max pool, and the

activation function ReLU (Rectified Linear Unit) [39]. The resulting image matrices

are flattened, and then one hidden layer of a feed-forward neural network is applied

with the activation function ReLU.

Without any quantum neural network circuit, measurement is performed directly

on the quantum encoded data. On 100 samples, the model achieves 100% training

accuracy 58.

Hur’s MNIST Binary Classifier [106]

This model is a binary classifier whose architecture is based on QCNN proposed by

Cong et al. [57]. The classes 0 and 1 are used for the experiments. Image samples are

pre-processed via Principal Component Analysis (PCA) or autoencoder to accommo-

date the capacity of the eight-qubit circuit. For the convolution operations on each

adjacent pair of qubits, various combinations of gates are used consisting of Ry gates,

Hadamard, Controlled-Z, and Controlled-Not. Pooling layers are applied after quan-

tum convolution layers to reduce the two-qubit state to the one-qubit state. After

repeated iterations of convolution and pooling layers, the result is read out from the

58It is not clear if the accuracy is achieved by the classical network or the quantum.
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last qubit. The readout value from a measurement operation is always binary i.e., 0

or 1. Hence, multiple shots of the classifier will yield real values as probabilities of

the sample belonging to class 0 or 1. Based on the qubit-encoding scheme, the model

achieves 98.5% classification accuracy.

Lazzarin et al’s Classifier on Four Classes [140]

This is a classical-quantum multi-classifier on four classes (0, 1, 2, and 3) of the

MNIST dataset. It is based on two different variations of QCNN architectures:

Tree Tensor Networks (TTN) and Multiscale Entanglement Renormalization Ansatz

(MERA). These models are implemented using Google’s Cirq and TensorFlow Quan-

tum. Just like Park’s model, PCA and convolution auto-encoders are used to reduce

the 28 × 28 image matrices to vectors of length 8. The convolution auto-encoder is

composed of two convolution layers and two fully connected layers. After the number

of qubits is reduced through multiple layers of quantum convolution, measurements

are performed on two qubits of the final convolution layer. The computational basis

of two qubits has the expressive power of 22 = 4 different states, which are interpreted

as inference labels for the classes 0, 1, 2 and 3. The model achieves classification ac-

curacy of up to 93%.

Bokhan et al’s Classifier on Four Classes [32]

This model is another multi-class data classifier using the classes 0, 1, 2, and 3 of the

MNIST dataset. It is implemented using Google’s Cirq and TensorFlow Quantum.

The input images of size 28 × 28 are rescaled to 16 × 16 = 256 and 8 = log2 256

qubits are used. The precise data encoding scheme of converting 256 variables in an

eight-qubit circuit is not specified in the paper. The circuit is composed of three main

blocks with various filter blocks: preliminary scanning, QCNN layer with pooling, and
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regular layers with pooling. The internal circuit of each filter block is composed of

Ry gates and controlled-Ry gates, whose parameters are learned through the training

process. Then the outputs are connected to four readout ancilla qubits via Toffoli

and controlled rotation gates, producing a vector of length four. The measurement

result from each readout is interpreted as inference labels. The model achieves 90.03%

classification accuracy.

6.3.2 Quantum Optical Binary Classifier for Fraud Detection

The motivation for this part of my work is Killoran et al.’s binary classifier using opti-

cal quantum neural networks. I implemented Killoran’s architecture using PennyLane

and TensorFlow Keras on Xanadu’s X8 simulator.

The binary classifier proposed in ”Continuous-variable quantum neural net-

works” is a classical quantum hybrid network [120]. The dataset used contains 284,806

genuine and fraudulent credit card transactions with 29 features, out of which only

492 are fraudulent. The dataset is truncated to 10 features as per the paper and 1,968

samples with 1:3 ratio of fraudulent vs. genuine.

The proposed classical-quantum hybrid model has a classical neural network

taking input vectors of size 10 and outputting vectors of size 14, a quantum encoding

circuit, and a 2-qumode quantum neural network that outputs vectors of size 2. We

can regard the output vectors as the one-hot encoding of binary classification of

fraudulent vs. genuine. The architecture of the hybrid network is
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Figure 38: Binary hybrid classifier circuit [120]

The data flow of the circuit is

• Classical network: 2 hidden layers with 10 neurons, each using Exponential

Linear Units (ELU) as activation function. Output layer with 14 neurons.

• Data encoding: output vector from the classical network converted to a quantum

state by the circuit - squeezers, interferometer, displacement gates, and Kerr

gates

• Quantum network: 4 layers of QNN. Each layer is composed of interferometer

1, squeezers, interferometer 2, displacement gates, and Kerr gates.

• Measurement: the expectation value of the Pauli−X gate ⟨ϕk|X |ϕk⟩ is evalu-

ated for each qumode state |ϕk⟩ for the kth qumode.

For binary classification, two qumodes are used with the expectation value mea-

surement method, producing a vector of length two. Figure 34 illustrates the conver-

gence of the loss and accuracy of the model. The model achieves 97% train accuracy

and 95.18% validation accuracy after 40 epochs.
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Figure 39: My experimental results

6.3.3 Optical Quantum MNIST Classifier [49]

I introduce the first quantum classifiers capable of classifying all ten classes of the

MNIST dataset. In ”Continuous variable quantum neural networks”, Killoran et al.

introduced an optical variational (parametrized) binary classifier which is a classical

and quantum hybrid circuit [120]. Taking advantage of the notion of ”cutoff dimen-

sion” to realize the multi-valued logic of computing, I developed quantum classifiers

for multi-class data, which I applied to the MNIST dataset.

The architecture is capable of classifying up to nm classes, where n is the cutoff

dimension and m is the number of qumodes used. In theory, the model can classify

datasets with up to 208 = 25, 600, 000, 000 classes, using Xanadu’s X8 59

The classifiers presented in this section use the flexibility of determining the size

of the output vectors in optical quantum computing, based on the cutoff dimension

and the number of qumodes used. The output vectors are interpreted as one-hot

encoded inference labels of the data samples. Different classifiers using 2, 3, 4, 5, 6,

and 8 qumodes for computations are experimented on. On the systems of 3, 4, 6, and

8 qumodes, the presented multi-classifiers achieve above 99% training accuracy on

59In Xanadu’s X8, the maximum cutoff dimension allowed is 20 and the maximum number of
qumodes for computation is 8.
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the truncated datasets of size 600 samples.

There are two models classifying 8 classes 0, 1, . . . , 7 and six models classifying

10 classes 0, 1, . . . , 9. The measurement outputs from these models are translated

as one-hot encoded predictions of image labels. Although neural networks with one

qumode are possible, they did not yield good results with different data encoding

schemes and up to 25 layers.

The classifiers on 8 classes are built using 3−qumodes and 8−qumodes. Different

measurement methods were used to produce output vectors of length 8 as seen in Table

3.

number of cutoff measurement output
qumodes dimension method size

3 2 probability 23 = 8
8 2 expectation value 1× 8 = 8

Table 3: Measurement methods for 8-class models

The 10-class classifiers are built on 2, 3, . . . , 6−qumodes. The cutoff dimensions

are selected so that the output vectors exceed 10 in length. The label k ∈ {0, 1, . . . , 9}

of an image matrix, when converted into a one-hot encoded vector, becomes a vector

of length 10 with all zeros but the kth entry as 1. For each classifier, a different

number of zeros are padded to the one-hot encoded labels to match the output size

of the circuit. Table 4 lists the number of padded zeros per the number of qumodes

used for computation.

The classical neural network is used as a pre-processing step to reduce the orig-

inal image size 28 × 28 = 784 to vectors of lower length that the data encoding

circuit can accommodate. For the data encoding circuit, squeezers, an interferome-

ter, displacement gates, and Kerr gates are used. The quantum circuit implementing

L(|x⟩) = |ϕ(Wx+ b)⟩ as in the binary classifier is used.
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number of cutoff output number of
qumodes dimension size padding 0’s

2 4 42 = 16 6
3 3 33 = 27 17
4 2 24 = 16 6
5 2 25 = 32 22
6 2 26 = 64 54
7 2 27 = 128 118

Table 4: Number of padding zeros for one-hot encoding of labels

The architecture in Figure 40 depicts the data flow of image matrix → classical

layers→ reduced output vectors→ data encoding→ QNN→measurement→ output

vectors as one-hot encoded labels.

Figure 40: MNIST multi-class data classifier architecture [49]

The boxes U, S,D, and K represent interferometers, a set ofm squeezers, a set of

m displacement gates, and a set of m Kerr gates respectively, where m =the number

of qumodes.
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Classical layers

Classical feed-forward neural networks are used for pre-processing data image ma-

trices to parameter vectors for parameterized quantum gates of the data-encoding

circuit. The image matrices are flattened to vectors of size 28 × 28 = 784 and then

reduced to vectors of smaller sizes through multiple layers. Keras dense layer opera-

tions with activation function Exponential Linear Unit are used. The output vectors

are then encoded as quantum states by the data-encoding quantum circuit.

Data encoding

The output vectors from the classical neural network are in classical states. The quan-

tum data encoding circuit converts classical states into quantum states. The quantum

gates used for data encoding are squeezers, an interferometer 60, displacement gates,

and Kerr gates. The entries of the classical vector are used as the parameters of these

parameterized quantum gates.

An interferometer is composed of beamsplitters on pairs of adjacent qumodes

and rotation matrices as seen in Figure 31. Squeezers S(z) and displacement gates

D(α) can be considered either one-parameter gates or two-parameter gates when we

view the parameters z, α ∈ C in Euler formula z = a+ bi = r (cosϕ+ i sinϕ) = reiϕ.

For the purpose of data encoding, we use them as two-parameter gates.

For an m−qumode circuit, the number of parameters that these gates can ac-

commodate is 8m− 2, where m is the number of qumodes.

squeezers BS rotation displacement Kerr
2m 2(m− 1) m 2m m

Table 5: Number of parameters for data encoding

Based on these values, the size of the classical network output vectors was de-

60composed of beamsplitters and rotation gates
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termined.

Quantum circuit

The QNN circuit implements a quantum version of the classical neural network L(x) =

ϕ(Wx+ b) as

L(|x⟩) = |ϕ(Wx+ b)⟩ = ϕ ◦D ◦ U2 ◦ S ◦ Ui |x⟩

where |x⟩ is a quantum data encoded state of the original data vector x, Uk interfer-

ometers, S squeezers, D displacement gates, and ϕ(·) Kerr gates respectively. The

number of parameters per collection of gates on m−qumodes is seen in Table 6.

Interferometer Squeezers Displacement Kerr Total
2(m− 1) +m m m m 2 · 2(m− 1) + 5m

= 9m− 4

Table 6: Number of parameters per QNN layer

On the 8-qumode classifier, 2 layers of QNN are applied. On the rest of the

classifiers, 4 layers are applied. The number of parameters for the varying number of

qumodes is shown in Table 7.

num of qumodes per layer total
2 14 56
3 23 92
4 32 128
5 41 164
6 50 200
8 68 272

Table 7: Number of quantum parameters
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Pseudocode

To build a QNN classifier, we first decide on the number of qumodes m to use for

computation. Based on that, we can calculate the number of parameters available in

the data encoding circuit 61. Then we can build a classical network with an output

size equal to the number of parameters available for encoding.

For the quantum circuit, determine the cutoff dimension n such that n is the

least number that satisfies nm > the number of classes 62 Then convert the outputs

from the classical network into quantum states. The parameters of the quantum

neural network circuit are initialized randomly. The training process is iterated until

an optimal set of parameters is learned. A pseudocode explaining the data flow is

shown in Figure 41.

Figure 41: MNIST multi-class data quantum classifier pseudocode

61This depends on the optical quantum gates used for data encoding.
62For the MNIST dataset, the number of classes is ten.
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Parameter update

TensorFlow is a Python-based open-source library for neural networks, managed by

Google. Keras is an open-source library that provides an application programming

interface (API) over the TensorFlow library. With the PennyLane TensorFlow plug-

in functionality, the quantum circuit is converted into a Keras layer and added to

the classical layers. Then Keras’ built-in loss functions and optimizers can be used

for parameter updates. For most of the models, Categorical Crossentropy is used for

the loss function and Stochastic Gradient Descent is used for the optimizer. For the

8-qumode classifier, the Mean Squared Error loss function performed better. The

updated parameters are then used as the parameters of the quantum gates for the

subsequent iteration of training.

Experimetal results

The 4−qumode classifier yielded the best result of 100% training accuracy on 600

data samples. All the classifiers tested achieve above 95% training accuracy. For the

8-qumode classifier, 300 samples and 2 layers of QNN were used with 50 epochs. For

the rest of the classifiers, 600 samples and 4 layers of QNN were used. With the

4-qumode classifier, training accuracy of 100% is achieved in 70 epochs.

num of learning training training
qumodes rate loss accuracy

2 0.02 0.4966 97.14%
3∗ 0.05 0.0563 99.90%
3 0.05 0.4567 98.04%
4 0.03 0.1199 100.00%
5 0.02 0.2057 98.40%
6 0.02 0.2055 99.35%
8 0.1 0.0199 99.77%

Table 8: Training loss and accuracy

The second line 3∗ indicates an 8−class classifier. The number of parameters
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given is the total number of parameters including classical and quantum. All of these

classifiers followed the typical loss and accuracy graphs depicted in Figure 42.

Figure 42: MNIST multi-class data quantum classifier experimental results

Further experiments with different hyper-parameters will bring the validation

accuracy as high as the training accuracy.

Comparison with classical circuits

In considering the training accuracy of classical-quantum hybrid circuits, it is not

very clear if the accuracy is achieved from the learned parameters from the classical

network or the quantum. Here, I set up additional experiments with purely classical

circuits without the quantum layers. All of the classical networks have parameters

over one million. Figure 43 demonstrates the number of parameters involved in the

classical portion of the hybrid network plus the output layer equivalent to the quantum

measurement operation.

The results from the experiments in comparison with classical-quantum hybrid

classifiers are tabulated in Table 9. The results demonstrate the contribution of

the quantum circuit to vastly improve the training accuracy. This is done with a

very small number of parameters compared to classical circuits. This illustrates the

effectiveness of quantum neural networks and quantum computing in general.
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Figure 43: Number of parameters for the classical network (Generated using Keras)

number of total number of with without
qumodes quantum parameters quantum layers quantum layers

2 56 0.9714 0.6717
3 92 0.9804 0.7050
4 128 1.0000 0.7983
5 164 0.9840 0.7950
6 200 0.9935 0.7483
8 272 0.9977 0.8647

Table 9: Training accuracy comparison with and without quantum layers

Using all the available optical quantum gates in the PennyLane library allows

for data encoding of a larger number of features for quantum machine learning. The

number of parameters available for data encoding based on the number of qumodes

is listed in Table 10.

If one were to employ eight qumodes for a quantum machine learning circuit,

the available number of variables for data encoding is 15×8−7 = 113. Theoretically,

stacking multiple layers of these gates will accommodate data encoding of samples
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Name Number of qumodes Number of Number of parameters
for a single gate parameters for m-qumodes

Beamsplitter 2 2 2(m− 1)
Controlled Addition 2 1 m− 1
Controlled Phase 2 1 m− 1
Cross Kerr 2 1 m− 1
Cubic Phase 1 1 m
Displacement 1 2 2m
Kerr 1 2 m
Quadratic Phase 1 2 m
Rotation 1 2 m
Squeezing 1 2 2m
Two Mode Squeezing 2 2 2(m− 1)
Total 15m− 7

Table 10: Optical quantum gates in PennyLane library

with any number of features, allowing for purely quantum circuits. I hope more

attention from the quantum machine learning research community to the many ad-

vantageous features of optical quantum computing will result in the development of

algorithms suitable for optical quantum machine learning.
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7 SUMMARY AND CONCLUSION

We are in a new era of expanded communications/computing paradigm wherein quan-

tum computing is emerging as an additional computational tool for solving compu-

tational problems. Decades of quantum computing research since 1980 have borne

fruit in actual working QPUs. In order for quantum computers to be fully integrated

into the existing computing infrastructure, providing meaningful solutions to real-life

problems, these computers need to be fully fault-tolerant and universal.

For building a holistic classical and quantum computing ecosystem, the informa-

tion carriers need to be compatible for easy data transfer and communications. The

light signals in fiber optics communications networks are most compatible with the

light signals in optical quantum computing. Optical quantum computing operates

at room temperature, is easily controllable, and is robust to decoherence. Due to

continual advances in laser and optical technology, optical quantum computers are

easily implementable using lenses, mirrors, waveplates, diffraction gratings, and other

optical instruments. The information carriers in optical quantum computing systems

are the electromagnetic field modes of light.

The existing optical QPUs, demonstrating the proof-of-concept, contain the con-

trol and ALU components. The memory component for storing programs can benefit

from the optical quantum memory research for quantum communications spearheaded

by NIST. A uniform standard of optical signals for communications and computing

facilitates quantum transducer technology. It reduces additional components and de-

vices that need to convert other modes of information signals to optical. With optical

metrology, a lot of sophisticated sensors are optics-based. Technological advances

in optical instruments are guaranteed. Existing optical metrology technology widely

used in sensors can be easily extended to quantum embedded-system metrology.
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Optical quantum computing naturally realizes the multi-valued logic of com-

puting at room temperature. It reduces the need to encode real-life computational

problems into binary logic, perform computations, and decode to multi-valued real-

life solutions. This provides an opportunity to view computational problems in a

radically different way than how digital computing has been handling them since the

1940s. The only optical quantum algorithms to date are quantum neural networks

[49, 120]. There is a potential to encode real-life problems directly without refor-

mulating to binary logic. There is a potential to implement the quantum version

of classical analog circuits. The inherent computing paradigm of optical quantum

computers allows users to define the dimension of computational space. Different

measurement methods offered by PennyLane add freedom to users to define the size

of the output vectors.

Quantum machine learning algorithm research is focused on tapping into quan-

tum mechanical properties for capturing higher-order features of data that may not

be available in classical computing. Quantum machine learning circuits are character-

ized by parameterized (variational) gates, whose gates are learned through training

to best capture hidden features. Due to the limitations in existing QPUs, quantum

machine learning algorithms to date are classical-quantum hybrid models wherein the

size of the data samples is reduced via various dimensionality reduction techniques.

The quantum phenomena naturally occurring in quantum optical systems be-

yond linear state changes provide vector addition and nonlinear operations in optical

quantum computing. True implementation of quantum deep learning is possible in

optical quantum computing because of the availability of displacement gate and non-

linear gates. Building a multi-class classification network on the qubit model would

require a very complex scheme of using multiple qubits as readout. Due to the rich

array of optical quantum gates and multiple measurement operators for producing
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different-size output vectors, it is much more natural to build multi-class classifica-

tion models on optical quantum computers. Xanadu’s Pennylane’s Tensorflow plug-in

feature allows quantum circuits to be converted to Keras layers. Then Keras’ built-in

loss functions and optimizers are accessible for the optimization process.

My contributions to the quantum computing research community are twofold:

Theoretical contribution

• Demonstration of quantum optics as a highly desirable candidate for the phys-

ical implementation of quantum computing.

• Demonstration of the flexibility availed in optical quantum computing to the

users to determine the dimension of the computational space.

• Identification of the capabilities of optical quantum computing to directly im-

plement multi-valued logic.

Implementation of optical quantum neural networks

• Implementation of classical-quantum hybrid auto-encoder according to the ar-

chitecture proposed by Killoran et al [120].

• Implementation of classical-quantum hybrid binary classifier according to the

architecture proposed by Killoran et al [120].

• Creation of a novel classical-quantum hybrid multi-class data classifier on real

data [49]. Existing multi-class data quantum hybrid classifiers classify up to four

classes. My hybrid classifier demonstrated the classification of all ten classes.

As advances in quantum computing technology are realized, quantum machine

learning circuits capable of fully encoding data samples will be tested and improved

upon.
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Quantum computing as a component of overall CPU, QPU, and GPU computa-

tional solutions on the foundation of classical and quantum fiber optics communica-

tions/computing infrastructure will usher in a new era of the information revolution.
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Appendix A Mathematical Formalism of Google’s Implementation of

MNIST Classifier

X =

0 1

1 0

H =
1√
2

1 1

1 −1


When the composition H ◦X is applied to |0⟩, we get |0⟩−|1⟩√

2
.
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For those qubits whose corresponding pixels values of the image matrix is above
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the threshold value 0.5, the Pauli−X gate is applied and the state is changed from

|0⟩ to |1⟩. Then the quantum state with the ancilla qubit is

|0⟩ − |1⟩√
2

⊗ |1⟩ = 1√
2
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Thereafter, the circuit has a layer of parametrized XX gates followed by a layer

of parametrized ZZ gates for each pair (readout qubit, kth qubit). Suppose the first

qubit has its corresponding pixel value not exceeding the threshold, hence in state

|0⟩−|1⟩√
2

⊗ |0⟩. Application of the XX gate with parameter t0 is then
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Notice applying the XX gate parametrized by tk is equivalent to applying the

X gate parametrized by −tk to the image qubit. By the same token, on the qubits

with corresponding pixel values above the threshold, we get

(X ⊗X)t1
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As the circuit repeats the XX operation on each pair of (readout qubit, kth qubit),

the state of the readout qubit remains the same, while the the state of the kth qubit is
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sponding pixel value. Denote the state of the 0th qubit |ψ0⟩. Then the parameterized

ZZ gate with parameter s0 is applied.
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by the property of tensor products. Now the state of the readout qubit is |0⟩−eiπs0 |1⟩.
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Then applying the ZZ gate on the (readout qubit, 1st qubit) pair gives us
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As the circuit continues the ZZ gate iteration on all 16 qubits, the state of the readout
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qubit becomes
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Then the circuit applies the Hadamard gate on the ancilla qubit while no operation

is applied the data qubit. This is expressed as
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Applying it to the previous state gives us the final state before measurement
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by properties of tensor products.

Then the final state of the readout qubit is
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 and of the kth image
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 up to global phase 1√

2
.

The measurement operator outputs the expectation value of the Pauli−Z gate

⟨ψ|Z |ψ⟩ where |ψ⟩ is the final state of the readout qubit. Then up to global phase

⟨ψ|Z |ψ⟩

=

[(
1 + eiπ

∑15
0 sj

)∗ (
1− eiπ

∑15
0 sj

)∗]1 0

0 −1


1 + eiπ

∑15
0 sj

1− eiπ
∑15

0 sj


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=

[(
1 + eiπ

∑15
0 sj

)∗ (
1− eiπ

∑15
0 sj

)∗] 1 + eiπ
∑15

0 sj

−
(
1 + eiπ

∑15
0 sj

)


=
(
1 + eiπ

∑15
0 sj
)∗ (

1 + eiπ
∑15

0 sj
)
−
(
1− eiπ

∑15
0 sj
)∗ (

1− eiπ
∑15

0 sj
)

= ∥1 + eiπ
∑15

0 sj∥2 − ∥1− eiπ
∑15

0 sj∥2
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Appendix B Sycamore

Google’s 63−qubit Sycamore, whose architecture is of a lattice shape as shown in the

figure. To select n−qubits from the chip, it is customary to pick a log2(n)× log2(n)

block.

Google’s 63 qubit QPU sycamore uses aluminum for metallization and a thin

layer of non-superconducting indium for bump-bonds between two silicon wafers.

Conducting electrons on the wafers are condensed to macroscopic quantum state,

such that currents and voltage behave quantum mechanically. In order to achieve

that, the chips are cooled to below 20 mK in a dilution refrigerator.

The architecture of the chip is of lattice structure where each node represents a

qubit. It is composed of nonlinear resonators at 5 - 7 Ghz. As controls, a microwave

drive is used to excite the qubit and a magnetic flux control to tune the frequency.

Figure 44: Lattice structure of Sycamore chip [image source]

For readout, a linear resonator connected to each qubit simultaneous readout

using frequency- multiplexing technique. The software package offered for quantum

circuits is Cirq, based on Python.
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Appendix C Borealis [157]

The planar design of X8 requires more linear optical components and corresponding

control mechanisms for scaling up as more qumodes are added [157]. To overcome

these engineering challenges, Xanadu introduced a new QPU, called Borealis, based

on time-division multiplexing 63 [271].

In this architecture, temporally spaced batches of light pulses form 216-qumodes.

This achieves more number of qumodes for computation with a relatively small num-

ber of optical channels.

Figure 45: Xanadu’s new chip Borealis [157]

From a single source of squeezed light, temporally spaced optical pulses are

emitted. Three temporally placed variational beamsplitters (VBS) are placed as

quantum operations. The time intervals are 1τ , 6τ , and 36τ . After demultiplexer,

the photon number resolutors (PNRs) performs the measurement operation.

63also called temporal-domain multiplexing.

183



Appendix D Quantum Classifier Example Code

import t en so r f l ow as t f

import t e n s o r f l ow da t a s e t s as t f d s

from t en so r f l ow import keras

from t en so r f l ow . keras import l a y e r s

import pennylane as qml

import numpy as np

import matp lo t l i b . pyplot as p l t

######## Loading Data

mnist = keras . da ta s e t s . mnist

# da t a s e t s are numpy . ndarrays

( X train , Y tra in ) , ( X test , Y tes t ) = mnist . l oad data ( )

# Normalize the image data

X train , X tes t = X tra in / 255 .0 , X tes t / 255 .0

######## Data Preparat ion

def one hot ( l a b e l s ) :

depth = 3∗∗3 # 10 c l a s s e s + 17 zeros f o r padding

i n d i c e s = l a b e l s . astype (np . in t32 )
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on e ho t l a b e l s = np . eye ( depth ) [ i n d i c e s ] . astype (np . f l o a t 3 2 )

return on e ho t l a b e l s

# One−hot encoded l a b e l s , each l a b e l o f l e n g t h cu t o f f d im ∗∗2

y t ra in , y t e s t = one hot ( Y tra in ) , one hot ( Y tes t )

# Using only 600 samples f o r t r a i n i n g in t h i s experiment

n samples = 600

t e s t s amp l e s = 100

X train , X test , y t ra in , y t e s t = X tra in [ : n samples ] ,

X tes t [ : t e s t s amp l e s ] ,

y t r a i n [ : n samples ] ,

y t e s t [ : t e s t s amp l e s ]

######## C l a s s i c a l C i r cu i t

keras . backend . s e t f l o a t x ( ’ f l o a t 3 2 ’ )

model

= keras . models . S equent i a l ( [

l a y e r s . F lat ten ( input shape = (28 , 28 ) ) ,

l a y e r s . Dense (128 , a c t i v a t i o n =” e lu ” ) ,

l a y e r s . Dense (64 , a c t i v a t i o n =” e lu ” ) ,

l a y e r s . Dense (32 , a c t i v a t i o n =” e lu ” ) ,

l a y e r s . Dense (22 , a c t i v a t i o n =” e lu ” )

] )
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# More than a m i l l i o n parameters f o r the c l a s s i c a l c i r c u i t

model . summary ( )

######## Data Encoding C i r cu i t

def i n i t l a y e r ( x ) :

qml . Squeezing (x [ 0 ] , 0 . 0 , w i r e s=0)

qml . Squeezing (x [ 1 ] , 0 . 0 , w i r e s=1)

qml . Squeezing (x [ 2 ] , 0 . 0 , w i r e s=2)

qml . Beamspl i t te r ( x [ 3 ] , x [ 4 ] , w i r e s = [0 , 1 ] )

qml . Beamspl i t te r ( x [ 5 ] , x [ 6 ] , w i r e s = [1 , 2 ] )

qml . Rotation (x [ 7 ] , w i r e s=0)

qml . Rotation (x [ 8 ] , w i r e s=1)

qml . Rotation (x [ 9 ] , w i r e s=2)

qml . Displacement (x [ 1 0 ] , 0 . 0 , w i r e s=0)

qml . Displacement (x [ 1 1 ] , 0 . 0 , w i r e s=1)

qml . Displacement (x [ 1 2 ] , 0 . 0 , w i r e s=2)

qml . Kerr ( x [ 1 3 ] , w i r e s=0)

qml . Kerr ( x [ 1 4 ] , w i r e s=1)

qml . Kerr ( x [ 1 5 ] , w i r e s=2)

######## Quantum Neural Network C i r cu i t
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def l a y e r ( v ) :

qml . Beamspl i t te r ( v [ 0 ] , v [ 1 ] , w i r e s = [0 , 1 ] )

qml . Beamspl i t te r ( v [ 2 ] , v [ 3 ] , w i r e s = [1 , 2 ] )

qml . Rotation (v [ 4 ] , w i r e s=0)

qml . Rotation (v [ 5 ] , w i r e s=1)

qml . Rotation (v [ 6 ] , w i r e s=2)

qml . Squeezing (v [ 7 ] , 0 . 0 , w i r e s=0)

qml . Squeezing (v [ 8 ] , 0 . 0 , w i r e s=1)

qml . Squeezing (v [ 9 ] , 0 . 0 , w i r e s=2)

qml . Beamspl i t te r ( v [ 1 0 ] , v [ 1 1 ] , w i r e s = [0 , 1 ] )

qml . Beamspl i t te r ( v [ 1 2 ] , v [ 1 3 ] , w i r e s = [1 , 2 ] )

qml . Rotation (v [ 1 4 ] , w i r e s=0)

qml . Rotation (v [ 1 5 ] , w i r e s=1)

qml . Rotation (v [ 1 6 ] , w i r e s=2)

qml . Displacement (v [ 1 7 ] , 0 . 0 , w i r e s=0)

qml . Displacement (v [ 1 8 ] , 0 . 0 , w i r e s=1)

qml . Displacement (v [ 1 9 ] , 0 . 0 , w i r e s=2)

qml . Kerr ( v [ 2 0 ] , w i r e s=0)

qml . Kerr ( v [ 2 1 ] , w i r e s=1)

qml . Kerr ( v [ 2 2 ] , w i r e s=2)
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######## Combined Quantum Ci r cu i t

num modes = 3

num basis = 3

dev = qml . dev i c e ( ” s t r awb e r r y f i e l d s . fock ” ,

w i r e s=num modes ,

cu to f f d im=num basis )

@qml . qnode ( dev , i n t e r f a c e=” t f ” )

def quantum nn ( inputs , var ) :

i n i t l a y e r ( inputs ) # Encode input x in t o quantum s t a t e

for v in var : # I t e r a t i v e quantum l a y e r s

l a y e r ( v )

return qml . probs ( w i r e s =[0 , 1 , 2 ] ) # Measurement

######## Cla s s i c a l−Quantum Hybrid C i r cu i t

num layers = 4

num params = 23

we ight shapes = { ’ var ’ : ( num layers , num params )}

q laye r = qml . qnn . KerasLayer ( quantum nn ,

weight shapes ,

output dim = 4)
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# Add to the c l a s s i c a l s e q u en t i a l model

model . add ( q l aye r )

######## Loss and Optimizer

opt = keras . op t im i z e r s .SGD( l r = 0 . 03 )

model . compile ( opt ,

l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,

met r i c s =[ ’ accuracy ’ ] )

model . summary ( )

######## Training

hybrid = model . f i t ( X train ,

y t ra in ,

epochs = 100 ,

b a t ch s i z e = 64 ,

s h u f f l e = True ,

v a l i d a t i on da t a = ( X test , y t e s t ) )
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