
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1997

Efficient Implementation of Image Compression-Efficient Implementation of Image Compression-

Postprocessing Algorithm Using a Digital Signal Postprocessing Algorithm Using a Digital Signal

Processor Processor

Nadir Sinaceur
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Chemistry Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Sinaceur, Nadir, "Efficient Implementation of Image Compression-Postprocessing Algorithm Using a
Digital Signal Processor" (1997). Dissertations and Theses. Paper 6376.
https://doi.org/10.15760/etd.3522

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6376
https://doi.org/10.15760/etd.3522
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Nadir Sinaceur for the Master of Science in Electrical and

Computer Engineering were presented December 11, 1997, and accepted by the thesis

committee and the department.

COMMITTEE APPROVALS:
Fu Li,Chair

Branimir Pe

Bradfor Crain
Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:
Lee W. Casperwn
Department of Electrical Engineering

ABSTRACT

An abstract of the thesis ofNadir Sinaceur for the Master of Science in Electrical and

Computer Engineering presented December 11, 1997.

Title: Efficient Implementation of Image Compression-Postprocessing Algorithm

Using a Digital Signal Processor.

In this thesis, an attempt has been made to develop a fast way to implement a

post-processing algorithm for image compression. All the previous tests for this

postprocessing algorithm, which we will present, have been only software based and did

not consider the time parameter.

For this purpose a new algorithm is used to compute the 2-D DCT transform.

This change made the process a lot faster on a Spare 5 workstation. We have then

decided to further increase the speed of the post-processing scheme by implementimg it

on the ADSP21020 chip.

The resuts show that such a chip can achieve a speed increase and that if the

code is optimized a faster processing is even reachable.

EFFICIENT IMPLEMENTATION OF

IMAGE COMPRESSION-POSTPROCESSING ALGORITHM

USING A DIGIT AL SIGNAL PROCESSOR

by

NADIR SINACEUR

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1998

Contents

List ofFigures ll1

List ofTables lV

1 Introduction l

2 The JPEG Standard 4
2.1 Introduction 4
2.2 Image Compression Models 4
2.3 Encoder 6

2.3.1 DCT Based Coding 6
2.3.2 Quantization 9
2.3.3 Zigzag Scan 12
2.3.4 Entropy Coding 13
2.3.5 Huffinan Coding of the DC coefficients 13
2.3.6 Huffinan Coding of the AC coefficients 15

2.4 Decoding 18

3 Blocking, Ringing & Post-processing 22
3.1 Introduction 23
3.2 Artifacts observed in JPEG 23
3.3 Ways to reduce the compression artifacts 24

3.3.1 New Encoding Schemes 25
3.3.2 Post-processing Schemes 25

3.4 The chosen Post-processing Algorithm 27
3.4.1 Removal ofBlocking Artifacts 29
3.4.2 Removal ofRinging Artifacts 30
3.4.3 Fifelity Constraint 32

3.5 Image improvements 32

4 Digital Signal Processing Power_ 35
4.1 Introduction 35
4.2 The ADSP21020 36
4.3 Two Dimensional DCT for Image Processing 37
4.4 The AAN Algorithm 39
4.5 Hardware Implementation 41

44 5 Tests and Performance Results
5.1 Introduction
5.2 Simulation Algorithm
5.3 Simulation Results

6 Conclusion

Bibliography

Appendix

44
44
45

47

48

49

List of Figures

2.1 DCT Transformation 8
2.2 DPCM Model 11
2.3 Zigzag Scan 12
3.1 Original Lena picture 512x512 22
3.2 Lena picture encoded at 0.25 bits/pixel 24
3.3 3x3 Gaussian Lowpass Filter 26
3.4 The Mid-point Displacement Interpolation 29
3.5 Ringing block Example 31
3.6 Lena after post-processing 34
4.1 The 64 8x8 basis functions 38
4.2 Flow Chart to find the real parts of 16-point DFT 40
4.3 Flow Chart to restore the values from the real part of 16-point DFT 41

List of Tables

2.1 Luminance quantization table 10
2.2 DC and AC coefficient grouping 14
2.3 JPEG DC code 15
2.4 JPEG AC code 17
5.1 Execution speed results obtained in seconds 46

Chapter 1

Introduction

The rise of the Internet and other new technologies has pushed the research on

image compression. Indeed the need for transferring still images and video over a low

bandwidth network at a very high speed has been growing exponentially in these last

years. To get an idea of what the challenge is, we will consider a typical low

resolution, color video image of 512 x 512 pixels. It requires approximately 6 x 10°

bits. This means that for sending a small video file it would take an incredible amount

of memory.

Luckily most of the data in this image is not equally important. Statistical

redundancy as well as irrelevancy in regard to the eye of an observer makes the

technique of image compression a very attractive solution for our purpose. It is well

known that the human visual system shows sensitivity variations depending on the

orientation, the light level and other signals. This property makes a lot of data in an

image irrelevant to the human eye. As far as the redundancy goes, it can be either

spectral between color planes or spectral bands, temporal between neighboring frames

in a video sequence or spatial between neighboring pixels.

1

The study of image compression is based on those two parameters . An

optimal image compression would be removing all the "unnecessary" data and keeping

only the important ones that would make a difference to the observer if they weren't

present. Two ways have been actively pursuit to achieve this goal. The first one,

which is characterized as the lossless one, makes no compromise as far as the quality

of the image received at the other end. In doing that, no data is ever lost but the

compression ratio stays low around 2/1 to 4/1. The big advantage of this process is

that it is a 100 % reversible.

On the other hand, the lossy compression uses all the "deficiencies" of the

human eyes as well as the redundancies to eliminate all the non-essential pixels. In

doing that it can achieve a very high compression ratio at the expense of a lower

quality image. This second approach is currently widely used over low bandwidth

networks. An example of a good application for this technique is the Internet

videophone. Since the image of the caller doesn't have to be perfect in order for the

receiver to understand what the caller means by any movement of his face.

Nevertheless, it is important that the artifacts caused by such loss of

information in the image are kept to a minimum. This brings us to the two main

artifact removal methods used nowadays in image processing. The first one or pre

processing is done at the encoder level using block overlap, different coding for edge

2

blocks to remove the "ringing" effect, or DC calibration. The second one or post

processing is done at the decoder level using for example a low pass filter to smoothen

the block boundaries or edge adaptive filtering.

Today one of the most common standard for image compression scheme is the

JPEG (Joint Photographic Experts Group) one. Since it is so widely spread it seemed

normal to use it as a base for this work. We will therefore first explain in details the

JPEG algorithm for lossy image compression. After that we will present the post

processing method from a theoretical point of view. This will reduce the blocking

effect and ringing effects. Having done this we will then look at a more practical view

of image compression by implementing the algorithm presented. In a first step we will

do that on a workstation and after that we will simulate the same code on an Analog

Devices ADSP2 l 020 chip and compare the execution times. As a last step, we will

optimize the code in order to get an efficient implementation of this algorithm.

3

Chapter 2

2 The JPEG Standard

2.1 Introduction

Image compression is the art and science of reducing the number of bits

required to describe an image. This is done usually at the source or encoder level .

The compressed data is then stored or transferred to the receiver or decoder in order to

be reconstructed. This process has been standardized [1] so that applications could be

created and hardware designed and optimized for such a standard.

2.2 Image Compression Models

There are many compression models depending on the way the image is coded.

Two main classes are the predictive coding and the transfo:nn coding.

In the predictive coding class, the info:nnation is used to predict the new values

an~ the difference is coded. An example of this class is given by the DPCM or

"differential pulse code modulation". Given a beginning value, DPCM uses the coded

differences between each sampled value to reconstruct the whole picture. If there is a

4

strong correlation between samples, in other words if the differences between

neighboring pixels are small, the DPCM method is a very reliable method.

In the transform coding, an image is represented by a discrete set ofbasis

arrays called basis images, just as a one-dimensional signal can be represented by an

orthogonal series ofbasis functions. In other words the pixels are transformed to

another domain, in our case the frequency domain. Such a unitary transformation not

only preserves the signal energy but also packs a large fraction of the average energy

of the image into relatively few components of the transform coefficients. As a result

of this, many of the transform coefficients contain little energy, which makes it easier

to discard them if necessary. In any practical system, the compression process is

followed at some point by decompression. Thus the transformation process has to be

reversible so that X can be reconstructed from Y. It follows that, for a specific T there

should be a U such that X =UYU.

The Discrete Fourier Transform (DFT), Discrete Cosine Transform (OCT),

Discrete Sine Transform as well as other transforms as the Karhunen-Loeve Transform

(KLT) are all unitary transforms, that fulfill this condition and basically would be

suitable. However, the KLT has several implementation-related deficiencies,

including the fact that the basis functions are image dependent. The other basis

5

functions are image independent. The JPEG group chose the DCT transform after a

selection process on a first blind assessment of subjective picture quality and on a

second more rigorous selection. It is therefore one of the best if not the best transform

for lossy image compression.

2.3 Encoder

2.3.1 OCT-Based Coding

For image processing applications, the forward 2-D DCT of an n x n block of

pixels is expressed as

F(u, v) = 4C(u~C(v) IIJ(j,k)cos[(2j + l)u1r]cos[(2k + l)v1r] (2.1)
n ~oho 2n 2n

And the inverse 2-D DCT is defined as

2f(j,k) =IIC(u)C(v)F(u, v)cos[(2j + l)u1r]cos[(k+ l)v1r] (2.2)
,.,..o v=O 2n 2n

Where

6

1
for w=O

./2
C(w) =

1 for w = 1,2, ,n - 1

The DCT transformation decomposes each input block into a series of

waveforms, each with a particular spacial frequency.

An important property of the 2-D DCT and IDCT transform is separability.

We will see that from an implementation viewpoint, a row-column approach will

simplify the hardware requirements. For now we will remember three main points that

make this transformation very attractive.

I.The DCT basis is image independent and causes most of the energy to be

concentrated in the upper left corner of the transformed matrix, as shown below.

7

A subset of

Image elements

DCT
)Ill

Most of
Energy

Rest
of

Energy

Figure 2.1. DCT Transfonnation

2.Since each coefficient obtained in frequency domain is the

contribution of its correspondent wavefonn, the characteristics of the

human visual system could be easily incorporated by modifying those

values.

3.The DCT computations as expressed above, can be perfonned with fast

algorithms that require fewer operations than the computations perfonned directly

from these equations.

8

2.3.2 Quantization

In this lossy compression mode, some of the coefficients or weights will be

deleted and therefore the corresponding waveforms will not be used during

decompression. This process is referred to as the quan~ization. Mathematically this

process is defined through a scaling of the coefficients using a user specified

quantization table that is fixed for all blocks, followed by a rounding off to the nearest

integer:

F • (u , v) = round (F (u • v)) (2 .4)
Q (u, V)

F*(u,v) and Q(u,v) represent the quantized coefficient and normalization

matrix element. Each component of the quantization table is an 8-bit integer that

determines the quantization step size and therefore the quality of the encoded image.

A typical quantization table that is also used by the JPEG standard is:

9

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 2.1. Luminance quantization table

Considering the original pixel matrix 2.5.

139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 156
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159

(2.5)
159 160 161 162 162 155 155 155

161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
162 162 161 161 163 158 158 158

Then the quantized DCT output using Table 2.1 is given by 2.6.

15 0 -1 0 0 0 0 0

-2 -1 0 0 0 0 0 0

-1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
(2.6)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The process ofquantization has resulted in the zeroing out ofmany of the DCT

coefficients. The specific design ofQ depends on psychovisual characteristics and

compression ratio considerations. The last step in this part of the encoder is a

classification of the DC coefficients using the following DPCM model

Sample

Difference

'------I Previous
Stunple

Figure 2.2. DPCM model

Due to the high degree of correlation ofDC values among adjacent blocks, this

model is very effective. The other 63 AC coefficients are zigzag scanned.

11

2.3.3 Zigzag Scan

Since most of the DCT coefficients have a value equal to 0 after quantization,

JPEG uses a zigzag pattern to convert the 2-D coefficients into a 1-D sequence. This

results in the coefficients being approximately arranged in decreasing order of their

average energy. This creates large runs of zero values that suit well the following

entropy model. The pattern followed starts from the left upper corner to the right

lower corner along the diagonal paths shown below. (Ordered from Oto 63):

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 48

9 11 18 24 31 40 47 53

10 19 23 32 39 46 52 57

20 22 33 38 45 51 56 60

21 34 37 44 50 55 59 62

35 36 43 49 54 58 61 63

Figure 2.3. Zigzag scan

In our case the coefficients are 15 0 -2 -1 -1 -1 0 0 -1 an Zeros. The

ordered coefficients can now be efficiently represented using a combination of a run

length coding and Huffman coding scheme.

12

2.3.4 Entropy Coding

The last processing block in JPEG is the entropy coder. It improves overall

performance by performing lossless coding on the quantized DCT coefficients. For

this purpose two statistical models are used. One corresponds to the coding of the DC

differences generated in the step before. The other is the coding of the AC

coefficients.

2.3.5 Huffman Coding of the DC coefficients

The difference between the DC values of the two consecutive blocks i.s first

categorized using a table lookup. This table shown in Table 2.2 consists of 12

categories, where the ith category contains all the differentials that can be represented

by i bits. To each category k corresponds a set of Huffman codes (base codes) with a

maximum codeword length of 16 bits.

13

Category Coefficient lta%lge

0 0

1 -1,1

2 -3,-2,2,3

3 -?,... ,-4,4, ... ,?

4 -15,... ,-8,8, ... ,15

5 -31,...,-16,16, ...,31

6 -63,...,-32,32, ...,63

7 -127, . .. ,-64,64, ...,127

8 -255,... ,-128,128, ... ,255

9 -511,... ,-256,256,... ,511

10 -1023,...,-512,512,... ,1023

11 -2047,... ,-1024, 1024, .. .,~47

Table2.2 DC and AC coefficient grouping

These codes do not completely describe the difference. Therefore, an

additional k bits are sent to completely specify the sign and magnitude of a difference

value in that category.

14

Category BueCodc Length Category Bue Code Length

0 010 3 6 1110 10

1 011 4 7 11110 12

2 100 5 8 111110 14

3 00 5 9 1111110 16

4 101 7 A 11111110 18

5 110 8 B 111111110 20

Table 2.3. JPEG DC code

For example, if the DC value of the previous block is 24, then the difference

DC1 DCj.1 = 15-24=-9. This number lies in category 4 of table 2.2, which gives us a

base code of 101.

2.3.6 Huffman Coding of the AC Coefficients

As in the step before each AC coefficient can be described by the pair (size,

amplitude). Since after the quantization most of the AC coefficients are zero, only the

nonzero AC coefficients need to be coded. A run length coder yields the value of the

next nonzero AC and a run, that is the number of zero AC coefficients preceding this

one. This means that each nonzero AC coefficient can be described by the pair

(run/size, amplitude). The value of run/size is Huffinan coded, and the value of the

amplitude (computed as in the case of the DC differentials) is appended to that code.

15

There are two special cases in the coding of AC coefficients, as follows: (1)

The run-length value may be larger than 15. In that case JPEG uses the symbol (15/0)

to denote a run-length of 15 zeros followed by a zero. If the runlength exceeds 16 zero

coefficients, it is coded by using multiple symbols. In addition, if after a nonzero AC

value all the remaining coefficients are zero, then the special symbol (0/0) denotes the

end of block (EOB).

For the AC values, using the values in the table for luminance AC coefficients

we obtain the following. The first non zero value .is (-2) and coded as 11100101.

Following the same method we obtain for our example.

1010110/11100101/000/000/000/110110/1010

16

Zero Run Category Code.length CodellVCrd

0 1 2 00

0 2 2 01

0 3 s 100

0 4 4 1011

0 5 5 11010

0 6 6 111000

0 7 7 1111000

. . . .

1 1 4 1100

1 2 6 111001

1 3 7 1111001

1 4 9 111110110

. . . .

2 1 5 11011

2 2 8 11111000

. . .
3 1 6 111010

s 2 9 111110111

. . . .

Table 2.4. JPEG AC Code

17

Zero Run Category Codelmgth Codeword

4 1 6 111011

5 1 7 1111010

6 1 7 1111011

7 1 8 11111001

8 1 8 11111010

9 1 9 111111000

10 1 9 111111001

11 1 9 111111010

. . .
End of Block (EOE) 4 1010

Table 2.4 continued

2.4 Decoding

At the receiver side we perform entropy decoding by simply using the

Huffman table used in the transmitter. This step corresponds to a simple lookup and

results in the exact same coefficients obtained after quantization in the transmitter:

18

15 0 -1 0 0 0 0 0

-2 -1 0 0 0 0 0 0

-1 -1 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
(2.7)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

We then use the same quantization table used in thequantization step of the

encoder to decode the resulting matrix. This practically means multiplying the 8x8

block by the quantization matrix obtaining the following block:

240 0 -10 0 0 0 0 0

-24 -12 0 0 0 0 0 0

-14 -13 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
(2.8)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

This new block is then inversely transformed using the inverse DCT. The value of

128 is added back to obtain the end 8x8-pixel block

19

144 146 149 152 154 156 156 156
148 150 152 154 156 156 156 156
155 156 157 158 158 157 156 155
160 161 161 162 161 159 157 155

(2.9)
163 163 164 163 162 160 158 156
163 163 164 164 162 160 158 157
160 161 162 162 162 161 159 158
158 159 161 161 162 161 159 158

As we can see, the end block ofpixels obtained at the receiver side is different

then the original one. This is the reason why this compression scheme is called

"lossy". In this example the errors range from -5 to 5.

One way to measure the "lossyness" or amount of information lost during this

compression-decompression process is given by the (RMSE) (root mean square error)

1
RMS£= - -f I[o(i,J)-r(i,J)] 2 (2.10)

~ NM i=I j:l

Where, N_ and M are width and height of the image in pixels, o is the original image

and r is the reconstructed image.

In our case we obtain:

20

RMSE = -1 i iJo(i, j)- r(i, j))2 =2.26 (2.11)
64 i•I j:I

21

Chapter 3

Blocking, Ringing & Post-processing

Figure 3 .1 :Original Lena picture 5l 2x512

22

3.1 Introduction

In this chapter the artifacts created by the lossy compression are explained and

several methods of artifact removal are presented.

3.2 Artifacts observed in JPEG

The two major artifacts, we observe after a lossy DCT based compression

extended to low bit rates, are called the blocking effect and the ringing effect. The

first artifact occurs when the DCT coefficient quantization step size is above the

threshold for visibility. In that case, we clearly see discontinuities in grayscale values

at the boundaries between blocks. The ringing artifact is the result of a coarse

quantization that discards the high frequency DCT coefficients and causes contouring

along sharp edges on the uniform background.

23

Figure 3.2:Lena picture encoded at 0.25 bits/pixel

3.3 Ways to reduce the compression artifacts

Basically two methods were used to achieve this reduction. Either at the

encoder side using a different coding scheme or at the decoder side by using post

processmg.

24

3.3.1 New Encoding Schemes

There are several ways to avoid the blocking artifacts. One of them is by

dividing the image into overlapping blocks as reported in [2]. Another method by

Lynch et al [3], is the Edge Compensated Transform Coding (ECTC), which

preprocesses the image before the transform coding. At the encoder side as well as at

the decoder side the blocks with ringing artifacts are detected and coded differently

then the others. A method proposed by Luo et al.[4] tries to remove the blocking

effect by calibrating the DC component of the blocks and not only focusing on the

block boundary area. All these methods achieve a certain enhancement on the final

decoded image. The main disadvantage they all have is the fact that they differ from

the JPEG standard and are not standardized therefore very unlikely to be endorsed by

the multimedia industry. On the other hand some post-processing method can achieve

substantial enhancements while staying JPEG compliant.

3.3.2 Post-processing Schemes

These schemes are more attractive since they allow an improvement in the

image while not requiring any changes to the encoded bit stream. Reeve and Lim [2]

proposed a method based on low pass filtering the pixels that are adjacent to the block ·

25

• • •

• • •

• • •

boundaries. They chose in this case a 3x3 Gaussian low pass filter as shown in Fig

3.3.

.0751 .1239 .0751

.1239 .2042 .1239

.0751 .1239 .0751

Figure 3.3: 3x3 Gaussian Low Pass Filter

This method can remove most of the blockiness but it is at the expense of

creating a blurring effect.

Lynch et al. in [5] proposed an algorithm that applies a space-varying filter in

low frequency blocks and edge blocks. First the edge blocks are detected in the

spacial domain then the low frequency blocks are detected in the transform coefficient

domain. The next step is to apply a low pass filter that has a size between 3x3 to 9x9,

depending on the size of the flat region in the edge blocks. This algorithm showed it

could improve the SNR with 0.4 dB at a low bit rate.

We will now present the algorithm chosen in this work, because of a higher

improvement in SNR at a low bit rate as well as a subjective image improvement for

the human eye.

26

3.4 The chosen Post-processing Algorithm

This algorithm is divided in three main categories, which are blocking

artifact removal, ringing artifact removal, and fidelity constraint. The first step is a

block classification by detecting the blocking artifacts and the ringing artifacts in the

transform domain. Since the blocking artifacts are more visible in the low frequency

blocks and the ringing artifacts appear along the sharp edges or high frequency

blocks, we classify the low frequency and high frequency blocks in the transform

domain. A block is declared as low frequency block if:

.
Crx7(i,J)* Kio.. =0 (3.1)

It is marked as high frequency if:

.
CvcrU, i)* Kh,gh::J:. 0 (3.2)

Coci{ij) is the 8x8 block containing the quantized OCT coefficients of block (ij). *

corresponds to an element-by-element multiplication. K10w and Krui.m are test matrices

27

for detection of low frequency blocks and high frequency blocks, respectively. 6 is

the 8x8 null matrix.

After a series of experiments K10w is chosen as:

K,o....- =

And Khigh as:

Khigh =

0

0

1

1

1

1

1

1

0

0

0

1

1

1

1

1

0

1

1

1

1

1

1

1

0

0

0

1

I

1

1

1

1

1

1

1

1

1

1

l

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I

1

1

I

1

1

1

1

(3.3)

(3.4)

28

Having made this choice, it is now possible to locate the blocks with blocking

effects and the ones with ringing effects in the JPEG encoded pictures at a low bit rate.

Now that we have classified the different blocks we will apply different techniques to

reduce those artifacts.

3.4.1 Removal of Blocking Artifacts

To reduce the blocking artifacts we have to consider the fact that all the pixels

in those blocks have to be altered and not only the boundary ones. A good way of

performing this is by applying a midpoint displacement interpolation to specific

regions. Those regions are specified as the ones where four adjacent blocks are

categorized as blocking blocks.

* *
J G E H :

:

:
:
: * '*
:
:
: C I D : '

Figure 3.4:The Mid-point Displacement Interpolation

29

To apply this interpolation on one region, we choose a center pixel (4,4) from

each of the four 8x8 adjacent blocks. These pixels are noted as A, B, C and Din Fig

3.4. The value of the pixel at location E, which is at equal distance from A, B, C and

Dis interpolated by taking the average values of these surrounding pixels.

Recursively, the following pixels F, G, H and I are filled. Those pixels have two

choices ofvalues. Let us take for example the case of G. It is the center of pixels A,

E, C and J. We have to determine now if J is part ofa blocking block or not. Ifit is

the case then G will take the value of the average of A, E, C, and J. If not it will keep

its original value. The same way we can interpolate the values off, H and I. The next

stage is calculating the values of the pixels at location "*" using the same process.

\\Then all the pixels that can be interpolated have been altered most of the blocking

artifacts will be reduced.

3.4.2 Removal of Ringing Artifact

In order to take care of the ringing artifact we need to detect the real edges

corresponding to the ringing blocks. Indeed, it is important to conserve the edges

whithin a block and apply an edge-adaptive lowpass filter on the smooth areas within

this same block.

30

Edges can be thought ofas pixel values of abrupt gray-level change. One

gradient operator that extracts the edges is the Sobel operator. In the Sobel edge

detection, a pixel at the location (ij) is an edge pixel ifg(ij) > t. t being a certain

threshold and g(ij) being a bidirectionai gradient. In the "Lena" picture case we have

used the value 15 fort to detect the correct edges.

The edge pixels are marked with a black dot. We then scan each block pixel

by pixel assigning each pixel to a certain region according to the neighboring pixels.

by doing so we obtain the following example of a ringing block

ai•:b;b;•;c;c;c
...... -·--·--·-·- -~.. -
a!a:•:b,•:c!c:c

·--·~-•-. ·- -···-·-· < __ ..., _______ _. . . '

.;.:c:c:•

d.!.d_i.d d . .:_d_:_• j e_i__ e_
d:d;d:d!•:eie:e

• ._. •••- - ...,•u-u,_i_ ,.,. ,I~ - -•-•-•.,

d;d,d:• :e:e:e:e
' ' . ' ' ' '

Figure 3.5:Ringing block example

The next step is to smoothen all the areas that are separated by the edge pixels.

We simply apply a low pass filter, which averages the values in each region

individually. One problem that might occur while doing that is oversmoothing some

regions. Therefore we apply the next explained fidelity constraint.

31

3.4.3 Fidelity Constraint

Now that we have taken care of the blocking and ringing artifacts in the spatial

domain, it is time to make sure that our new DCT coefficients are within the allowed

range by the quantization theory. For example, if the quantizer step size is 16 and the

quantized OCT value is 3, then the unquantized DCT value must be in (40,55].

Therefore it is important to make sure that the new DCT coefficients are within

received values plus or minus quantization bin value (half of the quantizer step size). If

it is the case, these new DCT values will be used. If not , it will be replaced by the

maximum or minimum value allowed in that range. In our example if the recovered

DCT coefficient is larger than 40 and less then 55, it will be used. But if it is larger

then 55 or lower then 40, 55 or 40 will be chosen appropriately.

3.5 Image improvements

By using the algorithm we have described, we can achieve at least 0.6·dB

improvement of peak signal-to-noise ratio (PSNR) over the standard JPEG

compressed image at 0.25 bits/pixel.

255
(3.5)PSNR = 20 log10 -RM.-SE-

32

Where root mean-squared error (RMSE) is defined as

1
RMSE = - -ff [o(i,j)-r(i,J}f (3.5)

NM i•l j=l

N and M are the width and height, respectively of the images in pixels, o is the

original image and r the reconstructed image.

It is also worth noticing by looking at the recovered Lena image after post

processing that the subjective performance based on the human eye has been also

improved. We will now discuss the issue of implementing this algorithm as software

and hardware.

33

Figure 3.6:Lena after post-processing encoded at 0.25 bits/pixel

34

Chapter 4

Digital Signal Procesing Power

4.1 Introduction

The design ofany image processing system must evaluate the processing

power required to perform various application algorithms. Image processing systems

are advancing in step with rapid technological development on a variety of fronts.

Digital CCD cameras are providing high definition data, semiconductor memories are

capable of storing high definition video data for processing and display, and video

monitors are capable of displaying high quality images. With the explosion of the

Internet, 3D modeling and multimedia the processing power requirements are

substantial. For general-purpose desktop processing a top end PC will cope with only

trivial applications making the use of hardware accelerators necessary for any serious

work.

TQ this end Digital Signal Processors can be used to supply the necessary

processing power. Rapid progress in semiconductor technology and processor

architectures has enabled the use ofprogrammable DSP's for many image-processing

requirements. These requirements are application dependant and features such as

speed, resolution and cost are important considerations.

35

4.2 The ADSP21020

In our case, we have used the ADSP21020 chip, which was available with a

minimum ofmemory usage namely not more than 4 arrays of 128xl28 bytes could be

used. This processor can perform multifunction computations such as floating point

dual add/subtract in the ALU or parallel operation of the multiplier and the ALU. It

also provides hardware to implement circular buffers in memory. Each data address

generator (DAG) keeps track of up to eight address pointers, eight modifiers, eight

buffer length values and eight base values. A pointer used for indirect addressing can

be modified by a value in a specified register, either before (pre-modify) or after (post

modify) the access.

To implement automatic modulo addressing for circular buffers, the ADSP-

21020 provides buffer length registers that can be associated with each pointer. Base

values for pointers allow circular buffers to be placed at arbitrary locations. The

program sequencer supplies instruction addresses to program memory. It controls

loop iterations and evaluates conditional instructions.

To execute looped code with zero overhead, this chip maintains an internal

loop counter and loop stack. No explicit jump or decrement instructions are required

36

to maintain the loop. It derives its high clock rate from pipelined fetch, decode and

execute cycles. Approximately 70% of the machine cycle is available for memory

accesses; consequently, ADSP-21020 systems can be built using slower and therefore

less expensive memory chips.

These features will be very important for the cost-effective use of the DSP

cycles for a fast compression, decompression and post-processing ofan image. We

will now examine these features in relations to real image processing problems and

algorithms.

4.3 Two Dimensional DCT for image Processing

The two-dimensional DCT is the corner stone of many image-processing

applications. This section provides a detailed analysis of the implementation of the

two dimensional DCT using one-dimensional DCT's.

The 2-D FDCT for an 8x8 block as used by the JPEG standard (l], which is

slightly different then the standard definition in the sense of a scaling factor is:

F(u, v) = C(u)C(v) iif(j,k)cos[(2j + l)u1r]cos[(2k + l)v1r] (4.1)
4 j=O k =0 16 1 6

And the IDCT as:

2f(j,k) =.!..iiC(u)C(v)F(u, v)cos[---C2J_+_l)_u1r_]cos[-(_k_+_l)_v_1r] (4.2)
4 u•O v=O 16 16

37

Where

1
C(O) = ✓2 , C(n) =1, for the other values ofn.

The DCT transformation decomposes each input block into a series of

waveforms, each with a particular spatial frequency. The 64 waveforms composing

the DCT basis functions are depicted in the Fig 4.1. The coefficients, obtained after

the FDCT, correspond to the different weights of these waveforms enabling a

reconstruction of the original 8x8 matrix through the IDCT

Figure 4.1 :The 64 8x8 basis functions

An important property of the 2-D DCT and IDCT is the separability. This

property implies that the 2-D DCT can be computed by first performing 1-D DCT's of

the rows of the 8x8 matrix, followed by a 1-D DCT ofthe columns of the obtained

matrix. From a computational point of view, each DCT coefficient would require 64

38

multiplications or a total of4096 multiply accumulate operations for an 8x8 block. In

the next section we will describe a fast 8x8 DCT and IDCT algorithm that reduces

considerably this number, while staying very attractive for a hardware implementation.

4.4 The AAN Algorithm

Tseng et al [6] have shown that the 1-D DCT can be solely obtained from the

real parts of the DFT having double number of points. Basically, given the eight input

values x[k], with k=O, ... ,7 of the 8-point DCT, the y[k] output values can be

calculated as follows:

y(n) = 2C(n)ReY[n] (4.3)
n,r

cos-
16

Wbere

1
C(O) = ✓2, C(n)=l, fortheothervaluesofn.

And Y(n] are the output values of 16-point DFT ofX[k].

X[k] =x[k] for Osk S7 and X[k] =x[15-k] for 8 Sk Sl5

39

One fast way to calculate these Y[n] values has been developed by Winograd

[7]. In his approach the complex and the real parts are calculated separately. Having

noticed that, Arai, Agui, and Nakajima [8], designed a flow chart shown in Fig 4.2.

that gives the real parts ofY[nJ as needed in equation 4.3. Once these values are

computed, we only need to scale them to get the explicit values of the coefficients.

This is interesting in the JPEG case where the forward 2-D DCT is followed by a

quantization or scaling any ways. We can then combine the final scaling factors with

the quantization step without making any changes to the arithmetic complexity.

As shown in Fig 4.2. this algorithm needs only 5 multiplications and twenty

nine additions for each coefficient or an equivalent of 80 multiplications and 464

additions for an 8 by 8 pixel block. Another property that makes this algorithm

attractive is the symmetry. Indeed this allows a better hardware implementation, as we

will see in the next chapter

~[oJ"l"----,~--,...==---,---------◄1~,toJ

,(1) l~lrT[◄ J

~[?) llltl{2]

a Ill 1a1.1ttl
•t•J 1,a.r[~l
a!S] llltt[I]

a[I) llR•Yl'l
a(,) l<J[~]

.. l•C. ,anon II
■ J•O. ~41 UI JIID
• J•0.101111171'
■ 4•1.HIU2H3
• ~•0.3010.Ul

Figure 4.2:Flow chart to find the real parts of 16-point DFT

40

1 .. r(oJ------------,"'t--------•IDl
lhl(4] •Ol
Zl•T(2J ,(2)

ZleY(6) •ll)

ZbY[ti) d ◄ J

tl1Y[l)

'
a(S]

Ucl(7} a[S]

Zl•Y(3) 1[7]

f!l•l.414U3~G
,21:t.lll!Ull
I l"I .414213U
114•1.0UlPUCt
fJ i.ao, 71i~3U8fi

Figure 4.3:Flow chart to restore the original values from the real parts of 16-point DFT

4.5 Hardware Implementation

Using the Ez-lab kit it is possible to simulate the ADSP21020 chip. This chip

is located on an evaluation board connected to a PC via a cable. The simulator

consists of a C debugger and an interface showing the values of the registers, cycle

count, program memory as well as data memory.

We will now show how an efficient assembly redesign can accomplish the task

of calculating the forward DCT faster. Since we are dealing with a row/column

multiplication of an 8 by 8 matrix, we will separate the code into two parts one for the

row transformation and one for the columns. Now that we need to perform the same

transformation on each row of the matrix we will use a circular buffer oflength 8. The

41

next step is to create a loop with no overhead cycles. This is done by using the

assembly instruction "do loop until". We then use a pointer to the first element in the

array that will be our base to do the rest of the calculations.

Another feature given by the assembly language is the possibility to "roll" a

loop. This means that the operations are pipelined to minimize instructions within a

loop. By pipelining we mean exploiting the ADSP-21020's parallel architecture to

maximize concurrent operations. Indeed it is possible, with restrictions to specific

registers, to use the dual functions in the ALU and a separate data memory access all

in one cycle. An example of dual functions is given below:

Fa=Fx+Fy, Fs=Fx-Fy (4.4)

Dual Add/subtract

¥/here Fa, Fs, Fx, Fy are floating point register file locations.

Ifwe go back to the flow graph of the AAN algorithm Fig 4.3 we can see how

well it is suited for such dual functions. This is the main reason why we have chosen

to implement this algorithm.

42

All these properties of the ADSP2 l 020 chip made the use of assembly

language for all the functions in the code a better solution then having the functions

written in C, as the results in the next chapter will prove.

43

Chapter 5

Tests and Performance Results

5.1 Introduction

In this chapter, we will compare the execution speed of the same algorithm

running on a Spare 5 Sun workstation and on the ADSP2 l 020 chip from Analog

Devices. The Spare 5 was running the code on a 70 Mhz processor of the Micro Spare

family. All the hardware and software tests have been done using a 128 by 128 pixels

image size because ofmemory constraints on the ADSP21020. The image is stored in

a packed pixel format where four 8-bit pixels reside in a single word. Hence, pixels

must be unpacked and converted to floating point numbers before further processing.

5.2 Simulation Algorithm

The algorithm used for comparison purposes is as follows:

1. Read in the original uncompressed image.(128 x 128 pixels)

2. Read in the edge image obtained using the Sobel edge detector.

44

- -

8

3. Use JPEG baseline algorithm.to compress and decompress the original image

at 0.53 bits/pixel

4. Calculate the root mean squared error

5. Start the clock.

6. Perform post-processing

7. End clock

Calculate the root mean squared error

5.3 Simulation results

We have used the same C driver function for all the tests to be able to compare

results. First the code is compiled on the U1'HX machines and the time is taken using

the C function clock(void), which returns the processor time used by the progrfil!.!

since the beginning of its execution. To measure the time spent during post

processing this function is called before and after it and the last value is subtracted

from the first To convert the time in seconds clock() / CLOCKS PER SEC is used,

where CLOCKS_PER_SEC is a constant given by the system.

In the case of the ADSP21020 chip the driver code is ran in both cases with all

the functions written in C and with all the functions written in Assembler. The cycle

count is taken before and after post-processing. To convert the result to seconds we

use the fact that one cycle on this chip is executed in 40ns on the 25 Mhz chip.

45

https://algorithm.to

Finally we normalize all the timings to 100 Mhz to be able to compare

accurately the results. All those tests are done using the AAN algorithm. For

comparison purposes, the same code using a straight-forward algorithm executed in

27.91 seconds on a Spare 5 for a 128xl28 image, which is a very long time ifwe want

to implement close to real time post-processing.

25M1z 70M,z 100M1z

C code a, Spare 5 48XXXXY1ocx:m::o=o.48s 0.33s

C code on DSP cllp 27422943 cydes=1.09s 0.27s

Asserrily code on DSP 21540386 cydes=O.ffis 0.21s

Figure5 .1: Execution speed results obtained in seconds

The speed increases we obtain are as follows:

G~n of 21.6% compared to C code on ADSP21020

Gain of 36.3% compared to C code on Spare 5 workstation.

46

Chapter 6

Conclusion

In this work we have looked at the implementation aspect ofa post-processing

algorithm. The main parameter we have considered is the speed. For that purpose, we

have implemented this algorithm on different platforms and compared the gains we

could obtain by using some optimization.

It is important to note that nowadays JPEG is used for the intra-frame in the

video MPEG format. We can then think of this implementation as one fraction of the

post-processing that could be used if it is fast enough. The faster we can execute this

algorithm, the better it will be for the final video sequence.

47

Bibliography

[1] William B. Penneaker and Joan L. Mitchell, Still Image Data Compression
Standard, New York:Van Nostrand Rheinhold (1993)

[2] H.Reeve and J. Lim, "Reduction ofblocking effects in image coding," Optical
Engineering, vol. 23(1), pp 34-37, January/February 1984

[3] W.E. Lynch, A. R. Reihman, and B. Liu, "Edge compensated transform coding," in
Proc. JCJP-94,pp 105-109, November 1994

[4] J. Luo, C. W. Chen, K. J. Parker, and T.S Huang, "A new method for block effect
removal in low bit-rate image compression," in Proc. ICASSP-94, vol. V, pp. 341-344,
April 1994

[5] W.E. Lynch, A. R. Reihman, and B. Liu, "Post processing transform coded images
using edges," in Proc. JCASSP-95, pp 2323-2326, May 1995

[6] C.J. Kuo and R. J. Hsieh, "Adaptive postprocessor for block encoded images,"
IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, pp 298-304,
August 1995.

[7] B.D Tseng and W.C.Miller, "On Computing the Discrete Cosine Transfom1",
IEEE Trans. Comput., vol. I0, pp 966-968,October 1978.

[8] S.Winograd, "On Computing the Discrete Fourier Transform", Mathematics of
Computaion. vol 23,pp 99-175, January 1978.

[9] Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ Scheme for images. Trans. of
IEICE. vol. E71, pp 1095-1097, November 1988.

48

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define ROWMAX 128
#define COLMAX 128
#define BLOCK SIZE 8
#define True 1
#define False 0
#define DCTSIZE 8
float scale;
int Qtable[8] [8] l 16, 11, 10, 16, 24, 40, 51, 61,

12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68,109,103, 77,
24, 35, 55, 64, 81,104,113, 92,
49, 64, 78, 87,103,121,120,101,
72, 92, 95, 98,112,100,103, 99);

float test_matrix(8] [8]={0, 0, 0, 1, 1, 1, 1, 1,
o,o,0,1,1,1,1,1,
o,o,0,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1, 1, 1, 1, 1, 1, 1, 1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1);

static const float aan[BLOCK_SIZEJ = {
1.0, 1.387039, 1.306562, 1.175875,
1.0, 0.785694, 0.541196, 0.275899

} ;

void get_data(int llist[ROWMAX] [COLMAX]);
void read_quant_table(int quant[BLOCK ZE] [BLOCK SIZE]);
void fdct(int pxs[BLOCK_SIZE] [BLOCK_SIZE],float
dctcoef[BLOCK_SIZE] [BLOCK_SIZE]);
void quantize(float dctcoef[BLOCK_SIZE) [BLOCK SIZE], int
quant_table[BLOCK_SIZE] [BLOCK_SIZE]);
void dequantize(float dctcoef[BLOCK_SIZE] [BLOCK_SIZE], int
quant_table[BLOCK_SIZE) [BLOCK_SIZE));
void idct(int pxs[BLOCK_SIZE) [BLOCK_SIZE), float
dctcoef[BLOCK_SIZE) [BLOCK_SIZE));
void put_data(int llist_res[ROWMAX) [COLMAX]);
float C(int n);
float round(float x);
float error_cal(int pls_in[ROWMAX] [COLMAX], int
pls_out [ROWMAX] [COLMAX]);
void process(float dct_value[BLOCK_SIZE) [BLOCK_SIZE], int Up, int
Down, int Left, int Right, int Up_row[BLOCK_SIZE), int
Down row[BLOCK SIZE), int Left col(BLOCK SIZE], int
Right_col[BLOCK_SIZE], int nw,-int ne, i~t sw, int se);

49

void print(float coef[BLOCK_SIZE] [BLOCK_SIZE]);
void printp(int pls[BLOCK_SIZE] [BLOCK_SIZE]);
void get_edge_data(int llist[ROWMAX] [COLMAX]);
void post_processing (int edge [8) [8] , int pixels [8] [8]) ;
void set_non_edge_pixels(int u, int v, int segnumber, int
t temp [1 0] [10)) ;
float block_rmse (int ori_pixls [8] [8), int post_pixls [8] [8]);
void square(int res[ROWMAX) (COLMAX), int m, int n, int size,

int msk[ROWMAX) [COLMAX]);
void diamond(int res[ROWMAX) [COLMAX], int m, int n, int size,

int msk[ROWMAX] [COLMAX]);
void dctprocess(float after[BLOCK_SIZE) [BLOCK_SIZE], float
before[BLOCK IZE] [
BLOCK_SIZE], int quant[BLOCK_SIZE) [BLOCK_SIZE)};
void jpeg_fdct_float (float* data);

void jpeg_idct_float { float* coef_block) ;

main ()
{

int noproc[BLOCK_SIZE) [BLOCK_SIZE];
int diff[BLOCK_SIZE) [BLOCK_SIZE];
int mask[ROWMAX] [COLMAX];
int Change;
int ori[ROWMAX] [COLMAX];
char filename[30];
int list[ROWMAX] [COLMAX];
int list_res[ROWMAX] [COLMAX];
int listi[ROWMAX] [COLMAX];

float dctl[BLOCK_SIZE] [BLOCK_SIZE];
float pict[BLOCK_SIZE*BLOCK_SIZE];
int pixels[BLOCK_SIZE] [BLOCK_SIZE];
float dct[BLOCK_SIZE] [BLOCK_SIZE];
int quant[BLOCK_SIZE] [BLOCK_SIZE];
int i, j, k, 1, x, y;
int block_row_max;
int block_col_max;
float rmse;
int m;
int Up, Down, Left, Right;
int Up_row[BLOCK_SIZE], Down_row[BLOCK ZE];
int Left_col[BLOCK ZE], Right_col[BLOCK_SIZE];
float detect;
int mm, nn;
int edge_list[ROWMAX] [COLMAX];
int edge[BLOCK_SIZE] [BLOCK_SIZE];
int block num=O;
int ring_num=O;
clock_t clo,start;
time t tim;
float wholedct[ROWMAX] [COLMAX];
float olddct[BLOCK SIZE] [BLOCK SIZE);
int mark[ROWMAX/BLOCK_SIZE] [COLMAX/BLOCK_SIZE];
int u, v;

50

float dctori[BLOCK_SIZE] [BLOCK_SIZE];
int NW, NE, SW, SE;

char crnd_string[80];

printf("Please enter the scale value:\n");
scanf("lf", &scale);
printf("Input original data:\n");
get_data(ori);

/* printf("Input received data:\n");
get_data(list);*/

read_quant_table(quant);

get_edge_data(edge_list);

block row max ROWMAX/BLOCK_SIZE;
block col max COLMAX/BLOCK SIZE;

start= clock();

for (i O; i < block_row_max; i++)
{

Up= True;
Down True;
if i O) Up= False;
if (i == block row max - 1) Down= False;

for (j 0; j < block col_max; j++)
{

Left True;
Right= True;
if (j O) Left= False;
if (j == block_col_max - 1) Right False;

if Up== True)
for (m 0; m < BLOCK_SIZE; m++)

Up_row[m] =.25 * list[i*BLOCK_SIZE - 1] [j*BLOCK_SIZE
+ m] +

.75 * list(i*BLOCK_SIZEJ (j*BLOCK_SIZE +
m];

if (Down== True)
for (m = 0; rn < BLOCK_SIZE; rn++)

Down_row[m] =.25 * list[(i +
l)*BLOCK_SIZE] [j*BLOCK_SIZE + rn] +

.75 * list[(i + l)*BLOCK_SIZE -
l] [j*BLOCK_SIZE + m];

if (Left== True)
for (rn = 0; rn < BLOCK_SIZE; rn++)

Left_col[m] =.25 * list[i*BLOCK_SIZE + m] [j*BLOCK_SIZE
- 1 l +

51

.75 * list[i*BLOCK_SIZE +
m] [j*BLOCK_SIZE];

if (Right True)
for (m = O; m < BLOCK ZE; m++)

Right_col[m] .25 * list[i*BLOCK_SIZE + m) [(j +
l)*BLOCK_SIZE) +

.75 * list[i*BLOCK_SIZE + m) [(j +
l)*BLOCK_SIZE -1);

if (Up== True && Left True)
NW= list[i*BLOCK_SIZE-1] [j*BLOCK_SIZE-1]/16. +

list[i*BLOCK_SIZE-1] [j*BLOCK_SIZE]*3/16. +
list [i*BLOCK_SIZE] [j*BLOCK_SIZE-1] *3/16. +
list[i*BLOCK_SIZE] [j*BLOCK_SIZE]*9/16.;

if (Up== True && Right True)
NE list[i*BLOCK_SIZE-1] [j*BLOCK_SIZE+BLOCK_SIZE)/16.

list[i*BLOCK_SIZE-1] [j*BLOCK_SIZE+BLOCK_SIZE-
1] *3/16. +

list[i*BLOCK_SIZE) [j*BLOCK_SIZE+BLOCK_SIZE]*3/16.
list[i*BLOCK ZE] [j*BLOCK_SIZE+BLOCK_SIZE-

1)*9/16.;

if (Down== True && Left== True)
SW list[i*BLOCK_SIZE+BLOCK_SIZE) [j*BLOCK_SIZE-1]/16.

list[i*BLOCK_SIZE+BLOCK_SIZE-1) [j*BLOCK_SIZE-
1] *3/16. +

list[i*BLOCK_SIZE+BLOCK_SIZE] [j*BLOCK_SIZE]*3/16.
list[i*BLOCK ZE+BLOCK_SIZE-

1] [j *BLOCK_SIZE] *9/16.;

if (Down== True && Right True)
SE

list[i*BLOCK_SIZE+BLOCK_SIZE] [j*BLOCK_SIZE+BLOCK_SIZE]/16. +
list[i*BLOCK_SIZE+BLOCK_SIZE-

1] [j*BLOCK_SIZE+BLOCK_SIZE] *3/16. +

list[i*BLOCK_SIZE+BLOCK_SIZE] [j*BLOCK_SIZE+BLOCK_SIZE-1]*3/16. +
list[i*BLOCK SIZE+BLOCK SIZE-

1] [j*BLOCK_SIZE+BLOCK_SIZE-1)*9/16.;-

X O;
for (k = i * BLOCK_SIZE; k < (i + 1) * BLOCK_SIZE; k++)
I

y O;
for (1 = j * BLOCK_SIZE; 1 < (j + 1) * BLOCK ZE; l++)

I
pixels [x] [y) = ori [k] [l];

pict[x*BLOCK ZE+y) = (float)(ori[k][l]-128);
y++;

x++;

+

+

+

+

52

jpeg_fdct_float (pict);

for (u = O; u < BLOCK_SIZE; u++)
for (v = O; v < BLOCK_SIZE; v++)

{
dct [u] [v] pict[u*

BLOCK_SIZE+v]/(aan[u]*aan[v]*8);

/* Quantize DCT Coefficient*/
quantize(dct, quant);

/* Dequantize the data*/
dequantize(dct, quant);

for (u 0; u < BLOCK_SIZE; u++)
for (v = 0; v < BLOCK IZE; v++)

{
[u*

BLOCK ZE+v]=dct[u] [v]*(aan[u]*aan[v]*8);

for (U 0; u < BLOCK ZE; u++)
for (v = 0; v < BLOCK_SIZE; v++)

dctori [u] [v] = dct [u] [v];

mark [i] [j] = 1;
for (x 0; x < BLOCK_SIZE; x++)
{

if (mark[i] [j] == OJ break;
for (y = 0; y < BLOCK_SIZE; y++)

if (((x+y)>l) && (dct[x][y] 0.))
{

mark[i] [j] = 0;
break;

Change= True;
for (x 0; x < BLOCK_SIZE; x++)

for (y = 0; y < BLOCK_SIZE; y++)

53

if (((x+y)>l) && (dct[x] [y] != 0.))
{

Change= False;
break;

jpeg_idct float (pict);

for (x = 0; x < BLOCK_SIZE; x++)
{

for (y = 0; y < BLOCK_SIZE; y++)
{

if (pixels [x] [y] > 255) pixels [x] [y] = 255;
if (pixels [x] (y] < 0) pixels [x] [y] = 0;

if ((pict[x* BLOCK_SIZE+y]+128.5) < 0) {
pict[x* BLOCK_SIZE+y] = -128;

}

list res[i * BLOCK SIZE+ x] [j * BLOCK_SIZE + y] =
pict[x*BLOCK_SIZE+y]+l28.5;
wholedct[i * BLOCK_SIZE + x] [j * BLOCK_SIZE + y] = dctori[x] [y];

if {mark[i] [j] == 1)
mask[i * BLOCK SIZE+ x] [j * BLOCK SIZE+ y] 0;

else
mask[i * BLOCK SIZE+ x] [j * BLOCK SIZE+ y] l;

if (Change == True)
list [i * BLOCK SIZE+ x] [j * BLOCK SIZE+ y] = 0;

clo -=clock () ;
printf("the elapsed time is %ld", (clo-start));
printf("Input the rec file name:\n");
put_data(list res);

printf("First Step:\n");
rmse error_cal(ori, list_res);
printf{"The root mean-squared error is %f\n", rmse);

start =clock{);
for (i = O; i < block_row_max; i++)
{

for {j = O; j < block_col_max; j++)
{

X 0;
for {k i * BLOCK_SIZE; k < {i + 1) * BLOCK_SIZE; k++)
{

y = 0;
for (1 = j * BLOCK_SIZE; 1 < (j + 1) * BLOCK SIZE; l++)
{

pixels[x) [y] = list_res[k] [l);
edge[x] [y) = edge_list[k] [l];
dct [x] [y] = wholedct [k] [l);

54

y++;

x++;

detect = 0.;
for (mm= 0; mm< BLOCK_SIZE; mm++)

for (nn = 0; nn < BLOCK_SIZE; nn++)
detect= detect+ abs(dct[mrn) [nn)) *

test_matrix[mrn) [nn];

if (detect > O.)
{

ring_num++;
post_processing(edge, pixels);

for (x = 0; x < BLOCK_SIZE; x++)
{

for {y = 0; y < BLOCK_SIZE; y++)
{

if (pixels(x] [y) > 255) pixels [x] [y] = 255;
if (pixels[x) [y) < 0) pixels [x] (y) = O;
list_res[i * BLOCK ZE + x] [j * BLOCK_SIZE + y)

pixels (x) [y);
if (detect> 0.) list[i * BLOCK SIZE+ x] [j *

BLOCK SIZE+ y] = 0;
}

square(list_res, 4, 4, 8, mask);

for (i = 0; i < block_row_max; i++)
{

for (j 0; j < block_col_max; j++)
{

X 0;
for (k i * BLOCK_SIZE; k < (i + 1) * BLOCK_SIZE; k++)
{

y 0;
for (1 j * BLOCK_SIZE; l < (j + 1) * BLOCK_SIZE; l++J
{

pixels[x) [y] = list_res[k) [l];
olddct [x] [y) = wholedct [kl [l);
pict[x*BLOCK_SIZE+y] = (float) (list_res[k) (l]-128);
y++;

x++;

55

jpeg_fdct_float (pict);
for (u = 0; u < BLOCK_SIZE; u++)

for (v 0; v < BLOCK_SIZE; v++)
dct [u] [v] =

pict[u*BLOCK_SIZE+v)/(aan[u]*aan[v]*8);
dctprocess(dct, olddct, quant);

for (u = O; u < BLOCK SIZE; u++)
for (v = O; v < BLOCK_SIZE; v++)

pict[u* BLOCK ZE+v]=dct[u) [v]*(aan[u)*aan[v)*8);
jpeg_idct_float (pict);

for (x 0; x < BLOCK_SIZE; x++)
{

for (y = 0; y < BLOCK SIZE; y++)
{

if (pixels [x) [y] > 255) pixels [x] [y] = 255;
if (pixels [x) [y] < 0) pixels [x) [y) 0;

if ((pict[x* BLOCK_SIZE+y)+128.5) < 0){
pict[x* BLOCK_SIZE+y] -128;

list_res[i * BLOCK_SIZE + x] [j * BLOCK_SIZE + y] =
(x*BLOCK_SIZE+y)+128.5;

/* list_res[i * BLOCK SIZE+ x] [j * BLOCK SIZE+ y)
pixels [x] [y]; * /

}

clo =clock();
printf("the elapsed time in %ld is %ld,%ld",CLOCKS_ , (clo-
start), (clo-start});

printf("Input the data file name:\n");
put_data(list_res);

/* Calculate the root mean-squared error*/
printf("Fourth Step:\n"};
rmse = error_cal(ori, list_res);
printf("The root mean-squared error is %f\n", rmse);

printf("# of blocking block is %d\n", block_num);
print£("# of ringing block is %d\n", ring_num};

void get_data(int llist[ROWMAX] [COLMAX]}
{

int data, j, k;
FILE *fd;
char filename[30];

printf("Please enter the file name to be read:\n");
scanf("%s", filename};

56

fd fopen(filename, "r");
if (fd != NULL)
{

for (k = 0; k < ROWMAX; k++}
{

for (j = 0; j < COLMAX; j++)
{

if (fscanf (fd, "%ct", &data) != EOF)
{

ll i st [k] [j J = data ;

else
printf(''File not found or is empty.");

fclose(fd);

void read_quant_table(int qtable[BLOCK_SIZE] [BLOCK_SIZE])
{

int data, j, k;
FILE *fd;
char filename[30];

printf("Please enter the quantization table file name to be
read:\n");

scanf("%s", filename);
fd fopen(filename, "r"J;
if (f d != NULL)
{

for (k O; k < BLOCK_SIZE; k++)
{

for (j O; j < BLOCK_SIZE; j++)

if (fscanf(fd, "%ct", &data) != EOF)
{

qtable[kJ [jJ = data;

else
printf("File not found or is empty.");

fclose (fd);

void fdct(int pxs[BLOCK IZE] [BLOCK SIZE], float
dctcoef[BLOCK_SIZEJ [BLOCK_SIZE])
{

short x, y, u, v;
float sum;

for (u =0; u < 8; u++)

57

for (v = 0; v < 8; v++)
{

sum= 0.;

for (x O; x < 8; x++)
for (y 0; y < 8; y++)

sum+= (pxs[x] [y]-128) * cos((2*x+l)*u*(3.1415926/16.))
* cos((2*y+ l)*v*(3.1415926/16.));

dctcoef[u] [v] = 0.25 * C(u)*C(v) * sum;
}

void idct(int pxs[BLOCK_SIZE] [BLOCK SIZE], float
dctcoef[BLOCK_SIZE] [BLOCK_SIZE))
{

short x, y, u, v;
float sum;

for (x = 0; X < 8; x++)
for (y = 0; y < 8; y++)
{

sum = 0.;

for (u =0; u < 8; u++)
for (v = 0; v < 8; v++)

sum+= C(u) * C(v) * dctcoef[u] [v) *
cos((2*x+l)*u*(3.1415926/16.)) *
cos((2*y+l)*v*(3.1415926/16.));

pxs[x) [y] 128.5+0.25 * sum;
}

float C (int n)
{

if n == 0) return (l./sqrt(2.));
else return(l.);

void quantize(float dctcoef[BLOCK_SIZE] [BLOCK_SIZE), int
quant_table[BLOCK_SIZE) [BLOCK_SIZE])
{

short i, j;
for (i = 0; i < 8; i++)

for (j = 0; j < 8; j ++)

dctcoef[i] [j]=round(dctcoef[i] [j]/quant_table[i] [j]/scale);
}

void deguantize(float dctcoef[BLOCK_SIZE] [BLOCK_SIZE], int
guant_table[BLOCK ZE] [BLOCK_SIZE])
{

short i, j;
for (i = 0; i < 8; i++)

for(j 0; j < 8; j++)

58

https://128.5+0.25

dctcoef[i] [j)=dctcoef(i] (j]*quant_table[i] [j]*scale;

float round(float x)
I

if (x > 0.) return ((int) (x+0.5));
else return ((int) {x-0.5));

void put_data(int llist res[ROWMAX] [COLMAX])
I

int j,k;
char filename[30];
FILE *fd;

printf("Please enter the file name to be written to:\n");
scanf("%s", filename);
fd= fopen(filename, "w");
fprintf(fd, "P2\n%d %d\n255\n", ROWMAX, COLMAX);
for (j=O; j< ROWMAX; j++)
{

for (k=O; k< COLMAX; k++)
fprintf(fd, "%3d ", llist res[j] [kl);

fprintf(fd, "\n"J;
}

fclose (fd) ;

float error_cal(int pls_in[ROWMAX] [COLMAX], int
pls_out[ROWMAX] [COLMAX]J
{

int i, j;
float sum;
float error;

sum = 0.;
for (i = O; i < ROWMAX; i++)

for (j O; j< COLMAX; j++)
sum+= (pls_in[i] [j] - pls_out(i] [j]) * (pls in[i] [j) -

pl s _ out [i] [j)) ;
error= sqrt(sum/ROWMAX/COLMAX);

return (error);

void process(float dct_value[BLOCK SIZE] [BLOCK_SIZEJ, int Up, int
Down, int Left, int Right, int Up_row[BLOCK_SIZE], int
Down row[BLOCK SIZE), int Left col[BLOCK IZE], int
Right_col[BLOCK_SIZE], int nw,-int ne, int sw, int se)
I

float temp[BLOCK_SIZE] [BLOCK_SIZE];
int pel[BLOCK_SIZE] [BLOCK_SIZE];
int i,j,iterate;

59

for (i 0; i < BLOCK_SIZE; i++)
for (j = 0; j < BLOCK_SIZE; j++)
{

temp [i] [j J dct_value[i] [j];

for (iterate 0; iterate< l; iterate++)
{

idct(pel, dct_value);

for (j = l; j < BLOCK_SIZE-1; j++)
{

if (Up== True)
pel [OJ [j J = Up_row [j l ;

if (Down== True)
pel[7] [j] = Down_row[jJ;

for (i l; i < BLOCK_SIZE-1; i++)
{

if (Left== True)
pel [iJ [OJ = Left [i];

if (Right== True)
pel[iJ [7] = Right_col[i];

if (Up== True && Left True)
pel [OJ [OJ = nw;

else if (Up True)
pel [OJ [OJ Up_row[0];

else if (Left== True)
pel (OJ [OJ = Left_col [OJ;

if (Up== True && Right True)
pel[0J [7J = ne;

else if (Up== True)
pel[0] [7J = Up_row[7J;

else if (Right== True)
pel [OJ [7] Right_col [OJ;

if (Down== True && Left True)
pel[7] [0] = sw;

else if (Down== True)
pel[7] [OJ = Down_row[0J;

else if (Left== True)
pel [7J [OJ = Left_col [7J;

if (Down== True && Right== True)
pel [7J [7J = se;

else if (Down== True)
pe1[7] [7] = Down_row[7J;

else if (Right== True)
pe1[7J [7J = Right_col[7J;

fdct(pel, dct_value);

60

/* for (i = 0; i < BLOCK_SIZE; i++)
for (j = 0; j < BLOCK_SIZE; j++)
{

if (abs(temp[i] [j]) != 0.) dct_value[i] [j] temp [i] [j] ;
*/

void print(float coef[BLOCK_SIZE] [BLOCK_SIZE))
{

short i;
putchar('\n');
for (i=0; i<B; i++)

print£(
"Row %ct: %5.llf %5.llf %5.llf %5.llf"
"%5.llf %5.llf %5.llf %5.llf\n",
i, coef[i] [0], coef[i] [1], coef[i] [2], coef[i] [3],
coef[i] [4], coef[i] [5], coef[i] [6], coef[i] [7]);

void printp(int pls[BLOCK_SIZE] [BLOCK_SIZE])

short i;
put char ('\n') ;
for (i=0; i<B; i++)

print£(
"Row %ct: %3d %3d %3d %3d %3d %3d %3d %3d\n",
i, pls[i] [0], pls[i] [1], pls[i] [2], pls[i] [3],
pls[i] [4], pls[i] [5], pls[i] [6], pls[i] [7]);

void get_edge_data(int llist[ROWMAX] [COLMAX])

int data, j, k;
FILE * fd;
char filename[30];

printf("Please enter the edge file name to be read:\n");
scanf("%s", filename);
fd = fopen(filename, "r");
if (fd != NULL)
{

for (k = 0; k < ROWMAX; k++)
{

for (j 0; j < COLMAX; j++)
{

if (fscanf(fd, "%ct", &data) != EOF)
{

llist [kl [j l = data;

else

61

printf("File not found or is empty.");
fclose(fd);

void post_processing(int edge [Bl [8 l , int pixels [8] [8])
I

int temp[lOJ [10);
int seg_num = 1;
int x, y, i;
long int sum= O;
int count = O;
int averg;

X = O;
for (y = O; y < 10; y++) temp [x) [y) 255;
X = 9;
for (y 0; y < 10; y++) temp[x) [y) 255;
y = 0;
for (x = 0; X < 10; x++) temp [x] [y) 255;
y 9;
for (x 0; X < 10; x++) temp [x] [y) 255;

for (x 1; x < 9; x++)
for (y 1; y < 9; y++)

temp[x) [y) = edge[x-1) [y-1];

for (x = 1; x < 9; x++)
for (y = l; y < 9; y++)

if (temp [x) [y] == 0)
I

temp[x) [y] seg_num;
set_non_edge_pixels(x, y, seg_num, temp);
seg_num++;

}

for (i 1; i < seg_num; i++)
{

for (x = 1; x < 9; x++)
for (y = 1; y < 9; y++)

if (temp [x) [y J i)
I

sum= sum+ pixels[x-1] [y-1);
count++;

averg = sum/count;
for (x = 1; x < 9; x++)

for (y = 1; y < 9; y++)
if (temp[x) [y) == i)

pixels[x-1) [y-1) = averg;
sum= O;
count= 0;

62

void set_non_edge_pixels(int u, int v, int segnumber, int
t temp [10) [10))
{

if (ttemp[u-1) [v] == 0)
{

ttemp[u-1) [v] = segnumber;
set_non_edge_pixels(u-1, v, segnumber, ttemp);

}

if (ttemp[u+l] [v) == 0)
{

ttemp[u+l] [v) = segnumber;
set_non_edge_pixels(u+l, v, segnumber, ttemp);

}

if (ttemp(u] [v-1] == 0)
{

ttemp[u] (v-1] = segnumber;
set_non_edge_pixels(u, v-1, segnumber, ttemp);

if (tternp[u] [v+l] == 0)
{

ttemp[u] [v+l) = segnumber;
set_non_edge_pixels(u, v+l, segnumber, ttemp);

void square(int res[ROWMAX] [COLMAX], int m, int n, int size,
int msk [ROWMAX] (COLMAX])

int a, b, c, d;
int i,j;

for(i = m; i < ROWMAX - size; i = i + size)
for(j = n; j < COLMAX - size; j = j + size)
{

a res[i][j];
b res[i](j+size];
c res [i+size] [j+size];
d res[i+size)[j];

if (msk[i] [j) == 0 && msk[i] [j+size] == 0 &&

ms k [i + s i z e] [j +size] 0
&& msk[i+size] [j] == 0)

res [i+size/2] [j+size/2] = (a+b+c+d) /4;

void diamond(int res[ROWMAX) [COLMAX], int m, int n, int size,
int msk[ROWMAX] [COLMAX])

int a, b, c, d;
int it j i
for(i = m; i < ROWMAX - size/2; i = i + size)
for(j = n; j < COLMAX - size; j = j + size)

63

a res[i)[j];
b res [i-size/2) [j+size/2];
c = res [i) [j+size);
d res [i+size/2) [j+size/2);

if (msk[i) [j) == 0 && msk[i-size/2] [j+size/2] -- 0 &&

msk[i) [j+size] == 0
&& msk[i+size/2) [j+size/2) == 0)

res [i) [j+size/2) = (a+b+c+d) /4;

void dctprocess(float after[BLOCK_SIZE) [BLOCK_SIZE),
float before[BLOCK SIZE) [BLOCK SIZE),
int qtable[BLOCK_SIZE) [BLOCK_SIZE))

int i,j;

for (i = 0; i < BLOCK_SIZE; i++)
for (j = 0; j < BLOCK_SIZE; j++)
{

if (abs (after [i) [j)) > (abs (before [i) [j)) + scale *
qtable[i) [j)/2.))

{
if (after[i) [j] > 0.)

after[i) [j] = abs(before[i) [j)) + scale *
qtable[i) [j)/2.;

else
after[i] [j) = -(abs(before[i) [j)) + scale

*qtable[i] [j]/2.);
}

else if (abs(after[i] [j)) < (abs(before[i] [j)) - scale
[i) [j J/2.))
{

if (after[i) [j) > 0.)
after[i) [jJ = abs(before[i) [j)) - scale *

qtable[i) [j)/2.;
else

after[i) [j) - (abs (before [i) [j]) - scale *
[i)[j]/2.);

}

void jpeg_fdct_float (float* data)
{

float tmp0, tmpl, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
float tmpl0, tmpll, tmpl2, tmpl3;
float zl, z2, z3, z4, z5, zll, zl3;
float *dataptr;
int ctr;

/* Pass 1: process rows. */

64

dataptr data;
for (ctr = DCTSIZE-1; ctr>= 0; ctr--)

tmp0 dataptr[0] + dataptr[7];
tmp7 dataptr[0] - dataptr[7];
tmpl dataptr[l] + dataptr[6];
tmp6 dataptr[l] - dataptr[6];
tmp2 dataptr[2] + dataptr[S];
tmp5 dataptr[2] - dataptr[S];
tmp3 = dataptr[3] + dataptr[4];
tmp4 dataptr[3] - dataptr[4];

/* Even part*/

tmpl0 tmp0 + tmp3; /* phase 2 */
tmpl3 tmp0 - tmp3;
tmpll tmpl + tmp2;
tmpl2 tmpl - tmp2;

dataptr[0] tmpl0 + tmpll; /* phase 3 */
dataptr[4] tmpl0 - tmpll;

zl (tmpl2 + tmpl3) * ((float) 0.707107); /* c4 */
dataptr[2] tmpl3 + zl; /* phase 5 */
dataptr[6] tmpl3 - zl;

/* Odd part*/

tmpl0 tmp4 + tmp5; /* phase 2 */
tmpll tmp5 + tmp6;
tmpl2 tmp6 + tmp7;

/* The rotator is modified from fig 4-8 to avoid extra
negations. */

z5 (tmpl0 - tmpl2) * ((float) 0.382683); /* c6 */
z2 ((float) 0.541196) * tmpl0 + z5; /* c2-c6 */
z4 ((float) 1.306562) * tmpl2 + z5; /* c2+c6 */

z3 = tmpll * ((float) 0.707107); /* c4 */

zll tmp7 + z3; /* phase 5 */
zl3 = tmp7 - z3;

dataptr[5] zl3 + z2; /* phase 6 */
dataptr[3] zl3 - z2;
dataptr[l] zll + z4;
dataptr[7] zll - z4;
dataptr += DCTSIZE; /* advance pointer to next row*/

/* Pass 2: process columns. */

dataptr = data;
for (ctr= DCTSIZE-1; ctr>= 0; ctr--) {

tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];

65

tmpl = dataptr[DCTSIZE*l} + dataptr[DCTSIZE*6J;
tmp6 dataptr[DCTSIZE*l} - dataptr[DCTSIZE*6];
tmp2 ~ dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5};
tmp3 dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];

/* Even part*/

tmpl0 tmp0 + tmp3; /* phase 2 */
tmp13 tmp0 - tmp3;
tmpll tmpl + tmp2;
tmp12 tmpl - tmp2;

dataptr[DCTSIZE*0] tmpl0 + tmpll; /* phase 3 */
dataptr[DCTSIZE*4] tmpl0 - tmpll;

zl = (tmpl2 + tmpl3) * ((float) 0.707107); /* c4 */
dataptr[DCTSIZE*2] = tmpl3 + zl; /* phase 5 */
dataptr[DCTSIZE*6] = tmpl3 - zl;

/* Odd part*/

tmpl0 tmp4 + tmp5; /* phase 2 */
tmpll tmpS + tmp6;
tmpl2 tmp6 + tmp7;

/* The rotator is modified from fig 4-8 to avoid extra
ions. * /

z5 (tmpl0 - tmpl2) * ((float) 0.382683); /* c6 */
z2: ((float) 0.541196) * tmpl0 + zS; /* c2-c6 */
z4 ((float) 1.306562) * tmpl2 + z5; /* c2+c6 */
z3 tmpll * ((float) 0.707107); /* c4 */

zll tmp7 + z3; /* phase 5 */
zl3 tmp7 - z3;

dataptr[DCTSIZE*5} zl3 + z2; /* phase 6 */
dataptr[DCTSIZE*3] zl3 - z2;
dataptr[DCTSIZE*l] zll + z4;
dataptr[DCTSIZE*7] zll - z4;

dataptr++; /* advance to next column
*/

I

void jpeg_idct float (float* coef_block)

float tmp0, tmpl, tmp2, tmp3, tmp4, tmpS, tmp6, tmp7;
float tmpl0, tmpll, tmpl2, tmpl3;
float zS, zl0, zll, zl2, zl3;
float* inptr;

66

int ctr;
float workspace[DCTSIZE*DCTSIZE]; /* buffers data between passes

*/

/* Pass 1: process columns from input, store into work array. */

inptr = coef_block;

for (ctr DCTSIZE; ctr> 0; ctr--} {

/* Even part*/

tmp0 = inptr[DCTSIZE*0];
tmpl inptr[DCTSIZE*2];
tmp2 = inptr[DCTSIZE*4];
tmp3 inptr[DCTSIZE*6];

tmpl0 tmp0 + tmp2; /* phase 3 */
tmpll tmp0 - tmp2;

tmpl3 tmpl + tmp3; /* phases 5-3 */
tmpl2 (tmpl - tmp3J * ((float) 1. 414213) - tmp13; /* 2*c4 * /

tmp0 = tmpl0 + tmpl3; /* phase 2 */
tmp3 = tmpl0 - tmpl3;

tmpl tmpll + tmpl2;
tmp2 = tmpll - tmpl2;

/* Odd part*/

tmp4 =inptr[DCTSIZE*l];
tmp5 =inptr[DCTSIZE*3];
tmp6 =inptr[DCTSIZE*5];
tmp7 =inptr[DCTSIZE*7];

zl3 tmp6 + tmp5; /* phase 6 */
zl0 tmp6 - tmp5;
zll = tmp4 + tmp7;
zl2 tmp4 - tmp7;

tmp7 = zll + z13; /* phase 5 */
tmpll = (zll - z13) * ((float) 1.414213); /* 2*c4 */

z5 = (zlO + z12) * ((float) 1.847759); /* 2*c2 */
tmpl0 ((float) 1.082392) * zl2 - zS; /* 2*(c2-c6) */
tmpl2 = ((float) -2.613125) * zl0 + zS; /* -2*(c2+c6) */

tmp6 tmpl2 - tmp7; /* phase 2 */
tmp5 tmpll - tmp6;
tmp4 tmpl0 + tmp5;

67

inptr[DCTSIZE*0] (tmp0 + tmp7)/8;
inptr[DCTSIZE*7] (tmp0 - tmp7)/8;
inptr[DCTSIZE*l) (tmpl + tmp6)/8;
inptr[DCTSIZE*6) (tmpl - tmp6)/8;
inptr[DCTSIZE*2] (tmp2 + tmp5) /8;
inptr[DCTSIZE*S] (tmp2 - tmpS)/8;
inptr[DCTSIZE*4] = (tmp3 + tmp4)/8;
inptr[DCTSIZE*3] (tmp3 - tmp4)/8;

inptr++; /* advance pointers to next column*/

/* Pass 2: process rows from work array, store into output
array. * I

/* Note that we must descale the results by a factor of 8 ==
2**3. */

inptr = coef_block;
for (ctr= 0; ctr< DCTSIZE; ctr++) {

/* Even part*/

tmpl0 inptr[0] + inptr(4];
tmpll inptr[0] - inptr(4);

tmp13 = inptr(2] + inptr[6);
tmpl2 (inptr[2) - inptr[6)) * ((float) 1.414213) - tmp13;

tmp0 tmpl0 + tmpl3;
tmp3 tmpl0 - tmp13;
tmpl tmpll + tmpl2;
tmp2 tmpll - tmpl2;

/* Odd part*/

zl3 inptr(S) + inptr[3];
zl0 = inptr(S) - inptr[3);
zll inptr[l) + inptr[7];
z12 inptr(l) - inptr[7];

tmp7 = zll + zl3;
tmpll = (zll - z13) * ((float) 1.414213);

zS = (zl0 + zl2) * ((float) 1.847759); /* 2*c2 */
tmpl0 = ((float) 1.082392) * zl2 - z5; /* 2* (c2-c6) */
tmp12 = ((float) -2.613125) * zl0 + z5; /* -2*(c2+c6) */

tmp6 = tmp12 - tmp7;
tmp5 tmpll - tmp6;
tmp4 tmpl0 + tmp5;

inptr[0] = (tmp0 + tmp7)/8;

68

inptr[7] (tmpO - tmp7)/8;
inptr(l] = (tmpl + tmp6)/8;
inptr[6] (trnpl - tmp6)/8;
inptr[2] (tmp2 + tmp5)/8;
inptr[5] (tmp2 - tmp5)/8;
inptr[4] = (tmp3 + tmp4)/8;
inptr[3] (tmp3 - tmp4)/8;

inptr += DCTSIZE; /* advance pointer to next row*/

#include "asm_sprt.h"

.segment /pm seg_pmco

.global dct8x8

dct8x8:
leaf_entry

Save the registers

pushm(mO)
pushm(ml)
pushrn(m2)
pushi(iO)
pushi (il)

pushi(i2)
pushr (rl)
pushr(r2)
pushr(r3) ;
pushr(r5)
pushr (r6)
pushr(r7)
pushr (r9)
pushr(rlO)
pushr (rll)

iO = r4
b2 =canst;
rl2 64 ;
12 = rl2;

69

rl2 = 8;
mo = rl2;
ml=32;
m2=48;
i4 = iO
il = iO
r8 = pass r8

if eq jump inverse
11 rl2 ;
lentr rl2, do floopl until lee

bl= iO;
fO=dm (i1, 1) ;

fl=dm(il, 1);
f2=dm (i1, 1) ;
f3=dm(il,1);
f 4 =dm (i 1, 1) ;
f12=f3+f4, f8=f3-f4, f5=dm{il,l);
f9=f2+f5, f5=f2-f5, f6=dm(il,l);
f14=fl+f6, f6=fl-f6, f7=dm(il, 1);
fl5=fO+f7, f7=f0-f7
fl0=fl5+fl2, fl3=fl5-fl2;
fll=fl4+f9, f12=fl4-f9;
fO=flO+fll, fl=fl0-fll,f4 dm(i2,0);

f9=fl2+f13, dm(il,l)=fO;
f9=f9*f4 , dm(3,il)=fl;
f2=f13+f9, f3=fl3-f9;
fl0=f8+f5, dm(l,il)=f2;
fll=f5+f6, dm(5,il)=f3;

f12= f6 + f7;
f5 flO - fl2,f0=dm(l,i2);
f5 f5*f0,fO=dm(2,i2);
f2 flO*fO ;
f2 f2 + f5,fO=dm(3,i2);
f4 f12*f0;
f4 f4 + f5,fO=dm(O,i2);
f3 fll*fO;
fll=f7+f3 ,fl3=f7-f3;
f5 =fl3+f2 ,f3 =f13-f2;
fl =fll+f4 ,f7 =fll-f4, dm(4,il) f5
dm(2, il) f3
dm(O, ill fl
dm(6, il) = f7

floopl: modify(iO, mO)

r12=8;
iO=i4;
11= 12;
lentr = rl2, do floop2 until lee;
bl= iO;

70

fO=dm{il,mO);
fl=dm (il,mO);
f2=dm (i 1, mo) ;
f3=dm (il, mo) ;
f4=dm(il,mO);
fl2=f3+f4, f8=f3-f4, fS=dm(il,mO);
f9=f2+f5, f5=f2-f5, f6=dm{il,mO);
fl4=fl+f6, f6=fl-f6, f7=dm(il,mO);
fl5=fO+f7, f7=fO-f7

flO flS +fl2,fl3 = fl5-fl2;
fll fl4+f9 ,fl2 = fl4 - f9;

fO=flO+fll,fl=flO-fll;

dm (il,ml) fO;

dm (i 1, m2) fl;

fl= fl2 + fl3,fO=dm{O,i2);
fl= fl * fO;
f2=fl3 + fl,fO=fl3 - fl;

flO fB + fS,dm (il,ml) = f2;
fll f5 + f6, dm (il I mO) = fO;
fl2 f6 + f7 ;

f5 flO - fl2, fO=dm (1, i2)

f5 f5*fO,fO=dm{2,i2);

f2 flO*fO ;
f2 f2 + f5,fO=dm(3,i2);

f4 fl2*fO;
f4 f4 + fS, fO=dm(O, i2);

f3 fll*fO;

fll = f7 + f3,fl3 = f7 -f3;
fl = fll + f4 I f7= fll -f4;

fS= fl3 + f2 I f3= fl3 - f2, dm(il, 16) f7

dm(il, 16) fl

71

dm(il,16) f3
dm (il, 16) f5

floop2: modify(iO, 1)
jump casO ;

inverse:
r8 = 64
i4 iO
11 12
m2 =16;
m3 24;

lcntr r12, do iloopl until lee

bl iO
fO dm (il,m2);
fl dm (i1 , m2) ;
f2 dm (il,m2) ;
flO fO + f2, fll fO - f2, f3 = dm (il, m3)
f13 fl+ f3, f12 = fl - f3,f15=dm(4,i2);
f12 f12* f15;
f12 f12 - f13,f4 dm (il, m2) ;
f8 = flO +f13,f3 = flO - f13,f5= dm (il,m2);
fl= fll + fl2,f2= fll - f12, f6=dm (il,m2) ;
f13 f6 + f5, flO f6 -f5, f7= dm (il,mO) ;
fO=flO;
fll = f4 + f7, f12 f4 -f7;
f7 = fll + f13, fll = fll - f13;
fll = fll * f15;
f9 = flO + f12,fl5=dm(5,i2)
f9 = f9 * f15,fl5=dm(6,i2);
flO f12*f15 ;
flO = flO - f9,f15=dm(7,i2);
f12 = f0*f15;
f12 ==f12 + f9;
f6 f12 - f7;
f5 fll - f6;
f4 flO + f5;
f9 f8;
fO f8 + f7,r15=dm(8,i2);
fO scalb fO by r15;
f8 fl+ f6, dm (il,mO =fO;
f8 scalb f8 by r15;
f8 f2 + f5,dm (il, mO = f8;
f8 scalb f8 by r15;
f8 = f3 - f4,dm (il,mO) =f8;
f8 = scalb f8 by r15;
f4 = f3 + f4,dm (il ,mo f8;
f4 scalb f4 by r15;
f5 f2 - f5, dm (il,mO) f4 ;
f5 scalb f5 by r15;
f6 fl - f6, dm (il,mO) f5;
f6 scalb f6 by r15;

72

f7 = f9 - f7, elm (il,rnO) f6;
f7= scalb f7 by rl5;
elm (il,rnO) = f7;

iloopl: modify(iO, 1) ;

iO = i4 ;
rl2 = 8;
11 = r12 ;
lcntr = rl2, do iloop2 until lee

bl= iO;
fO= elm(il,l)
fl elm (il,l);
£2 = drn (i 1, 1) ;
f3 = dm (il ,1 };
f4 = elm (il ,1)
f5 elm (il ,1);
f6 elm (il,l) ;
fl4 f3;
fl5 fl;
flO fO + f4,fll fO - f4,f7 = elm (il, l);
fl3 f2 + f6, fl2 = f2 - f6,f0=elm(4,i2);
fl2 =fl2 * fO;
fl2 = fl2 - fl3;
fO flO + fl3,f3 flO - fl3;
fl fll + fl2,f2 fll - fl2 ;
fl3 f5 + fl4, flO f5 - fl4;
fll = fl5 + f7, fl2 = fl5 - f7;
fl5 flO;
f7 = fll + f13,fll fll - f13,f14=elm(4,i2);
fll = fll * fl4;
f5 flO + fl2,fl4=elm(5,i2)
f5 f5 * fl4,fl4=elm(6,i2);
flO = fl2 * f14;
flO flO - f5,fl4=elm(7,i2);
fl2 fl5 * fl4;
f12 = fl2 + f5;
f6 fl2 - f7;
f5 = fll -f6;
f4 = flO + f5;
f15 = fO + f7,rl4=elm(8,i2);
fl5 = scalb fl5 by rl4;
fl5 fl + f6, elm (il / 1) = fl5;
fl5 scalb fl5 by rl4;
fl5 f2 + f5, elm (il 1) = fl5;
fl5 = scalb fl5 by rl4;
fl5 f3-f4,elm (il , 1 fl5;
f15 scalb f15 by r14;
f15 f3 + f4,elm (il, 1 = fl5;
f15 = scalb f15 by rl4;
f15 f2 -f5, elm (il, 1 fl5;
f15 scalb f15 by r14;
f15 = fl - f6,elm (il, 1 = fl5;

73

fl5 scalb fl5 by rl4;
fl5 fO - f7,dm (il , 1) fl5;
fl5 scalb fl5 by rl4;
dm (il , 1) = fl5;

iloop2: modify(iO, mO)
casO:

11 0
12 0

push the registers back

popr(l, rll) ;
popr (2, rlO) ;
popr (3, r9)
popr(4, r7)
popr (5, r6)
popr(6, r5)
popr(7, r3)
popr(8, r2)
popr(9, rl)
popi (10, i2)
popi (11, ill
popi(l2, iO)
popm (13, m2)
popm(l4, ml)
popm (15, mo)

alter (15)

leaf exit

.endseg;

.segment /dm seg_dmda

.PRECISION= 32

.VAR const[9] =
0.707107,

0.382683,
0. 541196,
1. 306562,

1.414213,
1.847759 ,
1.082392,

-2.613125,
-3 '

.endseg

74

#include "asm_sprt.h"

.segment /pm seg_pmco

.global _getdat;

getdat:

entry
dm(i7,-10)=r2;
dm(-1,i6)=i13;

saving the registers:

dm(-9,i6)=rl;
iO = r4;
r2=r8;

r4=ashift r2 by 7;
r2=rl2;

r4=r4+r2;

r2=r4;
fS=float r2;
r2 = ashift r4 by -2;
r9=r2;

75

cas2:

cas3:

f12 = float r2;
r8=-2;
f2=scalb f5 by r8;
f8=f2;

f2=f8-f12;
f6=f2;

f2=pass f2;

if ne jump cas2 (DB);nop;nop;

r2=i0;
r4=r9;

r8=r4;
rl=r2+r8;
i4=rl;
r2=dm (i4, m5) ;
r4=-16777216;
r2=r2 and r4;
r4=lshift r2 by -24;

r0=r4;
jump casl (DB);nop;nop;

f2=f6;
f4= Ox3e800000;
comp(f2,f4);

if ne jump cas3 (DB);nop;nop;
r2=i0;
r4=r9;

r8=r4;
rl=r2+r8;
i4=rl;
r2=dm (i4, m5) ;
r4=16711680;
r2=r2 and r4;
r4=lshift r2 by -16;

rO = r4;

jump casl (DB);nop;nop;

f2=f6;
f4= Ox3f000000;
comp(f2,f4);

if ne jump cas4 (DB);nop;nop;
r2=i0;
r4=r9;

r8=r4;
rl=r2+r8;
i4=rl;
r2=dm(i4,m5);
r4=65280;
r2=r2 and r4;
r4=lshift r2 by -8;

76

rO = r4;

jump casl (DB);nop;nop;

cas4:

f2=f6;
f4= Ox3f400000;
comp (f2, f 4) ;

if ne jump cas5 (DB);nop;nop;
r2=i0;
r4=r9;

r8=r4;
rl=r2+r8;
i4=rl;
r2=drn(i4,m5);
r4=255;
r2=r2 and r4;

rO = r2;
jump casl (DB);nop;nop;

cas5:
casl:

push the registers back
r 1 =drn (- 9, i 6) ;
i13=drn (m7, i6);
exit ;

.endseg

#include "asm_sprt.h"

.segment /pm seg_pmco;

.global _putdat;

_putdat:

entry
drn(i7,-ll)=r2;
drn(-1,i6)=i13;

save the registers:

drn(-9,i6)=rl;
r2=i0;
drn(-10,i6)=r2;

il = r4;
drn(-2,i6)=r4;
drn(-3,i6)=r8;
drn(-4,i6)=r12;
r2=r8;
r4=ashift r2 by 7;

77

casO:

casl:

r2=r12;
r4=r4+r2;
r2=r4;
f5=float r2;
r2 = ashift r4 by -2;
r9=r2;
f12 = float r2;
rB=-2;
f2=scalb f5 by r8;
f8=f2;
f2=f8-f12;
f6=f2;
f2=pass f2;
if ne jump casO (DB);nop;nop;
r2=il;
r4=r9;
r8=r4;
rl=r2+r8;
iO=rl;
r2=dm(i0,m5);
r4=16777215;
r2=r2 and r4;
r 4=dm (1 , i 6) ;
rB=lshift r4 by 24;
r2=r2+r8;
dm(i0,m5)=r2;

f4= Ox3e800000;
comp(f2,f4);
if ne jump casl (DB);nop;nop;
r2=il;
r4=r9;
r8=r4;
rl=r2+r8;
iO=rl;
r2=dm (iO, m5);
r4=-16711681;
r2=r2 and r4;
r4=dm(l,i6);
rB=lshift r4 by 16;
r2=r2+r8;
dm(i0,rn5)=r2;

f4 Ox3f000000;
comp (f2, f4);
if ne jump cas2 (DB);nop;nop;
r2=il;
r4=r9;
r8=r4;
rl=r2+r8;
iO=rl;
r 2 =dm (i O, m5) ;
r4=-65281;

78

r2=r2 and r4;
r 4 =dm (1, i 6) ;
r8=lshift r4 by 8;
r2=r2+r8;
dm(i0,m5)=r2;

cas2:

f4= Ox3f400000;
comp(f2,f4);
if ne jump cas3 (DB);nop;nop;
r2=il;
r4=r9;
r8=r4;
rl=r2+r8;
iO=rl;
r 2=dm (i O, mS) ;
r4=-256;
r2=r2 and r4;
r4=dm(l,i6);
r2=r2+r4;
dm(i0,m5)=r2;

cas3:

rl=dm(-9, i6);
iO=dm(-10, i6);
i13=dm(m7,i6);

exit;
.endseg;
#include "asm_sprt.h"

.segment /pm seg_pmco

.global _getdaf;

getdaf:

entry
dm(i7,-10)=r2;
dm(-1, i6)=i13;

saving the registers:

dm(-9,i6)=rl;
iO = r4;

r2=r8;
r4=ashift r2 by 7;

r2=r12;
r4=r4+r2;

r2=r4;

79

casl:

cas3:

f5=float r2;

r2 = ashift r4 by -1;
r9=r2;
f12 = float r2;
r8=-1;

f2=scalb f5 by r8;
f8=f2;

f2=f8-f12;
f6=f2;

f2=pass f2;
if ne jump casl (DB);nop;nop;
r2=i0;

r4=r9;
r8=r4;
rl=r2+r8;
i4=rl;
r2=dm(i4,m5);
r4=-65536;
r2=r2 and r4;
r4=lshift r2 by -16;

rO=r4;

jump cas3 (DB);nop;nop;

f2=f6;
f4= Ox3f000000;
comp(f2,f4);

if ne jump cas3 (DB);nop;nop;

r2=i0;
r4=r9;
r8=r4;
rl=r2+r8;
i4=rl;
r2=dm(i4,m5);
r4=65535;
r0=r2 and r4;

jump cas3 (DB);nop;nop;

rl=dm(-9,i6);
il3=dm(m7,i6);

exit;

.endseg

80

#include "asm_sprt.h"

.segment /pm seg_pmco;

.global _putdaf;

_putdaf:

entry;
dm (i 7, -11) =r2;
dm(-l,i6)=il3;

saving the registers:

dm(-9,i6)=rl;
r2=i0;
dm(-10,i6)=r2;

il=r4;
r2=r8;

r4=ashift r2 by 7;
r2=rl2;

81

casl:

cas3:

r4=r4+r2;
r2=r4;
f5=float r2;

r2=ashift
r9=r2;

f12 = float
rB=-1;

f2=scalb f5
f8=f2;

f2=f8-f12;
f6=f2;
f2=pass f2;

r4 by -1;

r2;

by rB;

if ne jump casl (DB);nop;nop;

r2=il;
r4=r9;
r8=r4;
rl=r2+r8;

iO=rl;
r2=dm(i0,m5);

r4=65535;
r2=r2 and r4;
r 4=elm (1, i 6) ;
rB=lshift r4 by 16;
r2=r2+r8;

dm(i0,m5)=r2;

f2=f6;
f4= Ox3f000000;
comp(f2,f4);

if ne jump cas3

r2=il;
r4=r9;
r8=r4;
rl=r2+r8;

iO=rl;
r2=dm(i0,m5};

r4=-65536;
r2=r2 and r4;

r4=dm(l,i6);
r2=r2+r4;
dm(i0,m5)=r2;

(DB);nop;nop;

push the registers back
rl=dm(-9,i6);
iO=dm(-10,i6);
i13=dm(m7,i6);

exit;

82

.endseg;

#include "asm_sprt.h»

.segment /pm seg_pmco

.global dctproc;

_dctproc:

entry;

dm(i7,-9)=r2;
dm(-1,i6)=i13;

83

casO:

cas3:

saving the registers:

dm(-7,i6)=rl;
r2=i0;
dm(-8,i6)=r2;
dm(-2,i6)=r4;
dm(-3,i6)=r8;
dm(-4,i6)=rl2;
r2=0;
dm(-5,i6)=r2;

r2=dm(-5,i6);
r4=7;
comp(r2,r4);

if gt jump casl (DB);nop;nop;

r2=0;
dm(-6,i6)=r2;

r2=dm(-6, i6);
r4=7;
comp(r2,r4);

if gt jump cas4 (DB);nop;nop;

r2=dm(-5, i6);
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
i4=rl;
f 8 =dm (i4 , m5) ;
r4=0xff800000;
r2=logb fB;
r2=-r2;
r4=ashift r4 by r2;
r4=r8 and r4;
r4=fix f4;
rB=abs r4;
f2=float rB;
r 4 =dm (- 5, i 6) ;
rB=ashift r4 by 3;
r4=dm(-3,i6);
rB=rB;
r4=r4+r8;
r8=dm(-6,i6);
r12=r8;
rl=r4+r12;
i4=rl;

84

f12=dm{i4,m5);
r8=0xff800000;
r4=logb f12;
r4=-r4;
r8=ashift r8 by r4;
r8=rl2 and rB;
rB=fix fB;
r4=abs rB;
f8=float r4;
r4=dm (-5, i6);
r12=ashift r4 by 3;
r4=dm(-4, i6);
rl2=r12;
r4=r4+rl2;
r12=dm(-6, i6);
m4=rl2;
i4=r4;
modi (i 4 , m4) ;
r4=dm(i4,m5);
r12=3;
r4=r4*rl2 (ssi);
fl2=float r4;
r4=-1;
f12=scalb f12 by r4;
f4=f8+fl2;
comp(f2,f4);

if le jump cas6 (DB);nop;nop;

r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
i4=rl;
f2=dm (i4, m5);
f2=pass f2;

if le jump cas7 (DB);nop;nop;

r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
i4=rl;

85

cas7:

r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm (-3, i6);
r4=r4;
r2=r2+r4;
r4=dm(-6, i6);
r8=r4;
rl=r2+r8;
iO=rl;
f8=dm(i0,m5);
r4=0xff800000;
r2=logb f8;
r2=-r2;
r4=ashift r4 by r2;
r4=r8 and r4;
r4=fix f4;
r2=abs r4;
f8=float r2;
r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-4,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
rl2=r4;
rl=r2+rl2;
iO=rl;
r2=dm (iO, m5);
r4=3;
r2=r2*r4 (ssi);
f4=float r2;
r2=-l;
fl2=scalb £4 by r2;
f2=f8+fl2;
dm(i4,m5)=f2;

jump cas8 (DB);nop;nop;

r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
i4=rl;
r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-3,i6);
r4=r4;
r2=r2+r4;

86

cas8:

cas6:

r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
iO=rl;
f8=dm(i0,m5);
r4=0xff800000;
r2=logb f8;
r2=-r2;
r4=ashift r4 by r2;
r4=r8 and r4;
r4=fix f4;
r2=abs r4;
fS=float r2;
r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-4,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
rl2=r4;
rl=r2+rl2;
iO=rl;
r2=dm(i0,m5);
r4=3;
r2=r2*r4 (ssi);
f4=float r2;
r2=-l;
fl2=scalb f4 by r2;
f2=f8+fl2;
f4 -f2;
dm(i4,rn5)=f4;

jump cas9 (DB);nop;nop;

r2=dm (-5, i6);
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
i4=rl;
fS=dm (i4, rn5);
r4=0xff800000;
r2=logb f8;
r2=-r2;
r4=ashift r4 by r2;
r4=r8 and r4;
r4=fix f4;
rS=abs r4;

87

f2=float rB;
r4=dm (-5, i6);
rB=ashift r4 by 3;
r4=dm (-3, i6);
rB=rB;
r4=r4+r8;
rB=dm(-6, i6);
rl2=r8;
rl=r4+rl2;
i4=rl;
fl2=dm(i4,m5};
rB=OxffBOOOOO;
r4=logb £12;
r4=-r4;
rB=ashift rB by r4;
rB=rl2 and rB;
rB=fix fB;
r4=abs rB;
fB=float r4;
r 4 =dm (- 5 I i 6 } ;
rl2=ashift r4 by 3;
r4=dm(-4,i6};
rl2=rl2;
r4=r4+rl2;
rl2=dm(-6,i6);
m4=rl2;
i4=r4;
modify (i4 ,m4};
r4=dm(i4,m5};
rl2=3;
r4=r4*rl2 (ssi);
fl2=float r4;
r4=-l;
fl2=scalb fl2 by r4;
f4=f8-fl2;
comp(f2,f4);

if ge jump caslO (DB);nop;nop;

r2=dm(-5,i6};
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6, i6);
rB=r4;
rl=r2+r8;
i4=rl;
f 2=dm (i 4 , ms} ;
f2=pass f2;
if le jump casll (DB);nop;nop;

r2=dm(-5,i6);

88

r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r 4 =dm (- 6 I i 6) ;
r8=r4;
rl=r2+r8;
i4=rl;
r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-3,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
iO=rl;
f8=dm(i0,m5);
r4=0xff800000;
r2=logb f8;
r2=-r2;
r4=ashift r4 by r2;
r4=r8 and r4;
r4=fix f4;
r2=abs r4;
f8=float r2;
r2=dm(-5, i6);
r4=ashift r2 by 3;
r2=dm(-4,i6);
r4=r4;
r2=r2+r4;
r4=dm (-6, i6);
r12=r4;
rl=r2+r12;
iO=rl;
r2=dm(i0,m5);
r4=3;
r2=r2*r4 (ssi);
f4=float r2;
r2=-1;
f12=scalb f4 by r2;
f2=f8-f12;
dm(i4,m5)=f2;
jump cas12 (DB);nop;nop;

casll:

r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-2,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;

89

cas12:
caslO:
cas9:
cas5:

cas4:

cas2:

i4=rl;
r2=dm(-5,i6);
r4=ashift r2 by 3;
r2=dm(-3,i6);
r4=r4;
r2=r2+r4;
r4=dm(-6,i6);
r8=r4;
rl=r2+r8;
iO=rl;
f8=dm(i0,m5);
r4=0xff800000;
r2=logb f8;
r2=-r2;
r4=ashift r4 by r2;
r4=r8 and r4;
r4=fix f4;
r2=abs r4;
fB=float r2;
r2=dm (-5, i6);
r4=ashift r2 by 3;
r2=dm(-4,i6);
r4=r4;
r2=r2+r4;
r 4=dm (- 6, i 6) ;
r12=r4;
rl=r2+r12;
iO=rl;
r2=dm(i0,m5);
r4=3;
r2=r2*r4 (ssi);
f4=float r2;
r2=-1;
f12=scalb f4 by r2;
f2=f8-f12;
f4= -f2;
dm(i4,m5)=f4;

r 2=dm (- 6 , i 6) ;
r4=r2+1;
dm(-6,i6)=r4;

jump cas3 (DB);nop;nop;

r2=dm (-5 / i 6) j

r4=r2+1;

90

dm(-5,i6)=r4;

jump casO (DB};nop;nop;

casl:

push the registers

rl=dm(-7,i6);
iO=dm(-8,i6);
il3=dm(rn7,i6);

exit;

.endseg;

91

	Efficient Implementation of Image Compression-Postprocessing Algorithm Using a Digital Signal Processor
	Let us know how access to this document benefits you.
	Recommended Citation

