
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-18-2023

Comparing the Performance of Different Machine Comparing the Performance of Different Machine

Learning Models in the Evaluation of Solder Joint Learning Models in the Evaluation of Solder Joint

Fatigue Life Under Thermal Cycling Fatigue Life Under Thermal Cycling

Jason Scott Ross
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Mechanical Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Ross, Jason Scott, "Comparing the Performance of Different Machine Learning Models in the Evaluation
of Solder Joint Fatigue Life Under Thermal Cycling" (2023). Dissertations and Theses. Paper 6358.
https://doi.org/10.15760/etd.3425

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6358
https://doi.org/10.15760/etd.3425
mailto:pdxscholar@pdx.edu

Comparing the Performance of Different Machine Learning Models in the

Evaluation of Solder Joint Fatigue Life Under Thermal Cycling

by

Jason Scott Ross

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Mechanical Engineering

Thesis Committee:
Sung Yi, Chair
Hormoz Zareh
Chien Wern

Portland State University
2023

© 2022 Jason Scott Ross

Abstract

Predicting the reliability of board-level solder joints is a challenging process for the

designer because the fatigue life of solder is influenced by a large variety of design

parameters and many nonlinear, coupled phenomena. Machine learning has shown

promise as a way of predicting the fatigue life of board-level solder joints. In the

present work, the performance of various machine learning models to predict the

fatigue life of board-level solder joints is discussed. Experimental data from many

different solder joint thermal fatigue tests are used to train the different machine

learning models. A web-based database for storing, sharing, and uploading data re-

lated to the performance of electronics materials, the Electronics Packaging Materials

Database (EPMD), has been developed and used to store and serve the training data

for the present work. Data regression is performed using artificial neural networks,

random forests, gradient boosting, extreme gradient boosting (XGBoost), and adap-

tive boosting with neural networks (AdaBoost). While previous works have studied

artificial neural networks as a way to predict the fatigue life of board-level solder

joints, the results in this paper suggest that machine learning techniques based on

regression trees may also be useful in predicting the fatigue life of board-level solder

joints. This paper also demonstrates the need for a large collection of curated data

related to board-level solder joint reliability, and presents the Electronics Packaging

Materials Database to meet that need.

i

Dedication
I dedicate this to Kaitlyn. Thank you for your love, support, kindness, patience,

and understanding.

ii

Table of Contents

Abstract i

Dedication ii

List of Tables v

List of Figures vi

Glossary viii

1. Introduction 1

2. Failure mechanisms of board-level solder joints 8

3. Data Sources 12

4. Feature Selection 14

5. Regression 17
5.1. Data Retrieval . 18
5.2. Data Pre-processing . 18

5.2.1. Missing parameter imputation 19
5.2.2. Data point bootstrapping . 19
5.2.3. Feature Selection . 20
5.2.4. Missing Value Rejection . 20
5.2.5. Small Category Rejection . 21
5.2.6. Encoding categorical features 21
5.2.7. Scaling numerical features . 22

5.3. Model Evaluation . 22
5.4. Models . 23

5.4.1. Decision Trees . 23
5.4.2. Random Forest . 25
5.4.3. Gradient Boosting . 26
5.4.4. Extreme Gradient Boosting 28
5.4.5. Artificial Neural Network . 29
5.4.6. AdaBoost . 33

6. Results 35

7. Conclusions 59

iii

8. References 60

Appendix A. Computing parameters of the Weibull distribution 74

Appendix B. Database architecture 77

Appendix C. Plot Digitization 84

Appendix D. Data Values 89

Appendix E. Nested K-Fold Cross-Validation 96

Appendix F. Backpropagation 103

iv

List of Tables

5.1. Parameter tuning values for Random Forest. 26
5.2. Parameter tuning values for Gradient Boosting and Extreme Gradient

Boosting . 28
5.3. Examples of activation functions used in neural networks. 30
5.4. Parameter tuning values for artificial neural network. 33
5.5. Parameter tuning values for AdaBoost with Neural Network 34

6.1. Hyperparameter combinations used for each fold for the neural network
model. 37

6.2. Hyperparameter combinations used for each fold for the AdaBoost model 37
6.3. Hyperparameter combinations used for each fold for the random forest

model . 38
6.4. Hyperparameter combinations used for each fold for the gradient boost-

ing model . 38
6.5. Hyperparameter combinations used for each fold for the extreme gra-

dient boosting model . 38
6.6. % MAE for different models for the least difficult to predict, median

difficulty, and most difficult to predict experiments. 40

v

List of Figures

2.1. A typical failure rate plot plotted with a transformation of the form
fpxq “ logpxq on the horizontal axis and gpyq “ log p´ logp1 ´ yqq on
the vertical axis. Data was generated for illustration purposes only. . 11

2.2. Top: die and substrate at ambient temperature. Bottom: die and sub-
strate expand different amounts when heated resulting in large shear
strains developed in solder balls. 11

3.1. Example of a BGA solder grid. A 4x5 array, with 3 grid positions
unpopulated. The number of pad columns is 4; the number of pad
rows is 5; the number of pads is 17. 13

4.1. Factors influencing the reliability of solder joints (Yi and Jones 2019),
adapted. 15

5.1. Model training and evaluation workflow 18
5.2. Example decision tree which predicts vehicle fuel efficiency from vehicle

weight and vehicle horsepower. 24
5.3. Illustration of artificial neural network consisting of n´1 dense hidden

layers with dropout. 32

6.1. Distribution of % errors of fatigue life. σ is the standard deviation of
% error. “95% CI” is the 95% confidence interval for % error. 36

6.2. Average % error computed for each experiment. “Experiment Id” cor-
responds with the “Id” column in Table D.1. 39

6.3. Random forest regression on least difficult experiment to model (Ricky
Lee et al. 2002). 41

6.4. Gradient boosting regression on least difficult experiment to model
(Ricky Lee et al. 2002). 42

6.5. Extreme gradient boosting regression on least difficult experiment to
model (Ricky Lee et al. 2002). 43

6.6. Artificial neural network regression on least difficult experiment to
model (Ricky Lee et al. 2002). 44

6.7. AdaBoost regression on least difficult experiment to model (Ricky Lee
et al. 2002). 45

6.8. Random forest regression on median modeling difficulty experiment
(T.-K. Lee et al. 2010). 46

6.9. Gradient boosting regression on median modeling difficulty experiment
(T.-K. Lee et al. 2010). 47

vi

6.10. Extreme gradient boosting regression on median modeling difficulty
experiment (T.-K. Lee et al. 2010). 48

6.11. Artificial neural network regression on median modeling difficulty ex-
periment (T.-K. Lee et al. 2010). 49

6.12. AdaBoost regression on median modeling difficulty experiment (T.-K.
Lee et al. 2010). 50

6.13. Random forest regression on most difficult experiment to model (Syed
et al. 2008). 51

6.14. Gradient boosting regression on most difficult experiment to model
(Syed et al. 2008). 52

6.15. Extreme gradient boosting regression on most difficult experiment to
model (Syed et al. 2008). 53

6.16. Artificial neural network regression on most difficult experiment to
model (Syed et al. 2008). 54

6.17. AdaBoost regression on most difficult experiment to model (Syed et al.
2008). 55

vii

Glossary

N The number of examples in a set.

X An array of unlabeled examples.

xi An unlabeled example indexed by i.

x An unlabeled example.

y An array of labels.

ŷ An array of predictions.

ŷi A single prediction with index i.

ŷ A single prediction.

yi A single label with index i.

y A single label.

Activation Function A function applied to the output of a neuron in a neural
network, often to change a linear response into a nonlinear response.

Feature An input variable to a machine learning model.

Hyperparameter A parameter used to control the training process of a machine
learning model. Examples include maximum depth of a decision tree, or number
of neurons in an artificial neural network.

Label A measured “result” associated with an observation, e.g. if pressure and
temperature are used to predict wind velocity, a measured wind velocity would
be a “label”.

Labeled Example A correlated set of one or more features and a label correspond-
ing with a single observation, e.g. if pressure and temperature are used to
predict wind velocity, a correlated set of measured pressure, temperature, and
wind velocity would be a “labeled example”.

Learner A machine learning model, usually in the context of an ensemble of several
models.

Loss Function A function which takes a label and a prediction and returns a positive
scalar value which quantifies the error.

viii

Prediction A predicted “result” associated with an observation as produced by a
machine learning model.

Unlabeled Example A collection of one or more features corresponding with a
single observation, e.g. if pressure and temperature are used to predict wind
velocity, a correlated set of measured pressure and temperature would be an
“unlabeled example”.

Weibull Distribution A probability distribution often used to model the reliability
of mechanical components.

ix

1. Introduction

The design of board-level solder joints is a major factor influencing the cost, re-

liability, and sustainability of electronic devices. Board-level solder joints provide a

mechanical, electrical, and thermal interface between the printed circuit board (PCB)

and various electronic packages. Due to differences in the coefficient of thermal ex-

pansion between the package and the PCB, repetitive mechanical strains develop in

the solder connection which can lead to fatigue failure. A failed connection can cause

failure of the entire device, with potentially catastrophic consequences: for instance,

cracking of a solder joint initiated a sequence of events that lead to the total loss of an

Airbus A320-216 aircraft and all passengers and crew (Komite Nasional Keselamatan

Transportasi 2014). As electronic devices become smaller and more interconnected,

and as these devices are increasingly relied on for safety-critical applications, the pre-

diction of fatigue life of board-level solder joints becomes an increasingly important

problem.

Multiple factors influence the reliability of board-level solder joints including solder

material, under-bump metallurgy, electrical parameters, and physical dimensions.

Packaging engineers must specify design parameters from a large configuration space

in order to ensure that board-level solder joints will meet the reliability requirements

for the product. The choice of design parameters can be very difficult for the designer

because different design parameters can interact in unexpected and complex ways.

One example of how different design and service parameters interact is the process

of formation and growth of intermetallic compounds (IMCs). IMCs form due to

chemical reactions between the solder alloy and the solder pad metallization layers.

1

The formation of IMCs in a solder is necessary in order to achieve wetting of the

solder to the base metal (Tegehall 2006). However, IMC layers are generally brittle,

and fracture is often observed in the IMC layer with lead-free solder alloys (Sona and

Prabhu 2013; Tegehall 2006). IMC growth can also reduce joint strength due to the

formation of Kirkendal voids by diffusion of atoms into the IMCs (Tegehall 2006).

In addition, Z. Huang, Conway, and Thomson (2007) demonstrated that joint scale

influences IMC growth and found that smaller joints have thicker IMC layers. Also,

Hua Zhong and Yi (1999) and Berthou et al. (2009) analyzed how thermal aging and

thermal cycling influenced IMC growth rate and found that thermal cycling can cause

substantial changes in the IMC microstructure. Additionally, the formation of IMCs

is influenced by solder alloy composition, solder pad metallization, and surface finish

(Tegehall 2006). In order to properly manage the formation of IMCs, the designer

must select solder materials, surface treatments, fluxes, and solder process parameters

such that IMCs are able to form during the soldering step but don’t grow too much

afterwards, while considering the thermal environment of the joint in service and the

physical dimensions of the joint. This alone is difficult and requires the consideration

of a large number of factors, but the formation of IMCs is only one of many mutually

interacting mechanisms that must be managed to ensure adequate connection life.

Another phenomenon which can be difficult to predict is the failure mechanism

itself. The failure mechanism of board-level solder joints is often a combination of

plastic fatigue and creep. The rate of change of plastic strain and creep depend on the

load, the elastic modulus, and the creep rate of the material. However, the yield point,

elastic modulus, and creep rate are temperature-dependent. Therefore, the response

to a change in thermal loading is dependent on the thermal load itself and therefore the

response to the thermal load is nonlinear. G. Chen et al. (2019) developed a unified

2

constitutive model for the response of lead-free solder to thermal and mechanical

loads. Their model used 12 empirically-determined material parameters which they

identified for SAC305 solder alloy. Y. Chen, Jin, and R. Kang (2017) investigated

the relation between creep damage and fatigue damage for the prediction of solder

joint life. They proposed a model for combined creep and fatigue damage where each

damage mechanism is summed to compute a total damage. Their model considered

a two-stage creep degradation rate where the rate would increase if the cumulative

damage exceeded a certain threshold. Their model used 10 empirically-determined

parameters for their reliability model in addition to 6 material parameters. Thus, even

knowing the thermally-induced mechanical loading on a solder joint in service, the

prediction of fatigue failure in board-level solder joints involves a number of empirical

constants and solving a nonlinear problem, which presents a significant challenge for

the designer.

Accelerated testing is often used to predict the fatigue life of solder joints. JEDEC

specifies standard testing conditions for accelerated thermal testing (JEDEC Solid

State Technology Association 2009). However, this testing is expensive and time con-

suming. Fatigue testing involves preparing large numbers of specimens by soldering

packages onto PCBs and wiring them in such a way that failure of soldered connec-

tions can be detected (one strategy is to “daisy chain” the connections so that they all

form a continuous series circuit). During accelerated thermal testing, the specimens

are placed inside environmental chambers and subjected to repeated thermal cycling.

This thermal cycling typically takes thousands of hours to complete. Once enough

samples have failed, the designer can interpret the data and plot the fatigue life using

various software.

Machine learning has shown promise as a way to predict the fatigue life of board-

3

level solder joints. Subbarayan, Li, and Mahajan (1996) used a neural network to

optimize solder joint manufacturing process parameters. They used finite element

modeling (FEM) to generate the training data for their neural network. Their finite

element modeling process consisted of two discrete steps: a shape-prediction step

in which the solidified shape of the solder ball was predicted using a finite element

formulation of the minimum energy equation; and a fatigue-life-prediction step in

which the geometry found in the shape-prediction step was analyzed using FEM

and the fatigue life was predicted from a maximum energy dissipation model. Their

neural network consisted of a single hidden neuron, four input neurons, and one

output neuron. They performed a total of 8 finite element simulations to generate

training data. Yi and Jones (2019) used a dense, fully connected neural network

to predict failure rate. They trained their model using physical testing data on

chip resistors from Collins, Punch, and Coyle (2012). They considered different pad

surface finishes in their results. They found that their neural network could predict

the failure rate at a given number of cycles for a given surface finish more accurately

than a Weibull model. Yuan and C.-C. Lee (2020) used recurrent neural networks

and long short-term memory neural networks to predict thermal cycling performance

using training data generated by finite element modeling. They modeled the physical

behavior of the solder using a temperature-dependent, elastic-plastic material model

and predicted failure using accumulated plastic strain. Their data set consisted of

81 finite element model examples. Samavatian et al. (2020) used a novel artificial

neural network topology in which both features as well as convolutional operations

on features were fed into several dense, fully-connected layers to predict thermal

cycling performance. They used a time-temperature-dependent creep-fatigue rainflow

counting algorithm (Samavatian 2020) to predict the fatigue life of solder joints,

4

with training data generated in a finite element modeling program. Their data set

consisted of 450 finite element model examples. T.-C. Chen, Alazzawi, et al. (2021)

used a neural network with 3 dense, fully-connected hidden layers and 50 neurons per

hidden layer with solder joint geometry and thermal cycle parameters as features to

predict the number of cycles to failure. They used the Garofalo-Arrhenius model, a

hyperbolic sine creep constitutive equation of the form

9εcr “ C1 rsinh pC2σqs
C3 e

´C4
T (1.1)

where C1...4 are experimentally-determined constants, σ is the von Mises stress, T is

the temperature, and 9εcr is the creep strain rate. They used a fatigue lifetime model

of the form

Nf “
1

Cεacc
(1.2)

where C is a material constant and εacc is the accumulated creep strain per cycle.

Their analysis considered variations in dwelling temperature, dwelling time, and sol-

der joint volume of ˘20% and two different solder joint shapes. They performed

physical testing on three different solder joint volumes as well as three different tem-

perature ramp rates to validate the results of their FE model. T.-C. Chen, Opulencia,

et al. (2022) followed up upon this analysis by expanding the parameter space to in-

clude more solder alloys and more geometry parameters. This work used a radial basis

neural network (RBNN) with a single hidden layer using a Gaussian radial function

as the activation function. Chou, Chiang, and Liang (2019) used an artificial neu-

ral network trained on examples generated using finite element models with various

upper and lower pad diameters, chip thicknesses, and stress buffer layer thicknesses.

They considered several neural networks with different numbers of hidden layers and

5

neurons per layer. They used an empirical Coffin-Manson plastic strain model of the

form

Nf “ C
`

∆εpleq
˘´η

(1.3)

to predict the fatigue life of the joint where Nf is the cycles to failure, C and η are

empirical constants, and ∆εpleq is the equivalent plastic strain per cycle. Their analysis

only considered SAC305 solder.

To the knowledge of the authors, only Yi and Jones (2019) exclusively used data

from physical testing to train machine learning models to predict board-level solder

joint fatigue life, and, to the knowledge of the authors, only artificial neural networks

have been used to date to predict the performance of board-level solder joints. Tradi-

tional machine learning methods such as decision trees, support vector machines, and

clustering have shown significant promise for data mining tasks (Wu et al. 2008). Ar-

tificial neural networks have become more useful for regression and classification tasks

since 2008, however, this progress has relied on the availability of large, well-labeled

data sets, e.g. ImageNet (Deng et al. 2009; Brunton and Kutz 2019). Traditional

learning strategies have a few advantages over neural networks: they are often faster

to train, they are often less “opaque” in the sense that the importance of different

features may be inspected, and they may handle missing values automatically. While

there exists a wide variety of experimental data related to the reliability of board-level

solder joints in thermal fatigue, there does not yet exist a similar large, well-labeled

data set to facilitate training of more sophisticated machine learning models.

This paper presents a comparison of several different machine learning models ap-

plied to the problem of predicting the fatigue life of solder joints. Traditional machine

learning models based on regression trees are compared with artificial neural networks.

The data set used in this paper was collected from published thermal fatigue testing

6

data. 286 candidate experiments are included in the data set, collected from 48 pa-

pers. To facilitate future research efforts, a web-based database has been developed,

the Electronics Packaging Materials Database, for the collection and dissemination of

data related to the performance of electronics materials.

7

2. Failure mechanisms of board-level solder joints

Various fatigue damage models have been proposed for the purpose of evaluating the

fatigue life of solder joints. These models may be classified by the damage mechanisms

used in the model. Damage mechanisms used in solder fatigue life models include

plastic and creep strain, energy, and damage. One of the most common plastic-strain

models is the Coffin-Manson model which has the general form

∆εp
2

“ ε1
f p2Nfq

c (2.1)

where ∆εp is the plastic strain amplitude, ε1
f is the fatigue ductility coefficient, Nf is

the number of cycles to failure, and c is the fatigue ductility exponent. Energy-based

models typically predict fatigue life based on energy under the stress-strain hysteresis

loop. Damage-based fatigue models are based on fracture, creep, or fatigue damage

mechanisms (W. W. Lee, Nguyen, and Selvaduray 2000).

The failure mechanism considered in this paper is thermal cycling fatigue. In board-

level solder joints, a component is soldered to a substrate where the component and

substrate have different coefficients of thermal expansion (CTE). When the compo-

nent and substrate are subjected to changes in temperature, they expand or contract

at different rates as shown in Fig. 2.2. However, the solder joint mechanically couples

them together. This results in stresses being developed in the solder joint as well as

the package and substrate. The strain in the solder joints due to the thermal load is

approximated by

γ “
up ´ us

ta
(2.2)

8

where γ is the shear strain, up is the displacement of the package due to thermal stress,

us is the displacement of the substrate due to thermal stress, and ta is the separation

between the package and the substrate. There is an implicit relationship between

us and up since the displacement of the package and displacement of the substrate

are coupled by the solder joint. Under assumptions of linear material behavior, the

average shear stress developed in the solder balls is of the form

τ “
Gpαp ´ αsq∆T

taβ

sinh pβxq

cosh pβLq
(2.3)

The parameter β is defined as

β “

d

G pEsts ` Eptpq

EpEstatpts
(2.4)

αp, αs are the coefficients of thermal expansion of the package and substrate, respec-

tively; Ep, Es are Young’s Modulus of the package and substrate, respectively; ta, tp, ts

are the thicknesses of the solder connection, package, and substrate, respectively; L

is half the diagonal dimension of the package; x is the distance to a particular solder

ball where the shear stress is measured; G is the shear modulus of the solder ball/die

attach; and ∆T is the temperature variation.

The material parameters in Eq. (2.3) and Eq. (2.4) are not generally constant, and

in fact E and G can vary significantly within the operating temperature range of

a board-level device. Additionally, the assumption of linear elastic behavior is not

generally satisfied. Large thermal cycles can exceed the elastic limit of the solder,

so the shear stress will not generally be a linear function of the strain. Additionally,

the relation between stresses/strains in the solder joints and the fatigue life of the

joints is difficult to predict, because it depends on many factors including the mi-

9

crostructure of the solder, where the microstructure can be influenced by e.g. alloy

composition, under-bump metallization, flux, reflow temperature, and thermal his-

tory. The Weibull distribution has been shown to be useful for modeling the fatigue

life of solder joints from empirical data. The Weibull distribution uses a hazard rate

ht of the form

hptq “ C1t
C2 (2.5)

which can be understood as a power-law hazard rate where C1 and C2 are constant

parameters and t is a measure of the fatigue life, e.g. time to failure or number of

cycles to failure. The Weibull distribution is more commonly parameterized as

hptq “
β

θ

ˆ

t

θ

˙β´1

(2.6)

such that the parameter θ represents the number of cycles where the reliability is 1
e

and β is a parameter influencing the variability of fatigue life (Johnson, Kotz, and

Balakrishnan 1994). The reliability function is

Rptq “ e´p t
θ q

β

(2.7)

The parameters β, θ may be estimated from experimental data using the procedure

described in Appendix A. A typical failure rate plot approximating a Weibull distribu-

tion generated with random data is presented in Fig. 2.1. The plotted line represents

the failure rate predicted by the Weibull distribution with parameters computed by

a least-squares fit on the data. The slope of the line is related to the parameter β

and the horizontal position of the point F ptq “ 1 ´ 1
e
is equal to the parameter θ.

10

θ

Fatigue Life

0.01

0.05

0.10

0.90

0.99

1− 1
e

F
a
il

u
re

R
a
te

Figure 2.1.: A typical failure rate plot plotted with a transformation of the form
fpxq “ logpxq on the horizontal axis and gpyq “ log p´ logp1 ´ yqq on
the vertical axis. Data was generated for illustration purposes only.

Substrate

Die

Substrate

Die

Figure 2.2.: Top: die and substrate at ambient temperature. Bottom: die and
substrate expand different amounts when heated resulting in large shear

strains developed in solder balls.

11

3. Data Sources

Data was collected from a corpus of research on solder joint fatigue. The data was

stored in an SQLite database and retrieved using a REST API (Fielding 2000). The

SQLite database engine was selected to provide sufficient functionality for research

needs in a reasonable amount of time. Additional details about the database archi-

tecture are described in Appendix B. The data was collected as part of an ongoing

project to produce a public web portal for manufacturers and researchers to store and

query data related to the performance of solder joints. Table D.1 lists the parameters

used in the analysis for each experiment. The procedure for collecting fatigue life

data from research papers is described in Appendix C.

Fig. 3.1 demonstrates how solder grid parameters were recorded. Frequently, pad

arrays are not fully populated and pads are missing from grid locations for e.g. ensur-

ing rotational alignment of the component. When recording information about the

grid array for these components, the recorded number of rows and columns includes

all rows and columns in the grid array whether or not they are fully populated. The

same applies for the width and length of the array.

12

Figure 3.1.: Example of a BGA solder grid. A 4x5 array, with 3 grid positions
unpopulated. The number of pad columns is 4; the number of pad rows

is 5; the number of pads is 17.

13

4. Feature Selection

The choice of which features to include in a machine learning model has significant

effects on the performance of the model. Including more features can improve model

performance by providing more information about each example from which to predict

an accurate label. However, the more features are included, the more ways exist for

spurious correlations in the data to negatively influence the model. In addition,

increasing the number of features may reduce the number of examples that can be

included in the data set because many examples are missing information for some

of the features. Also, increasing the number of features increases model complexity

which can increase the time required to train models. Yi and Jones (2019) identify

factors influencing the life of solder joints (Fig. 4.1). Due to limitations in the available

data, only a subset of these factors could be included in the training data in the

present work. In order to select which features would be included in this study,

the space of all combinations of features in the corpus was exhaustively explored by

training an XGBoost model on each subset of features and scoring it on the entire

data set using hold-one-out cross validation. XGBoost was chosen for this analysis

because it was fast to train and this analysis required exploring a very large number

of combinations. The set of features which were found to perform the best using this

method correspond to well-understood physical mechanisms for solder joint fatigue:

the pad array length lA and width wA are related to L in Eq. (2.3) by the Pythagorean

theorem L “
a

l2A ` w2
A; the solder joint height ta is often strongly correlated with

the pitch, which is the ratio of array size to array count; the physical properties of

the package Ep, αp, tp are usually correlated with the package type and array size; the

14

Reliabil i ty

Flux

Package Dimens ions

Package Ma te r i a l s
S u b s t r a t e M a t e r i a l s

S u b s t r a t e D i m e n s i o n s

Unde r Bump Me ta l l u rgy
Reflow Condit ions

Cur r en t Dens i t y So lde r Dimens ions

So lde r Ma te r i a l s

Sur face F in i sh
Serv ice and Tes t ing Condi t ions

Figure 4.1.: Factors influencing the reliability of solder joints (Yi and Jones 2019),
adapted.

15

physical properties of the solder are correlated with the temperature and the solder

material; and finally, aging time and temperature as well as board surface finish are

known to influence fatigue life (T.-K. Lee et al. 2010; Collins, Punch, and Coyle 2012).

16

5. Regression

Data retrieval, pre-processing, and model evaluation proceeds as illustrated in

Fig. 5.1. Data is retrieved from the database using the REST API. The data is

then pre-processed to clean and transform the data into a structure suitable for each

model. Finally, the models are trained and scored on the pre-processed data.

ML models were trained to predict the logarithm of fatigue life. The logarithm was

used so that the percent error in fatigue life would be minimized. Given a fatigue life

t and a predicted life t̂, the percent error ϵ% is

ϵ% ” 100
t̂ ´ t

t
(5.1)

The error in the logarithm of fatigue life ϵlog is defined as

ϵlog ” log t̂ ´ log t (5.2)

Eq. (5.1) is related to Eq. (5.2) by

ϵ% “ 100eϵlog ´ 100 (5.3)

Inspecting equation Eq. (5.3) shows that if ϵlog is zero, so is ϵ%, furthermore, as ϵlog

increases, so does ϵ%, and as ϵlog decreases, so does ϵ%. Therefore, a model which

minimizes ϵlog should also minimize ϵ%.

17

• Send web request for
experiment entities

Data Retrieval

• Impute missing parameters
• Convert experiment objects
to tables

• Bootstrap fatigue data
points

• Select features
• Reject examples with
missing data

• Reject data with too few
category members

• Perform one-hot or
categorical encoding

• Scale numerical data

Data Pre-processing

• Split data into training and
testing sets in outer K-fold
loop

• For each model, perform
parameter grid search on
the training data in an
inner K-fold loop

• For each model, for each
outer fold, compute the
loss on the testing set

Model Evaluation

Figure 5.1.: Model training and evaluation workflow

5.1. Data Retrieval

The user searches for experiments using the REST API or web interface. Experi-

ments are represented as data structures which contain lists of attribute-value pairs

that represent entries in Table D.1. Experiments for which a fatigue life plot was

reported also contain a table of values taken from the fatigue life plot as described in

Appendix C.

5.2. Data Pre-processing

Data pre-processing consists of operations on the collected data in order to remove

bad or missing data, perform feature selection, and transform and scale the data to

be more suitable for training.

18

5.2.1. Missing parameter imputation

The “parameter imputation” step involves computing parameter values from other

parameter values directly. The following parameters are computed during this step.

Number of pins If an array of pins is rectangular, and the number of rows and

columns are known, the total number of pins is the product of the number of

rows and the number of columns.

Pin array dimension If the number of rows of pins, the number of columns of pins,

and the pitch of the pins is known, then the pin array dimensions are found by

multiplying the pitch by the number of rows or columns.

5.2.2. Data point bootstrapping

For each experiment in the corpus, there are different numbers of samples used to

collect fatigue life data. As a result, the fatigue life plots for each experiment have

different numbers of points. This presents a problem for analysis since an experiment

with a small number of points contributes fewer examples to the data set than an

experiment with a large number of points. This can result in larger errors for ex-

periments with fewer points. To mitigate this issue, the “series bootstrapping” step

bootstraps the data series associated with each experiment to an equal length by

randomly sampling 30 points from the series with equal probability. In this way, each

experiment is represented in equal proportion in the training set. Each point in the

bootstrapped series along with all associated attributes of the given experiment are

joined into a data table listing all experimental attributes as well as fatigue life and

19

failure rate for each data point in the entire corpus. This step results in “flattening”

the (attributes, series) data structures into rows in a data table where each row

is a labeled example and the label is the fatigue life.

5.2.3. Feature Selection

The “feature selection” step selects which attributes are to be included in the

analysis. The features selected in this step are listed in Table D.1.

5.2.4. Missing Value Rejection

For each experiment in the corpus, different experimental attributes are reported.

Frequently, experimental information is completely missing and cannot be computed

from other information about the experiment, e.g. board surface treatment may be

completely unreported. This presents a problem during analysis because the model

used may not allow any missing data, or the model may perform worse if examples

with too much missing data are included in the data set. The “missing value rejection”

step removes rows in the data table where too many values are missing. The number

of values which may be missing depends on the choice of model. For models which

do not have native handling of missing values, e.g. random forests or artificial neural

networks, any row with missing values is removed at this step. All models used except

for XGBoost did not allow any missing values. The XGBoost model rejected rows

where 20% or more of the features were missing.

20

5.2.5. Small Category Rejection

Some experiments in the corpus represent the only known member of a category.

For example, there may be only one experiment which uses a new exotic solder ma-

terial: the performance of this solder material provides no new information about

the performance of other solder materials and vice versa, therefore, including this

material in the data set can only hurt model performance. The “small category rejec-

tion” step removes experiments which include categories that are not represented by

enough experiments. The minimum number of experiments representing a category

was 2.

5.2.6. Encoding categorical features

The machine learning models used in this analysis require numerical data for all

features. Two different strategies were used to handle categorical data. For the XG-

Boost model, categorical features were encoded as integers, e.g. if the feature “package

type” included the variants “BGA”, “FlexBGA”, and “LGA”, “BGA” might be en-

coded as the number 1, “FlexBGA” might be encoded as the number 2, and “LGA”

might be encoded as the number 3. This strategy was used only with the XGBoost

model because XGBoost includes semantics for identifying features as categorical and

interpreting them correctly during training.

Encoding variants of a category as different integers is not a good strategy for

models without semantics for identifying categorical features because the model may

erroneously interpret the relationship between category codes as meaningful. For

example, using the aforementioned encoding strategy, “BGA” and “FlexBGA” may

21

be interpreted as more similar than “BGA” and “LGA”, but in reality, no such

relationship exists. To solve this problem, a strategy known as “one-hot” encoding is

employed. With one-hot encoding, a categorical feature with n variants is represented

by an array of n numbers, where each entry in the array is zero except for the entry

corresponding to the integer value of the category. For instance, using the previous

example for categorical encoding, “BGA” might be encoded as the array r1, 0, 0s,

“FlexBGA” might be encoded as the array r0, 1, 0s, and “LGA” might be encoded

as the array r0, 0, 1s. With the one-hot encoding strategy, no relationship between

the different variants of a categorical feature is implied by the encoding because each

variant is encoded as a separate feature.

5.2.7. Scaling numerical features

With the artificial neural network model, numerical data was scaled to the range

r0, 1s in order to improve model performance. This was done because the range of

values a feature can take does not imply anything about how strongly it influences

the output. By preemptively scaling numerical data, the model did not have to “train

out” built-in biases due to the different value ranges of the different features. This

step was not used for the regression-tree-based models because the range of values a

feature takes does not influence the output of a regression tree.

5.3. Model Evaluation

Nested cross-validation was used to partition the data into multiple training, test-

ing, and validation sets (Refaeilzadeh, Tang, and H. Liu 2009). Nested cross-validation

22

was used because it limits variance in the model due to the arbitrary choice of testing

data; in nested cross-validation, the entire data set is used for testing. In the nested

cross-validation algorithm used, all data from an experiment was treated as an indi-

visible group such that data from a single experiment would appear either entirely in

the training set or entirely in the testing set. The nested cross-validation algorithm

is described in detail in Appendix E.

5.4. Models

Two classes of models were considered. The first class is based on regression trees,

and includes a random forest model, a gradient boosting model, and an XGBoost

model. The second class is based on artificial neural networks and includes a dense

fully-connected neural network model and an AdaBoost model which uses several

dense fully-connected neural networks as base learners.

5.4.1. Decision Trees

Decision trees are a family of machine learning algorithms which make predictions

by traversing a tree, a type of data structure which encodes the relationship between

features and labels as a kind of flowchart. Decision trees work in a similar fashion

to the children’s game “20 questions”. Each parent (i.e. non-leaf) node encodes a

question such as “is the number of pins less than 100”. Each node (except leaves)

contains a split feature and split threshold. In the example “is the number of pins

less than 100”, the split feature would be “number of pins” and the split threshold

would be 100. A prediction is made when a leaf in the tree is reached. The value

23

squared_error = 0.0
samples = 1
value = 26.0

squared_error = 0.0
samples = 1
value = 27.0

weight <= 2607.5
squared_error = 0.25

samples = 2
value = 26.5

squared_error = -0.0
samples = 1
value = 24.2

squared_error = 0.0
samples = 1
value = 37.0

squared_error = 0.0
samples = 1
value = 33.7

horsepower <= 105.0
squared_error = 1.34

samples = 3
value = 25.73

squared_error = 0.0
samples = 1
value = 15.0

weight <= 2117.5
squared_error = 2.72

samples = 2
value = 35.35

weight <= 3695.0
squared_error = 22.61

samples = 4
value = 23.05

horsepower <= 82.5
squared_error = 49.6

samples = 6
value = 27.15

1
Figure 5.2.: Example decision tree which predicts vehicle fuel efficiency from vehicle

weight and vehicle horsepower.

predicted is the value stored in the leaf. Figure Fig. 5.2 shows an example of a decision

tree used to predict motor vehicle fuel economy from weight and horsepower. In this

example, a vehicle with 100 horsepower that weighs 2500 lbs would have a predicted

fuel economy of 26 miles per gallon. Decision trees are constructed using a greedy

algorithm where each node splits the data so that the variance in the subgroups is

minimized. Each node can split the data on any of the features. The best feature

and the best split threshold are chosen for each node. Decision trees are the basis for

some of the ensemble methods used in this paper but not by themselves because they

have a tendency to over-fit the data.

24

5.4.2. Random Forest

Random forests are ensembles of decision trees that are trained on random boot-

strapped training sets prepared from the training data. Traditionally, the boot-

strapped sets are the same size as the training data but only contain observations

from two-thirds of the training data. The remaining one-third is selected by ran-

domly resampling from the first two-thirds. Multiple bootstrapped sets are prepared

in this fashion and each set is used to train a different decision tree (this process of

generating multiple bootstrapped datasets and aggregating them to form a stronger

learner is called bagging). In addition, each decision tree only uses a random subset

of the features to split the data (Breiman 2001).

The random forest algorithm was used to predict fatigue life. Parameters for the

grid-search optimization are listed in Table 5.1. All combinations of the listed pa-

rameters were used in the grid search. “Maximum depth” represents the maximum

depth of the decision trees in the forest, 1 being a stump. The “minimum samples

to split a node” are the number of samples that must be assigned to a node in order

for the node to be a candidate for splitting. The “minimum samples for a leaf” is

the minimum number of samples to be assigned to a leaf after a split is performed

in order for the split to be allowed; if fewer samples would be assigned to a child

leaf then the node will not be split. The “maximum split features” is the fraction

of features that are considered when splitting; a random subset of the features are

chosen if less than 1.

25

Table 5.1.: Parameter tuning values for Random Forest.

Maximum
Depth

Minimum
Samples to
Split a Node

Minimum
Samples
for a Leaf

Maximum
Split Features

1 2 1 0.01
2 4 3 0.046
5 10 10 0.22
13 1
31

5.4.3. Gradient Boosting

Gradient boosting is a machine learning algorithm developed by Friedman (2001)

in which multiple weak learners (e.g. decision trees) are combined into a single strong

learner. Gradient boosting proceeds as follows. First, an initial scalar prediction ρ is

found which minimizes
N
ÿ

i“1

Lpyi, ρq (5.4)

where Lpy, ŷq is a loss function. An example loss function is the squared error

Lpy, ŷq “ py ´ ŷq2, which is minimized when ŷ equals the mean of y. The first

strong learner is defined as

F0pxiq “ ρ (5.5)

Subsequent strong learners are computed greedily using the following algorithm:

Fmpxiq “ Fm´1pxiq ` ρmhpxi; amq (5.6)

where hpxi; amq is a weak learner with parameters am and ρm is a scalar parameter

to be computed.

26

The parameters am in Eq. (5.6) are found by minimizing

N
ÿ

i“1

„

´
BLpyi, Fm´1pxiqq

BFm´1pxiq
´ βhpxi; amq

ȷ2

Thus, the parameters am form a best least-squared approximation of some multiple

β of the gradient of the loss function for all examples in the data set (in other words,

am is a vector which points in the direction along the gradient of the loss function in

parameter space). The scalar parameter ρm is found by minimizing

N
ÿ

i“1

L pyi, Fm´1pxiq ` ρmhpxi; amqq

once the parameters am have been found. In other words, at each step m we compute

parameters am such that weak learner hpx; amq is proportional to a least-squared

approximation of the gradient of the loss function at the previous step. This weak

learner is then scaled by a constant ρm and added to the previous best guess Fm´1

such that the new strong learner minimizes the loss function.

When using the squared error as the loss function, the problem becomes finding

ρm, am which minimize

N
ÿ

i“1

ryi ´ Fm´1pxiq ´ ρmhpxi; amqs
2

i.e., compute ρm, am which best approximate the residuals yi ´ Fm´1pxiq in a least-

squared sense. In other words, when using squared error as the loss function, gradient

boosting trains the weak learners such that each weak learner approximates the neg-

ative of the error of the previous strong learner.

The gradient boosting algorithm used in this paper is from the Scikit-Learn project

27

Table 5.2.: Parameter tuning values for Gradient Boosting and Extreme Gradient
Boosting

Maximum
Depth Learning Rate

Subsample
Ratio

3 0.032 0.1
5 0.01 0.18
10 0.0032 0.32
17 0.56
31 1

(Pedregosa et al. 2011). The model uses regression trees as the weak learners. Squared

error was used as the loss function. The parameters used in the grid search algorithm

to tune the gradient boosting model are listed in Table 5.2. “Maximum depth ”is the

maximum depth of the decision trees used in the ensemble model. “Learning rate”

is a constant value used for ρ in Section 5.4.3. “Subsample ratio” is the fraction of

samples used to fit the individual learners in the ensemble; if this value is less than

1, then stochastic gradient boosting is used.

5.4.4. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) attempts to improve upon gradient boosting

using sparsity-aware algorithms and weighted quantile sketch for approximate tree

learning (T. Chen and Guestrin 2016). XGBoost handles missing values in the data

natively by using a default direction for each node in the tree. If a value is missing,

it is split in the default direction. The best default direction for each node is another

parameter to be trained in the decision tree. Parameters used for the grid search

algorithm to tune the XGBoost model are listed in table Table 5.2.

28

5.4.5. Artificial Neural Network

The concept of the neural network was first developed by McCulloch and Pitts

(1943). Neural networks were initially developed as a way of formalizing the neural

activity in the brain. In their original formulation, neurons would have a binary

activation state (i.e. either “on” or “off”, with no values in between) and each neuron

would be activated by having a sufficient number of impinging neurons being “on”.

Rosenblatt (1958) formulated the perceptron, the first artificial neural network. In

Rosenblatt’s formulation, the perceptron is analyzed as a hypothetical model for the

nervous system. Mathematically, an m-layer perceptron can be written as

ŷ “ fm

´

Amfm´1

`

¨ ¨ ¨A2f1 pA1X ` b1q ¨ ¨ ¨ ` bm´1

˘

` bm

¯

(5.7)

where A1...m are matrix parameters called weights which control the strength of con-

nections between the layers as illustrated in Fig. 5.3 and b1...m are vector parameters

called biases which shift the outputs of each layer. The learning task is to compute

the optimal A1...m and b1...m such that ŷ ´ y minimizes the total loss. The functions

f1...m are called activation functions and serve to transform the output of the neurons.

In a critical difference from McColloch & Pitts’ original formulation where the output

of a neuron was either 1 or 0, the activation of a neuron in a perceptron can take

on any real value. Some of the activation functions should be non-linear in order for

the neural network to be able to approximate non-linear functions. If all activation

functions are linear, e.g. fipXq “ BiX`ci, Eq. (5.7) reduces to a linear function of X

(Brunton and Kutz 2019). Table 5.3 lists some commonly used activation functions.

A key development that has enabled artificial neural networks to be viable is the

29

Table 5.3.: Examples of activation functions used in neural networks.

Logistic fpxq “ 1
1`e´x

Rectified Linear Unit fpxq “ maxpx, 0q

Hyperbolic Tangent fpxq “ tanhpxq

Binary Step fpxq “

#

1 x ą 0

0 x ď 0

Identity fpxq “ x

backpropagation algorithm (Werbos 1974). The backpropagation algorithm is a strat-

egy for automatic differentiation. The core idea of backpropagation is the chain rule

from calculus (Brunton and Kutz 2019). Using backpropagation, the gradient of the

loss function with respect to the weights and biases in Eq. (5.7) is computed and the

loss function can be iteratively minimized by gradient descent. The backpropaga-

tion algorithm is described in more detail in Appendix F. Since minimizing Eq. (5.7)

with respect to the weights and biases is a high-dimensional nonlinear optimization

problem, many iterations are required in order to optimize the weights and biases.

The particular implementation of gradient descent used in this analysis is the Adam

algorithm described by Kingma and Ba (2017). The Adam algorithm uses moving

averages of the gradient and the squared gradient to adjust the step size at each itera-

tion. The algorithm is as follows: a stepsize parameter α, a regularization parameter

30

ϵ, and exponential decay rate parameters β1, β2 P r0, 1q are chosen. Kingma and Ba

(2017) recommend α “ 10´3, β1 “ 0.9, β2 “ 1 ´ 10´3, ϵ “ 10´8 as good default values

for these parameters. An objective function fpθq with parameters to be optimized θ

is required (θ would be e.g. the weights and biases of a neural network). The initial

parameter vector θ0 is given. First and second moment vectors mi,vi are initialized

with m0 “ 0,v0 “ 0. An iteration index t is initialized at t “ 0. At each iteration, a

gradient vector gt is computed:

gt – ∇θft pθt´1q (5.8)

This gradient vector is used to update the biased first moment estimate vector mt

and the biased second moment estimate vt:

mt – β1mt´1 ` p1 ´ β1qgt (5.9)

vt – β2vt´1 ` p1 ´ β2qgt d gt (5.10)

Finally, the updated parameter vector θt is computed

θt – θt´1 ´ α

a

1 ´ β2
2

1 ´ βt
1

m̂t

ϵ `
?
v̂t

(5.11)

where
?
vt denotes the element-wise square root. This process of successively up-

dating θt is repeated until the error reaches a sufficiently small value. One of the

features of the Adam algorithm is that it has a “momentum” because the vectors

mt,vt respond slowly to changes in the gradient gt because the parameters β1, β2 are

usually close to 1.

The particular artificial neural network implementation used in the present paper

31

Input

Dropout Dropout
H1 H2 H3 - Hn-2 Hn-1

Hn

Dropout

𝜑

𝜑

𝜑

𝜑

𝜑

𝜑

𝜑

𝜑

𝜑

𝜑

...

...

...

...

...

𝜑

𝜑

𝜑

𝜑

𝜑

𝜑

Figure 5.3.: Illustration of artificial neural network consisting of n ´ 1 dense hidden
layers with dropout.

is from the TensorFlow software library (TensorFlow Developers 2022). The Adam

optimization strategy was used to minimize the mean absolute error. The learning

rate α for the Adam optimizer was 0.01, the first moment decay rate β1 was 0.9,

the second moment decay rate β2 was 0.999, and the regularization term ϵ was 10´7.

The Rectified Linear Unit (ReLU) activation function was used for neurons in the

hidden layers and the identity activation function was used for the output neuron.

An additional dropout layer was added after each hidden layer as shown in Fig. 5.3.

With dropout, during the training phase, outputs of each neuron are randomly set to

zero at a given probability. Dropout is known to reduce over-fitting during training

(Brunton and Kutz 2019). Table 5.4 lists the sets of hyperparameters used during

the grid search optimization step described in Algorithm 3.

32

Table 5.4.: Parameter tuning values for artificial neural network.

Number of
Neurons

Number of
Layers

Dropout
Ratio

32 1 0
64 2 0.1
128 3 0.2
256 4 0.4
512

5.4.6. AdaBoost

AdaBoost is a family of algorithms developed by Freund and Schapire (1997) which

use an ensemble of weak learners trained on weighted data where the weights are

adjusted based upon errors of previous weak learners in the ensemble. The particular

algorithm used herein is from the Scikit Learn library (Pedregosa et al. 2011) which

implements a particular AdaBoost algorithm developed by Drucker (1997) called

AdaBoost.R2.

In the AdaBoost.R2 algorithm, training is as follows: a vector of sample weights w

is initialized with values w1...N “ 1. For each weak learner t in the ensemble of T weak

learners, do the following: compute a vector p such that pi “
wi

ř

wi
; randomly re-sample

the labeled examples into the arrays
´

yptq,Xptq
¯

such that the probability of the ith

labeled example being included in the set is pi; train the learner t on the re-sampled set
´

yptq,Xptq
¯

; for each labeled example pyi,xiq in the original set, compute prediction

ŷipxiq and loss Li “ L p|ŷi ´ yi|q; compute weighted average loss L̄ “
řN

i“1 Lipi;

compute confidence measure β “ L̄
1´L̄

; update the weights wi Ñ wiβ
p1´Liq; and finally,

repeat this process with the newly-computed weights on the next weak learner t in

the ensemble. For prediction, a weighted median scheme is used as follows: for each

33

Table 5.5.: Parameter tuning values for AdaBoost with Neural Network

Number of
Estimators

Number
of Neurons

Number
of Layers

Dropout
Ratio

1 32 1 0
2 64 2 0.1
5 128 3 0.2

256 0.4

trained learner t, compute prediction htpxiq, order these predictions from smallest to

largest, then find the first t such that
řt

i“1 logp 1
βi

q ě 1
2

řT
i“1 logp 1

βi
q and use that t

as the predictor. The AdaBoost.R2 algorithm thus weighs more “difficult” samples

more heavily in the training process, and weighs learners with lower loss scores more

heavily in the prediction process.

The AdaBoost model used herein used neural networks with the same architecture

discussed in previous sections as the weak learners. The parameters used for the grid

search process for the AdaBoost models are listed in Table 5.5.

34

6. Results

Aggregate performance of the models computed using nested cross-validation is

listed in Fig. 6.1. Each subplot represents the distribution of % error for a different

model. % error is defined as

% Error ” 100
t̂ ´ t

t
(6.1)

where t is the true fatigue life and t̂ is the predicted fatigue life for a given example.

The labels in each subplot list the mean % error, the standard deviation σ, and the

95% confidence interval of % error. For instance, the label for the neural network

model indicates that the mean error of cycles to failure is `3.0%, that the standard

deviation of the error was 43.9%, that 2.5% of the errors were greater than `144%,

and 2.5% of the errors were less than ´63.3%).

For each model, an optimal hyperparameter combination was identified for each

outer fold in the nested K-Fold algorithm. Table 6.1 lists the hyperparameter combi-

nations used for the outer folds for the artificial neural network model. Table 6.2 lists

the hyperparameter combinations used for the outer folds for the AdaBoost model.

Comparing Table 6.1 to Table 6.2, dropout was not used as much in the AdaBoost

model, which may be a result of the AdaBoost model using adaptive bootstrapping

to reduce overfitting in the estimators. It is notable that in the fourth fold, the Ad-

aBoost model only used a single estimator, which is equivalent to the basic neural

network model. However, the number of layers and number of neurons for the fourth

fold are different between the AdaBoost model and basic neural network model. This

35

N
eural

N
etw

ork

Mean: +5.5%
σ : 49.2%

95% CI: (−45.8%,+170%)
A

daB
oost

Mean: +7.0%
σ : 43.6%

95% CI: (−49.3%,+141%)

R
andom

Forest

Mean: +8.9%
σ : 48.2%

95% CI: (−60.3%,+105%)

G
radient

B
oost

Mean: +4.2%
σ : 38.0%

95% CI: (−61.4%,+95%)

−100 −50 0 50 100 150

X
G

B
oost

Mean: −2.5%
σ : 47.8%

95% CI: (−73.7%,+95%)

% Error

1
Figure 6.1.: Distribution of % errors of fatigue life. σ is the standard deviation of

% error. “95% CI” is the 95% confidence interval for % error.

36

Table 6.1.: Hyperparameter combinations used for each fold for the neural network
model.

Dropout
Ratio

Number of
Layers

Number of
Neurons

0.1 1 256
0.2 1 128
0.1 1 128
0 2 64
0 2 256

Table 6.2.: Hyperparameter combinations used for each fold for the AdaBoost model

Dropout
Ratio

Number
of Layers

Number
of Neurons

Number of
Estimators

0 1 256 2
0.1 1 128 2
0 1 128 2
0 2 32 1
0 3 256 5

difference may be a result of the random process used to initialize the weights in

the neural networks. The neural-network-based models all used 3 or fewer layers,

which may change with additional training epochs. In the decision-tree-based models

(Tables 6.3 to 6.5), the maximum tree depth varied across an order of magnitude

from 3 to 31. In the boosting models (Tables 6.4 and 6.5), subsample ratio varied

across an order of magnitude from 0.1 to 1. In the boosting models, the learning rate

varied from 0.0032 to 0.01. The hyperparameter values used in the present work vary

significantly depending on how the data is split. Future works using different data

sets will likely need to search for optimal hyperparameters for their datasets.

To determine how difficult the results of each experiment were to predict, scores

for each experiment in the dataset were computed using nested k-fold cross-validation

(Algorithm 4) with hold-one-out splitting (K “ the total number of experiments) for

37

Table 6.3.: Hyperparameter combinations used for each fold for the random forest
model

Maximum
Depth

Maximum
Split Features

Minimum
Samples
for a Leaf

Minimum
Samples to
Split a Node

5 0.01 1 4
31 1 1 2
5 1 3 2
13 0.01 1 2
31 0.01 3 10

Table 6.4.: Hyperparameter combinations used for each fold for the gradient
boosting model

Learning Rate
Maximum
Depth

Subsample
Ratio

0.0032 3 0.1
0.0032 17 0.32
0.0032 5 1
0.01 5 1
0.01 3 0.1

Table 6.5.: Hyperparameter combinations used for each fold for the extreme
gradient boosting model

Column
Sample
by Tree Learning Rate

Maximum
Depth

Subsample
Ratio

1 0.01 3 0.1
1 0.01 3 0.56
1 0.01 3 0.1
1 0.01 17 1
1 0.01 5 1

38

25 19 45 18 21 11 23 17 22 31 3 51 16 54 47 24 27 53 38 39 20 44 55 33 4 10 58 13 6 8 57 35 56 32 14 37 5 49 15 2 36 7 30 46 26 50 9 41 40 1 52 28 48 12 29 34 42 43

Experiment Id

0

10

20

30

40

50

60

%
E

rr
or

1
Figure 6.2.: Average % error computed for each experiment. “Experiment Id”

corresponds with the “Id” column in Table D.1.

the outer split and k “ 4 for the inner split. Thus, during ranking, each experiment

in the set was “held out” while the remaining experiments were used to train the

model with a grid search optimization strategy on the hyperparameters. The scoring

function used for this ranking process was the mean absolute error of the logarithm

of fatigue life, defined as

MAElog ”

řN
i“1

ˇ

ˇlog t̂i ´ log ti
ˇ

ˇ

N
(6.2)

where ti, t̂i are the true and predicted fatigue lives of the ith data point. The gradient

boosting model was used to score each model because it showed good performance

and was the fastest to train. Scores for each experiment were sorted and are listed in

Fig. 6.2.

39

Table 6.6.: % MAE for different models for the least difficult to predict, median
difficulty, and most difficult to predict experiments.

Model Least Median Most
AdaBoost 3.49 11.7 63.1
Gradient Boost 4.99 10.9 61.8
Neural Network 3.12 10.9 64.1
Random Forest 3.3 8.64 62.1
XGBoost 3.91 15.6 63.2

Once scores for each experiment had been computed, the most difficult, median,

and least difficult experiments were selected. Then, the different models used in the

analysis were used to predict the fatigue life for each of the most difficult, median, and

least difficult experiments. To generate these predictions, each of the experiments to

predict was held out from the data set, the remainder of the experiments were used to

train each model using a grid search (Algorithm 3), and finally, the trained model was

used to predict fatigue lives for the held-out experiment. These results are plotted in

Figs. 6.3 to 6.17. The scores for the different models are listed in Table 6.6.

Comparing the models based on decision trees (e.g. Figs. 6.3 to 6.5) to the models

based on neural networks (e.g. Figs. 6.6 and 6.7), the models based on neural networks

produce considerably smoother fatigue life plots. However, despite the improved

appearance, the errors produced by the neural network-based models are not lower

than those produced by decision-tree-based models.

Comparing performance on the least difficult experiment to model (Figs. 6.3 to 6.7)

the median experiment (Figs. 6.8 to 6.12) and the most difficult experiment to model

(Figs. 6.13 to 6.17) it is apparent that the difference in error between models for a

given experiment is much less than the difference in error between experiments for

a given model. Thus, data quality and size may be a more important consideration

than model selection when predicting solder joint fatigue life using machine learning.

40

2× 103 3× 103 4× 103 5× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 4.0%, Mean Error: 2.3%

Measured

Predicted

Figure 6.3.: Random forest regression on least difficult experiment to model
(Ricky Lee et al. 2002).

41

103 2× 103 3× 103 4× 103 6× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 5.6%, Mean Error: 2.8%

Measured

Predicted

Figure 6.4.: Gradient boosting regression on least difficult experiment to model
(Ricky Lee et al. 2002).

42

2× 103 3× 103 4× 103 6× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 4.5%, Mean Error: 1.9%

Measured

Predicted

Figure 6.5.: Extreme gradient boosting regression on least difficult experiment to
model (Ricky Lee et al. 2002).

43

2× 103 3× 103 4× 103 6× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 4.6%, Mean Error: 2.2%

Measured

Predicted

Figure 6.6.: Artificial neural network regression on least difficult experiment to
model (Ricky Lee et al. 2002).

44

2× 103 3× 103 4× 103 6× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 4.7%, Mean Error: 0.2%

Measured

Predicted

Figure 6.7.: AdaBoost regression on least difficult experiment to model (Ricky Lee
et al. 2002).

45

1038× 102 9× 102 2× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 9.6%, Mean Error: -7.5%

Measured

Predicted

Figure 6.8.: Random forest regression on median modeling difficulty experiment
(T.-K. Lee et al. 2010).

46

1036× 102 2× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 12.6%, Mean Error: -10.8%

Measured

Predicted

Figure 6.9.: Gradient boosting regression on median modeling difficulty experiment
(T.-K. Lee et al. 2010).

47

1034× 102 6× 102 2× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 17.4%, Mean Error: -15.4%

Measured

Predicted

Figure 6.10.: Extreme gradient boosting regression on median modeling difficulty
experiment (T.-K. Lee et al. 2010).

48

1038× 102 9× 102 2× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 11.9%, Mean Error: -10.9%

Measured

Predicted

Figure 6.11.: Artificial neural network regression on median modeling difficulty
experiment (T.-K. Lee et al. 2010).

49

103 2× 103 3× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 13.5%, Mean Error: -10.2%

Measured

Predicted

Figure 6.12.: AdaBoost regression on median modeling difficulty experiment
(T.-K. Lee et al. 2010).

50

103 2× 103 3× 103 4× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 62.1%, Mean Error: -62.1%

Measured

Predicted

Figure 6.13.: Random forest regression on most difficult experiment to model (Syed
et al. 2008).

51

103 2× 103 3× 103 4× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 61.8%, Mean Error: -61.8%

Measured

Predicted

Figure 6.14.: Gradient boosting regression on most difficult experiment to model
(Syed et al. 2008).

52

1036× 102 2× 103 3× 103 4× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 63.3%, Mean Error: -63.2%

Measured

Predicted

Figure 6.15.: Extreme gradient boosting regression on most difficult experiment to
model (Syed et al. 2008).

53

103 2× 103 3× 103 4× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 64.2%, Mean Error: -64.1%

Measured

Predicted

Figure 6.16.: Artificial neural network regression on most difficult experiment to
model (Syed et al. 2008).

54

103 2× 103 3× 103 4× 103

Fatigue Life

0.01

0.05

0.10

0.50

0.90

0.99

F
a
il

u
re

R
a
te

RMS Error: 63.1%, Mean Error: -63.1%

Measured

Predicted

Figure 6.17.: AdaBoost regression on most difficult experiment to model (Syed et al.
2008).

55

worst-scoring experiment

The most and least difficult experiments to model were both similar to other ex-

periments in the data set, with the exception of additional experimental parameters

not included as features in the model. The least difficult experiment to model from

Ricky Lee et al. (2002) was part of an ensemble of experiments in which different

solder pastes were compared for the same package, solder ball, and test conditions.

This paper found that the different solder pastes did not have a very large effect

on the fatigue life. The models performed well on this ensemble because any one

of the experiments in the ensemble could be well approximated by the others, and

because the models did not use solder paste as a feature to “know” that there might

any difference between those experiments anyway. The most difficult experiment to

model is from Syed et al. (2008). In this paper, different design parameters were

studied, including mold compound material, mold cap thickness, package pad surface

treatment, solder ball composition, solder volume, package material, and board ma-

terial were studied. The most difficult experiment to model with identifier 43 was

very similar to another experiment with identifier 42 with the exception that exper-

iment 42 used an Ni/Au package pad surface treatment and experiment 43 used an

OSP/Cu package pad surface treatment. Package pad surface treatment was not used

as a feature in the present analysis. Experiment 43 had approximately 1.5 times the

fatigue life of experiment 42. Since the features included in the models were identical

for experiment 42 and 43, there was no way for the models to distinguish them. In

addition, not all of the packages studied in Syed et al. (2008) are provided with a

complete physical specification. The parameters for the package used in experiment

43 have been assumed to be similar to another experiment from that same paper not

included in the present analysis, but with a 0.5mm pitch instead of a 0.4mm pitch.

56

However, since the actual physical specification for the package used in experiment

43 was not provided, it’s possible that other features were different as well.

The “best” model for a given application depends on the desired outcome. The

gradient boosting model had the smallest standard deviation and 95% confidence

interval. Comparing the basic neural network model to the neural network with Ad-

aBoost, the AdaBoost model did not demonstrate substantially better performance

than the basic neural network model. Comparing the neural-network-based models to

the decision-tree-based models, the decision-tree-based models were more conserva-

tive and had smaller confidence intervals. Gradient boosting had the lowest standard

deviation of error and the smallest confidence interval of all models considered. How-

ever, as the amount and quality of training data increases, the relative performance of

the models may change. In particular, since decision-tree-based models are not able

to extrapolate outside the range of training data, they may be outperformed by other

models which do not have the same limitation, such as artificial neural networks.

Training time is another important consideration for model selection. The training

time for the regression-tree-based models was an order of magnitude faster than the

training time for the neural-network-based models. This is because neural networks

are trained using an iterative algorithm which converges gradually, while decision

trees and the ensemble methods considered use greedy algorithms which don’t require

iterations to converge.

Due to limitations in the available training data, many important features such

as thermal ramp rate, solder joint height, and package pad surface treatment were

excluded from consideration. By increasing the size of the training set, future works

may be able to include those features in their analysis as more data is included in the

Electronics Packaging Materials Database.

57

All of the models used for predicting fatigue life seemed to struggle at very high or

very low failure rates. In the case of the models based on regression trees, the base

learners are fundamentally unable to extrapolate to failure rates outside the range of

observations. Failure rate data is more sparse for failure rates very close to 0 or 1

because those rates can only be accessed by experiments with very large numbers of

samples. Unlike regression trees, neural networks do not share the same fundamental

limitation of being unable to extrapolate outside the range of labels, however, they

also struggled to predict fatigue life at high and low failure rates because the data

was sparse in these ranges.

The prediction errors found in the current work are larger than the errors found in

previous works (Yuan and C.-C. Lee 2020; Samavatian et al. 2020; T.-C. Chen, Alaz-

zawi, et al. 2021; T.-C. Chen, Opulencia, et al. 2022; Chou, Chiang, and Liang 2019).

Other works used finite element analysis and various fatigue life models to generate

training data, rather than collecting data from physical tests. By synthesizing data

in this fashion, many physical variables are completely excluded from the analysis

such as the size effects of intermetallic compound formation. Thus, the accuracy of

the models in the present work is lower than in previous works because the data is

much less uniform and covers a much broader set of parameters.

58

7. Conclusions

In this work a number of different machine learning strategies were compared for

the purpose of predicting the fatigue life of board-level solder joints. The prediction

of solder joint fatigue life is challenging because it involves the nonlinear coupling

of many phenomena including creep, fatigue, and chemistry. The ability to predict

fatigue performance of board-level solder joints can have economic benefits by pre-

venting early failures and by enabling designers to find optimal parameters more

easily. This work demonstrates that the performance of traditional learning models

based on regression trees may compare favorably to the performance of artificial neu-

ral networks in the task of predicting the fatigue life of board-level solder joints when

using training data collected from a variety of physical experiments.

While other works using machine learning to predict the fatigue life of solder joints

have taken a bottom-up approach to predict the fatigue life from various mathemat-

ical models, the work presented in this paper takes a top-down approach and uses

experimental results to predict the fatigue life. Both approaches have different ben-

efits and drawbacks, with the bottom-up approach providing very fine-grained data

about the theoretical performance of a particular design and the top-down approach

revealing broad trends across a large design space. The availability of large open data

sets containing solder joint reliability data over a large range of parameters will be

important for the development of machine learning frameworks for assisting in the

design of board-level solder joints in the future.

59

8. References

[1] C. Andersson et al. “Thermal Cycling of Lead-free Sn-3.8Ag-0.7Cu 388PBGA

Packages”. In: Soldering & Surface Mount Technology 21.2 (Apr. 2009). Ed. by

Johan Liu, pp. 28–38. issn: 0954-0911. DOI: 10.1108/09540910910947453.

[2] Babak Arfaei, Sam Mahin-Shirazi, et al. “Reliability and Failure Mechanism of

Solder Joints in Thermal Cycling Tests”. In: 2013 IEEE 63rd Electronic Com-

ponents and Technology Conference. Las Vegas, NV, USA: IEEE, May 2013,

pp. 976–985. isbn: 978-1-4799-0232-3 978-1-4799-0233-0.

DOI: 10.1109/ECTC.2013.6575693.

[3] Babak Arfaei, L. Wentlent, et al. “Improving the Thermomechanical Behavior

of Lead Free Solder Joints by Controlling the Microstructure”. In: 13th InterSo-

ciety Conference on Thermal and Thermomechanical Phenomena in Electronic

Systems. San Diego, CA, USA: IEEE, May 2012, pp. 392–398. isbn: 978-1-4244-

9532-0 978-1-4244-9533-7 978-1-4244-9531-3.

DOI: 10.1109/ITHERM.2012.6231456.

[4] Periannan Arulvanan, Zhaowei Zhong, and Xunqing Shi. “Effects of Process

Conditions on Reliability, Microstructure Evolution and Failure Modes of SnAgCu

Solder Joints”. In: Microelectronics Reliability 46.2-4 (Feb. 2006), pp. 432–439.

issn: 00262714. DOI: 10.1016/j.microrel.2005.05.005.

[5] M. Berthou et al. “Microstructure Evolution Observation for SAC Solder Joint:

Comparison between Thermal Cycling and Thermal Storage”. In: Microelec-

tronics Reliability. 20th European Symposium on the Reliability of Electron

60

https://doi.org/10.1108/09540910910947453
https://doi.org/10.1109/ECTC.2013.6575693
https://doi.org/10.1109/ITHERM.2012.6231456
https://doi.org/10.1016/j.microrel.2005.05.005

Devices, Failure Physics and Analysis 49.9 (Sept. 2009), pp. 1267–1272. issn:

0026-2714. DOI: 10.1016/j.microrel.2009.07.040.

[6] P. Borgesen et al. “Solder Joint Reliability under Realistic Service Condi-

tions”. In:Microelectronics Reliability 53.9-11 (Sept. 2013), pp. 1587–1591. issn:

00262714. DOI: 10.1016/j.microrel.2013.07.091.

[7] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

issn: 08856125. DOI: 10.1023/A:1010933404324.

[8] Steven L Brunton and J Nathan Kutz. Data-Driven Science and Engineering.

Cambridge University Press, 2019. isbn: 978-1-108-42209-3.

[9] F.X. Che and J.H.L. Pang. “Thermal Fatigue Reliability Analysis for PBGA

with Sn-3.8Ag-0.7Cu Solder Joints”. In: Proceedings of 6th Electronics Packag-

ing Technology Conference (EPTC 2004) (IEEE Cat. No.04EX971). Singapore:

IEEE, 2004, pp. 787–792. isbn: 978-0-7803-8821-5.

DOI: 10.1109/EPTC.2004.1396715.

[10] Gang Chen et al. “A New Unified Constitutive Model for SAC305 Solder un-

der Thermo-Mechanical Loading”. In: Mechanics of Materials 138 (Nov. 2019),

p. 103170. issn: 01676636. DOI: 10.1016/j.mechmat.2019.103170.

[11] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting Sys-

tem”. In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. San Francisco California USA: ACM,

Aug. 2016, pp. 785–794. isbn: 978-1-4503-4232-2.

DOI: 10.1145/2939672.2939785.

61

https://doi.org/10.1016/j.microrel.2009.07.040
https://doi.org/10.1016/j.microrel.2013.07.091
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/EPTC.2004.1396715
https://doi.org/10.1016/j.mechmat.2019.103170
https://doi.org/10.1145/2939672.2939785

[12] Tzu-Chia Chen, Fouad Jameel Ibrahim Alazzawi, et al. “Application of Machine

Learning in Rapid Analysis of Solder Joint Geometry and Type on Thermome-

chanical Useful Lifetime of Electronic Components”. In: Mechanics of Advanced

Materials and Structures (Dec. 2021), pp. 1–9. issn: 1537-6494, 1537-6532.

DOI: 10.1080/15376494.2021.2014002.

[13] Tzu-Chia Chen, Maria Jade Catalan Opulencia, et al. “Estimation of Thermo-

mechanical Fatigue Lifetime of Ball Grid Solder Joints in Electronic Devices

Using a Machine Learning Approach”. In: Journal of Electronic Materials 51.7

(July 2022), pp. 3495–3503. issn: 0361-5235, 1543-186X.

DOI: 10.1007/s11664-022-09635-2.

[14] Yunxia Chen, Yi Jin, and Rui Kang. “Coupling Damage and Reliability Mod-

eling for Creep and Fatigue of Solder Joint”. In: Microelectronics Reliability 75

(Aug. 2017), pp. 233–238. issn: 00262714.

DOI: 10.1016/j.microrel.2017.03.016.

[15] Shunfeng Cheng, Chien-Ming Huang, and Michael Pecht. “A Review of Lead-

Free Solders for Electronics Applications”. In: Microelectronics Reliability 75

(Aug. 2017), pp. 77–95. issn: 00262714.

DOI: 10.1016/j.microrel.2017.06.016.

[16] P. H. Chou, K.N. Chiang, and Steven Y. Liang. “Reliability Assessment of

Wafer Level Package Using Artificial Neural Network Regression Model”. In:

Journal of Mechanics 35.6 (Dec. 2019), pp. 829–837. issn: 1727-7191, 1811-

8216. DOI: 10.1017/jmech.2019.20.

[17] E F Codd. “A Relational Model of Data for Large Shared Data Banks”. In:

Communications of the ACM (1970), p. 11.

62

https://doi.org/10.1080/15376494.2021.2014002
https://doi.org/10.1007/s11664-022-09635-2
https://doi.org/10.1016/j.microrel.2017.03.016
https://doi.org/10.1016/j.microrel.2017.06.016
https://doi.org/10.1017/jmech.2019.20

[18] Maurice N. Collins, Jeff Punch, and Richard Coyle. “Surface Finish Effect on

Reliability of SAC 305 Soldered Chip Resistors”. In: Soldering & Surface Mount

Technology 24.4 (Sept. 2012), pp. 240–248. issn: 0954-0911.

DOI: 10.1108/09540911211262520.

[19] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. June

2009, pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[20] Django Software Foundation. Django. Django Software Foundation. Lawrence,

Kansas, 2022.

[21] Harris Drucker. “Improving Regressors Using Boosting Techniques”. In: Pro-

ceedings of the 14th International Conference on Machine Learning. 1997, pp. 107–

115.

[22] Encode OSS Ltd. Django Rest Framework. Encode OSS Ltd. 2022.

[23] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based

Software Architectures”. Doctor of Philosophy in Information and Computer

Science. Irvine: University of California, 2000.

[24] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of

On-Line Learning and an Application to Boosting”. In: Journal of Computer

and System Sciences 55.1 (Aug. 1997), pp. 119–139. issn: 00220000.

DOI: 10.1006/jcss.1997.1504.

[25] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting

Machine”. In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. issn: 0090-

5364.

63

https://doi.org/10.1108/09540911211262520
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1006/jcss.1997.1504

[26] Frank W. Gayle et al. “High Temperature Lead-Free Solder for Microelectron-

ics”. In: JOM 53.6 (June 2001), pp. 17–21. issn: 1047-4838, 1543-1851.

DOI: 10.1007/s11837-001-0097-5.

[27] Mohammad Gharaibeh et al. “Experimental and Numerical Investigations of

the Vibration Reliability of BGA and LGA Solder Configurations and SAC105

and 63Sn37Pb Solder Alloys”. In: Soldering & Surface Mount Technology 31.2

(Apr. 2019), pp. 77–84. issn: 0954-0911. DOI: 10.1108/SSMT-07-2018-0020.

[28] Dominik Herkommer, Jeff Punch, and Michael Reid. “A Reliability Model for

SAC Solder Covering Isothermal Mechanical Cycling and Thermal Cycling Con-

ditions”. In: Microelectronics Reliability 50.1 (Jan. 2010), pp. 116–126. issn:

00262714. DOI: 10.1016/j.microrel.2009.08.008.

[29] Chong Hua Zhong and Sung Yi. “Solder Joint Reliability of Plastic Ball Grid

Array Packages”. In: Soldering & Surface Mount Technology 11.1 (Apr. 1999),

pp. 44–48. issn: 0954-0911. DOI: 10.1108/09540919910254930.

[30] Meng-Kuang Huang and Chiapyng Lee. “Board Level Reliability of Lead-free

Designs of BGAs, CSPs, QFPs and TSOPs”. In: Soldering & Surface Mount

Technology 20.3 (June 2008), pp. 18–25. issn: 0954-0911.

DOI: 10.1108/09540910810885688.

[31] Zhiheng Huang, Paul P. Conway, and Rachel C. Thomson. “Microstructural

Considerations for Ultrafine Lead Free Solder Joints”. In: Microelectronics Re-

liability 47.12 (Dec. 2007), pp. 1997–2006. issn: 00262714.

DOI: 10.1016/j.microrel.2007.04.013.

64

https://doi.org/10.1007/s11837-001-0097-5
https://doi.org/10.1108/SSMT-07-2018-0020
https://doi.org/10.1016/j.microrel.2009.08.008
https://doi.org/10.1108/09540919910254930
https://doi.org/10.1108/09540910810885688
https://doi.org/10.1016/j.microrel.2007.04.013

[32] Nilesh Jain, Ashok Bhansali, and Deepak Mehta. “AngularJS: A Modern MVC

Framework in JavaScript”. In: Journal of Global Research in Computer Science

5.12 (2014), pp. 17–23.

[33] JEDEC Solid State Technology Association. JESD22-A104E. Mar. 2009.

[34] Norman Lloyd Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Uni-

variate Distributions. 2nd ed. Wiley Series in Probability and Mathematical

Statistics. New York: Wiley, 1994. isbn: 978-0-471-58495-7 978-0-471-58494-0.

[35] S.K. Kang et al. “Evaluation of Thermal Fatigue Life and Failure Mecha-

nisms of Sn-Ag-Cu Solder Joints with Reduced Ag Contents”. In: 2004 Pro-

ceedings. 54th Electronic Components and Technology Conference (IEEE Cat.

No.04CH37546). Las Vegas, NV, USA: IEEE, 2004, pp. 661–667. isbn: 978-0-

7803-8365-4. DOI: 10.1109/ECTC.2004.1319409.

[36] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980 [cs].

[37] Komite Nasional Keselamatan Transportasi. Aircraft Accident Investigation Re-

port. Aircraft Accident Investigation Report KNKT.14.12.29.04. Komite Na-

sional Keselamatan Transportasi, Dec. 2014.

[38] Jae B. Kwak and Soonwan Chung. “Thermal Fatigue Reliability for Cu-Pillar

Bump Interconnection in Flip Chip on Module and Underfill Effects”. In: Sol-

dering & Surface Mount Technology 27.1 (Feb. 2015), pp. 1–6. issn: 0954-0911.

DOI: 10.1108/SSMT-03-2014-0008.

[39] John Lau, Jerry Gleason, et al. “Design, Materials, and Assembly Process of

High-density Packages with a Low-temperature Lead-free Solder (SnBiAg)”.

65

https://doi.org/10.1109/ECTC.2004.1319409
https://arxiv.org/abs/1412.6980
https://doi.org/10.1108/SSMT-03-2014-0008

In: Soldering & Surface Mount Technology 20.2 (Apr. 2008), pp. 11–20. issn:

0954-0911. DOI: 10.1108/09540910810871520.

[40] John Lau, Jerry Gleason, et al. “Reliability Test and Failure Analysis of High-

density Packages Assembled with a Low-temperature Lead-free Solder (SnBiAg)”.

In: Soldering & Surface Mount Technology 20.2 (Apr. 2008), pp. 21–29. issn:

0954-0911. DOI: 10.1108/09540910810871539.

[41] John Lau, Nick Hoo, et al. “Reliability Testing and Data Analysis of Lead-

free Solder Joints for High-density Packages”. In: Soldering & Surface Mount

Technology 16.2 (Aug. 2004), pp. 46–68. issn: 0954-0911.

DOI: 10.1108/09540910410537336.

[42] Hwa-Teng Lee et al. “Reliability of Sn–Ag–Sb Lead-Free Solder Joints”. In:

Materials Science and Engineering: A 407.1-2 (Oct. 2005), pp. 36–44. issn:

09215093. DOI: 10.1016/j.msea.2005.07.049.

[43] Tae-Kyu Lee et al. “Impact of Isothermal Aging on Long-Term Reliability of

Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Sur-

face Finish Effects”. In: Journal of Electronic Materials 39.12 (Dec. 2010),

pp. 2564–2573. issn: 0361-5235, 1543-186X. DOI: 10.1007/s11664- 010-

1352-8.

[44] W. W Lee, L. T Nguyen, and G. S Selvaduray. “Solder Joint Fatigue Models:

Review and Applicability to Chip Scale Packages”. In: Microelectronics Relia-

bility 40.2 (Feb. 2000), pp. 231–244. issn: 0026-2714.

DOI: 10.1016/S0026-2714(99)00061-X.

66

https://doi.org/10.1108/09540910810871520
https://doi.org/10.1108/09540910810871539
https://doi.org/10.1108/09540910410537336
https://doi.org/10.1016/j.msea.2005.07.049
https://doi.org/10.1007/s11664-010-1352-8
https://doi.org/10.1007/s11664-010-1352-8
https://doi.org/10.1016/S0026-2714(99)00061-X

[45] J.B. Libot et al. “Microstructural Evolutions of Sn-3.0Ag-0.5Cu Solder Joints

during Thermal Cycling”. In:Microelectronics Reliability 83 (Apr. 2018), pp. 64–

76. issn: 00262714. DOI: 10.1016/j.microrel.2018.02.009.

[46] Fang Liu, Jiacheng Zhou, and Nu Yan. “Thermal Cycling Effect on the Drop

Reliability of BGA Lead-Free Solder Joints”. In: Soldering & Surface Mount

Technology 29.4 (Sept. 2017), pp. 199–202. issn: 0954-0911.

DOI: 10.1108/SSMT-03-2017-0007.

[47] Weiping Liu et al. “Achieving High Reliability Low Cost Lead-Free SAC Sol-

der Joints via Mn or Ce Doping”. In: 2009 59th Electronic Components and

Technology Conference. San Diego, CA: IEEE, May 2009, pp. 994–1007. isbn:

978-1-4244-4475-5. DOI: 10.1109/ECTC.2009.5074134.

[48] Jeffery C.C. Lo et al. “Reliability Study of Surface Mount Printed Circuit Board

Assemblies with Lead-free Solder Joints”. In: Soldering & Surface Mount Tech-

nology 20.2 (Apr. 2008), pp. 30–38. issn: 0954-0911.

DOI: 10.1108/09540910810871548.

[49] Minhua Lu et al. “Comparison of Electromigration Behaviors of SnAg and SnCu

Solders”. In: 2009 IEEE International Reliability Physics Symposium. Montreal,

QC, Canada: IEEE, 2009, pp. 149–154. isbn: 978-1-4244-2888-5.

DOI: 10.1109/IRPS.2009.5173241.

[50] T.T. Mattila, V. Vuorinen, and J.K. Kivilahti. “Impact of Printed Wiring Board

Coatings on the Reliability of Lead-Free Chip-Scale Package Interconnections”.

In: Journal of Materials Research 19.11 (Nov. 2004), pp. 3214–3223. issn: 0884-

2914, 2044-5326. DOI: 10.1557/JMR.2004.0436.

67

https://doi.org/10.1016/j.microrel.2018.02.009
https://doi.org/10.1108/SSMT-03-2017-0007
https://doi.org/10.1109/ECTC.2009.5074134
https://doi.org/10.1108/09540910810871548
https://doi.org/10.1109/IRPS.2009.5173241
https://doi.org/10.1557/JMR.2004.0436

[51] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Im-

manent in Nervous Activity”. In: The Bulletin of Mathematical Biophysics 5.4

(Dec. 1943), pp. 115–133. issn: 0007-4985, 1522-9602.

DOI: 10.1007/BF02478259.

[52] Jinhua Mi et al. “Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder

Joint Using Type-I Censored Data”. In: The Scientific World Journal 2014

(2014), pp. 1–11. issn: 2356-6140, 1537-744X. DOI: 10.1155/2014/807693.

[53] Mohammad Motalab et al. “Improved Predictions of Lead Free Solder Joint

Reliability That Include Aging Effects”. In: 2012 IEEE 62nd Electronic Com-

ponents and Technology Conference. San Diego, CA, USA: IEEE, May 2012,

pp. 513–531. isbn: 978-1-4673-1965-2 978-1-4673-1966-9 978-1-4673-1964-5.

DOI: 10.1109/ECTC.2012.6248879.

[54] O. Nousiainen et al. “Effect of ENIG Deposition on the Failure Mechanisms of

Thermomechanically Loaded Lead-free 2nd Level Interconnections in LTCC/PWB

Assemblies”. In: Soldering & Surface Mount Technology 22.3 (June 2010), pp. 22–

35. issn: 0954-0911. DOI: 10.1108/09540911011054163.

[55] Michael Osterman and Abhijit Dasgupta. “Life Expectancies of Pb-free SAC

Solder Interconnects in Electronic Hardware”. In: Journal of Materials Science:

Materials in Electronics 18.1-3 (Dec. 2006), pp. 229–236. issn: 0957-4522, 1573-

482X. DOI: 10.1007/s10854-006-9017-3.

[56] Michael Osterman and Michael Pecht. “Strain Range Fatigue Life Assessment

of Lead-free Solder Interconnects Subject to Temperature Cycle Loading”. In:

Soldering & Surface Mount Technology 19.2 (Apr. 2007), pp. 12–17. issn: 0954-

0911. DOI: 10.1108/09540910710836494.

68

https://doi.org/10.1007/BF02478259
https://doi.org/10.1155/2014/807693
https://doi.org/10.1109/ECTC.2012.6248879
https://doi.org/10.1108/09540911011054163
https://doi.org/10.1007/s10854-006-9017-3
https://doi.org/10.1108/09540910710836494

[57] H. L. J. Pang et al. “HIGHLY ACCELERATED SOLDER JOINT RELIA-

BILITY TEST USING A THERMO-MECHANICAL DEFLECTION SYSTEM

(TMDS)”. In: Journal of Electronics Manufacturing 10.01 (Mar. 2000), pp. 49–

57. issn: 0960-3131. DOI: 10.1142/S0960313100000058.

[58] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: MA-

CHINE LEARNING IN PYTHON (2011), p. 6.

[59] Jussi Putaala et al. “Lifetime Prediction and Design Aspects of Reliable Lead-

Free Non-Collapsible BGA Joints in LTCC Packages for RF/Microwave Telecom-

munication Applications”. In: Soldering & Surface Mount Technology 26.3 (May

2014), pp. 117–128. issn: 0954-0911. DOI: 10.1108/SSMT-07-2013-0018.

[60] Venkatesh Raghavan et al. “Effects of Pre-Stressing on Solder Joint Failure by

Pad Cratering”. In: 2010 Proceedings 60th Electronic Components and Technol-

ogy Conference (ECTC). Las Vegas, NV, USA: IEEE, 2010, pp. 456–463. isbn:

978-1-4244-6410-4. DOI: 10.1109/ECTC.2010.5490932.

[61] P. Ratchev, B. Vandevelde, and I. De Wolf. “Reliability and Failure Analysis

of Sn-Ag-Cu Solder Interconnections for PSGA Packages on Ni/Au Surface

Finish”. In: IEEE Transactions on Device and Materials Reliability 4.1 (Mar.

2004), pp. 5–10. issn: 1558-2574. DOI: 10.1109/TDMR.2003.822341.

[62] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-Validation”. In: Encyclo-

pedia of Database Systems. Ed. by Ling Liu and M. Tamer Özsu. Boston, MA:

Springer US, 2009, pp. 532–538. isbn: 978-0-387-35544-3 978-0-387-39940-9.

DOI: 10.1007/978-0-387-39940-9_565.

[63] Shi-Wei Ricky Lee et al. “Assessment of Board Level Solder Joint Reliability

for PBGA Assemblies with Lead-free Solders”. In: Soldering & Surface Mount

69

https://doi.org/10.1142/S0960313100000058
https://doi.org/10.1108/SSMT-07-2013-0018
https://doi.org/10.1109/ECTC.2010.5490932
https://doi.org/10.1109/TDMR.2003.822341
https://doi.org/10.1007/978-0-387-39940-9_565

Technology 14.3 (Dec. 2002), pp. 46–50. issn: 0954-0911.

DOI: 10.1108/09540910210444728.

[64] Ankit Rohatgi. WebPlotDigitizer. May 2022.

[65] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage

and Organization in The Brain”. In: Psychological Review (1958), pp. 65–386.

[66] Vahid Samavatian. “A Systematic Approach to Reliability Assessment of DC-

DC Power Electronic Converters”. PhD thesis. University of Tehran, 2020.

[67] Vahid Samavatian et al. “Correlation-Driven Machine Learning for Accelerated

Reliability Assessment of Solder Joints in Electronics”. In: Scientific Reports

10.1 (Dec. 2020), p. 14821. issn: 2045-2322.

DOI: 10.1038/s41598-020-71926-7.

[68] A. Schubert et al. “Fatigue Life Models for SnAgCu and SnPb Solder Joints

Evaluated by Experiments and Simulation”. In: 53rd Electronic Components

and Technology Conference, 2003. Proceedings. May 2003, pp. 603–610.

DOI: 10.1109/ECTC.2003.1216343.

[69] J. Seyyedi and J. Padgett. “Ceramic Chip Scale Package Solder Joint Relia-

bility”. In: Soldering & Surface Mount Technology 13.3 (Dec. 2001), pp. 7–11.

issn: 0954-0911. DOI: 10.1108/09540910110407351.

[70] Dhafer Abdulameer Shnawah, Mohd Faizul Mohd Sabri, and Irfan Anjum Badrud-

din. “A Review on Thermal Cycling and Drop Impact Reliability of SAC Sol-

der Joint in Portable Electronic Products”. In: Microelectronics Reliability 52.1

(Jan. 2012), pp. 90–99. issn: 00262714.

DOI: 10.1016/j.microrel.2011.07.093.

70

https://doi.org/10.1108/09540910210444728
https://doi.org/10.1038/s41598-020-71926-7
https://doi.org/10.1109/ECTC.2003.1216343
https://doi.org/10.1108/09540910110407351
https://doi.org/10.1016/j.microrel.2011.07.093

[71] Mrunali Sona and K. N. Prabhu. “Review on Microstructure Evolution in

Sn–Ag–Cu Solders and Its Effect on Mechanical Integrity of Solder Joints”.

In: Journal of Materials Science: Materials in Electronics 24.9 (Sept. 2013),

pp. 3149–3169. issn: 0957-4522, 1573-482X.

DOI: 10.1007/s10854-013-1240-0.

[72] G. Subbarayan, Y. Li, and R. L. Mahajan. “Reliability Simulations for Solder

Joints Using Stochastic Finite Element and Artificial Neural Network Models”.

In: Journal of Electronic Packaging 118.3 (Sept. 1996), pp. 148–156. issn: 1043-

7398, 1528-9044. DOI: 10.1115/1.2792145.

[73] Jeffrey C. Suhling et al. “Thermal Cycling Reliability of Lead-free Chip Resistor

Solder Joints”. In: Soldering & Surface Mount Technology 16.2 (Aug. 2004),

pp. 77–87. issn: 0954-0911. DOI: 10.1108/09540910410537354.

[74] Ahmer Syed. “Accumulated Creep Strain and Energy Density Based Ther-

mal Fatigue Life Prediction Models for SnAgCu Solder Joints”. In: 2004 Pro-

ceedings. 54th Electronic Components and Technology Conference (IEEE Cat.

No.04CH37546). Las Vegas, NV, USA: IEEE, 2004, pp. 737–746. isbn: 978-0-

7803-8365-4. DOI: 10.1109/ECTC.2004.1319419.

[75] Ahmer Syed. “Reliability of Lead-Free Solder Connections for Area-Array Pack-

ages”. In: IPC SMEMA Council APEX 2001. 2001, p. 9.

[76] Ahmer Syed et al. “Impact of Package Design and Materials on Reliability

for Temperature Cycling, Bend, and Drop Loading Conditions”. In: 2008 58th

Electronic Components and Technology Conference. May 2008, pp. 1453–1461.

DOI: 10.1109/ECTC.2008.4550168.

71

https://doi.org/10.1007/s10854-013-1240-0
https://doi.org/10.1115/1.2792145
https://doi.org/10.1108/09540910410537354
https://doi.org/10.1109/ECTC.2004.1319419
https://doi.org/10.1109/ECTC.2008.4550168

[77] Sami Tapani Nurmi and Eero Olavi Ristolainen. “Reliability of Tin-lead Balled

BGAs Soldered with Lead-free Solder Paste”. In: Soldering & Surface Mount

Technology 14.2 (Aug. 2002), pp. 35–39. issn: 0954-0911.

DOI: 10.1108/09540910210427808.

[78] Per-Erik Tegehall. Review of the Impact of Intermetallic Layers on the Brittle-

ness of Tin-Lead and Lead-Free Solder Joints. Technical Report 06/07. 2006,

p. 65.

[79] TensorFlow Developers. TensorFlow. Zenodo. May 2022.

DOI: 10.5281/ZENODO.4724125.

[80] P. Towashiraporn et al. “Predictive Reliability Models through Validated Cor-

relation between Power Cycling and Thermal Cycling Accelerated Life Tests”.

In: Soldering & Surface Mount Technology 14.3 (Dec. 2002), pp. 51–60. issn:

0954-0911. DOI: 10.1108/09540910210444737.

[81] Bart Vandevelde et al. “Thermal Cycling Reliability of SnAgCu and SnPb Sol-

der Joints: A Comparison for Several IC-packages”. In: Microelectronics Relia-

bility 47.2-3 (Feb. 2007), pp. 259–265. issn: 00262714.

DOI: 10.1016/j.microrel.2006.09.034.

[82] Paul Werbos. Beyond Regression : New Tools for Prediction and Analysis in

the Behavioral Sciences. Harvard University, 1974.

[83] Xindong Wu et al. “Top 10 Algorithms in Data Mining”. In: Knowledge and

Information Systems 14.1 (Jan. 2008), pp. 1–37. issn: 0219-1377, 0219-3116.

DOI: 10.1007/s10115-007-0114-2.

72

https://doi.org/10.1108/09540910210427808
https://doi.org/10.5281/ZENODO.4724125
https://doi.org/10.1108/09540910210444737
https://doi.org/10.1016/j.microrel.2006.09.034
https://doi.org/10.1007/s10115-007-0114-2

[84] Xuejun Fan, G. Rasier, and V.S. Vasudevan. “Effects of Dwell Time and Ramp

Rate on Lead-Free Solder Joints in FCBGA Packages”. In: Proceedings Elec-

tronic Components and Technology, 2005. ECTC ’05. Vol. 2. Lake Buena Vista,

FL, USA: IEEE, 2005, pp. 901–906. isbn: 978-0-7803-8906-9.

DOI: 10.1109/ECTC.2005.1441379.

[85] Se Young Yang, Ilho Kim, and Soon-Bok Lee. “A Study on the Thermal Fatigue

Behavior of Solder Joints Under Power Cycling Conditions”. In: IEEE Transac-

tions on Components and Packaging Technologies 31.1 (Mar. 2008), pp. 3–12.

issn: 1557-9972. DOI: 10.1109/TCAPT.2007.906294.

[86] Ming-Chih Yew et al. “Reliability Analysis of a Novel Fan-out Type WLP”.

In: Soldering & Surface Mount Technology 21.3 (June 2009), pp. 30–38. issn:

0954-0911. DOI: 10.1108/09540910910970394.

[87] Sung Yi and Robert Jones. “Machine Learning Framework for Predicting Reli-

ability of Solder Joints”. In: Soldering & Surface Mount Technology 32.2 (Aug.

2019), pp. 82–92. issn: 0954-0911, 0954-0911.

DOI: 10.1108/SSMT-04-2019-0013.

[88] Cadmus C. A. Yuan and Chang-Chi Lee. “Solder Joint Reliability Modeling by

Sequential Artificial Neural Network for Glass Wafer Level Chip Scale Package”.

In: IEEE Access 8 (2020), pp. 143494–143501. issn: 2169-3536.

DOI: 10.1109/ACCESS.2020.3014156.

73

https://doi.org/10.1109/ECTC.2005.1441379
https://doi.org/10.1109/TCAPT.2007.906294
https://doi.org/10.1108/09540910910970394
https://doi.org/10.1108/SSMT-04-2019-0013
https://doi.org/10.1109/ACCESS.2020.3014156

Appendix A. Computing parameters of the Weibull distribution

The failure rate F ptq of a Weibull distribution with life parameter θ and shape

parameter β is given by

F ptq “ 1 ´ e´p t
θ q

β

(A.1)

Eq. (A.1) can be rearranged as follows:

log
”

´ log
`

1 ´ F ptq
˘

ı

“ β logptq ´ β logpθq (A.2)

Given a vector of measured failure rates F and a vector of corresponding fatigue lives

t, the parameters θ, β are computed as follows.

Let yi – log
”

´ log
`

1 ´ Fi

˘

ı

(A.3)

Let ŷipβ, θq – β logptiq ´ β logpθq (A.4)

Let ϵipβ, θq – yi ´ ŷipβθq (A.5)

We seek parameters β, θ such that the sum of squared residuals
řN

i“1 ϵ
2
i is minimized.

74

Eq. (A.4) may be rewritten as a matrix operation

Let A –

»

—

—

—

—

–

1 log t1
...

...

1 log tN

fi

ffi

ffi

ffi

ffi

fl

(A.6)

Let b –

»

—

–

´β log θ

β

fi

ffi

fl

(A.7)

ŷ “ Ab (A.8)

The residual defined in Eq. (A.5) can then be written in matrix form as

ϵ “ y ´ Ab (A.9)

The sum of squared residuals may be written in matrix form as

N
ÿ

i“1

ϵi “ ϵTϵ (A.10)

Eq. (A.9) can be substituted into Eq. (A.10):

ϵTϵ “ py ´ Abq
⊺

py ´ Abq (A.11)

“ y⊺y ´ y⊺Ab ´ b⊺A⊺y ` 2b⊺A⊺Ab (A.12)

Taking the derivative of Eq. (A.12) with respect to b⊺ and solving for b to find the

75

minimum yields

0 “ ´2A⊺y ` 2A⊺Ab (A.13)

A⊺Ab “ A⊺y (A.14)

b “

»

—

–

´β log θ

β

fi

ffi

fl

“ pA⊺Aq
´1A⊺y (A.15)

θ “ e
´

b2
b1 (A.16)

76

Appendix B. Database architecture

The Electronics Packaging Materials Database provides a REST API in order to

enable users to create, retrieve, update, and delete records using scripts. The REST

API concept was originally developed by Fielding (2000). REST stands for Repre-

sentational State Transfer. It is an architectural style for web services. REST is

based upon a client-server architecture in which user interface concerns are separated

from data storage concerns. In the REST paradigm, client-server communication is

stateless, i.e. each request from the client to the server is complete and does not rely

on additional context stored on the server, thus the client is solely responsible for

maintaining the session state. REST provides a uniform interface for various services

and data. REST enables resources to be communicated in different representations

specified by metadata. A REST resource is an abstract notion of a piece of infor-

mation that can be named which could include a document, a table, or some kind of

service (e.g. the current conversion rate from USD to yen). A REST implementa-

tion provides methods for representing resources in different formats, e.g. JSON or

HTML.

The term API stands for Application Programming Interface and refers to a set

of methods that can be called by an external application. The REST API of the

Electronics Packaging Materials Database provides methods to create, retrieve, up-

date, and delete records of experiments performed on materials. The API is self-

documenting: a url endpoint is provided for a specification document which describes

the objects, methods, and endpoints implemented by the API. This document can

77

be consumed by various software to automatically generate an API client software

developer’s kit for the end-user in their desired language.

The underlying data model used for storage in the Electronics Packaging Materials

Database is a relational database. The concept of the relational data model was

developed by Codd (1970). The relational database model stores records in tables

related by foreign keys. Hierarchical data where a single parent object has several

child objects may be represented by a foreign key relation wherein each child record

has a field containing the primary key of the parent. The structure of the database,

including the definitions of its tables, is referred to as its schema.

In the Electronics Packaging Materials Database, the basic unit of information is

an entity. Fig. B.1 demonstrates how an experiment entity is represented. Each

of the blocks represent a row in a database table and the arrows represent foreign

key relations. In the figure, there is an experiment entity on the far right with

the label “Example Experiment” and a category_id field with the value 314. The

category_id column has a foreign key relation to the category table. The category

with id 314 has the label “Experiment”. In this way, the experiment is assigned to

a category. The “Attribute” block in the left of the figure represents an attribute

for the number of pins on a chip. It has an “id” field with the value 265 (this is

used to uniquely identify this attribute within the database), a “label” field with

the value “Number of Pins” (this is used to identify the attribute to the user), a

“datatype” field with the value “integer” (this is used to indicate that this attribute

should only be used with integer values), and a category_id field, which enforces

that this attribute may only be used with entities having the category “Experiment”.

The “Integer Value” block in the top center of the figure is used to assign a value of

the “Number of Pins” attribute to the “Example Experiment” entity.

78

Category

id: 314

label: Experiment

Entity

id: 159

label: "Example Experiment"

category_id: 314

Integer Value

attribute_id: 265

entity_id: 159

value: 256

Attribute

id: 265

label: "Number of Pins"

datatype: integer

category_id: 314

Figure B.1.: Example of an experiment with a “Number of Pins” attribute.

Fig. B.2 demonstrates how a material can be represented in the database.

Fig. B.3 demonstrates how an “Entity Value” can be used to represent a relation

between two entities. In this example, the experiment and material entities are related

by an entity value which uses the “Material” attribute.

The next abstraction layer is the object relational mapper (ORM). This provides

a mapping from database relational objects to Python objects using the Django web

framework (Django Software Foundation 2022). With the ORM, database objects

composed of hierarchical data (e.g. experiments) can be operated upon as if they

were a single hierarchical object with the ORM managing the appropriate queries to

the underlying database tables, e.g. the “category” attribute of an “entity” object can

be queried directly to retrieve the related category record, eliding an SQL statement

similar to

SELECT *

FROM entity

JOIN category

ON entity.category_id = category.id

WHERE entity.id = 42;

The ORM also provides the implementation of the REST API for the Electronics

Packaging Materials Database using the Django Rest Framework (Encode OSS Ltd.

79

Category

id: 314

label: Material

Entity

id: 159

label: "SAC305 Solder"

category_id: 314

Attribute

id: 265

label: "Silver Content"

datatype: real

category_id: 314

Real Value

attribute_id: 265

entity_id: 159

value: 0.03

Attribute

id: 358

label: "Copper Content"

datatype: real

category_id: 314

Real Value

attribute_id: 358

entity_id: 159

value: 0.005

Attribute

id: 979

label: "Material Remainder"

datatype: string

category_id: 314

String Value

attribute_id: 979

entity_id: 159

value: Sn

Figure B.2.: Example of how a material entity is represented in the database.

80

Material Entity

Experiment Entity

Category

id: 358

label: Material

Entity

id: 979

label: "SAC305 Solder"

category_id: 358

Attribute

id: 323

label: "Silver Content"

datatype: real

category_id: 358

Real Value

attribute_id: 323

entity_id: 979

value: 0.03

Attribute

id: 846

label: "Copper Content"

datatype: real

category_id: 358

Real Value

attribute_id: 846

entity_id: 979

value: 0.005

Attribute

id: 264

label: "Material Remainder"

datatype: string

category_id: 358

String Value

attribute_id: 264

entity_id: 979

value: Sn

Category

id: 314

label: Experiment

Entity

id: 159

label: "Example Experiment"

category_id: 314

Integer Value

attribute_id: 265

entity_id: 159

value: 256

Attribute

id: 265

label: "Number of Pins"

datatype: integer

category_id: 314

Attribute

id: 338

label: "Material"

datatype: entity

category_id: 314

value_category_id: 358

Entity Value

attribute_id: 338

entity_id: 159

value: 979

Figure B.3.: Example of an experiment with a “Number of Pins” attribute and a
“Material” attribute.

81

Database

Django
ORM

SQL Statements↑
Table Data↓

REST API

Python Objects l

API Client

API Specification

Web Client

HTTP Requests ↑
JSON Data ↓

Figure B.4.: Block diagram of database, REST API, and clients.

2022). The architecture of the Electronics Packaging Materials Database website is

shown in Fig. B.4.

The web site uses client-side JavaScript to implement a REST client in the browser

and handles all HTTP requests through the REST API. The browser-based REST

client uses the Angular framework to provide interactive features (Jain, Bhansali, and

Mehta 2014).

By using the API specification document, much of the client-side JavaScript includ-

ing logic for object specification, endpoints, and forms can be generated automatically.

By using the REST API as the interface for both browser-based and command-line-

82

based clients, consistency in features, permissions, and accessibility is assured and

the total testing and vulnerability surface area of the application is minimized.

83

Appendix C. Plot Digitization

The WebPlotDigitizer software can be used to collect data from published charts

and add the data to the Electronics Packaging Materials Database (Rohatgi 2022).

To begin digitizing a plot, users proceed as follows.

1. The user locates a plot of failure rate vs. cycles to failure, similar to what is

shown in Fig. C.1.

2. The user loads the plot in the WebPlotDigitizer interface as shown in Fig. C.2.

3. The user digitizes the plot as shown in Fig. C.3.

4. Reliability plots frequently use a scale transformation of the form

fpxq “ log r´ logp1 ´ xqs (C.1)

for the y axis. This transformation is not currently supported by WebPlotDig-

itizer, so instead, the user must perform the transformation themselves. This

transformation can be performed using Python as demonstrated in Listing C.1.

5. The user takes the transformed data and adds it as an attribute of the exper-

iment in the Electronics Packaging Materials Database as shown in Fig. C.4.

84

2× 103 3× 103 4× 103

Fatigue Life

0.01

0.05

0.10

0.90

0.99

F
a
il
u
re

R
a
te

Figure C.1.: Example plot, generated for illustration purposes

Figure C.2.: Example plot loaded into WebPlotDigitizer

85

Listing C.1.: Python 3 code to perform failure rate transformation.

1 import csv

2 from io import StringIO

3 from math import log, exp

4 point_1 = float(input("Input value of first calibration point: "))

5 point_2 = float(input("Input value of second calibration point: "))

6 # Compute the transformed values of the calibration points

7 g1 = log(-log(1 - point_1))

8 g2 = log(-log(1 - point_2))

9 # Compute parameters of a linear transformation from screen coordinates

10 # to transformed data coordinates

11 a = (point_2 - point_1) / (g2 - g1)

12 b = (point_1 * g2 - point_2 * g1) / (g2 - g1)

13 print(

14 "Enter data in comma-separated value format. Empty line to end."

15)

16 lines = [] # Build a list of lines

17 while True: # Get lines from user one at a time

18 line = input()

19 if not line.strip():

20 break # Stop getting lines if user enters a blank line

21 lines.append(line)

22 data = "\n".join(lines) # Convert list of lines into a string

23 # Parse the input lines as Comma-Separated Value (CSV) data

24 reader = csv.reader(StringIO(data))

25 # Build output by transforming input data

26 output = []

27 for row in reader:

28 # Convert rows of CSV data from strings to numbers

29 cycles, scale_failure_rate = map(lambda x: float(x.strip()), row)

30 # Remove linear transformation of screen coordinates

31 # from failure rate data

32 transformed_failure_rate = (scale_failure_rate - b) / a

33 # Apply inverse Weibull transformation to failure rate data

34 true_failure_rate = 1 - (exp(-exp(transformed_failure_rate)))

35 output.append([cycles, true_failure_rate])

36 output_buffer = StringIO()

37 writer = csv.writer(output_buffer)

38 for row in output:

39 writer.writerow(row)

40 print(output_buffer.getvalue())

86

Figure C.3.: Example data digitized in WebPlotDigitizer

87

Figure C.4.: Example data loaded into the Electronics Packaging Materials Database

88

Appendix D. Data Values

Values used for the experiments included in the analysis are listed in Table D.1.

The ranges of the different values are listed in Table D.2. For categorical features, all

variants are listed in curly brackets. For numerical features, the range is indicated by

the minimum and maximum values enclosed in square brackets.

89

T
ab

le
D
.1
.:
D
at
a
va
lu
es

u
se
d
fo
r
m
ac
h
in
e
le
ar
n
in
g

Number of pad columns

Number of pad rows

Pad arry width

Pad array length

Aging Time (s)

Aging Temperature (˝C)

Min Cycle Temperature (˝C)

Max Cycle Temperature (˝C)

Board Surface Treatment

Number of Pads

Solder Ball Material

Package Type

Reference

Id

31
31

12
.4

12
.4

3
.6
e+

0
6

1
0
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

1

31
31

12
.4

12
.4

3
.6
e+

0
6

1
0
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

2

31
31

12
.4

12
.4

1
.8
e+

0
6

1
0
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

3

31
31

12
.4

12
.4

1
.8
e+

0
6

1
0
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

4

31
31

12
.4

12
.4

3
.6
e+

0
6

1
5
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

5

31
31

12
.4

12
.4

3
.6
e+

0
6

1
5
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

6

31
31

12
.4

12
.4

1
.8
e+

0
6

1
5
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

7

31
31

12
.4

12
.4

1
.8
e+

0
6

1
5
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

8

23
23

9.
2

9.
2

0
0

-5
5

1
2
5

O
S
P

3
6
0

S
n
-1
.0
A
g
-0
.5
C
u

B
G
A

[7
6
]

9

23
23

9.
2

9.
2

0
0

-5
5

1
2
5

O
S
P

3
6
0

S
n
-1
.0
A
g
-0
.5
C
u

B
G
A

[7
6
]

1
0

12
12

9.
6

9.
6

0
0

-4
0

1
2
5

O
S
P

1
4
4

S
n
-4
.0
A
g
-0
.5
C
u

F
le
X
B
G
A

[7
5
]

1
1

12
12

9.
6

9.
6

0
0

0
1
0
0

O
S
P

1
4
4

S
n
-4
.0
A
g
-0
.5
C
u

F
le
X
B
G
A

[7
5
]

1
2

90

T
ab

le
D
.1

C
on

ti
n
u
ed
:
D
at
a
va
lu
es

u
se
d
fo
r
m
ac
h
in
e
le
ar
n
in
g

Number of pad columns

Number of pad rows

Pad arry width

Pad array length

Aging Time (s)

Aging Temperature (˝C)

Min Cycle Temperature (˝C)

Max Cycle Temperature (˝C)

Board Surface Treatment

Number of Pads

Solder Ball Material

Package Type

Reference

Id

12
12

9.
6

9.
6

0
0

-4
0

1
2
5

O
S
P

1
4
4

S
n
-3
7
P
b

F
le
X
B
G
A

[7
5
]

1
3

12
12

9.
6

9.
6

0
0

0
1
0
0

O
S
P

1
4
4

S
n
-3
7
P
b

F
le
X
B
G
A

[7
5
]

1
4

10
10

8
8

0
0

-4
0

1
2
5

O
S
P

1
0
0

S
n
-3
.0
A
g
-0
.5
C
u

P
B
G
A

[2
8
]

1
5

20
20

25
.4

25
.4

0
0

-4
0

1
2
5

E
N
IG

3
1
6

S
n
-3
7
P
b

P
B
G
A

[6
3
]

1
6

25
25

31
.7
5

31
.7
5

0
0

-4
0

1
2
5

E
N
IG

3
1
3

S
n
-3
7
P
b

P
B
G
A

[6
3
]

1
7

20
20

25
.4

25
.4

0
0

-4
0

1
2
5

E
N
IG

3
1
6

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

1
8

25
25

31
.7
5

31
.7
5

0
0

-4
0

1
2
5

E
N
IG

3
1
3

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

1
9

20
20

25
.4

25
.4

0
0

-4
0

1
2
5

E
N
IG

3
1
6

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

2
0

25
25

31
.7
5

31
.7
5

0
0

-4
0

1
2
5

E
N
IG

3
1
3

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

2
1

20
20

25
.4

25
.4

0
0

-4
0

1
2
5

E
N
IG

3
1
6

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

2
2

25
25

31
.7
5

31
.7
5

0
0

-4
0

1
2
5

E
N
IG

3
1
3

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

2
3

20
20

25
.4

25
.4

0
0

-4
0

1
2
5

E
N
IG

3
1
6

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

2
4

91

T
ab

le
D
.1

C
on

ti
n
u
ed
:
D
at
a
va
lu
es

u
se
d
fo
r
m
ac
h
in
e
le
ar
n
in
g

Number of pad columns

Number of pad rows

Pad arry width

Pad array length

Aging Time (s)

Aging Temperature (˝C)

Min Cycle Temperature (˝C)

Max Cycle Temperature (˝C)

Board Surface Treatment

Number of Pads

Solder Ball Material

Package Type

Reference

Id

25
25

31
.7
5

31
.7
5

0
0

-4
0

1
2
5

E
N
IG

3
1
3

S
n
-3
.9
A
g
-0
.6
C
u

P
B
G
A

[6
3
]

2
5

18
18

9
9

0
0

-4
0

1
2
5

N
iA

u
1
5
1

S
n
-3
6
P
b
-2
.0
A
g

B
G
A

[7
7
]

2
6

18
18

9
9

0
0

-4
0

1
2
5

O
S
P

1
5
1

S
n
-3
6
P
b
-2
.0
A
g

B
G
A

[7
7
]

2
7

18
18

9
9

0
0

-4
0

1
2
5

N
iA

u
1
5
1

S
n
-3
.8
A
g
-0
.7
C
u

B
G
A

[7
7
]

2
8

18
18

9
9

0
0

-4
0

1
2
5

O
S
P

1
5
1

S
n
-3
.8
A
g
-0
.7
C
u

B
G
A

[7
7
]

2
9

24
24

30
.4
8

30
.4
8

0
0

-4
0

1
2
5

E
N
IG

5
7
6

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[3
0
]

3
0

7
7

4.
9

4.
9

0
0

-4
0

1
2
5

E
N
IG

4
8

S
n
-3
.0
A
g
-0
.5
C
u

C
S
P

[3
0
]

3
1

15
15

7.
5

7.
5

0
0

-4
0

1
2
5

E
N
IG

2
0
8

S
n
-5
8
B
i

Q
F
P

[3
0
]

3
2

6
6

3
3

0
0

-4
0

1
2
5

E
N
IG

2
8

S
n
-5
8
B
i

T
S
O
P

[3
0
]

3
3

24
24

30
.4
8

30
.4
8

0
0

-4
0

1
2
5

O
S
P

5
7
6

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[3
0
]

3
4

7
7

4.
9

4.
9

0
0

-4
0

1
2
5

O
S
P

4
8

S
n
-3
.0
A
g
-0
.5
C
u

C
S
P

[3
0
]

3
5

15
15

7.
5

7.
5

0
0

-4
0

1
2
5

O
S
P

2
0
8

S
n
-5
8
B
i

Q
F
P

[3
0
]

3
6

92

T
ab

le
D
.1

C
on

ti
n
u
ed
:
D
at
a
va
lu
es

u
se
d
fo
r
m
ac
h
in
e
le
ar
n
in
g

Number of pad columns

Number of pad rows

Pad arry width

Pad array length

Aging Time (s)

Aging Temperature (˝C)

Min Cycle Temperature (˝C)

Max Cycle Temperature (˝C)

Board Surface Treatment

Number of Pads

Solder Ball Material

Package Type

Reference

Id

6
6

3
3

0
0

-4
0

1
2
5

O
S
P

2
8

S
n
-5
8
B
i

T
S
O
P

[3
0
]

3
7

18
18

9
9

9
0
0
0
0
0

1
5
0

-4
0

1
2
5

O
S
P

2
4
4

S
n
-1
.0
A
g
-0
.5
C
u

T
F
B
G
A

[4
7
]

3
8

23
23

11
.5

11
.5

0
0

-5
5

1
2
5

O
S
P

3
6
0

S
n
-1
.0
A
g
-0
.5
C
u

B
G
A

[7
6
]

3
9

23
23

9.
2

9.
2

0
0

-5
5

1
2
5

O
S
P

3
6
0

S
n
-1
.0
A
g
-0
.5
C
u

B
G
A

[7
6
]

4
0

18
18

9
9

9
0
0
0
0
0

1
5
0

-4
0

1
2
5

O
S
P

2
4
4

S
n
-3
.0
A
g
-0
.5
C
u

T
F
B
G
A

[4
7
]

4
1

23
23

11
.5

11
.5

0
0

-5
5

1
2
5

O
S
P

3
6
0

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[7
6
]

4
2

23
23

11
.5

11
.5

0
0

-5
5

1
2
5

O
S
P

3
6
0

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[7
6
]

4
3

12
12

9.
6

9.
6

0
0

-4
0

1
2
5

O
S
P

1
4
4

S
n
-4
.0
A
g
-0
.5
C
u

F
le
X
B
G
A

[7
5
]

4
4

12
12

9.
6

9.
6

0
0

-5
5

1
2
5

O
S
P

1
4
4

S
n
-4
.0
A
g
-0
.5
C
u

F
le
X
B
G
A

[7
5
]

4
5

12
12

9.
6

9.
6

0
0

-4
0

1
2
5

O
S
P

1
4
4

S
n
-3
7
P
b

F
le
X
B
G
A

[7
5
]

4
6

12
12

9.
6

9.
6

0
0

-5
5

1
2
5

O
S
P

1
4
4

S
n
-3
7
P
b

F
le
X
B
G
A

[7
5
]

4
7

18
18

9
9

0
0

-4
0

1
2
5

N
iA

u
1
5
1

S
n
-3
6
P
b
-2
.0
A
g

B
G
A

[7
7
]

4
8

93

T
ab

le
D
.1

C
on

ti
n
u
ed
:
D
at
a
va
lu
es

u
se
d
fo
r
m
ac
h
in
e
le
ar
n
in
g

Number of pad columns

Number of pad rows

Pad arry width

Pad array length

Aging Time (s)

Aging Temperature (˝C)

Min Cycle Temperature (˝C)

Max Cycle Temperature (˝C)

Board Surface Treatment

Number of Pads

Solder Ball Material

Package Type

Reference

Id

18
18

9
9

0
0

-4
0

1
2
5

O
S
P

1
5
1

S
n
-3
6
P
b
-2
.0
A
g

B
G
A

[7
7
]

4
9

18
18

9
9

0
0

-4
0

1
2
5

N
iA

u
1
5
1

S
n
-3
6
P
b
-2
.0
A
g

B
G
A

[7
7
]

5
0

18
18

9
9

0
0

-4
0

1
2
5

O
S
P

1
5
1

S
n
-3
6
P
b
-2
.0
A
g

B
G
A

[7
7
]

5
1

18
18

9
9

9
0
0
0
0
0

1
5
0

-4
0

1
2
5

O
S
P

2
4
4

S
n
-3
7
P
b

T
F
B
G
A

[4
7
]

5
2

24
24

30
.4
8

30
.4
8

0
0

-4
0

1
2
5

E
N
IG

5
7
6

S
n
-3
7
P
b

B
G
A

[3
0
]

5
3

7
7

4.
9

4.
9

0
0

-4
0

1
2
5

E
N
IG

4
8

S
n
-3
7
P
b

C
S
P

[3
0
]

5
4

15
15

7.
5

7.
5

0
0

-4
0

1
2
5

E
N
IG

2
0
8

S
n
-3
7
P
b

Q
F
P

[3
0
]

5
5

6
6

3
3

0
0

-4
0

1
2
5

E
N
IG

2
8

S
n
-3
7
P
b

T
S
O
P

[3
0
]

5
6

31
31

12
.4

12
.4

0
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

5
7

31
31

12
.4

12
.4

0
0

0
1
0
0

O
S
P

4
3
2

S
n
-3
.0
A
g
-0
.5
C
u

B
G
A

[4
3
]

5
8

94

Table D.2.: Ranges of data values used for machine learning

Attribute Values

Number of pad columns r6, 31s

Number of pad rows r6, 31s

Pad arry width r3, 33.02s

Pad array length r3, 33.02s

Aging Time (s) r0, 3.6e ` 06s

Aging Temperature (˝C) r0, 150s

Min Cycle Temperature (˝C) r´55, 0s

Max Cycle Temperature (˝C) r100, 125s

Board Surface Treatment {ENIG, I/Ag, Immersion Ag, Ni/Au, OSP,
Sn-Pb HASL}

Number of Pads r28, 900s

Solder Ball Material {Sn-0.7Cu, Sn-1.0Ag-0.5Cu, Sn-1.0Ag-
0.5Cu-0.02Ce, Sn-1.0Ag-0.5Cu-0.05Mn,
Sn-1.2Ag-0.5Cu-0.05Ni, Sn-2.1Ag-0.9Cu,
Sn-2.3Ag-0.5Cu-0.2Bi, Sn-2.5Ag-0.9Cu,
Sn-3.0Ag-0.5Cu, Sn-3.4Ag-0.7Cu, Sn-
3.5Ag, Sn-3.5Ag-0.5Cu, Sn-3.5Ag-51Cu,
Sn-3.87Ag-0.7Cu, Sn-3.8Ag-0.7Cu, Sn-
3.9Ag-0.6Cu, Sn-36Pb-2.0Ag, Sn-37Pb,
Sn-4.0Ag-0.5Cu, Sn-4.0Ag-1.0Cu, Sn-
58Bi}

Package Type {BGA, CBGA, CLCC, CSP, Chip Resis-
tor, FBGA, LGA, LTCC, PBGA, QFN,
QFP, SBGA, TARRY, TFBGA, TSOP,
WLP}

Failure Rate r0.01679, 0.99017s

Fatigue Life r32, 11545s

95

Appendix E. Nested K-Fold Cross-Validation

To understand nested K-fold cross-validation, the reader must first be familiar with

K-fold cross-validation. The K-fold cross-validation algorithm is presented in Algo-

rithm 2. In K-fold cross-validation, k models will be trained and tested, each time

using 1 of the k testing partitions as described in Algorithm 1. For each testing parti-

tion, the complement of the partition is used to train the model. The trained model is

then scored on the testing data. Since the k testing sets were created by partitioning

the entire data set, each example in the data set is used for testing exactly once. The

nested K-fold cross-validation algorithm uses a grid-search hyperparameter optimiza-

tion procedure described in Algorithm 3. The grid-search optimization procedure

searches a grid of model hyperparameters and uses Algorithm 2 to compute scores for

each “point” (i.e. parameter combination) in the grid. The parameter combination

with the best score is returned. Nested K-fold cross-validation splits the data into

K folds, performs Algorithm 3 over each fold to find the optimal hyperparameter

combination for each fold, and computes a score on the testing data for each fold

using that optimal combination of hyperparameters.

The nested K-fold cross-validation algorithm is illustrated in Fig. E.1. In the fig-

ure, 4 “outer folds” are marked with braces. Within each outer fold, a grid-search

optimization is performed on 3 “inner folds”.

Fig. E.2 depicts the nested cross-validation process. In an outer loop, data is split

into different train/test partitions. Within the outer loop, a hyperparameter loop

iterates through all combinations of hyperparameters. The training/validation data

from the outer loop and the hyperparameter combination from the hyperparame-

96

Algorithm 1 K-Fold Splitting algorithm. This algorithm returns lists of “validation”
and “training” sets. Each “validation” set consists of disjoint sets of indices that form
a partition of S. Each “training” set consists of sets of indices that are the complement
of the corresponding validation set.

1: function KFoldSplit(k P Z`, S “ ts|s P Z`u) Ź k is the number of folds Ź S
is a set of indices to split

Require: k ď |S|

2: V Ð tVi|1 ď i ď k ^ Vi Ă Su Ź Define a set of k subsets of S for validation
Require: Vi X Vj “ H ðñ i ‰ j Ź the subsets are disjoint

Require:
Ťk

m“1 Vm “ S Ź the union of the subsets is S
Require: |Vi| « |Vj| Ź subsets are approximately the same length
3: T Ð tTi|1 ď i ď k ^ Ti “ SzViu Ź Define a set of k subsets of S for training
4: return V, T
5: end function

Fold 1 Fold 2 Fold 3 Fold 4

Figure E.1.: Illustration of nested cross-validation using 4 outer folds and 3 inner

folds. : Outer testing fold; : Inner validation fold; : Training
fold.

97

Algorithm 2 K-Fold scoring algorithm. This algorithm takes a learner and computes
a score on k splits of the data. k is the number of folds. S is the set of indices of
the features and labels. X is a list of features which is indexed by S. Y is a list of
labels which is indexed by S. model is the machine learning model to evaluate. model
shall have a train method which takes a list of features and labels and performs the
training on them. model shall have a predict method which takes a list of features
and returns a list of labels predicted by the machine learning algorithm. scorer is
a function that takes two sets of labels and returns a scalar which represents some
measure of error between the two sets. Examples of scorers include the Mean Absolute
Error, Mean Squared Error, etc.

1: function KFoldScore(k P Z`, S “ ts P Z`u, X “ tXi|i P Su, Y “ tYi|i P Su,
model, scorer P tf : a Ă Y, b Ă Y ÞÑ Ru)

Require: k ď |S|

2: σ Ð 0 Ź Initialize aggregated error
3: V, T Ð KFoldSplitpk, Sq

4: for i Ð 1 . . . k do Ź Iterate over the folds
5: Xtrain Ð tXj|j P Tiu Ź Define training features
6: Ytrain Ð tYj|j P Tiu Ź Define training labels
7: model.trainpXtrain, Ytrainq Ź Train the model on the training labels and

features
8: Xvalidate Ð tXj|j P Viu Ź Define testing features
9: Yvalidate Ð tYj|j P Viu Ź Define testing labels
10: Ypredict Ð model.predictpXvalidateq Ź Use the trained model to predict

validation labels
11: σ Ð σ ` scorerpYvalidate, Ypredictq Ź Score the predicted validation labels

against the known labels
12: end for
13: return σ

k
Ź Return the average score

14: end function

98

Algorithm 3 Grid search hyperparameter optimization algorithm. This algorithm takes a learner
and a set of parameters and returns the combination of parameters which give the best score over k
folds of the data. P is a set of sets of parameters for model indexed by i P I. Each member Pi of P is
a set of values for a single parameter of model. For example, a dense, fully-connected neural network
might have a parameter for the number of hidden layers and a parameter for the number of neurons
per layer. If the number of layers takes the range t2, 3u and the number of neurons per layer takes
the range t32, 64u, then e.g. P1 “ t2, 3u, P2 “ t32, 64u, I “ t1, 2u. Remaining parameters are the
same as Algorithm 2. The cartesian product iPI Pi would then be tt2, 32u, t2, 64u, t3, 32u, t3, 64uu.
model must have a set params method defined.

1: function GridSearch(k P Z`, S “ ts P Z`u, X “ tXi|i P Su, Y “ tYi|i P Su,
model, scorer P tf : a Ă Y, b Ă Y ÞÑ Ru, P “ tPj|j P Iu)

2: σbest Ð 8

3: pbest Ð H

4: for all pi P iPI Pi do Ź Iterate over the cartesian product of members of P
5: model.set params(pi)
6: σ Ð KFoldScorepk, S,X ,Y , model, scorerq

7: if σ ă σbest then Ź Always true if this is the first combination
8: σbest Ð σ
9: pbest Ð pi
10: end if
11: end for
12: return pbest, σbest

13: end function

99

Algorithm 4 Nested K-Fold Scoring. K is the number of outer folds for testing
data, k is the number of inner folds to use with Algorithm 3. Remaining parameters
are the same as Algorithm 3. Returns a list of best scores found for each of the k
folds.
1: function NestedKFoldScore(K P Z`, k P Z`, S “ ts P Z`u, X “ tXi|i P

Su, Y “ tYi|i P Su, model, scorer P tf : a Ă Y, b Ă Y ÞÑ Ru, P “ tPj|j P Iu)
2: V, T Ð KFoldSplitpK,Sq Ź Get training and testing index sets
3: scores Ð rs Ź Initialize an empty list of scores
4: for i Ð 1 . . . K do
5: Xtrain Ð tXj|j P Tiu Ź Define training features
6: Ytrain Ð tYj|j P Tiu Ź Define training labels
7: pbest, σbest Ð GridSearchpk, Ti, Xtrain, Ytrain, model, scorer,Pq

8: model.set params(pbest)
9: Xtest Ð tXj|j P Viu Ź Define testing features
10: Ypredict Ð model.predictpXtestq Ź Use the trained model to predict

validation labels
11: Ytest Ð tYj|j P Viu Ź Define testing labels
12: σ Ð scorerpYtest, Ypredictq Ź Score the model with best parameters
13: scores.appendpσq Ź Append the score on the validation fold to the list

of scores
14: end for
15: return scores

16: end function

100

ter loop are passed to an inner training loop within the hyperparameter loop. In

the inner training loop, the training/validation data is repeatedly split into differ-

ent training and validation partitions. The model is trained on the current training

partition using the current hyperparameter combination, then scored on the current

validation partition. The scores from each inner training loop cycle are aggregated in

the hyperparameter loop to compute a composite score for the current hyperparam-

eter combination. The hyperparameter combination with the best composite score

is selected in the outer loop. The training and validation data in the outer loop

is then used to train the model with the “best” hyperparameter combination, the

model is scored against the test split, and finally an aggregate score for all test splits

is reported.

101

Outer Loop

Loop
through

testing splits

Hyperparameter Loop

Loop through
hyperparameter

combinations

Training Loop

Train Model

Training and
Validation Data

Loop
through

validation
splits

Training Data

Validation Data

Score Model Aggregate
Scores

Hyperparameter GridHyperparameter Grid

Get best
hyperparameter

combination

Score best
hyperparameter

combination

Training and
Validation Data

Train Model

Data Set

Testing Data

Aggregate
Scores

Figure E.2.: Diagram illustrating the nested cross-validation process.

102

Appendix F. Backpropagation

Consider a simplified version of Eq. (5.7):

ŷ “ f2
`

A2f1 pA1x ` b1q ` b2
˘

(F.1)

We may wish to find A1,A2, b1, b2 to minimize some loss function

C “ Lpy ´ ŷq (F.2)

where y is a vector of labels. We can represent Eq. (F.2) as a table as shown in

Table F.1. In this way, the expression is decomposed into a list of operations which

are composed of the results of other operations. To perform backpropagation, an

ancillary table (Table F.2) is constructed where each row represents a derivative of a

term from Table F.2 with respect to one of its operands. The chain rule from calculus

recursively defines the derivative of xi with respect to xj as

Bxi

Bxj

“
ÿ

kPsi

Bxi

Bxk

Bxk

Bxj

(F.3)

where the set si contains the indices of terms which depend on xi. We can use the

chain rule to populate an additional table (Table F.3) from the terms in Table F.2.

This table then contains all derivatives of C with respect to each term of its terms. By

performing the computations in this fashion, the number of calculation steps required

to compute arbitrary derivatives is minimized.

103

Table F.1.: Representation of Eq. (F.2) as a table.

Identifier Expression Operation Major Source Minor Source

x1 L
´

y ´ f2
`

A2f1 pA1x ` b1q ` b2
˘

¯

L x2 -

x2 y ´ f2
`

A2f1 pA1x ` b1q ` b2
˘

difference x3 x4

x3 y given - -
x4 f2

`

A2f1 pA1x ` b1q ` b2
˘

f2 x5 -
x5 A2f1 pA1x ` b1q ` b2 sum x6 x14

x6 A2f1 pA1x ` b1q matmul x7 x8

x7 A2 parameter - -
x8 f1 pA1x ` b1q f1 x9 -
x9 A1x ` b1 sum x10 x13

x10 A1x matmul x11 x12

x11 A1 parameter - -
x12 x given - -
x13 b1 parameter - -
x14 b2 parameter - -

Table F.2.: Derivatives of Table F.1.

Identifier Operation Expression

x1,2
Bx1

Bx2
x2 Ñ L

1

px2q

x2,3
Bx2

Bx3
x3, x4 Ñ 1

x2,4
Bx2

Bx4
x3, x4 Ñ ´1

x4,5
Bx4

Bx5
x5 Ñ f

1

2px5q

x5,6
Bx5

Bx6
x6, x14 Ñ 1

x5,14
Bx5

Bx14
x6, x14 Ñ 1

x6,7
Bx6

Bx7
x7, x8 Ñ x8

x6,8
Bx6

Bx8
x7, x8 Ñ x7

x8,9
Bx8

Bx9
x9 Ñ f

1

1px9q

x9,10
Bx9

Bx10
x10, x13 Ñ 1

x9,13
Bx9

Bx13
x10, x13 Ñ 1

x10,11
Bx10

Bx11
x11, x12 Ñ x12

x10,12
Bx10

Bx12
x11, x12 Ñ x11

104

Table F.3.: Representation of the chain rule applied to Eq. (F.2) using terms defined
in Table F.2.

Identifier Symbol Operation

x1,3
BC
By

x1,2x2,3

x1,4
BC
Bŷ

x1,2x2,3

x1,5 - x1,4x4,5

x1,6 - x1,5x5,6

x1,7
BC
BA2

x1,6x6,7

x1,8 - x1,6x6,8

x1,9 - x1,8x8,9

x1,10 - x1,9x9,10

x1,11
BC

BA1
x1,10x10,11

x1,12
BC
Bx

x1,10x10,12

x1,13
BC
Bb1

x1,9x9,13

x1,14
BC
Bb2

x1,5x5,14

105

	Comparing the Performance of Different Machine Learning Models in the Evaluation of Solder Joint Fatigue Life Under Thermal Cycling
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	List of Tables
	List of Figures
	Glossary
	Introduction
	Failure mechanisms of board-level solder joints
	Data Sources
	Feature Selection
	Regression
	Data Retrieval
	Data Pre-processing
	Missing parameter imputation
	Data point bootstrapping
	Feature Selection
	Missing Value Rejection
	Small Category Rejection
	Encoding categorical features
	Scaling numerical features

	Model Evaluation
	Models
	Decision Trees
	Random Forest
	Gradient Boosting
	Extreme Gradient Boosting
	Artificial Neural Network
	AdaBoost

	Results
	Conclusions
	References
	Appendix Computing parameters of the Weibull distribution
	Appendix Database architecture
	Appendix Plot Digitization
	Appendix Data Values
	Appendix Nested K-Fold Cross-Validation
	Appendix Backpropagation

