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ABSTRACT 

An abstract of the thesis of Nur Kurt-Karsilayan for the Master of Science in 

Electrical Engineering presented November 13, 1997. 

Title: Complete-Range Activity-Based RTL Power Estimation 

In recent years, power consumption has become a major concern in the elec

tronic industry. Power reduction can be accelerated in the design cycle by fast 

and accurate power estimation tools. Since the units of lower-levels of design 

abstraction are transistors or gates, power estimation becomes a slow process at 

these levels. Therefore designers need to have tools for fast and accurate power 

estimation at the higher levels of design abstraction such as register transfer level 

(RTL). 

A novel RTL power estimation technique called CRAB-RPE will be presented 

in this thesis. The CRAB power model is built upon four important properties 

which most of the previous RTL models did not support at the same time. First, 

the model is based solely on the first and second-order primary input bit-level tran

sition probabilities which provide detailed information about the primary input bit 

activity dependency of the circuit. Second, the model is based on the power char

acterization of a microarchitecture library with a complete range of primary input 

bit transition probabilities without any assumptions about this activity. Third, the 

pairwise spatial correlations of the primary input nodes are considered by includ

ing second-order crossterms of the primary input switching probabilities. Fourth, 

the first-order temporal correlations of the primary input bits are considered by 

including 1 to 1 and binary switching transition probabilities. With the proposed 
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model, fast power estimation can be achieved from input bit-level statistics with

out further simulation. The model was evaluated using the ISCAS combinational 

circuit benchmarks and other commonly used micro-architectural circuit blocks. 

Second-order terms were observed to be important for modeling the low bit ac

tivity effects on power dissipation. The CRAB power model returned under 5% 

of the low-level simulator estimates for either biased single, pair PIN statistics or 

uniform white noise, DBT-like data. 
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Chapter 1 

Introduction 

In recent years, power dissipation has become an important design concern 

for CMOS circuits. Previously, the design specifications were based on area, per

formance, cost, and reliability. The change in requirements is the result of the 

remarkable growth of personal computing devices and wireless communications 

systems which demand high-speed computation and complex functionality with 

low power consumption [2]. In most of the applications, the overall aim of power 

reduction is to decrease system cost, such as cooling, packaging, and energy, and 

ensure long-term circuit reliability. On the other hand, peak power dissipation is 

a separate concern for determining the electrical limits of the design, battery type 

and power distribution network [4]. While technology, layout, gate, and circuit 

optimizations may offer power reductions of a factor of two at best, optimization 

at the register transfer level (RTL) and system level was shown to result in an 

order of magnitude reduction in average power dissipation [3]. The relationship 

between power estimation time versus the design abstraction level [1] is illustrated 

in Fig. 1.1. Clearly, there is a trade-off between the power estimation cost 

and the level of design abstraction. Power estimation is faster at the higher levels 

of design abstraction. 

In this thesis, models average power dissipation will be investigated at the 
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POWER ESTIMATION FOR A lO0K-GATE 

CIRCUIT WITH 100000 INPUT VECTORS 

ESTIMATION 

TIME 

WEEKS/MONTHS 

DAYS 

HOURS 

MINUTES 

LEVEL OF ABSTRACTION 

Figure 1.1: Power estimation time vs level of abstraction. 

register transfer level of design abstraction. To explore the low power design space 

for digital CMOS circuits, the sources of power dissipation need to be specified 

and then methods to reduce power can be investigated. 

1.1 Power Dissipation Ingredients 

There are four mam factors that contribute to power dissipation m digital 

CMOS circuits [5]: 

• Capacitive current charges and discharges the capacitive load during output 

transitions which are shown with arrows labeled 1 in Fig. 1.2. 

• Short-circuit current between the supply rails when both NMOS and PMOS 

are on during an input transition. This current is shown with the arrow labeled 2 

in Fig. 1.2. 

• Leakage current is determined by the fabrication technology. It 1s a reverse 
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bias current between MOS diffusion regions and the substrate in an MOS transistor 

and the sub-threshold conduction caused by the inversion charge that exists below 

the MOSFET threshold voltage. The leakage current is indicated with the arrow 

labeled 3 in Fig. 1.2. The actual power contribution of the substrate current is 

several orders of magnitude below other contributors [3]. 

• Standby current is drawn continuously from the power supply ( e.g. pseudo

NMOS inverter). It is a small current and a small contribution to power dissipation. 

Vdd 

1 

_/ 
INPUT OUTP~ 

2 
1 

3 

r(>AD 

Figure 1.2: Power dissipation ingredients in CMOS circuits. 

Total power dissipation in a CMOS circuit is the sum of the above power ingre

dients. Dynamic power dissipation is the sum of power dissipations caused by the 

capacitive and short-circuit currents [2]. Veendrick showed that if the gate sizes are 

selected such that the input and output rise/fall times are about equal, the short

circuit power dissipation will be less than 15% of the total power dissipation [6]. 

For modern CMOS circuits, the capacitive power is the dominant ingredient of the 



4 

total power. The average capacitive power of a CMOS circuit can be expressed as: 

P i v2 c f, ( 1.1) ave 2 · dd · load · tSW · elk 

where C1oad is the load capacitance at the output node, tsw is the switching activity 

of the output node (i.e. sum of 1 to Oand Oto 1 transition probabilities per clock 

cycle), ½d is the supply voltage, and fc1k is the clock frequency. The Ctoad · tsw 

product is sometimes called switched capacitance [3] and the tsw · !elk product is 

known as the transition density in [8]. 

The low power design space will be explored by describing the effects of each 

component (Vdd, Ctoad, tsw) on the average power dissipation. 

1.2 Low Power Design Space 

The most effective component in the power reduction is supply voltage. Since 

the power is proportional to the square of the voltage, a factor of two reduction in 

voltage will result in four-fold power reduction. This is a global effect throughout 

the entire design. In many cases, there is a trade-off between the reduced voltage 

and circuit performance or area [2]. One processing technique for example, reduces 

supply voltage without sacrificing speed by decreasing of the threshold voltage of 

the devices. 

Power dissipation also depends on the load capacitance of each node in the 

circuit. The transistor interconnect contributes to the load capacitance of the con

necting nodes. Logic minimization, using smaller devices, fewer and shorter wires, 

resource sharing are several ways to reduce load capacitance [2]. Interconnect, 

for example, can be reduced by register sharing and common sub-function extrac

tion or by effective placement and routing. The trade-off between the capacitive 
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loads and the performance of the circuits implies that the capacitances can not be 

reduced independently. 

If the switching activity is minimized, power dissipation is reduced. Switching 

activity is composed of two components: Functional activity and glitch activity. 

Functional activity of a circuit depends directly on its logic function. Glitch activ

ity is caused by the unwanted transitions that occur at a circuit node before the 

signal reaches its steady-state value. 

The switching activity of the output node of a circuit depends on [2]: 

1. Switching activities of the circuit inputs, 

2. Spatial and temporal correlations among the circuit inputs, 

3. Delay model, 

4. Logic function of the circuit. 

The first is related to the input pattern-dependency of power as discussed 

in [10]. Switching activity may be different for different circuits and various data 

representations. For example, switching activity of a finite state machine (FSM) 

varies between 0.08 and 0.18 [4]. For video signals, the most significant bits have 

switching activities of 0.1 whereas the least significant bits have 0.5. The commonly 

used uniform white noise data has a switching activity range 0.4-0.5. 

The second is local and temporal correlations of the input signals. For example, 

if two bits of a word are always high at the same time then these bits are spatially 

correlated. The spatial correlation occurs for many internal nodes of a circuit by 

a mechanism called re-convergent fanout [10]. On the other hand, if there is a 

dependency among the values of an input signal in time domain ( e.g a signal is 1 if 

and only if its previous value is 0) then the values for that particular bit are tem

porally correlated. For example, a feedback in a finite state machine often creates 
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temporally correlated signals [10]. It has been shown conclusively that spatial and 

temporal correlations will affect the switching activity of an output node [2]. The 

delay model used is also important for the calculation of the switching activity. 

If a zero-delay model is used, then only the functional activity can be obtained 

for the switching activity, on the other hand a general delay model can predict 

glitch activity in addition to functional activity. The logic function itself naturally 

also plays a role on the switching activity. For example, the functional activity of 

a 2-input XOR's output is 1/2, when all (i.e. 16) possible input transitions are 

considered. 

The design for low power is dependent upon power estimation and optimiza

tion tools that the designer uses to make critical design choices without expensive 

redesigns later in the design cycle. There are several levels of CMOS design ab

straction. The two lowest levels use transistors and gates as building blocks of the 

circuit. At higher levels of abstraction, circuits are described as interconnected 

multi-function registers. This is generally known as the register transfer level. 

1.3 Low-Level Power Estimation 

The low-level power estimation techniques can be grouped into two categories: 

Simulation-based techniques or analytical techniques. 

1.3.1 Shnulation-Based Techniques 

Transistor-level, simulation-based techniques simulate the circuit with a sam

ple set of input vectors [2]. They are advantageous in terms of the accuracy with 

respect to real (silicon) power dissipation and they can handle various device mod-
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els and different circuit design styles. Their disadvantages come from the fact 

that they are not scalable to VLSI levels because they require large memory and 

execution-time. PowerMill and IRSIM are the examples of this type of simula

tor [35, 36]. 

A second technique uses a hierarchy of simulators to achieve a reasonable ac

curacy and efficiency trade-off. Entice-Aspen [37] is based on this technique where 

Aspen computes the circuit-activity information and Entice computes the power 

characterization data. 

Another simulation-based technique uses statistical sampling based on a Monte 

Carlo Simulation approach that solves the pattern dependence problem by an 

appropriate choice of input vectors [9]. However, this method does not include 

spatial correlations at the input. 

1.3.2 Analytical Techniques 

Analytical techniques propagate the circuit node signal probabilities or node 

transition densities of the primary input bits through the circuit with little or no 

simulation (i.e. when the primary input probabilities are provided by the user). 

These techniques can also be grouped in two categories depending on the static 

delay-model used. 

One technique is based on a zero-delay assumption. In addition to this, the 

values of each input in consecutive clock cycles are assumed to be temporally 

independent. Based on these assumptions the switching activity (t•w) of the circuit 

node can be expressed in terms of its signal probability (p) as 

t•w=2·p·(l-p) ( 1.2) 
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where p is the probability of a signal being 1. Ercolani et. al, presented a proce

dure for propagating signal probabilities from the circuit inputs toward the circuit 

outputs by considering only pairwise spatial correlations (i.e. two bits are consid

ered to be locally dependent on each other). Marculescu et. al. [25] and Schneider 

et.al. [26] proposed to model the temporal correlation of two consecutive signals 

by a time-homogeneous two-state Markov chain. various transition probabili-

ties can be computed exactly using the ordered binary decision diagram (OBDD) 

representation of the logic function in terms of the primary input nodes. Mar

culescu also proposed in [25] a method to propagate the transition probabilities 

and correlation coefficients through a gate-level circuit. 

The second group is based on a nonzero delay model. Glitches, that are 

not modeled in the zero-delay model, are present when these delay models are 

used. Najm presented an efficient algorithm using the Boolean difference operation 

(P( i)) to propagate the primary input transition densities through the circuit [8]. 

The transition density of each output node (td0 ) is computed in terms of the input 

transition densities (tdi) as 

(1.3) 

Mehta et. al. [27] improved the accuracy of the transition density propagation by 

using higher order terms for the input transition densities ( tdi) such as second-order 

products (i.e. tdi · td1). 

All of the low-level power estimation techniques introduced thus far require 

time and memory constraints for very large designs to retain the accuracy of the 

power dissipation estimate. Today, designers want to make selections between two 

or more different pieces of circuit alternatives, based on power dissipation levels 
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of each. In this case, the high-level power estimation or optimization is more 

important than these lower levels of abstraction. For CMOS circuit design, today, 

an estimate of a register transfer level (RTL) power dissipation is preferred by the 

designers. 

In chapter 2, the current CMOS register transfer level (RTL) power dissipation 

estimation techniques will be discussed. A new RTL power model called CRAB 

will be introduced in Chapter 3. Chapter 4 will report the experimental results 

for characterizing and evaluating the CRAB model. The future work and the 

conclusion remarks will conclude the thesis. 
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Chapter 2 

Previous Work in RTL Power 

Estimation 

Compared to lower levels (i.e. gate-level or transistor-level), estimation of av

erage power at the register transfer level (RTL) has two superior features. First, 

power estimation is available at an earlier stage of the design. In the absence of 

RTL power estimation, synthesis of RTL design to gates followed by simulation 

with the gate-level power tools are necessary tasks that must be added to the 

design cycle. Second, power estimation should be faster, at the register transfer 

level. This second observation is because the units of lower level abstraction are 

transistors and gates whereas a register transfer level design can be described struc

turally by reusable micro-architectural blocks ( e.g. adders, multipliers, control and 

memory etc.). Hence the granularity of an RTL description is larger which should 

yield faster power analysis. Fig. 2.1 shows the structural RTL representation of a 

chip [3]. Micro-architectural block has the same meaning as RTL library compo

nent, RTL design sub-block, module or block and these will be used interchangibly 

throughout the thesis. 

The main component in the power dissipation Eq. 2.1 is the switched capac

itance (Czoad · tsw) which is the product of switching activity (tsw) and physical 
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Memory 

Control 

reg reg 

+ 

reg 

Figure 2.1: Structural RTL representation of a chip. 

capacitance (Ctaad) of the micro-architectural block. Note that static power and 

short-circuit power are excluded in Eq. 2.1, since they contribute at most to 15% 

of the total power dissipation. 

P 1 v2 c J. 
ave dd · load · tSW · elk (2.1)

2 
· 

Hence power modeling, characterization and evaluation is to be based on the total 

switched capacitance. The general flow from power modeling to power evaluation 

is depicted in Fig. 2.2. In order to find the total power dissipation of an RTL 

design, power contributions from each RTL design sub-block must be evaluated as 

shown in Fig. 2.2. This figure will be useful for the following sections. 

There are two main approaches to model the power dissipation or switched ca

pacitance of a CMOS circuit at the RT-Level. One is predictive approach which 

estimates power dissipation without a pre-characterization step. Most of these 

methods are based on either the complexity of the block or the entropy of primary 
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I RTL POWER MODELING 

INPUT VECTOR GENERATOR POWER CHARACTERIZATION 

SIMULATOR RTL POWER LIBRARY 

RTL POWER ANALYSIS 

RTL POWER EVALUATION OFHLS (HIGH LEVEL SYNTHESIS) 
DESIGN MICROARCHITECTURAL BLOCKS 

POWER ESTIMATE 

Figure 2.2: General design flow for RTL power estimation. 

input and output nodes. Entropy is an information theoretic measure which spec

ifies the amount of computational work. The other approach is descriptive and 

is based on a pre-characterization step. The model parameters obtained at the 

pre-characterization step are then used to estimate the power dissipation during a 

later power analysis step shown in Fig. 2.2. The details of the techniques will be 

discussed in the following sections. 
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2.1 Predictive Techniques 

Previous predictive RTL power estimation work [7, 12, 13, 15] is based on 

modeling the switched capacitance or power without a pre-characterization step. 

The elimination of the characterization step in Fig. 2.2 results in saving the time 

for characterization in the design flow, although, the characterization step is visited 

only once for each micro-architectural block. Without such a step many predictive 

models return inaccurate power estimates when compared to lower level power 

estimates. Predictive techniques for power estimation of CMOS datapath circuits 

that have been proposed thus far depend on: 

• Complexity-based Models or, 

• Entropy-based Models. 

2.1.1 Complexity-Based Models 

Complexity-based approaches provide fast but inaccurate power values ( when 

compared to low level power simulator results) by estimating the complexity of 

the circuit by a measure called gate equivalent count [12, 13]. Gate equivalent 

count specifies the average number of reference gates which are required to build 

a particular functional block. 

The Chip Estimation System (CES) [12], is an example of a complexity-based 

predictive technique. The model for functional block average power is 

(2.2) 

where GE is the gate equivalent count for the functional block, Etyp is the typi

cal power dissipation per MHz for a specific gate (e.g. NAND2 gate), CL is the 
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estimated load capacity, f is the switching rate and Ant defines the percentage of 

internal gates switching per clock cycle. 

CES depends on a direct relationship between the complexity of a chip archi

tecture and the gate equivalent count. However, gate equivalent counts are based 

upon a single reference gate and do not provide reliable power estimates for differ

ent circuit styles and layout techniques. Furthermore, CES does not take the input 

activity into account. It predicts the same power estimate for extremely different 

applied input patterns. 

Liu and Svensson presented a power model, conceptually similar to CES, for 

random logic circuits [13]. The average logic gate function was defined as a three 

input AND gate (buffered NAND) connected to three identical AND gates at the 

output node. The effective capacitance of the reference gate (Ctogicg) excluding 

clock driving nodes is defined as in Eq. 2.3, where f 9 is the average fan in and fan 

out, Jd is the duty factor, k1 is the number of minimum size gate capacitances in 

one input node, k2 is the number of the minimum size gate or diffusion capacitances 

on the buffer input node and Ctr is a minimum size NMOS transistor capacitance. 

(2.3) 

To obtain the total switched capacitance for the logic gate and, define the gate 

power, the clocked and unclocked node capacitances are added to Ctogicg [13]. Like 

CES, this method does not consider the effects of input activity on a circuit's power 

dissipation. 

Complexity-based predictive techniques are useful because they require only a 

little information about the circuit such as gate-equivalent counts or technology 

parameters. On the other hand, for various input activities, the power estimates 
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are equal which is not the case in reality because the average power varies with 

the type of input patterns applied. 

2.1.2 Entropy-Based Models 

Currently, several researchers have introduced entropy, an information theoretic 

measures to estimate circuit activity [7, 15]. The basic assumption is that there is 

a uniform distribution of transition activity over all nodes, such that average power 

can be written as a product of average transition activity and total capacitance. 

N N 

Pave 0:: L Ci · ti ~ t L Ci (2.4) 
i=l i=l 

where Ci is the node capacitance, t;, is the node transition activity and i represents 

the gate output nodes in the circuit. In [7, 15], average transition activity t is 

defined as 

t = -
l 

I:
N 

ti (2.5) 
N i=l 

The entropy of a random Boolean variable X is defined as 

H(X) (2.6) 

where p represents the signal probability. In [7], the values of the signals are 

assumed to be independent for consecutive clock cycles. From this, the average 

node transition activity is 

t=2·p·(l-p) (2.7) 

When the normalized activity and normalized entropy are compared, they are 

nearly equal for the entire range p[0,1 ]. From this, the average entropy (H) replaces 

average node transition density (t) in Eq. 2.8. 
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(2.8) 

In [7], a model is derived for the average entropy as a function of input and 

output entropies. The final expression obtained for the average entropy His shown 

in Eq. 2.9, where n is the number of primary inputs, m is the number of primary 

outputs, Hi is the total input entropy and H0 is the total output entropy. 

(2.9) 

Nemani and Najm also propose an entropic bound for the area (i.e. total 

capacitance) of the circuit [7]. The area is largely determined by the number of 

gates in the circuit and can be used to estimate the total capacitance C, in 

Eq. 2.8. Their proposed bound is computed using the output entropy and the 

number of input bits. 

(2.10) 

In comparison to ISCAS benchmarks, this bound appears to be too large for 

some circuits. Nemani and Najm improved the area estimation by using a measure 

that they called average cube complexity [14]. Average cube complexity, is the 

average literal count of the prime implicants of the function. But this measure has 

been used for single output functions only [14]. 

Despite the efforts of [7] and [14], the activity relative errors have been larger 

than 100% as well as the area of the circuit and number of gates. The average 

entropy proposed in [7] has underestimated the circuit activity for some examples. 

This is likely understood because the circuit activity depends on the functionality 

of the circuit as well as the type of data being processed. For example, the proposed 
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model will return the same result for two different functions that have identical 

average entropy, although the power dissipation of each functional block may be 

different. Additionally, the average entropy may be predicted to be the same for 

two different sets of input data applied to the same circuit, although the power 

dissipation may be extremely different for each applied data. Another concern 

in the evaluation of the proposed models is that the applied input vectors were 

selected from uniform white noise (UWN). Hence for correlated input streams, the 

relative error for either activity or area would possibly be larger and is currently 

untested. 

Marculescu et. al. have made an effort to estimate switching activity based 

on both the entropy (or informational energy) and the distribution of nodes in 

the circuit [15]. Their technique requires additional, either structural or functional 

information about the circuit. If there is no information provided by the user the 

circuit is simulated to obtain the average entropy for different node distributions 

( uniform, linear and exponential) [15] throughout the circuit levels or depth. 

The required structural information can be the number of internal nodes, the 

number of logic levels or the actual distribution of nodes throughout the levels 

of the circuit. Output entropy of the circuit is not effected by the three different 

distributions. It is a function of input entropy, a structural-based scaling factor 

and the number of logic levels. To use the functional information for the power 

estimation, two function-dependent transmission coefficients (HTC and ETC) are 

defined in [15]. These coefficients are used to estimate the output entropy ( or 

output informational energy) of the function from the input entropy ( or input 

informational energy). Marculescu et. al. also introduced adjustments for the 

coefficients depending on the nature of input patterns (i.e. input patterns other 
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than uniform white noise). Hence for each functional block, the input entropy ( or 

input informational energy) can be propagated to the primary outputs by using 

the proposed transmission coefficients. Then average entropy can be evaluated 

depending on the input-output entropies and the circuit node distribution. Then 

the the average power is evaluated directly by using Eq. 2.8. 

The above approach is limited in practice [15]. For example, the temporal corre

lation of primary inputs is not considered. The suggested transmission coefficients 

(ETC, HTC) are applicable only to single well-defined functions, multi-functions 

such as a complex ALU require substantial work to define the coefficients. Fur

thermore, the proposed technique is valid only for zero-delay model. 

The entropy-based techniques introduced so far have several practical limi

tations. For example, they do not account for glitches, because they assume a 

zero-delay mode of operation. Another assumption is the independence of signal 

values in consecutive clock cycles which does not take temporally correlated in

put vectors into account. Finally, the node transition activity is assumed to be 

uniformly distributed over all nodes. 

In summary, predictive techniques have not offered a reliable power estimation 

because they do not provide a reliable model of real hardware and nature of data 

being processed. 

2.2 Descriptive Techniques 

Descriptive techniques offer an approach based on the pre-characterization of 

different functional blocks and construction of an RTL Power Library as shown 

in Fig. 2.2. The descriptive techniques reviewed for this thesis can be grouped 
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into two classes depending on the effects that the input patterns have on power 

dissipation of a circuit [10]. Fixed-activity Models are based on the assumption of 

constant activity for a functional block whereas Activity-sensitive Models reflect 

the activity dependency of power dissipation. 

2.2.1 Fixed-Activity Models 

Power Factor Approximation (PFA) is one of the descriptive techniques based 

on fixed-activity modeling [16]. It is basically the descriptive version of the tech

nique introduced by Liu and Svensson [3]. Compared to [3], PFA is superior in 

practice because it requires power characterization of each specific module stored 

in the RTL library. 

The proposed PFA [16] model for a specific micro-architectural block is of the 

form 

Pave K, • HG · f (2.11) 

where r;, is the proportionality constant, HG is the hardware complexity term 

and f is the activation frequency. For instance, the hardware complexity (HG) 

of a multiplier is assumed to have a quadratic relation with its word-length, f 

is the frequency at which the multiplications are performed. r;, is the empirically 

extracted constant for a specific technology and supply voltage. 

The disadvantage of the model is that the activity constant r;, is intended to 

capture the internal activity of the circuit for all set of applied input patterns. 

However this is not the case, since there is an inevitable influence of applied input 

activity on power dissipation. Hence PFA does not return reliable results for input 

stimuli other than uniform white noise or other pre-selected patterns. 
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2.2.2 Activity-Sensitive Models 

Recently, several researchers have directed their efforts in RTL power modeling 

by considering the effects of input activity on internal activity [3, 17, 21, 22, 24]. 

ESP (Early design Stage Power and performance simulator) [17] is one of the 

activity-sensitive methods that accounts for the cumulative effects of input activity 

on the power dissipation of datapath circuits. The proposed average power model 

is as shown in Eq. 2.12 and is based on the assumption that a bit transition causes 

some parts of the circuit to become active. 

Pave Pconstant +n · Pchange (2.12) 

Pconstant is interpreted as the constant power which is independent of the tran

sition activity, n is the number of transitional bits, Pchange is the contribution of 

power per bit transition. 

Although ESP takes the activity-sensitivity into account to some extent, it does 

not reflect the bit-positional effects on the power. The influence of all input bit 

activities on the power dissipation is considered in a cumulative manner. 

SPA identifies and solves part of the above problem by a technique called the 

dual bit type (DBT) approach for datapath elements [3, 18, 19]. The method is 

based on the fact that there are two breakpoints (BPO, BPl) in the bit-level rep

resentation of the temporally correlated, two's complement data stream. The first 

region between BPO and the least significant bit is called data which contains bits 

that behave like uniform white noise. The second region between BPl and the 

most significant bit is called signed which reflects the temporal correlation coeffi-

of word-level statistics. Hence it is possible to relate the word-level statistics 
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to bit-level statistics such that two independent sets of capacitive coefficients can 

be introduced for signed and unsigned (data) parts of the word. Before the power 

analysis is performed, RT-Level simulation of the design is performed for typical 

input patterns. During this simulation, the activity of the signed parts and signals 

the data parts are viewed and maintained. Additionally, statistical properties 

(i.e. µ, a, p) of the word-level data are captured. The statistical properties are 

then used to specify the two break-point bit positions such that the power model 

for datapath elements uses. 

An example of the proposed DBT average power model is [19]: 

Pave (Nu•Cu+Ns•Cs)•V]d·f (2.13) 

where Cu and Cs are the empirically extracted coefficients to characterize the 

capacitance switched in the data (Cu) and sign (Cs) regions of different func

tional blocks and Nu and Ns are the number of bits in the data and sign regions, 

respectively. 

The same researchers proposed a different model for the control part of an 

RTL design [20]. Unlike DBT, activity based control (ABC) model is based on 

the input-output transition and signal probability. The model for an FSM that is 

implemented in standard cells is 

(2.14) 

where t1, t0 are the transition probabilities and N1, N0 are the number of inputs 

and outputs respectively. NM represents the number of on minterms of the truth 

table. 

DBT model is superior to the previous models since it accounts for different 

input activities. However, the proposed model is valid only for two's complement 
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data which is common but not a general data representation. Additionally, the 

characterization of a module requires some knowledge about the internal structure 

depending on the functionality and complexity which may not always be possible. 

Ramprasad et. al. presented an analytical estimation technique for transition 

activity similar to DBT in the sense that they also used word-level statistics [22]. 

Their technique differs from DBT in two ways: computation of the break-points 

BP0 and BA and computation of the word-level transition activity. 

In [21], Gupta and Najm suggested a power macro-model for a combinational 

circuit based on its input/output signal switching activity. Basically, during char

acterization, power values are stored in a three dimensional table. three 

dimensions of the model are the average input signal probability, average input 

transition density, and average output zero-delay transition density. In contrast 

to DBT model, the characterization phase can be completed automatically with a 

unique model for every functional block. 

The above model accounts for the activity in a cumulative manner (i.e. average 

signal and transition probabilities are considered). This suppresses the bitwise 

effects on the power dissipation, however each primary input bit may activate 

different portions of the circuit and cause different amount of power dissipation. 

Pedram et. al. introduced bitwise transition effects on cycle power dissipation 

m [24]. The cycle-based power equation is formed by considering the first-order 

temporal correlations and third-order spatial correlations. The proposed methodol

ogy is based on four steps: Module equation form generation and variable selection, 

variable reduction, and population stratification. 

This method is powerful in the sense that it introduces a variable reduction 

technique. Otherwise, to obtain a characterization, the required number of coef-
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ficients would be the sum of 3N (for the first-order terms), 3N(3N-1)/2 (for the 

second-order terms), N(3N-1)(3N-2) (for the third-order terms), which is not a 

small number. On the other hand, the population size which is chosen as 80000 

vector pairs is a very small subset of all possible vector pairs (22N - 2N) for N=lO 

input bits. This model will be revisited in the next chapter. 

2.3 Chapter Summary 

This chapter summarized the proposed techniques so far in RTL power esti

mation area. Each technique brings both advantages and disadvantages to the 

power estimation problem. Predictive techniques and the majority of the descrip

tive techniques do not model the switched capacitance properly for various input 

activities such as spatiotemporal correlation of input bits or the bitwise activities. 

Only DBT [19] accounts for data representation and temporal correlation but it 

is limited to only two's complement type of data and it does not take the spatial 

correlation into account. Furthermore, it requires specific knowledge to define the 

DBT model for each micro-architectural block (i.e. a multiplier and an adder have 

different models depending on the internal structures). Independent of this thesis, 

the cycle accurate power model [24] relies on the same idea of modeling bitwise 

effects on the power dissipation. However, the selected number of vector pair pop

ulations is very small compared to the number of exhaustive vector pairs which 

will be discussed in Chapter 3. The novel model developed in this thesis does not 

have the above disadvantages and it will be presented in the next chapter. 
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Chapter 3 

CRAB-RPE: Complete-Range 

Activity-Based RTL Power 

Estimation 

In previous chapters, it was discussed that the amount of work required for 

RTL power estimation is considerably less than at the lower levels. In Chapter 2, 

current research in RTL power estimation was investigated and the limitations of 

each work were discussed. In this chapter, CRAB-RPE, a novel power estimation 

technique will be presented. The new estimation technique has four features which 

were not handled simultaneously in any other work. 

• CRAB power model is based solely on the bit-level statistics of primary input 

nodes (PINs). 

• No assumption is made about primary input activity. A complete-range of 

bit-level statistics is used for the characterization of each circuit block. 

• Second-order terms of the bit-level statistics are used for improved power 

estimation accuracy and modeling pairwise spatial correlations. 

• Temporal correlation of primary input bits is modeled by a lag-one Markov 

model. 
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Complete-range summarizes the desire to model the power dissipation for all 

possible input statistics. After the structural description of an RTL design ( see 

Fig. 2.1) is obtained and simulated, the primary inputs of internal micro-architectural 

blocks may become spatially correlated because of re-convergent fan-out. It may 

be that some internal block PINs have low activity while others have high activity 

or maintain uniform white noise activity. Hence the micro-architectural blocks 

have to be characterized with a complete-range of input activity so that the power 

can be estimated for any PIN activity. 

CRAB-RPE has two main phases which are built upon the CRAB RTL power 

model: 

• CRAB Power Characterization (CRAB-PC) 

• CRAB Power Analysis (CRAB-PA) 

CRAB-PC and CRAB-PA are depicted in Figs. 3.4, 3.5, respectively. The oval 

represents either an input to the flow or an output from the flow. The rectangles 

represent the functional parts of the flow. 

CRAB power model and CRAB-RPE phases will be explained in detail in the 

remaining part of this chapter and the CRAB-RPE features mentioned at the 

beginning of this chapter will become clearer. The notation used throughout this 

chapter is summarized in Table 3.1. 

3.1 CRAB-RPM: CRAB RTL Power Model 

Average power dissipation of a CMOS circuit depends on the nature of applied 

input vectors [10] or can be defined as the weighted average of cycle-power values. 

Cycle power is the power dissipation caused by the difference of initial and final 
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ii Term II Meaning II 
!PIN Primary Input Node 

PON Primary Output Node 
Number of PINs per blockN 

L Length of an input vector set 
ISwitching Prob. 1 to Oor O to 1 transition probability ' 

t~w• Switching probability of the ith PIN I 
tll 1 to 1 transition probability of the ith PIN•too 0 to O transition probability of the ith PIN•
tiw. t";w Second-order cross-term of the PIN switching probabilities 
kll koo ksw Model coefficients for t;1, t?0

, tiw respectively
t. ' Z- ' i

ks"!-' Model coefficient for the quadratic terms (t';w) 2 
'ai 

Model coefficient for the cross-terms t';w · tiwkii 

Table 3.1: Notation. 

state of the input vectors applied to a module. Let us assume that the module 

has N PINs, hence there are 2N exhaustive vectors that can be used to test the 

2functionality of the block. Out of 2N vectors there are N·( 2;-i) pair combina

tions. Since the order of a vector pair is important for power, the total number 

of exhaustive vector pairs for the module is twice the number of pair sets which is 

22N - 2N. One way of estimating the average power dissipation of a block would be 

to store the cycle-power values for exhaustive vector pairs and retrieve them dur

ing subsequent analysis phase. But the number of exhaustive vector pairs exceeds 

1,000,000 for 10 PINs. Hence this is not a practical approach for power estimation. 

Another way would be to characterize the power of a module by using statistical 

properties such as transition probabilities of the PINs. The transition probabilities 

of circuit nodes are affected by the spatiotemporal correlations. Spatiotemporal 

correlation addresses both temporal and local correlations of signals [10, 25). Re

searchers have explored ways for estimating switching activity of all circuit nodes 
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for spatiotemporally correlated signals [8, 25, 26, 28]. 

In [25], Marculescu et. al. present switching activity analysis of all circuit 

nodes for spatiotemporally correlated signals. The assumptions for the method are 

zero-delay mode of operation and lag-one Markov Chain Model for the temporal 

correlation of signals. It is also stated that some constants, so-called transition 

correlation coefficients, can be used for propagation of transition probabilities from 

primary inputs to any internal or primary output node. In [26], P. Schneider 

and his co-workers proposed an improved, practical version of Marculescu's work. 

Mehta et. al. present another switching activity estimation method in [27]. The 

Boolean difference which was first suggested in [8] is used in this paper to define 

the output transition density of a gate in terms of its first-order and higher-order 

input transition densities. 

Three of the above techniques consider the effect of signal correlations on the 

switching activity of all nodes at the gate-level description of digital CMOS cir

cuits. Concurrently with CRAB-RPE technique, Pedram et. al. (28] presented 

a cycle-accurate RTL power model which considers spatial and temporal correla

tions through third and first order, respectively. The model is based on variable 

selection, variable reduction and population stratification using linear regression 

statistics. 

The core idea of the CRAB RTL power model originated from the switching 

activity analysis techniques for spatiotemporally correlated signals at the gate

level. Referring to the previous papers [8, 25, 26, 28}, it can be easily shown 

that at the gate-level, any internal or output node transition of a digital circuit 

can be expressed in terms of its primary input bit-level transitions. However, 

at the RT-Level of a circuit, internal nodes are not available. But it is known 
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that each internal node activity depends on each PIN activity. If every internal 

node and primary output node transition is a function of PIN transitions then 

the power dissipation can be completely expressed as a weighted sum 

of PIN transition probabilities. 

During a clock cycle, a Boolean signal can make only four possible transitions. 

The four transition probabilities add up to 1. 

tll +ew + too l (3.1) 

where tsw = t 01 + t 10 and superscripts represent the logical transitions. 

Ill 
() r-T 

n2 
() _J 

() T 
0 () T 

Figure 3.1: BDD of the output switching function of a 2-input AND gate. 

To illustrate the dependency of the power consumption on the PIN transition 

probabilities, Fig. 3.1 shows the Binary Decision Diagram for the output switching 
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function (SW0 ) of a 2-input AND gate. SW0 is 1 if and only if there is a transition 

from 1 to O or O to 1 at the output. The PINs are represented inside the bubbles 

such that superscripts represent the cycle number, and subscripts represent the 

node identity. 

From Fig. 3.1, the output switching probability, t~w is obtained in terms of PIN 

transition probabilities and is shown in Eq. 3.2. 

isw = iOl . (t01 + tll) + tlO . (t10 + tll) + ill . (t°l + t10)o n1 n2 n2 nl n2 n2 nl n2 n2 
(3.2) 

For a Boolean signal t 01 and t 10 are approximately the same and equal to t~"', hence 

Eq. 3.2 becomes, 
ew. tsw 

isw nl n2 + isw . ill + ill . isw 
0 

(3.3)2 nl n2 nl n2 

where subscripts of probabilities represent the node and superscripts represent the 

logical values at consecutive cycles (i.e. transitions). For the 2-input AND gate, 

output switching probability can be determined by evaluating the Eq. 3.3 when 

the transition probabilities of primary input nodes are known. 

As in the 2-input AND gate example (N=2), the dependency of internal and 

primary output node activity on PIN activity can be up to Nth order, where N 

is the number of PINs. There is a trade-off between practicality and accuracy 

when the number of terms in the model equation is increased. The development 

of the CRAB Power Model will be explained with three models, and their relative 

accuracies will be compared in detail in Chapter 4. The required number of model 

coefficients for each model is summarized in Table 3.2. 

The first order effect of PIN transitions on the average power dissipation of 

a circuit block is summarized in Eq. 3.4. This is the simplest approximation 

to the power dissipation that uses the bitwise activity effects. kf0 
, k; 1 

, and kfw 
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Number of 
Power Model Model Coefficients 

First-order model 3N 
First-order + Second-order quadratic terms ( ( ttw) 2 

) 4N 
First-order -l-- Second-order cross-terms (t:w • t:;w) N 2 +5N 

-2-

CRAB (First-order ( tf 1,ttw) + Second-order cross-terms) N'+3N 
-?-

Table 3.2: Power models and number of coefficients. 

represent the slopes of (Pave, tf0
), (Pave, tfl) and (Pave, ttw) respectively. As shown 

in Table 3.2, the number of coefficients needed for this model is 3N. 

Pave L (kfO. t?O + kfl . t}l -l-- kiw . ttw) (3.4) 
ie{PIN} 

Second-order effects of PIN activities on the power dissipation are caused by 

the re-convergent fan-out nodes as shown in Fig. 3.2. According to the figure, the 

output switching probability is a quadratic function of I2's switching probability. If 

the depth of any circuit is greater than one then quadratic terms of PIN switching 

probabilities may appear in the output switching probability function. A model 

based on this observation is shown in Eq. 3.5. The required number of power model 

coefficients is 4N, because of the N additional (t:w) 2 terms. 

" (koo . too+ kll . tll + ksw . t~w) + " ks":' . (ew)2 (3.5)~ l l ' l 1. l t ~ Ql l 

~{PIN} ~{PIN} 

Pairwise switching probabilities of different PINs occur more frequently in an 

output switching probability than quadratic switching probabilities of the same 

PINs. For the circuit in Fig. 3.2, output switching probability is a function of 

pairwise cross-terms of two PIN switching probabilities such as tff ·t:i-'2, tj-1{' ·tj~, tj~ · 

tj~ which are more in number than the single quadratic term (tj-~)2. Hence, adding 
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Figure 3.2: Second-order effect of a PIN on a primary output node. 

the pairwise cross-terms of PIN switching probabilities is a natural way to increase 

the flexibility of the model. The third proposed model is 

I: 
jE{PIN} 

j I= i 

2 l5The total number of coefficients for describing a block has increased to N N 

Since the typical number of PINs for a micro-architectural block is 32 bits or less, 

the number of model coefficients would be less than 600. Although this number 

seems large, the time cost is about a couple of hours for solving the model coeffi

cients with a linear least square or other matrix solution algorithm. Furthermore, 

subsequent evaluation of the model equation for any PIN statistics will be reduced 

to seconds or less. 

The final CRAB Power Model is slightly-modified version of the previous model. 

From Eq. 3.1, kf0 •t?0 are not explicitly included. The CRAB Power Model in words 

is first order in switching and 1 to 1 transition probabilities, and second order in 



32 

pairwise cross-terms of switching probabilities of the PINs. The final model is 

shown in Eq. 3. 7. 

L (k[ 1 
· t;1 + kiw · tfw) + L k •J 

.. . tsw. tsw (3.7)E i j 
ie{PIN} ie{PIN} jE{PIN} 

j =Ii 

From Eq. 3. 7 it is seen that, there are N coefficients for each tP and tfw. The 

additional second-order term coefficients are N(N - 1)/2 in number. The total 

number of coefficients extracted during the characterization phase is N (N +3) /2. 

To illustrate the CRAB power model, let us consider the 2-input AND gate. 

Then the model for this gate contains five coefficients as in Eq. 3.8. 

kll . tll + ksw . cw + kll . tll + ksw . tsw + k . tsw . cw
0 0 0 0 1 1 1 1 01 0 1 (3.8) 

Temporal correlation of each PIN is embodied in the tb1
' tow, t}1, tfw terms and 

spatial correlation of the two PINs is included in the k01 · t 0w • t 1w product. This 

equation resembles the previous Eq. 3.3 because the cross-term t0w · t1w is present 

in both. The other two products in Eq. 3.3 are approximated by weighted sum of 

first-order transition probabilities. 

3.2 CRAB-PC: CRAB Power Characterization 

The CRAB-PC process involves the extraction of power model coefficients for 

each micro-architectural block an RTL library. To explain the CRAB-PC phase, 

closed-form Eq. 3. 7 for the CRAB power model is expressed in matrix form as 

(3.9) 
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The matrix representation of the model is depicted in detail, in Fig. 3.3 where left 

superscripts of the matrix elements represent the run number, right superscripts 

stand for the transitions (11 or sw), and the subscripts represent the PIN number. 

ISTRUN--

2ND RUN---

M= N(N+3) TH RUN__ 
2 

r 

I t 11 

I 

I SW 

t 
I 

I SW SW
• t . t 

I 2 

:,;w s.w1 t . t 
I N 

II 

k, 
SW 

Pave 

k, 

k 12 

Mt 11 

I 

MSW 

t 
I 

• 
M SW SW 

t • t 
I 2 

M SW SW 

t . t 
I N 

M 
Pave 

lk IN. 

i 
COEFFICIENT POWERTRANSITION MA TRIX 

VECTOR VECTOR 

Figure 3.3: Matrix representation of the CRAB power model for the characteriza
tion phase. 

The transition matrix (T) is formed from bit-level probabilities, and has N(N+ 
3) /2 columns. The number of rows of T and the computed power vector (P) is set 

by the number of power characterization experiments. Each micro-architectural 

component is characterized only once but requires at least N(~+
3
) simulations to 

complete. Therefore, the experiments reported in Chapter 4, the row dimension 

of the transition matrix is N(N + 3)/2 or larger. 

As depicted in Fig. 3.4, CRAB-PC has three main functional parts, input 

vector generator (IVG), model coefficient extractor (MCE), and a lower-level power 

estimation tool. For each micro-architectural block in the library, a gate-level 

description is a required input to CRAB-PC phase. A power library for the gate

level technology used is also needed for the CRAB-PC phase. The RTL library 
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output contains model coefficients k;1, kzw, kii oflength N(N +3)/2 for each micro

architectural block, computed by the MCE. The micro-architectural blocks and the 

model coefficients are retrieved from the RTL Library during CRAB power analysis 

which is depicted in Fig. 3.5. 

CRAB-PC 

LOW-LEVEL 
POWER DATA 

LOW-LEVEL 

POWER ANALYSIS 

DESCRIPTION 

INPUT 

PATTERNS 

MCE 

CRAB 

RTL LIBRARY 

Figure 3.4: CRAB Power Characterization phase. 

3.2.1 IVG: Input Vector Generator 

The IVG part of the characterization flow generates primary input vectors with 

desired bit-level statistics for micro-architectural blocks for each characterization 

run. The number of input vector pairs used during characterization is selected at 

this point. This phase defines the run by run PIN transition probabilities, t?0
, t;1 
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and ttw used during N(N + 3)/2 simulations. 

The inputs to IVG are the length of the stimulus to be generated and a control 

file including the PIN statistics. The length of the stimulus per run is selected based 

on statistical measures that will be clarified in Chapter 4. The choice of the number 

of runs or the number of stimuli depends on the number of model coefficients. Since 

the number of coefficients in a CRAB power model is N(N + 3)/2, the number of 

characterization runs required for well-characterization of a circuit block is at least 

N(N + 3)/2. Some supplementary code generates the control files for a block's 

characterization. 

3.2.2 MCE: Model Coefficient Extractor 

The MCE part of the characterization flow extracts power model coefficients 

kf 1
, ktw, kij . This step follows IVG and power simulation. Extraction of the model 

coefficients is done by solving the linear system which is depicted in Fig. 3.3. The 

power vector is of length N(N + 3)/2 or more which is composed of gate-level 

power estimates obtained by simulation. The transition matrix is formed by post

processing the probability files that include t?0 , t} 1 and tfw. The transition matrix 

has N(N +3)/2 columns and same number or more rows depending on the number 

of runs. 

Singular Value Decomposition (SVD) is the preferred method to solve for under

determined, over-determined or square systems of linear equations. The main part 

of MCE is the SVD code which computes the model coefficients. 
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3.2.3 Power Simulator 

A power simulator can be either a transistor-level ( e.g. IRS IM) or a gate-level 

simulator ( e.g. Quickpower) that provides power estimates during characterization 

process. The power estimates from the simulation are the ones in Fig. 3.3 and used 

in MCE. 

The simulator takes the lower-level ( transistor or gate-level) description of each 

micro-architectural block as an input. Another requirement for the simulator is a 

power library for the technology used in the lower-level descriptions. 

The simulator will be also used for the verification of the power evaluation of 

a sub-block of RTL design in Chapter 4. 

3.3 CRAB-PA: CRAB Power Analysis 

Power analysis is the process which results in a power estimate for an RTL 

design. As shown in Fig. 3.5, high level synthesis, power evaluation of design sub

blocks and the simulator are the three main functional parts of CRAB-PA. IVG 

can be used at this phase if no other stimulus is available to the user. 

3.3.1 HLS: High Level Synthesis 

HLS is a part of power analysis flow which converts RTL design to sub-blocks. 

The composition of sub-blocks is also called as the structural RTL representation of 

the design. Synthesis of the design can be done by either a high-level synthesis tool 

or manually. Previously in Chapter 2, structural RTL representation of a chip has 

been depicted in Fig. 2.1. The sub-blocks of the design are mapped to RTL library 

components and the related model coefficients are retrieved for power evaluation 
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Figure 3.5: CRAB Power Analysis phase. 

of each component. If there is no corresponding component in the library, then 

the sub-block can further be synthesized until it is described by the components 

in the RTL library. If the sub-block can be neither synthesized nor mapped to 

the library then a predictive model could possibly be used to estimate the average 

power dissipation. 

The verification of the model accuracy for each micro-architectural block is the 

first aim in this thesis. The experiments presented in Chapter 4 do not include 

HLS, because they focus on the CRAB-PC of a micro-architectural block and 

CRAB power evaluation of the same block. 
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3.3.2 PE: Power Evaluation 

The PE part of power analysis returns a power contribution for a sub-block 

in the RTL design as depicted in Fig. 2.2 (Chapter 2) and specifically in Fig. 3.5. 

Power evaluation of design sub-blocks is done by retrieving the model parameters 

from the RTL library and collecting the switching, and 1 to 1 transition probabili

ties of the PINs from the simulator or the user. If the user provides PIN activity of 

the RTL design, the power evaluation of internal RTL sub-blocks must propagate 

the primary input transition probabilities to sub-blocks outputs. The transfer co

efficients from input statistics to output statistics can be solved by replacing the 

power vector with output statistics in Fig. 3.3, however this is not included in 

this thesis. User-based power analysis is potentially faster than simulation-based 

power analysis as far as the propagation functions can be defined for each primary 

output of a module. The RTL library may not always contain the modules that 

HLS selects. In that case, as discussed in Chapter 2, predictive models for RTL 

power estimation can be used. 

3.3.3 Simulator 

The simulator in CRAB-PA phase is used to simulate the synthesized RTL 

design to obtain the PIN bit-level statistics. If a test bench with the RTL descrip

tion of the design is not available, IVG can be used to generate the input stimulus. 

If the user provides specific information about PIN activity, there is no need to 

invoke the simulator, because the only required data for the power evaluation of 

each micro-architectural block is PIN transition probabilities. For example, the 

user can define the typical PIN activity as uniform white noise, then based on 
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the knowledge that a uniform white noise signal has tsw=0.5 and t 11 =0.25 power 

can be evaluated immediately for the sub-blocks with these inputs. PIN activity 

could then be propagated to other sub-blocks' input nodes such that the power 

contributions of each block can be evaluated. 

3.4 Limitations and Extensions 

Although CRAB-RPE will be shown to return reliable, accurate results for 

some ISCAS benchmarks and common circuits, several extensions can be done for 

further improvement and practicality. 

First, CRAB-RPE was verified for solely combinational blocks. It may further 

be improved for sequential and control parts of an RTL design. No experiments 

have been carried out in this regard, hence it is unknown if CRAB-RPM can give 

satisfactory results for these blocks. 

Second, the number of terms in the CRAB-RPM is N(N + 3)/2 which may 

increase significantly for blocks that have more than 32 PINs. Although CRAB

PC is done once for each block, the large number of terms increases the time cost at 

this phase. Hence reduction of terms in the CRAB-RPM can be a way to improve 

practicality. Reduction of number of input vector pairs can be another way of 

decreasing the time cost in the CRAB-PC phase. 

Third, usage of the CRAB-RPM for parameterizable blocks is a practical con

cern. Since the model is based on PIN bit-level statistics, it does not include 

number of PINs as a term. Hence, the model can be improved if it could handle 

parameterization of PIN numbers. 

Fourth, all the experiments in Chapter 4 are conducted ignoring the HLS part 
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in Fig. 3.5. Lack of an HLS tool in the experimental environment was the first 

reason for this. The integration of an HLS tool to the CRAB-PA phase would be 

helpful to experiment with larger RTL designs. 

3.5 Chapter Summary 

This chapter introduced a novel RTL power estimation technique called CRAB

RPE (Complete-Range Activity-Based RTL Power Estimation) which has two 

main phases: CRAB-PC (Complete-Range Activity-Based Power Characteriza

tion) and CRAB-PA (Complete-Range Activity-Based Power Analysis). 

CRAB-RPE is based on a new model called CRAB-RPM (Complete-Range 

Activity-Based RTL Power Model). CRAB-RPM does not make any assumption 

about PIN activity where previous models were based on certain PIN activity 

such as uniform white noise. In other words, CRAB-RPM is independent of either 

numerical representation (e.g. 2's complement) or spatiotemporal correlations of 

the data. CRAB-RPM is based on the first-order and second-order PIN transition 

probabilities. First-order terms are based on 1 and switching (1 ➔ 0 or 0➔ 1) 

probabilities of PINs. Second-order terms are based on the pairwise cross-terms of 

different PIN switching probabilities. 

The coefficients of the first and second-order terms in the CRAB-RPM (kf 1
, kfw, kij) 

are stored in the CRAB-PC phase. During the CRAB-PA phase, PIN statistics 

(t;1, tfw, t!w • tiw) are required from either the simulator or the user. The returned 

value from CRAB-PA phase is the average power dissipation of the RTL design 

with the stated PIN statistics. 
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Chapter 4 

CRAB Model Evaluation 

In previous chapters, the background for the RTL power estimation techniques 

was established and the novel CRAB model was introduced. Although power 

dissipation is pattern dependent, many researchers considered using only uniform 

white noise (UWN) as the PIN data or equivalently 0.5 PIN switching probabilities. 

Only the DBT approach [3, 19] is based on a temporally correlated 2's complement 

data representation which is different from uniform white noise. Other than the 

references given in [3], no source has been found on the bit-level behavior of data in 

realistic settings such as two's complement, sign magnitude or floating point. Even 

if the PIN signals of an RTL design are uncorrelated, the internal RTL design sub

blocks may have spatially and temporally correlated data streams at their inputs, 

since these blocks do not interface to PINs of the RTL design and their inputs may 

become correlated because of re-convergent fanout. These correlated data streams 

may have bit-level activities different from UWN such that higher and lower order 

bits may be highly active and the bits in the center region may be uniform white 

noise (which is completely different pattern from DBT data). Hence for different 

data representation and correlations, a complete-range activity-based power model 

is required. In this work, the sampling of the complete range of a PIN switching 

activity has been considered and the CRAB technique is implemented based on 
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this notion. 

The proposed CRAB power model was built for several modules including the 

ISCAS combinational circuits and experiments were performed for the verification. 

Note that the coefficients of each power model is dependent on the cycle period, 

in other words, they have the units of Watts. For the experiments, the same 

cycle period is used for both CRAB-PC and CRAB-PE phases, so the period ( or 

frequency) component of the coefficients is same for two phases and can be ignored. 

However, changing the units of coefficients from Watts to Joules is scaling by the 

elapsed time so that the energy is modeled instead of power. 

In this chapter, the experimental setup and some application specifics are pre

sented. The experimental results for models proposed in addition to the CRAB 

power model are introduced and four models are compared and discussed. Ex

perimental results for each circuit using the CRAB power model are presented in 

detail. The power model accuracy is compared to lower level power simulators and 

discussed. 

4.1 Experimental environment 

In this section, the CRAB-PC and CRAB-PA phases (introduced in Chapter 3) 

are revisited specifically, the tools used, modifications and strategies for each are 

discussed in detail. Since the aim for the experiments is to verify the accuracy 

of CRAB power model with respect to lower-level power estimates for different 

modules, the high level synthesis (HLS) part is omitted in the CRAB-PA phase, 

hence only CRAB-PE is shown in Fig. 4.8 on page 55. The experimental flow for 

the CRAB-PC and CRAB-PE phases are Figs. 4.1 and 4.8, respectively. The 
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circuits used for the verification of the model are shown in Table 4.1. 

Circuit 
Name 

Circuit 
Function 

Total 
Gates /Transistors 

Number 
of PINs 

Number 
of PONs 

NUR.ALU ALU 254 Transistors 10 5 
MAGCMP Magnitude Comp. 22 Gates 8 3 

ADD4 4 bit adder 15 Gates 8 4 
C17 Arbitrary 6 NAND Gates 5 2 
0432 Priority Decoder 160 (18 EXOR) Gates 36 7 
0499 Error Correction 202 (104 EXOR) Gates 41 32 

01908 Error Correction 880 Gates 33 25 
06288 16-bit Multiplier 2406 Gates 32 32 

' i 

Table 1: Circuits for the experiments. 

4.1.1 CRAB-PC huplen1entation 

In this section, the implementation of each part in the CRAB-PC phase 1s 

discussed in detail and is shown in Fig. 4.1. 

Simulator Environment 

Power Simulator in the original CRAB-PC phase (Fig. 3.4) was replaced by two 

low-level power simulators: 1. Quickpower, a gate-level power analysis tool from 

Mentor Graphics [32, 33]. 2. IRSIM, a transistor-level power analysis tool [35]. 

IRS IM is used only once for the characterization of the original (first-order) 

model (Chapter 3). It is an event-driven simulator and it combines the node 

capacitance and the output activity of each node in the circuit when calculating 

the average dynamic power. 

The rest of the circuits were characterized by using Quickpower in QuickHDL 

environment. Quickpower is run with an event-driven simulator (QuickHDL in 
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Figure 4.1: Implementation of CRAB-PC. 

this case) to monitor switching activity. For power analysis, it uses a gate-level 

power library characterized with respect to varying input slew rates and output 

capacitances. For the experiments, a Quickpower library targeted to a 0.8 µ CMOS 

technology was used. The contents of the library is as follows: 2 inverters, 2-3 input 

AND, 2 input NAND, 2-3 input OR, 2 input NOR, 2-input Multiplexer, a buffer, 

a tri-state buffer, a D Flip-Flop, and a latch. Quickpower also requires a gate

level description of each micro-architectural block either in VHDL or VerilogHDL 
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format. If only an RTL representation of the circuit is available, it has to be 

synthesized to the desired gate-level library. For this purpose, Mentor Graphics 

Autologic Synthesis Tool was used. 

Micro-architectural Blocks 

ISCAS benchmarks are the majority of the circuits that were used as examples 

of the micro-architectural blocks. For the CRAB technique, either the Quickpower 

library for the present ISCAS library package or RTL descriptions for ISCAS bench

marks were needed. Fortunately, RTL descriptions of ISCAS-89 combinational cir

cuits in VHDL format are in the public domain. Minor modifications on the RTL 

descriptions were required on the RTL descriptions in order to synthesize them 

using the 0.8µ CMOS gate-library. First, "library selfext" declaration part was 

deleted. Second, the structural or gate-level declaration part was deleted. Finally, 

"fout" term in all Boolean-logic declarations was deleted. An illustration of the 

VHDL code for Cl 7 before and after the modifications are in Figs. 4.2 and 4.3, 

respectively. 

Cl 7, C432 and C499 were modified as explained above, Autologic was used for 

synthesis. They were successfully synthesized to the 0.8µ CMOS gate-library. On 

the other hand, RTL descriptions of Cl908 and C6288 could not be synthesized 

through Autologic, possibly because of the tool's capability limits. Hence their 

gate-level netlists were used by mapping the ISCAS gate-library to the 0.8µ CMOS 

gate-library. However several gates (e.g. NAND5) in the ISCAS gate-library do 

not match with any gate in the 0.8µ CMOS. Hence those gates were redefined in 

terms of the gates in 0.8µ CMOS and replaced in the gate-level netlists of Cl908 

and C6288. 
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library IEEE; 
use IEEE.std.Jogic_l164.all; 
library selfext; 
use work.gates_pkg.all; 
use work.ffiop_pkg.all; 
ENTITY cl7_i89 IS 
PORT ( 
INP: in std_ulogic_vector(0 to 4); 
OUTP : out std_ulogic_vector(0 to 1); 
H : in std_ulogic 
); 
END cl 7_i89 ; 
ARCHITECTURE structural OF cl 7_i89 IS 
signal INTERP : std_ulogic_vector(0 to 3):=(others=>'0') ; 
signal OUTPI: std_ulogic_vector(OUTP'range):=(others=>'0'); 
NAND0: NANDG_N generic map (2,1 ns,1 ns) 
port map ( 
inp(0) => INP(0), 
inp(l) > INP(2), 
outl > INTERP(0)); 

ARCHITECTURE rtl OF cl 7J89 IS 
signal INTERP : std_ulogic_vector(0 to 3):=(others=>'0') ; 
signal OUTPI: std_ulogic_vector(OUTP'range): (others=>'0') ; 
BEGIN 
REGVECT : BLOCK (H='l' AND NOT H'STABLE) 
BEGIN 
END BLOCK; 
NAND6 : INTERP(0) < NOT(fout,INP(0) AND INP(2)) after 1 ns; 

Figure 4.2: cl 7.vhdl before modification. 
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library IEEE; 
use IEEE.stdJogic_l164.all; 
ENTITY cl7_i89 IS 
PORT ( 
INP: in std_ulogic_vector(0 to 4); 
OUTP : out std_ulogic_vector(0 to 1); 
H : in std_ulogic 
); 
END cl7_i89 ; 
ARCHITECTURE rtl OF cl 7_i89 IS 
signal INTERP : std_ulogic_vector(0 to 3):=(others=> '0') ; 
signal OUTPI: std_ulogic_vector(OUTP'range). (others=>'0'); 
BEGIN 
REGVECT : BLOCK (H='l' AND NOT H'STABLE) 
BEGIN 
END BLOCK; 
NAND6: INTERP(0) < NOT(INP(0) AND INP(2)) after 1 ns; 
NAND7: INTERP(l) < NOT(INP(2) AND INP(3)) after 1 ns; 
NAND8 : INTERP(2) <= NOT(INP(l) AND INTERP(l)) after 1 ns; 
NAND9: INTERP(3) <= NOT(INTERP(l) AND INP(4)) after 1 ns; 
NANDlO: OUTPI(0) <= NOT(INTERP(0) AND INTERP(2)) after 1 ns; 
NANDll : OUTPI(l) <= NOT(INTERP(2) AND INTERP(3)) after 1 ns; 
BUFFER_OUT : OUTP <= OUTPI; 
END rtl; 

Figure 4.3: cl 7.vhdl after modification. 
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Another micro-architectural block, NUR.AL U was designed by using MAGIC [38]. 

Since the transistors are the building units of this circuit, a transistor count is de

picted in Table 4.1 as a metric for the size. Hence, IRS IM ( a transistor-level power 

simulator) is used for the CRAB-PC phase. This circuit was used to evaluate 

the original model (first-order model) proposed in Chapter 3. The results of the 

experiments will be presented in the following sections. 

The rest of the circuits (MAGCMP, ADD4) in Table 4.1 are in either VHDL or 

VerilogHDL form. The synthesis of these RTL circuits is done by using Autologic 

and targeting to the 0.8µ CMOS library. 

IVG Implementation 

There are two important issues that need to be considered in the IVG part of 

CRAB-PC. One is the generation of complete-range input statistics and the other 

is the selection of input vector length. 

Complete-range summarizes the desire to characterize power dissipation for all 

possible input statistics. As discussed in previous chapters most models are based 

on a uniform white noise activity assumption where tf1=0.25 (1--+1 probability) 

and ttw=0.5 (switching probability). For a single PIN, that is a point in a three

dimensional space where t;1 and t:w are the x-y coordinates respectively and the 

z-coordinate is the average power of the circuit as illustrated in Fig. 4.4. The 

aim of the CRAB PIN statistics generation is to choose three points of f/w from 

three regions to model the effect of the PIN's low, high and uniform white noise 

activity. These are depicted as LA, HA and UWN in Fig. 4.4. The average power 

values in Fig. 4.4 are from Quickpower results for one PIN of ADD4 benchmark. 

A similar figure applies to all other PINs of ADD4. For the complete-range the 

https://tf1=0.25
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Figure 4.4: Illustration of average power dependency on tiw and tJl. 

average power is a point in a 2N+ 1 dimensional space. 

The PINSTAT algorithm for generating PIN statistics for the vector sets 1s 

in Fig. 4.5. The vector sets generated with these PIN statistics are used in the 

CRAB-PC phase. The aim of the PINSTAT algorithm is to generate N(N+3)/2 or 

more different PIN statistics that span the 2N-dimensional activity space (i61
, tgw, 

ti1, tfw, ... ,t}J-_1 , tj.f_ 1 ). NMB (Number of Multiple Bias) represents the number 

of different selections of 2 to N-1 PINs from N PINs. For example, if 2 PINs are 

to be biased, NMB pair combinations out of N PINs are selected, in other words 

the number of vector sets for the 2-PINs biased to LA (low activity) is NMB. 
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PINSTAT(N ,LA,HA) 
1. Set NMB (number of vector sets for multiple (2 to N-1) biased PINs) 
2. Set NSB (number of vector sets for single biased PIN) 
3. For both LA and HA 

3.1 Bias N PINs at the same time. 
3.2 For NM - 2 to N-1 PINs 

3.2.1 Bias NMB different combinations of NM PINs. 
3.3 Bias NSB number of single PINs. 

Figure 4.5: PINSTAT Algorithm for the specification of PIN statistics. 

NSB (Number of Single Bias) is the number of sets where different single PINs are 

biased to desired activity. For majority of the experiments, NSB is N which means 

each single PIN is biased to the desired activity. 

According to the PINSTAT algorithm, two activity points, one from LA and 

one from HA regions are used for the selected PINs. If any PIN is not biased 

by an activity point, it will be assumed to be distributed by uniform white noise. 

Thus different combinations of the PINs are biased to activities in LA, HA or 

UWN range by PINSTAT. The exhaustive number of all possible PIN bias points 

2 

3 3 

4 6 4 

N • • • N 

Figure 4.6: Pascal Triangle. 
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I Number of PINs 
• Biased with 

LA and HA 

Number of 
pattern sets 

1 2-NSB 
2 2-NMB 
3 2-NMB 

N-1 2-NMB 
N 2 

Table 4.2: Number of pattern sets for each PIN bias. 

is 2N. This can be found by adding the number of single, pair, triple up to N 

combinations of N PINs in a Pascal Triangle Row (Fig. 4.6) as in Eq. 4.1 which is 

equivalently the sum of the binomial coefficients. 

NE 1 + 2N +2N(N - 1) +2N(N l)(N - 2) + ... 
N 

+2N(N l)(N-2)··•(N-L2 J) ( 4.1) 

The summation does not include the 0th combination of N PINs since it has no 

practical meaning. First term (i.e. 1) in Eq. 4.1 is the number of all PINs biased at 

the same time with a desired activity. Second term (2N) is the sum of the number 

of combinations for both one PIN and N-1 PINs set to a transition activity different 

than all other PINs. The final term represents the number of combinations for L~ J 

PINs biased. 

For N PINs, the number of vector sets that are generated with respect to PIN

STAT algorithm is shown in Table 4.2. For the reported experiments, single PIN 

combinations and all PINs are biased with desired activity, however the remain

ing multiple PIN biases are selected samples from the exhaustive combinations. 

Therefore, the number of combinations (NMB) is less than the exhaustive PIN 
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combinations. The second column of Table 4.2 is always N(N + 3)/2 or more. For 

a very small N the exhaustive number of combinations and N(N+3)/2 are close 

to each other. An example of the PINS TAT algorithm is illustrated for N=3 in 

Fig. 4.7. The all possible combinations of the biased PINs are shown in this figure 

where NMB=3, NSB=3 and the total number of PIN statistics to be generated is 

14. The MCE would require at least 9 of this set. 

BIT POSITION 

2 I 0 

UWN UWN LA 

UWN LA UWN 

LA UWN UWN 

UWN UWN HA 

UWN HA UWN 

HA UWN UWN 

LA UWN LA 

LA LA UWN 

UWN LA LA 

UWN HA HA 

HA UWN HA 

HA HA UWN 

LA 

HA 

LA 

HA 

LA 

HA 

LA == 5% switching prob. 

HA == 95% switching prob. 

UWN=50% switching prob. 

Single PIN Bias with LA and HA 

NSB=3 

Double PIN Bias with LA and HA 

NMB=3 

Triple PIN Bias with LA and HA 

Figure 4.7: The PIN statistics generated by PINSTAT(3,5%,95%). 

On the other hand, the number of input vectors in a vector set applied to a 

circuit module was chosen such that the standard deviation (D") from the weighted 

power (wp) was within the reasonable bounds of 3% or less of the average value 

(see Table 4.3). The standard deviation is calculated by the following: 
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I Stirn. Stat. I wp(µW) j a(500) j a(750) I o-(1000) I o-(1250) I a(2500) I 
5_10 130.94 2.38 3.16 0.80 2.24 0.34 
5_15 131.75 2.07 1.30 0.94 3.19 0.42 
5_64 142.24 3.20 2.16 2.05 1.15 0.10 
5_35 144.23 0.37 1.39 0.52 2.02 0.73 

Table 4.3: In the first column, the number at the left of underscore represents the 
bit position and the number at the right of underscore shows the percentage of the 
PIN switching activity. 

( 4.2) 

I: L·PLwhere wp = I: L , L represents the vector length, and PL stands for the average 

power related to L number of input vectors. A statistical description of the vector 

set is also shown in the first column of Table 4.3. The maximum standard deviation 

in each row is not more than 2.5% of wp which implies that the number of vectors 

500 to 2500 can be used for the experiments. Table 4.3 illustrates the strategy 

that was used for the selection of vector length (L ). The results of previous work 

for the selection of input vector length ( when the bits are uniform white noise) can 

be found in [23, 29]. In [29], the required vector length to guarantee a specified 

accuracy (c:=0.1, 1- 0=0.9) for most of the ISCAS benchmarks is shown to be not 

more than 2000 except C6288. 

MCE Implementation 

MCE part in the CRAB-PC phase (Fig. 4.1) was implemented by using MAT

LAB's matrix or least-square solution facilities. SVD code from [30] was modified 

to replace MATLAB after majority of the experiments. SVD was preferred for the 

matrix solution algorithm because of its under-determined, over-determined and 

square matrix solution capability. 
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Depending on the implementation of the MCE, both the probability files from 

IVG and power values from Quickpower were post-processed. The main strategy 

for post-processing was to build the transition matrix shown in Chapter 3. Since 

the probability files from IVG contain only the first-order PIN probabilities, the 

second-order pairs were required to be computed and placed in the transition 

matrix. The set of power values were also gathered as the right-hand-side power 

vector in Chapter 3. 

4.1.2 CRAB-PE hnplen1entation 

As noted before, the HLS part in the original CRAB-PA phase was omitted 

for these experiments. Therefore, only the implementation of CRAB-PE is shown 

in Fig. 4.8. This phase of the CRAB technique has considerably lower time cost 

compared to the CRAB-PC phase. 

In this phase, the input vector sets generated by IVG are completely different 

than those created for the CRAB-PC phase. During the power evaluation phase, 

the CRAB power model is evaluated by using the model coefficients from CRAB

PC and the transition probabilities from IVG. To verify the model for these new 

vector sets, Quickpower was used to obtain the gate-level power values. The CRAB 

power estimates were compared with the power values from Quickpower by using 

a relative error measure. However, as it will be explained later, the absolute error 

measure will also be considered during the discussion of some of the results. These 

measures are based on the power estimates from CRAB-PE (Pave) and Quickpower 

(QP) as defined in Eqs. 4.3 and 4.4. 
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Absolute Error= !Pave QPI ( 4.3) 

• E !Pave - QPIRelative rror = ----- ( 4.4) 
QP 
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Figure 4.8: Implementation of CRAB Power Evaluation. 

4.2 CRAB Experimental Results 

In this section, the results of the three models proposed in addition to second

order CRAB model will be introduced and discussed. For the evaluation of the 

original (first-order) model, the circuits MAGCMP, NUR.ALU, ADD4 were used 
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(refer Table 4.1). Cl':, was used to compare the results of four CRAB models 

presented in Chapter 3. The rest of the results for C432} C499} 01908} and 06288 

use the second-order CRAB power model. 

4.2.1 NUR.ALU Results 

NUR.AL U is a transistor (layout) level ALU circuit. The total number of data 

input bits ( A and B) is eight and the number of control bits is two. The simulations 

were carried out using IRSIM. The first-order original model was evaluated using 

NUR.ALU. 

NUR.ALU was first characterized with low PIN activity (LA=15%), high PIN 

activity (HA=85%) and the uniform white noise PIN activity. A thousand vectors 

were generated for each PIN's statistics. MCE used the direct matrix solution fa

cility of MATLAB. The model coefficients extracted during CRAB-PC range from 

-8.90 (k~(i)) to 17.85 (kA.(2)). The relative error (compared to IRSIM power values) 

during the CRAB-PE phase for input vector sets different than those selected in 

CRAB-PC is depicted in Fig. 4.9. 

The notation for the data activity which appears in the x-axis of the graph is 

as follows: The four values after B or A specify the percent of switching activities 

of an ascending order of bits where H stands for one hundred percent and U stands 

for uniform white noise. For example, B0HH0AHH00 means that B(0), B(3), A(2), 

A(3) are set to zero switching probability and the rest of the bits are set to one 

hundred percent activity. If there is only one number after B or A it means all the 

bits of A or B are biased with the same activity. 

As it is seen in Fig. 4.9, the relative errors in the center of the graph jump to 20-

40%. This set of experiments intentionally biased the input bits with activities that 
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Figure 4.9: U stands for uniform white noise, H stands for 100% switching activity. 
Other values are percent switching activity. 

amplified the model coefficients such that the relative errors would be increased. 

These test cases do not represent the typical PIN activity of an ALU, however 

they may occur inside other RTL structures. Hence the model for the ALU was 

validated at PIN activities that force differences of large values of coefficient and 

activity products. The other vector sequences applied to the circuit resulted in 

under 10% relative errors. 

To demonstrate the capabilities of the first-order CRAB power model, it was 
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Figure 4.10: U stands for uniform white noise, H stands for 100% switching activity. 
The lightest of the triples shows CES estimates, the darkest shows IRSIM results 
and leftmost of the triple shows the first-order CRAB power estimates. 

compared with two previous techniques (DBT and CES) discussed in Chapter 2. 

CES is a complexity-based predictive technique which does not take the data 

activity into account. DBT is an activity-sensitive, descriptive technique which 

models solely two's complement correlated data activity. The rightmost two bars 

in Fig. 4.9 shows that the CRAB model relative error for DBT-like input activity 

is under 5%. DBT-like input activity means the higher order ( or sign) bits of the 

inputs A and B are biased with either very low activity (LA=5%) or very high 

activity (HA=90%) while the other lower bits are left as uniform white noise. The 

comparison of CRAB with CES results is shown in Fig. 4.10. The y-axis indicates 

the average power value in µW. The x-axis represents the different biased input 

activities. For example, the 13th triple-bars were obtained for all PINs biased with 

low activity (LA=10%). The lightest bars (or the rightmost of a triple) indicate 

the results obtained with CES, the center of the triple bars represent the IRSIM 
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power values and the leftmost of the triples are the estimates obtained with the 

CRAB model. Clearly, CRAB tracks the input activity effects on the power well, 

on the other hand, CES errors are as much as 800% of IRSIM values (for the 13th 

triples). 

These experiments demonstrate that the first-order CRAB model reproduces 

the IRSIM power values for a wide range of activity. However, it was also ob

served that, for the LA bias of PINs the relative errors are as high as 25%. The 

insignificance of this error on power estimation is better understood by absolute 

error measure. As it is seen in Fig. 4.9, when all PIN activities are biased to LA, 

the IRSIM power values are very small thus missing 25% of a small amount is 

ignorable. In other words, the absolute error for all PIN statistics are in the same 

order, but for LA bias of PINs the denominator of the relative error (i.e. IRSIM 

power value) is very small. Hence the CRAB power estimates track the IRS IM 

results with reasonable absolute error bound. 

4.2.2 MAGCMP Results 

The properties of the MAGCMP are shown in Table 4.1 on page 43. This 

circuit was characterized by using Quickpower as the low-level power simulator. 

The vector length was 1000 as in NVR.ALU experiments and the CRAB algorithm 

was based on LA=15% and HA=85%. The square transition matrix was formed 

and the direct matrix solution facility of MATLAB was used to solve for the model 

coefficients. The extracted CRAB model coefficients for this circuit range from -

129.71 (kj/(o)) to 152.73 (ki0(2)). 

The results for the CRAB-PE phase of this micro-architectural block are shown 

in Fig. 4.11. The relative errors, between 20% and 30%, were caused by: 1. When 
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Figure 4.11: Relative error vs. PIN statistics for the CRAB-PE of MAGCMP. 

all the PINs were biased with very low activity (LA=5%) and 2. When the PIN 

statistics were biased such that the extremum differences were amplified. For the 

remainder PIN statistics, the relative error is under 10% except for the case of 

biasing of higher order PINs with very high activity (B(3) and A(3) are set to 

HA=95%). 

MAGCMP experiment was another step towards building the CRAB model 

for any data-path element and any simulation environment. Although NUR.ALU 

and MAGCMP are represented at different levels ( transistor and gate-level respec-
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tively) and were characterized by using different power simulators (IRS IM and 

Quickpower respectively), they produced similar large relative errors in the same 

range of PIN statistics (e.g all PINs biased with LA). 

4.2.3 ADD4 Results 

The ADD4 block has eight PINs. It was characterized by using Quickpower 

and 51 sets of vectors of length 1000 with single PIN and all PINs and pair PINs 

(DBT) biases ranging from 5% to 95%. MATLAB's least square solution (LSS) 

facility was used to solve for the CRAB model coefficients. The first-order CRAB 

model coefficients range from -3.38 (k~( 2i) to 3.91 (k8"{3 )). 
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Figure 4.12: Relative error distribution for the LSS of ADD4 CRAB coefficients. 

Fig. 4.12 shows the results of the LSS for the CRAB-PC phase. Since the 

number of vector sets used is 51, a histogram of the relative errors are shown. 
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Only one out of 51 solutions has 50% relative error which is the power obtained by 

all PINs biased with LA=5%. The rest of the solutions have under 10% relative 

error. 

CRAB-PE phase was implemented with two different sets of PIN activity. For 

the first evaluation phase, only a single PIN or pair of PINs were biased with 

activities ranging from 5% to 85%. The total number of vector sets for these 

activities was 48. The histogram of the relative error of CRAB power model with 

respect to Quickpower values is depicted in Fig. 4.13. Relative errors for three of 

48 runs are between 10% and 25% and 45 of the relative errors are under 10% . 

The first-order CRAB model appears to work well for single and pair PIN biases. 

Using these PIN statistics, the first-order model estimates the power for pairwise 

correlations as well as the single PIN temporal correlation. 

The second evaluation phase used 36 new vector sets. This time the used vector 

sets that bias three PIN statistics (with LA and HA) in addition to the single and 

pair PIN biases. The relative error distribution of CRAB power model with respect 

to Quickpower values are depicted in Fig. 4.14 where 5 out of 36 relative errors 

have values between 10% and 18% and 31 of them resulted under 9%. 
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Figure 4.13: Relative error distribution of 48 CRAB-PE results for ADD4 with the 
original model. 
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Figure 4.14: Relative error distribution of 36 CRAB-PE results for ADD4 with the 
original model. 
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Hence the first-order CRAB power model also provides reliable results for three 

biased PINs. Three biased PINs appear as the third-order product terms in the 

power equation, and these terms are error term for the first-order model. In sum

mary, the first-order model predicts the second-order and third-order power con

tributions and return power estimations with small relative errors compared to 

Quickpower estimates. 

4.2.4 Comparison of the Proposed Models with Cl7 

The previous results showed that the first-order model provides power estimates 

with no more than 30% relative errors when all PINs are biased with very low 

activity. In order to improve the low activity range , the second-order terms 

were added to the original model as discussed in Chapter 3. In this section, the 

development of this CRAB model and a comparison of all four models will be 

presented for an ISCAS combinational circuit, Cl 7. 

To compare the proposed models directly, the same set of input vectors were 

used for CRAB-PC and CRAB-PE phases. However, the vector sets were com

pletely different in each phase. For the characterization phase, 53 vector sets of 

length 1000 were generated an attempt to cover the range of bit-level statistics 

(1,2, ... N combinations of PINs are biased) at LA and HA. During the CRAB-PC 

phase, the coefficient vectors for the four different models were extracted by using 

the least square solution (LSS) facility in MATLAB during the CRAB-PC phase. 

The number and range of the four model coefficients are shown in Table 4.4. The 

histograms of the relative errors of the four models are shown in Figs. 4.15, 4.16, 

4.17 and 4.18. 

The CRAB relative errors decreased significantly from 120% to 8% of Quick-
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Model 
Number of 
Coefficients 

Minimum 
Coefficient 

Maximum 
Coefficient 

First-order 15 k~0 =-0.465 k~w=0.66 
Quadratic Model 20 k~0 =-0.894 k;w 1.09 

First-order+Cross-terms 25 ki 1 =-0.436 k;w=0.564 
CRAB second-order 20 k3,4=-2. 78e-05 k;w=4.10e-5 

Table 4.4: The range and the number of four model coefficients. 

power. It can be also observed that the inclusion of pairwise cross-terms had more 

effect on the results than the quadratic terms. This result was suggested in the ear

lier analysis in Chapter 3 when it was observed that re-convergent fanout for two 

PINs occurs more frequently than a single PIN. If the numbers of coefficients differ 

for two models then improvements in power estimate may be because the degree 

of freedom in the 2N + 1 dimensional space would be increased. Since the number 

of terms for each model is 20 and the same vector sets are used in CRAB-PC and 

CRAB-PE phases, the results of these models can be directly compared. 

For the CRAB-PE phase, 41 sets of input vectors of length 1000 were generated. 

These vector sets were completely different than the characterization stimulus sets 

in terms of PIN statistics. The model coefficients extracted in the CRAB-PC phase 

were used to estimate the power for each model and the histogram of the relative 

errors are shown in Fig. 4.19, 4.20, 4.21, 4.22. As before, the y-axis shows the 

"number of occurances" and the x-axis shows the "relative error ranging from 0 

to 1". As it is clear from the figures, the relative error for all PINs biased with 

LA decreased from 80% to 12% for first-order through pairwise CRAB models, 

respectively. 

For both CRAB-PC and CRAB-PE phases, it was observed that the final 

proposed CRAB model provided significantly improved power estimates (for all 
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Figure 4.15: Relative error distribution of the LSS for Cl 7 with the original model. 

types of PIN statistics) when compared to the results of the first, second and 

third CRAB models. On the other hand, the fourth CRAB model requires a large 

number of vector sets than the previous two models. Because power model accuracy 

(compared to Quickpower) for all PIN activities was preferred to the CRAB-PC 

time cost, the fourth CRAB power model is used for the power estimation of 

remaining ISCAS circuits. 

Many researchers have assumed uniform white noise to build their models, and 

they used random (uniform white noise) data to evaluate them. To examine the 

performance of the CRAB second-order model for uniform white noise data, 10 

vector sets of length 2000 were generated for additional CRAB-PE phase. The 

results of this experiment are shown in Fig. 4.23. As seen, all the tests resulted in 

relative errors in comparison to Quickpower of less than 3.5%. 
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Figure 4.16: Relative error distribution of the LSS for Cl 7 with the quadratic 
model. 
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Figure 4.17: Relative error distribution of the LSS for Cl 7 with the third model. 
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Figure 4.18: Relative error distribution of the LSS for Cl 7 with the CRAB model. 
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Figure 4.19: Relative error distribution of 41 CRAB-PE results for Cl 7 with the 
original model. 
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Figure 4.20: Relative error distribution of 41 CRAB-PE results for Cl 7 with the 
quadratic model. 

18 

16 

14 

(/) 

~ 
C 
a, 

~ 10 
u 
0 

0 
"" 8: 

6 

I 

41 

2 

o' 
: 

0 

l 
~ 

j 
l 

Il □ nCJD 
0.05 0.1 0.15 0.2 0.25 

relative error 

Figure 4.21: Relative error distribution of 41 CRAB-PE results for Cl 7 with the 
third model. 
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Figure 4.22: Relative error distribution of 41 CRAB-PE results for Cl 7 with the 
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4.2.5 C432 Results 

Since C432 has 36 PINs, at least 702 vector sets (i.e. PIN statistics) are re

quired for the CRAB-PC phase. For the experiments reported in this thesis, 754 

vector sets of length 2000 were used. The complete-range PIN statistics for both 

the CRAB-PC and CRAB-PE phases were generated by PINSTAT(36,5%,95%). 

The model coefficients for this circuit were obtained using MATLAB 's LSS capa

bility. The coefficients of the CRAB model range from -4.99e-04 (k14,23 ) to 5.33e-04 

(k22 ,23 ). The verification of the LSS for this circuit is shown in Fig 4.24. Clearly, 

the relative error for the LSS is under 1 % for over 700 vector sets and results for 30 

more have less than 7% relative error. Hence 95% of the same vector sets applied 

in the CRAB-PC phase provide power estimates under 1%. 
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Figure 4.24: Relative error distribution of the LSS for C432. 

For the CRAB-PE phase, three different groups of vector sets were generated. 
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The first group consisted of 704 different PIN statistics (1,2,3,4,5 and 36 PINs 

biased to LA=5%, HA=95% ). The results of the evaluation of the first group is 

depicted in Fig. 4.25. About 99% of the vector sets resulted with relative errors 

under 10%. Relative errors of less than 15% were the result of evaluations with 3 

vector sets where 5 PINs were biased with 6% LA and a vector set with 4 PINs 

were biased with 10% LA. 

The second group of vector sets is composed of 680 different PIN statistics from 

PINSTAT(36, 5%, 95%). The results of this showed that approximately 80% of 

the tests have relative errors under 20%. The results exhibit larger relative errors 

(from 20% to 90%) for experiments that used more LA PIN biases (as depicted 

in Fig. 4.26). However, in terms of absolute error the errors are comparable even 

smaller than the results with under 10% relative error. 
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Figure 4.25: Relative error distribution of the 704 CRAB-PE results for C432. 
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Figure 4.26: Relative error distribution of the 680 CRAB-PE results for C432. 

The third group of vector sets is composed of uniform white noise data. For 29 

test cases, the CRAB model returned power estimates under 2% within Quickpower 

(refer Fig. 4.27). The aim of testing the model for uniform white noise is to verify 

the CRAB model superiority to previous models proposed in the literature. CRAB 

model provides very accurate results within low level estimates for uniform white 

noise as well as a wide-range biased input data. 

Similar to previous circuits, C432 was the first circuit with a high number of 

PINs (36) and required at least 702 vector sets for the CRAB-PC phase. The PIN 

LA and HA were selected at 5% and 95% aggressively from the end points of the 

t:w axis. The experimental results show that the LA bias on four or more PINs 

had relative errors greater than 10%. Since the CRAB power model contains only 

second-order terms, higher-order correlations' effects appear as error terms in the 
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Figure 4.27: Relative error distribution of the 29 CRAB-PE results for C432 using 
uniform white noise data. 

model. The higher relative errors are likely caused by unmodeled contributions 

of these higher-order terms. On the other hand, the absolute power contribution 

of this circuit with 5 or more LA PINs is only 20% of the power contribution of 

the same circuit with a single LA PIN (when the rest of the PINs are random). 

Therefore, the absolute errors of power estimates for many PINs set at low activity 

and all PINs set to uniform white noise are of the same order. 

4.2.6 C499 Results 

CRAB-PC phase requires at least 902 vector sets for the C499 circuit's 41 

PINs. For the CRAB-PC phase, 972 vector sets of length 2000 were generated 

with PINSTAT(41,%5,%95). The model coefficients of length 902 were solved by 

MATLAB as in previous cases. The coefficients ranged from -0.0011 (k14,1s) to 
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7 .3781e-04 ( k5 ,2 7 ). For the same 972 vector sets of length 2000 were applied to 

this circuit, the relative error histogram is depicted in Fig. 4.28. The LSS for 

this circuit exhibited almost the same behavior as C432. This time the number of 

vector sets that have under 1 % relative error is above 99% of all cases tested. 
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Figure 4.28: Relative error distribution of the LSS for C499. 

For the CRAB-PE phase, new vector sets 827 in number with lengths 2000 

were used to evaluate the model accuracy. The PIN statistics are from PIN

STAT( 41, 5%, 95%). The CRAB model comparison for these experiments is shown 

in Fig. 4.29. It is a similar distribution compared to the one for C432. The tail 

of the relative error distribution shifted up to 80% for the low activity of multiple 

PINs (greater than 30). However, about 85% of the CRAB power estimates are 

under 20%. The same discussion for the high relative errors of C432 holds true for 

this circuit. In summary, if the absolute error displays a stable behavior for the 
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Figure 4.29: Relative error distribution of the 827 CRAB-PE results for C499. 

complete-range PIN statistics (which is true for all cases), then the high relative 

errors have little effect on the model accuracy. In effect, the absolute power con

tribution of a micro-architectural block to the overall design's power dissipation is 

not significant. 

4.2.7 C1908 Results 

The ISCAS Cl 908 needs 594 CRAB model coefficients to be stored in the 

CRAB-PC phase. For the experiments, 672 vector sets were generated for the 

Quickpower analysis. As in the previous cases ( except for the values of LA and 

HA), the PIN statistics of the vector sets are from PINSTAT(33, 10%, %90). And 

as before, LSS was used to extract the coefficients. For the previous three ISCAS 

benchmarks, (Cl 7, C432, C499) the PIN switching activities were biased to 5% 
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and 95%, whereas, for C1908, they were biased to 10% and 90% that is the two 

end points on the tfw axis ( recall Fig 4.4) were selected such that they are closer 

to UWN. The aim of this experiment is to show that the characterization and 

evaluation based on a narrower range can yield acceptable (in some cases better) 

results for PIN statistics biased to LA. This effect is explained by noting that 

modeling power dissipation by using N(N+3)/2 number of points in a narrower 

range would give better estimates than a wider range using the same number of 

points. 

The C1908 model coefficients varied from-1.074e-05 (k2,9 ) to 3.095e-05 (kf;f ). The 

histogram of the relative error after the least squares solution is shown in Fig. 4.30. 

Since the low and high activity was set to 10% and 90% respectively (higher and 
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Figure 4.30: Relative error distribution of the LSS for C1908. 

lower than 5% and 95% respectively), the relative error for all vector sets is under 
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3.5%. 

For subsequent evaluation of the model) new vector sets) 512 in number) with 

varying PIN statistics from PINSTAT(33)10%)90%) were generated by IVG. The 

histogram of the relative error was obtained from MATLAB after the CRAB model 

was evaluated. As seen in Fig. 4.31, 96% of test cases have relative error under 

15% which is an improvement from other benchmarks. Again the larger relative 

errors between 15% and 45% were caused by the multiple low PIN activity ( e.g. 

when sets of 19 PINs were biased with 10%). 
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Figure 4.31: Relative error distribution of the 512 CRAB-PE results for Cl908. 

For this circuit) LA and HA values were different than those of Cl 7, C432, 

C499. In fact the two end points in the tfw axis (Fig 4.4) was selected closer which 

improved the estimates from the model as expected. This trade-off suggests a 

possible optimization technique: Activity range vs range of power estimate. 



79 

4.2.8 C6288 Results 

06288 is a 16 bit multiplier, unlike other circuits 06288 exhibited more glitches 

per vector during Quickpower analysis (CRAB-PC phase). The required number 

of vector sets for the characterization is 560. For this, PINSTAT(32 110%,90%) was 

used. To reduce the computation time the vector length was 500. The CRAB 

model coefficients were extracted by MATLAB as before. They were found to 

be between -0.6420 (ku,21 ) and 0.5616 (k14,18 ). The relative error distribution for 

these vector sets is depicted in Fig. 4.32. 
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Figure 4.32: Relative error distribution of the LSS for 06288. 

Since the Quickpower analysis run-time for 500 vectors was around 30 to 40 

minutes in a Spare 10, 121 number of runs was performed for the CRAB-PE phase. 

The 121 vector sets with different PIN activities were generated as in the CRAB

PC phase. The evaluation of the model for these activities exhibited a relative 
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1 

error distribution depicted in Fig. 4.33. The errors went beyond 100% for some 

vector sets. And the majority (about 70%) of the errors are under 25%. 
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Figure 4.33: Relative error distribution of the 121 CRAB-PE results for 06288. 

There may be several possible explanations for the very large relative errors: 

1. Selection of the vector length: 500 vectors was chosen to decrease the run

time cost. However, this length is not enough for this circuit to get reliable average 

power values from Quickpower. Because in [29] for the specified accuracy ( 1:=0.l, 

o=0.9), the required number of vectors for the 06288 is 19,000. 

2. Modeling the glitches: The number of glitches at internal or primary out

put nodes change with respect to different PIN activity values. Because of the 

large number of glitches in the multiplier, high order spatial correlations become 

significant. 

With this circuit, it was observed that the CRAB-PC efficiency directly depends 
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on both the low-level power estimator and the machine used. However, the time 

cost can be decreased further by processing the vector sets concurrently. For 

example, 560 vector sets can be divided into 10 groups and applied in parallel such 

that the time cost for obtaining power values from Quickpower is reduced as a 

factor of 10. 

In [29], it is shown that there is a trade-off between the specified accuracy 

(€, 1 - 8) and the number of vectors. Hence the use of 500 vectors (which is 

significantly less than 19,000) resulted with higher error (E) and lower confidence 

level ( 1-8). 

4.3 Chapter Summary 

The four CRAB power models proposed in Chapter 3 were evaluated with 

ISCAS benchmarks and several micro-architectural blocks. For circuits with small 

numbers of PINs ranging from 5 to 10, three of the proposed models provided 

power estimates with relative errors under 10% for the majority of all cases. The 

deviations from this range were caused when a high number of PIN combinations 

were set to low activity ( e.g. all PINs biased to LA). The relative errors for low 

activity regions were decreased by including the pairwise second-order cross-terms 

in the original model. 

The final model was tested with larger circuits with PINs ranging from 32 to 41. 

The worst-case relative error was observed to be 90% when a large number of PIN 

combinations (e.g. 5 PINs or more for ADD4) were biased to very low switching 

probability ( e.g 5%). This problem was investigated by narrowing the [LA, HA]. 

The narrow range CRAB-PC provided better results. This is explained by the 
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observation that average power points (see Fig. 4.4), the least squares solution 

returns a better fit to the power distribution for a narrower switching activity 

range. Hence the CRAB-PC can be improved further by dividing the switching 

probability space to two or more regions. For example, one set of model coefficients 

could be stored for the LA region ( e.g. 1 % to 50%) and the other set could be 

kept for the HA region ( e.g 50% to 99%) so that the relative errors for the entire 

range are decreased. 

Absolute error in addition to relative error of the CRAB power estimate was 

also compared to explain the practicality of the model for high relative errors. 

The CRAB power estimates were compared with the CES results. The supe

riority of the CRAB model to CES is verified with various PIN activities. Addi

tionally, the CRAB models are evaluated for DBT and uniform white noise data 

streams. The relative error for both PIN activities are shown to be under 5% of 

the Quickpower values. 

The above observations are prom1smg m the sense that, the CRAB model 

provides reliable results for the complete-range PIN activity which has not been 

considered in previous research. 
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Chapter 5 

Future Work 

In this thesis, the CRAB power model is presented and evaluated. Some of the 

limitations and extensions for the proposed model will be discussed in this chapter. 

The inclusion of second-order cross-terms improved the accuracy with respect 

to low-level power estimates, however the required number of coefficients increases 

quadratically in the number of primary input bits. The limitations in the com

putational resources may increase the costs of the CRAB-PC phase. Although 

the time cost may be of limited concern because it is a one time process for each 

micro-architectural block. However, the reduction of this time cost is a possible 

modification to the model presented. Two possible reduction methods may be 

decreasing the number of model coefficients or reducing the number of total vector 

pairs for the CRAB-PC phase. The reduction of model coefficients may be pos

sible by using the statistical techniques suggested by Pedram [24]. A reduction 

of the number of input vector pairs can be achieved by systematically selecting 

fewer vectors for each run or using less than N(N+3)/2 PIN statistics for the 

complete-range characterization. These two extensions are worthwhile to work on. 

Beyond CRAB-PC performance improvements, the model predictions may be im

proved further by dividing the complete-activity range to two or more regions and 

completing CRAB-PC in each of these regions. However this would increase the 
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total number of coefficients. Using a simpler model ( e.g. first-order CRAB model) 

would be a way to optimize the number of model coefficients versus the number of 

activity range divisions. 

During the CRAB-PA phase, in the case of no behavioral simulation, the trans

fer of RTL design PIN statistics to internal sub-block's input statistics is required. 

For this, the extraction of the transfer coefficients (from PIN statistics to PON 

statistics) can be completed during the MCE step of the CRAB-PC phase. In 

other words, the transfer coefficients from input statistics to output statistics of a 

micro-architectural block can be solved by using the same linear system in Fig. 3.3. 

The only difference would be to change the right-hand side vector such that the 

output statistics would replace the power values. This task is a possible extension 

to the CRAB-RPE technique. 

The CRAB RTL power model was developed for average power estimation. 

Recently, estimation of peak power has emerged as another concern for the de

signers. To observe the peak power, cycle-accurate power estimation techniques 

have been proposed [24]. The CRAB model readily predicts peak power during 

the CRAB-PC phase. 

The application and modification of the model to a wider range of micro

architectural blocks is another area of research. In this thesis, the CRAB-RPE 

was proposed for combinational circuit blocks. However, it is possible that it can 

also be applied to sequential circuits, memories, control blocks and other finite 

state machines (FSM). 

After modifying the CRAB power model to other micro-architectural blocks 

(i.e. sequential circuits, control blocks etc.), power estimation at the higher levels 

such as the behavioral level would be possible. 
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Chapter 6 

Conclusion 

In this thesis, the background for the RTL power estimation is established and a 

novel RTL power estimation descriptive technique called CRAB-RPE is presented. 

CRAB-RPE has two phases (CRAB-PC and CRAB-PA) which are built upon the 

CRAB power model. CRAB-PC is the characterization phase where the model 

coefficients are extracted and CRAB-PA is the analysis phase where the RTL 

design is synthesized to micro-architectural blocks in the RTL library and power 

contributions of each block are evaluated. 

The CRAB model originated from earlier gate-level switching activity estima

tion techniques for spatially and temporally correlated data. In many of these 

techniques, gate output switching activity is shown to be first-order, second-order 

and higher-order function of gate input transition probabilities. From this knowl

edge, the following observation is made in this thesis. The average power of the 

whole design is also a weighted sum of first-order, second-order and higher-order 

PIN transition probabilities. Based on this observation, the CRAB RTL power 

model is introduced as a linear function of first and second-order PIN transition 

probabilities and the higher-order terms for transition probabilities are a known 

error term. 

The name CRAB (Complete-Range Activity-Based) comes from the fact that 
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the activity range from very low values to very high values is spanned by sampling 

with three activity points for every PIN. Hence the effects of full activity range for 

each PIN is characterized and evaluated for each micro-architectural block. The 

wide-range of CRAB PIN statistics also model data activity regions that previous 

RTL power models are based on. Specifically, they are uniform white noise and 

temporally correlated two's complement data. The CRAB technique also accounts 

for the spatial correlations. 

The CRAB power model has been evaluated for different circuits including the 

ISCAS combinational benchmarks for various PIN activities. The model relative 

error results are less than 5% for biased single and pair PIN statistics or random or 

DBT-like (higher order bits are very low or high active and the data bits are uni

form white noise) data. Additionally, the model was tested aggressively by biasing 

a wide-range of combinations of PIN statistics using the PINSTAT algorithm. In 

those cases, the model predicted power values within acceptable absolute errors. 

The largest relative errors are caused by high number of low activity PINs which 

would contribute little to the total design's power. Improvement in the model 

accuracy was observed by narrowing the modeled activity range. The largest de

viations in the CRAB-PE tests were obtained with C6288 (multiplier) because of 

unreliable CRAB-PC phase average power values. 

In conclusion, the CRAB technique has made a significant contribution to ex

isting RTL power estimation techniques by considering the effects of PIN transition 

probabilities on the power dissipation. Development of new methodologies for high 

level power estimation remains an open area for researchers to focus their efforts 

on. 
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