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Abstract 

 

The complexity and diversity of modern computing challenges have made it difficult for 

traditional computers to efficiently handle tasks such as computer-aided design, design 

optimization, and combinatorial problems within a reasonable time frame. In applications 

such as bitcoin mining and robotic control, power consumption and circuit size are 

critical factors. To overcome these limitations, this dissertation examines alternative 

computing technologies such as quantum computers and hybrid memristive circuits. The 

research demonstrates that these technologies hold the potential to offer more efficient 

and effective solutions for particular problems, whether in terms of faster computation or 

reduced power consumption. 
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Chapter 1 Introduction 

1.1 Overview of quantum computing 

Quantum computing leverages the principles of quantum mechanics, such as 

superposition and entanglement, to process information. Unlike traditional computers that 

use bits to represent and manipulate data, quantum computers employ qubits. These 

qubits allow for the simultaneous representation and manipulation of multiple values, 

enabling quantum computers to perform certain tasks much faster than traditional 

computers. There is potential for quantum computers to solve problems that classical 

computers cannot tackle, such as cracking specific encryption methods or simulating 

intricate quantum systems. Despite these promising capabilities, quantum computers are 

still in the early stages of development and face numerous technical hurdles before they 

can be widely adopted. 

Quantum computers have the potential to perform algorithmic and computational tasks 

that cannot be achieved by classical computers due to their unique properties such as 

superposition, interference, and entanglement. One example of this is Grover's Algorithm. 

This dissertation presents methods for mapping Functional Decomposition based on 

partition calculus into Grover-based quantum algorithms that provide quadratic speedup. 

A library of quantum circuit blocks with basic functionalities such as counters, adders, 

and multiplexers was developed in this dissertation, and a bottom-up approach was 

proposed for building quantum oracles using these functional blocks. These techniques 

were demonstrated using problems such as Ashenhurst-Curtis decomposition and graph 

coloring. These approaches have the potential to enable massively parallel computing 
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schemes, potentially surpassing any transistor-based supercomputers in terms of 

computing power. 

1.2 Overview of memristor circuit 

A memristor is a non-volatile, nanoscale memory device capable of performing stateful 

logic operations, allowing for in-memory computing and reducing data transfer delays 

between the processor and memory. Its low power consumption and compact circuit size 

make it ideal for use in embedded systems such as edge computing and robotics. Our 

team proposed a memristor-based FPGA circuit architecture. In this dissertation, I 

introduced memristor-based pulse rate computing components and a pulse rate computing 

system based on a memristive FPGA. The core concept behind pulse rate computing is to 

represent a number with a pulse signal in a single bit, simplifying the circuits for 

algebraic operations like multiplication and solving differential equations. By developing 

a pulse rate computing platform with memristors, I was able to further reduce power 

consumption and circuit size. 
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Chapter 2 Quantum computing 

2.1 Quantum computing   

Quantum computing is an emerging technology with a high rate of growth in the digital 

world today. It combines principles of quantum physics and computing to solve problems 

that are too complex for classical computers. A quantum computer leverages the unique 

properties and phenomena of quantum mechanics, such as entanglement and 

superposition, to achieve significant advances in processing power. However, the current 

state of quantum computing is similar to the early stages of classical computing in the 

1950s, with a focus on hardware development and the use of low-level languages for 

programming. Many companies and institutions, including Google, IBM, Microsoft, Intel, 

DWAVE, and startups, are investing in quantum computing research. 

2.2 Quantum circuits and gates 

In quantum computing, a quantum gate is a basic quantum circuit that performs a specific 

operation on one or more qubits. Quantum gates are the building blocks of quantum 

circuits, which are collections of quantum gates that are used to perform specific tasks. 

Quantum circuits are the quantum equivalent of classical digital circuits, which are used 

to perform logical operations in classical computers. 

Quantum gates can be used to perform various operations on qubits, such as not 

(negation), (conjunction), or (disjunction), and controlled-not (CNOT). These operations 

can be combined in various ways to perform more complex tasks, such as quantum 

teleportation and quantum error correction. 
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Quantum circuits can be represented using a diagram called a quantum circuit diagram, 

which shows the flow of qubits through the circuit and the operations performed on them 

at each step. Quantum circuit diagrams are used to design and analyze quantum 

algorithms and to implement them on quantum computers. 

The model of quantum circuits is capable of representing a large number of quantum 

algorithms and is similar to classical digital circuits, with wires that transmit data through 

logic gates. However, because quantum mechanics describes a reversible process, 

quantum circuits must be constructed exclusively from reversible gates. As a result, the 

model of quantum circuits is more closely related to classical reversible circuits. 

2.3 Grover’s algorithm  

 

Grover’s algorithm is one of the most famous quantum algorithms [22-24]. Every 

particular problem for it is represented as a logic oracle. Grover’s algorithm performs 

searching on a “black box,” an unsorted dataset, to find an element (a minterm of a 

Boolean function describing the problem) that satisfies the oracle. The oracle is explicitly 

built for the given problem. The idea of Grover's algorithm is to place the quantum bits 

(qubits) representing the entire search space of size N in a superposition state. Then the 

phase of the states marked by the oracle is inverted, followed by an inversion of the mean 

operation, also known as the diffusion operation. Diffusion operation amplifies the 

amplitude of the marked states to increase the probability that this state will result from 

measurement performed on a vector of input qubits. (Diffusion operator is described in 
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detail by various papers [22-24]). After O(√N) operations, the probability of measuring 

the target solution approaches 1 [22]. 

Grover’s algorithm operates as shown in Fig.1. The algorithm begins with putting the 

input qubits S, representing the search space, in the equal superposition state of all 

possible minterms for the size of the problem by applying a vector of Hadamard gates. 

Then a quantum operator called Grover’s iteration, denoted by G, is repeated. After √N 

iterations of G, the solution is measured on qubits S.  The measured result is a midterm 

binary vector given to the verification algorithm. If the result is correct, then it is 

outputted as a solution. Otherwise, the algorithm is repeated. The probability of correct 

measurement is very high. 

nH 

GG  G

measure 

( )
                                                          

N

 ancilla 

bits

A

n qubits

 
Fig. 1 Diagram for Grover’s algorithm. 

The Grover iteration, whose quantum circuit is illustrated in Fig.2. G consists of four 

steps: 

1. Execution of Oracle f. 

2. Apply the first set of Hadamard gates to perform the Hadamard transform. 

3. Performs a conditional phase shift in the search space. 
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4. Apply the second set of Hadamard gates to perform the Hadamard transform. 

oracle

nH nH

 Ancilla bits

Step 1

Diffusion 

operator

Step 2 Step 3 Step 4

Inputs

Search Space

H1

 

Fig. 2 Grover iteration G. 

In step one, the oracle is applied to all the qubits of the system, including the search bit 

qubit representing the search space, the qubit stored input data, and the extra auxiliary 

qubits called ancilla qubits. After steps 2 to 4, the two Hadamard gates and the phase shift 

gates apply the diffusion operator to the qubits representing the search space. 

Like the classical oracle, a quantum oracle is a quantum circuit that implements a 

decision function f(x). However, there are the following differences. First, the inputs to 

the quantum oracle are in a superposition state of all possible binary vectors, while the 

inputs to the classical oracle are sequentially provided all binary vectors from the solution 

space. Second, in contrast to a classical oracle, an arbitrary boolean circuit, a quantum 

oracle for Grover’s algorithm must be entirely built from reversible quantum gates 

(usually using ancilla bits). Any data input and ancilla qubits that are modified during the 

computation will need to be restored to their initial constant values by a mirror inverse 

block of f(x). Since the oracle is repeated for each iteration, the data input and ancilla 
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qubits must be restored for the next iteration. A Quantum oracle designed using in a 

mirror structure is shown in Fig.3.   

f f
inverse

f

inputs

inputs
outputs

outputs

0

 

Fig. 3 The classical oracle on the left and the quantum oracle on the right. 

The original algorithm proposed by Grover is to assume a unique solution that satisfies 

the desired condition. Grover briefly considered the situation of multiple solutions and 

stated that it could be achieved by modifying the number of Grover iterations, but he did 

not provide any detailed implementation and analysis. Boyer et al. [43] expanded and 

generalized Grover’s algorithm to k-solutions [43,44]. They provided a tight analysis of 

Grover’s algorithm and proposed a new algorithm to find a solution when the number of 

solutions is more than one and unknown ahead of time. Younes et al. [44] verified the 

algorithm and observed that the algorithm only works for 1 ≤ k ≤ 3N/4, and k is the 

number of solutions. Their algorithm is shown as follows: 

1. Initialize m = 1 and set λ = 6/5. ( λ is  between 1 and 4/3) 

2. Pick an integer 0 < j <m-1 uniformly and randomly among the non-negative integers 

smaller than m. 

3. Apply j times of Grover iterations G. 
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4. Measure the register: let i be the outcome. 

5. If f [i] = 1,  then the solution is found and exits. 

6. Otherwise, set m to min(λm, √N) and go back to step 2. 

The expected time complexity of this algorithm is O(√(N/k) [43,44]. This algorithm is 

commoly for solving problem with multiple solutions. It is used in my Grover’s 

Algorithm for Generalized Ashenhurst-Curtis decomposition which will be introduced in 

Chapter 3. 
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Chapter 3 Grover’s algorithm for generalized Ashenhurst-Curtis 

decomposition 

"Grover-based Ashenhurst-Curtis Decomposition Using Quantum Language Quipper", 

Quantum Information & Computation vol. 19, pp. 35-66. February 2019. 

Yiwei. Li, Edison. Tsai, Marek Perkowski, Xiaoyu Song, 

Authors’ Contributions: 

Yiwei, Li: Conceptualization, methodology, experiment implementation, data 

collection, data analysis, and writing of the manuscript. 

Edison Tsai: Provide the idea of quantum gate implementation of partition 

operations. 

Marek Perkowski: Review of the manuscript. 

 Xiaoyu Song: Supervision and reviewed the manuscript. 
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3.1 Generalized Ashenhurst-Curtis decomposition 

Functional decomposition transforms a description of a large logic function (possibly 

incompletely specified) into a network of smaller sub-functions that are realized by 

specific gates. The decomposition converts, therefore incompletely specified functions to 

completely realized functions when realized in hardware. The function can be Boolean, 

Multi-valued, or continuous, but in this dissertation, I will be restricted to binary Boolean 

functions. The decomposition of a large function not only reduces the complexity but also 

increases the scalability and improves the reliability of the circuit implementing the 

function [1]. In some instances, it also improves the “understandability” of the function, 

because it is easier for a human to understand a network of known simple functions than 

a large function being a mapping. Therefore, functional decomposition is widely adopted 

in the implementation of cost-effective ASIC and FPGA design. The best-known variants 

of functional decomposition were created by Ashenhurst and Curtis. In addition to the 

digital circuit design, the decomposition methods find many applications in other areas, 

such as compression in databases and data privacy protection for smart grids [2-5]. The 

most important possible future application of this method is in the new area of Quantum 

Machine Learning [48-50]. In Machine Learning, the decomposition method, besides 

being used as a classifier [47], is applied to discover some hidden properties of the data 

and decompose decision rules [2], [35]. Ashenhurst-Curtis decomposition is also used to 

create decomposed structures for neural networks [45,46]. Unfortunately, the high 

computational complexity of this decomposition does not allow it to be used for large 

data that are typical for deep learning. Many attempts have been undertaken to create 

efficient data structures and algorithms to speed up the Ashenhurst-Curtis Decomposition 
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[9,10]. This dissertation presents a new problem formulation for functional 

decomposition based on partition calculus (partition algebra) [18], which enables the 

application of the quantum Grover’s search algorithm to the decomposition problem, thus 

providing a quadratic speedup with respect to the standard software algorithm. Due to the 

exclusive properties of the quantum system, like superposition, interference, and 

entanglement, Grover’s search algorithm offers quadratic speedup compared to its 

classical counterparts in terms of the number of evaluations of oracle. However, the 

efficiency of the oracle itself is also important, and this will be dealt with in this 

dissertation. 

Moreover, some extensions to Grover give better than quadratic speedup, taking into 

account certain specific properties of the problem [41]. Grover’s algorithm is also used as 

a subroutine in other new quantum algorithms that give even higher speedups. Studying 

the fundamental Grover’s algorithm for this problem can thus open the door to several 

improved approaches. Of course, these methods will become practical only in the future 

when quantum computers with many qubits become available. 

Ashenhurst-Curtis decomposition is one of the well-known decomposition methods in 

logic synthesis [9]. The Ashenhurst-Curtis decomposition of function F(X) can be written 

as 

F(X) = F(A, B, C) = H(A, G(B, C), C),                               (1) 

where A, B, and C are disjoint subsets of the set of input variables X. Functions G and H 

are called the predecessor function and the successor function, respectively. The subset B
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⋃C of input variables, on which only the predecessor function depends, is called the 

bound set, the subset A⋃C is called the free set. Subset C is the intersection of free and 

bound sets. If the set C of shared variables in decomposition is empty, then this 

decomposition is called a disjoint decomposition. Otherwise, it is a non-disjoint 

decomposition. In Ashenhurst’s formulation [6], function G has one output, while in 

Curtis’ formulation[7], function G can have more than one output but less than the 

number of variables in B⋃C. In both Ashenhurst’s and Curtis’s formulations [7], function 

H has a one-bit output. This dissertation uses a generalized form of Ashenhurst-Curtis 

decomposition illustrated in Fig.4, in which Function H can have an arbitrary number of 

outputs. Moreover, the inputs and outputs can be multi-valued. This form of 

decomposition is referred to as a generalized Ashenhurst-Curtis decomposition in this 

dissertation.  

 

Fig. 4 Diagram of the generalized Ashenhurst-Curtis decomposition of function F(x). (a) is F(x) before 
decomposition and (b) are the sub-functions after decomposition. 

The goal of Ashenhurst-Curtis decomposition is to find an optimal partition of the inputs 

set X and a predecessor function G such that the decomposition has the smallest cost, in 
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terms of the minimum total complexity of subfunctions G and H. The two primary steps 

required in the decomposition process are: partitioning input variables and computing the 

predecessor function G(B, C). Once the two significant steps are executed, the derivation 

of the successor function is straightforward. 

3.2 Functional decomposition problem formulation  

The functional decomposition problem has been studied over the years in the field of 

logic synthesis. Many solutions have been proposed, which involve several combinatorial 

tasks [13-16]. One of the popular solutions was to find the minimum multiplicity index 

for the selected bound set. This problem has been reduced to one of the following sub-

problems: minimum coloring of the incompatibility graph, compatibility graph maximum 

clique covering, compatibility graph maximum clique partitioning, and others [9]. All 

these problems can be solved with heuristic approaches or using theoretically exact 

minimum algorithms. The decomposition process is usually recursively applied to both 

the functions G and H until a network is constructed where each block can be directly 

implemented in a single logic cell, is non-decomposable, or satisfies some machine-

learning conditions. In this dissertation, I will discuss only a single level of 

decomposition. Multi-level decomposition can be executed on a hybrid computer that 

stores intermediate results in a standard memory and uses a quantum computer for every 

particular decomposition. 

Early decomposition algorithms are to compute column multiplicity on the 

decomposition charts [7]. Later, decomposition charts were replaced by cube 

representation [8]. Column multiplicity algorithms based on operations on arrays of cubes 
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were formulated [8]. Due to the size of decomposition charts and cube representations 

increasing exponentially, the previous algorithms were not feasible to decompose large 

practical data. In 1993, Lai, Pedram, and Vrudhula proposed one of the most successful 

decomposition algorithms [51]. Their general theory uses a new algorithm based on both 

binary decision diagrams, BDD and EVBDD representations, for generating the set of all 

bound variables that make the function decomposable. By constructing a BDD of the 

decomposed function, in which the bound set is on the top of the BDD, and checking the 

number of children below the cut line [51], the column multiplicity can be derived easily. 

The problem of finding an optimal free and bound set was converted into finding the best 

cut with perfect ordering [9]. The application of BDDs made it possible to develop 

decomposition algorithms for larger functions than the respective previous methods that 

used another representations of boolean functions. After that, many BDD-based 

decomposition algorithms have been proposed [56-59]. The BDD approaches perform 

well with disjoint decomposition and can be extended to non-disjoint decomposition. 

However, they have several limitations [52]: Firstly, BDD suffers from the memory 

explosion problem. In representing a Boolean function, a BDD can be large. It takes even 

more memory for multiple values and incompletely specified functions. Secondly, the 

partition of the variable needs to be specified ahead and cannot be automated as an 

integrated part of the decomposition algorithm. Thirdly, the non-disjoint decomposition 

cannot be handled easily. The decomposability needs to be analyzed by cases with an 

exponentially increasing number of shared variables. More recently, an SAT-based 

approach has been proposed [52]. The decomposability of a function is formulated as an 

SAT-solving problem using Craig interpolation [54] and functional dependency [55]. The 
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SAT-based approach naturally supports non-disjoint decomposition, and it works for 

large functions with 300 input variables, according to experimental results [52]. The 

downside of the SAT approach is the decomposed function has to be completely 

specified, and SAT expression does not support multi-valued functions. SAT approach 

will only be useful for logic synthesis applications since functions in Machine Learning 

are usually incompletely specified and with multi-valued inputs. In contrast, the 

decomposition method that I propose in this dissertation is universal, which means that it 

can be applied to entirely or incompletely specified single- or multiple-output functions. 

Łuba [16] proposed an original function representation using partitions of sets. His 

partition-based representation provides a simple way to verify if a given predecessor 

function guarantees the existence of a decomposition. The innovative idea of Łuba allows 

the invention of simple and elegant solutions to many decomposition problems based on 

partition calculus. The definitions of incompletely specified Boolean functions and set 

partitions are introduced as follows. My approach presented here can be easily extended 

to other problems formulated in partition calculus. 

Definition 1. An incompletely specified Boolean function F of n input variables and m 

output variables is defined as a mapping from a two-valued domain (0 and 1) to a three-

valued domain (0, 1 and don’t care) F: {0, 1} n → {0, 1, -}m [16]. 

Definition 2. The elements of the domain {0, 1}n of the function F are called minterms. 

A truth table is a list of minterrns with the corresponding output values of the function. In 

the case of the incompletely specified function [16], the truth table does not include 

minterms for which all outputs are "don’t care values." 
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Definition 3. Let M be the vector of minterms and Y be the vector of outputs in the truth 

table of function F. Let X be the set of input variables of F. Let A ⊆ X and m∈ M. The 

projection of minterm m with respect to set A is denoted by mA, which is called a 

projective minterm induced by set A. MA denotes the vector of all projective minterms 

mA.  

For example, a function F1 with inputs variables x1, x2, x3, and x4 is shown in Table 1. The 

vector of minterms M is <0011, 0100, 1100, 0010, 0011>, and the vector of outputs Y is 

<01, 10, 01, 00, 10>. Assume a subset of the set of input variables, A, is {x1, x2}, then the 

vector MA of projective minterms induced by A is <00, 01, 11, 00, 00>. In this paper, the 

vector of projective minterms MA is used to represent the input variables that belong to 

either the free set or the bound set.  

 

F Inputs outputs 

label x1 x2 x3 x4 y1 y2 

1 0 0 1 1 0 1 

2 0 1 0 0 1 0 

3 1 1 0 0 0 1 

4 0 0 1 0 0 0 

5 0 0 1 1 1 0 

Table 1 The truth table of incompletely specified function F1. Note that unspecified minterms are not 
present.  This property is useful, especially in Machine Learning, where we deal with functions of very 
many variables (attributes) but not that many minterms 

Some projective minterms may have identical values. For example, in Table 1, assume 

that a subset of input variables A is {x1, x2}, then MA is <00, 01, 11, 00, 00>. The 
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projected minterms 00 in positions 1, 4, and 5 are identical. A set partition representation 

is proposed and used here to reflect the identity among projective minterms. 

 Definition 4. A partition π on set S is a collection of the disjoint non-empty subsets of S 

whose set union is S, i.e., ∀(Ai, Aj) ∈ π, i ≠ j, such that Ai⋂Aj = ∅ for ⋃Ai∈π (Ai) = S 

[17]. The elements of set π are referred to as blocks of π. The blocks are distinguished 

with bar and semi-colons when a partition is written out. For example, if S = {1, 2, 3, 4, 5, 

6}, and partition π on S has blocks {1, 2}, {3, 4} and {5}, then the partition is written as 

π = {1,2̅̅ ̅̅ ;  3,4̅̅ ̅̅ ; 5̅}. 

Theorem 1. If R is an equivalence relation on the set S, then the equivalence classes form 

a partition of S. Conversely, if  is a partition of set S, then there is an equivalence 

relation on S whose equivalence classes are elements of  (blocks) [15]. 

Vector of projective minterms or outputs can be partitioned into equivalence classes by 

an equivalence relation. According to Theorem 1, equivalence classes of a relation and a 

partition are equivalent. For a vector of projective minterms induced by A, MA = <ma1, 

ma1,…, man>, if mai = maj, i ≠ j, then these two projective minterms are considered to 

belong to a single block in the partition of MA. Otherwise, they belong to different blocks. 

The partition of MA is called an input partition induced by set A and is denoted by P(MA). 

For example, consider MA is <00, 01, 11, 00, 00>, the partition of MA, P(MA) is 

{1,4, 5̅̅ ̅̅ ̅̅ ̅;  2̅;  3̅}. The same rules are applied to derive the partition of output Y of function F. 

Partition of output Y is denoted by PF. By using the partition representation of the 

function, Łuba [16] derived Theorem 2 for the “serial decomposition” which is called the 
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generalized Ashenhurst-Curtis decomposition in my terminology. Theorem 2 states a 

condition that guarantees the existence of decomposition with any given output partition 

of the predecessor function. Theorem 2 and the partition operators mentioned in Theorem 

2 are introduced as follows.        

Definition 5. Partition multiplication [17].  

If π1 and π2 are partitions on S, then, π1 • π2 is the partition on S such that, any block of π1 

• π2 is an intersection of some block from π1 and with some block from π2.   

Bπ1 • π2 (s) = Bπ1 ⋂ Bπ2 

Example: 

π1 =  {1,2,3,4̅̅ ̅̅ ̅̅ ̅̅ ̅;  5,6̅̅ ̅̅ ;  7,8,9̅̅ ̅̅ ̅̅ }, π2 =  {1,6̅̅ ̅̅ ;  2,3,4̅̅ ̅̅ ̅̅ ;  5,9̅̅ ̅̅ ;  7,8̅̅ ̅̅ } 

π1 • π2 = {1̅;  2,3,4̅̅ ̅̅ ̅̅ ;  5̅;  6̅;  7,8̅̅ ̅̅ ;  9̅} 

Definition 6. Refinement relation of partition [17].   

Given a partition π1 and π2 on set S, if for all U∈π1, there exists V∈π2, such that U⊆V, 

then we say that  π1 is a refinement of π2, and π1 is finer than π2 [25]. This relation of 

partitions is a partial order, so it is denoted by “≤”. In that case, π1 is finer than π2, which 

is written as π1 ≤ π2. 

Example: 

π1={1,2̅̅ ̅̅ ;  3,4̅̅ ̅̅ ; 5,6̅̅ ̅̅ ; 7̅}, π2 = {1,2,5,6̅̅ ̅̅ ̅̅ ̅̅ ̅;  3,4,7̅̅ ̅̅ ̅̅ } 

π1 ≤ π2 

 

Notation  
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ПG is the partition of the output of the predecessor function G. Partition P(B⋃C) is the 

partition of the bound set, and P(A⋃C) is the partition of the free set. PF is the partition 

representation of the output of function F. 

Theorem 2. [16]. There exists an Ashenhurst-Curtis decomposition of F if and only if 

there exists a partition ПG, such that 

(a)  P(B⋃C) ≤ ПG       and 

(b) P(A⋃C) · ПG ≤PF. 

   Point (a) of Theorem 2 states the input partition of predecessor function G must be finer 

than output partition ПG of predecessor function G. Point (b) of Theorem 2 states that the 

partition product of free set partition P(A⋃C) and predecessor output partition ПG  must 

be finer than output partition PF of the function F. In such a case, function F can be 

decomposed into sub-functions G and H. During the decomposition process, after a 

partition ПG that satisfies Theorem 2 has been found, the component functions G and H 

can be easily derived. For example, a truth table of function F2 is given in Table 2 

Variables X3, X4, and X5 are chosen as a bound set, while X1 and X2 are chosen as a free 

set. Assuming that an output partition of the predecessor function ПG = 

{1,3, 5,6,8,9,10,11̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;  2,4,7̅̅ ̅̅ ̅̅ } is found, each block of the partition is encoded with a binary 

string (a code of this block). For example, block {1,3, 5,6,8,9,10,11} is encoded as 0 and 

block {2,4,7} as 1 to generate a column G in Table 3a. By merging the duplicate rows in 

Table 3a Table 3b is derived, which represents the predecessor function G. By selecting 

free set inputs X1, X2 and predecessor output G as inputs, the truth table for the successor 

function H is derived and shown in Table 3.4.a. Further removing the duplicate rows, the 
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final truth table for H is created as shown in Table 3.4.b. Technically, by obtaining the 

functions G and H, the decomposition is completed. However, in some applications, these 

functions have to be converted to completely specified functions and further minimized. 

For instance, from Table 3b, a Boolean expression, G = 𝑥3 ⋅ 𝑥4̅̅ ̅  ⋅ 𝑥5̅̅ ̅ +  𝑥4 ⋅ 𝑥5  can be 

derived using a logic minimizer such as ESPRESSO [40]. Because this dissertation is 

related only to the decomposition problem, the preprocessing and postprocessing issues 

are not discussed.  

 

Table 2 The truth table of F2 

 

 
Table 3 a. Block {2,4,7} is encoded as 1, others as 0. b. Function G      
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Table 4 .a. X1, X2 and G are the inputs to function H b. Function H 

3.3 Grover algorithm for Ashenhurst-Curtis decomposition 

3.3.1 Finding optimal ПG by search with an oracle 

With the property provided by Theorem 2, an optimal ПG for decomposition can be 

found by using a search with an oracle. An oracle for decomposition is simply a decision 

function that validates a given partition ПG and produces an output depending on whether 

ПG satisfies both conditions of Theorem 2. More precisely, if decomposition exists for a 

given ПG, then a classical oracle outputs 1, otherwise, the oracle outputs 0. In this 

dissertation, ПG is defined as valid if it guarantees the existence of a decomposition. We 

propose a method to find an optimal ПG using an exhaustive search algorithm based on 

Grover’s algorithm with a corresponding quantum oracle that verifies the condition of 

Theorem 2.  We not only want to find a valid solution but also an exact optimal solution. 

The optimal solution can be found by minimizing the value of a cost function. The cost 

function is varied for different applications of functional decomposition. In Machine 

Learning, the minimum number of blocks in ПG is required, while in circuit design, the 

minimum number of gates to implement the decomposed circuits is expected.  
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Below we introduce a theoretical algorithm with a classical oracle, a quantum and 

classical hybrid equivalent. To apply a search algorithm for optimization problems, the 

oracle test should be repeated with values of a cost function compared to different 

threshold values. The flowchart of the algorithm to find the optimal ПG is presented in 

Fig.5. The search process in Fig.5 enumerates all possible candidates for the solution 

partition ПG. Each candidate in the search space is verified by the oracle. If the output of 

the oracle is 1, which means a decomposition exists, then the found partition is passed to 

the next process in the flowchart. If the oracle returns 0, then the found partition is 

discarded, and the search process will create the next partition. The block number of each 

valid partition is then compared against a threshold value Max. If the block number of 

this partition is equal or larger than Max, then it is discarded while partition enumeration 

resumes; if the block number is less than the threshold, the threshold Max is reduced by 

one and the found partition is saved on a stack of solutions. After enumerating through all 

possible partitions, the partition saved on the top of the stack is the optimal ПG, which 

guarantees the existence of the decomposition with the minimum number of blocks.  

 

Fig. 5 Flowchart for finding the optimal ПG by the exhaustive search on a classical oracle. 
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However, this exhaustive search method is not efficiently implemented with the classical 

computational model. This dissertation proposes to use a quantum search algorithm 

called Grover’s algorithm [20, 21] to accelerate the enumeration process inside the 

search. Performing an exhaustive search on an unstructured search space using classical 

computation has the complexity of O(N), where N is the number of data in the search 

space. In contrast, for Grover’s algorithm, it was proved that any search could be 

computed with the complexity of O(√𝑁) and the probability of correct solution very 

close to 1 [21]. Therefore, assuming a sufficient number of qubits, a quantum computer 

using a quantum oracle can solve the decomposition problem by exhaustive search with a 

quadratic speedup compared to a classical computer. 

3.3.2. Proposed methodology to construct quantum oracle for decomposition 

    In order to implement Grover's algorithm for finding a valid ПG, the result from 

Theorem 2 is adopted as the conditions to identify whether a given ПG guarantees the 

existence of decomposition. To construct a quantum oracle that satisfies Theorem 2, i.e., 

f(x) = (P(B⋃C) ≤ ПG) AND (P(A⋃C) · ПG ≤ PF), we must be able to represent the 

partitions and operators on partitions using the reversible circuits [37-39] constructed by 

us. Boolean logic and logic function minimization have been well-known in engineering 

for many years. Every Boolean circuit can be converted to a reversible circuit, usually 

with additional ancilla qubits. My methodology is to create a classical Boolean circuit for 

each functional block in the oracle, and next convert each of these blocks to a reversible 

circuit, usually adding ancilla qubits. By combining various reversible sub-circuits, the 

resulting circuit is next realized in quantum technology to allow superposition and 
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entanglement, which would not be possible if the circuit were realized in classical 

technology such as CMOS. 

    To apply the partition calculus [18] to create Grover’s oracle, we propose an encoding 

scheme that is general to all partition calculus problems. Each block of a partition is 

encoded as a binary vector. The partition calculus operations and relations are converted 

to boolean functions in proposed encoding. These functions are next converted to 

reversible circuits. 

 

3.3.3 Encoding scheme for the partitions  

    In the encoding scheme, the projective minterm partitions or output partitions are 

represented with a vector of binary vectors, each of a minimum code length. For 

example, given function F3 in Table 5 with a set of minterms, M = <00110, 00111, 

11001, 00100, 11001>, which M is a vector of binary vectors, each binary vector being a 

minterm. The projective vector of minterms M induced by a set of input variables A = 

{X1, X2, X3, X4}, is denoted by MA i.e. MA = <0011, 0011, 1100, 0010, 1100>.  The 

partition of MA is denoted by P(MA) = {1,2̅̅ ̅̅ ;  3,5̅̅ ̅̅ ;  4̅}, where labels 1 and 2 correspond to 

vector 0011, labels 3 and 5 correspond to vector 1100, and label 4 corresponds to vector 

0010. Projective partition P(MA) has only three distinct blocks while the bit size of the 

single vector in MA is four bits, which is larger than the minimum number of bits to 

distinguish three blocks. In order to minimize the number of bits used to represent each 

block of P(MA), partition P(MA) is encoded with a vector of binary strings. The encoding 

procedure consists of two steps. First, all minterms are arranged with numerical order 

from the truth table.  Then, each unique minterm is assigned with a binary encoding. 
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Every duplicate projective minterm is encoded with the same binary code. For example, 

the first block {1, 2} of MA is encoded as 00, block {3, 5} as 01 and block {4} as 10.  By 

NA we denote the vector of binary vectors representing the partition P(MA), NA = <00, 

00, 01, 10, 01>. The vector of binary vectors NA is converted to a single binary vector 

<0000011001>, when it represents the input partition to Grover’s based decomposition 

algorithm. 

 

F3 input 

outp

ut 

label x1 x2 x3 x4 x5 y 

1 0 0 1 1 0 0 

2 0 0 1 1 1 1 

3 1 1 0 0 1 0 

4 0 0 1 0 0 0 

5 1 1 0 0 1 1 

Table 5 The truth table of an incompletely specified function F3 

3.3.4 Representation of partition multiplication using boolean encodings 

A multiplication of two partitions can be derived by concatenating each element from 

two vectors.  For example, given two partitions P (MA) =  {1,4,5̅̅ ̅̅ ̅̅ ;  2̅;  3̅}  and P (MB) =   

{1,2̅̅ ̅̅ ;  3,4,5̅̅ ̅̅ ̅̅ }, the binary representations are NA = < 00, 01, 11, 00, 00 > and NB = < 01, 01, 
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00, 00, 00 >, respectively. Every two elements from NA and NB are concatenated in order 

to form a new element in vector form, i.e. NA·NB = < NA1NB1, NA2NB2 … NAiNBi > = 

<0001, 0101, 1100, 0000, 0000>. The reader can verify this notation by converting 

binary representation NA·NB to partition P (MA) · P (MB) = {1̅;  2̅;  3̅;  4,5̅̅ ̅̅ }.  

 

3.3.5 Testing of refinement relation with boolean function  

    A Boolean function R for testing refinement relation between two given encoded 

partitions is introduced in this section. The inputs to R are partitions P(A) and P(B), that 

both are partitions of the same set S. Function R outputs 1 if P(A) is finer than P(B), i.e., 

P(A) ≤ P(B). Otherwise, it outputs 0. According to Definition 6, if every block 

within P(A) is a subset of one block within P(B), then P(A) is finer than P(B). Since it is 

difficult to evaluate the containment relation between arbitrary two blocks within each 

partition, instead of comparing blocks for inclusion, we evaluate the relation between 

every pair of elements in both partitions P(B), and P(A). The following Theorem 3 states 

the necessary condition for the refinement relation regarding relations between each pair 

of elements. 

Theorem 3 Consider P(A) and P(B) are partitions of set S. P(A) forms equivalence 

relation RA and P(B) forms equivalence relation RB. 

If for all xi, xj ∈ S, i ≠ j, (xi, xj) ∈ RA    

⇒ (xi, xj) ∈ RB 

then P(A) ≤ P(B).  
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In other words, Partition P(A) is finer than P(B), if every pair of elements (xi, xj), 

belonging to one block of P(A), implies that this pair (xi, xj) is included in a single block 

of P(B).  

Proof 

Consider an equivalence class [x]A, by hypothesis, for any y ∈ [x]A, (x, y) ∈ RA ⇒ (x, y) ∈ 

RB, thus each equivalence class [x]A is contained in an equivalence class [x]B. According 

to Theorem 1, equivalence classes of a relation and a partition formed by this relation are 

equivalent, each block of partition is corresponding to an equivalence class in the 

equivalence relation.  So, each block of P(A) is contained in a block of P(B), by 

definition, P(A) ≤ P(B). 

    According to Theorem 3, an implementation of function R is to check all possible pairs 

(xi, xj) in P(A) and P(B) such that for every pair of elements (xi, xj), which belongs to the 

same block in P(A), it is implied that pair (xi, xj) also belongs to a single block in P(B). 

The Boolean logic implementation of R is defined as follows: R = П(EQB(xi, xj, P(A)) → 

EQB(xi, xj, P(B))), where, П denotes the product of every imply logic operator for all 

combinations of i and j. Boolean function EQB determines if elements from a given pair 

of elements (xi, xj) are both included in the same block in partition P, where P denotes 

either P(A) or P(B) in above function R. Within the encoding of partitions, if two 

projective minterms belong to the same block, they are assigned to the same code. So, 

function EQB is realized in a circuit that checks if two partition encodings are equivalent. 

The well-known Boolean implementation of equivalent function EQ is a product of all 

bitwise XNOR operations, shown in Fig.6. By substituting EQB with EQ, the function R 
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can be written as R(P(A), P(B)) = П(EQ(ai, aj) → EQ(bi, bj)). The Boolean circuit of 

R(P(A), P(B)) is shown in Fig.7, where inputs P(A) and P(B) are encoded partitions. The 

imply operator is realized with an imply gate using well-known formula a → b = 𝑎̅ + b. 

By encoding partition in binary and applying Boolean operation that realizes partition 

operation, the oracle for finding valid ПG , f(x) = ( P(B⋃C) ≤ ПG) AND (P(A⋃C)·ПG ≤ PF) 

can be implemented in a Boolean function: 

f'(x) = R(P(B⋃C), ПG) AND R(P(A⋃C)·ПG, PF).                (2) 

 

a2[n]

a2[1]

a2[0]

a1[n]

a1[1]

a1[0]

a1 = a2

=
 

Fig. 6 Circuit schematic for function EQ(a1, a2). Inputs a1 and a2 are n-bit bus each. 

a1 a2  a3 a4 a5 

P(A)   P(B)

P(A)P(B)

b1 b2  b3 b4 b5 

=

=

=

=

=

=

 
Fig. 7 The boolean circuit implementation of refinement test function R(P(A), P(B)). Inputs a1, a2, a3, a4 

and a5 and b1, b2 b3, b4, b5 are 5-bit bus each. 
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3.3.6. Oracle synthesis for decomposition problem with known free and bound sets 

 I designed two variants of oracles with different sets of inputs, Oracle 1 and Oracle 2. I 

refer to the oracle with known free set partition P(A⋃C) and bound set partition P(B⋃C) 

as Oracle 1. The oracle function f’(x) = R(P(B⋃C), ПG) AND R(P(A⋃C) · ПG, PF) is 

converted to a reversible circuit, which sets the output qubit to 1 when ПG is valid and to 

0 when ПG is not valid with given free and bound sets.  

The block diagram of the proposed quantum oracle is shown in Fig.8. The oracle 

consists of four major blocks. Blocks (1) and (2) in Fig.8, perform refinement test on two 

pairs of partitions (P(B⋃C), ПG) and (P(A⋃C) · ПG, PF). Block (3) and (4) are the inverse 

circuits, corresponding to blocks (1) and (2) to restore all the modified qubits to their 

original values which means that the ancilla and input partition qubits are restored to the 

original constants. The outputs of blocks (1) and (2) are stored in ancilla qubits i and j. 

Then, a Toffoli gate is applied on ancilla bit k controlled by i and j. If both i and j are 1, 

which means both conditions are met, ancilla bit k will be flipped. It changes the solution 

phase so that the solutions that satisfy both conditions can be marked. Because of the 

vector of Hadamard gate before the oracle; this corresponding to the quantum value -1 for 

Boolean value 1  and the quantum value 1 to the Boolean value 0. After being marked, 

the diffusion operator performs phase shift on the qubit representing ПG, such that the 

amplitudes of the solutions increase while the amplitudes of the non-solution states 

decrease in each iteration. After repeating √2𝑛/4 times of the Grover’s iteration, where 

n is the number bits to represent the search space, the ПG that meets both  conditions from 

Theorem 2 is measured as a binary vector with high probability [21]. 
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Fig. 8 Grover Oracle for finding ПG. 

The inputs of the oracle are encoded as a single binary vector: free set partition P(A⋃C), 

bound set partition P(B⋃C) and output partition P(F). For example, given a function in 

Table 5, x1, x2 are selected as A, x4, x5 as B, and x3 as C. Then P(A⋃C) is P(x1x2x3) = 

{1,2̅̅ ̅̅ ;  3,5̅̅ ̅̅ ;  4̅}, which is encoded as <0000011001>, P(B⋃C) as <0001101110> and P(F) as 

<01001>. At the beginning of the algorithm, these three binary coded partitions are set as 

the inputs to the quantum oracle and the qubits representing search space ПG are 

initialized with Hadamard gates. 
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Fig. 9 Grover iteration G including diffusion operator. 

Blocks (1) and (2) in Fig.9 that perform refinement test are both quantum circuits that 

realize function R(P(A), P(B)) = П(EQ(ai, aj) → EQ(bi, bj)). In contrast to CMOS 

circuits, quantum circuits are realized sequentially, one operation at a time. For instance, 

the function EQ(a, b) is  realized with bitwise XNOR operation followed by a logic AND 

on all the results of XNORs, shown in Fig.10. This bitwise XNOR can be realized with 

quantum gates by applying a CNOT gate followed by a NOT-gate to each corresponding 

bit one by one.  Then a n-bit control Tofolli gate is used as n-input AND gate to produce 

the product of XNORs on an ancilla bit. An example of quantum realization of EQ(ai, aj) 

→ EQ(bi, bj) is shown in Fig.10. After the outputs of EQ(ai, aj) and EQ(bi, bj) are 

computed and set on the ancillas bits, an imply gate is applied to two ancilla lines i and j, 

both initialized to 0. The imply gate is realized with a NOT gate followed by a Tofolli 

gate with a target line initialized to 1. After computing of the output, a mirror circuit is 

added to restore any modified input qubit and ancilla bit. Fig.11 shows a full quantum 

circuit in which R(P(A), P(B)) and input partitions are encoded by three projective 
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minterms, a1, a2, a3 and b1, b2, b3, respectively. The EQ operations are applied to all 

three pairs of projective minterms, the product of all results of EQ operations is the final 

output of function R. The product of EQ operations is realized with m-controlled Toffoli 

gate, where m is the number of pairs of projective minterms.   


P(A)

P(B)

1

0

0

a1[1]

a1[2]

a1[0]

a2[1]

a2[2]

a2[0]

b1[1]

b1[2]

b1[0]

b2[1]

b2[2]

b2[0]

a=(a1[2] ⊕ a2[2] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)⋅(a1[1] ⊕ a2[1] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)⋅(a1[0] ⊕ a2[0] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

 

b=(b1[2] ⊕ b2[2] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)⋅(b1[1] ⊕ b2[1] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)⋅(b1[0] ⊕ b2[0] ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

 

a̅ ⋅ b̅̅ ̅̅ ̅ = 𝑎 + b̅ = b → a = b ≤ a 

  

Fig. 10 Quantum circuit for EQ (a1, a2) → EQ (b1, b2). Operations (1), (2) and (3) are drawn in parallel to 
save space. But, in fact, they operate in sequence not in parallel. 
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Fig. 11 Quantum refinement test for partition of projective minterms with 3 elements. R = (EQ (a1, a2) → 

EQ (b1, b2))⋅ ( EQ (a2, a3) → EQ(b2, b3) ) ⋅ ( EQ (a1, a3) → EQ (b1, b3) ). 

To realize function R(P(A ⋃ C) · ПG, PF) of block (2) in Fig.10, the partition 

multiplication is required. With the proposed encoding, a partition product P(A)·P(B) is 

realized using the concatenation of the qubit vectors representing P(A) and P(B). In the 

function of block (2), one of the inputs to function R is a partition product. The quantum 

circuit implementing R applies bitwise XNOR to both input qubits.  A bitwise XNOR is 

applied to a product of partitions P(A)·P(B) as shown in Fig.12.   

 
Fig. 12 bitwise XNOR on the concatenation of P(A) and P(C). The mirror circuit is not shown. 

We envision the Grover’s algorithm for decomposition based on Oracle 1 operating on a 

hybrid computing system [32, 33], with the quantum computer as a coprocessor that is 

controlled by a classical computer. As shown in Fig.13, the quantum coprocessor 

performs only quantum computing, such as Grover’s algorithm. The classical computer 
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performs operations interacting with a quantum unit, such as generating input partitions 

A, B, and C for the quantum processor and verifying the result ПG measured in the 

quantum processor. An exhaustive search algorithm for finding a valid ПG can be 

implemented in a hybrid system. The classical computer generates an arbitrary free set 

and bound set for the input partitions. Then, the input partitions are set to the input qubits 

of the quantum processor.  The quantum processor performs Grover’s algorithm with 

Oracle 1. After a valid ПG is found by Grover’s algorithm, it is measured and converted 

back to classical bits. The classical computer then verifies the result ПG with the software 

implementation of boolean oracle function f(x). If the ПG is valid, then it is saved as a 

solution.  If the ПG is invalid, then the same set of input partitions would be sent to the 

quantum processor again. In this variant, by iterating through all possible input partitions, 

a relatively good result can be found, but not necessarily the exact optimal solution. In 

the next section we will present another variant that finds the exact optimal solution. 

Quantum 

processor

Grover Search

 for ПG

 

Verify&Elvaluate  

ПG

Measure 

result

Generate 

classical 

input

Classical 

computer

ПG

A,B and C 

Partition

 
Fig. 13 Classical and quantum hybrid system for decomposition. 
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3.3.7 Oracle synthesis for the decomposition problem with minimum number of blocks 

    A minimum of number of blocks in ПG is desired in both machine learning and digital 

circuit design applications. In order to find an exact optimal solution, which minimizes 

the number of blocks in ПG, Oracle 1 is modified such that it not only validates ПG, but 

also checks whether the number of blocks in the derived ПG is smaller than a given 

threshold value. If a derived partition doesn’t satisfy this condition, it would not be 

marked as a solution. A proposed Oracle 2 is shown in Fig.14. A Partition Counter and a 

Threshold Checker are added to Oracle 1,. The role of the counter is to count the number 

of distinct encodings in the derived partition ПG. Then, a threshold checker compares the 

number of blocks from the counter against a threshold Max, which is given as an input to 

the oracle. Both outputs of the two refinement test blocks and the threshold checker must 

be 1 to set the output of the oracle to 1.    
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0

 n qubits

Count 
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0

0

Max
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Fig. 14 Partition Counter and Threshold Checker are added, such that Oracle 2 tests both validities of the 

derived partition and the number of blocks. 

A Partition Counter consists of a series of n-controlled Toffoli gates and control 

increment gates with n target bits and one control bit, where n is the size of the counter. 

When the control increment gate is applied, the binary value represented in the target bits 
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is incremented by one if the control bit value is 1. Otherwise, the value stays unchanged. 

Fig.15 presents a Partition Counter and a Threshold Checker for a ПG with three 

minterms. In a Partition Counter, two vectors of ancilla qubits x and y are needed. The 

size of vector x is the number of minterms in the input partition and size of vector y is the 

number of possible blocks. Each bit in ancilla vectors y corresponds to one partition 

encoding, if any partition coding appears in the input partition, the corresponding qubit in 

vector y is set to 1. By counting the number of 1’s in vector y using control increment 

gates, the total number of blocks is counted. The Threshold Checker is just a quantum 

binary comparator comparing the counter value against the given threshold Max, the 

output bit is set to 1 when the counter value is smaller than Max, and otherwise, it is set 

to 0. The quantum control increment gate and the binary comparator are two commonly 

used quantum circuits proposed in various studies [25-27].  

Fig. 15 Quantum Partition Counter and Threshold Checker. 

The exhaustive search algorithm illustrated in Fig.15 can be implemented with 

Grover’s algorithm using Oracle 2 running on a hybrid computing system. The classical 

computer generated an arbitrary bound set and a threshold Max as the inputs to the 

quantum processor running Grover’s algorithm. Each Grover’s algorithm run returns a 

valid ПG with block number smaller than the threshold value.  A program running on the 
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classical computer measures and verifies ПG. If it is valid, then the threshold Max is 

reduced by 1. The Grover’s algorithm is run with the updated Max value until the 

returned ПG is no longer valid. Since the result measurement is probabilistic, even with 

very high probability to be correct, we apply the policy that if there are 10 invalid results 

consecutively, which means there are no longer valid ПG meeting the threshold 

requirement, then the most recent ПG is considered the optimal solution for the given 

bound set. The classical computer program enumerates to next bound set and resets the 

threshold Max value. In principle, by enumerating through all possible bound sets, the 

exact optimal solution is found. In the next section we will focus on Quipper which is a 

high-level quantum programming language that supports hybrid quantum and classical 

computing used by us to implement the above algorithms. 

The original algorithm proposed by Grover is to assume a unique solution that satisfies 

the desired condition. Grover briefly considered the situation of multiple solutions and 

stated that it can be achieved by modifying the number of Grover iterations, but he did 

not provide any detailed implementation and analysis. Boyer et al. [43] expanded and 

generalized Grover’s algorithm to k-solutions [43,44]. They provided a tight analysis of 

Grover’s algorithm and proposed a new algorithm to find a solution in cases the number 

of solutions is more than one and is unknown ahead of time. Younes et al. [44] verified 

the algorithm and observed that the algorithm only works for 1 ≤ k ≤ 3N/4 and when k is 

the number of solutions. Their algorithm is shown as follows: 

1. Initialize m = 1 and set λ = 6/5. ( λ is  between 1 and 4/3) 
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2. Pick an integer 0 < j <m-1 uniformly and randomly among the non-negative integers 

smaller than m. 

3. Apply j times of Grover iterations G. 

4. Measure the register: let i be the outcome. 

5. If f [i] = 1,  then the solution is found and exits. 

6. Otherwise, set m to min(λm, √N) and go back to step 2. 

The expected time complexity of this algorithm is O(√(N/k) [43,44]. The searching 

algorithm I proposed for finding optimal ПG for decomposition will have multiple 

solutions. I employed this technique to extend Grover’s algorithm for multiple solutions 

which is implemented in a hybrid system composed of both standard and quantum 

computers. 

3.4 Quipper and circuit modeling 

    Quipper is a functional programming language based on Haskell for quantum 

computing [28-30]. Quipper allows specifying quantum circuits by describing them in a 

simple programming style. It provides the capability to synthesize and simulate the 

circuits. Quipper follows Knill’s QRAM model [35] for quantum computation, in which 

quantum computation is performed by a collaboration of classical and quantum 

processors. The classical processor performs classical computations such as control, 

result verification and loops, while the quantum processor is specialized in performing 

unitary operations and measurements. In Quipper, classical and quantum data can co-
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exist. Classical wires and gates can be connected with pure quantum gates that provide 

data for input. A quantum bit can be turned into a classical bit with an operation called 

measurement.      

    Some quantum programming languages, such as QASM [34] operate by describing 

quantum algorithms with gate-by-gate instructions. However, we found that this approach 

is not very efficient when it comes to implementing larger-scale quantum algorithms such 

as Grover’s algorithm, that requires a large amount of repetition of circuits. The quantum 

algorithms we introduced are described at a relatively high conceptual level. Many tasks 

in the algorithms are to perform manipulations at the level of entire sub-circuits, rather 

than individual gates. For example, the three circuits in Fig.10, that realize function EQ 

are identical. The only differences among them are the inputs. In Quipper, qubits are held 

in variables, and gates are applied one at a time [25].  Subroutines can be used to group 

gate-level operations. We find this property to be very useful. Quipper offers an 

abstraction that a quantum operation is a function. The inputs of the function are some 

quantum data. The function performs quantum operations on them and then outputs the 

changed quantum data. Block structure is another useful feature offered by Quipper. 

Functions that generate circuits can be reused as subroutines to generate larger circuits. A 

Quipper code implementing a single comparator of two pairs of minterms is shown in 

Fig.16. 
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Fig. 16 Quipper code for a block structure and an example shows calling the subroutine to construct a 
block of circuits. 

The subroutine in Fig.16 is called EQ, the arguments to the subroutine are qubits and 

parameters. Argument piG, pbc, ancilla_piG, ancilla_pbc and equal1 define the qubits 

for this operation. Arguments pair1, pair2 define the labels of the minterms pairs in piG 

and pbc with bit lengths of len1 and len2, respectively. The circuit in Fig.17 is 

constructed by calling the subroutine EQ. In the oracles that we proposed, all the possible 

pairs of minterms are compared. By using circuits generating subroutine and auto-

generate arguments, a large scale quantum circuit can be described with relatively small 

amount of code. Reusing block structures also reduces the possibility of human mistake.   
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Fig. 17 Equivalence test circuit is constructed by calling the subroutine EQ. 

Furthermore, Quipper provides a for loop and recursion to describe repetitive circuits. 

For loop can only be used to repeat the same operations multiple times without any 

modification to the operations in each iteration. An example of using for loop to repeat 

oracle and diffusion operation in Grover’s algorithm is shown in Fig.18. The subroutine 

that constructs the oracle and diffusion operation repeats n times, where n is a parameter 

set by the user.  
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Fig. 18 Use for loop to describe Grover iterations. 

Recursion is used to describe a repetitive circuit with modification in each iteration such 

as changing the control or target bits of operations. An example of using recursion in 

describing a parameterized control counter is shown in Fig.19. The control bits of each 

repetitive Toffoli gate and the variable size are decremented by 1 in each recursive call 

C_counter until size is less than 1. Since the number of times of recursion is given as an 

argument, the size of the counter can be customized by the user through argument size. 

 

C_counter:: Int -> [Qubit] -> Qubit ->  Circ Qubit 

C_counter size cnt ctrl 

    | size < 1 = return ctrl 

    | otherwise = do 

  qnot_at(cnt!!(size-1))`controlled`(ctrl,(take   
(size-1) $cnt))  

    C_counter (size-1) cnt ctrl   

C_counter 4 cnt control 
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Fig. 19 An example of using recursion to describe a parameterized control counter. 

The Quipper compiler synthesizes the circuit to either a schematic of the circuit or a 

file with the circuit described gate by gate. Also, the circuit can be simulated using a 

function call, run_generic in Quipper. The input of the run_generic is a function that 

constructs the whole circuit, and the outputs are the results of the measurement from the 

quantum circuit. This input/ouput interface in Quipper is the same as a real interaction 

between a classical computer and a quantum computer. Quipper is embedded in Haskell. 

Most of the functions in Haskell can be used in Quipper. So, all the computing tasks on 

the classical computer can be written using Haskell, such as: modification of the input to 

the quantum computer, control of the quantum computer, and verification of the results 

measured from a quantum computer. With this feature, the hybrid-system decomposition 

algorithm we proposed can be implemented in a unified language Quipper/Haskell and 

then can be simulated.  

3.5.  Resource analysis of oracle and algorithm simulation via Quipper   

3.5.1 Resource analysis by Quipper  

We implement the hybrid quantum-classical algorithm using Oracle 1 and Oracle 2 in 

Quipper, taking advantage of all the features provided by the language. By re-using 

circuit-constructing block we are able to describe the circuits for the algorithm 
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hierarchically.  For example, a circuit-constructing block is used to describe subcircuits 

like the equivalence gate EQ, the single-bit binary comparator and the corresponding 

inverse circuits. The encoded free set and bound set data can be passed into the 

constructing block as multiple qubits data. The integer parameters are passed in as the 

index to select the particular minterm the quantum gates will be applied to. A series of 

quantum operations are applied to multiple qubits data instead of a single qubit. Other 

features like “for loop” are used to repeat the Grover loop, while recursion is used to 

describe adjustable circuits like the parameterized counter in Fig.19. We model the 

quantum circuit for the algorithms with both Oracle 1 and 2, taking input functions with 

3, 4, 5, and 6 minterms. The process of customizing the Oracle for functions with a 

different number of minterms is not fully automated yet, but in the future, it is achievable 

by creating more parameter generation functions using Haskell. The circuit for the whole 

algorithm, including oracles and diffusion operation, was generated using the Quipper 

compiler. Quipper is equipped with a “print circuit” operation, which allows to generate 

the schematic of the circuit. Since the circuit with full iterations is large,  in Fig.20 we 

only demonstrate one Grover’s iteration circuit printed by Quipper. 

 

Fig. 20 A schematic of quantum circuit implementing one Grover’s iteration for decomposition of function 
with three minterms generated by Quipper. 
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A Quipper program is basically a description of the quantum circuit. Quipper provides 

the function for logical resource estimation, which is achieved by counting the number of 

gates in the described circuit. Tables 6 and 8 show the total numbers of qubits used in the 

algorithm with Oracles 1 and 2. Compared to Oracle 1, Oracle 2 has extra blocks for 

partition counting and threshold checking. Since we restore all the ancilla bits back to 

constants during each operation, ancilla bits can be re-used by the extra blocks in Oracle 

2. Thus, Oracle 2 requires only a few more qubits for the threshold input. Tables 7 and 9 

present the gate counts for circuits that use Oracle 1 and Oracle 2, respectively.  Oracle 2 

has an average of 12% more gates compared to Oracle 1 due to the extra counter and 

comparator blocks, since majority of the gates are parts of the refinement test block.   

 

 

 
Number 

of 

minterm 

 

Numbers of Data 

Qubits  Ancilia 

Qubits 

Total 

Qubits 

Inputs outputs 

ПG
 

 

3 15 6 6 13 40 

4 20 8 8 17 53 

5 20 10 10 22 62 

6 24 12 12 31 79 

Table 6 Numbers of qubits used to implement the Grover’s algorithm using Oracle 1 
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counts 

3 318 260 935 25 1513 

4 484 396 1416 28 2296 

5 856 760 2471 34 4087 

6 1060 1160 3503 40 5723 

Table 7 Numbers and types of quantum gates used to implement the Grover’s algorithm using Oracle 1. 
We convert all the n-bits Toffoli gates to 3 by 3 CCNOT gate and 1 X gate with ancilas  for gates count in 
the table 

 
Number 

of 

minterms 

 

Data Qubits   

Ancilia 

Qubits 

Total 

Qubits Inputs outputs 

ПG
 

 

Max 

3 15 6 6 2 13 42 

4 20 8 8 2 17 55 

5 20 10 10 3 22 65 

6 24 12 12 3 29 82 

Table 8 Numbers of qubits used to implement the Grover’s algorithm using Oracle 2 

 

Number 

of 

minterms 

 

Quantum gate counts for one Grover's iteration 

NOT CNOT Toffoli Hadamard 

Total 

gate 

counts 

3 318 272 1154 25 1769 

4 484 412 1561 28 2485 

5 866 868 2832 34 4600 

6 1067 1260 4063 40 6430 

Table 9 Number and types of quantum gates used to implement the Grover’s algorithm using Oracle 2 
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3.5.2 Simulation with Quipper  

We verified both quantum oracles by running a simulation on the oracle circuit with 

the input ПG that enumerates all possible candidates. Then the measured results from the 

quantum circuit were compared with the results from a software implementation of the 

boolean oracle function f(x), confirming that it is correctly implemented. We 

implemented two versions of the algorithm. The algorithm which finds a valid ПG  using 

Oracle 1 is called Algorithm 1. The algorithm that finds the valid ПG with a minimum 

number of blocks using Oracle 2 is called  Algorithm 2. To prove the correctness of the 

entire hybrid system algorithm, both algorithms are simulated with a set of test functions 

of 3, 4 and 5 minterms and the results were verified by the software implementation of 

the oracle function.    

   Please note that a function that is decomposed might have multiple solutions for a 

valid decomposition. With an unknown number of solutions, the number of iterations is 

unknown ahead.  We implemented the algorithm proposed by Boyer et al [43] with a Perl 

script. The tasks of the script include: a) generating a random j, b) calculating m in the 

algorithm, c) modifying the number of iterations in the Quipper code, d) recompiling 

Quipper code, e) executing Grover algorithm using Quipper simulator.  We ran the 

Algorithm 2 multiple times for the test functions with 3, 4, and 5 minterms, and we 

recorded the average numbers of iterations needed to find the correct solution. The 

number k of solutions for a valid decomposition is unknown for a given function, the 

strategy of Boyer et al’s algorithm is to randomly attempt some numbers of iterations and 

narrow down the range of iterations. According to  Boyer et al.[43], the expected time of 

their algorithm is O(√(N/k). Since the number of solutions k is unknown for the test set 
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functions, the average number of iterations to achieve a correct solution shown in Table 

10 is less than √N. According to Younes in [44], Boyer et al’s approach to Grover’s 

algorithm for an unknown solution was analyzed, and the algorithm works for k < 3/4N. 

In Algorithm 2, the threshold of the block count is part of the inputs, by setting the initial 

threshold close to the lower bound, the numbers of the solution are reduced, which 

guarantees satisfying the constraint of k < 3/4N.   

 
Number 

of 

minterm

s 

Average 

number of 

Iterations 

Search 

space N 
√𝑵

𝟒
 

Number 

of runs 

Average 

Simulati

on Time  

3 5 26 6.2 50 84 s 

4 11 28 12.5 50 33 min 

5 20 210 25 10 27 hours 

Table 10 Simulation results for Algorithm 2 with single threshold value 

 

         Because all the minterms of a function are encoded and stored in the Qubits, the 

algorithm requires many qubits for a function with many minterms and for larger 

functions it is beyond the limit that Quipper’s simulator can simulate. For the functions 

beyond 5 minterms, we are able to construct the circuit but we are not able to simulate it. 

Quipper’s simulator is not sufficient for simulating large quantum circuits. We can only 

simulate the Algorithm2 up to 5 minterms, which requires 65 qubits, on a desktop 

computer. The reason we can simulate  65 qubits is that there are only 22 qubits that are 

entangled and the remaining qubits are ancillas that depend deterministically on those 22 

qubits. Then the simulator has only to keep track of 22 base vectors of the Hilbert space 
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instead of 265 base states. From this case, we also can learn that Quipper is more efficient 

in simulating circuits with relatively small numbers of entangled qubits but allows a large 

number of qubits that are only partially entangled. For the quantum oracle designed for 

six minterms function, there are 37 entangled qubits out of 82 qubits. We are not able to 

simulate this case on a desktop computer.  Quipper simulator is not designed for 

simulating large quantum circuits efficiently. It does not support parallel computing or 

utilize GPU. It is hoped that in the future, larger circuits will be simulated on cluster 

computers with external simulators that could take the circuit description generated by 

Quipper or another quantum programming language. 

  Known exact decomposition algorithms are based on constructing trial partitions of the 

set of variables and then verifying the decomposability of the functions using the 

selecting set of inputs. To find the “exact” decomposition minimizing the overall cost of 

the realization of a given function appears to be very difficult to be solved exhaustively. 

Therefore, exact decomposition is usually refined to functions of a few variables. Most 

previous efforts to find exact decomposition restrict the decomposition to be a particular 

type, such as disjoint decomposition.  For example, Bertacco and Damiani proposed an 

exact decomposition method that only works for a special type of decomposition. The 

decomposed sub-functions are disjoint, i.e., there is no shared input to the sub-functions. 

And the operations in the sub-function only can be one of the following operations: OR, 

NOR, XOR, XNOR [53].  The heuristic methods, such as the SAT-based approach [52] 

and BDD-based heuristic approach [57] are used for a more general form of 

decomposition, which does not guarantee a solution, moreover, an exact solution. With 

the problem formulation, each projective minterm and output are represented with a 
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partition. So the inputs of the decomposed function could be multi-valued. My exhaustive 

search method supports the general form of Ashenhurst-Curtis decomposition, which can 

have applications in both machine learning and logic synthesis. Grover’s quantum 

algorithm provides a quadratic speedup for my search-based method. In addition, 

compared to an algorithm running on a classical computer which requires program 

memory, data memory, and cache for computing, my quantum algorithm requires only: 

(1) qubits to hold the information of the function, (2) qubits to represent the solution, and 

(3) ancilla qubits for intermediate values. We can approximate the size of the oracle for 

the larger size function since the oracle is constructed from multiple reversible circuit 

blocks, which are scalable. Table 11 demonstrates the estimated size of the oracle to 

decompose the benchmark functions. Monk1 is a machine learning benchmark. It is a 

well-known six-attribute classification problem with the 4-valued attributes. Functions 

Apex5, alu2, and the rest of the functions in Table 11 are from the logic synthesis 

benchmark IWLS93. A heuristic SAT-based decomposition algorithm uses 50Mb to 

200Mb of memory [52] to decompose a function with 40 to 300 inputs, while my oracle 

only needs 26994 qubits for a function with 117 inputs. A Quantum computer will take 

much less memory (qubits). Recently, a broad wave of ambitious industry-led research in 

quantum computing is driven by D-Wave Systems and four of the tech giants Google, 

IBM, Microsoft, and Intel. These companies achieved relatively steady progress in the 

development and commercialization of the quantum computer. D-Wave quantum 

computers have gone from 28 qubits in 2007 to more than 2,000 in their latest 2000Q TM 

System machine [62]. We believe this speed of progress will allow 10,000 qubits 
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computer in a predictable future, which will make the algorithm implementation 

practical.   

 

 Inputs Outputs Minterm Qubits for 

oracle 

Monk1 12 1 128 
2048 

Apex5  117 88 1227 
26994 

alu2 10 6 261 
6003 

f51m 8 8 76 
1672 

lal 21 16 65 
1235 

cmb 16 4 54 918 

Table 11 Estimation of Qubits required to construct Oracle for benchmark functions 

3.6 Conclusion 

Functional decomposition is a hard problem that belongs to the class of NP-hard 

problems [16, 35]. We propose a quantum-based algorithm for a general form of 

decomposition, the generalized Ashenhurst-Curtis decomposition. The algorithm takes 

advantage of the quadratic speedup achieved by Grover’s search algorithm. In contrast to 

all approaches to generalized Ashenhurst-Curtis decomposition, this method guarantees 

an exact minimum solution, providing a sufficient number of qubits in the quantum 

computer. The problem is solved by implementing a quantum oracle, which is a non-

trivial problem, not solved in classical logic designs and unique in the area of designing 

quantum oracles. The method to build this oracle differs from all those published 

oracles[41, 61]. We presented a systematic methodology for the design and construction 

of quantum oracles for finding the minimum-cost decomposition. My approach uses 
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partitions to represent the projective minterms and the output of the function. A Boolean 

logic implementation of partition operators was proposed — it is based on the encoding 

functions and data and then converting to quantum reversible circuits. Tests of the 

refinement relation were used to implement the Oracle. It is the first time that partition 

calculus is considered for constructing a quantum oracle for Grover’s Algorithm. We 

implemented Grover's algorithm with two variants of oracles for decomposition using the 

quantum language Quipper. The decomposition oracles were synthesized and verified for 

various circuit instances and qubit sizes through simulation. 

The algorithm given here is the first proposed method for functional decomposition 

that uses a quantum algorithm. Besides Ashenhurst-Curtis’ structure, a Boolean or 

multiple-valued function can be decomposed into other structures based on the relation 

between the decomposed sub-functions. My unified approach of constructing quantum 

oracles can be extended to several other decomposition problems with different 

structures, such as parallel decomposition [16] and generalized bi-decomposition [36], 

because all these decompositions can be formulated using only the two operations: the 

partition product and the refinement check. 
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Chapter 4 Quantum hybrid graph coloring algorithm for finding column 

multiplicity 

We discover some disadvantages of using Grover's algorithm for some problems. Even 

with its quadratic speed up, the cases that the search space is very large are not realistic to 

be solved even with future quantum computers of many qubits. For example, in the direct 

implementation of graph coloring for Grover's algorithm, the search space size grows 

exponentially, so the standard graph coloring algorithm presented previously in section 

Chapter 3 is not feasible for a problem with a large number of nodes. The general idea is 

that instead of relying on one quantum search for large data, one should use a quantum 

computer as an accelerator to solve some partially smaller search problems.  This is a 

tendency that one can observe in the newest published quantum algorithms.  The future is 

in a hybrid “quantum accelerator” approach. Here in Chapter 4, I will propose a hybrid 

algorithm based on Grover's search for graph coloring, which is more effective and 

efficient when applied to those graphs that are typical for Ashenhurst Curtis 

Decomposition. Instead of using Grover for the entire decomposition problem, a 

combined heuristic classical and quantum algorithm is used to decompose the global 

search into multiple local searches so that the number of qubits for each Grover sub-

problem would be much smaller. This is a standard approach in recent research - to create 

hybrid rather than pure quantum algorithms. In addition, let us observe that most of the 

quantum algorithms developed based on Grover's algorithm currently don't have a 

systematic way to design an Oracle for a problem with a given size. Some approaches 

just proposed a matrix for the Oracle and then used decomposition algorithms to 

decompose it into a sequence of primitive quantum gates. In contrast, I created the oracle 
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using well-known quantum gates and functional blocks. To achieve the goal of scalability, 

one has to pay for the prize of extra ancilla bits.  

Finding the Column Multiplicity for a chosen bound set is a crucial step for creating the 

Functional Decomposer program. In addition, a high percentage of the run time of a 

Functional Decomposer is spent on the Column Minimization part of Decomposition, so 

we choose Column Minimization as a candidate to be speeded up by the quantum 

algorithm. There are four methods to find Column Multiplicity in Functional 

Decomposition, Set Covering, Graph Coloring Clique Partitioning, and Clique Covering. 

In this dissertation, I will only focus on the graph coloring approach. The graph here is 

represented as an Incompatibility Graph. Therefore, the nodes that do not have a common 

edge can be colored with the same color. Graph Coloring for Ashenhurst-Curtis 

Decomposition was introduced by Muzio and Wesselkamper [92] and Perkowski [93]. 

Later, more approaches used the “Graph Coloring Approach” for more general 

decomposition problems such as information systems and machine learning [50]. 

4.1 Graph coloring and related work 

The graph coloring problem is one of the most well-known combinatorial optimization 

problems. Graph colorings can be used to represent a mathematical model of various 

resource assignments, such as timetabling and scheduling, register allocation, and routing. 

We consider a non-oriented graph G = (V, E), with a set V of n vertices and a set E of m 

edges. Given an integer k, a k-coloring c is a function that assigns to each vertex v of the 

graph an integer c(v) chosen in set {1,2, ...,k} (the set of colors), all vertices colored the 

same defining a "color class". A k-coloring c is a proper coloring if any two adjacent 
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vertices of G have assigned different colors. The chromatic number c(G) of a given graph 

G is the smallest integer k for which G is k colorable. A proper k-coloring such that k = 

c(G) is named an optimal coloring. The graph coloring problem is finding an optimal 

coloring of a given graph. Graph coloring problems can be defined more formally as 

follows:  

Definition 4.1 

G = (V, E) be a graph, consisting of a set of n vertices V and E is a set of paired vertices. 

Given such a graph, the graph coloring problem seeks to assign each vertex v ∈ V, an 

integer c(v) ∈ {1,2, . . . k} such that: 

• E = {{vi, vj} | vi ≠ vj} 

• c(v) c(u) ∀ {v, u}∈ E; and 

• k is minimal. 

Classically, proper colorings can be generated using a greedy heuristic algorithm. This 

method involves assigning a color to each vertex in a predetermined order, either 

randomly or based on a specific criterion. At each step, the algorithm assigns the smallest 

possible color number to the current vertex that does not conflict with the colors already 

assigned to other vertices. More efficient greedy heuristics, such as DSATUR[87] and 

Recursive Largest First (RLF)[86], use more refined rules to determine the next vertex to 

color. While greedy algorithms are generally fast, they often require more colors than the 

chromatic number to color a graph. Better results can be achieved using more powerful 
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heuristics, such as local search and evolutionary algorithms. Local search approaches, 

such as simulated annealing and tabu search, have also been applied to the graph coloring 

problem. These methods involve gradually improving a candidate solution through local 

transformations. Population-based approaches, like memetic algorithms and quantum 

annealing, represent another family of heuristics for coloring. Finally, the latest approach, 

based on independent set extraction and progressive coloring, has proven to be effective 

for coloring very large graphs. It can be difficult to find a proper k-coloring for a large 

graph (e.g., with 1000 or more vertices) that is close to the chromatic number k. One 

approach to solving this problem is to use the "reduce and solve" principle, which 

involves a preprocessing phase followed by a coloring phase. During the preprocessing 

phase, independent sets are identified and removed from the original graph to create a 

reduced subgraph (called the "residual" graph). The coloring phase then determines the 

proper coloring for the residual graph. Because the residual graph is smaller in size, it is 

expected to be easier to color than the original graph. The extracted independent sets can 

then be treated as new color classes, with each set being assigned a new color. The 

coloring of the residual graph and the extracted independent sets together provide a 

proper coloring for the original graph. 

I propose here a hybrid quantum algorithm for graph coloring that will reduce the graph 

in each step of the search and backtrack to achieve the final sub-optimal coloring. The 

distinct innovative advantage of my algorithm is that we can prove that it provides an 

exact solution for specific types of graphs. Moreover, it was found experimentally that 
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these graphs are more common in Ashenhurst and Curtis Decompositions than in 

randomly generated graphs.   

4.2 Graph coloring based on domination covering 

Definition 4.2 A node "A" in an incompatibility graph covers some other node "B" in the 

graph if all the following are satisfied: 

1) Node "A" and node "B" have no common edge. 

2) Node "A" has edges with all the nodes that node "B" has edges 

with. 

3) Node "A" has at least one more edge than node "B". 

We call this relation node A dominates node B. When two nodes satisfy the above 

relation, then both the nodes can be colored with the same color. 

For example, in Fig. 21, node A dominates node E. 

 

Fig. 21 Demonstration of node A cover node E. 

B C D

A

E F G
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Theorem 4.1 If any node "A" in a graph dominates any other node "B" in the graph, node 

"B" can be removed from the graph. In a domination relation, any one of the nodes "A" 

or "B" can be removed. In Fig.22, node E can be removed. 

 

Fig. 22 Demonstration of E node E is removed from the graph of Figure 21, together with all adjacent 
edges. 

Definition 4.3 If conditions 1) and 2) for coverings are satisfied and node "A" has the 

same number of edges as node "B", then it is called a pseudo-domination. 

Definition 4.4 A Complete graph is one in which all pairs of vertices are connected. 

Definition 4.5 A non-reducible graph is a graph that is not complete and has no 

domination or pseudo-dominated node(s). 

Theorem 4.2 If a graph is reducible and can be reduced to a complete graph by step-by-

step removing all its dominated and pseudo-dominated nodes, then the proposed 

algorithm can find the coloring with the minimum number of colors (the exact coloring). 

Algorithm 4.1 

B C D

A

F G
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An example is shown in Algorithm 1. Assume there is a subroutine Find_domination () 

that can return a random pair of nodes in which one dominates the other. The first step, 

Find_domination () is called on the full graph (clique). In this case, it is a non-reducible 

graph, so a random node 1 is removed from the graph and is labeled as "Random". After 

node 1 is removed, three nodes with a domination relation appear. Node 4 dominates 

node 2 and 6. Find_domination () will return any one of them. In this case, node 6 is 

return and get removed from the graph. And a pair of nodes (6, 4) is recorded and labeled 

as "Domination". The same steps are repeated until there is only a clique left, and record 
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each node of the clique as single node and labeled as "domination". Then all the 

domination pairs of nodes that are dominated by the same node are merged into the same 

group. Lastly, the nodes are merged and are removed randomly into the existing group by 

checking if any neighbor nodes are in each group, if not, then add the node into that 

group. For example, the randomly removed node 1 has neighbor nodes 2, 7, and 6, so it 

can only be added to group {3,5}. Lastly, each group of nodes is assigned a unique color. 

The domination Based Algorithm DOM finds the exact coloring with the minimum 

number of colors for a non-cyclic graph that can be reduced to a complete graph through 

the successive removal of all dominated and pseudo-dominated nodes. For cyclic graphs, 

while we do not have proof of optimality, Algorithm DOM still finds a good coloring if 

only a few cyclic graphs were consecutively created in the process. The number of colors 

that is different from the exact solution can be estimated by the number of nodes that 

were randomly removed. 
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Fig. 23 Example demonstration of Graph coloring algorithm based on domination. 

4.3 Quantum oracle for finding the domination pairs 

The bottleneck of the above algorithm is the subroutine to find the node with a 

domination relation. We have designed an oracle for Grover's algorithm to locate the 

dominant node, which will be accelerated by Grover's algorithm. 

First step to design the Oracle for the algorithm is to represent the input. For a graph with 

N nodes, each node is encoded with a N-bit binary string. Each bit represents the 

connectivity to other nodes. For example, in Fig.24, node A is encoded as <0111000> , 

shown in Table 4.1. I select this representation because it is easier to verify/determine 

domination. 
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Fig. 24 Example graph. 
 

A B C D E F G 

A 0 1 1 1 0 0 0 

B 1 0 0 0 1 0 0 

C 1 0 0 0 1 1 0 

D 1 0 0 0 0 1 1 

E 0 1 1 0 0 0 0 

F 0 1 1 1 0 0 1 

G 0 0 0 1 0 1 0 

Table 12 Table. 4.1. Table for encoding of a graph in Fig. 24. 

If node A pseudo-dominates node B, then node A connects to all the nodes that node B 

connects to. The operation to verify for the pseudo-domination can be achieved by 

bitwise imply. If bi → ai = ai+ for each bit, then node A pseudo dominates node B. 

A block diagram for the oracle of finding pseudo dominates pair is shown in Fig.25. 

Because the encoding bit size N for each node is large (N is the number of nodes), instead 

of directly performing a search on the inputs, the Grover search is performed on an index 

B C D

A

E F G
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with the size of log2(N). Therefore, a quantum multiplexer is needed to convert the index 

to the actual value of the inputs. After the domination check, a block of an inequality 

comparator is used to make sure that the selected two nodes are not identical. Since the 

number of nodes N might not be a power of 2, some padding values need to be added to 

the construction method for the multiplexer. The last two blocks are to invalidate the 

output if the padding is selected. 

 

Fig. 25 Block diagram for the oracle. 

4.4 Quantum counting 

The oracle for finding domination has a very high chance of having multiple solutions. 

To estimate the correct number of iterations, quantum counting [22] is needed. The 

quantum counting algorithm calculates the number of solutions of a given Grover 

algorithm. This algorithm combines a quantum search and a quantum phase estimation. 

The central intuition applicable to quantum counting is to use the quantum phase 
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estimation algorithm to find an eigenvalue of Grover’s search iteration. An iteration of 

Grover's algorithm rotates the state vector by θ in the |ω⟩, |s′⟩ basis. The percentage 

number of solutions in the search space affects the difference between |s⟩ and |s′⟩. For 

example, if there are not many solutions, |s⟩ will be very close to |s′⟩ and θ will be very 

small. The eigenvalues of the Grover iterator can be extracted using quantum phase 

estimation to estimate the number of solutions. A basic procedure of quantum counting is 

demonstrated in Fig 4.6. The first step is to create a superposition to both registers (one 

for Grover's operator and one for the phase estimation) and then apply Grover's operator 

2n times. Lastly, estimating the value of θ. As a result, the output of the quantum phase 

estimation will be a superposition, and when it is measured, the output register provides 

the estimation of the solution count. 

 

Fig. 26 block diagram for quantum counting. (a) is Hadamard, (b) is Grover iterator (c) quantum Fourier 
transform. 
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4.5 Quantum circuit block for building quantum oracle 

Some of the quantum circuit blocks for oracle to find domination pairs can be reused 

from the design for Oracle of Decomposition from section 3.4. Only the new blocks will 

be introduced in this section. 

Multiplexer 1: The first approach of the multiplexer is to build a 2N Multiplexer with only 

2 to 1 multiplexer, shown in Fig.26. The simplest 2 to 1 multiplexer we design is a five-

gate design with CNOT, V, and V+.  

 

Fig. 27 quantum multiplexer  1. 

Multiplexer 2: Fig.28 demonstrates a Toffoli base Multiplexer; the gates in the dash line 

can be replaced with a CNOT gate due to the input 0.  
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Fig. 28 4:1 Mux with half number of 1 and 0 as input.    

Multiplexer 3: Instead of following Shanon's expansion to design the multiplexer, I use 

Davio decomposition. Because xor is the primary operator of Davio expansion, it can be 

easily transformed into quantum gates and reduce overall gate count compared to 

quantum multiplexer following Shanon expansion.   

 

Fig. 29 The left Mux is based on Shannon, and the right is based on Davio expansion. 

Accumulative Comparator: A swap gate-based accumulative comparator is proposed in 

my design shown in Fig.30. A Comparator is designed to compare two n-qubits inputs 

and output if they are equal, larger, or small. The result is encoded in two qubits. The 

encoding is shown in Fig.30. This comparator starts from the most significant bit (MSB). 

If the MSBs of the two numbers are not equal, the result of the comparator has been 
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determined. Then the swap gate will be active and transfer the comparison result through 

the rest of the comparator to the final output qubit. If the MSBs are equal, then move on 

to compare the following two bits until it counters a condition of not equal.  

 

Fig. 30 quantum 2bit comparator and the encoding of output. 

4.6 Hybrid quantum algorithm for graph coloring 

I propose a hybrid algorithm on a hybrid system introduced in section 3.4. The 

classical computer performs operations interacting with the quantum unit, such as 

modifying the input graph for the quantum processor in each iteration. The quantum 

processor performs Grover's algorithm to find the domination pairs. Then classical 

computer measures and records the domination pairs from the quantum processor. When 

only one node or clique is left, the classical computer stops generating new input data for 

the quantum processor. The classical computer runs Algorithms 3.2 below to reconstruct 

the coloring from the list of saved domination pairs and random nodes. 
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Fig. 31 Hybrid algorithm for graph coloring. 

Algorithm 3.2

 

4.7 Quipper modeling and simulation 

To simulate my graph coloring algorithm, I used the Quipper language, which is a 

domain-specific language for describing quantum circuits within Haskell. One of the 



69 
 

main benefits of Quipper compared to other quantum programming languages is its 

ability to abstract and reuse smaller components of an algorithm easily. Quantum 

algorithms are often more naturally described by composing smaller blocks than by 

specifying gates directly. Quipper is built around the Circ monad, which encapsulates a 

quantum circuit. For example, the function "Hadamard:: Qubit -> Circ Qubit" represents 

a circuit with a single Hadamard gate applied to a qubit. The Circ monad allows using 

standard Haskell tools for working with monads. For example, a circuit that applies 

Hadamard gates to a list of qubits can be written as "mapM Hadamard" with the type 

"[Qubit] -> Circ [Qubit]". This system makes it straightforward to abstract the oracle 

from the implementation details of Grover's algorithm, allowing the algorithm to be 

easily reused without worrying about its internal workings. At the most abstract level, 

Grover's algorithm is a function with the type "[Qubit] -> Oracle -> Circ ()," which can 

be used as follows:

 

Fig. 32 Quipper code example demonstrates abstraction. 
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Another useful tool is the ability to generate mirrors for a given circuit automatically. In 

Quipper, the main way to compute is with a function with the simplified type Circ 

[Qubit] -> ([Qubit] -> Circ b) -> Circ b. The actual type is slightly more complicated, but 

not in a way that is relevant here. The first argument is a reversible circuit, while the 

second argument is a circuit operating on the results of the first circuit. The circuit takes 

the first circuit, feeds its output into the second circuit, and then runs the mirror of the 

first circuit, reversing all of the first circuit's qubits back in their original state. In order 

for this to behave correctly, the second circuit must also mirror any operation on the first 

circuit's qubits. Using this abstraction, it is relatively easy to compose large chains of 

mirrored circuits without worrying about how the mirrors are implemented. In structuring 

the implementation of the graph coloring algorithm with Quipper, I broke the oracle into 

many smaller blocks and then implemented each block more generally. This way, the 

program is more structured and maintainable, and these components can be easily reused 

for implementing other algorithms. An example of a few elementary pieces is shown 

below: 
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Fig. 33 Quipper code example demonstrates map function. 

These examples also demonstrate another important part of implementing quantum 

algorithms in a real programming environment, which is that there is a lot of interchange 

between the quantum and classical parts of the system. Reconfiguring the quantum circuit 

on the fly for every run is simple, and so it makes sense to generate it in a way that is 

specialized for the particular input data for that run, as opposed to writing the circuit once 

and then using some of the qubits to specify the input. The fact that Quipper is 

implemented as a library inside a normal programming language makes this very 

straightforward. 

Using Quipper and the block base approach makes my program scalable. In addition, the 

circuit generation can be automated. Fig.34 shows the quantum gate count versus the 

number of nodes of the input graph, the y-axis is the gate count, and x is the number of 

vertices of the input graph.   
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Fig. 34 gate count vs node count of a random generated graph. 

I also constructed quantum circuits for some benchmark CP2002 and simulated them, 

result is shown in Table 13.  

 

Benchmark  Qubit Gate count Edge  Node 

1-FullIns_3.col 35 12632 100 30 

1-FullIns_4.col 31 8206 1227 202 

1-Insertions_5.col 39 97278 593 93 

DSJC125.1.col 35 66788 736 125 

DSJC500.9.col 47 899710 22487 500 

Table 13 gate count for some case in graph coloring benchmark 
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Interesting topic for future research is to check how exact optimal coloring affects the 

quality of encoding. 

4.8 Experiment Analysis  

The conventional graph coloring solution is a greedy algorithm with a complexity of 

O(N2), the hybrid algorithm I proposed, without considering any delay between data 

transmission between quantum and classical computer, the complexity is 

O(N*√log(𝑁)/𝑘), where k is the average number of solutions amount to all iterations. A 

comparison of quantum domination-based coloring (QDOM) and Exact Graph Coloring 

was made to show the quality of the result of my heuristic algorithm. Fig 4.2 shows 

colors generated by quantum domination-based coloring (QDOM) were one color away 

from the total numbers of colors generated by Exact Graph Coloring and so on till 5 

Errors. From Fig 4.2, I can observe 90% of the runs can produce an exact solution. In this 

case, the method employed for exact Graph Coloring combines the greedy algorithm, 

backtracking, and cut-off. Perkowski [9] proved that an Exact Graph Coloring is not 

required to find the Column Multiplicity where Ashenhurst and Curtis Decompositions 

are considered. Exact Graph Colorings only take up more time and fail to produce 

significant changes in the results. So, this quantum coloring heuristic is a good candidate 

for quantum acceleration.   

 

 1-FullIns_3.col 1Insertions_5.col DSJC125.1.col DSJC500.9.col 

exact 90% 92% 89% 90% 
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Error1 5% 1% 5% 6% 

Error2 3% 1% 2% 2% 

Error3 1% 3% 2% - 

Error4 1% 3% 2% 2% 

Error5 - - - - 

Table. 4.2 A Comparison of Total Colors generated by quantum domination-based coloring 

(QDOM)and with total colors generated by Exact Graph Coloring 
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Chapter 5 Design and optimization of memristive FSM 

5.1 Memristor and related work 

5.1.1 History of memristor 

Memristors are nanoscale devices that have gained attention in the circuit design 

community in recent years. In 1971, Leon Chua mathematically predicted the existence 

of a fourth fundamental circuit element, which he called a memristor, that relates flux to 

charge (as shown in Fig.35 [76]). This idea remained theoretical until 2008 when HP 

Labs announced that they had found the missing practical realization of the element 

predicted by Chua [76] [77]. The HP team provided experimental evidence for the 

memristor, governed by the mathematical formulation of Chua's memristive hypothesis. 

They proposed a two-terminal device in which the applied voltage across the device 

changes the resistance of the device, and the resistance is retained when the voltage is 

absent. Memristors have the advantage of being able to store values without requiring 

electrical charge and can be manufactured with a small area and high density compared to 

CMOS circuits. The resistance of a memristor depends on the previous current that 

flowed through it, making it non-volatile as it retains the latest resistance when the power 

is turned off. When the power is turned on again, the retained resistance is used to restore 

the state of the memristor. This property makes memristors unique and expands their 

potential use in fields such as programmable logic, neural networks, large programmable 

state machines, and control systems. 
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Fig. 35 Memristor and its relation between the magnetic flux and the electric charge. 

5.1.2 Memristor circuit and related work 

Initially, research on memristors focused on their application in memory [59]-[62]. 

However, more recent research has also explored the use of memristors in logic circuit 

design. One notable application is the realization of arbitrary Boolean functions using 

IMPLY operations in a crossbar architecture [63]-[66]. This research shows that 

memristors are capable of holding values and executing imply-logic operations, 

providing a new approach to addressing the "von Neumann bottleneck" [66]. There have 

been many efforts to implement small logic circuits such as adders, counters, and LFSRs 

using memristors, with some works using material imply gates built with memristors as 

the basic circuit elements [67]-[71] and others exploring alternative structures that utilize 

other Boolean operations [72]-[74]. However, most of these works have focused on 

individual logic gates and small circuits. Only a few papers propose frameworks or 

methodologies for system-level design with memristors, such as those by Rahman [74], 

Tissari [75], and Xie [84]. Rahman and Tissari propose configurable logic architectures 

similar to standard FPGAs, while the logic unit in Xie's architecture is fixed like an ASIC. 
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These architectures are based on the use of stateful imply logic gates in crossbars with 

memristors. Memristive state machines are a particularly exciting application of these 

programmable memristive architectures.  

5.1.3 Memristor characteristic and memristor circuit  

The I–V curves of memristors form pinched hysteresis loops shown in Fig.36, and the 

forms of these loops depend on the amplitudes and frequencies of the input voltage 

signals. This phenomenon defines a state variable, which determines the memristor’s 

instantaneous resistance, also known as the memristance. 

 

Fig. 36 I-V Characteristic of Memeristor. 

Memristor can be used to implement the IMPLY logic, as shown in Fig.37. The logic 

state is the memristor's resistance in terms of the control logic based on the IMPLY gates. 

The HRS (High Resistance State) or Roff is the logic 0, and LRS (Low Resistance State) 

or Ron is the logic 1. The initial states of the memristors are the inputs, i.e., if memristor 

a is in HRS then the initial value is 0. Both the memristors are further connected to 

resistor RG i.e., The value stored in memristors turn into output value after the VSET and 
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VCOND are applied. In IMPLY logic gates, always RON << RG << ROFF, VCOND < 

VC < VSET, and VSET-VCOND < VC. Here while performing a→b source memristor is 

‘a’, and target memristor is ‘b’.  

 

Fig. 37 Circuit implementation of IMPLY logic gate. 

 

Fig. 38 A crossbar with memristor. 

In memristor computing, the basic architecture is formed with the crossbar of wires with 

memristors at the crossing nodes. Fig.38 shows a crossbar of memristors. In this crossbar, 

the source and target memristor can be chosen by applying the respective voltages VSET 

and VCOND at respective ends in the crossbar. Each gate corresponds to one set of 

VSET, VC, and ground. Using the serial control signal generated by a pulse generator, 

multiple logical operations can be performed in any row of memristors in the crossbar. 

Our team with Kamela Rahman [74] proposed a memristive stateful IMPLY-Logic based 

reconfigurable architecture called MsFPGA. This architecture comprises three major 
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components: a memristive RAM, a CMOS controller, and a parallel SIMD datapath 

realized with a nanowire crossbar array. The architecture's basic structure is shown in 

Fig.39. The configurations of each IMPLY gate are stored in a memristive RAM in the 

form of binary code similar to computer processor instructions [74]. The CMOS 

controller read the configuration from the memristive memory and decoded the binary 

code to create a set of control signals. Then those signals are supplied to the crossbar to 

realize configured logic with a series of IMPLY gates. In this dissertation, I will refer to 

the saved binary code representing the crossbar configuration as the memristor crossbar's 

instruction.  

 

Fig. 39 MsFPGA architecture. 
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I will use the “Imply Sequence Diagram” (ISD) notation to analyze and synthesize the 

memristor circuits. In this notation, horizontal lines represent physical memristors, while 

this symbol  represents a pulse applied to it. The top side of this symbol is the negated 

input. The left side is the non-negated input and the value of the memristor before the 

pulse. The right side is the value of the memristor after the pulse. A 0 in the square 

indicates an additional pulse required to reset the input state of the memristor to 0.  

Horizontal lines correspond to memristors, and vertical dash lines correspond to moments 

of time. I define a memristive cascade as a sequence of stateful IMPLY gates presented 

with ISD notation in which rows correspond to memristors and columns correspond to 

moments of time (pulses). An example of a memristive cascade to realize a+b’ is shown 

in Fig.40. 

 

 

Fig. 40 one pulse corresponds to one imply gate in that given pulse period. Before t1, wm1 and wm2 are 
reset to 0. At t1, the wm1 becomes a’, because wm1 = a, wm1 = 0+a’. 

5.2 Low-power memristive state machine 

 

A memristor can hold a state and perform a logic operation, making it suitable for use as 
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both memory and combinatorial logic. A classical state machine consists of both 

combinatorial logic and memory and can be realized using memristor technology. The 

memory-like property of stateful memristors allows for the elimination of explicit 

registers, leading to lower area and power consumption compared to CMOS. 

Additionally, because memristors are non-volatile, the state of the machine will not be 

lost due to a power outage. If the power supply is cut off, the state of the state machine 

will be preserved, and the machine will continue to operate at the last state before the 

power outage when the power is restored. 

This chapter discusses memristor-based finite state machines (FSMs) at the circuit level. 

It focuses on how to design a machine that consumes as little power as possible and has 

as little delay as possible for a given machine specification. The goal is to provide general 

and practical methods and models that can serve as the foundation for designing 

memristive state machines, similar to classical logic design. 

A state machine is defined as a quintuple M = (S, I, O, δ, λ), where S is a finite set of 

states, I is a set of inputs, O is a set of outputs, δ is the transition function, and λ is the 

output function. The state machine operates in two basic steps: computation of the 

transition and state update. A traditional synchronous state machine is implemented using 

a sequential CMOS circuit, with a combination logic block used for computing the 

transition and output function and a memory block with a synchronized clock used to 

hold the next state. In a memristor-based implementation of an FSM, a memristor 

crossbar is used for the datapath. Each memristor cell holds the value of a binary state. A 

pulse generator generates the control signal that drives the transition of the state of each 

memristor, which represents the state of the FSM (the state is a vector of memristors for 
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multiple-bit state). A memristor cell can be viewed as a memory with computation 

capabilities. For example, in Fig. 5.7, each rectangle represents a memristor cell. The 

input for the function 'ab' is the value stored in the first two memristor cells. A series of 

Imply operations are performed on inputs a and b, and the result, ab, is stored in the third 

cell by applying a sequence of control signals to the memristor crossbar.    

  

 

 

 

 

 

 

 
Fig. 41 rectangles represents value transition of a memristor cell. 

A pulse generator generates control pulses that are pre-programmed by the user. The 

control sequence determines which cells are the operands, which cell is the result, and 

what boolean operation to perform. The boolean logic is executed in the form of an 

imply-cascade, such as (0→((0→a) →b)). Any Boolean function can be realized with a 

cascade of imply gates. For example, a + b = ((a→0) →b).  

Once the basic computing model for the memristor has been established, I use it to 

demonstrate my state machine model. I label four cells in the memristor logic unit: I for 

After 

a 

 

b ab 

Before 

a 

 

b * and 
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input, S for the current state, S' for the next state, and O for output as shown in Fig.41. 

Each cell does not necessarily have to be one bit. it can be multiple bits. 

5.2.1 Execution sequence of the memristive state machine 

Step 1: Read from the input cell. 

Input changes are the driving force behind the state machine and are the interface to the 

external world. Most digital circuits still use voltage signals to communicate, so I have 

chosen voltage input for the state machine. The volistor logic gate converts the input into 

resistance stored in the memristor cell. The volistor logic gate is a memristor gate design 

by Muayad [89] that takes voltage as input and converts it to resistance stored in the input 

memristor cell. It can be implemented in the same crossbar architecture as stateful imply-

logic gates. 

 

Fig. 42 I is the memristor cell I store input, and cell S store current state, cell O store the output. 

Step 2: Execute the output function λ. A sequence of control signals corresponding to the 

output function λ is supplied to the memristor cells. This control sequence takes cells I 

and S as input to the function λ, and the result is stored in cell O. For example, if the 

output function is O = I + S, then the control sequence represented in an Imply cascade 

would be O = ((0→I) →S)). 
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Fig. 43 Cell in green demonstrates the input cells of the output function λ, and the blue cell shows the 
output cell. 

 

Step 3: Read the output. A memristor reading circuit [89] reads the resistance stored in 

cell O. 

Step 4: Execute the transition function. A control sequence δ is applied, and the next state 

is computed and stored in cell S'. 

Step 5: Update the input cells with the subsequent inputs. 

Step 6: Execute the output function λ. Then, apply control sequence λ2. λ2 operates in the 

same way as λ, but it takes S' as input instead of S. The next state from the previous cycle 

becomes the current state of this cycle. 

Step 7: Read the output from the output cell. 

Step 8: After the output is read, execute the transition function. Control sequence δ2 is 

applied, and the next state is stored in cell S. 

Step 9: The machine loops back to step 1. 

Fig.44 illustrates a single cycle of state transition in the state machine using ISD notation. 

The memristor cell, which stores the next state, is updated during the execution of the 

combination logic period. This updated value is held for a brief period, allowing for 

reading before transitioning to the next state. 
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Fig. 44 (a) state transition diagram for a given FSM, (b) the memristor realization represented with ISD. 

5.3 Background for the state assignment problem and related work   

The complexity of a state machine implemented with sequential circuits is influenced by 

the way in which states are assigned binary codes. These codes are used to determine the 

combinational logic and transitions between states. The control unit of such a state 

machine is composed of synchronous sequential circuits with combinational logic blocks 

and memory elements, all of which are synchronized by a clock. The combinational logic 

blocks compute outputs and update memory element values at each clock cycle. A 

sequential circuit can be modeled as a finite state machine (FSM) with inputs, outputs, 

and internal states, where each state represents the information stored in the memory 

elements at that point. In order to synthesize a sequential circuit from an FSM, a crucial 
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step is the state encoding or state assignment (SA), which involves determining the 

minimum number of binary digits (bits) needed to encode the states and assigning a 

unique binary code to each state. The minimum number of bits required is calculated as 

log2(S), where S is the number of states in the FSM. The way in which states are encoded 

has a significant impact on the complexity of the synthesized sequential circuit, affecting 

its size, speed, and power consumption. 

Several deterministic algorithms have been developed to solve the state assignment (SA) 

problem. These algorithms aim to minimize the number of product terms in two-level 

circuits and the number of literals (i.e., variables in true or complement form) in multi-

level circuits. One early technique for SA is the Hartmanis method [98], which relies on 

state partitioning. However, this technique may not work well for all FSMs as some may 

not have well-behaved closed partitions. Other techniques for SA in two-level circuits 

include KISS [98] and NOVA [99], which use symbolic minimization. Techniques for 

SA in multi-level circuits include MUSTANG [100], JEDI [101], and MUSE [102], 

which use heuristics to maximize the factoring of expressions in order to reduce the 

number of literals in the resulting circuit. Examples of deterministic techniques for power 

optimization include the work in [103]. The work in [103] assigns state codes with a 

Hamming distance of 1 to states with the highest transition probability, while the work in 

[104] uses integer linear programming to optimize the minimization of flip-flop 

switching activity. 

Given the complexity of the SA problem and the limitations of deterministic algorithms, 

non-deterministic evolutionary algorithms such as genetic algorithms [105], simulated 
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annealing [106], tabu search [107], simulation evolution [108], and other evolutionary 

algorithms [109] have also been used to address it. 

The FSMs, in their initial specifications, have don’t cares and may be minimized with 

respect to states and inputs. I compared my methods with the well-known state 

assignment and logic realization algorithms for memristive FSM from the past.  

Finite State Machines (FSMs) are commonly used in chip design as control units for 

circuits in modern CAD VLSI systems and also have other applications, such as counters 

and sequence recognizers. These FSMs can be implemented using different types of logic 

layouts, such as PLAs or gate matrices. The initial specifications of FSMs may contain 

"don't cares" and can be minimized with respect to states and inputs. In this dissertation, I 

compared my methods for implementing FSMs using memristive technology with 

previously established state assignment and logic realization algorithms. The principles 

of state machines are still relevant in synthesizing circuits using various nano-

technologies, including memristors. 

The minimum solution for SA problem can often be found using partition theory. This 

involves dividing the total number of internal states (K) of a machine into partitions, such 

that 2k-1 < K ≤ 2k. These partitions are known as proper partitions, as they consist of two 

blocks where the number of states in the larger block does not exceed 2k-1. The proper 

partitions are selected from a set (TP) in a way that minimizes the total number of 

variables in the machine's transition functions. The goal becomes the minimize number of 

flip-flops in the CMOS-based state machine. And for the memristive state machine, the 

goal becomes the minimization of the number of control pulses. This condition is 
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expressed in selecting set TF (called the final family of partitions) from set TP of such 

partitions i, that if i →  I and i  i,1  i,2 … i,n then 

{iTF} {i,1,…, …i,n} CARD{i,1,..., …i,n}= min, 

 where i, i , i,1…i,n, i,1,… …i,n TF. 

(For the meaning of partition calculus symbols  → ,  and  see chapter 3). 

The final family (set) of partitions, TF, is defined as such a family, that the partition 

product of all partitions from that family is a zero partition. The optimum family, TO, is 

such a final family that minimizes the value of an assumed cost function. 

The family TO in my approach is chosen among all two-block partitions - this gives a 

possibility of finding better solutions but is computationally less efficient than using the 

proper partitions. 

Let us denote the zero partition by 0̅ : 

0̅   = {{1},{2},..., {K}} 

The problem of state assignment of the minimum synchronous FSM can be formulated 

as follows: 

Given are:   

a) A - the set of internal states of the FSM M;  K = CARD(A), 

b) T2 - the set of all two-block partitions, 

c) the flow table and the output table of the FSM. 

The set TO to be found is such a subset of the T2 set, that both of the following 

conditions are satisfied: 

𝑖{𝑖TO} 
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∏ 𝑖

𝑛

𝑖=1

 

1. ∏ 𝑖
𝑛
𝑖=1 {𝑖𝑇𝑂} = 12 . . . 𝑖  =   0̅ 

2.  {iTO}i =12 ... r  =  0̅  . That is, the partition product of the selected 

partitions is a zero partition, which means that a different binary sequence is 

assigned to each state. 

3. Min (CFr)= min ( {iTO} qr(i) + {yi{yi,...,yv}} qr(yi)), where {y1 , ... , yv} is 

the set of output signals. 

This is called a condition of cost function minimization.  Conditions 1 and 2 ensure that a 

distinct binary code is assigned to each state. Condition 3 guarantees that the overall cost 

for implementation is kept to a minimum. 

By qr() I denote the real costs of the realization of the  partition as one of the TO set.  

The costs are calculated for the respective circuit realization. The selected gates and the 

respective structure of the excitation functions' realization. By qr(yi) I denote the cost of 

realization of an output signal yi.  

The state assignment method uses a combination of heuristic search and branch-and-

bound techniques to efficiently search for solutions. This approach limits the search space 

to a subset of all possible two-block partitions. The quality functions are employed to 

guide the search strategy and ensure that a minimum solution is not missed. 

5.4.  State assignment of Memristive FSM 

The main idea of the method of state assignment proposed in this dissertation is to select 

such partitions for a not necessarily minimum FSM that the imply gate cascade for 
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memristor realization of the excitation functions is minimized according to some cost 

function.   

Let IMPLY be a relation of implied compatibility of blocks (blocks are groups of internal 

states).  Let TF = {1,2, ... , v} be a set of partitions. 

Definition 5.1. 

Separation condition states that each pair of machine's incompatible states is separated 

by at least one partition from TF. 

Definition 5.2. 

Closure condition states, that groups, implied according to relation IMPLY by the blocks 

from the product of partitions from set TF, are included in those blocks. 

Definition 5.3. 

Every set TF that satisfies the separation condition and the closure condition will be 

referred to as the final family of partitions.  

A solution to the state assignment problem consists of finding the family TO.  This 

family should be such a subset of T2, that each of its partitions separates at least one pair 

of incompatible states.  To check the closure condition, the set of all pairs of compatible 

states should be created and for each of its elements, the respective compatibility 

conditions must be found. Please note that the existing algorithms encode the already 

minimized machines, and the state-minimization process is executed separately before 

the state assignment process. This leads to not necessarily the least cost solution. My 

algorithm allows to find better solutions because it combines the stages of minimization 

and encoding, thus it selects the best of all machines that can be obtained by partial or 
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complete minimization processes of the initial non-minimal machine. My presented 

approach is the only one in the literature that the stages of state minimization, state 

encoding, and function realization for a given technology are combined into a single 

process. This allows for a superior minimization of the final resultant memristive logic of 

the machine. 

5.4.1 Operators and relations on cubes  

The terms used for the operators and relations in this chapter were chosen based on their 

specific use in encoding the rows and columns of a flow-table for a finite state machine. 

· 0 1 

0 0 1 

1 1 ∅ 

Table 14 The operator of row compatibility 

The operator of row compatibility, denoted by o, is defined for cubes a and b (a and b are 

n-tuples of elements ai , bi  {0, 1}), as follows: 

            if (  i ) [ ai  bi = ] 

     a  b = c = (c1,c2,…,cn) in the opposite case 

where (i = 1, ... ,n ) [ ci = ai  bi ]in accordance with the table. 5.3.  

Examples 

 1100  0010 = 1110, 

 0101  0001 =  because a4  b4 = . 
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The operator of columns compatibility, denoted by  , is defined for cubes a, b (of 

elements ai, bi {0 , 1 , X}), as follows: 

  

▽ 0 1 X 

0 0 X ∅ 

1 X 1 ∅ 

X ∅ ∅ X 

Table 15 The operator of columns compatibility 

 

┌ 0 1 

0 0 ε 

1 ∅ 1 

Table 16 The relation of rows absorption 

The relation of rows absorption, denoted by┌, is defined for cubes a and b (ai, bi  {0 , 

1}). 

└ 0 1 X 

0 ε ∅ ε 

1 ∅ ε ε 

X ∅ ∅ ε 

Table 17 The relation of columns absorption 

The relation of columns absorption, denoted by   is defined for cubes a and b   
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5.4.2 generation of prime implicants of multi-valued function 

I will begin by assuming that the number of partitions is minimal. Let us consider a flow 

table of the FSM with the inputs already encoded (in the columns). To find the excitation 

function from this table, the code for each cell of the table is required. The code for each 

cell is a concatenation of the row's code and the column's code. However, the state 

assignment is not yet known and, therefore, neither is the row's code. My goal is to select 

an auxiliary (transitory) code for the rows, which will enable the designer to explore all 

possibilities of minimizing the excitation functions (i.e., covering minterms with prime 

implicants) before determining the final state assignment of the internal states of the 

table. This code will allow the examination of all possibilities of joining groups of 

minterms into prime implicants, i.e., applying logic adjacency to minterms from each pair 

of rows. 

Suppose I have encoded a flow table according to some proper partition j.  Several 

possibilities of including rows into prime implicants exist now.  This results from the 

fact, that I assume the possibility of arbitrary permutation of the rows, such that the other 

partitions are assorted in the best possible manner with j, to minimize the multi-valued 

function, described by a flow table encoded with j (the encoded flow tables will be 

called transition tables).  To formalize such generalized joining of rows into groups I 

must find the respective code for the rows.  For K rows of the table I select a code of 

length K, where 1 is written to the i-th row on the i-th position.  For example, three 

internal states are encoded as follows:  s1 - 100, s2 - 010, s3 - 001. Actually, every cell of 

the flow table (i.e., a 0-cube) can be described by means of the binary string: ci = ci o ci 
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where ci is the machine's inputs cube in Gray code, and ci is the cube of internal states, 

in the code described above. The symbol o stands for concatenation.  The operations may 

be utilized to join the cubes into greater cubes.  Both constituents of the string are used. 

There may be n1<K arbitrary rows in each group after joining.  The adopted code is the 

simplest one with which this property can be checked.  All the cubes generated by means 

of joining have the part corresponding to the inputs and the part corresponding to the 

internal states.  The implicants of the multi-valued function will be called "generalized 

implicants"(abbrev. G-implicants). The G-implicants which are prime will be called 

"generalized prime implicants"(GP-implicants).  Let ON be the set of minterms and DC 

be the set of "don't-cares" of the Boolean function, which corresponds to the flow table, 

whose states are assigned in accordance with the chosen partition j. I shall find the set of 

all GP-implicants, and next the covering of minterms with the GP-implicants.   

For simplification, I assume that the algorithm to generate GP-implicants starts with ON 

 DC. Then the operator of the column compatibility is applied to all cubes from ON  

DC, that have identical cubes of internal states. Next the operator of rows compatibility is 

applied to the cubes with identical input cubes. Each of the cubes created in this way is 

stored in a new array. Having both operators applied in the newly created array, the rows 

absorption relation and the columns absorption relation are applied and the absorbed 

cubes are removed from the array. The outcomes are stored in the new array. Operators 

of compatibility and relations if absorption are carried out iteratively until the old array, 

and the new array become identical. Next, the GP-implicants that cover only don’t cares 
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are removed. The entire process is a kind of generalization of the Quine-McCluskey 

algorithm for the case of multi-valued function with one MV variable and don’t cares. 

Observe also that this method can be directly used to calculate the cost of encoding with 

the “one-hot” code. This is done by taking directly one hot partition with a single state 

and for blocks of partitions with more than one state, creating hardware sums of the 

single states that exist in these blocks.  

The generation of GP-implicants is described by means of the following algorithm. 

Algorithm 5.1. 

Generation of GP-implicants for an MV-function with one MV variable and don’t cares.  

Begin 

1. Find set ON of minterms and set DC of don’t care of the function. These sets 

include 0-cubes ci = ci o ci , encoded as explained above for the given 

partition tj. 

2. P := ON  DC 

3. Apply columns compatibility operator to all the pairs of cubes from P, which 

have the same sub-cubes of internal states: 

P1 := {a  b | a, b  P and C
a = C 

b};  

4. Apply rows compatibility operator to all the pairs of cubes from P, which have 

the same input sub-cubes: P2 := {a o b | a, b  P and C
a = C 

b}; 

5. Add P1 and P2 to P:      PP := P  P1  P2 ; 

6. Delete the G-implicants absorbed with respect to columns:  

       PP := {a  PP | (  a’  PP) [ a [ a’ ]} 
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7. Delete the G-implicants absorbed with respect to columns:  

       PP := {a  PP | (  a’  PP) [ a [ a’ ]} 

8. If P = PP then go to 11; 

9. P := PP; 

10. Go to 3;     

11. Remove the G-implicants from PP, which covers only the don’t care cubes or 

are absorbed by other G-implicants. New PP is the set of all GP-implicants, 

i.e., those that can be included in the minimum cover. 

12. End. 

 

The cubes found as above form the set of GP implicants of the multi-valued Boolean 

function with a single MV variable. These implicants correspond to realizations of the 

excitation functions, encoded with respect to the best hypothetic code, assorted with the 

given partition j . By the best code I understand the set of all possible  partitions that 

minimize the cost of the excitation function for j. I assume here that for partition j all 

other partitions were selected in the optimum way. The selected in the best possible 

manner partitions, together with j, of course, do not have to be the final family of 

partitions. Any multi-valued minimizer, such as Espresso-MV [110] can be used to 

generate good covering with GP-implicants. A step-by-step demonstration of Algorithm 

5.1 is shown as follows: 

Example 1: 

1. Suppose I encoded a flow table according to some proper partition 13 =0. 



97 
 

 

Fig. 45 encode the next state in the transition table with partition. 

2. For K rows of the table, I select a code of length K, where 1 is written to i th row 

on the i-th position. The encoded flow tables will be called transition tables. 

 

Fig. 46 encode the current state with one-hot code. 

 

3. The next task is to find the set of all GP-implicants and the covering of minterms 

with the GP-implicants.  Apply Algorithm 5.1. 

4. Apply columns compatibility to get P1. 
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Fig. 47 encodes the current state with one-hot code. 

5. Apply row compatibility to get P2. 

   

Fig. 48 demonstration of applying row compatibility. 

6. Add P1, P2, and P to derive PP.  
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Fig. 49 Union P1, P2 and P3. 

 

 

 

 

 

 

7. Delete the G-implicants absorbed with respect to rows and columns. 



100 
 

 

Fig. 50 Demonstration of deleting the G-implicants. 

8. Repeated steps 4 to 7 until P = PP.  

9. Found GP-implicants 

1x 1010 

10 1111 

The cubes found to form the set of GP implicants of the multi-valued Boolean function 

with a single MV variable. These implicants correspond to realizations of the excitation 

functions in SOP, encoded with respect to the best hypothetical code, assorted with the 

given partition j. Then it is converted to Imply gate cascade with synthesis tools [90]. 

𝐷 = 𝐴𝑄̅ + 𝐴𝐵̅ = 𝐴 → (𝐵𝑄) → 0. And the Imply gate cascade is shown in ISD form in 

Fig.51. 
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Fig. 51 ISD for excitation function. 

Quality function for the set of partitions {1 ,..., r} will be defined as follows:   

QF({1 ,..., r}) = {i {1 ,..., r}}q(i) + QFOUT,                                         

Where QFOU is the total cost of realization of the outputs, it is calculated as a sum of 

costs q(yi) for all output signals (each cost q(yi)is calculated analogically to q(i) cost, for 

the case of selecting the best assorted with it additional partitions). QFOU is calculated 

once and for all for the given machine, and it is independent of the family {1 ,..., r}.  

Algorithm 5.2  
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Calculation of the quality functions for  partition.  

Begin 

1. Encode the first block of   partition with 1 and the second block with 0; 

2. Calculate excitation functions and find minimum cover with GP-implicants, run 

Memristor synthesis program to generate Imply gate cascade to derive the cost for 

selected partition.  

3. Encode the first block of  partition with 0 and the second block with 1; 

4. Execute step 2.    

5. Select the minimum of the costs found in steps 2 and 4 and save the assignment of 

the partition's blocks to symbols 0 and 1. 

End 

Cost calculation based on the size of the implicant, I will show an example of the 

scenario, which demonstrates the process of computing the cost for a given partition.  
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Fig. 52 cost computation with synthesis for an excitation function. 

The first step of synthesis and cost computation is to find the group of 1’s in which the 

input literals are all positive. One such group is selected. In the example, this is BC. It is 

an essential positive prime, as there are no other positive primes covering minterm ABC. 

BC is realized as a NAND gate and hooked to the negative input of the IMPLY gate. So, 

at the end of this step - f (A, B, C) = r1 + BC, where r1 is the first remainder function. 

This is shown in Fig. 52(1). Now I move on to realize the first remainder function, r1. I 

realize that no groups of 1’s correspond to positive variables. As there are no more 

positive primes, this completes the synthesis of the first layer. I must now negate the 

entire K-Map, as shown in Fig.52(3). In the synthesis software, the negation of the K-

3 

3 

2 
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Map is simply reversing the roles of the temporary Onset and Offset tables.  At the end of 

this step, the function is realized by f (A, B, C) = r2 + BC. I can now find another group 

of 1’s (and don’t cares), which becomes the next positive prime implicant. This is shown 

in Fig.52(4). The four middle squares are selected. These correspond to a positive 

essential prime B. Since this is a single variable, I put a NOT gate instead of NAND gate 

as shown. At the end of this step, the function realization is  f (A, B, C) =  (r3 + B) + 

BC 

I still have a ‘1’ left in the K-map. To continue the process, I now select the remaining 

possible group (AC), as shown in Fig. 52(6). Group AC is again a positive essential 

prime. Since no remainder function is left, I put a 0 at the remaining input of IMPLY gate. 

The final function is now equivalent to f (A, B, C) = (AC +  B)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  + BC. And the Cost of 

this function is the sum of the cover in Fig. 52 (3), Fig.52(4), and Fig.52(6). QF = 3 + 2 + 

3 = 8. 

State assignment of an FSM is done with the following algorithm. 

  

Algorithm 5.3 

Begin 

1:  

Creation of the initial state of the solution tree: 

 N :=0;  V(0) = (QS(0), GS(0)) := ({}, A);     T2 := {};   OPEN := {V(0)}; 

2:    

 If    OPEN = {}   then  return ; 

 V(N) = (QS(N), GS(N)) := first element from list OPEN; 
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3: 

If   GS(N) = {}  

   then  

   begin  

         delete first element from list OPEN; 

         go to 2 

    end ; 

4: 

s := first element from GS(N);   QS(NN) := QS(N)  {s};   GS(NN) := GS(N) := GS(N) - 

{s}; 

5: 

add (QS(NN), A - QS(NN)) to the beginning of list T2. 

6: 

Add new state NN = (QS(NN), GS(NN)) to the end of list OPEN; 

7: 

Go to 3; 

 End 

A step-by-step demonstration of Algorithm 5.3: 

1. List T2 after arrangement in Step E2 of Algorithm 3.1 has the following form:  T2 

= {14 ,13, 12 ,1 ,3 ,2 , 4}.  The partition is ordered based on quality function q 

(i)   
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Fig. 53 Step 1. 

2. Execute operator 14 and generate node QS(1); RP(1) ≠  0, execute 13  ,and 

generate node QS(2); PR(2) = 0, Found  solution {14, 13}  (with cost CFr
3 = 17). 

Cfmin =17. 

 

Fig. 54 Step 2. 

3. Execute operator 14 and generate node QS(1); RP(1) ≠  0, execute 13  ,and 

generate node QS(2); PR(2) = 0, Found  solution {14, 13}  (with cost CFr
3 = 17). 

Cfmin =17. 

4. Backtracked to node 1, the operator 12 is deleted from GS(1) because 11 + 8 > 

17. Analogically, operators 2  and 4 are deleted from GS(1).  
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Fig. 55 Step 3.  

5. Execute remaining operators to generate new nodes 3. PR(3) > 0. It is not a 

solution. QF(3) + QF(1 ) >  QFmin = 17, Stop searching and remove 3 , GS(3) = 

{}, back track to QS(1). 

 

Fig. 56 Step 4. 

6. Execute remaining operators to generate new nodes 4. PR(4) > 0. It is not a 

solution. QF(4) + QF(3 ) >  QFmin, Stop searching and back track to QS(1). back 

track to QS (1), found GS(1) = { }, back track to QS (0). 



108 
 

 

Fig. 57 Step 5. 

7. Now program back tracks to node 0.  Node 5 is generated. Operators 12 , 1  , 3  , 

2 and 4 are removed from GS(5).  Set GS(5) becomes empty; this results in the 

backtrack to node 0. 

 

Fig. 58 Step 6. 

8. Backtrack from node 10 results that GS(10) = { } and  PR(10)   0. Therefore, 

the optimum solution is {14, 13}.   
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Fig. 59 step 7. 

 

5.5 Experimental Results 

My goal is to find the encoding of a state machine (not necessarily the completely 

minimized machine) that this encoding minimizes the cost of the realization of this 

machine with the selected by me variant of memristive technology. Therefore, in this 

chapter of my dissertation, I will compare various design tools for Finite State Machines 

(FSMs), including JEDI, NOVA, one-hot encoding, and the collaborating with them 

memristor synthesis tool [90]. I explore thus the use of Boolean logic synthesis specific 
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to memristors and state assignment techniques built for this synthesis cost function in 

order to optimize the entire design process for memristive FSMs. Such a problem was not 

formulated or solved before. Table 18 compares the number of imply gates required to 

implement each state machine in benchmark circuits from MCNC and ISCAS. The 

results show that the pulse count in bold represents the most cost-effective design, and 

the runner-up is highlighted in red. 

  
My 

metho

d 

2WM 

My 

metho

d SOP 

Nova 

2W

M 

Nov

a 

SOP 

nova 

ESO

P 

Jedi 

SO

P 

Jedi 

2W

M 

JEDI 

ESO

P 

2W

M 

OH 

SOP

2 

OH 

2W

M 

kirkman 320 542 580 455 1645 771 1243 1542 698 443 

Tbk 634 776 1044 898 994 651 822 854 743 638 

donfile 145 220 341 184 1180 364 360 1026 651 515 

Bbara 115 135 354 197 1411 115 216 1022 410 543 

dk15 90 77 277 177 524 173 171 661 193 321 

s27 56 87 49 77 406 266 98 352 155 288 

Bbtas 38 65 164 61 248 158 109 243 127 157 

lion9 30 39 103 48 354 150 142 562 79 99 

modulo1

2 

58 88 141 73 495 155 145 442 297 356 

shiftreg 17 32 16 16 162 78 44 108 85 99 

train4 22 31 26 29 66 55 50 50 51 74 

Lion 22 35 30 30 75 32 54 44 60 72 

Seqd 16 16 31 21 48 26 17 32 19 22 

Table 18 The pulse count of permissive state machine in benchmark circuits from MCNC and ISCAS. 
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Fig. 60 Curve plot for table 18. 

The development of efficient design methods for memristive state machines is a crucial 

but overlooked area of research. I have proposed a general model for designing 

memristive circuits as state machines. While existing minimization and encoding tools 

for traditional FSMs can be used, specialized software that takes into account the unique 

properties of memristive state machines and logic should be developed. I have combined 

various Computer-Aided Design (CAD) tools to create a comprehensive system for 

realizing memristive FSMs using IMPLY and CLEAR gates. My initial benchmarking 

results, as shown in Fig.60, indicate that the choice of state assignment and minimization 

tools can greatly impact the realization cost of the circuit. 
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Chapter 6 Memristor-based pulse rate system 

There is in recent years an increased interest in designing systems that are not traditional 

binary logic nor traditional analog design. Such systems are built for neural networks, 

control, and machine learning. Among other technologies, both quantum and memristive 

technologies are used to build these innovative systems in which possibly numbers are 

represented not in a standard way characteristic for binary logic. Here I assume 

memristors in their variant presented already in this dissertation. The question is how I 

can solve various algebraic and differential equations very quickly and for extensive data 

but not necessarily very precisely. Such problems exist in several areas, as differential 

and algebraic linear and non-linear equations must be solved in many practical 

applications.  

The pulse rate system is a method of implementing computation systems that utilize the 

rate at which a signal occurs, rather than its electrical characteristics, to represent and 

process information. This approach, known as pulse-rate signal computing, has become 

increasingly popular recently and was first proposed in the 1960s as a cost-effective 

alternative to traditional binary computing. It enables complex arithmetic operations to be 

performed using simple logic. 

6.1 Pulse rate measurement systems and related research 

When a digital code is used to represent a number, each digit is weighted in significance. 

For example, the most significant digit of a 10-digit binary word would represent a 

weight of 512, while the least significant digit would represent a weight of only 1. This 
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means that each digit must be handled separately in order to preserve its significance, 

which can lead to complicated timing arrangements and complex gating configurations. 

With pulse-rate signals, the important quantity is an averaged parameter, which means 

that individual gating arrangements are less critical. This is one of the properties that 

make pulse-rate signal processing an attractive option. 

In this chapter, I will only consider clocked pulse-rate sequences as they are easier to 

implement in processing devices. I will focus on a pulse-rate signal (A), where the 

probability of a pulse occurring at a particular clock time is represented by P(A),  

𝑃(𝐴) = lim
𝑛→∞

(
𝑚

𝑛
) 

Where m is the number of pulses recorded in an interval of n clock pulse, by the 

definition of pulse-rate signal, the probability P(A) should be a constant [92]. When the 

pulse-rate signal is used to represent an integer, m is the integer, and n as the capacity, 

which means the largest number this pulse can represent. For example, signal A, which 

represents the number 3 with a capacity of 4, is shown in Fig.61. 

 

 

Fig. 61 Pulse rate signal with clock. 

Pulse rate signals can be divided into two categories: stochastic signals, also known as 

random pulse sequences, and regular pulse-rate signals [93]. Fig. 61 illustrates an 

example of a regular signal, as the pulses occur at consistent intervals of clock pulses. In 
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my implementation, I chose to use a clocked regular pulse signal for ease of control and 

to eliminate the need for additional circuitry to generate a truly random bit stream. 

6.2 Development of memristor-based components for a pulse rate system 

The system consists of two types of blocks, namely the rate multiplier (RM), and the 

reversible counter (RC). Fig. 62 shows the Rate Multiplier. There are two inputs to RM: a 

frequency f1, and a number Z in parallel binary form. The frequency of output F is 

controlled by the parallel number in input Z. The input and output relation of RM is 

expressed in equation (1), where P is the capacity of the RM:  

                           𝐹 =  𝑓𝑖
𝑍

𝑃
                                     (1) 

 

C

 RM 

Capacity: P

Z

f1

F

 

Fig. 62 Rate multiplier. 

RM is used to convert a number in parallel representation Z to pulse rate representation F 

with a reference clock of f1 shown in Fig. 63. The other main block is the reversible 

counter (RC), shown in Fig. 63. Pulses entering the "C+" input make it count up in the 

binary counter, and pulses entering the "C-" input make it count down. The total number 

indicated by the counter output "CNT" is the sum of pulses to input C+ minus the sum of 

pulses to input C-. (Number represented by pulse) 
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L

C+

C-

 RC 

X

Cnt
 

Fig. 63 Reversible counter. 

6.2.1 Circuits to perform arithmetic operations on two pulse rate signal 

Taha and Perkowski [91] proposed using pulse rate representation and a feedback loop 

system for arithmetic operations. As shown in Fig.64, these units can be connected to 

perform calculations. For example, when the output of the RC circuit, Z, is initially set to 

0, the pulse signal coming from the lower RC circuit will also start at 0 and is connected 

to the terminal of the RM circuit. The upper two RM circuits, connected in series, 

perform a multiplication operation on the pulse rate of constants A and B. The result is 

then connected to the C+ terminal of the RC circuit. Since the pulse rate of A x B is 

greater than 0, the RC circuit will begin counting up, and Z will increase until                                            

Z=A  B                                (2) 

The input pulses to RC's C+ and C- terminals now occur to be the same, and Z stays 

unaltered. Hence, the system will reach an equilibrium where the two input frequencies to 

the RC are alike.   
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Y1
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Capacity: P1
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Capacity: P1
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Capacity: P
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Fig. 64 Blocks connected for multiplication Z= A*B. 

By connecting the feedback signal Z from RC to different RMs, which means that the 

unknown can be at any position in the equation (2). This circuit can change and be used 

to solve multiplication, division, square root, nth order root and any one unknown 

equation that has only multiplication and division operations. Fig. 65 shows the 

connections for solving square roots. 

 

Fig. 65 Blocks connected for square root Z=√A. 

6.2.2 Addition 

The pulse rate system can be extended to solve sets of algebraic and differential equations 

by incorporating additional operations. By expanding the arithmetic system to include 

operations such as addition, multiplication, and integration over time, I can use the pulse 

rate system to solve equations. 
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Fig.66 illustrates a pulse rate adder that utilizes a multiplexer to alternate between 

selecting pulses from two input signals, A and B, at a specific control clock rate. As 

shown in Fig.67, the combination of signals A and B results in a new pulse rate signal 

(A+B) with a period and capacity double that of the input signals. The rate multiplier 

(RM) converts the input into a pulse rate before sending it to the pulse rate adder. The 

output of the pulse rate adder is then connected to one input of the RC circuit. Once the 

output of the RC circuit, Z, reaches a stable state, the value of Z is equal to the sum of A 

and B. 

 

Fig. 66 addition of two pulses A and B. 
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Fig. 67 Blocks connected for addition A+B = Z. 

 

6.2.3 Pulse rate integrator.  

The counter is a special case of an accumulator, adding only a count of unity at each 

operation. Consider a counter with an input pulse rate signal (X)r, counting a total of N 
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input pulses in T seconds, where the nth pulse has a period tn. The count displayed by the 

counter will be: 

𝑇𝑁

∑ 𝑡𝑛
𝑁
𝑛=1

=  𝑇 𝐴𝑣𝑔(𝑋)𝑟 =  ∫(𝑋)𝑟

𝑇

0

𝑑𝑡 

Where 𝐴𝑣𝑔(𝑋)𝑟 is the average value of the signal (X)r over time T. Thus, a counter 

calculates the integral over time of the input pulse rate and converts it to a parallel coded 

signal. Fig.68 illustrates an example of a linear differential equation. The solution can be 

obtained through integration using the Reverse Counter and then multiplied by a Rate 

Multiplier.  

Fig. 68 Blocks connected for Linear Differential Equations. 
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6.2.4 System of nonlinear equations 

I have further expanded the concept to achieve equilibrium between the inputs of two RC 

circuits to solve equations with two unknowns. Fig.69 illustrates a pulse rate system for 

solving the equations x + y = B and xy = A, where A and B are known constants, and x 

and y are unknowns. When both RC circuits reach equilibrium, meaning the output of 

both RC circuits satisfies both equations, the unknowns x and y are determined. 

CLK fc

1/2PCLK fc

Y

C

 RM4 

Capacity: Px

Y

C

 RM1 

Capacity: P

A

Y

C

 RM2 
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Y
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L

C+

C-

 RC1 

CLK fc

L

C+

C-

 RC2 

Y
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 RM1 

Capacity: P

B

X

Y  

Fig. 69 the circuit to solve nonlinear system of two algebraic equations x + y= B, x*y= A. 

6.3 Implementation using memristor imply gates 

6.3.1 Implement RM with imply gates. 

The design goal for my system, which utilizes memristors, is to maintain the functionality 

of the pulse-rate logic. The binary rate multiplier is a circuit that produces a 

programmable number of pulses within a specified window of cycles. To convert the rate 

multiplier to memristor logic, it is essential to comprehend the fundamental behavior of 

the rate multiplier. Fig. 70 illustrates the basic behavior logic of a 3-bit rate multiplier. 
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Fig. 70 the basic behavior of 3-bit Rate Multiplier. 

In Fig.71, the circuit of the Rate Multiplier can be broken down into three components: 

the counter, the pulse generator, and the glitch-free part. The counter is a binary n-bit 

synchronous up counter implemented using sequential JK flip-flop logic. The pulse 

generator can be constructed using two levels of NAND gates. The first level generates a 

single-bit pulse, and the second level multiplies the single bits together. The glitch-free 

part is composed of a latch logic and an AND gate. It is used to eliminate glitches within 

the window of cycles. The first two parts generate the programmable number of pulses. 

Therefore, the focus of converting to a memristor circuit is on the counter and the pulse 

generator, as shown in Fig.71. A N-bit counter is constructed using N submodules, each 

composed of an AND gate and a JK flip-flop. 

 

Fig. 71 The rate generator and one bit of submodule from the counter. 
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In the circuit of Rate Multiple shown in Fig. 71, the propagation input Prop_In signal is 

connected to the previous stage propagation out Prop_Out signal. The Pulse_Out signal 

generates the single bit pulses by gating the bit x of the counter and the corresponding 

reverse order of the programmed value K, n-1-x. For example, if the current order of the 

counter is 𝑄0, then 𝑃𝑢𝑙𝑠𝑒_𝑂𝑢𝑡 = 𝑄0  𝑃𝑟𝑜𝑝_𝐼𝑛 𝐾𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . The Pulse-rate signal is generated 

by applying NAND operation on all single-bit pulses together.  

The JK Flip Flops in the counter operate in toggle mode that is J = 1, K = 1or mode that 

is equivalent to a T Flip Flop. Therefore, the variables J and K in the JK Flip Flop always 

keep the same value, and these two variables can be regarded as one variable JK 

(Prop_In).  

In the memristor system, there is no flip flop with a clock be needed because one of the 

basic functions of the memristor is keeping the value until the control voltage changes. 

So, when I convert, I ignore the clock signal in the JK Flip Flop. According to the 

function of JK Flip Flop, the relationship of the Prop_In and 𝑄𝑛, the new output of the JK 

Flip Flop can be inferred. Assuming the output value kept in the memory is Q, the truth 

table of the JK Flip Flop is as in table 19. 

Input Current Memory Next Memory Description 

JK (Prop_In) Q 𝑄𝑛 

0 0 0 Memory no change 

0 1 1 

1 0 1 Toggle (Q̅) 
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1 1 0 

Table 19 The Excitation table of the JK Flip Flop 

As shown in the truth table, when 𝐽𝐾 = 0, 𝑄𝑛 = 𝑄; when 𝐽𝐾 = 1, 𝑄𝑛 = 𝑄̅. The behavior 

function is the same as a multiplexer. So, I convert the JK Flip Flop to a multiplexer. 

Here is the transform diagram of JK Flip Flop shown in Fig.72. 

 

Fig. 72 The transform diagram of JK Flip Flop. 

Therefore, the transform equation of the JK Flip Flop is: 

𝑄𝑛 = 𝐽𝐾𝑄̅ + 𝐽𝐾̅̅ ̅𝑄 = 𝐽𝐾̅̅ ̅ + 𝑄̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐽𝐾 + 𝑄̅̅̅ ̅̅ ̅̅ ̅̅ ̅ 

The transform equation can be transformed to the imply-gate form: 

𝑄𝑛 = (𝑄 → 𝐽𝐾) → ((𝐽𝐾 → 𝑄) → "0") 

The Prop_Out signal is generated from an AND gate. However, the point to be taken care 

of is that the inputs of the AND gate are Prop_In (JK) and output 𝑄 in the recent memory, 

not the next states of them. So, the transform circuit of the AND gate should be put in the 

front of the multiplexer. 

The Prop_Out signal is represented by 𝐽𝐾𝑛 (the next state of JK variable). Here is the 

transform equation of the AND gate: 

𝐽𝐾𝑛 = 𝐽𝐾𝑄 = (𝐽𝐾̅̅ ̅ + 𝑄̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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The transform equation can be transformed to the imply-gate cascade form: 

𝐽𝐾𝑛 = (𝑄 → (𝐽𝐾 → 0)) → 0 

The pulse generator consists of two NAND gates. The First NAND gate is gating the 

Prop_In signal and the current order of the counter  𝑄𝑥  and the reverse order of the 

programmed value 𝐾𝑛−1−𝑥. Similarly, the counter bit 𝑄𝑥 and the Prop_In signal are the 

ones store in the current memory, not the next states of them.  

The transform equation of the Pulse_Out is:  

𝑃𝑢𝑙𝑠𝑒_𝑂𝑢𝑡 = (JK 𝑄𝑥
̅̅̅̅  Kn−1−x)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐽𝐾̅̅ ̅ + 𝑄𝑥 + Kn−1−x

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

The transform equation can be transformed to the imply-gate form: 

𝑃𝑢𝑙𝑠𝑒_𝑂𝑢𝑡 = Kn−1−x → (𝐽𝐾 → 𝑄𝑥) 

The final Pulse-Rate signal is generated by gating all the single bit pulse signal together. 

For n-bit Rate Multiplier, there are n-single bit pulse signal produced. The transform 

equation of the final Pulse-Rate signal is 

Pulse − Rate signal = pulse0 pulse1 … pulse𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  pulse0

̅̅ ̅̅ ̅̅ ̅̅ +  pulse1
̅̅ ̅̅ ̅̅ ̅̅ + ⋯ + pulse𝑛−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

The transform equation can be transformed to the imply-gate form: 

Pulse − Rate signal = pulse𝑛−1 → (… (pulse1  → (pulse0  → 0)) … ) 

From the entirety aspect, the unit behavior circuit can be converted to another behavior 

circuit without clock. This circuit is realized as in the Fig. 73. 



124 
 

 

Fig. 73 the transform unit behavior circuit without clock. 

From the transform unit behavior circuit, I can calculate the Qn signal, JK_n signal and 

pulse signal at the same time. After generating the pulse signal, I can do a calculation 

pulse → out one time. I use the notation with one square and one circle to represent the 

imply gate. The circle is used to invert the connected signal. For example, as shown in 

Fig.74, the output of the imply gate is 𝐴 ̅ + 𝐵. 

 

Fig. 74 An example for the imply gate representation. 

I use one square with text ‘0’ as the clear gate, which means clear the signal as 0. Here is 

an example. 
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Fig. 75 clear gate symbol. 

Taking a 3-bit Rate Multiplier as an example, Fig.74 and Fig.75 are the memristor-level 

circuit of Rate Multiplier.  Each figure is one unit circuit. The line JK is the Prop_In 

signal. The lines  {Q2, Q1, Q0} are the counter signal. The lines  {K2, K1, K0} are the 

Programmed number signal. The lines  {PL2, PL1, PL0} are the produced single-bit pulses. 

The lines  {W1, W2, W3} are inter-variables. The line out is the output of the Rate 

Multiplier, which corresponds to the produced Pulse-Rate signal.  

 

Fig. 76 The unit circuit of 3-bit Rate Multiplier for bit 0 position. 



126 
 

 

Fig. 77 The unit circuit of 3-bit Rate Multiplier for bit 1 position. 

 

 

Fig. 78 The unit circuit of 3-bit Rate Multiplier for bit 2 position. 
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6.3.2 Implement RC with imply gates 

To convert the Rate Counter to the memristor-level system, I must understand the basic 

functionality of Rate Counter. Rate Counter is a counter according to the two input 

signals. Here is the black block of the Rate Counter to display the basic functionality of 

the Rate Counter. 

 

Fig. 79 the black block of the Rate Counter. 

As Fig.79 shown, the inputs of the Rate Counter consist of two single-bit selected signals, 

C+, C-, and current count value X; the output is the count-up or count-down value. The 

basic functionality can be described as if C+ > C-, then Z = X+1; if C+ < C-, Z = X-1; if 

C+ = C-, the output stabilizes, Z = X. Therefore, the truth table of the Rate Counter is as 

below shown: 

Selected Signals Output 

C+  C-  Z 

0 0 X 

0 1 X - 1 

1 0 X + 1 
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1 1 X 

Table 20 the truth table of Rate Counter. 

 The transform starts from building the behavior circuit of Rate Counter. To 

realize the counter, I build the sequential JK Flip Flop. When the input of JK (Prop_In 

signal) is 1 or the value of gating the current counter and Prop_In signal, the logic is a 

binary synchronous up counter. If the input of JK is 1 or the value of gating the invert 

current counter and Prop_In signal. If the input of JK is 0, according to the basic function 

of JK Flip Flop, every bit of the counter keeps its value. The Fig.80 present the basic 

structure of the binary up counter and the binary down counter. 

 

 

Fig. 80 the 3-bit binary down and up counter. 

The Fig.81 presents the entire behavior of the Rate Counter. Except the least bit, the unit 

circuit can be divided into three parts: the up-down selector, the count-remained selector 

and the JK Flip Flop. The up-down selector is to determine the machine counts to up or 

down. The count-remained selector is to determine if the machine keep its value. The JK 

Flip Flop is the basic structure of the counter.  
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Fig. 81 the basic behavior circuit of the 3-bit Rate Counter. 

For the least bit, both Prop_In signals of the binary up counter and the binary down 

counter are logic “1”. So, it is not necessary to build a up-down selector for the least bit. 

Except the least bit, if C+ = 1, C- = 0, choose the AND gate which gating the Prop_In 

signal JK and the current bit of the counter X; if C+ = 0, C- = 1, choose the AND gate 

which gating the Prop_In signal JK and the invert current bit of the counter 𝑋̅. Set the 

output of the selector as the JK for the counter, JKc. The below Fig.82 is the unit circuit 

of the up-down selector. 

 

Fig. 82 the behavior circuit of the up-down selector. 

Set C+ = 1 and C- = 0 as condition 0, the equation can be:  

C0 =  CR̅̅̅̅  CP =  CR +  CP̅̅̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Set C+ = 0 and C- = 1 as condition 1, the equation can be:  
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C1 =  CR CP̅̅̅̅ =  CR̅̅̅̅ + CP̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

The JK for the counter should be 

JKc = C0 X JK + C1 X̅ 𝐽𝐾 = (C0̅̅̅̅ + X̅ + JK̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) + (𝐶1̅̅̅̅ + 𝑋0 + 𝐽𝐾0̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

The count-remained selector is to determine if the machine keep its value. If the signal 

C+ and signal C- have the same value, the selector choose logic “0” for the JK Flip Flop 

to keep the value in the memory. If the signal C+ and signal C- have the different value, 

the selector chooses the JK for the counter, JKc.  

Set CP = CR = 0 or CP = CR = 1 as condition 2, the equation can be:  

C2 =  CRCP + CR̅̅̅̅  CP̅̅̅̅  =  (CR̅̅̅̅  +  CP̅̅̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  +  (CR +  CP̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

The new JK should be 

JKn = C2 gnd + 𝐶2̅̅̅̅  𝐽𝐾𝑐 

The transform for the JK Flip Flop is similar with the transform of Rate Multiplier. The 

JK Flip Flop can be transformed to a multiplexer. The equation can be written as 

𝑋𝑛 = 𝐽𝐾𝑋̅ + 𝐽𝐾̅̅ ̅𝑋 = (𝐽𝐾̅̅ ̅ + 𝑋̅̅ ̅̅ ̅̅ ̅̅ ̅) + (𝐽𝐾 + 𝑋̅̅̅ ̅̅ ̅̅ ̅̅ ̅)  

Finally, I can summary the transform process: First, use the input C+, C- to figure out 

every condition, C0, C1, C2. Then, calculate out the JKc. Next, figure out the new JK, 

JKn. Taking 3-bit Rate Counter as an example, the below figures are the memristor-level 

circuit of Rate Counter. The lines {X2, X1, X0} are the value store in the memory by JK 

Flip Flop. The line CP is the C+ signal. The line CR is the C- signal. The 
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lines {C2, C1, C0} are the three condition I need. The lines {JK2, JK1, JK0} are the Prop_In 

signals for each bit. The lines {W1, W2, W3, W4} are the inter variables. 

 

Fig. 83 Calculating for all selected condition C0, C1 and C2 part of the memristor-level circuit of 3-bit Rate 
Counter. 
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Fig. 84 Calculating the JK for each bit part of the memristor-level circuit of the 3-bit Rate Counter. 

 

 

Fig. 85 Calculating the JKn for each bit part of the memristor-level circuit of the 3-bit Rate Counter. 
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Fig. 86 Calculating the new X for each bit part of the memristor-level circuit of the 3-bit Rate Counter. 
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Fig. 87 Block diagram for hybrid memristor circuit for pulse rate adder. 
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6.4 Design of pulse rate system with memristors FPGA 

A cascade of imply gates is used to implement a pulse rate computing system with a 

memristor-CMOS hybrid circuit, as shown in Fig.87. The green block represents the 

memristor crossbar, which performs the RM and RC operations. The white blocks are the 

CMOS circuit, which controls the timing and programming of the memristor FPGA. 
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Chapter 7 Conclusion 

7.1 Related Work and Contributions  

7.1.1 Quantum-based algorithm for generalized Ashenhurst-Curtis decomposition. 

7.1.1.1 Related work 

Early functional decomposition algorithms relied on decomposition charts [7], but these 

were later replaced by cube representations [8]. This change led to the creation of 

algorithms based on cube array operations [8]. However, as the size of decomposition 

charts and cube representations increased rapidly, these algorithms could no longer 

handle large practical data effectively. More recent solutions for functional 

decomposition include Binary Decision Diagrams (BDDs) [51] and formulating the 

problem as a Satisfiability (SAT) solving problem [52], but both have limitations. BDDs 

can become large when representing Boolean functions, particularly for functions with 

multiple values or incomplete specifications. On the other hand, the SAT approach works 

well for large functions with up to 300 input variables but only applicable to completely 

specified functions which makes it not usable for machine learning. In addition, it cannot 

handle multi-valued functions.  

7.1.1.2 My contribution 

To surpass the limitations of BDD and SAT methods in handling large functions with 

multiple values and incomplete specified functions, a new quantum algorithm for 

generalized Ashenhurst-Curtis decomposition is proposed. This algorithm leverages the 

exponential speedup provided by Grover's search algorithm to solve larger functions 
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effectively. This approach guarantees an exact minimum solution with sufficient number 

of qubits on a quantum computer. The number of qubits used is proportional to the size of 

the input function. The decomposition technique that is proposed in this dissertation is 

versatile, capable of handling both fully and partially specified functions, as well as 

functions with single and multiple outputs. 

A systematic methodology is presented for the design and construction of quantum 

oracles for finding the minimum-cost decomposition, using partitions to represent the 

projective minterms and function output. It is for the first time that partition calculus is 

considered for constructing quantum oracle for Grover’s Algorithm. This represents a 

new direction in the field of quantum oracle design and Quantum Machine Learning.  

7.1.2 A new quantum algorithm for vertex graph coloring based on domination to solve 

the column multiplicity problem.  

7.1.2.1 Related work 

The column multiplicity in a chosen bound set is vital to the success of functional 

decomposition. A significant portion of the program's run time is dedicated to column 

minimization, making it imperative to find a solution that is both fast and effective. 

Graph coloring for functional decomposition was first introduced by Muzio and 

Wesselkamper [92] and Perkowski [93], with recent advancements leading to more graph 

coloring-based approaches [111]. Perkowski introduced a domination-based graph 

coloring heuristic and demonstrated that exact graph coloring is not necessary for high-

quality functional decomposition, particularly in data mining applications [94]. He 

showed that a new heuristic graph coloring algorithm can yield results of comparable 
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quality to those produced by an exact graph coloring algorithm in functional 

decomposition. 

7.1.2.2 My contribution 

My new quantum graph coloring algorithm can be used for Ashenhurst-Curtis 

decomposition and many problems in Electronic Design Automation and robotics. 

Inspired by the domination-based Graph coloring heuristic [94], a hybrid quantum 

algorithm for solving the Column Multiplicity Problem is developed. The quantum oracle 

for the domination-based graph coloring was designed using functional quantum circuit 

blocks that were developed for the Ashenhurst-Curtis decomposition. The hybrid 

algorithm was implemented using Quipper, a Haskell-based language that supports both 

classical and quantum programming. The proposed approach provides a promising 

example for hybrid quantum algorithms in the future.   

7.1.3 Implementation of memristive finite state machines  

7.1.3.1 Related work 

Several studies have proposed frameworks and architectures for system-level design with 

memristors, as seen in the works of Rahman [74], Tissari [75], and Xie [84]. Rahman and 

Tissari propose configurable logic architectures akin to conventional FPGAs, while Xie's 

architecture features a fixed logic unit similar to an ASIC. However, the implementation 

of memristive finite state machines (FSMs) has received limited attention, as highlighted 

by a few works such as Ferrandino [112]. Conventional state assignment (SA) 

techniques, such as KISS [98] and NOVA [99], which use symbolic minimization, are 

not suitable for memristive FSMs. Heuristic-based SA techniques for multi-level circuits, 
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such as MUSTANG [100], JEDI [101], and MUSE [102], which aim to maximize the 

factoring of expressions to reduce the number of literals in the resulting circuit, may not 

minimize the circuit cost for memristive FSMs. 

7.1.3.2 My contribution  

A new concept to the design of memristor-based field-programmable gate arrays (FPGAs) 

has been proposed [74], that I am also the co-author of. Here this approach is extended to 

memristive finite state machines (FSM). To optimize the cost for the memristive FSM, a 

state assignment (SA) algorithm was developed based on the selected memristor 

architecture [74] to minimize the cost of the memristor circuit in various memristor 

realization structures. This is a completely new approach to the design of memristive 

state machines. 

7.1.4 Development of Memristor-based Components for a Pulse Rate System 

7.1.4.1 Related work 

The pulse rate system [92] is a computational approach that leverages the frequency of a 

signal's occurrence, rather than its electrical characteristics, to encode and process 

information. Taha and Perkowski [91] developed a dynamic solver of algebra and 

differential equations that utilized pulse rate representation and a feedback loop system 

based on a classical sequential circuit. The pulse rate computer can perform two operand 

multiplication, division, and exponential computation. 

7.1.4.2 My contribution 

I extended the pulse rate design methodology to solve the systems of two arbitrary 

algebraic and differential equations. A few more operations, such as addition and 
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integration over time, are added to the previous methodology. I illustrated and simulated 

this methodology with the example of a new pulse rate computer that can solve systems 

of simple algebraic and differential equations. Subsequently, the basic components of the 

pulse rate computer are converted to a cascade of imply-gates, which is realized in 

memristive FPGAs. My approach represents the first attempt to implement a pulse rate 

system using memristor circuits, offering reduced circuit area and lower power 

consumption, albeit at the cost of reduced speed. These implementations have the 

potential to be ideal solutions for embedded systems that operate in low-power 

environments and have low computing performance requirements. 

7.2 Conclusion  

In this research, I created two general approaches to synthesize combinational and 

sequential circuits in two new technologies: quantum computing and memristors. In the 

first area, I developed two quantum algorithms based on Grover’s algorithm. Utilizing a 

bottom-up approach, I designed various quantum oracles to tackle functional 

decomposition problems. My oracle design methodology was applied to the 

decomposition and graph coloring problems, revealing its potential applications and 

impact on various optimization problems. I contend that the most significant contribution 

of this study lies in the emerging field of Quantum Machine Learning, as my method 

differs from previous quantum learning algorithms. A notable distinction between the 

applications of logic synthesis and machine learning is that the functions employed in the 

latter tend to have a larger number of input variables, a limited number of positive or 

negative samples, and a considerable number of "don't cares." This feature makes my 
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method more suitable for machine learning than most previous approaches based on 

decomposition. Furthermore, functions in Machine Learning often have multi-valued 

inputs, making my proposed decomposition method particularly effective for handling 

strongly unspecified functions. My methods can be easily extended to incompletely 

specific multi-value functions. This opens the possibility for the development of a new 

area of Quantum Machine Learning, specifically functional decomposition-based 

quantum machine learning. In the second application area, I developed two original 

approaches to systematically design memristive circuits and specifically memristive finite 

state machines and sequential pulse rate systems. My algorithm to design and encode 

memristive automata give better result than several encoding algorithms because it takes 

into account of optimal memristive circuit synthesis. In another contribution, I developed 

a memristor-based pulse rate computing system utilizing a set of pulse rate sequential 

circuit components. The system represents numbers with sequences of pulses, simplifying 

the circuit required to perform algebraic operations such as multiplication and differential 

equations, resulting in a reduction of power consumption and circuit size. 
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