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Abstract 

 Statistical association is a key facet of statistical literacy: claims based on 

relationships between variables or ideas rooted in data are found everywhere in media 

and discourse. A key development in introductory statistics curricula is the use of 

simulation-based inference, which has shown positive outcomes for students, especially 

in regards to statistical literacy and conceptual understanding. In this dissertation project, 

I investigate students from the Change Agents for the Teaching and Learning of 

STatistics (CATALST) curriculum in activities I designed for learning statistical 

association and linear regression. First, I analyzed the informal line fitting strategies of 

CATALST students. Findings suggest that students still face many challenges in informal 

line fitting, but their use of the offsetting distances criterion may be a future point of 

focus for teaching and activity development. Next, I compared student outcomes in a 

traditional course and a CATALST course on their ability to recognize the need for 

inference and hypothesis testing. Results revealed that CATALST students were more 

prepared to learn inference in their course and made greater gains by the end of the linear 

regression unit. Finally, I examine CATALST students’ inferential reasoning in light of 

frameworks that identify challenges in learning simulation-based inference. Based on the 

success CATALST students demonstrated, I propose technology innovations to the 

simulation software so that the classroom can better focus on learning statistics rather 

than technology. Overall, this dissertation provides insights into activities that expand the 

existing CATALST curriculum to include linear regression and shares the benefits of 

leveraging this simulation-based curriculum while highlighting challenges these students 

experienced and directions for future work to address these challenges. 
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Chapter 1: Introduction 

 

“Proximity to freeways increases autism risk, study finds.” This headline, 

published in the Los Angeles Times, appears to be claiming a cause-and-effect 

relationship. However, the study’s researchers were quoted directly in that article, stating 

that “this study isn’t saying exposure to air pollution or exposure to traffic causes 

autism,” revealing that the study merely found a correlation which may be spurious 

(Roan, 2010). While we can hope that readers will think critically about what is being 

presented to them in the entire article, many in the age of social media do not even 

engage with news beyond a headline. On Twitter, 59% of links that are shared are never 

clicked, and most of the remining links have fewer than 1 in 1000 followers click that 

link. (Gabielkov et al., 2016). But even for those that do engage with the full news 

content, readers would need to recognize the difference between correlation and 

causation to be able to challenge the claim made in the headline.  

This small anecdote of one news headline highlights the importance of a generally 

literate public. But literacy goes beyond the importance of just reading and writing – it is 

also vitally important to give citizens the tools to evaluate information and think 

critically, especially in the age of “fake news” where sources of information are often 

misleading and may contradict each other. Quantitative reasoning is required of readers 

in order to challenge these types of claims rather than accepting them at face value. This 

kind of reasoning is a social empowerment that literacy alone cannot provide: 

“mathematics should be taught so as to … enable learners to function as numerate critical 

citizens, able to use their knowledge in social and political realms of activity, for the 
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betterment of both themselves and for democratic society as a whole” (Ernest, 2015, p. 

191). Many see statistics as being truly at the heart of this social empowerment that 

Ernest describes, with notable author H.G. Wells claiming that:  

Endless social and political problems are only accessible and only thinkable to 

those who have had a sound training in mathematical analysis … for complete 
initiation as an efficient citizen of one of the new great complex world -wide states 
that are now developing, it is as necessary to be able to compute, to think in 

averages and maxima and minima, as it is now to be able to read and write” 
(Wells, 1904, p. 192).  

Such a claim seems especially prophetic considering the relative infancy of statistics as a 

field then. And as technology has evolved, views on the importance of being able to 

reason with data and statistics have become more centered around technology: “As 

information becomes ever more quantitative and as society relies on computers and the 

data they produce, an innumerate citizen today is as vulnerable as the illiterate peasant of 

[the 15th century]” (Steen, 1997, p. xv). We now live in a world of “big data,” with 

seemingly endless amounts of statistics and information to process and analyze, many of 

which are conflicting and challenging to relate and internalize in totality without the 

proper skills. 

This idea of reading, writing, and critiquing claims based in data is known as 

statistical literacy. Gal (2002) defines statistical literacy as being made up of two 

interrelated components: “people’s ability to interpret and critically evaluate statistical 

information, data-related arguments, or stochastic phenomena” (p. 2) and “their ability to 

discuss or communicate their reactions to such statistical information, such as their 

understanding of the meaning of the information, their opinions about the implications of 

this information, or their concerns regarding the acceptability of given conclusions” (p. 
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3). This definition draws a parallel to general literacy, with each of the components 

describing one’s ability to “read” statistics and “write” or communicate statistics to 

others. Writers of the aforementioned Los Angeles times article did not appropriately 

communicate their reactions to the study on autism and freeways, and thus leaves those 

without the ability to critically evaluate these claims susceptible to mis-information. 

Thus, it is not only important for the consumers of media to be statistically literate, but 

the producers of media should also be careful not to spread such misinformation.  

Statistical literacy is central to curricular standards for statistics, with the preK-12 

Guidelines for Assessment and Instruction in Statistics Education (GAISE) stating that 

their ultimate goal is promoting statistical literacy (Franklin et al., 2007). While the term 

of statistical literacy is no longer present in the college level GAISE (Carver et al., 2016), 

researchers argue that statistical literacy is still at the forefront of these guidelines 

(Schield, 2017). I argue that the most central concept to statistical literacy is statistical 

association, as it is key to understanding how real-world events and processes are linked 

together. “Knowing whether events are related, and how strongly they are related, 

enables individuals to explain the past, control the present, and predict the future” 

(Crocker, 1981, p. 272). McKenzie and Mikkelson (2007) state that covariational 

reasoning is one of the most important activities that humans perform. Understanding 

relationships and making connections between different phenomenon based on data is 

necessary to understand the world and how different aspects of it are connected. It is a 

necessary skill to have to be able to critically analyze the arguments from the Los 

Angeles Times article, which analyzed an association between incidence rates of autism 

and factors associated with proximity to freeways.  
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To meet the aims of addressing statistical literacy in regards to the topic of 

covariation and statistical association, this study investigated classroom activities 

designed to support students learning of statistical association through linear regression. 

Understanding linear regression is central to addressing the need for students to be able to 

process and analyze data-based claims. These activities take place in the context of the 

Change Agents for Teaching and Learning Statistics (CATALST) curriculum, which 

currently does not include content on association between two numerical variables, 

typically analyzed by linear regression techniques. I believe that it is important to expand 

this curriculum to include such a fundamental topic because it is a topic recommended for 

introductory statistics courses at the collegiate level (Carver et al., 2016), there are clear 

advantages to the use of modeling and simulation in the CATALST curriculum, and there 

is a clear societal benefit to understanding statistical association generally through 

empowering students statistical literacy. 

The recognition of statistical association is just one part of covariational 

reasoning, which is a broad topic that lies at the intersection of fields like psychology, 

mathematics, science, and statistics. The key element of covariational reasoning in 

statistics is the use of data in multiple variables, which can be used to support or question 

claims of association, especially those made in the media. Unfortunately, students are not 

apt to question these types of claims, even when such claims are not supported with 

evidence like data or graphs (Watson & Moritz, 1997). Even when data are present, prior 

beliefs about an association often take priority in making conclusions – this is known as 

an illusory correlation, and has been shown to be a major element in the formation of 

stereotypes (Hamilton & Gifford, 1976). Not only is there benefit in promoting statistical 
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association and covariational reasoning in promoting a well-informed society, but it can 

also provide a benefit to society by combating the kinds of reasoning that lead to unjust 

stereotyping. 

This study focuses on CATALST-based activities for linear regression with the 

goal of building on students’ existing conceptions of association identified in the 

literature, while also upholding the modeling and simulation philosophy of the 

CATALST curriculum. The CATALST curriculum is rooted in the modeling of 

probability-based situations and using simulation-based statistical methods to draw 

conclusions (Garfield et al., 2012). Research has shown that simulation-based methods 

provide many advantages to students’ learning of statistical topics, especially inferential 

reasoning (Chance et al., 2016, 2018; Hildreth et al., 2018; Tintle et al., 2014). The 

CATALST curriculum is notable among simulation-based curricula as because it allows 

students to create and model their own simulation processes, unlocking the supporting 

rationale for the statistical methods being used. This study examines potential advantages 

of using this simulation and modeling approach with the topic of linear regression while 

also drawing comparisons to more traditional curricula.  

Overview of Chapters 

 This dissertation follows a three-paper model. In my first paper, I investigate 

CATALST students’ strategies for informally fitting a line of best fit to scatterplots in 

various data scenarios. The second paper compares students from both the CATALST 

curriculum and a traditional curriculum on how they determine whether a data scenario 

yields a significant linear relationship, with a focus on if the students recognize the need 
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for using a hypothesis test. Finally, the last paper examines CATALST students’ 

experiences modeling and carrying out test for the least squares line and their conceptual 

understanding of their probability models, the null hypothesis, and the p-value. This 

paper also presents potential technology innovations to better support students learning. 

 Students’ Knowledge about Lines of Best Fit in a Modeling and Simulation 

Introductory Statistics Curriculum. Students hold various conceptions about statistical 

association that can interfere with learning the line of best fit. Three of these conceptions 

that this study focuses on are the univariate conception, the localist conception, and prior 

beliefs (Batenero et al., 1996; Estepa et al., 1999; Moritz, 2004). When students attempt 

to fit lines to data, these conceptions can lead to students potentially biasing toward lines 

that are upward sloping when not appropriate, fitting a line based only on a few cases in 

the data, or fitting a line based on their own prior knowledge of the data context. Previous 

work has focused on middle school students and pre-service teachers informal line fitting 

strategies, and has found these existing conceptions have influenced their strategies 

(Casey, 2015; Casey & Wasserman, 2015). This study aims to add to this literature by 

focusing on a novel population of college students using the CATALST curriculum. 

There is reason to believe that CATALST students may have success in fitting lines to 

scatterplots informally, not only because of the advantages of simulation-based curricula 

(Chance et al., 2018, 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014), but also 

because of the potential advantages of CATALST’s focus on modeling (Noll et al., 

2018), which may aid in understanding the line of best fit as a model itself. To assess this 

hypothesis about the CATALST curriculum, I investigated the following research 
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question: What are CATALST students’ intuitive strategies for placing lines of best fit 

before and after formally learning about least squares criterion? 

 Analysis of the data leveraged the coding scheme from the aforementioned 

studies on informal line fitting (Casey, 2015; Casey & Wasserman, 2015), with additional 

codes added to reflect the strategies that emerged in the data collected. In many cases, 

students’ strategies still often reflected many of these known conceptions identified in the 

literature, which indicates more work needs to be done to improve instruction on informal 

line fitting. One novel strategy that emerged among CATALST students in the interview 

was the use of offsetting distances, where students attempted to group all the data into 

sets where their residuals appeared to sum to 0 visually. This strategy, which is a 

necessary but not sufficient condition of the least squares criterion, may be an 

approachable way to teaching students informal line fitting that aligns with the concepts 

of least squares. One additional result that emerged from students’ informal line fitting 

was regarding the impact of outliers. Students seemed to account well for outliers that 

appeared in the corner of graphs, but did not account for outliers that had large residuals 

but appeared in the middle of the graph.  

 Comparing Student Outcomes on Testing for a Statistical Association for 

Traditional and Simulation-Based Curricula. Cobb’s (2007) call for reforming the 

introductory statistics course to emphasize conceptual pillars of inference and leverage 

modern technology has brought about the rise of simulation-based inference courses. 

Numerous studies comparing student outcomes across traditional and simulation-based 

curricula have yielded many benefits, especially on tasks regarding the purpose and 
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interpretation of inferential techniques (Chance et al., 2018, 2022; Hildreth et al., 2018; 

Tintle et al., 2012, 2014). This study adds to this wealth of comparison literature by 

focusing on models and modeling in two ways: first, by studying students who used the 

modeling-focused CATALST curriculum, and by examining their understanding of 

hypothesis testing as it pertains to linear regression models. In the introductory statistics 

course, the unit on linear regression typically is taught with many various diagnostic and 

descriptive measures, such as correlation, r-squared, residual standard error, and the 

slope/intercept of the least squares line, all of which can be used to evaluate the relevance 

of a linear relationship. Given that in the traditional classroom that the procedures for 

hypothesis testing or any of these descriptive measures are often all reliant on using 

technology to produce statistical output, I hypothesis that students may have trouble 

making distinctions in their purposes and interpretations. In the CATALST curriculum, 

the methods for conducting a hypothesis test are quite distinct from descriptive statistics, 

as students are responsible for constructing a probability model for carrying out a 

simulation as well as building up a sampling distribution to find the p-value. This may 

give them a stronger conceptual understanding of inferential techniques in linear 

regression. To test this hypothesis, my study aims to answer the following research 

question: do students from a traditional curriculum and the CATALST curriculum 

recognize the need to use a hypothesis test for evaluating the statistical significance of a 

linear relationship? How do students’ approaches compare across these two curricula? 

 Students participated in pre/post-surveys during their introductory statistics course 

that asked them to describe how they would carry out a hypothesis test for specific data 

context on linear regression. Selected students were invited to participate in interviews 
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where they were asked to carry out the hypothesis test and draw conclusions based on 

their results. Analysis of the survey responses began with an open coding procedure to 

determine interesting features of students’ strategies for determining a significant linear 

relationship. These codes were refined into a coding scheme that categorized students’ 

responses as reflecting a hypothesis test, descriptive statistics, or non-statistical method, 

with further codes in each category to capture the detail of their response. Data from one 

interviewed student from each curriculum were also analyzed to provide a more detailed 

look at two students with similar survey responses. Results from the study revealed that 

CATALST students not only made greater gains from the pre-survey to post-survey, but 

CATALST students were often more prepared to describe a hypothesis test before 

formally learning this content. Interview data also revealed that CATALST students also 

were more apt in determining the difference in purpose between the correlation value and 

a hypothesis test, and often exhibited greater conceptual understanding of hypothesis 

testing. These results have implications for the teaching of linear regression and 

distinguishing the purpose and interpretation of measures like correlation from inferential 

techniques. It also raises questions about how CATALST may compare to other 

simulation-based curricula that do not emphasize modeling.  

 Evidence for Further Development of TinkerPlots to Support Inferential 

Reasoning with Linear Regression. The CATALST curriculum and TinkerPlots 

software provide students with a fertile modeling environment for expressing their 

statistical reasoning. This environment is powerful in providing a true transparent 

experience of simulating from probability models that allows students to have full 

ownership of the process. However, the original design of the CATALST curriculum 
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does not cover all topics covered in a typical introductory statistics course, such as linear 

regression. I designed CATALST-inspired activities for linear regression that leverage 

TinkerPlots, and detail the clumsy workarounds required to use TinkerPlots in this way. 

Suggestions for future improvements to TinkerPlots to avoid this workaround are 

provided. These suggested improvements are based on research-based recommendations 

for the choice of simulation-based software (Rossman & Chance, 2014) as well as 

empirical results of students understanding of inference who learned using these 

TinkerPlots activities and the workaround. These empirical results assessed students’ 

understanding of hypothesis testing in linear regression through the analysis of classroom 

assessments. This analysis aimed to answer the following research question: How does 

using TinkerPlots for conducting a hypothesis test for the least squares line aid students’ 

inferential reasoning and address common challenges faced when using simulation? 

 Analysis of the data leveraged Case and Jacobbe’s (2018) framework on the 

common difficulties students experience when interpreting simulation-based inference 

techniques, as well as work on connecting study design to the interpretations of 

hypothesis testing, especially with experiment-to-causation inference (Pfannkuch et al., 

2015). These two works provided three areas of focus in analyzing students’ assessment 

work: how they connect the null hypothesis to their sampler model in TinkerPlots, how 

they determine their choice of replacement and connect this to the study design, and how 

they interpret their p-value and the results of the hypothesis test. Results showed that an 

overwhelming majority of the CATALST students provided responses that exhibited an 

understanding of the null hypothesis and their p-values. There were some students that 

did not recognize the appropriate study design in their choice of replacement, but these 
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students still often provided reasoning consistent with their choice. These results provide 

evidence for the success of emphasizing modeling in simulation-based curricula using 

TinkerPlots, and add support for the development of further technology innovations with 

TinkerPlots to improve student experiences with linear regression and other typical 

introductory statistics topics.  

Discussion 

 These papers add to statistics education literature by expanding the existing use of 

the CATALST curriculum to linear regression. They detail the benefits of this expansion, 

especially with regards to inference and hypothesis testing, while highlighting potential 

improvements that can be made in students’ strategies for informally fit ting lines of best 

fit. The following three chapters present these three studies and are followed up by a 

concluding chapter that discusses and synthesizes the relevance of this work.  
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Chapter 2: Students’ Knowledge about Lines of Best Fit in a Modeling and 

Simulation Introductory Statistics Curriculum 

Abstract: Students’ hold a wide variety of conceptions regarding statistical association. 

These conceptions pose challenges when summarizing the relationship displayed in a 

scatterplot through informally placing a line of best fit. This study examined college 

students’ strategies for fitting a line to a scatterplot informally through surveys and task-

based interviews. The students represented a novel population of students from a 

simulation-based curricula who engaged with activities specifically designed to consider 

informal line fitting before learning the least squares criterion. Results from this study 

revealed that many students leveraged a unique strategy of using offsetting distances 

when informally fitting lines, and that students’ placement of their line of best fit revealed 

a differing perspective on outliers that appear in a corner of the scatterplot as opposed to 

the middle of the scatterplot. Students in this learning environment also exhibited 

reasoning reflecting the previously known conceptions of association, which has 

implications for future work on how to best teach students lines of best fit.  

Introduction 

 Research has shown that simulation-based methods provide many advantages to 

students’ learning of statistical topics (Chance et al., 2016, 2018; Hildreth et al., 2018; 

Tintle et al., 2014), especially in regards to inferential techniques and drawing 

conclusions from data. The CATALST curriculum (Zieffler, 2012) was inspired by 

Schoenfeld’s (1998) call for mathematics curriculum to focus on teaching students how 

to “cook” rather than just follow recipes, and by TinkerPlots (Konold & Miller, 2018), 

the modeling and simulation tool that acts as the ideal statistics “kitchen.” TinkerPlots 
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provides students opportunities beyond just the ability to simulate sampling distributions; 

it allows students to create the devices and models used to simulate data. The CATALST 

curriculum and TinkerPlots provide students with opportunities to create and model their 

own simulation processes. Students’ narratives built around data contexts and the 

statistical models they build can unlock the supporting rationale for the statistical 

methods being used (Noll et al., 2018; Noll & Kirin, 2017).  

However, the CATALST curriculum was originally designed to only focus on key 

concepts of inferential statistics, and does not cover every topic traditionally taught in an 

introductory statistics course. While this limited selection of topics was by design to 

narrow the focus on inference and promote statistical literacy (Justice et al., 2020), 

statistical association is potentially one of the most fundamental concepts of statistical 

literacy. Understanding relationships and making connections between different 

phenomenon based on data is necessary to understand the world and how different 

aspects of it are connected. “Knowing whether events are related, and how strongly they 

are related, enables individuals to explain the past, control the present, and predict the 

future” (Crocker, 1981, p. 272). McKenzie and Mikkelson (2007) state that covariational 

reasoning is one of the most important activities that humans perform. Science is rooted 

in understanding these relations, with Halley’s (1686) observations about barometric 

pressure and altitude being among the first statistical associations observed that led to the 

study of meteorology. As society continues to face the effects of climate change, 

understanding relationships between global temperatures and other variables that 

contribute to Earth’s warming is vital not just to scientists and policy makers, but also the 

general population who will face this warming and resulting climate impacts. An  
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Figure 1. Scatterplot of CO2 emissions and temperature anomaly from 1901-2000 

average. 

example of one such relationship can be seen in the scatterplot shown in Figure 1 relating 

global CO2 emissions to the global temperature anomaly. Understanding scatterplots is a 

vital tool for both science and the general public, as they are ubiquitous. It is estimated 

that at least 40 percent of data visualizations across all scientific publications relate two 

or more variables, such as scatterplots (Tufte, 2001).  

One tool used to summarize linear relationships is the line of best fit, seen 

superimposed on the scatterplot in Figure 1. The line of best fit is the most formal topic 

for statistical association in the collegiate introductory statistics class outlined by the 

Guidelines for Assessment and Instruction in Statistics Education (GAISE) and is a major 

focus for research on students’ statistical literacy and thinking (Carver et al., 2016; 

Garfield & Ben-Zvi, 2004). Exploratory bivariate data analysis is presented as an 
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introductory unit in AP Statistics and many other collegiate level textbooks (Agresti et 

al., 2017; AP Statistics, 2006; Utts & Heckard, 2014). Given the unique nature of 

CATALST as a statistics curriculum that gives students the ability to cook, not only is 

statistical association a natural and necessary addition to the CATALST curriculum, but 

there is reason to believe that this curriculum is a potentially ideal environment for 

students to learn this topic. Research has already identified clear advantages for the 

CATALST curriculum for learning statistical inference, and TinkerPlots makes for a 

powerful research tool for revealing students’ statistical thinking. Features of this 

software could also provide a fertile environment for students to learn about lines of best 

fit and explore the criteria used to determine them through trial and error. Statistical 

literacy should be an art of cooking, not just reading recipes, as there is no one recipe for 

making judgments about statements that use any form of statistical association in the 

news, social media, or other various sources. Students who have this ability to “cook” can 

critique potentially misleading claims made based on data, and not just accept data 

visualizations or data-based conclusions at face value. 

 The goal of this study is to explore students’ knowledge about lines of best fit 

before and after learning the material in a college level introductory statistics course. 

These students learned with a version of the CATALST curriculum that was expanded to 

introduce concepts of statistical association and linear regression. Students place lines of 

best fit informally on scatterplots using TinkerPlots software (Konold & Miller, 2018) 

before examining more formal methods that use a criterion to optimally place the line of 

best fit. While collegiate-level standards do not typically emphasize the use of informal 

line of best fit, they are recommended by Common Core State Standards in grade eight as 
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a way to gain foundational understanding to later learn the least squares regression line, 

and are also recommended at a similar level in the preK-12 GAISE standards. While 

fitting lines of best fit informally is not discussed in the collegiate GAISE standards, 

there are clear gaps in student knowledge at the preK-12 level (Biehler et al., 2018; 

Shaughnessy, 2007). These gaps can make learning formal concepts like least squares 

regression problematic when these students learn these topics at the collegiate level. 

GAISE guidelines explicitly spell out that it is not appropriate to teach more formal 

concepts to students without experiences at more foundational levels, highlighting the 

importance of studying informal line of best fit in collegiate statistics (Franklin et al., 

2007, p. 13). Additionally, marginalized groups of students typically have less access to 

STEM fields like statistics through their K-12 education (Basile & Murray, 2015), which 

further highlights the need to address these foundational concepts to create an equitable 

learning experience at the collegiate level. This is especially relevant considering that this 

study was conducted at Portland State University, an urban institution with a high 

percentage of students from traditionally underrepresented groups (e.g. first-generation, 

ESL, black/African American, Hispanic, women). These groups of students tend to fail or 

drop the course in far higher numbers, with 41% of black/African American PSU 

students dropping the course from 2009-2013 compared to 21% of their white 

counterparts. Universities need to better prepare these underrepresented students to 

become statistically literate for a data-driven society, and curricular advancements along 

with research investigating their impact is necessary to improve learning for these groups 

of students. Focusing on informal lines of best fit can give students an environment to use 

their common or out-of-school knowledge, which is a productive environment for 
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transitioning to more formal concepts in many mathematical settings (Gueudet et al., 

2016). With the implementation of statistics concepts at the K-12 level by Common Core 

being a relatively recent development, it will take significant time for the benefits of 

these curriculum changes to bear fruit. Professional development for primary and 

secondary teachers does not happen overnight, and the young students who benefit from 

learning statistics at a young age are several years away from collegiate courses.   

 Only a single study on informal lines of best fit with college students presently 

exists in the literature, which gave an informal presentation on one classroom of 

introductory level students’ initial strategies for line fitting and suggested strategies for 

motivating the least squares lines with students (Sorto et al., 2011). These initial 

strategies were the basis for many studies with K-12 students on informal line fitting 

(Casey, 2015; Casey & Nagle, 2016; Casey & Wasserman, 2015), but little has been done 

on collegiate students since. This study aims to add to that pool of literature while also 

introducing a novel population in CATALST students. Looking at students’ conceptions 

after the end of the course can aid in assessing how well the CATALST-inspired 

activities on regression address common conceptions students hold about statistical 

association and the line of best fit. 

Literature Review and Research Question 

 To help frame the goals of this research study, I present three conceptions 

identified in research literature that students hold about statistical association relevant to 

the lines of best fit, which are outlined in the first subsection. The next subsection 
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provides the motivation for studying lines of best fit in the CATALST curriculum and 

why this may lead to successful learning outcomes for students.  

Students’ Conceptions of Statistical Association 

Moritz (2004) describes three different types of covariation: logical, numerical, 

and statistical. Logical and numerical covariation involve more deterministic, 

mathematical forms of covariation, where logical covariation defines how the truth status 

of events varies the truth of other events (e.g. “not A = B”), and numerical covariation is 

how one quantity or variable defines a specific variation in another variable (e.g. y = x2). 

Students are frequently exposed to these ideas of covariation through expressions and 

functions in their K-12 mathematics education, but it is not clear if students view this as 

covariation. Student images of a given function tend to be focused on a visual graph 

using Cartesian coordinates, which is problematic when analyzing compositions of 

functions such as f(g(x)), which require a deeper understanding of covariational reasoning 

(Thompson, 1994).  

It is thus not surprising that students struggle with ideas of statistical association, 

which requires students to think not only about how two quantities or variables may 

change, but to think about this in a stochastic manner, where there is not necessarily a 

perfect relationship. Batenero et al. (1996) studied pre-university students’ conceptions 

about statistical association with categorical data in 2x2 contingency tables and identified 

some conceptions that students have when thinking about covariational reasoning that 

interfere with analyzing this kind of data appropriately. These conceptions include the 

unidirectional and localist conceptions, which I detail in the subsections that follow. The 
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final subsection explores research that shows the importance of considering students’ 

prior beliefs about the data.  

Unidirectional Conception of Association. Historically, it was not immediately 

obvious to statisticians that statistical association could be summarized in two directions. 

When Francis Galton first defined the idea of a numeric value for correlation (now 

known as the Pearson correlation coefficient), he made the following statement defining 

the idea of correlation to the Royal Society on December 5th, 1889: “Two variable organs 

are said to be correlated when the variation of the one is accompanied on the average by 

more or less variation of the other, and in the same direction” (Pearson, 1920, p. 39). 

Galton had not considered the possibility of a negative correlation when defining the 

measure, and it turns out that students often do not consider this possibility either. 

 Batenero et al. (1996) noticed the unidirectional conception of association when 

students interpreted data regarding a drug’s effect on reducing digestive troubles. The 

table showed a relationship between the drug and reducing digestive troubles, but 

students recognized these two variables as independent or showing no association rather 

than the inverse relationship that was presented. Cognitive psychologists studied 

association with similar tasks on adults, and found that adults reason poorly about 

covariation when the presence of one variable tends to correspond with the absence of 

another (Beyth-Marom, 1982). Moritz (2004) gave a task to students from third to ninth 

grade that involved producing a graph of students’ spelling test scores based on the 

statement “People who studied for more time got lower scores.” This statement would 

describe a negative association, but intuition about studying and test scores would 
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suggest a positive association. Many of the students produced graphs that showed a 

positive association in spite of the data that were described in the task – it’s unclear if this 

was due to the influence of prior beliefs (a topic to be discussed later) or this 

unidirectional conception of association, but it is very possible that both played an 

influence.  

 When focusing on this conception as it relates to the line of best fit, students often 

have difficulty in placing lines of best fit for data that have a flat or negative slope. Casey 

(2015) noted this when studying 8th graders’ ability to place an informal line of best fit on 

scatterplots. While students tended to have somewhat less accuracy in placing lines on 

negatively sloped data, this struggle was incredibly prominent with data that exhibited no 

association. For the task on placing lines with no association, numerous students drew 

informal lines through the data that were clearly upward sloping. Even many pre-service 

and in-service teachers who attempted this same task presented similar upward sloping 

lines to fit the data, with one teacher who refused to place a line on the data at all (Casey 

& Wasserman, 2015). Students conducting middle school science experiments struggled 

in situations where their data showed that the dependent variable did not covary with the 

independent variable. Multiple investigations with situations of association and no 

association are recommended to ensure that students are comfortable drawing 

conclusions in both situations, rather than just when there is an association (Kanari & 

Millar, 2004). 

 Thus, it seems that there are inherent difficulties in recognizing a negative 

association or a lack of association in data. One possible conjecture for the source of this 
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existing conception is how students’ mathematics education shaped students’ knowledge 

of slopes and rates of change. Teuscher and Reys (2010) noted that when secondary 

students are introduced to the ideas of slope, that concepts of steepness and slope can be 

often seen as the same concept, but slope carries information about a sign or direction 

where steepness does not. Teuscher and Rays provided a common example determining 

the steepness of a roof, in which it is possible to ignore the sign of the slope.  

“We must help our students understand that the slope of a line is calculated 
according to a particular orientation and that the sign of the slope indicates 
whether the line goes up or down… one way to extend this example and help 

students focus on the sign in addition to the steepness is to ask them to find the 
slope of the other side of the roof and compare it with the original” (Teuscher and 

Reys, p. 523).  

The concepts that students build when working with ideas of non-negative rates like 

speed and steepness may be a source of this unidirectional conception when students 

transition to analyzing statistical association. But it might simply be more natural to think 

of positive associations before negative ones – even a statistician like Galton initially did 

not consider these cases.  

Localist Conception of Association. Students often try to summarize a 

relationship between two variables by focusing on just a few data cases or just one of the 

variables presented. Batenero et al. (1996) attributed the idea of a localist conception to 

students whose strategies for analyzing contingency tables focused solely on a single cell 

of the table or only one relative frequency or percentage to draw their conclusions about 

association. For example, one student in this study claimed that there was no dependence 

on smoking and bronchial disease because there were a higher percentage of non-smokers 

in the study. Moritz (2004) also noted this tendency to focus on just one variable in tasks 
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designed to have students produce graphs that describe a particular relationship. In a 

context about studying time and test scores, students would often create graphs that 

focused on only one of the two variables, thus insufficiently conveying any idea of 

association.  

 This localist conception is not unique to covariational reasoning though, and is a 

common approach that students take when analyzing even univariate data. Bakker et al. 

(2004) noted this orientation as case-oriented, whereas an expert in statistics would 

analyze and interpret data with an aggregate perspective. This view is informative in 

summarizing the strategies students use for fitting lines of best fit to data presented in 

scatterplots, as it informs whether they see the line as relative to just a few points in the 

scatterplot or representative of the entire data set. Many students often attend to just a few 

points in a scatterplot when producing an informal line of best fit; these are typically a set 

of points that are nearly collinear or the two most extreme points (Casey, 2015). Outlier 

points are also a source of case-oriented thinking when placing a line of best fit. When 

fitting lines to data with outliers present, adult participants seemed to place lines that 

overstated the effect of outliers, even when explicitly asked to identify and disregard 

them when placing the line (Ciccione et al., 2022). Ideally, students should be fitting lines 

of best fit by placing them as close as possible to all data points simultaneously, as this 

represents an aggregate view of data, while also reflects the logic of fitting lines based on 

the ordinary least squares method. Given the complexity of managing the relationship 

between two variables, localist approaches seem natural, as they avoid the complexities 

of analyzing two variables simultaneously. Educators should consider how to best use 
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these initial localist conceptions to scaffold toward an understanding of covariational 

reasoning. 

Prior Beliefs. One last difficulty with regards to statistical association is 

emphasizing the use of data for drawing conclusions about associations and avoiding 

prior beliefs about the association to impact those conclusions. One study examined 

abilities of the “intuitive psychologist” with respect to covariational reasoning. Jennings 

and colleagues interviewed a group of Stanford undergraduates with no collegiate 

statistics course, determining their ability to judge the level of association in two 

scenarios. They presented both data on two categorical variables with no context, as well 

as contexts based on existing studies with no data provided. These students massively 

understated the actual level of association when data was provided, but quite frequently 

overestimated the level of association when just provided contextual information. Their 

main conclusion:  

“When no objective, immediately available, bivariate data can be examined, but 
prior theories or preconceptions can be brought to bear, the intuitive psychologist 

is apt to expect and predict covariations of considerable magnitude – often of far 
greater magnitude than are likely to have been presented by past experience or to 
be borne out by future experience” (Jennings et al., 1982, p. 224). 

These results agree with previously discussed findings from Moritz (2004) in which 

students created graphs that showed positive associations, reflecting their own beliefs 

rather than the negative association that was conveyed in the task. Batenero et al. (1996) 

found similar results when students claimed associations that matched intuition despite 

the data reflecting no association. Prior beliefs about a causal relationship are also a 

source of confusion in interpreting statistical association, as Estepa et al. (1999) found 

that some students analyzing scatterplots would only identify association if there was a 
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known causal link between the variables based on their previous experience. Estepa & 

Sánchez Cobo (2001) also found that some students were likely to interpret strong 

correlation coefficients with causal statements. This causal conception of association is a 

common fallacy of statistical associations necessitating a causal link, summarized by the 

statistics instructor’s mantra of “correlation does not imply causation.” Working with 

concepts like critical inference or mapping relationships between variables with causal 

diagrams may help students to manage their prior beliefs with data-based assumptions 

about these confounding relationships. This gives students the ability to know when a 

causal link can be drawn based on data given that potential confounding sources are 

controlled (Cummiskey et al., 2020). 

On the one hand, it seems that prior beliefs should be avoided in these bivariate 

contexts. Wild and Pfannkuch warn that “whenever students have contextual knowledge 

about a situation… they will come up with a range of possible causal explanations with 

little or no prompting” (Wild & Pfannkuch, 1999, p. 238). Psychological studies on 

placing lines of best fit on scatterplots of contextless data seem to reflect that adults’ 

ability to perform “mental regression” is quite strong, although the lines placed better 

reflect minimizing the orthogonal distance from points to the line rather than the vertical 

distance as done with least squares (Ciccione & Dehaene, 2021). Despite this relative 

success in placing lines of best fit informally on contextless data, this should not be an 

argument to remove statistics questions from their contexts. Contextual reasoning gives 

meaning to the statistics problems at hand, and real statistical problems are always 

entrenched in the contextual world. Gil and Ben-Zvi (2011) found that students were 

more engaged in problems with data contexts chosen to match student interests and 
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expertise. Culturally relevant teaching practices agree with this recommendation but 

stress that this implementation is not trivial; relevant contexts should be integrated into 

larger, open investigations that allow students to process and apply their knowledge in 

order to promote engagement and independent learning (Hammond, 2014). Place-based 

education is especially engaging for students conducting science experiments on-site, and 

is especially effective with students from underrepresented groups (PEEC, 2010; Leonard 

et al., 2016). Day-to-day life presents challenges that require covariational reasoning, and 

these situations are not absent of context. Given that students have difficulty questioning 

claims of association made in the media (Watson & Moritz, 1997), it is important to 

integrate these contextual aspects in a meaningful way for students and emphasize the use 

of data rather than beliefs in making conclusions. Biases in data analysis and data 

themselves are ever present in a data-rich society, and this presents numerous ethical and 

social justice issues. An example of such an issue can be seen with software like PredPol, 

a predictive policing method that uses data to predict where crimes will happen. But since 

historical crime data is collected by police forces that have targeted and heavily patrolled 

areas where marginalized groups often live, the source of this data is inherently based in 

these biases (D’ignazio & Klein, 2020). This highlights the importance for students to 

work with data sets in relevant contexts and think about potential sources and biases in 

the data collection. To address the difficulty of managing both the contextual and 

statistical in the classroom, Moritz (2004) suggests emphasizing to students having them 

temporarily set aside their beliefs about the data, and then once the covariation in the data 

is understood, integrate the contextual aspects and their own experiences to be able to 

properly question any conclusions made, or how the data were collected. On the other 
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hand, having students explicitly make conjectures about the data based on their beliefs 

and experiences and revisit them after conducting a statistical analysis may also be 

promising, and reflects the design principles of the CATALST curriculum (Cobb & 

McClain, 2004; Garfield et al., 2012). 

To summarize these three conceptions, Table 1 provides a description and 

examples of each. These three conceptions were used as a foundation for task 

development and analysis in this study. 

Table 1. Summary and examples of existing conceptions of statistical association. 

Conception Description Example 

Localist Characterizing a statistical 
association through focusing on 
only a few cases or only one 
variable. 

Informally determining the line of best 
fit on a scatterplot by connecting just a 
few nearly collinear points. 

Univariate A biased view of statistical 
associations toward those that are 
positively associated, leading to a 
mischaracterization of unassociated 
or negatively associated variables. 

Informally fitting an upward sloping 
line of best fit on data that have little 
to no association.  

Prior Beliefs Determining a statistical association 
by the contextual details rather than 
the data presented.  

Informally fitting an upward sloping 
line on data based on one’s belief 
about the two variables, despite the 
actual data showing no correlation. 

 

Background and Motivation 

To address common student conceptions about covariation such as univariate, 

localist and prior beliefs, I created statistical association activities to align with the 

learning theories of the original CATALST materials. The key characteristic of the 

CATALST curriculum that sets it apart from other simulation-based curricula is its use of 

modeling probability-based situations. This is achieved through the TinkerPlots software 

(Konold & Miller, 2018), which gives students the ability to create “sampler” devices 
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using commonly understood chance devices like spinners or containers of balls akin to a 

lottery machine. TinkerPlots allows students to have a great deal of control and 

customization of the simulation process, and animates these devices in order to connect  

with their physical counterparts. This degree of exploration and visualization allows 

students to gain a deeper understanding of how simulations generate results that can be 

used to draw statistical conclusions. The activities that I developed leverage TinkerPlots 

so that students could explore informal line fitting through placing diagonal lines freely 

on a scatterplot. This gave students a way to propose criteria to evaluate their lines of best 

fit. Students could then use this criteria to calculate a global measure of distance from the 

line, leading to criteria like least absolute deviations. CATALST students are already 

familiar with the concept of using distance or differences as a measure of interest through 

working on guided reinvention activities that focus on concepts like the mean absolute 

deviation to measure variability, or taking a difference of two means or percentages to 

draw comparisons. Employing a similar strategy to lead students to using least absolute 

deviation allows students to explore ideas of fit visually and informally before moving 

into more formal measures for determining the best fit for a line, like least squares.  

While literature does not prescribe an ideal simulation-based curriculum, there are 

some advantages provided to the CATALST curriculum over other simulation-based and 

traditional curricula, notably with the success rate of students in the CATALST course 

and with understanding the purpose of using simulation and randomization methods 

(Hildreth et al., 2018). Students’ understanding of the simulation itself can likely be 

explained by the novel use of TinkerPlots samplers. Giving students autonomy over 

model construction for simulating data reveals that students hold a variety of conceptions 



32 

on the purpose of simulating data as well as how data should be simulated (Noll & Kirin, 

2017). Students may not fully grasp how data are generated when simulating data in a 

black box environment, and thus do not easily see how the simulation can be used to 

carry out statistical inferences. Even in-service and pre-service teachers with statistics 

experience referred to the simulation process done as “magic” and hand-waved the details 

of this process in a sequence of MEAs designed to conduct inference with simulation, 

leading the researchers to recommend that an emphasis be placed upon students creating 

their own models to simulate data (Lee et al., 2016). Additionally, the creation of student 

models often reflects narrative perspectives students hold with respect to the problem’s 

contextual details, reinforcing their understanding of the data that is being simulated 

(Noll et al., 2018).  

Most other simulation-based curricula that exist use an “applet”-based approach, 

where the design of the simulation itself is pre-constructed. One such simulation-based 

curriculum is based off the Introduction to Statistical Investigations textbook (Tintle et 

al., 2015), which has been analyzed in the literature heavily in comparison studies with 

traditional statistics curricula. While the research typically reveals many advantages to 

this simulation-based curricula over traditional statistics curricula, it is notable that 

studies that examine student performance by topic area reveal that simulation-based 

curricula are not significantly better than traditional curricula for bivariate data, with the 

pre-post gains often being larger for the traditional curricula (Tintle et al., 2011, 2012, 

2014, 2018).  
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While the lone comparison study on CATALST did not include comparisons by 

topic, there is reason to believe that CATALST students may have better success with 

topics of bivariate data and lines of best fit. Simulation itself isn’t directly relevant to 

informally placing lines of best fit; however, there are aspects of modeling and simulation 

that do apply. The line of best fit allows students to simplify noisy data into a 

summarized linear relationship, just as probability models often take complex random 

outcomes and simplify them to their most necessary aspects. CATALST students have 

experience with the process of building probability-based models based on certain 

assumptions they identify, often associated with a null hypothesis. When placing a line of 

best fit, students also need to identify an assumption by defining criteria that determine 

how well a line fits. Like the assumptions placed upon probability-based models, students 

need to identify criteria they see as important in fitting lines to evaluate the connection 

between the summarized model and the data as a whole.  

In summary, I hypothesize that CATALST students may be best equipped for 

learning strategies for informal line fitting. First, their experience with statistical 

modeling and managing the assumptions made within their TinkerPlots samplers could 

potentially transfer for managing criteria to evaluate a line of best fit. Second, these 

CATALST students have already experienced guided reinvention activities that focus on 

using global differences as a measure, which may prepare them for the activities that are 

constructed for reinventing least absolute deviations. For these reasons, studying this 

population of students is an interesting and novel avenue for research. 
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 In light of the difficulties students face in learning topics of statistical association, 

this study aims to leverage the modeling-focused features of the CATALST curriculum 

and line-fitting capabilities of TinkerPlots software for teaching the line of best fit in the 

collegiate introductory statistics classroom. The research question for this study is: What 

are CATALST students’ intuitive strategies for placing lines of best fit before and after 

formally learning about least squares criterion?  

Methodology 

Data Collection Instruments 

 To answer the research questions posed, individual surveys and task-based 

interviews were conducted with students. First, I provide the rationale for why using 

instruments targeted at individual students is appropriate, and then detail the tasks that 

were used on each instrument. 

Rationale. The CATALST curriculum leverages carefully scaffolded activities 

that have students work in groups to uncover statistical concepts in TinkerPlots. Within 

the classroom, I take a social constructivist view to learning. This view assumes that 

students come with many pre-conceived notions about statistical associations and the line 

of best fit from their own experiences. It also prepares students to be able to discuss 

statistical ideas with others, and critique statistical claims that are ubiquitous in today’s 

society. However, a student’s individual knowledge is just as important for evaluating 

these kinds of statistical claims once they complete the course. Additionally, for better or 

worse, most higher education institutions still assess students via grades at the individual 

level. To improve the achievement gaps for typically underrepresented groups previously 
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identified in the introductory statistics course, individual students’ knowledge must be 

assessed and addressed.  

For the purposes of assessing students’ learning in this study, I am thus interested 

in assessing individual knowledge, representing a cognitive approach to learning. These 

two learning perspectives can be viewed as compatible, as social constructivism involves 

students shuffling between interpsychological and intrapsychological levels, where 

students bring their individual experiences to a social setting and center learning within a 

group of students. When students learn in groups, the experiences they bring to the course 

and the experiences they share with their classmates during the course affect their 

individual experiences with the activities and the data contexts. Thus, the individual 

instruments used in this study can still capture the results of students shared experiences 

in the course. The pre-survey aims to establish a baseline by capturing these out-of-

course experiences of individual students and how they impact their reading and 

understanding of data. The post-survey and interview reflect what knowledge they 

constructed working with other students and their various perspectives, but again at an 

individual level. Thus, individual surveys and individual task-based interviews are an 

appropriate choice to capture students’ learning considering these perspectives. 

Survey. Individual surveys were administered to students both before and after learning 

linear regression content in the course. These pre and post surveys contained three 

questions related to selecting the most appropriate line of best for the data. These 

questions each had six choices of lines of best fit to pick from, with one of the lines being 

the least squares line. Students were also asked to justify their choice. These task-based 
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instruments on the survey were designed to elicit student conceptions about lines of best 

fit as well as the conceptions that they constructed throughout the course. For more 

details on the survey tasks and how the design of the tasks connects to the conceptions 

identified in the literature review, see Appendix 1. A summarized list of the survey tasks 

and their details is shown in Table 2. The second task listed that focused on elementary 

students’ shoe size and height, originally used in two previous studies (Casey, 2015; 

Casey & Wasserman, 2015), is placed in the survey to potentially target students’ prior 

beliefs. Students often think there is an association between these two variables as there 

would be among adults, but the data presented here for elementary students show no such 

association. 

Table 2. Summary of survey tasks on informal line-fitting. 

Task Direction Correlation Targeted Conception(s) 

Adult age and 

heights 
None r = -0.07 Localist, Unidirectional 

Child shoe size and 

height 
None r = -0.03 

Localist, Unidirectional, Prior 
Beliefs 

Athlete height and 

long jump distance 
Positive r = 0.82 Localist 

 

Interview. The interview tasks had similar goals of targeting these existing 

conceptions of statistical association. These task-based interviews featured line-fitting 

tasks similar to those in the survey, but with students able to fully control the placement 

of the line in TinkerPlots rather than picking from one of six choices. A summary of the 

four line fitting tasks from the interviews can be seen in Table 3, with the full tasks and 

protocol shown in Appendix 2. While the survey aimed to capture students’ conceptions 

of the line of best fit before and after learning the content in the course, the purpose of the 
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Table 3. Summary of interview tasks on informal line-fitting. 

Task Direction Correlation Targeted Conception Outliers? 

Attendance 

and Grades 
Positive r = 0.66 Localist (collinearity) No 

Ocean 

Temperature 

and Salinity 

Negative r = -0.84 Localist (outliers) Yes (5) 

UberEATS 

delivery 

distance and 

tip 

None r = 0.05 Univariate No 

Accidental 

deaths by 

truck and bed 

Negative r = -0.64 Prior Beliefs Yes (1) 

 

interview was to provide a richer perspective of these conceptions. The interview format 

better allows for students to follow-up and provide more detail for their rationale in 

placing lines of best fit. This also acts as a way to triangulate conceptions observed in the 

survey data, which were often based on responses that are brief in nature. 

With the open-nature of these interview tasks allowing students to freely place 

their lines of best fit, the design of the task to target certain conceptions lies in the choice 

of data, rather than the prescripted choices of lines in the surveys. The first task thus had 

several places that would allow students to place a line that followed some collinear 

points that did not closely align with the least squares line. The second task targeted 

localist conceptions by having students need to fit a line to data that was mostly linear, 

with a cluster of five outliers1 that somewhat broke off from a very clear linear trend. 

This aimed to determine if students would appropriately incorporate the outliers into the 

 
1 There is not a strict definition I am using to identify outliers, and instead use the term informally based on 

visual separation. Students may recognize other data points in these tasks as outliers rather than natural 

variations in the data, and may not label points as outliers that were intended to be by the task design.  
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placement of their line, if they would ignore the outliers completely, or if their line would 

be placed too heavily toward the outliers. The third UberEATS task aimed to determine 

how students recognized unassociated data, and if they would place a flat line or place a 

line representing some association not displayed in the data. Finally, the accidents task 

had students work with data that exhibited a purely spurious correlation, which may lead 

students to think the data should be unassociated based on their own beliefs.  

After placing their lines, students were asked a series of follow-up questions to 

understand their thinking. First, students were asked “Why did you place your line in that 

location, and why do you think that best fits the data?” to understand generally their 

criteria for placing the lines. To get more specific answers for this, students would be 

asked “Did you use any specific criteria for placing your line?” if no criteria were 

provided initially. To get students to recall how they might have learned about placing 

lines of best fit from their CATALST course, students were asked “Do you think this 

reflects how the line of best fit was determined in your class? Did your class use different 

criteria for determining the line of best fit?” For the final task on accidents with the 

spurious correlation, students were asked “Does this plot indicate that more deaths from 

falling out of bed in a given year causes there to be fewer deaths by truck crashing into 

stationary objects?” in order to get them to think critically about the context and the 

meaning of the line, as well as challenge their understanding of the difference between 

correlation and causation.  
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Participants 

 This study focuses on one CATALST classroom of 23 students in the second 10-

week course of an undergraduate introductory statistics sequence. Of those 23 students, 

21 consented to participate in the study. This course is targeted at non-statistics majors, 

most of which come from a social science background. Some students in the course may 

have had some prior statistics knowledge from high school or other courses in their own 

departments, but for the most, this course is their primary exposure to statistics in college.  

To encourage participation in the surveys, these were assigned as a homework 

assignment to students to introduce students to ideas of line fitting and capture their 

conjectures, and again to revisit these scenarios again after formally learning the content . 

Students who did not consent to research completed the assignments for the purpose of 

the course, but their responses were removed before analysis. Of the 21 students who 

agreed to participate in the research, there were 18 who participated in both pre and post 

surveys and are included in the analysis of this study. A subset of those 18 students were 

then selected to participate in interviews. The selection of interviewed students was done 

purposefully based on their survey responses to obtain a pool of students with a wide 

variety of conceptions on the line-fitting survey tasks. Thus, the interview sample is 

somewhat biased toward conceptions that were uncommon, and is intended to show the 

full range of possible student conceptions rather than be a representative sample. Eight 

students were invited to participate in interviews approximately 1-2 months after the 

course’s completion, five of whom participated. These five students are referenced in this 

study by the pseudonyms Dabney, Dene, Garnett, Morgan, and Riley. 
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Analysis 

Analysis of the survey responses began with the development of a coding 

structure for student justifications. The justifications that students gave in the survey 

lined up with codes used to characterize student responses during task-based interviews 

in Casey (2015), which served as a basis for the coding structure. However, since this 

previous study used task-based interviews rather than surveys, student survey answers 

were often brief and only justified the choice based on the apparent overall direction of 

the relationship. These brief responses could be investigated further in an interview 

setting with follow-up questions to determine their criteria or rationale for that specific 

choice. In this setting, to characterize these kinds of vague responses, codes for 

recognizing that the data held a specific association were created. The final coding 

structure used for these tasks is shown in Table 4. Codes were not mutually exclusive for 

a given response, so students could be assigned multiple codes or none at all. All student 

responses were coded by the author and a second coder, and all disagreements in coding 

were discussed until an agreement could be reached. Analysis of the student interviews 

began with the creation of transcripts. These transcripts were then read through for 

interesting discussions, with major points of interest being the criteria students used to 

characterize their line, how they responded to perceived outliers, how they characterize 

the line of best fit itself, and how their beliefs impacted the placement of the line. This 

process was iterative in nature, with moving back and forth between the transcripts 

themselves and the summaries/themes that emerged from the transcripts. Based on these 

observations, one additional reasoning code for offsetting distances was added for the 

interviews, which was verified by the second coder. Additionally, since the interviews 
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Table 4. Summary and examples of each code for characterizing explanations from 

survey tasks. 

Code Description Examples 

Prior beliefs Characterizes the 
relationship based upon 
contextual details and 

previous experience, clearly 
not based on the given data. 

“It shows that as the person gets 
older, they get shorter and it also 
covers more data on the line.” 

“It allows you to see a trend… 
allowing for an easier 

understanding that shoe size and 
heigh show correlation.” 

Recognizes ____ 

(+/-/0) correlation 

Describes the data as having 

a positive, negative, or no 
relationship. This may be 
implicit by choice of line, if 

the data "follow" the line or 
something similar. 

“The line is not increasing just like 

the data. And the line goes in the 
direction the data is going.” 
“I chose this to be the line of best 

fit because it goes in the same 
direction and incline as the dots.” 

Equal above and 

below 

Describes a desirable quality 

of their chosen line to have 
equal number of points 
above and below it. May 

also reference ideas of 
median or characterize the 

line as representing the 
median. 

“This seemed to go through the 

middle of the data.” 
“I chose this line because it seems 
as though the data is relatively 

split between the higher and lower 
sides, so it makes sense the line is 

in the middle.” 

Closest to points Describes how the line is the 
closest to the points or a 

closest fit, or focuses on 
vertical distances in a way 

that implies this. Could also 
characterize the line as 
representing the mean or 

being in between the points. 

“The data means are going to 
hover right around that 170.0 

height across the ages, giving 
relatively close to a zero slope.” 

“The line pretty evenly divides the 
data… with similar average 
vertical distances between the dots 

and the lines.” 

Collinear/Localist Describes a desirable quality 
of the line to go through or 

go near to a selection of a 
few data points. 

“This choice seemed to connect 
through many of the points in the 

graph as well.” 
“It includes the majority of the 
student's heights and distance they 

jumped.” 
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provided richer responses than the surveys, the codes for recognizing the direction of the 

relationship were not applied. The final coding scheme applied to these tasks can be seen 

in Table 5. Codes were applied at the task level if that reasoning was used in finding their 

line of best fit for that given task. When multiple codes were selected for a task, the 

coders also selected one code to be the primary code that best reflects the main reasoning 

a student used in placing their line. As with the surveys, both the author and second coder 

determined their codes independently and resolved all disagreements. To aid in tying 

together the method of analysis and the literature, Table 6 summarizes the codes applied  

Table 5. Summary of each code for characterizing explanations from interview tasks. 

Code Description Examples 

Prior beliefs Characterizes the 

relationship based upon 

contextual details and 

previous experience, clearly 

not based on the given data. 

“They have nothing to do with one another… Just 

looking at the scenario, I don't see why there would be 

any correlation whatsoever.” 

“My mental model is that the further you drive the more 

tip you would get, but at the same time though, I don't 

know that people honestly think a lot about it.” 

Equal above 

and below 

Describes a desirable 

quality of their chosen line 

to have equal number of 

points above and below it. 

May also reference ideas of 

median or characterize the 

line as representing the 

median. 

“There's like three below here, three above, they're 

roughly equal number above and below here.” 

“They were balanced on each side and almost running 

through the center of the dots.” 

Closest to 

points 

Describes how the line is 

the closest to the points or a 

closest fit, may also 

characterize the line as 

representing the mean or 

being in between the points. 

“[I’m] determining the distance between each line at the 

line and each point. The smallest distance possible, 

approximately, but I don't have the calculations.” 

“You're trying to find the center of the data… trying to 

represent the average of the data points.” 

Collinear 

/Localist 

Describes a desirable 

quality of the line to go 

through or go near to a 

selection of a few data 

points. 

“When I look at information or data points alwa ys feel 

like they have to, at least for me, like, it's easier to 

understand if the line is going through data.”  

“[If] this was the starting point… then I think I'd be 

trying to touch more of these dots with the line.” 

Offsetting 

Distances 

Describes their line as being 

placed so that there are 

many pairs or groups of 

points whose residuals 

balance each other out.  

“You want the average distance to be balanced between 

the two sides, the average distance to the line” 

“These two [distances] right here are roughly the same 

as these two, these two [distances] over here don't have 

any counterparts. But neither does this one [data point], 

which is a bit further away from the line.” 
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to surveys and interviews and how they connect back to the conceptions of associat ion 

identified in the literature.  

Students’ final lines of best fit for each task were also compiled and analyzed 

against the least squares line in each scenario to reveal any interesting d ifferences. While 

the logic of least squares was not readily intuitive, appropriate informal methods of fitting 

a line should come close to this line. Examining differences between students’ informal 

lines and the least squares line highlighted some interesting differences in how students 

dealt with outliers, which led to a greater focus on students’ comments about outliers in 

future readings. 

Table 6. Summary and examples of existing conceptions of statistical association. 

Conception Description Example Associated Code 

Localist Characterizing a 

statistical association 
through focusing on only 
a few cases or only one 

variable. 

Informally determining 

the line of best fit on a 
scatterplot by 
connecting just a few 

nearly collinear points. 

Collinear/Localist 

Univariate A biased view of 
statistical associations 

toward those that are 
positively associated, 
leading to a 

mischaracterization of 
unassociated or 

negatively associated 
variables. 

Informally fitting an 
upward sloping line of 

best fit on data that 
have little to no 
association.  

Recognizes  
(+/-/0) 

association 

Prior 

Beliefs 

Determining a statistical 
association by the 

contextual details rather 
than the data presented.  

Informally fitting an 
upward sloping line on 

data based on one’s 
belief about the two 

variables, despite the 
actual data showing no 
correlation. 

Prior beliefs 
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Results 

This section details the results from the surveys and interviews conducted in this 

study. After reviewing the overall results from the surveys and interviews, transcripts 

from the interviews are presented and have been organized into subsections by common 

themes. 

Surveys 

 Overall, students generally had success in picking the choice that represented the 

least squares line in the survey tasks. Table 7 shows the summary tallies of students 

whose chosen line of best fit was the least squares line for the data. This relative success 

was prevalent in both the pre-survey and the post-survey; on two of the tasks, 

approximately 80% of the 18 students selected the correct line on both surveys. The only 

task that proved to be troublesome for students was the first task on adults’ age and 

heights, whose least squares line was essentially flat. However, the task on elementary 

students’ shoe size and height was also a flat-lined relationship, yet far more students 

identified the least squares line as the line of best fit when they did not on the task for 

adults’ age and heights. There were some gains made from pre to post survey on the age  

Table 7. Tallies and percentages of students who identified the least squares line. 

Task Pre-Survey Post-Survey Difference 

Adult age and heights 10/18 
(55.6%) 

13/18 
(72.2%) 

3/18 
(16.7%)  

Child shoe size and height 15/18 

(83.3%) 

14/18 

(77.8%) 

-1/18  

(-5.6%) 

Athlete height and long jump distance 15/18 
(83.3%) 

15/18 
(83.3%) 

0/18  
(0%) 
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Table 8. Tallies for the number of students that used a particular reasoning on a given 

survey task. 
 

Adults’ age and 

heights 

Elementary students’ 

shoe size and height 

Athletes height and 

long jump distance 

Code Pre Post Diff Pre Post Diff Pre Post Diff 

Prior Beliefs 1 1 0 1 1 0 0 0 0 

No 

Correlation 

8 8 0 8 11 3 0 0 0 

Positive 

Correlation 

1 0 -1 2 2 0 9 12 3 

Negative 

Correlation 

5 3 -2 0 1 1 0 0 0 

Equal Above 

and Below 

4 7 3 4 8 4 10 9 -1 

Closest to 

Points 

5 2 -3 3 4 1 2 5 3 

Collinear 0 2 2 0 1 1 2 1 -1 

Uncoded 2 2 0 3 0 -3 0 -3 -1 

 

and height task, but other tasks saw little change, with one task having one fewer student 

picking the least squares line. 

 Despite this relative success in choosing the least squares line, the students’ 

reasoning on the survey was typically not backed by detailed reasoning. A summary of 

the reasoning codes applied to each of the tasks is shown in Table 8. Typically, students 

used reasoning summarized by the equal above and below or closest to points codes on 

agiven task 50% of the time or less, and for some tasks, this was far less often. This type 

of reasoning may be infrequent due to the nature of open-ended survey questions, as 

students may have not shared their thought process fully in the prompt if they felt like a 

simple explanation like “The data seem to follow this line best” was sufficient given the 

other choices available. Of course, it’s also possible that  students actually had trouble 

articulating their reasoning in the prompt, or something else entirely. Reviewing the 



46 

interview data provides more depth of students’ understanding of informally placing a 

line of best fit.  

Students were generally more apt to use reasoning reflecting the equal above and 

below or closest to line codes on the task with an upward sloping least squares line as 

opposed to the two tasks with flat least squares lines. Students rarely leveraged prior 

beliefs in their survey responses, but when they did, the reasoning only appeared on tasks 

with flat least squares lines as well. This was expected with the shoe size and height 

context based on the potential expectation for these variables to be associated, but 

students did not commonly show this reasoning. When looking across the surveys from 

pre to post, the reasoning that students gave did not change in any meaningful way. The 

elementary students’ shoe size and height task was the only task where students used the 

two ideal reasoning codes more often, especially the equal above and below code 

increasing by 4 students from pre to post. The other two tasks were generally mixed, with 

one type of reasoning decreasing and the other increasing. It’s not readily clear why these 

shifts occurred. Shifting from only talking about the correlation or direction of the line to 

using reasoning like equal and above and below may reflect efficacy of the classroom 

intervention, but opposing shifts are curious. This may reflect the timing of the post 

survey being near finals week in the course, and students may have been less motivated 

to provide more detail that might have reflected a better picture of their reasoning. But it 

is also possible that these shifts are attributable to the classroom intervention too. 

To investigate this at the student level, tallies for the number of students that used 

a particular reasoning at least once on either the pre-survey or post-survey are given in  
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Table 9. Tallies of students who used a particular reasoning on any of the survey items 

on either the pre-survey or post-survey. 

Code Pre-Survey Post-Survey Difference Both Pre and Post 

Prior Beliefs 2 2 0  0 

Equal Above 

and Below  

11 11 0 8 

Closest to 

Points 

5 5 0 3 

Collinear 2 3 1 1 

 

Table 9. This table also shows how many students gave this reasoning code in both their 

pre-survey and post-survey, in order to track if the same students were consistently using 

that type of reasoning. These counts reveal that overall, the number of students giving a 

certain type of reasoning did not change dramatically from the pre-survey to the post-

survey. However, for the more troubling conceptions like leveraging prior beliefs or 

connecting collinear points to determine the line of best fit, all but one of the students that 

used this type of reasoning did it on just either the pre or post survey. Thus, some 

students ceased using this kind of reasoning after learning the relevant content in their 

course, but others began using this kind of reasoning in their post-survey only. It is not 

readily apparent why these opposing shifts in reasoning occurred with these students. 

Interviews 

 As previously mentioned, students were chosen for interviews to obtain a group 

with a wide variety of conceptions on the line-fitting survey tasks. The five students 

selected and the codes for their survey responses are provided in Table 10. Among these 

students, all codes arose on at least one task for either the pre or post survey, which 

indicates a decent variability in responses. Codes like prior beliefs and collinear that 

represent troublesome conceptions for line fitting came only from Garnett, who also 
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Table 10. Codes assigned to survey responses for students selected for interviews. 

 Adults’ age and heights Elementary students’ shoe 

size and height 

Athletes height and long 

jump distance 

Student Pre Post Pre Post Pre Post 

Dabney Neg. corr. No corr., 

Equal above 

and below 

No corr. No corr., 

Equal above 

and below 

Pos. corr., 

Equal above 

and below  

Pos. corr., 

equal above 

and below 

Dene Neg. corr. Neg. corr., 

Equal above 

and below 

No corr. No corr. Pos. corr., 

Equal above 

and below 

Pos. corr., 

equal above 

and below 

Garnett Uncoded Uncoded Uncoded Prior beliefs, 

collinear 

Uncoded Pos. corr, 

closest to 

points 

Morgan Neg. corr., 

Prior beliefs, 

Equal above 

and below 

Closest to 

points 

No corr. No corr., 

Closest to 

points 

Pos. corr., 

Equal above 

and below 

Closest to 

points 

Riley No corr.,  

closest to 

points  

Equal above 

and below 

No corr. Equal above 

and below, 

closest to 

points 

Equal above 

and below 

Closest to 

points 

 

provided many responses that did not reflect reasoning captured by the coding structure, 

due to a lack of clarity in the response. Morgan and Riley’s surveys seem to show a shift 

toward more expert reasoning like closest to points or equal above and below, especially 

with Morgan, whose reasoning was coded as closest to points and cited the least squares 

criterion in their reasoning throughout the post-survey. Dabney and Dene shifted to using 

the equal above and below reasoning more frequently on their post surveys, but did not  

use reasoning reflecting the closest to points code. Overall, these five students seem to 

meet the aims of the selection process to provide a wide variety of conceptions for 

informal line fitting. 

On the interview, students were able to freely place their informal lines of best fit using 

TinkerPlots. The lines they placed for each of the four tasks are shown in Figure 2. The 

least squares line is also placed on each plot in red. Overall, students seemed to place  
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Figure 2. Students’ informal lines of best fit and the least squares line for each task. 

lines informally that generally matched the least squares lines, with the exception of one 

upward sloping line on the UberEats tip and distance task, and two flat lines on the truck 

and bed accidental deaths task. However, for students that did have a downward sloping 

line on the accidental deaths task, they did seem to have a much steeper slope than the 

least squares line.  

The reasoning students gave for their informal lines varied from student to 

student, and even task to task for many. Codes applied to students on each interview task 

are shown in Table 11. In this table, each type of reasoning that appears in students’ 

explanations are marked with an “X”. Additionally, the primary reasoning that best  

characterizes how they determined their lines of best fit is highlighted in black in the  
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Table 11. Students assigned codes for placing their informal lines of best fit on each task. 

Student Task Equal 

Ab/Bel 

Closest 

to Points 

Offsetting 

Distances 

Prior 

Beliefs 

Collinear/ 

Localist 

Dabney 

Grades X X    

Ocean  X X   

UberEATS   X   

Accidents   X   

Dene 

Grades X X    

Ocean  X   X 

UberEATS  X    

Accidents   X   

Garnett 

Grades     X 

Ocean     X 

UberEATS    X X 

Accidents    X X 

Morgan 

Grades X X    

Ocean  X    

UberEATS  X    

Accidents  X    

Riley 

Grades X X X   

Ocean X X X   

UberEATS X X  X  

Accidents X   X  

 

table. For each task, the student’s code that best describes their primary or overall 

approach is highlighted in black. Two of the students were very consistent in their 

reasoning across all their tasks, where the other three students had varied  justifications 

depending on the context presented and often by how their thinking evolved throughout 

the interview. 

The following subsections will examine the transcripts of students working 

through these tasks. The first section will focus on students that used the more ideal 

criteria like closest to points or offsetting distances. The next subsection will look at how 

students dealt with the tasks that included outliers. The final subsection will examine 
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students whose reasoning aligns with previously-known, troubling conceptions of 

statistical association. 

Students with Closest to Points or Offsetting Distances Reasoning. Morgan’s 

reasoning was quite fixed throughout the interview. They heavily used closest to points 

reasoning, and were the only student to reference the least squares criterion in the 

interview. Their approach to each task was to emulate how least squares might place the 

line, and defined the least squares criterion appropriately: “There's a calculation where 

the smaller it is, the better it fits. It’s the space -- If you see my pointer, from [the line] to 

[a data point], and then they square it and then they add them all together.” Other students 

did leverage reasoning that tried to get the line as close to all the points as possible, but 

did not explicitly describe least squares in this way. 

One of the codes that only emerged in the interviews was the use of offsetting 

distances. This is a good line of reasoning for students to leverage in their intuitive 

placement of the line of best fit. The condition of having the sum of residuals for your 

line equal to zero is at least necessary for least squares, but it is not a sufficient condition. 

In Dabney’s interview, they first employed a strategy of having an equal number of 

points above and below the line for the grades task, a strategy that works well for 

symmetric data like the grades task has. However, this approach was forced to change for 

the ocean task, as there were many outliers, highlighted by the black dots in Figure 3. 

Dabney:  What makes this challenging is like, right, you know, if I were to 

move this line here, like all this data fits like beautifully on this 
line. And then we’ve got these [five outliers in black] right here. In 

my mind, that’s going to skew our line a little bit, it’s going to pull 
our line up. 
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Figure 3. Dabney’s proposed informal lines of best fit, with five outliers in data set 

highlighted in black. 

…  

This is making me actually question that idea of trying to make 
them symmetrical, like, through their data points, because I don’t 

think that there’s really a way to do that with this data set.  

… 

That makes me lean more towards using almost like the average of 

those data points, the average, dragging it as close to that middle.  

Dabney comes to the realization that for the ocean task that using a “symmetrical” 

approach is not ideal, as the outliers in the upper left of the plot of the ocean task make it 

challenging to characterize the relationship appropriately. Thus, Dabney pivots and takes 

a more “average” focused approach to fit their line: 

Dabney:  I’m almost using like the pull of these [outliers marked in black in 

Figure 3] to modify the line. 

… 
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There’s very clearly a lot of data along this [thin line in Fig. 3] that 

I’ve drawn here. Yep. And then I’ve got these outliers here [in 
red]. So in order to also accommodate those, the line has to come 
up [to the thick line in Figure 3]. 

… 

And really, what I’m doing is I’m trying to visually discern the 

weights of the value points of those data points. And so I guess by 
weight, in my mind, the further away from the group is more 
weight a data point would have… You want the average distance 

to be balanced between the two sides, the average distance to the 
line.  

Dabney now describes each point as having an amount of “pull” to the line itself. This 

seems to be how Dabney reckoned with managing the line as representing an average of 

some kind. Building on this idea of the data points pulling the line, they mention having 

the “average distance balanced between the two sides,” which was the emergence of this 

offsetting distance reasoning. On the tasks that followed, Dabney almost exclusively used 

this reasoning to justify the placement of their line of best fit, as can be seen on the  

UberEATS task. Figure 4 shows the UberEats task with several of the points that Dabney 

referenced during the interview excerpt. 

Dabney:  I’m not trying to cut the data points in half. I’m kind of using that 

same logic for like, these ones [in the rectangle in Fig. 4] definitely 

have more pull, because they’re much higher up. 

 … 

 Maybe another way to describe it is by using [a weight] analogy. I 

am trying to balance it so you know like this [“100” dot in Fig. 4] 

pulls 100 pounds and [the “40” and “30” dots] pull, I don’t know, 

40 and 30 [pounds], and so on and so forth. That’s the balance I’m 

trying to find, so that it’s being pulled the same amount on both 

sides. 

 … 
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Figure 4. Plot of the UberEats task with certain dots that Dabney describes highlighted. 

 Maybe I'm just reiterating the same concept, but this [white] dot 

here is gonna be the same weight wise as these three [black] dots 

here. 

Unlike the previous interview segment, Dabney’s reasoning here focused solely on the 

distances between points and if the distances on each side were balanced, rather than the 

idea of an average and getting as close as possible to all the points. Dabney uses informal 

weight measures to call this concept out, and then shows an example where dots on 

opposite sides of the line have equivalent weights, matching up one dot above the line 

with three dots below the line. Dene showed a similar trajectory of reasoning throughout 

their interview as well, shifting from equal above and below to closest to points and 

finally to offsetting distances as they moved through the tasks. 

Students’ Attentiveness to Outliers. Another interesting feature of the ocean and 

accidents tasks were their use of outliers. On the ocean task, students were very quick to 

notice the presence of the cluster of 5 points that were in the upper left corner of the plot.  
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Table 12. Students’ responses to outliers in the ocean task and their plotted lines. 

Student Excerpt Plot 

Dene I don’t know the correct 

wording for it. But [the black 

dots] appear [to be] pretty far 

out outliers. So I think 

because there’s a lot of 

outliers up here, the line 

would be up a little bit more 

towards those [black dots]. 

 
Morgan So I think that, like, if there’s 

a couple of points that are not 

really generally within the 

data, and they’re rare, then we 

shouldn’t follow them when 

determining the line of best 

fit. … I should probably 

consider them or maybe just at 

least two, because you know, 

not considering [these five 

black dots] is a  lot. Maybe 

they’re a little bit  valid in the 

data , but maybe to consider 

them I would go like this. 

(adjusts line from thin line to 

thick line) A little bit like that. 

 

Riley Even before I adjust the line, 

I’m noticing that you can 

almost draw a diagonal line 

[for the light blue points]. And 

then this is weird cluster [of 

black points] off to the top left 

that feels like it’s going to 

influence that line. So the first 

thing I do is basically try to fit 

the line to the data, ignoring 

the data on the top … Now I 

have to take into account [the 

black points]. (adjusts line 

from thin line to thick line) So 

I am totally guessing at this 

point that it would raise the 

line by some number. 
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In addition to Dabney recognizing this, three other students explicitly mentioned them, 

often as soon as they began working on the task. These three students lines and reasoning 

for their placement can be seen in Table 12. Morgan and Riley made significant 

adjustments to their line upon noticing the impact of the black outlier points. Dene did 

not have a similar adjustment in their interview, but did initially place their line with a 

very steep slope, so much that the line itself seems to touch one of the outlier points. 

 In contrast to this task, students were much less attentive to the outlier in the 

accidents task. Only two of the students made mention of this outlier, and in both cases 

seemed to make minimal adjustments to their line when reasoning through it. These two 

students’ reasoning and plots of their lines can be seen in Table 13. While both students  

Table 13. Students’ responses to outliers in the accidents task and their plotted lines. 

Student Excerpt Plot 

Dabney So I'm going to pull it down a little bit. This 

guy is a pretty big outlier… But I'm in my 

mind wondering how much would this 

[black] outlier pull this down? … I'm 

adjusting for this big outlier… (adjusts 

from thin line to thick line) and I think I'm 

getting pretty close to it. 

 
Dene I was just trying to take into account that 

this [black dot] would really drag the data 

down, but I don't think it would drag it 

down so dramatically, because even these 

two [white dots] are pretty close, like, 

pretty in sync with all of the other data… 

(adjusts from thin line to thick line) I’ll 

probably put it there, because I think this 

would have more of an effect on it than 

what I originally had it. 
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made some adjustments to their downward sloping lines after recognizing the outlier’s 

impact on the line, the actual adjustments they made were minimal. Additionally, it can 

be seen from Figure 2 that all three students who chose downward sloping lines were still 

too steep relative to the least squares line, thus not fully accounting for the effect of that 

outlier value. The third student who chose a downward sloping line, Morgan, did not 

specifically call this out as an outlier at all. The other two students placed completely flat 

lines instead, thus not seeing this point as an outlier from their perspective. 

Students with Reasoning Reflecting Previously-Known Conceptions. There 

were a few cases of students whose reasoning reflected some of the conceptions of 

statistical association identified in previous literature. An example of this can be seen in 

the Ocean task with the cluster of outliers. The only student that did not explicitly call out 

these outliers was Garnett. As shown in Table 11, Garnett’s reasoning was primarily 

localist in nature, and this is in part why this was not called out specifically. Initially, 

Garnett had placed a line that went directly through the cluster of points in the corner as 

shown by the thin line in Figure 5. They gave this justification: 

Garnett:  I feel like I focus more on the clusters towards the end of the data. 

Because I feel like that probably leads to a better explanation to 
where it kind of starts going down. 

 … (adjusts line from the thin line in Figure 5 to the thick line) 

It kinda looks weird like this to me. It doesn’t seem like it’ll take 

all the information… not all the dots are going to be that close to it. 

Garnett’s initial intuition was to draw the line from corner to corner on the graph, but 

made some changes after some back and forth with the interviewer. Still, Garnett is 

uncomfortable with the placement of this line. The interview evolved into a discussion 
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Figure 5. Garnett’s initial and final line placed for the ocean task. 

about Garnett’s desire for having a “starting point” to place the line, and how this data 

did not allow for an easy selection of a starting point.  

Garnett: I think about where the placement starts. I mean, I can just assume 

that it’s kind of like, decreasing towards the right. But if someone 
was also looking at this, thought it was increasing upwards. I don’t 
know how that would work. But I think that, you know, this line 

kind of leads you to not put a starting point to it. 

Interviewer: Can you clarify what you mean by like, putting a starting point to 

it? 

Garnett: If I think that the starting point is [in the cluster of black points], 
and it’s going down, I’m probably going to put [the line] up [in the 

middle of that cluster] towards going down. But if I’m trying to not 
label a starting point, but like trying to see if there’s a relation with 

the dots not touching the line, then I think most of the time, we’ll 
put it where it’s kind of even [between the cluster of black points 
and the rest of the data]. 

   … 

Interviewer: Okay, so having the line go through a bunch of points is definitely 

an important criteria for you. But it sounds like also here, you’re 

also weighing trying to go through the middle of the points. 

Garnett: Yeah. Well, I feel like when I look at information or data points, I 

always feel like … it’s easier to understand if the line is going 

through data. Just because like visually, [the five black points] 
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stand out to me. So if I had, let’s say, in this case, if I had this line 

[going through the cluster], and it’s kind of touching [a dot in the 

outlier cluster] now. But if it’s kind of touching [a dot in the lower 

right corner], then like, it makes me interested in comparing [the 

two previously mentioned points] and trying to find out the relation 

between both data points, and what that has to do with the 

problem. 

Garnett is having a struggle with placing their line while balancing between this idea of a 

“starting point” and going through a majority of the points on the graph. While Garnett 

placed the line for this task in an appropriate way, which balanced the outliers with the 

majority of the data, their initial reasoning and preferences for placing lines was heavily 

based on finding two critical points to connect with the line of best fit. When the resulting 

line did not go through a large number of points, Garnett decided to use a line that split 

the difference between these two overall localist ideas. Their sensemaking about placing 

lines of best fit seems to be centered around trying to compare dots at opposite ends of 

the line that the line goes through, and placing the line in the middle does not seem to 

give Garnett a way to interpret their line in a meaningful way.  

Garnett ran into a similar situation with the accidents task in being torn between 

two different starting points. They were debating between drawing a mostly downward 

sloping line, ignoring the outlier marked in black from the plots of Table 10, or placing a 

completely flat line that used that outlier point as a starting point. Garnett’s initial 

reasoning led them to place a downward sloping line, as they seemed to recognize the 

downward trend in this plot. However, Garnett then changes to a flat line, as the line did a 

good job of “separating the data" for them. This task’s context would suggest that the two 

variables are completely unrelated, but Garnett did not make it explicit  that this was their 

prior belief, only mentioning that the scenario was “weird” without discussing the link 
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between these variables. This suggests that their reasoning was more grounded in placing 

the line based on a starting point and how they believe it best fits the data.  

 Riley was the other student to place a completely flat line on the accidents task. 

However, unlike Garnett’s localist reasoning, Riley’s line of reasoning was firmly rooted 

in prior beliefs. 

Riley: I think that there won’t be any correlation between these two 
things? They have nothing to do with one another. … I mean, just 

looking at the scenario, I don’t see why there would be any 
correlation whatsoever. … I would just placed the line as a 
horizontal line. If I didn’t know what the data was, I would 

probably bifurcated this way, based upon what I’ve talked about 
before. 

Interviewer:  If I had just shown you this plot, with no contextual information at 

all, would you have placed this line any differently? 

Riley: Either flat like this, because that sort of bifurcates the data or, 
again, using my ignoring the extremes at first and basically trying 

to divide the data in two, I would do something [downward 
sloping]. 

   … 

Interviewer: Do you feel like what you know about the situation, should that 

impact how you placed the line? 

Riley: Yeah, I think so. Absolutely. I mean, otherwise, I’m just like 

fumbling in the dark. I mean, if you if you look at like sugar and 

diabetes, we know in the world that has a relationship, right? … 

But if you look at like, beds and trucks, they that one has nothing 

to do with the other one apart from they both cause people to have 

trouble. … So it feels like you have to factor in a hypothesis when 

you look at this there. And the hypothesis is there is some 

relationship between these two things. And if you just can’t believe 

your hypothesis in the first place, because it just seems like a 

random thing to say then it doesn’t feel like you should be able to 

play that line with any sort of surety whatsoever. 

Riley was adamant on not trying to use the data alone to guide their judgment on placing 

what they believed the line of best fit to be, sticking to a flat line. It was not reasonable to 
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Riley to place any relationship between two variables whose connection seemed 

nonsensical. When asked how Riley would place the line if there was no context 

presented in this scenario, Riley did place a downward sloping line, but did not think it 

appropriate to hypothesize such a relationship in this context and stuck with the flat line. 

The last conception of association identified by previous literature was the 

univariate conception of association, where students often struggle to properly identify 

associations that are non-positive, especially with unassociated data. The UberEATS task 

was the lone task that provided students an opportunity to fit a line to unassociated data. 

Four of the five students were successful in placing a flat line, with Garnett placing the 

lone upward sloping line. Their explicit reasoning was in line with the reasoning they 

gave on both the Ocean and Accidents tasks with connecting a line to a starting point. 

They also briefly referencing a belief about the context that a longer distance should 

result in a higher tip. It is impossible to decisively know if Garnett had an internal bias to 

look for an association in this unassociated data based on their reasoning, but it is 

reasonable to believe this could be the case given their beliefs about the situation and 

what is known based on previous literature.  

Discussion 

 Students’ conceptions of the line of best fit revealed by this analysis yield some 

promising features of what they gained from this CATALST course, but also highlight 

the many challenges in learning statistical association topics. This discussion will 

highlight three main themes: the existing conceptions from previous literature that still 
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persist, the use of offsetting distances as a line of reasoning, and students’ approaches to 

tasks that feature outliers. 

Existing Conceptions 

 While students were mostly successful in choosing an appropriate informal line of 

best fit in both the surveys and interviews, the reasoning that students gave for their 

choices did not always reflect reasoning that is consistent with how the least squares line 

is placed. In the surveys, students did not commonly use ideal criteria like equal above 

and below or closest to points. This could potentially be a result of students giving vague 

responses without the opportunity to follow-up, as the most common reasoning students 

gave was just observing the overall direction of the line as upward, downward, or flat. 

However, there was little change in the prevalence of equal above and below or closest to 

points reasoning from the pre-survey to the post-survey, which may have been expected 

after learning this content in the CATALST course. It may seem that students have strong 

beliefs based on their existing conceptions when reasoning through these tasks – do 

students know the criteria for lines of best fit and just experience difficulty applying it 

informally? While students were able to informally fit lines in TinkerPlots and measure 

how well it fits the data as they adjusted it, it may not be necessarily obvious or intuitive 

to connect these activities to the least squares criterion. Squaring distances between the 

dots and the line is not simple to do visually, and so students may rely on some sort of 

heuristic for doing this. This suggests that future work in this area should focus on how to 

improve students’ informal line-fitting strategies, given that learning least squares alone 

does not seem to provide students with a rich understanding of how to visually fit a line 
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and justify its placement. It may be useful to emphasize other criteria for fitting lines to 

support students’ statistical literacy; I suggest the offsetting distances criteria, which will 

be discussed in the next section.  

 Students in the surveys and interviews still exhibited known conceptions of 

association identified in previous research literature, primarily related to the univariate 

conception, localist conception, and prior beliefs. In the surveys, two of the tasks were 

overall relatively flat lines of best fit, yet many students’ justifications for these tasks 

were based on recognizing some positive or negative correlation in the data. Thus, it 

seems that even after working with activities on informally fitting lines to scatterplots, 

students will still seek associations in data even if they are not present. It is also worth 

noting that while the use of prior beliefs was generally rare, it was more common in 

student reasoning in tasks with unassociated data. On the surveys, one student used prior 

beliefs on each of the two uncorrelated tasks in both the pre-survey and post-survey, but 

reasoning with prior beliefs was completely absent on the track athletes task which 

exhibited positive correlation. On the interviews, Garnett’s informal line given on the 

UberEATS task was upward sloping, where they referenced their prior beliefs about the 

distance and tip being related to each other in their justification. It seems that when 

students are faced with uncorrelated data, they may leverage other sources of reasoning 

like prior beliefs to validate what they are seeing in the data, even if that may validate an 

inaccurate view of the correlation, which reflects the literature on the univariate 

conception and prior beliefs (Casey, 2015; Casey & Wasserman, 2015; Moritz, 2004). 

While beliefs about data are valuable in analyzing data, as seen with Riley objecting to 

the notion of the spurious correlation in the accidents task being anything meaningful, 
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these prior beliefs can also lead to biases in data analysis. Prior beliefs that are based in 

social prejudice can impact data analysis, leading to companies, policy makers, or others 

that hold power having a negative impact on marginalized groups. Statistical literacy 

should incorporate prior beliefs in such a way so that these biases can be recognized and 

challenged appropriately. 

Offsetting Distances 

 Students use of offsetting distances reasoning is a new finding in this study. In 

previous studies, a similar form of reasoning was applied to pairs of offsetting points, 

exclusively when pairs of points had similar residuals but in opposite directions. In Casey 

& Wasserman (2015), only two teachers out of 19 used this kind of reasoning. Offsetting 

distances reasoning was used by 3 out of the 5 interviewed students in the present study, 

and was used by students in a way that expanded beyond just pairs of data points. The 

students that used offsetting distances typically would group one data point with a large 

residual with multiple points with small residuals in the opposite direction. This was 

exhibited with Dabney’s reference to one point “pulling 100 pounds” and another pair of 

points pulling “30 or 40 pounds” each in the opposite direction. Thus, it seems that this 

conception extends to the idea that in least squares, the sum of residuals should be zero. It 

is possible that students gained this conception through the interactive tools they used in 

TinkerPlots, which gave students the ability to adjust and tweak their lines of best fit, 

visually seeing the residuals on the screen. While this is not a sufficient condition for 

least squares, it is at least a necessary condition, and thus is a reasonable and very visual 

strategy that students can employ that is consistent with least squares. 
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 It is also worth noting how students offsetting distances reasoning evolved 

throughout the interview, with this criterion emerging out of necessity in the presence of 

data with outliers. Both Dabney and Dene’s primary reasoning for the first task on grades 

data was based in placing an equal number of points above and below the line. As this 

task featured data that was relatively symmetric and without outliers, doing this strategy 

would produce a line that is in relatively close agreement with least squares; however, as 

the second task on ocean data introduced outliers, this necessitated a change in reasoning 

from both students. Both students in this task leveraged reasoning consistent with the line 

representing an average or being as close to all points as possible. But Dabney also used 

offsetting distances reasoning in this task, and leveraged this throughout the rest of the 

interview as their primary type of reasoning. Dene’s trajectory to using offsetting 

distances reasoning was a bit slower in comparison to Dabney, but emerged by the final 

task on accidents. This developmental process that happened in two of the interviews 

may suggest that students leverage this kind of reasoning by the necessity principle. Both 

the ocean and accidents tasks feature outliers in the data, which are tricky to balance and 

account for when determining the line of best fit. The timing of offsetting distances 

emerging in each interview may suggest that students needed to leverage some other 

criteria in order to justify their informal line of best fit for data with these outliers present.  

 Considering the unintuitive nature of least squares, and how students seemed to 

pick up offsetting distances reasoning intuitively through the interviews, this method may 

be intriguing to use in the classroom when students fit lines of best fit informally. While 

there are many examples of inappropriate lines that have their sum of residuals equal to 

zero, use of this criterion along with recognizing the general direction of the trend would 
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likely produce a relatively strong approximation of the least squares line. This should not 

replace the use of more formal criterion like least squares, but it may be a more 

approachable method for students when learning about placing the line informally. The 

use of technology like TinkerPlots can then be used to interactively adjust lines while 

criteria like least absolute deviation or least squares updates as the line is adjusted, 

providing a transition to more formal methods of fitting lines to data. 

Corner and Middle Outliers 

 Another feature that emerged in these interviews is the difference in how students 

handled outliers depending on where they appeared in the plot. The ocean and accidents 

tasks both presented students data that were negatively correlated and had outliers on the 

left side of the plot. For the ocean task, there were 5 outliers above the line. and in the 

accidents task there was one outlier below the line. This gives two different visual 

appearances to these values: in the ocean task, the five outliers appear in the far corner of 

the graph, where the single outlier in the accidents task is in the middle of the graph 

relative to the y-axis. This difference seemed to impact how students placed their lines of 

best fit. All five students placed accurate lines on the ocean task relative to the least 

squares line. Many students here leveraged a strategy of trying to place the line 

disregarding outliers first, and then adjust the line toward the outliers in a way that 

balances the differences between the outliers and the rest of the data. However, for the 

three students that did place a downward sloping line on the accidents task, all placed a 

line that was much steeper than the least squares line, seemingly not accounting for this 

outlier value appropriately. The previous transcripts revealed that two of these three 
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students explicitly mentioned this value as an outlier. Thus, it does seem that students are 

recognizing outliers in the middle of the graph, despite not accounting for its effect on the 

line of best fit enough. This reveals a point of emphasis in teaching lines of best fit and 

the impact outliers have on them, as it seems that students may not fully recognize the 

impacts of the middle outlier. It is important to note though that since the ocean task had 

5 outliers where the accidents task only had one, the number of outliers may be playing a 

factor too in how students accounted for this in their informal lines. Future research that 

specifically focuses on students’ perceptions of corner and middle outliers that removes 

confounding factors like this may be further informative on this topic and how it should 

inform teaching about outliers in this setting. 

Conclusions and Future Work 

 On the whole, lines of best fit and understanding how to informally place one is a 

challenging concept for students. Even with students learning in a simulation-based 

curricula with interactive activities that allow for students to experience informal line 

fitting through the TinkerPlots software, students exhibited reasoning that reflected many 

already known conceptions of association. Some may believe that informally fitting lines 

of best fit is not a necessary skill for students that have already learned to fit lines with 

least squares using technology. However, I would argue that in order to be statistically 

literate, one should be able to read and interpret scatterplots. Being able to recognize the 

correlation in a scatterplot is one step to statistical literacy, but being able to visually fit a 

line or other statistical model to data is crucial as well to being able to process noisy data 

into a signal and summarize the relationship. It also leads into a deeper understanding of 

the line of best fit as a conditional mean function of the y-variable, and how residuals act 
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as the variance from this model. To that effect, there is much work to do in order for 

students to reason with informal lines of best fit effectively. Future work should focus on 

more interventions that can successfully teach students these strategies. The use of the 

offsetting distances criteria seems like a natural start for students given its connection to 

least squares and how intuitively students used it in this study. TinkerPlots already 

supports an interactively updating sum of residuals, which is displayed similarly to the 

sum of absolute residuals that students use as the criteria to place their line informally.  

 The results on outliers here also provides an interesting avenue for future 

research. Real world data is often messy with noise and outliers, and how students 

recognize and account for outliers in their interpretations of data is very relevant to 

statistical literacy. This study posits that students may not appropriately account for 

outliers on scatterplots that appear in the middle of the plot when assessing the statistical 

relationship between the two variables, even if they recognize the data points as outliers. 

Studies that remove more of the confounding variables that appeared in the tasks from the 

present study like the number of outliers could help to confirm this finding and further 

explore students’ understanding of outliers in scatterplots.   
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Appendix A: Survey Questions 

The following section details the tasks presented to the students. Comments in the 
tables are provided to give context to the design of the tasks and were not presented to 

students.   
 

Task 1: Adult age and height 

The image below shows a plot of 25 adults and their ages and heights (in centimeters). 

 

Figure 6. Age and height scatterplot as shown in survey. 

The choices below all show the same plot of 25 adults' ages and heights with a line drawn 

over the data. Which of the six lines do you think is the line that best fits the given data? 

Table 14. Answer choices for age and height scatterplot in survey. 

Line Choice Comments 

 

Reflects the least squares line for this 
data. One of two relatively flat line 
choices. 
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Choice goes through several collinear 
points, targets a localist conception of 

association. One of two negatively sloped 
line choices. 

 

Choice goes through several near-
collinear points, targets a localist 
conception of association. One of two 

positively sloped line choices. 

 

One of two negatively sloped line choices, 

but does not have collinear points. Not 
very steep though, so this choice may 

detect if students believe there is a slight 
negative association to the data. 

 

Choice goes through several near-
collinear points, targets a localist 

conception of association. One of two 
relatively flat line choices. 

 

One of two positively sloped line choices, 
but does not have collinear points. Not 
very steep though, so this choice may 

detect if students believe there is a slight 
positive association to the data. 
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Task 2: Child shoe size and height 

The image below shows a plot of 8 elementary students shoe size and their height in 

inches. Each circular point represents an observation for one elementary student. 

 

Figure 7. Shoe size and height scatterplot as shown in survey. 

The choices below all show the same plot of elementary students’ shoe size and height 

with a line drawn over the data. Which of the six lines do you think is the line that best 

fits the given data? 

Table 15. Answer choices for shoe size and height scatterplot in survey. 

Line Choice Comments 

 

Choice goes through three collinear 

points, targets a localist conception 
of association. One of two negatively 

sloped line choices. 

 

Reflects the least squares line for this 

data. One of two relatively flat line 
choices. 
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One of two positively sloped line 
choices, targets a univariate 

conception of association without the 
collinear points present. Students 
who believe that shoe size should be 

related to height may also choose this 
based on their prior beliefs. 

 

Choice goes through three collinear 
points, targets a localist conception 
of association. One of two positively 

sloped line choices, targets a 
univariate conception of association. 

Students who believe that shoe size 
should be related to height may also 
choose this based on their prior 

beliefs. 

 

One of two negatively sloped line 

choices, but does not have collinear 
points. 

 

Choice goes through three collinear 
points, targets a localist conception 

of association. One of two relatively 
flat line choices. 
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Task 3: Athlete height and long jump distance 

A high school track and field coach collected data on their 12 students’ height and their 

long jump, both measured in inches. The data were organized in the plot shown below:  

 

Figure 8. Height and distance scatterplot as shown in survey. 

The choices below all show the same plot of these track students' height and long jump 

distance. Which of the six lines do you think is the line that best fits the given data? 

Table 16. Answer choices for height and distance scatterplot in survey. 

Line Choices Comments 

 

One of three upward sloping line choices, 
where this choice reflects a line that is 

potentially too steep. 

 

Choice goes through three collinear 
points, targets a localist conception of 
association. The only relatively flat line 

choice.  
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The only choice of a completely vertical 
line. Reflects that students may want to 

divide the data points into equal halves, 
like with the “equal above and below” 
code, but does so in a way that does not 

characterize the relationship.  

 

The only choice of a negatively sloped 
line. Reflects that students may want to 
divide the data points into equal halves, 

like with the “equal above and below” 
code, but does so in a way that does not 

characterize the relationship. 

 

Reflects the least squares line for this 
data. One of three positively sloped line 

choices. Notable that this line does not 
equally divide the data above and below 
it. 

 

Choice goes through five near-collinear 
points, targets a localist conception of 
association. One of three positively sloped 

lines. 
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Appendix B: Interview Task Protocol 

Students will be presented with scatterplots in TinkerPlots and a line tool. All students will be 

reminded/introduced to how to adjust the line on the plot, which is especially important for 

traditional students who have not used TinkerPlots before. The interviewer will open these TP 

files on their computer and have the student request for computer control via Zoom so they can 

control the line. 

Four scatterplots and contexts will be presented to students: 

Table 17. Details of the four line-fitting interview tasks. 

Context Scatterplot Comments 

Grades and 

attendance 

 

Intended to be a more 
straightforward line 
placement task to gain a 
baseline for students 
understanding of how to 
place a line without targeting 
a specific conception. 

Ocean 

temperature 

and salinity 

 

Targets a localist conception 
of association by having a 
cluster of dots separate from 
the rest. Students’ placement 
of lines may aim to reflect 
how much they account for 
these dots in their line 
placement. 

UberEATS 

distance 
and tip 

 

Targets a univariate 
conception to determine if 
students recognize data with 
no slope. The context may 
also challenge students’ prior 
beliefs if they believe a 
longer delivery should 
correspond with a higher tip. 

Accidental 

deaths 

 

Targets students prior beliefs 
by presenting two variables 
that seem completely 
unrelated yet display a purely 
spurious correlation.  
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For each of the four scenarios, ask students the following questions: 

1. Can you explain to me why you placed your line in that location, and why you 
think that best fits the data? 

2. Did you use any criteria for placing your line?  
o Expected criteria that students may provide: 

▪ Through as many points as possible 

▪ Equal number of points on both sides 
▪ As close to all points as possible 

▪ Reflects expected relationship based on context 
▪ Through the first and last points (leftmost/rightmost) 

3. Do you think this reflects how the line of best fit was determined in your class, or 

did your class use different criteria when determining the line of best fit? 
 

Unstructured follow-up questions based on interesting features of students’ responses 
may be asked to gain insight into their line-fitting strategies. 

 

Additionally, for the accidents task, ask students if the plot indicates that more falling out 
of bed deaths causes there to be fewer deaths by truck crashing into objects. 
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Chapter 3: Comparing Student Outcomes on Testing for a Statistical Association 

for Traditional and Simulation-Based Curricula 

Abstract: Simulation-based inference has been advocated by educators and researchers 

for its power in helping students understand statistical inference at a deeper conceptual 

level. This study adds to the wealth of comparison literature by focusing on student 

approaches to conducting hypothesis tests for the slope of a least squares line. This study 

also focuses on the Change Agents for the Teaching and Learning of STatistics 

(CATALST) curriculum, which is unique among simulation-based curriculum for its focus 

on probability modeling in TinkerPlots. Students completed pre/post-survey instruments 

and task-based interviews to track the effectiveness of both a simulation-based 

curriculum and a traditional curriculum to compare their effectiveness. Results revealed 

that students from the simulation-based course not only showed greater progress in their 

learning from the classroom intervention, but were more prepared to apply inferential 

concepts to a novel data scenario before formally learning this content. These results 

have implications for teaching in emphasizing the importance of generalization in 

hypothesis testing and distinguishing testing from other descriptive methods in linear 

regression like correlation. 

Introduction 

 For at least the past decade, the proliferation of high-powered computers has 

made statistics and data science more accessible. However, the introductory statistics 

curriculum has not caught up with the technology available, and the traditional 

curriculum focused on rote algebraic statistical tests still prevails as the consensus 

curriculum. Cobb (2007) argued that the introductory statistics course should emphasize  
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key inferential concepts and leveraging technology through simulation-based techniques 

like bootstrapping and randomization tests. Since Cobb’s appeal for this shift toward 

simulation-based curricula, a plethora of research indicates generally positive student 

outcomes in these courses in comparison to the traditional curriculum (Chance et al., 

2016, 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014). 

 Statistics educators have also taken a particular focus on students’ modeling 

techniques. Modeling itself is an essential practice of statistics and should be an 

important aspect of the introductory statistics class. One curriculum that gives students 

authentic modeling experiences is the Change Agents for Teaching and Learning 

STatistics (CATALST) curriculum (Garfield et al., 2012). This curriculum aims to have 

students explore statistics concepts by both building probability models and carrying out 

simulations using those models. Many simulation-based curricula focus on students 

working with applets that serve as prepared models to students, giving students the ability 

to adjust just the parameters of these models to carry out simulations. Students may gain 

some insight by recognizing the consequences of adjusting these model parameters, but 

do not get the authentic, expressive experience of building statistical models from scratch 

(Doerr & Pratt, 2008). This particular focus of the CATALST curriculum on modeling 

gives students opportunities to model real world phenomenon as statisticians do 

themselves, which best aligns the introductory statistics course with actual practice. 

 In a traditional introductory statistics course, students are typically only exposed 

to models through a simple linear regression model, and the typical presentation of this 

topic is very static in nature. The regression line or least squares line, which acts as the 
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model for the relationship between the two variables, is typically found through 

procedures or computation. There are also many other statistical concepts that accompany 

linear regression, including descriptive measures like the correlation or r-squared value, 

as well as inferential techniques such as the t-test statistics and p-values that are used to 

test for a significant linear relationship. Students will likely rely on some form of 

technology to compute these statistics associated with linear regression, both the 

descriptive and inferential. The processes for computing such output would be very 

procedural in nature, leveraging some software package like Excel, R, or SPSS.  

In the CATALST classroom, there is more of a distinction in the methods used to 

compute descriptive measures and to carry out inferential tests. Where students in a 

traditional class could carry out a test for the slope of a least squares line with just a few 

clicks of a dialog in their respective software package, students in the CATALST 

classroom are engaged in a modeling and simulation process that has them engage with 

many different statistical aspects of the process. In this paper, I argue that the CATALST 

curriculum is more effective than a traditional curriculum in giving students a greater 

sense of the purpose and interpretation of statistical inference than students in a 

traditional statistics course.  

When CATALST students carry out an inferential test for the slope of the least 

squares line, students must model the scenario appropriately under the null hypothesis in 

their TinkerPlots sampler. Then, they must use this sampler to produce one sample of 

data and determine the appropriate statistic of interest that best addresses their research 

question. Finally, they simulate data from their model many times to produce a sampling 
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distribution and find a p-value to draw their conclusions. Carrying out a test in this way 

requires students to carefully think about relevant aspects of the data, context, and 

statistical question they are trying to answer. This enables students to actively think like 

modelers rather than just follow procedures for finding results of a hypothesis test. I 

hypothesize that this multifaceted modeling and simulation process may help students set 

apart the key interpretations and conclusions drawn from significance testing and 

descriptive statistics like correlation. In a traditional course, calculating the correlation or 

carrying out a statistical test have near identical procedures: load the data, and then click 

the appropriate dialog, which may make distinctions in their purposes and interpretations 

less clear. To this effect, this study aims to investigate students from two different 

curricula (a CATALST-inspired introductory statistics course and a traditional 

introductory statistics course) and compare their approaches to carrying out a significance 

test for the slope of a regression line.  

Background and Literature Review 

 This section details the relevant literature and motivation for conducting the 

present study. First, I will detail the importance of generalization in inference and how 

this should be set apart from descriptive statistics. Next, we will look at example data 

scenarios that highlight the relationship between correlation and inferential methods. 

Finally, we will highlight the importance of modeling in simulation, and how the 

CATALST curriculum is best posed to teach students the importance of generalization 

and how it conceptually differs from descriptive statistics like correlation.  
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Generalization 

Statistical association and lines of best fit are a key component of the introductory 

statistics course. It is often the deepest topic in terms of both conceptual understanding 

and computation that students experience in their introductory course. On top of this, 

students must also understand the purpose of significance testing for linear relationships 

as a method to generalize results from a sample. Generalization of results is a key tenet of 

inferential reasoning, and students must be able to set apart the purposes of exploratory 

data analysis and significance testing (Makar & Rubin, 2009). I conjecture that this may 

be difficult for students in a traditional, algebra-based introductory statistics course. The 

procedures for both descriptive and inferential statistics in linear regression rely heavily 

on computers, making it more challenging to set apart their conceptual differences. The 

computation of p-values relies heavily on computation in any data scenario in the 

traditional classroom, as it relies on a calculator or computer to perform a calculus-based 

computation of area under a distribution function. For concepts typically taught earlier in 

the course like tests of means or proportions, procedures for the computations of 

descriptive statistics are potentially approachable to students conceptually. Students 

likely know how to calculate proportions or means by hand, even if software is still 

typically used to do this. Knowing how to calculate these descriptive statistics may set 

them conceptually apart from computing the p-value, which often is computed by 

software and may appear as a “black box” procedure to students. This idea is supported 

by comparison studies that show students from simulation-based courses make 

significantly greater improvement on test items that focus on inferential reasoning by the 

end of the course (Chance et al., 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014). 
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However, when learning linear regression, both descriptive and inferential statistics act as 

a black box to students in a traditional class. Students typically lean heavily on software 

for descriptive statistics like residual standard error, correlation, and the slope/intercept 

for the least squares line, and are less familiar with how to calculate these measures 

themselves. This may lead to problematic conceptual understanding if students obscure 

the differences in purpose between these two methods. Correlation and p-values are often 

described with similar descriptors like the “strength” of results, adding to the potential 

conflation of their purpose. While measures like correlation may give a descriptive 

measure for the strength of association within a given data set by measuring how close 

data values are to the least squares line, examining this value alone cannot confirm a 

generalizable result, and may also discount potential meaningful relationships that do not 

have a correlation value typically seen as representing a strong relationship.  

Relating correlation and p-values 

To illustrate the relationship between correlation values and significance, Table 

18 shows the corresponding t-test statistics at a given sample size and correlation, with 

the statistical significance marked by asterisks. Note that tests of correlation and tests of 

the slope of a line of best fit produce the same test statistic and p-value. First, values 

typically associated with “strong” or at least “moderately strong” correlations around 0.5 

to 0.7 are not significant at the 0.05 significance level for very small samples like n = 10. 

That being said, in the age of data science and big data, most analyses are not done on 

very small samples. What is more notable is that statistical significance at the 0.05 level 

can be achieved with large sample sizes and correlation values typically thought of as a  
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Table 18. Values for t-test statistics for the given correlation and sample size values. 

Correlation n = 

10 

n = 20 n = 30 n = 50 n = 100 

0.2 0.58 0.87 1.08 1.41 2.02* 

0.3 0.89 1.33 1.66 2.18* 3.11** 

0.4 1.23 1.85 2.31* 3.02** 4.32*** 

0.5 1.63 2.45* 3.06** 4.00*** 5.72*** 

0.6 2.12 3.18** 3.97*** 5.20*** 7.42*** 

0.7 2.77* 4.16*** 5.19*** 6.79*** 9.70*** 
*p < 0.05, **p < 0.01, ***p < 0.001 

“weak” association. While large sample sizes often bring up caution about practical 

significance, this still highlights potential variables which could be informative to some 

linear model may not require correlation values normally thought of as strong. A low or 

“weak” correlation value may not provide an accurate prediction, but if the relationship is 

significant, it does inform that the typical or average value for the response variable 

changes with the predictor. Thus, only looking at a correlation value to determine the 

strength of a relationship may lead to ignoring potentially informative relationships.  

To illustrate this idea, I present two example data sets to examine. The first 

examines the relationship between the average environmental temperature and energy 

used by a residence in a given summer month. Obtaining this data is not terribly difficult, 

especially for a utility that is already collecting usage data for billing purposes. Now 

consider another data scenario that examines the relationship between the weight of a hen 

and the weight of the eggs produced by the hen. Here, obtaining data on this requires 

observing and working with animals, which is more time consuming and costly, so larger 

samples are difficult to obtain. Thus, when examining scatterplots of each of these 

scenarios in Figure 9, we can see that the energy scenario has 100 observations, where 

the hen data only has 20. However, the correlation values are much different, due to the  
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Figure 9. Example scatterplots with various sample sizes and correlations. 

nature of these relationships. There are many other factors that control energy usage in a 

residence, such as the size of the residence or their desired indoor temperature, so the 

correlation is only 0.3. For hens, other than factors like breed which are likely already 

correlated with their weight, there are not as many obvious, measurable variables that 

could predict egg size, so the correlation is stronger at 0.6. When checking these 

combinations of correlation and sample size in Table 18, we would find they would both 

produce a p-value under 0.01, indicating both are significant relationships. Thus, while it 

would be difficult to accurately predict one residence’s bill based on the temperature 

alone, as the correlation itself is low due to many outside factors, the relationship 

between environmental temperature and energy usage is clearly meaningful for 

determining an average energy usage based on a given temperature. The scatterplot of the 

energy data set does not yield an obvious trend visually, but hypothesis testing reveals 

this to be just as meaningful as the hen scenario, where the relationship is more visually 

obvious and the points are tighter to the line. This also highlights how different scientific 

fields may have different heuristics for what correlation values are meaningful. A 

biologist may typically work with smaller data sets like this one and know heuristics for 
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what correlation values typically produce meaningful results for data sets of that size, but 

if they only look for similarly strong correlations when examining larger data sets, they 

may potentially miss potentially surprising links between variables. Fields that typically 

work with larger data sets due to the ease of collecting large amounts of data could not 

use these same heuristics. Having a universal scale for what determines a strong or weak 

correlation value is thus problematic, as it should only be presented as a way to determine 

the predictability of results in a given context based on how close the points are to the 

regression line, and not for determining the generalizability or relevance of the 

relationship between two variables.  

Importance of Modeling 

This highlights the importance of significance testing and determining 

generalizability of results in linear regression through inference. If students are to 

understand the differences in purposes and use of correlation and hypothesis testing, 

more distinction must be made between the two. As previously discussed, the setting in 

which students traditionally work with both descriptive and inferential statistics for linear 

regression is all procedural in nature and relies heavily on technology for computation, 

making all of this output indistinguishable by the setting alone. Considering these 

challenges students face when learning significance testing for linear regression, the ideal 

curriculum should emphasize conceptual understanding of these topics to help students 

understand the purpose of different statistical measures and methods related to linear 

regression. A simulation-based curriculum is one potential answer for this, as this setting 

has the potential to best allow students to draw connections from the study design to the 
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logic of hypothesis testing (G. W. Cobb, 2007; Rossman, 2008). Among simulation-

based curricula, the CATALST curriculum may be the best choice to meet this purpose, 

as it doesn’t just allow students to carry out simulations, but to create the data generation 

devices that carry them out using TinkerPlots software (Konold & Miller, 2018). These 

random generating devices are based on real-world, physical devices like lottery ball 

machines or spinners. This allows them to act as models for students, allowing them to 

deepen their understanding of the data generation process they create. Creating 

TinkerPlots samplers in this way is a form of expressive modeling, which best reflects the 

actual practice of statistical modeling (Doerr & Pratt, 2008). Students in CATALST 

courses are more successful in identifying the purpose of simulations than students from 

other traditional and even simulation-based curricula (Hildreth et al., 2018). And by using 

TinkerPlots models and modeling in the classroom, this also provides a rich environment 

for the exposition of students’ statistical reasoning (Pfannkuch et al., 2018). Thus, 

CATALST and TinkerPlots seem to give students the ideal environment to act as 

modelers and understand the purpose of the simulation they are carrying out with these 

models. In TinkerPlots, carrying out a hypothesis test for the slope of a least squares line 

can be done using a randomization test, which will be discussed in the following section 

detailing the activities used with students.  

CATALST Activities for Linear Regression 

 Many characteristics of the CATALST curriculum identified in the literature seem 

ideal for learning topics surrounding linear regression, especially with regards to 

hypothesis testing. However, the CATALST curriculum as originally designed does not 

cover this content, as it was originally designed to cover fewer topics to focus on 
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statistical thinking and literacy (Justice et al., 2020). The present study focuses on 

students from a classroom that used a curriculum based on CATALST with additional 

activities that cover topics traditionally taught in most introductory statistics courses, like 

linear regression. The activities designed for linear regression have students explore three 

main ideas: transitioning from analyzing univariate data distributions to bivariate data 

distributions, understanding how to best fit a line to data, and conducting a test on the 

slope of the least squares line. The following subsections will detail these activities and 

motivations for why these activities should best support students’ learning of linear 

regression and the inferential techniques surrounding this topic. 

From Univariate to Bivariate Data 

 Before students can understand bivariate data distributions like a scatterplot, they 

must have a solid foundation with distributions of a single variable. Zieffler and Garfield 

(2009) used quantitative methods to analyze students gains through testing students on 

items related to distributional reasoning and bivariate reasoning at several points during 

the course. They found that students who had made progressively larger progress on 

distributional reasoning test items early in the course made corresponding larger gains on 

the bivariate data items compared to other students, backing up the claim that fluency 

with univariate distributions is a precursor to understanding bivariate data.   

 To leverage students’ knowledge of univariate data, Cobb, McClain, and 

Gravemeijer (2003) suggest a learning trajectory that begins with a focus on 

distributional reasoning with univariate data, examining the shapes of data visualized 

with dot plots. After developing the use of scatterplots as a visual tool for bivariate data, 
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this knowledge of univariate data is leveraged by “slicing” bivariate data into several 

conditional univariate distributions of the dependent variable. This allows students to see 

how the variable changes as the independent variable changes, leveraging the 

descriptions that students used when analyzing univariate data to describe the change. 

Konold (2002) suggests a similar approach, adding the use of dot plots with a color 

gradient. By using colors on each of the dots to represent a second variable, students can 

leverage their familiarity with univariate distributions while also grasping how it relates 

to some new variable displayed with the color. 

The first activity done with students integrates these ideas, with a sample of plots 

made in this activity shown in Figure 10. These three plots were made in TinkerPlots 

based on a data set of drivers’ ages and maximum sight distance for reading road signs. 

The first plot shows a univariate distribution of the ages, with a color gradient that shows 

the sight distance. This visualization allows students to leverage their existing experience 

with univariate distributions with a simple way to view a second variable. Building color-

coded distributions like this is possible with many software packages, but is quite simple 

the relationship between two variables. The second plot reflects the “slicing” suggested  

 
Figure 10. Plots from TinkerPlots that highlight the transition to bivariate data. 
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by Cobb et al. (2003), which allows students to see conditional distributions of the y-

variable based on a range of values for the x-variable, while still being based on multiple 

univariate distributions. This allows students to see how the variable changes as the 

independent variable changes, leveraging the descriptions that students used when 

analyzing univariate data to describe the change. By seeing a plot with various 

conditional means, this also acts as a precursor to fitting a line to data, and understanding 

the line as estimating the conditional mean. 

 The third plot in Figure 10 is another similar precursor, which uses the “color 

meter” tool in TinkerPlots to trace a conditional mean line. This line is determined by the 

mean y-value of the dots within the box, tracing that value along a line as the color meter 

is moved. This plot can be helpful not only for the transition of the idea of center from 

univariate to bivariate, but to motivate the use of a straight line to characterize the shape 

of linearly related data, thus reinforcing a global, aggregate perspective of data. 

Determining a Single Line of Best Fit 

 The previous activity motivated students toward summarizing data with a line, but 

now leaves students with the question of how to choose a line appropriately. The 

traditional method of fitting a line to data uses the least squares method, which minimizes 

the sum of the squared differences in each data point’s observed y-value to the predicted 

y-value. This method is not simple for students to understand initially, and the motivation 

for why statisticians prefer squared distances over absolute distances is a nuance of 

calculus, which is typically not a prerequisite for introductory statistics. In fact, research 

indicates that using vertical distances is not an intuitive approach that students use for 

fitting a line informally (Sorto et al., 2011).  
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 This activity’s approach to this topic is in light of Edwards’ (2005) rationale for 

using the median-slope algorithm, although our methodology for fitting a line differs. 

Edwards emphasizes the need for classroom activities to emphasize the underlying 

mathematical concepts behind method like linear regression and least squares, rather than 

hiding the results behind a black box. To this effect, these activities leverage TinkerPlots 

to motivate the general idea of having the line as close as possible to all points 

simultaneously. Students begin this activity by fitting a line informally based on where 

they believe it most accurately represents the relationship of the data, considering the 

ideas of the conditional mean and color meter tools from the previous activity. They can 

then measure the total distance from their line to all the points, as shown in “Sum of | Diff 

| of 45 cases” in Figure 11. Adjustments can then be made by the student to decrease this 

value. Figure 11 shows such an adjustment, with the sum of absolute deviations going 

from 3060.15 down to 2524.37, indicating a better fit. While TinkerPlots is restricted to 

measuring the absolute deviations rather than taking a typical approach of squared 

distances, this activity still gives students an introduction to the general idea of 

minimizing a criterion based on the residuals in order to produce a line of best fit. 

 

Figure 11. Plots illustrating the process for finding the line of best fit in TinkerPlots. 
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However, it is still best to transition these ideas to least squares, as it reflects the more 

widely used method for fitting lines to data, and students will use the least squares slope 

for testing in the next activity. To motivate students about why least squares is used in 

practice, one can motivate informal explanations about how squaring the distances ends 

up putting less emphasis on small deviations from the line. As such small deviations are 

expected through natural variation, a line’s placement should not fixate on placing a line 

to further minimize distances that are already small, and are thus well explained by the 

relationship summarized by the line already. Additionally, showing students carefully 

constructed data examples that reveal that there is not always a unique line produced by 

minimizing the absolute deviations can help motivate the use of least squares (Lesser, 

1999). These ideas parallel lessons that explore mean absolute deviation as a gateway to 

standard deviation, which is a commonly used activity in the CATALST classroom 

already. As part of this activity, students also explore other descriptive ideas surround the 

line of best fit, like the correlation and determination coefficients. 

Testing for a Significant Linear Relationship 

This final activity of the sequence will guide students in performing statistical 

tests on the slope of a least squares line. This requires building a sampler in TinkerPlots 

to conduct a simulation under the null hypothesis of no association between the two 

variables. To understand this null hypothesis, students will first connect the idea of no 

association to a line with a flat slope, and thus provide a statistical measure that can 

indicate relative strength of an association. This can be used as the statistic of  interest for 

their simulation. After generating a sampling distribution of slopes, students can then 
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compare their slope of the least squares line from their observed data to this distribution 

and determine the likelihood of obtaining such a slope if the null hypothesis is true. In 

order to do this, students will be guided in this activity to construct sampler models in 

TinkerPlots that simulate data assuming that the two variables of interest are 

unassociated. Students will need to determine what random processes they can model in 

TinkerPlots if there really was no association. 

Students can leverage their knowledge of inference in previous scenarios, 

especially those for comparing two populations or groups. In both of these scenarios, 

students can leverage the idea of random assignment to simulate data under the null 

hypothesis. The structure of the modeling process in two groups uses random assignment 

to re-pair values from the response or outcome variable to one of the two group or 

population labels. This modeling process is similar in a linear regression context, except 

the grouping variable becomes a quantitative explanatory variable. Thus, numerical 

responses are now just randomly assigned to a numerical value from the explanatory 

variable. Because of this similarity, students are presented with a fairly direct connection 

from students’ past experiences with statistical inference and performing it on the slope 

of a regression line. 

Research into students understanding of randomization tests for comparing two 

populations is a recent and growing area of focus. Biehler et al. (2015) investigated 

preservice teachers’ reasoning with randomization tests, and developed a framework for 

the three worlds that represented how these teachers reasoned: the context world, the 

statistical world, and the software world. These worlds are nested within each other, 
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indicating that learners must be able to reason and draw connections between these three 

worlds in order to fully reason with these randomization tests in software like 

TinkerPlots, then subsequently draw conclusions in the original problem context. 

However, subsequent research has revealed challenges for students in properly navigating 

through these worlds. Noll & Kirin (2017) observed that students who created 

randomization models for comparing two groups moved through these worlds constantly 

to verify their reasoning and choices in constructing TinkerPlots models. For example, 

students constantly needed to re-verify that their samplers in TinkerPlots were simulating 

data under a hypothetical world where the null hypothesis is true, and that may not reflect 

what they informally observed in the sample data. This required being able to read their 

model appropriately in the software world, connect this to their null hypothesis in the 

statistical world, and realize that the real, contextual world and the data presented may 

not accurately reflect this world.   

There are also gaps between how statisticians, students and even teachers view 

and understand the randomization process. Noll et al. (2021) found that students often 

saw a randomization process as taking a new sample of subjects rather than the process of 

reassigning existing subjects to new groups. This reflected their narrative views of the 

study, and how it would seem invalid or “unethical” to re-use the same subjects who have 

already participated in the study. It was also not obvious to students that a control group 

or taking a difference in means/proportions was necessary to properly answer the 

research question. Justice et al. (2018) found that preservice teachers did not have a 

proper view of understanding the purpose of modeling a randomization test was to 

understand the scope of experimental variation. These teachers also had a strong 
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preference for the order that their sampling devices came in, with their observed results 

coming before group assignments; many did not see the reverse ordering as an 

isomorphic model. Noll et al. (2018) observed that students had similar preferences with 

the ordering of devices in a probability modeling context. Despite the challenges students 

faced with the narrative elements of modeling, it is important to point out the CATALST 

curriculum at least enables students to think about these conceptual aspects of hypothesis 

testing, unlike traditional or even many other simulation-based curricula. There is much 

for students to gain in understanding the data generating process of a hypothesis test and 

how it is rooted in the null hypothesis assumption, which in turn can enable students to 

have a rich understanding of the conclusions they draw from a test.  

While research on students understanding of randomization tests and bivariate 

data exists in isolation, there is not any work done yet on students modeling of 

randomization tests for the least squares line. This study aims to fill this gap while also 

comparing approaches for carrying out such a test to students who took a traditional, 

algebra-based statistics course. Studies on students understanding of bivariate data yield 

some mixed results when comparing student outcomes in traditional and simulation-

based curricula. Students in traditional statistics courses had mostly non-significant 

differences gains in performance to those who took a simulation-based course on survey 

questions pertaining to bivariate data, with one survey item that significantly favored 

students from the traditional curriculum (Tintle et al., 2011). Results were more mixed 

when comparing retention of bivariate data topics across each curricula, with no 

significant differences in retention on any of the survey items (Tintle et al., 2012). 

However, these same comparison studies along with many others show notable gains in 
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performance on survey items pertaining to hypothesis testing and the purpose of 

inference, which makes sense due to the emphasis placed on inferential techniques and 

their conceptual understanding through carrying out simulations (Chance et al., 2016; 

Hildreth et al., 2018). These differing results emphasize the interest in the present study 

that combines these two content areas.  

In light of the potential benefits the CATALST curriculum has in highlighting the 

purpose of inference for linear regression, this study aims to address the following 

research question: Do students from a traditional curriculum and the CATALST 

curriculum recognize the need to use a hypothesis test for evaluating the statistical 

significance of a linear relationship? How do students’ approaches compare across these 

two curricula? 

Methodology 

In this study, students participated in both surveys and interviews that focused on 

questions about determining a significant linear relationship. The following subsections 

will first detail the theoretical framing for the study and give background for why 

individual instruments were used. Once this framing is established, I then explain the 

tasks students completed as part of the surveys and interviews, detail the participants in 

the study, and describe the method of analysis used on the data collected. 

Theoretical Framing 

 My view on students’ learning reflects the theory of social constructivism. 

Students are not only actively constructing their own knowledge from their experiences 

in the course, but by working collaboratively with their peers and being integrated into a 



104 

community of knowledge. This is especially true in the CATALST curriculum, where 

students work on scaffolded activities designed for students to discover statistical 

concepts in small groups. Knowledge in the classroom is thus constructed based on both 

students’ statistical experiences within the course as well as personal experience outside 

the course that may relate to statistical concepts or the data context. These activities are 

rooted in various contextual settings, often with notable societal and cultural importance, 

so students own experiences and backgrounds add to their learning experience in the 

classroom. Students from the traditional classroom were also given opportunities to work 

in groups on practice problems with their peers in order to build their statistical 

knowledge collaboratively in a similar light to the CATALST classroom.  

 Considering this perspective and the collaborative nature of both classrooms, it 

may seem surprising that this study’s data collection is based on individual surveys and 

task-based interviews. However, individual instruments can still be seen as compatible 

with the social constructivist perspective. Vygotsky views learning happening on two 

levels: the interpsychological, where ideas are shared on the social level, and the 

intrapsychological, where such ideas are internalized. Students come with many pre-

conceived notions about reading and interpreting bivariate data and linear relationships 

from their own experiences, which the pre-survey aims to capture. The learning process 

during the course is then experienced socially with their peers, and the experiences they 

bring to the course individually affect their own experiences with classroom activities and 

the data contexts. These experiences have individual impacts on their learning, leading to 

this knowledge that students construct internalized once again in each individual student. 
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The post-survey and the interviews aim to capture what knowledge these students 

internalized.  

For the purposes of the research I am conducting, my perspective of knowledge is 

more cognitive than social, as I am more focused on what knowledge an individual has 

constructed in each classroom. Individual achievement is very relevant to higher 

education institution, as for better or worse, students’ knowledge is evaluated by 

individual grades. However, this focus on the individual still incorporates the idea that 

students’ knowledge is not based on a totally individual experience, but on their 

experiences in and out of the classroom. This social perspective lends to why I believe 

the CATALST curriculum has an advantage over other traditional curricula. Building a 

TinkerPlots sampler requires a negotiation of both statistical and contextual ideas, and 

contextual ideas are firmly rooted in students’ experiences. This gives students 

perspectives on identifying the most relevant aspects of context to be used in their 

TinkerPlots samplers while also engaging students in the statistical processes carried out 

by that sampler. I believe that through these classroom experiences, students’ statistical 

knowledge that they have gained individually can be observed by the individual survey 

and interview instruments.  

Survey 

 Individual surveys were administered electronically to students both before and 

after learning linear regression content in the course. This study focuses on responses to 

an open question on how students would conduct a test to determine a significant linear 

association with provided data. Students were asked several other questions before this to 
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prompt them to explore the provided data and give conjectures about the relationship, but 

the focus of this study will be on their responses to the question regarding determining a 

significant linear association. This question in particular is relevant to the research 

question posed, as it will reveal whether students recognize the need for inference to 

address whether there is a significant linear relationship. If  students have gained the 

appropriate knowledge from their courses, they should be able to describe the correct 

procedure used in this scenario. Ideally, students would also convey their conceptual 

knowledge about inferential techniques (i.e., describe the null hypothesis, interpret how 

the p-value would allow them to draw conclusions), but asking more pointed survey 

questions regarding interpreting results from a hypothesis test may lead students toward 

choosing that method based on the wording of the questions rather than their knowledge 

alone.  

To mitigate the effect of biases in the writing of the question toward a specific 

curriculum, the data and contextual information were pulled from the ARTIST 

(Assessment Resource Tools for Improving Statistical Teaching) database, with the sub-

questions altered to elicit open-ended responses. Information on the data context and sub-

questions presented to students in the survey can be seen in Figure 12.  

Interview 

 Interviews were carried out with a smaller set of students from those who took 

both the pre and post survey. These interviews were carried out virtually via Zoom in 

light of the ongoing COVID-19 pandemic. Students who were interviewed were asked to 

revisit their survey responses and then carry out the methods they described in their 
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Figure 12. Background information and survey question analyzed in this study. 
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survey to determine if there is a significant linear relationship. The data were available 

for students to analyze in TinkerPlots, a virtual graphing calculator, and Excel, 

representing the software that students used in both the CATALST and traditional 

courses. Students had remote control access to the interviewer’s computer through Zoom 

to give them access to interact with the software tools. 

Revisiting the survey question aims to provide a deeper perspective of students 

understanding of conducting a hypothesis test for the slope of a regression line that could 

not be captured by the survey. To elicit ideas about their understanding of statistical 

inference, students were asked to explain how they would solve this problem and the 

underpinning concepts to someone who has never taken a statistics course. In order to 

determine if students recognized the distinction between the purposes of descriptive 

statistics and a hypothesis test, students were also asked if they could simply use the 

correlation value to determine if a relationship is significant. The semi-structured nature 

of this interview also allows for asking pointed follow-up questions in order to gain a 

better perspective of students’ conceptual knowledge about hypothesis testing. Students 

who gained the appropriate knowledge in their courses should be able to carry out the test 

with the relevant software appropriately. They should also be able to interpret the results 

and p-value of their test in order to come to an appropriate conclusion based on their 

work. 

Participants 

 This study examines students from two sections of a 10-week, second term 

introductory statistics course. This course is targeted at non-statistics majors, most of 
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whom come from social science backgrounds. While some students in the course may 

have had some experience with statistics from high school or other courses in their 

department, this is the students’ primary exposure to statistics in college.  

Of the two sections studied, one used the CATALST curriculum and had 23 

students enrolled, while the other used a traditional curriculum and had 31 students 

enrolled. The CATALST section was taught by the author, and the traditional section was 

taught by another colleague who has worked with the CATALST curriculum previously. 

While the students are not guaranteed to be representative of students from each curricula 

or control for every confounding variable like instructor differences, the choice of these 

sections was made in order to limit these confounders. These two sections were chosen 

for the comparison due to the instructors holding similar teaching philosophies and 

leveraging in-class group work despite the differing curricula. Additionally, each section 

spent an equal time in-class on linear regression content, with four class sessions devoted 

to this topic.  

A pre-survey was administered before students began this section of the course 

and once the topic was completed. Both sections administered the survey to students as 

an in-class assignment, with students receiving credit for completing the survey, not 

necessarily getting answers correct. Thus, all students were required to take the survey to 

receive in-class credit, but any non-consenting students who completed this assignment 

were not included in this study. For the CATALST section, 18 of the students consented 

to the study and participated in both surveys. For the traditional section, 17 consenting 

students participated in both surveys.  
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Students from each course were subsequently invited to participate in interviews. 

The selection of interviewed students was done purposefully based on their survey 

responses to obtain a pool of students with a wide variety of conceptions for conducting a 

statistical test in linear regression. For example, some students from each curricula were 

able to describe the appropriate test and how to interpret its results in their survey 

response, where others described only looking at descriptive measures like correlation. 

(The full range of codes assigned to student survey responses is in Table 19.) Thus, the 

interview sample is somewhat biased toward conceptions that were uncommon, and is 

intended to show the full range of possible student conceptions rather than be a 

representative sample. In the CATALST section, eight students were invited to 

participate in interviews approximately 1-2 months after the course’s completion, five of 

whom participated. These five students are referenced in this study by the pseudonyms 

Dabney, Dene, Garnett, Morgan, and Riley. Eight students from the traditional sect ion 

were invited to participate in interviews on the same schedule as the CATALST students, 

and three of those students participated. Those three students are referenced in this study 

by the pseudonyms Alma, Amani, and Jordan.  

Analysis 

 Analysis of the results began with reading the survey responses and identifying 

common themes among student responses. Some of the notable themes that emerged 

included: the need to sample more data than already present, using descriptive statistics 

(e.g., correlation) to determine statistical significance, and the use of inferential reasoning 

on the pre-survey despite no introduction to this specific context. The depth of inferential 
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reasoning given by students, especially on the post-survey, was widely varied, with some 

simply specifying that a hypothesis test needs to be conducted without specifying what 

kind of test or how it would be carried out, and others describing a full procedure with 

conceptual explanations of the test conducted. Open codes designed to capture these 

ideas were refined into a coding scheme described in Table 19. The aim of developing 

this scheme was to accomplish two goals. The first is to determine the procedure they 

described for determining a significant linear relationship, which is reflected by the three 

main categories of codes: non-statistical, descriptive statistics, and inferential statistics. 

Within these categories, codes were further broken down to determine more specificity. 

For students that did not explicitly describe a statistical measure or method, it was 

common for students to call for more data to be collected to determine a significant 

relationship, so these kinds of responses were separated from students who were unsure 

or provided a response that was unclear or non-statistical. For students who gave a 

response using descriptive statistics, univariate measures like mean or proportions were 

separated from bivariate measures like correlation or the least squares line. If students 

described a hypothesis test or form of inference in their response, three different codes 

were used to determine their conceptual understanding about hypothesis testing they 

used; for example, recognizing that the hypothesis test for this scenario is about the 

relationship between two variables, or describing how they might interpret their results 

with a p-value, or describing the null hypothesis and how that is incorporated in the 

analysis.   
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Table 19. Coding scheme for survey responses. 

Category Code Description Example(s) 

Non-

statistical 

Uncoded The student is unsure of an approach or 

their answer is unclear, may describe non-

statistical approaches to evaluate a  claim. 

“People are likely not running 

their heater as much as it gets 

warmer.” 

Collect The approach described by the student 

calls for collecting more data to properly 

answer the research question. 

“Test more months and see if the 

electric bill follows the data and 

the regression line.” 

Desc. 

Statistics 

Uni-

variate 

The approach described by the student 

involves purely descriptive measures that 

do not describe a bivariate relationship 

(e.g. mean, average, etc.) with no element 

of hypothesis testing or inference. 

“You could test more months 

and see if the average temp 

matches what the predicted bill 

might be and see if the data 

follows the trend.” 

Bivariate The approach described by the student 

involves analyzing data that are of a 

bivariate nature, but are purely 

descriptive (e.g. correlation, R, slope, 

scatterplot) with no element of hypothesis 

testing or inference. (exclude terms 

explicitly stated in the prompts like 

"regression line" or "regression 

equation") 

“Check the r squared value.” 

“Using a line of best fit is a  great 

way to tell whether or not there 

is a correlation in this scenario.” 

“You'll use the residuals to see 

the average distances from the 

regression line. If that distance is 

small- we can assume strength, 

if not, its assumed to be weak.” 

Inferential 

Statistics  

Generic The approach described by the student 

mentions at least a  vague idea of 

hypothesis testing but does not specify 

any characteristics of the test (e.g. does 

not describe hypotheses, p-value, how to 

draw the conclusion, etc.), or describes 

aspects of a test that does not apply to this 

data (e.g. testing for a difference in 

proportions). This excludes the phrase 

“significant linear relationship” as this 

phrase is used in the prompt. 

“We could use a chi-square test, 

but this is a  new concept to me 

so I may be wrong… Chi-square 

tests are often used to find direct 

correlation between nominal 

values, which is what we are 

trying to do in this case.” 

“Use a hypothesis test to 

determine if it's sufficient 

enough to claim that there is a 

strong relationship.” 

Generic+ The approach described by the student is 

centered around doing a hypothesis test 

and describes elements that indicate 

generic elements of the philosophy of 

significance testing (e.g. hypotheses, p-

value) without specifying that this test is 

for evaluating the relationship between 

the two variables. This excludes the 

phrase “significant linear relationship” as 

this phrase is used in the prompt. 

“You could use an Anova table, 

and find the p-value to decipher 

whether or not there is in fact 

evidence of a linear 

relationship.” 

“You could do a random sample 

and collect a p-value in order to 

determine if its likely these 

results are due to random chance 

or to statistical significance.” 

Specific The approach described by the student 

describes a hypothesis test that assesses 

the relationship between the two 

variables, using a measure like the slope 

or correlation to test on, and derives 

results from the test using a p-value. 

Students may minimally reference the 

proper name of the appropriate test used 

in class. 

“Create a sampler that represents 

the null hypothesis (that there 

isn't a  correlation between the 

temperature and bill) and see 

how likely it is to get the original 

data if the null were true.” 

“You could use a regression 

Anova test in Excel to get a p-

value and compare it to your 

significance level.” 
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Several students did give responses that fit multiple categories; for example, 

someone might see the need for more data while also using a descriptive measure like 

correlation to determine a significant relationship. Another student may describe a 

hypothesis test while also mentioning the relevance of calculating a correlation value. For 

these responses, students were only coded for one particular category, even if they had 

multiple categories of reasoning. Because the research question focuses on the ways 

students express their knowledge of inferential reasoning, if a student had descriptive 

and/or non-statistical responses in addition to inferential responses, they would only be 

assigned codes for the inferential reasoning category.  

A limitation of using a survey is that follow-ups with students cannot be done to 

elucidate their response. This is especially limiting for students that appropriately cite the 

proper name of the test they learned in the course (e.g. test of linear association, t -test for 

the slope, regression ANOVA) with little further reasoning or explanation given. As 

terminology like this makes it clear that the students know some relevant details about the 

correct procedure and recognize the need to conduct a hypothesis test , these responses 

were still assigned the “Specific” code. This did lead to very short responses with that 

code, where longer, more in-depth responses that described the logic of inference but 

didn’t specify that the test was for a relationship between two variables would only be 

coded as “Generic+”. Given that the research question for this study focuses on 

determining the statistical significance of a linear relationship, and not their general 

knowledge of inferential reasoning, it seems most appropriate to code responses in this 

way. Additionally, knowing the name of a test shows that students recognize the need for 

conducting a hypothesis test, which also best reflects the research question. However, it is 
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worth recognizing that knowing the name of the test does not necessarily imply that 

students are capable of carrying out this test.   

In order to ensure the reliability of the coding scheme used, all student responses 

were double coded by the author and a second coder, and all disagreements in coding 

were discussed until an agreement could be reached. First, a random selection of 24 

responses were coded by both coders. These responses were a mix of responses from the 

pre-survey and post-survey. Of the 24 assigned codes, there were 5 disagreements, which 

were discussed until an agreement could be reached. This process led to some additional 

clarifications made within the code descriptions, with some initial code categories 

combined together. The two coders often disagreed on responses that only used language 

that was given by the prompts and background information, and so revisions were made 

so that phrases given in the prompt or background information were excluded for 

qualifying from particular codes. This ensures that students were not merely parroting the 

question given to them and required students to give reasoning in their own words to be 

coded appropriately. After this process, another round of double coding was performed 

for the remaining responses. Discussions were had again on any disagreements in coding, 

which were more easily resolved after revising the coding structure from the first round.   

 Transcripts of the interviews were generated with pseudonyms applied. The 

transcripts were read through for any inferential reasoning they gave, especially in 

regards to their response regarding the distinction between using a hypothesis test and the 

correlation coefficient alone to determine significance. Students’ approaches were 

analyzed to determine if they produced an appropriate significance test for the regression 
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line and if they could distinguish significance testing from descriptive statistics like 

correlation. This summary information aimed to provide some validation to coding for 

survey responses based on this subset of students. 

 The summary information revealed two students from each curriculum who had 

similar survey responses and initial approaches but revealed key differences in their 

statistical reasoning. These key differences led to the choice of a collective case study 

approach to analyzing these students (Stake, 1995). The selection of these two students is 

instrumental in purpose, as the similarity in these two students’ initial conceptions 

provide an avenue for interpretation. Many differences in their thinking emerged as the 

interview progressed, which revealed key differences in their respective curriculum 

where they learned these concepts. 

Results 

 The subsections that follow will first investigate the results from the surveys 

conducted in this study, then investigate the interview data. The interview data will be 

presented first by summarizing the big picture of students’ approaches, and then will 

examine two specific students closely from each curriculum in detail. 

Surveys 

The survey data reveals stark differences in the responses for conducting a 

significance test on the regression line across the two curricula. Table 20 shows the 

counts of codes applied to students at the category level. CATALST students more 

frequently gave responses that represented some form of hypothesis test than the students 

from the traditional curriculum did. Traditional students were also more frequent in  
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Table 20. Frequency of specific code categories assigned to responses for the survey 

item. 

 Pre Post Diff 

Category CAT Trad CAT Trad CAT Trad 

Non-statistical 6 9 2 5 -5 -4 

Descriptive Statistics 4 4 5 5 2 1 

Inferential Statistics  8 4 11 7 3 3 

Total 18 17 18 17   

 

giving non-statistical responses on their pre-survey and post-survey than the CATALST 

students. However, in terms of the intervention, students from both curricula appeared to 

have similar gains in advancing their response types toward one that represents a 

hypothesis test. 

However, there is more nuance to how students’ responses were coded within that 

hypothesis test category. Table 21 shows the full counts of codes across each curriculum 

and on pre-survey and post-survey. This shows that not only did many of the students in 

the CATALST curriculum suggest a hypothesis test of some variety, but many gave 

many specific details of the hypothesis test. One CATALST student with the “Specific” 

code gave the following response on their pre-survey:  

“I would want to use a hypothesis test for this. I think, if there isn't a significant 
relationship between bill price and temperature, then the slope of the line would 

be closer to zero. I haven't ever done a hypothesis test for a linear relationship, 
but I am guessing there is probably a way to find out if this is significant (I would 

determine a p-value, I am guessing).”  

This student, despite no formal presentation of linear regression content, was able to 

anticipate the general idea of the method for determining statistical significance, 

identifying what the appropriate null hypothesis would be and recognizing the need to 

 



117 

Table 21. Frequency of specific codes assigned to students’ responses for the survey item. 

  Pre Post Diff 

Category Code CAT Trad CAT Trad CAT Trad 

Non-
statistical 

Uncoded 2 6 1 4 -1 -2 

Collect 4 3 0 1 -4 -2 
Descriptive 
Statistics 

Univariate 1 0 1 0 0 0 

Bivariate 3 4 5 5 2 1 

Hypothesis 
Testing  

Generic 3 3 0 1 -3 -2 

Generic+ 2 1 2 2 0 3 
Specific 3 0 9 4 6 3 

 

determine a p-value. The other two CATALST students who gave responses with this 

code gave a similar amount of detail as well in their response. 

Some students from the traditional curriculum did give responses that reflected 

conducting a hypothesis test on the pre-survey. However, no students were at the 

“Specific” level, meaning that no details about their method pertained to the use of 

bivariate data. The lone student who gave a response coded as “Generic+” stated “Using 

a hypothesis test with a 95% significance level would help to determine this theory within 

5% of a doubt.” This student showed that they recognized the need for a hypothesis test, 

but did not provide details that the previous CATALST student provided about the null 

hypothesis or using the slope of the line for conducting such a test. When examining the 

effect of the classroom intervention with learning content related to linear regression, 

both courses saw students generally shift toward hypothesis testing codes, as expected. It 

is notable, however, that CATALST had a change of 6 students using reasoning coded as 

“Specific,” which was noticeably larger than the difference of 3 for the traditional course. 

Thus, while there was an equal shift toward codes in the hypothesis testing category 

overall across both curricula, CATALST students seemed to show a deeper 
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understanding of conducting an appropriate test of significance in this scenario than 

traditional students did, based on the survey responses.  

Interview 

As mentioned in the analysis section, assuming that students’ survey responses 

are a representation of their knowledge at a specific time or gained through the 

intervention is suspect, especially since students were not asked to perform the test that 

they described in their survey response. To gain a better picture of students’ conceptions 

regarding significance tests with linear regression, this subsection will investigate the 

eight interviewed students. Table 22 summarizes these interviewed students, highlighting 

the codes that were assigned to their survey responses as well as features of the students’ 

statistical approaches in the interview. These features include whether they conducted an  

Table 22. Summary of interviewed students’ codes for survey responses and aspects of 

their interview responses. 

  Survey Interview 

Student Class Pre Post Appropriate test Corr. vs. Sig. test 

Dabney CATALST Non-stat: 
Uncoded 

Desc: 
Bivariate 

Yes, but not 
initially. 

Initially same, 
then different 

Dene CATALST Desc: 

Bivariate 

HT: 

Specific 

Yes Same 

Garnett CATALST Desc: 
Univariate 

Non-stat: 
Uncoded 

No N/A 

Morgan CATALST HT: 

Specific 

HT: 

Specific 

Yes Different 

Riley CATALST HT: 
Generic 

HT: 
Specific 

Yes Different 

Alma Traditional Non-stat: 

Collect 

HT: 

Generic+ 

Yes Same 

Amani Traditional Desc: 
Bivariate 

Desc: 
Bivariate 

Yes, but not 
initially. 

Same 

Jordan Traditional Desc: 

Bivariate 

HT: 

Specific 

Yes Same 
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appropriate significance test and their perception on the distinction between correlation 

and a significance test. One noticeable difference across the two curricula is that 

CATALST students seemed to have a better understanding of the difference between 

correlation and the hypothesis test for the regression line—all three students who were 

interviewed in the traditional classroom did not make a distinction in meaning between 

correlation and conducting a significance test, where three of the five CATALST students 

provided reasoning for how they are different. One CATALST student was not able to 

conduct an appropriate significance test for this scenario. As this student did not offer any 

approach when interviewed, they were not asked regarding the distinction between these 

two concepts. 

 To further investigate the interview data, the cases of Amani and Dabney will be 

investigated further. These two participants were chosen for a few reasons. First, they 

both gave non-hypothesis test responses on the surveys, and yet were able to conduct an 

appropriate test but only after discussion with the interviewer, which provided interesting 

episodes regarding their statistical thinking. Additionally, they had diverging opinions on 

the distinction between correlation and significance tests. Their different responses were 

fairly representative of other interviewed students in their respective curricula, despite 

their common initial intuition for conducting a significance test.  

 The following subsections review Dabney and Amani’s interviews in three 

separate phases. The first phase is where they describe their initial approach with various 

descriptive statistics. The next examines whether they believe their descriptive statistics 

can determine statistical significance. These first two phases of the interview reveal many 
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similarities in their approaches. In the final phase of the interview, Dabney and Amani 

were prompted to explore the idea of conducting a significance test, which reveals 

interesting divergences in their thinking. 

Descriptive Statistics. Both Amani and Dabney’s survey responses indicated that 

they could use descriptive statistics for analyzing the significance of a linear relationship 

through purely descriptive methods. Amani, a student from the traditional classroom, 

gave this response on the post-survey: “To test whether or not there is evidence to 

suggest there is a significant linear relationship between the cost of an electric bill and the 

average temperature that month, I would do a r-squared statistical analysis to see what the 

relationship between the two variables are.” Dabney, a CATALST student, gave this 

response on the post-survey: “You could test this by calculating average residual in order 

to determine how well the line would describe the relationship.” While these are not 

identical statistical methods, the average residual size and r-squared both are descriptive 

measures of how close the data are to the regression line, with the latter being a 

normalized measure. 

These post-survey responses influenced their initial methods they conducted 

during the interview. Amani created a scatterplot in Excel that showed the r-squared 

value of 0.6463 on it, and interpreted this value in this way: 

Amani: Because it's 0.6463, it's like, moderately -- okay, to me that's low. 
Usually an r-squared value of 0.8 or higher shows a better 
correlation between the values. 

Interviewer: What are your cutoff points for r-squared for something to be 

significant? It sounds like 0.8 though [is significant]? 

Amani:  0.8 to 1, yeah. 
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Interviewer:  Gotcha. So, you would call 0.64 then sort of moderately associated 

then? 

Amani:  Yeah, moderately associated. Between, I guess 0.5 and 0.79, I 

think that's moderate, anything lower is weakly associated. 

Amani’s method for determining significance is quite strict, with an r-squared value of 

0.8 or higher being significant enough for them. For comparison, when conducting a t-

test, an r-squared value of 0.45 produces a p-value smaller than 1 percent even with a 

small sample of 20 data points. In this scenario, with an r-squared of 0.64, Amani agrees 

with the interviewer that this is only a moderate association, but we do not get a sense of 

what Amani believes r-squared represents as a measure itself.  

 Dabney’s initial method is described by taking the average size of the residual. In 

TinkerPlots, Dabney places the least squares line on a scatterplot and uses tools within 

the program to measure the average size of the residual. Dabney then begins to analyze 

his findings: 

Dabney: So 2.1 is the value [TinkerPlots] gives. … Having [2.1] in the 

[units] of what's on the graph isn't necessarily meaningful… 
something you could say about the graph is like, “Oh, we can 
predict your bill based on a temperature with a range of $5.40.” Is 

there an equation to convert that to a value between like zero and 
one? Is there an equation, maybe, that can relate that to -- I'm 

trying to turn that into a number that's more universal? … Could 
you convert that into a percentage? 

Interviewer: A percentage of what though? 

Dabney: Oh, [darn] it. That's a good question. [pause] Maybe I'm talking in 

circles, but I know that we're trying to -- I want a number that's 
going to describe how far off it's likely that I'm going to be, or the 
range at least, if I'm trying to predict it based on … if I'm trying to 

predict temperature from bill or bill from temperature. 

Dabney calculates the average residual size, but realizes that this is difficult to interpret 

generally in terms of the relationship itself. They realize the need to calculate a more 
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universal value like a percentage but are unsure of what that value might be. After more 

discussion, Dabney realizes a potential solution: 

Interviewer:  Do you recall from class any measure that described the strength of 

a relationship via a percentage at all? 

Dabney: I mean, correlation is a number between zero and one, right? Like 
a correlation of one is -- it's absolutely the same. And then the 

smaller the correlation, the less likely it predicts -- oh, so maybe 
it's correlation -- the less likely a predictor it is. 

While correlation is not truly a percentage like r-squared is, Dabney does come up with a 

normalized measure of the strength of the relationship, akin to Amani’s initial method. 

Dabney goes on to calculate the value for correlation in TinkerPlots, which is -0.8 for the 

given data. Based on this discussion, Dabney seems to have a more conceptual 

understanding of this measure as well, as Dabney connected this measure to the average 

residual size and the closeness to the line while connecting these ideas to the actual 

context. Dabney also places their interpretations within the context of temperature and 

the electric bill. Amani’s conception of r-squared seems purely procedural and relative: 

it’s a value used to assess a linear relationship, and a higher number indicates a stronger 

relationship. 

Using Correlation to Determine Significance. In both interviews, the 

interviewer confirms with each student that these descriptive methods are enough to 

determine if there is a significant linear relationship. This was Amani’s response to this 

question: 

Interviewer: Were there any other sort of ways that you went about testing for 
significant linear relationships in class? Or is this sort of the main 
one that you used? 

Amani:  This is the main one I used, that I typically use, actually. 
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Interviewer: So is r-squared helping you evaluate actual hypotheses, like testing 

for hypotheses? And if so, what are those hypotheses that you’re 
testing? 

Amani: I don’t remember specifically, but for r-squared, I’m just looking at 
the correlation specifically. Not necessarily if the data is 

significant. You would have to deal with different tests for that. I 
don’t remember the name of the test. 

Here, Amani confirms that this value of r-squared is enough to determine a significant 

linear relationship, but when followed up, Amani contradicts their previous statement 

saying that there are other tests that they can’t currently recall that would be appropriate 

for that. Amani’s investigation into other tests will be examined later. At this point in the 

interview for Dabney, they give a similar response to this question: 

Dabney: Okay, so our correlation is -0.8… I do know that we would be able 
to say there's a negative correlation, meaning as x increases, y 

decreases. What I'm not sure of is, like with p-value, how we've 
[got] those… ranges where it's like strong, moderate little 

evidence. I don't remember what those are with correlation… But I 
feel like if something had an 80% accuracy, … I would say that 
that's acceptable for me. 

Interviewer: Can you use [this correlation] to answer the question of whether 

there is a significant relationship or not? 

Dabney: Yes, absolutely. That's how you would describe it. That's how you 
would say like, there is, and this is the level of that the strength of 

that relationship… I don't know when you would say strong, 
moderate or whatever. But yes, absolutely. That's the number you 
would use. 

In addition to agreeing that correlation is enough to determine a significant relationship, 

Dabney also alludes to potential ranges of values for correlation that determine the 

strength of a given relationship that Amani referenced earlier, but is not sure what those 

ranges are and isn’t totally sure whether -0.80 is enough evidence because of that. Thus 

far, both students have described very similar procedures to answer this question by 

discussing correlation and r-squared, despite having learned their content from different 
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curricula. Dabney may be demonstrating a deeper conceptual understanding of these 

descriptive measures by connecting correlation to the average residual size and placing 

interpretations within the data context, but these two students thinking regarding their 

statistical methods both reflect descriptive statistics so far. The next episodes will 

challenge students on their conceptual knowledge of hypothesis testing, which is where 

their overall approaches will diverge further. 

Hypothesis Testing Concepts. At this point of the interview, both Dabney and 

Amani are asked to consider whether their correlation values make it possible to evaluate 

hypotheses. Amani previously recognized that this idea of hypothesis testing represents a 

different method, but does not recall details about how to conduct this test: 

Interviewer: Do you remember how to carry [out a hypothesis test] in Excel or 
on a TI or anything like that? 

Amani: For TI, no, maybe with Excel. Maybe if I spend a little more time 
on it. 

More interview time is spent on this idea, but Amani is still unsure about how to conduct 

such a test in Excel. The interview then shifts to focus on conceptual ideas of hypothesis 

testing and the p-value: 

Amani: I would have like a null hypothesis and alternative hypothesis, the 

null being that there is no significant difference between these two 
values, I mean, these two variables, and then alternative being 

there is a significant difference, or maybe I'd reverse those two. 
But then I would just conduct a test, I probably would end up 
Googling which test to use, and then apply it for my data. 

Interviewer:  What would be the end result that we would use to make a decision 
from that test? 

Amani:  Based on the p-value specifically, yeah. And then see if there is 
any significance or not. 

Interviewer:  Gotcha. Can you explain what a p-value exactly means? 
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Amani: So, with a p-value, it's just seeing that with a 5%, confidence, or 

whatever confidence that we're doing, to see that 5% of that time 
or something? Or, actually, I feel like I'm mixing that up now with 
the p value definition. … [long pause] It's basically the chance, I 

guess, the probability of that happening. Or I guess the p-value is 
the probability of you seeing that result happening. Or not, there's a 

-- I guess it's as extreme as it is, like of the observed results or 
something like that.... Basically it's just like observing to see like 
can this happen in that value. 

Amani is able to define hypotheses for an appropriate test, albeit with some confusion 

about which is the null or alternative. They also recognize the need to compute a p-value. 

However, they are not as sure about defining what the p-value means and how it is used 

to draw an appropriate conclusion. There are some phrases in Amani’s response that are 

normative to the definition of the p-value. However, Amani continues on to be 

challenged in finding an appropriate definition. To help have a concrete example to talk 

about, the interviewer conducts the appropriate test in Excel for Amani, and this leads to 

their interpretation of those results: 

Amani: I guess the p-value for that, if we're doing like a 5% confidence 

interval, because the p-value is less than the confidence at 5%, then 
we would end up not rejecting – no, we would end up rejecting the 

null hypothesis for that, and then accepting the alternative for 
whatever that may be. 

Interviewer: So why does a low p-value lead us to rejecting the null? You 

talked about the p-value being like this probability that we get our 
observed result, so I'm just trying to see if you can connect that 
idea to why a low p-value ends up rejecting our null hypothesis? 

Amani: I don't think I have a strong understanding of the p-value 

specifically then, going through these questions specifically. 

Amani holds appropriate procedural knowledge on how to conduct a hypothesis test and 

draw an appropriate conclusion from a p-value, yet still exhibits some confusion about 

what the hypotheses are and what is rejected or not. Most notably though, Amani does 

not seem to understand the p-value and why this procedure works. Thus, while Amani 
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may have earlier recognized that there was a difference between using the correlation or 

r-squared and a hypothesis test for the slope of a regression line, there is not a great 

conceptual basis for how to conduct a hypothesis test and interpret the p-value. While this 

was not addressed directly with Amani again in the interview, it would seem that they are 

unsure about how the purposes of descriptive statistics like correlation and hypothesis 

testing differ. 

 Dabney’s approach to conducting a hypothesis test began with constructing a 

sampler in TinkerPlots, shown in Figure 13. This sampler takes two bootstrapped random 

samples of both the electric bills and the temperatures that month, and pairs each together 

at random. After constructing this, Dabney initially faced some challenges in determining 

how to use this sampler, specifically on what statistic to collect. They are prompted on 

what the purpose of conducting these simulations is, which sparks an idea: 

Dabney:  [The purpose of simulating is] to determine how likely it is that the 
real data that we've sampled was just generated by chance, as 

opposed to there being an actual trend. So it helps us determine 
how accurately and how likely it is that that study or data set 

represents reality, represents the actual population that it was 
sampled from. 

Interviewer: Gotcha… here we're trying to test for if there is a significant 

relationship, so… what can we use to measure against the data we 
actually sampled? 

Dabney Oh! So here. So if we were writing out a hypothesis, the null 
hypothesis, our null hypothesis would be there is no relationship 

between temperature and bill, whereas our [alternative] hypothesis, 
there is a relationship. So, we are going to use that concept of the 

null hypothesis, there being no relationship, that's how we would 
develop our simulation… So let's say we do five hundred 
simulations, we are going to then see what the percentage of them 

hits our correlation or stronger, or more extreme. Oh, shoot, and  
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Figure 13. Dabney’s TinkerPlots sampler. 

we're gonna generate a p-value. And so then that p-value is going 

to represent exactly… how many cases out of that 500 had a 
correlation of -- what did ours come out to be? -0.8… So the fewer 
cases we have that are within that range, the stronger the evidence 

we have that the actual data is representative, and it's unlikely that 
it was generated by chance. 

After being prompted to think about the purpose of simulation and what measure would 

be relevant, Dabney proceeds to divulge the nature and logic of hypothesis test ing applied 

to this scenario. Dabney’s statements about this hypothesis test are always grounded in 

the data context, which potentially alleviates the confusion Amani exhibited regarding 

which hypothesis is which and what is typically rejected. Dabney expresses the 

appropriate hypotheses to set up, that their simulation is representing the null hypothesis, 

and the p-value then represents the number of cases as extreme or more as the correlation 

value of -0.8. They go on to show the p-value in their empirical sampling distribution 

shown in Figure 14. 

 After going through this process and concluding that this is a significant linear 

relationship through this hypothesis test, Dabney is asked to compare this approach to  
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Figure 14. Dabney’s sampling distribution, with shaded region representing the p-value. 

their previous one using correlation, and whether they are answering the same research 

question: 

Interviewer: I guess the question we were going for was is this a significant 

relationship? [Is this a] synonymous answer [to your previous 
answer using correlation]? 

Dabney:  No, they're not synonymous. I don't think they're synonymous. I 
think that this is allowing us to determine that this data wasn't 

generated just by chance. But I think that R value is still 
separate…. So I guess, I see them as different concepts, I would 

say that p-value is the likelihood that the data was just generated 
by chance, and the R value, the correlation, is showing how strong 
the relationship is between our two variables. Which would also 

relate to its predictability. 

Here, based on Dabney’s understanding of the hypothesis testing process shown earlier, 

they are able to make a distinction between their previous descriptive methods using 

correlation and the average residual to the hypothesis test they just conducted. Amani did 

not display this level of understanding in the interview, and while they recognized that 

the two methods were distinct, they were unable to explain their conceptual differences as 

Dabney did here.  
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Discussion 

 This study reveals many potential advantages for simulation-based curricula like 

the CATALST curriculum in regards to students’ understanding of hypothesis tests for a 

regression line. These advantages will be discussed in two subsections, the first of which 

will discuss important aspects revealed from the survey data, and the second will 

investigate the interviews. Some notes about non-response in this study and the impact it 

may have had on the results are also given. 

Surveys 

Students from the CATALST curriculum were much more frequent in providing 

survey responses that gave aspects of a hypothesis test, even before formally learning this 

content in their course. While this pre-survey is primarily a baseline measure, it’s 

important to consider that these students were in their second statistics course of a two-

course sequence, and have seen hypothesis tests in various contexts before learning 

content on linear regression. These differences may be attributable to what students 

learned before taking their respective courses, but it could very well be a result of the 

conceptual knowledge of hypothesis testing they gained during the course before taking 

the pre-survey. Considering the numerous research studies reviewed that showed 

significant advantages for simulation curricula in learning hypothesis testing, it does not 

seem surprising that CATALST students would start this unit with a rich conceptual 

knowledge of hypothesis testing based on what they had learned thus far in the course.  

An additional point of interest from the pre-survey was that the only students to 

be coded at the “Specific” level were from the CATALST course. This code indicates 
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that they were able to give specific details of a test for assessing the relationship of two 

numeric variables, despite no formal introduction to such a test in the course. This shows 

potential for students in the CATALST course as emerging statistical modelers, 

recognizing the important aspects of a given data scenario and what would be relevant to 

simulate and test. Throughout the CATALST course, students are asked to create 

TinkerPlots samplers with minimal instructor intervention at first, which gives students 

practice as statistical modelers. These three students coded as “specific” potentially 

demonstrate an ability to reason through relevant elements of a novel situation and 

encode them statistically and in TinkerPlots, shuttling through the context, statistical, and 

technology worlds identified by Biehler et al.'s framework (2015). Still, this was only 

seen in three of 18 students in the CATALST class, which confirms the challenges 

students have in navigating these three worlds identified by Noll & Kirin (2017). But 

given the limitations of a survey, it is possible that more students from the CATALST 

course have this foundational hypothesis testing knowledge and the ability to model and 

simulate these novel scenarios. While the interview came well after the end of the course, 

Dabney was able to reason clearly though the modeling and simulation processes in their 

interview despite only giving a post-survey response that described only descriptive 

measures.  

Another interesting feature of the survey data is the shift CATALST students 

made toward more sophisticated expressions of their statistical knowledge on the post-

survey. While both classes saw students shift toward higher level codes representing 

reasoning centered around a hypothesis test, there was a larger shift in the CATALST 

class toward the “Specific” code. Half of the CATALST class (nine out of 18) gave a 
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response coded as “Specific” on the post-survey, compared to 3 out of 17 in the 

traditional class. This seems to show that the CATALST curriculum not only prepared 

students for learning hypothesis testing in a deep and conceptual way, but acted as a 

stronger intervention in aiding students in applying those concepts to linear regression 

than the traditional curriculum did.  

Interview 

 The most notable feature from the interview data as a whole was that CATALST 

students typically recognized the differences between descriptive and inferential statistics 

and their purpose. While many of the traditional students did carry out an appropriate test 

on the linear regression line, none of these three students saw a difference in purpose to 

carrying out a statistical test and examining the correlation value, whereas three 

CATALST students were able to explicitly explain the differences conceptually. This 

supports the initial conjecture of this study that CATALST students would be apt to point 

out such differences. Simulation and modeling seem to be powerful tools for students to 

develop their statistical thinking in this way.  

 The cases of Amani and Dabney further highlight this. Both students had very 

similar initial trajectories in their interviews, as they started based on survey responses 

that described descriptive methods only, carried out those methods, and believed them 

appropriate for determining a significant linear relationship. It was when they were asked 

to consider if their methods could evaluate statistical hypotheses that the interviews 

diverged. Amani was not able to carry out this test on their own with the provided 

software, and while there were elements of procedural knowledge for hypothesis testing 
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present in Amani’s reasoning, they could not make distinct the conceptual differences 

between analyzing the correlation value and carrying out a hypothesis test on the linear 

regression line. On the other hand, Dabney was able to model the scenario with a 

TinkerPlots sampler and use it to carry out an appropriate hypothesis test while providing 

sound reasoning and interpretations of their test. Dabney also made appropriate 

distinctions in purpose and meaning between their hypothesis test and the correlation 

value they computed earlier in the interview. Despite the fact that a hypothesis test was 

not the first method that Dabney gave on the post-survey or interview, they still had a 

great deal of conceptual knowledge about setting up hypotheses, building a model to 

carry out a simulation, and interpreting the results and p-value of the test readily 

available. This suggests that there may be other surveyed CATALST students who did 

not provide answers coded within the hypothesis test category that still have deep 

knowledge of hypothesis testing that can be applied to linear regression. 

 Another interesting feature of Amani and Dabney’s interview is that they both 

mentioned potential ranges of values for the correlation or r-squared to determine if it 

was a strong, moderate, or weak correlation. Dabney didn’t cite specific ranges exactly, 

but did connect the idea of this to interpreting strength of a p-value based on it falling 

within different ranges of values, as well as comparing it to the significance level to draw 

an appropriate conclusion. This may reveal another challenge for students in keeping 

inferential and descriptive statistics distinct with linear regression, as both p-values and 

correlation are interpreted based on falling within specified ranges of values, often 

subjective in nature. Students could potentially conceptualize the idea that the p-value 

being less than a significance level 0.05 is similar to the correlation being greater than 0.6 
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or less than -0.6 in the scenario of linear regression based on the similarities in these 

procedures. This may suggest that presenting correlation in a way that assigns ranges of 

values to subjective qualifiers like strong, moderate, or weak may not distinguish it 

enough from the idea of a hypothesis test. Students in the present study seemed to have a 

strong conception that a correlation of 1 or -1 would result in all points falling on the line, 

and thus it may be suggested to have students learn the meaning of correlation by seeing 

various examples of scatterplots with each correlation value instead. This may lead to a 

more objective view of the correlation value and allow students to judge the meaning of 

the strength themselves. Ranges of values indicating a level of strength are quite 

subjective, as social sciences are often pleased with data that shows a relatively low 

correlation value due to the varied nature of the measures they construct, where more 

technical fields often have stricter qualifiers for what determines a meaningful 

relationship based on correlation. Given that introductory statistics courses are commonly 

multidisciplinary, any universal ranges learned for the strength of a correlation will be 

supplanted with field-specific constraints if students eventually become involved in 

research in their own field.  

Limitations and non-response considerations 

 It is important to keep in mind that the results of this study are limited by the 

scope of this study. While the traditional classroom was chosen to have an instructor that 

emphasized active learning in the classroom to mitigate the effect of pedagogy, the 

differences in the instructor’s implementation of active learning may confound the results 

in this study. It is also important to consider that the author of this paper is the instructor 
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of the CATALST course. While I attempted to remove my own personal biases in the 

data collection process of this study, this may have had some impacts on the research. 

Additionally, the sample size of this study is limiting, especially with the interviews. 

Only a handful of students were interviewed and were selected in a purposeful manner, 

and thus this study cannot provide generalizable results about the differences in the 

curricula. This study’s results only aim to provide a view of CATALST as a practically 

relevant and theoretically promising curriculum for introductory statistics. 

The instructor effect also appeared to have an impact on non-response in the 

traditional course, due to the lack of familiarity with the researcher. Nearly 80% of the 

students in the CATALST class consented to the study and completed both the surveys, 

where just over half from the traditional classroom did the same. Given that the survey 

instrument was a course assignment contributing to a very small amount of their final 

grade, responses may bias toward students that were keeping up with all assignments in 

the traditional class. This potentially is correlated with students who achieved higher 

grades in the course given their relative willingness to keep up with two minor 

assignments in the course, although I do not have the data available to confirm this. Still, 

this gives reason to believe that a higher response rate from the traditional course may 

have revealed an even greater advantage to CATALST students in recognizing the need 

for a hypothesis test. 

As for interviews, only three traditional students responded to invitations to 

interview. These three students gave relatively high-level codes on the post-survey 

among their classmates, whereas the group of CATALST students was more varied. 
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Garnett, a CATALST student that was “Uncoded” on the post-survey, did not have 

another comparable student from the traditional course that interviewed due to this non-

response.  

Conclusions and Future Work 

 There are many advantages to using a simulation-based curriculum like 

CATALST for developing statistical thinking, especially as it pertains to the purpose and 

logic of hypothesis testing. Students from the CATALST curriculum were more frequent 

in applying an appropriate method for determining a significant linear relationship as well 

as distinguish these inferential methods conceptually from descriptive statistics like 

correlation. Regardless of the curriculum, these results have many implications for the 

teaching of linear regression. The purpose of conducting a hypothesis test in the context 

of linear regression should be emphasized as a tool to determine generalizability, that is, 

if the relationship present in the data could be a product of random chance of the 

sampling process under the null hypothesis. This may not imply that the relationship is 

meaningful or has a practical use or interpretation in a given field, but could be used as a 

tool to determine the possibility of such a relationship. Descriptive tools like correlation 

can aid in verifying whether a relationship is meaningful, but it should be noted that what 

makes a meaningful correlation is very field-specific. Textbooks often provide ranges of 

values for the correlation to determine what values yield a strong relationship, but this 

cutoff potentially further blurs the concepts of hypothesis testing and descriptive 

statistics, as it parallels the procedural aspects of interpreting a p-value.  
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 This work adds to the vast literature that compares student outcomes in traditional 

and simulation-based curricula, and provides more evidence for the relative efficacy of 

simulation-based curricula. This study focused on the CATALST curriculum, which is 

unique in that students create their own probability models to carry out simulations, 

rather than be given pre-constructed simulation applets where students can only tinker 

with a few parameters of these models. This modeling aspect of the CATALST 

curriculum has revealed many advantages to advancing students’ statistical thinking, and 

may have been a key aspect in students’ ability to discern between inferential and 

descriptive statistics as well as provide detailed conceptual explanations of inferential 

techniques. Future work could consider comparing students from various simulation-

based curricula, including CATALST, and identifying differences in students’ reasoning.  
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Chapter 4: Evidence for Further Development of TinkerPlots to Support Inferential 

Reasoning with Linear Regression 

Abstract: The Change Agents for the Teaching and Learning of STatistics (CATALST) 

curriculum is a popular simulation-based curricula for introductory statistics that has 

students create probability models to carry out simulation. However, the curriculum as 

originally designed does not include many topics that are typically in an introductory 

statistics course, such as linear regression. I detail a workaround in the TinkerPlots 

software that allows for conducting more advanced statistical tests, and show evidence 

that using this workaround with students to conduct test for the least squares line reveals 

many advantages to students’ ability to manage the multi-leveled reasoning of inference 

when leveraging simulations. This setting also provides opportunities for students to 

engage with experiment-to-causation inference. Based on this evidence, we propose a 

potential technology innovation for TinkerPlots to eliminate technological hurdles 

associated with my workaround and better support students’ inferential reasoning.  

Introduction 

 There is a great deal of evidence supporting the use of simulation-based inference 

in introductory statistics classrooms. Studies that compare these curricula with more 

traditional, algebra-based counterparts show many positive learning outcomes for 

students, especially in regard to understanding the purpose of hypothesis tests and 

interpreting their results (Chance et al., 2016; Chance & McGaughey, 2014; Tintle et al., 

2012, 2014). A primary feature of a simulation-based course is the technology used to 

carry out simulations. The technology innovation highlighted in this paper focuses on the 

Change Agents for the Teaching and Learning STatistics (CATALST) curriculum 
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(Garfield et al., 2012). This curriculum leverages TinkerPlots (Konold & Miller, 2018), 

an interactive software that allows students to build sampler devices themselves for 

carrying out simulations.  

 Rossman & Chance (2014) give three key recommendations for the choice of 

software in a course that uses simulation-based inference. First, the software should be 

easy enough to use so students can focus on learning statistics rather than technology. 

The appearance and functionality should also be consistent across various data scenarios. 

Finally, they recommend that software should use aspects like animation that connect to 

the real-world or physical items being simulated to avoid being a “black box” process. 

TinkerPlots meets these conditions in several ways, making it an ideal choice for the 

software to carry out simulations in an introductory statistics course. In TinkerPlots, the 

process of building and using these samplers is generally easy to use and does not require 

students to have any coding experience to build custom simulations. TinkerPlots also 

provides a sense of consistency: while the layout of the various plots and devices is up to 

the student, the functionality of these aspects is similar across various data scenarios. 

This process is iterative, and highlights the multi-level nature of simulations and 

sampling distributions. Students must first work with just one sample and identify the key 

statistic that will be used to produce a sampling distribution, then they carry out many 

repetitions of the simulation and create a sampling distribution based on their choice of 

statistic. Additionally, TinkerPlots leverages animations like many other simulation 

applets, helping to avoid the “black box” appearance of the simulation process. But 

TinkerPlots goes a step further by giving students the access to build the samplers 

themselves. This allows students to gain ownership over the simulation process, as 
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constructing the sampler requires students to think about exactly what aspects of the data 

and context are relevant to simulate. This gives students an authentic statistical modeling 

experience, and building a simulation through this TinkerPlots sampler from the ground 

up helps to connect their understanding of the simulated results to the sampler that 

generated them. This truly helps to prevent students from experiencing the simulation as 

a black box.  

There are many other advantages for student learning when carrying out 

simulations in the TinkerPlots software environment. Comparison studies of various 

curricula show that CATALST students particularly excel in understanding the purpose 

of simulation and interpreting their results, even over other simulation-based curricula 

(Hildreth et al., 2018). This is potentially tied to the use of the sampler device in 

TinkerPlots and the ownership it provides over the simulation process. Research also 

shows that students become more engaged as statistical modelers in the simulation 

process, and are more attentive to narrative features in the presented data and context 

when creating these models (Noll et al., 2018, 2021). This feature of TinkerPlots makes it 

a wonderful tool for teachers and researchers alike in revealing and assessing student 

thinking in various statistical contexts (Watson & Donne, 2009).  

 The primary limitation of TinkerPlots and the CATALST curriculum is that it 

does not cover all topics typically presented in the introductory statistics curriculum. 

CATALST was only intended to cover a limited selection of introductory statistics topics 

to focus more on statistical thinking and literacy, especially in regards to inference 

(Justice et al., 2020). Originally designed for middle school students to engage in 
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exploratory data analysis, TinkerPlots was a relevant choice for CATALST with the 

introduction of the sampler device and simulations in a later update. However, the scope 

of TinkerPlots’ simulation capabilities makes advanced topics usually included in an 

introductory statistics class like analysis of variance, Chi-square tests, and linear 

regression challenging to carry out. The present study is based upon CATALST-inspired 

activities developed for students to carry out a hypothesis test for the slope of a line of 

best fit in TinkerPlots. These activities require the use of clunky workarounds in 

TinkerPlots that enable the production of sampling distributions for a wider variety of 

statistics, such as the slope of a least squares line. Despite the annoyances students faced 

with using these workarounds, I found that students were often able to articulate many 

aspects of inference based upon their TinkerPlots samplers, including how their sampler 

reflected the null hypothesis, their choice of with or without replacement on the devices, 

and their interpretations of the p-value. Based on the relative success seen with students 

in this environment, I suggest a technology innovation for improving TinkerPlots to limit 

students’ difficulty with technology. 

Motivation and Research Questions 

 Expanding the CATALST curriculum to cover additional topics typically covered 

in an introductory statistics course like regression was done to meet a need of a larger 

study on the CATALST curriculum. Thus, while the cumbersome workarounds I present 

may make other simulation software alternatives more appealing for learning linear 

regression, this implementation allowed for students to continue using the same software 

throughout the course, keeping as much of the processes for conducting simulations as 

consistent as possible. However, given the positive impacts we observed with students 
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using TinkerPlots to learn hypothesis testing for the least squares line, I argue that this 

software may provide value to students despite the obstacles faced.  

 To reveal these positive impacts with students, I leverage the framework proposed 

by Case & Jacobbe (2018) that details the challenges students face in understanding 

inference through simulation. They propose three main levels that students must 

understand in simulations to capture the logic of inference: the true relationship, the 

sample, and the sampling distribution. These levels reside within two perspectives: the 

real world where the data was originally collected, and the hypothetical world defined by 

the null hypothesis of the test. Through this framework, they identified that students face 

challenges with distinguishing the ideas of simulation and replication that reflect each of 

the two perspectives of their framework. Students often saw their sampling distributions 

as actual real-world samples, rather than a hypothetical distribution based on repeated 

sampling under the null hypothesis assumption. Students also faced challenges working 

with the multi-level nature of inference, distinguishing samples from sampling 

distributions, which can result in difficulties interpreting p-values from their simulated 

sampling distributions and drawing conclusions. These challenges highlight two potential 

key areas of focus to assess the impact of these two common challenges: how students 

view the connection from their sampler models to the null hypothesis, and their 

interpretation of the p-value from a sampling distribution.  

 Another feature that is highlighted by the use of TinkerPlots samplers is the focus 

on the type of inference that is conducted. Most introductory statistics courses focus on 

sample-to-population inference, where a random sample is taken to make inferences 
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about what the larger population looks like. There is often not a focus placed on 

experiment-to-causation inference, where random assignment is leveraged to infer cause 

and effect conclusions based on the grouping variable that is controlled for. Simulation-

based courses offer an opportunity for students to engage in connecting the design of the 

study presented to the simulation, and findings show that students are able to connect the 

purpose of the study to the relevant probability model used in a simulation-based course 

(Pfannkuch et al., 2015). In TinkerPlots, students can choose to use a bootstrap 

simulation method and sample their devices with replacement to emulate a random 

sample being taken, reflecting sample-to-population inference. If the students want to 

reflect an experimental design with random assignment, a randomization test can be 

constructed which would use sampling without replacement on each device to emulate 

this random assignment process. This choice gives students an opportunity to think 

critically about the study’s design when building their sampler and connect this to their 

conclusions.  

 This previous work gives us three areas to potentially highlight in regards to 

students’ inferential reasoning: their conceptualization of the null hypothesis and how it 

relates to their TinkerPlots sampler, their understanding of replacement as it relates to the 

study design, and their use of sampling distribution to interpret a p-value for a test. Using 

the TinkerPlots sampler as a probability modeling environment may provide advantages 

to developing these aspects of inferential reasoning in students and addresses the 

challenges described in previous work. Thus, this study aims to answer the following 

research questions: What technology challenges do students face when using TinkerPlots 

to carry out a test on the least squares line, and what can be done to address these 
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challenges? How does using TinkerPlots for conducting this hypothesis test aid their 

inferential reasoning and address the common challenges faced when using simulation?  

I aim to address these research questions one-by-one in the sections that follow. 

The next section will address the TinkerPlots technology and the workaround 

implemented in TinkerPlots, compare this to other applications that can conduct 

simulations, and propose technology innovations for TinkerPlots. Next, we will look at 

empirical evidence to show the efficacy of TinkerPlots in addressing the three main 

challenges in simulation-based courses identified previously in the literature. This aims to 

provide an argument for why my proposed technology innovation should be considered 

for TinkerPlots. 

TinkerPlots Background and Proposed Innovation 

 The methods for conducting a statistical test for the slope of a least squares line 

using TinkerPlots parallel the methods used for conducting a test comparing two 

populations or groups. Thus, to give a basis for how simulations in TinkerPlots are 

typically conducted, I will first examine procedures for a hypothesis test comparing two 

groups or populations. The next section presents workarounds for how to conduct a 

similar test for the slope of a least squares line, highlighting the cumbersome nature of 

conducting this in TinkerPlots. Finally, I propose a potential technology innovation for 

TinkerPlots to streamline this simulation process and avoid this clunky workaround. 

Comparing Two Groups in TinkerPlots 

 The procedure for producing data for a hypothesis test in TinkerPlots generally 

follows three general steps: creating a sampler to simulate data, creating a plot of one 
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sample to identify a statistic of interest from the plot, and then simulating from your 

sampler many times to generate a sampling distribution. This section aims to illustrate 

this process and show evidence that TinkerPlots meets the three main recommendations 

for simulation software proposed by Rossman and Chance (2014). 

The first step, creating the sampler or probability model in TinkerPlots, requires 

identifying the variables of interest to include in this model. When conducting a test 

either for comparing two groups or the slope of the least squares line, you have an 

explanatory and response variable, and are assessing the association between the two 

variables. However, when students are presented with tests that compare two groups, it is 

not often presented as a test of association initially, and instead just as a test of a 

difference between two means or proportions, which somewhat obscures the explanatory 

or grouping variable. However, when creating probability models in TinkerPlots, students 

need to recognize each variable and model them as separate devices in the sampler. An 

example TinkerPlots sampler for a problem comparing two groups is given in Figure 15.  

 
Figure 15. TinkerPlots sampler used to simulate data for the dolphin therapy problem. 
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This sampler represents data from a study on the efficacy of dolphin therapy for patients 

with depression (Antonioli & Reveley, 2005). When using this device, cases from each 

variable are randomly re-paired to each other, which thus represents the null hypothesis, 

as the two groups are treated no differently as to what cases of the response variable are 

assigned. This logic can be similarly applied to probability models for linear regression as 

well. Devices in the probability model can be used to represent the two variables, and 

placing all cases of each variable in these devices facilitates this re-pairing process. 

The use of this device is ideal for meeting Rossman and Chance’s 

recommendation of avoiding simulations from becoming a “black box” to students. 

Working with probability models like this in TinkerPlots is not only beneficial for seeing 

their random processes animated, but is also beneficial for giving students the ability to 

construct this device based on their own thinking. Giving students the freedom to build 

the sampler from the ground up is the novel part of the CATALST curriculum. This gives 

students ownership of the simulation process and avoids the sampler from being viewed 

as a black box. When they run the simulation in TinkerPlots, they have a more intimate 

perspective of how results are simulated because the students had to design the 

simulation process themselves. 

The next step of the simulation process in TinkerPlots is to plot a single sample of 

results and identify the statistic of interest. When the device is run, a group card and an 

outcome card is sampled from each deck and paired together 30 times, producing a new 

set of sample data under the assumption that the null hypothesis is true. This data can 

then be plotted and displayed with percentages, as shown in Figure 16. Values like counts  
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Figure 16. Plot of data and history table for the dolphin therapy problem. 

and percentages displayed on plots can then be tracked over many simulations to build up 

sampling distributions. In the same figure, a table of the two percentages and their 

difference are presented. This design of TinkerPlots allows students to build simulations 

in a more iterative way – first by running one single sample, analyzing it to determine the 

statistic of interest, and then running the simulation many times. The functionality and 

appearance of this process within TinkerPlots is consistent across many different data 

scenarios that focus on sampling distributions for a count, percentage, or mean, which 

meets another recommendation from Rossman and Chance. Additionally, this design 

does not require students to pre-plan every aspect of their simulation before running their 

first trial. This is quite different to the simulation process used in the popular Common 

Online Data Analysis Platform (CODAP) software, where the all repetitions of a 

simulation must be executed before students have the chance to explore their simulated 

data further. The process of plotting data and identifying a statistic of interest for a 

sampling distribution is important for students to make revisions to their initial 

probability model, and this revision process is important to the probability modeling  



151 

 
Figure 17. Table and sampling distribution for the dolphin therapy problem. 

Finally, once students have identified an appropriate statistic to collect, they can 

run their simulation many times and create a sampling distribution, as shown in Figure 

17. This allows students to then determine an empirical p-value based on their simulated 

trials, as shown by the shaded region in the figure labeled with 1%. Students often have 

great success with interpreting this p-value and drawing conclusions in this curriculum, 

as the null hypothesis assumption is readily visible to students through building their 

samplers under this assumption itself. This is in line with comparative curricula research 

that has shown CATALST students have a deep understanding of the purpose of 

simulation and interpreting the results of statistical inference (Hildreth et al., 2018). 

Rossman and Chance recommend that software should not interfere with the 

learning of statistics. Overall, the process of building and carrying out a simulation in this 

data context of comparing two groups or populations is relatively straightforward for 

students to conduct themselves in TinkerPlots. One could argue that this process may 

take additional software knowledge compared other simulation software like applets with 

pre-built simulations. However, modeling itself is an important skill and should be 

emphasized when learning inference. Students must make connections between their null 



152 

hypothesis when constructing their model, which enhances their perspective on the 

simulations they conduct. The time students engage with the context and statistical 

assumptions and how they integrate that into their TinkerPlots samplers has the potential 

to enhance their statistical reasoning with these simulations. Thus, the process of building 

the TinkerPlots sampler is not simply an additional burden placed on students that may 

distract from their learning of statistics; in fact, it should enhance their learning of both 

inference and statistical modeling. 

Testing the Slope of a Least Squares Line in TinkerPlots 

This process of creating a sampler and producing a sampling distribution is 

structurally similar across various statistical scenarios in the CATALST curriculum. For 

the scenario of the slope of a least squares line, this process is initially familiar in the first 

step when creating the sampler. However, conducting this simulation further requires  

Caffeine is a widely used stimulant and psychoactive drug 

found in many drinks that we consume, and has various 
effects on your body and health. Researchers collected data 

to attempt to quantify the effects caffeine has on resting 
heart rate. The researchers recruited individuals who drink 
a daily cup of coffee and were able to secure 50 volunteers. 

Each of these coffee drinkers were randomly assigned an 
amount of caffeine to be put into their drink. Their heart 

rate was recorded once before they were given their coffee 
and once again 1 hour after the drink was first consumed. 
Using this data, the researchers would like to answer the  

 

following research question: Is there a significant relationship between the amount 

of caffeine someone drinks and their heart rate an hour after drinking it? Data on 
the amount of caffeine given to the patients (mg) and the change in heart rate (bpm) 

can be found on the caffeine.tp data file. (A preview of the data in TinkerPlots is given 
to the right.) 

Figure 18. The caffeine and heart rate problem context and data preview. 
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workarounds that break this familiar structure for students. In this section, we will 

investigate a study on caffeine and heart rate, which is given in Figure 18. To build a 

sampler that generates under the null hypothesis, the randomization or card shuffling 

approach still works for this data scenario, but the categorical variables are now replaced 

by numerical variables. Thus, a sampler that utilizes two lottery ball mixers with all of  

the various numerical outcomes for each variable would be appropriate to carry out this 

randomization, as displayed in Figure 19.  

Next, students would plot the data in order to determine a statistic of interest. 

TinkerPlots can plot the simulated data in a scatterplot; however, there is not a direct way 

to visualize the least squares line in TinkerPlots. The best way to do this is to calculate 

the values for the slope and intercept of the least squares line using the formula editor, 

and a diagonal line can then be manually adjusted on the line to match these values 

approximately. Figure 20 displays this plot with the superimposed diagonal line that is 

close to the least squares line calculated in the table. This visualization, however, is time- 

 
Figure 19. TinkerPlots sampler used to simulate data for the caffeine problem. 
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Figure 20. Data table and plot of a simulated trial for the caffeine problem. 

consuming to construct, and diverts attention from learning statistical concepts to 

wrangling with technology. Additionally, to set up the collection of a statistic over many 

trials in TinkerPlots, the plot must display the numeric value to collect on, and  this figure 

must be set to update when new trials are run. While the slope of the diagonal line 

appears on the plot in Figure 21, there is no way to collect on this number, as the line is 

placed manually and will not update when a new trial is run. Due to the lack of support 

for plotting a least squares line in TinkerPlots, there is no way to easily collect statistics 

on the slope of this line.   

 
Figure 21. Plot of the slope variable, using an erroneous categorical axis. 
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To escape this issue, a workaround can be conducted with TinkerPlots. This 

workaround is not elegant, but will facilitate the building of a sampling distribution for 

the slope. It should be first noted in Figure 20 that the calculation of the slope of a least 

squares line creates a column in the table which repeats that slope value across the entire 

column. Thus, one could imagine plotting these values on a distribution, display the mean 

of the distribution, and collect statistics on the mean. This mean value is identical to the 

slope, as it is just the mean of many copies of the slope value itself. However, in the 

stable release of TinkerPlots version 2.3, TinkerPlots identifies the variable as categorical 

rather than numerical, seemingly due to the nature of the variable having identical values 

across all entries. Thus, as a result, there is no numerical axis that is plotted, preventing a 

mean from appearing on the plot, as shown in Figure 21. To circumvent this issue, you 

can follow the steps outlined in Table 23, which performs a “bait and switch” method 

with the equations in TinkerPlots to ensure that a numerical axis is used. While this 

method is functional, it is often confusing to students, especially CATALST students who 

are accustomed to the functionality of TinkerPlots directly connecting to the statistical 

concepts they are learning. While performing the workaround in Table 23 and 

manipulating the formula editor in TinkerPlots, one student noted “I kind of don't 

understand why we're doing this... I don't know what the narrative purposes are with 

these columns [that are calculating the slope].” This workaround is a strictly procedural 

method to produce the sampling distribution, which was clearly uncomfortable with this 

student who wanted to better see the meaning of this slope value and why this procedure 

was being carried out in TinkerPlots. However, once these procedures were set up with 

support from the instructor, students thrived being able to carry out this test in a familiar  
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Table 23. Instructions for setting up collecting statistics on a slope. 

Description Image 

Create a new column for the slope in 
the data table. Right click on the 
header for the column and select 

“Edit Formula.” 

 
Rather than use the formula for the 

slope (LinRegrSlope) in TinkerPlots 
right away, simply type in the name 

of one of the variables into the 
formula editor. For this problem, one 
could use “Caffeine” as this variable. 

 
Create a plot of this new slope 
column in TinkerPlots. Be sure to 

fully separate all the dots by dragging 
a dot all the way to the right so that 

the bins disappear and an x-axis 
appears. 

 
Right click on the header for the 
slope column again and select “Edit 

Formula.” Enter in the formula for 
the slope (LinRegrSlope, can be 
found under Functions, Statistical, 

Two Attributes) and click OK.  

 
The plot of the slope will now reflect 

the slope value and the numerical x-
axis persists. Enable the mean tool 

(triangle button) on the plot. Right 
click on the triangle and select 
“Collect Statistics” to begin tracking 

the slope value. 
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modeling environment, which will be explored with the data presented later in this 

chapter. 

If using the TinkerPlots version 3 release, this method described in Table 23 is 

unnecessary, as it will use a numerical axis by default. For this reason, I highly suggest 

using TinkerPlots 3 with students if you plan on implementing this workaround with 

students to give them the easiest software experience possible with TinkerPlots. 

However, it is worth noting that version 3 is an ongoing re-build of the original 

TinkerPlots 2.3, and so there may be bugs or with this version. Additionally, there are 

certain features that you may require in TinkerPlots 2.3 (e.g. robust copy/paste features, 

scrolling workspace, etc.). Currently, both versions are offered on the TinkerPlots 

download page due to the differences in stability and features. This method can be used 

on a variety of measures that TinkerPlots can calculate with the formula editor as well. 

There are built-in functions for many other statistical measures that could be used to build 

up a variety of tests using TinkerPlots software. 

Proposed Technology Innovation 

 To best leverage the potential CATALST and TinkerPlots have in engaging 

students in probability modeling for linear regression, I propose a future technology 

innovation for the TinkerPlots software to better facilitate the building of an empirical 

sampling distribution for the slope. To address the complications of collecting statistics 

on the slope in TinkerPlots, the diagonal reference line tool should have the ability to 

lock-in at the position of the least squares line. There is currently a feature that  locks the 

line at the origin in TinkerPlots, allowing for one remaining degree of freedom when 
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manually adjusting the line. This feature should work similarly to that, but would not 

allow further adjustments to the diagonal reference line when enabled. Figure 22 shows 

the proposed functionality for the diagonal reference line tool. This functionality is 

proposed in such a way that it does not replace the diagonal line tool, and simply gives 

the option to visualize a least squares line on a plot. The ability to informally place lines 

and adjust them is valuable to students’ development on the concept of the least squares 

line. Activities that have students place lines informally and establish criteria for how 

well a line fits the data is an important process in building up the motivation for the least 

squares line and how that line is determined. 

Using this functionality to place a line of best fit can be done quickly to create a 

plot of the observed data with a least squares line, allowing for a brief exploration of the 

data. Currently, the only way to plot a least squares line in TinkerPlots is to separately 

calculate the slope and intercept, and then place a diagonal line on their plot to 

approximately match these values. This feature should also be useful for plotting 

 
Figure 22. Proposed functionality for the least squares line in TinkerPlots. 
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simulated data, determining a statistic to collect, and building an empirical sampling 

distribution. This proposed functionality is shown in Figure 23. When this new locking 

feature is enabled, the equation of the least squares that appears in the plot should enable 

interactions with the slope and intercept for collecting statistics in a history table. When a 

statistic is enabled for tracking in a history table, it can be clicked on such that a grey box 

appears around that statistic, and right-clicking on it will allow for the “Collect Statistic” 

option to be selected. Functionality should also be added for collecting statistics on the 

intercept value as well. While statistical tests for the intercept are often not the primary 

focus when teaching linear regression, having the option available to students forces a 

choice to be made. If the technology only allowed for the slope to be collected, students 

would simply begin creating a distribution based on the only available option, rather than 

 
Figure 23. Proposed functionality for collecting statistics on the least squares line slope. 



160 

think critically about the equation of the line and decide which statistic will assess the 

relationship between the two variables. 

Considering Software Alternatives 

 Given the cumbersome nature of conducting a test like this in TinkerPlots, one 

may ask why other software options are not considered for the purpose of conducting a 

simulation-based test for the line of best fit. The previous section identified two features 

of this analysis that are cumbersome with TinkerPlots software: creating the least squares 

line on the plot of observed data, and setting up the collection of statistics on a slope. 

Many existing software packages exist currently that have these features. However, we 

argue that the benefit of students creating the sampler device and simulation process in 

TinkerPlots is a worthwhile, unique feature of this software. In this section, we will 

highlight two other popular choices for simulation-based inference: CODAP and web-

based applets.  

As mentioned previously, CODAP is a very popular statistics software package 

due to its focus on data science through its use of nested data structures. However, its 

potential for simulation is currently lacking. The sampler plugin available in CODAP 

currently only supports simulating from one device. The TinkerPlots samplers for 

comparing two groups or linear regression as shown in Figures 15 and 19 each have two 

devices, so that values from the two variables can be re-paired with each other randomly. 

While multiple variables from a data set can be placed into this single device, the 

outcomes of each variable for a single case are inherently linked, thus preventing any 

simulation under the null hypothesis through randomization or bootstrapping. 
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Additionally, as previously mentioned, the hierarchical nature of CODAP’s data 

structures make it difficult to emulate the iterative nature of simulation in TinkerPlots. 

Students must determine the number of repetitions up front before a statistic has been 

determined, which can create an overwhelming amount of information to process 

immediately. This can potentially interfere with the cyclic nature of probability modeling, 

where testing an initial model and reading the output of single samples often informs 

revisions to that probability model.  

 There are also many web-based applets available to conduct simulations for the 

slope of the least squares line, many of which share very similar features. In this paper, I 

consider the applets developed by Rossman and Chance (2014), as they have the most 

features for exploratory data analysis. An example simulation using this applet can be  

 

Figure 24. Simulation of least squares slope in Rossman and Chance applet. 
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seen in Figure 24. While this applet addresses many feature gaps in TinkerPlots, like 

directly plotting a least squares line on a scatterplot and easily simulating a sampling 

distribution for a slope, students do not have any authority in building the simulation 

process in these applets. After loading the relevant data into the applet, the probability 

model used for simulations is pre-constructed and obscured to students. While the 

visualizations of individual samples and the sampling distribution are well-connected by 

highlighting the current blue least squares line and blue observation in the sampling 

distribution, there is little connecting the observed sample to the data generating process. 

Students simply click the “shuffle y-values” button that is given to generate their 

sampling distribution. Instruction can assist in this connection to the simulation process, 

but students do not get to actively think about this process for themselves or consider the 

type of inference done in the study and how that may connect to the choice of simulation. 

Additionally, there is no opportunity for students to engage in modeling with this applet, 

which is an important goal of learning statistics itself. 

 To summarize the options with available software, Table 24 organizes these 

features of TinkerPlots, CODAP, and the Rossman and Chance web applet. Based on the 

options presented in this table, one might propose that an alternative technology 

innovation could be to further develop CODAP’s sampler plugin so that the sampler’s  

Table 24. Summary of software and features for testing the slope of a least squares line. 

Software Plot LS Line Simulation Collect on Slope 

TinkerPlots Manually Yes, fully customizable with 

sampler 

Yes, but cumbersome 

CODAP Yes No, cannot simulate multiple 
variables 

Yes 

Web Applet Yes Yes, pre-built Yes 
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features are similar to TinkerPlots. This would not require any further work outside of the 

applet, as CODAP already supports calculating the slope of each sample and creating a 

sampling distribution within its existing data structure. However, the previously 

identified features in how the hierarchical nature of CODAP’s data structures and 

requiring the number of repetitions up-front may interfere with the iterative and cyclic 

nature of the probability modeling process. The web applets are capable of carrying out 

all of these aspects currently, but are limited by the model being obscured to students and 

thus making it difficult for students to know what is being simulated. TinkerPlots can 

perform all three of these aspects of plotting the least squares line, carrying out a 

simulation and collecting on the slope, but is not as easy to use as the alternatives. If 

implemented, the technology innovation presented would make TinkerPlots an ideal 

software tool for teaching linear regression, including its powerful and unique sampler 

tool. My aim in the rest of this paper is to provide evidence that TinkerPlots can 

strengthen students inferential reasoning with linear regression, even with using the 

current cumbersome workarounds. 

Methodology 

 This section details the perspective on learning I take in analyzing data from this 

study, the data collection instruments used, participants in the study, and the analysis 

done on the data.  

Learning Perspective 

 The CATALST curriculum leverages carefully scaffolded activities that have 

students work in groups to discover new statistical concepts in TinkerPlots. Within the 
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classroom, I take a social constructivist view to learning. Students come with many pre-

conceived notions about statistical and probabilistic concepts, and this impacts how they 

might model a problem in the TinkerPlots sampler. In a group context, the experiences 

students bring to the course individually affect their own experiences with the activities 

and the data contexts, and this results in a sociocultural-based discussion of relevant 

contextual elements that are important to model. These activities also leverage students’ 

zone of proximal development to allow for students to experience novel concepts for 

themselves rather than be directly instructed on how to approach them.  

However, for the purposes of assessing students’ learning, I am more concerned 

about individual knowledge, representing a cognitive approach to learning. These two 

approaches can be reconciled, as social constructivism involves students shuffling 

between interpsychological and intrapsychological levels, where students bring their 

individual experiences to a social setting and center learning within a group of students. 

Knowledge from this group setting is then internalized once again through this 

experience. Thus, to assess what knowledge students have internalized from their 

classroom experiences, the primary source of data we will examine is student responses 

to final exam questions. This will be supplemented with select episodes from group 

discussions in class.   

Data Collection Instruments 

 This study focuses on an introductory statistics course using the CATALST 

curriculum. This study focuses on two data sources, in-class screen recordings, and 
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student responses to the course assessment. The following subsections detail these two 

instruments. 

In-Class Recording. Students participated in the caffeine activity described 

previously in Figure 18. Students were placed into groups of 3 or 4 students to work 

through the activity and write up their responses in a shared google document. This 

activity, like many other CATALST activities, is constructed to allow students to explore 

ideas for themselves, discuss among their peers, and then bring these ideas to a full class 

discussion. Questions on the activity ask them to pose conjectures about data, build their 

samplers and justify the choices they make in creating them, and explain the results they 

generate from the samplers and their relevance in answering the statistical questions at 

hand. Groups of students that consented to be recorded had their screen sharing and audio 

recorded via Zoom. Students’ written work from the activity was also collected. 

Assessment. The assessment of focus for this study is the final exam, which 

occurred just a week after completing the linear regression content in the course. The 

final exam had students complete a full investigation that leveraged linear regression 

techniques similar to the activity. Students were instructed to complete this assessment 

with no other outside resources besides TinkerPlots, but given that this assessment was 

conducted remotely through Zoom, it is impossible to know for sure if students followed 

these directions. Unlike the activity’s context that leveraged experimental design and 

random assignment, the context posed to students had students assess a random sample of 

diamonds from Singapore for the relationship between their carat and price (Chu, 1996). 

This gave students an opportunity to model a scenario with a different study design in 
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linear regression, which will challenge students to model the choice of replacement in 

their sampling process to best reflect the study design.  

 To best reflect the motivations for this study, this study focuses on three questions 

from the assessment. The first question asks students to determine how their sampler 

device reflects the null hypothesis, in order to gauge their understanding of whether they 

recognize the sampler generating data under the hypothetical perspective that there is no 

association between price and carat. The next question of focus asks students to justify 

their choice of replacement for the sampler, to capture the idea of study design as just 

discussed. Finally, we focus on their interpretation of the p-value, which will aim to help 

determine students’ ability to decipher their results from their simulated sampling 

distribution. The relevant details of this assessment can be found in Appendix A.  

Participants 

This study focuses on one CATALST classroom of 23 students in the second 10-

week course of an undergraduate introductory statistics sequence. Of those 23 students, 

21 consented to participate in the study. This course is targeted at non-statistics majors, 

most of which come from a social science background. Some students in the course may 

have had some prior statistics knowledge from high school or other courses in their own 

departments, but for the most, this course is their primary exposure to statistics in college.  

In the caffeine activity conducted in class, the 23 students were divided up into 

seven groups. Six of these groups were composed of all consenting students who, and had 

their screen and audio recorded via Zoom. Due to the nature of this course being taught 

remotely during the COVID-19 pandemic, group discussion was often not as vocal as an 
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in-person classroom, with many off-topic discussions or silent writing in their google 

document. As a result, the presentation of results will focus on just one of these six 

groups that was consistently vocal about their thinking through the activity. The students 

in this group are referred to by the pseudonyms Micaiah, Dabney, and Riley. All 21 

consenting students in the course took the final exam, and their responses to the three 

questions of focus were analyzed in this study.  

Analysis 

 Analysis of the survey responses began with the development of coding structures 

for student justifications in each of three assessment questions: how their TinkerPlots 

sampler reflects the null hypothesis, their choice of replacement and justification, and 

their interpretation of the p-value. The choice of these three assessment questions was 

made in light of the Case and Jacobbe (2018) framework that highlighted common 

challenges in simulation-based courses, as well as the experiment-to-causation inference  

Table 25. Connection between the research literature and the assessment questions. 

Research Literature Challenge Identified Assessment Question 

Case and Jacobbe 

(2018) 

Recognizing the simulation as a 

simulation under a null hypothesis 
assumption rather than a replication 

of real-world data.  

Connecting a 

TinkerPlots sampler to 
the null hypothesis 

Discerning between a sample of data 
and the sampling distribution, and 
interpreting the difference between 

these. 

Interpreting a p-value 

Pfannkuch et al. 

(2015) 

Recognize the difference in meaning 
and interpretation between 

experiment-to-causation inference 
and sample-to-population inference.   

Justifying the choice 
of replacement for a 

TinkerPlots sampler 
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aspects highlighted by Pfannkuch et al. (2015). Table 25 highlights the aspects of each of 

these pieces and how they connect to the asessment questions I focused on. 

For all three questions, responses were read and an open coding process was 

conducted to highlight interesting themes for each of the three assessment questions. 

Based on these themes, three coding schemes were developed. The following subsections 

detail these coding schemes for the three concepts presented.   

Null Hypothesis. To assess students’ understanding of how their sampler device 

represents the null hypothesis, students were asked the following question: “Describe 

how your [sampler] model reflects the null hypothesis. Be sure to give a detailed 

explanation in the context of the problem.” An initial reading of student responses was 

conducted to determine overall themes to their explanations. An overwhelming majority 

of students gave some explanation that describes how the model paired values from each 

variable at random with no biases toward certain types of pairings, thus assuming no 

relationship upon the data. Those students who didn’t give this type of explanation often 

claimed that the model assumed no association without the background of this re-pairing 

process. Another alternate explanation students gave was attributing the choice of 

replacement to the nature of how it reflected the null hypothesis. As a result, these three 

types of responses were the basis for coding, which is detailed in Table 26. Codes 

assigned to student responses for this structure are unique, so all responses are assigned 

exactly one of these three codes. Given that the “re-pairing” code was applied the 

overwhelming majority of student responses and that only 21 students were studied, this 
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Table 26. Coding scheme for responses to null hypothesis question. 

Code Description Example Response 

Re-pairing  The student conveys 
that their model pairs 

values from each of 
the two devices in a 

way that assumes no 
relationship. 

My model will simulate randomly sampling 
diamonds (their sizes and carats and prices) 

from retailers, randomly pairing carats and 
prices in such a way as to simulate there being 

no particular relationship between the two. 
This is in order to assess whether such a 
seemingly strong positive correlation could be 

explained away by random chance. 

Assumption The student states that 
their model assumes 

no relationship, but 
does not explain 
anything pertaining to 

how the model 
ensures this. 

This model reflects the null hypothesis 
because we are assuming that under the null 

there is no correlation between the variables 
being tested of carat and price. Creating this 
model, I am going under the assumption from 

the information of the study that these 
diamonds given are a random sample. So with 

using the random sample method it allows me 
to test under the null hypothesis at random. 

Replacement The student justifies 

that the model reflects 
the null hypothesis 
due to their choice of 

replacement.  

My model reflects the null hypothesis because 

with both devices being set to “without 
replacement”, it assumes that there is no 
correlation between the carat of a diamond 

and its price. 

 

surely does not reflect the complete scope of possible student responses, but it does help 

to provide a view of students’ thinking in this course. 

Replacement. Students were asked the following question on their assessment: 

“Describe how you chose replacement for the [sampler] model, and how you think this 

best reflects the context of this problem.” To justify the choice of replacement in this 

scenario, students provided a variety of explanations in their responses, especially 

depending upon the choice of replacement that they initially made. Students can justify 

the use of with replacement by referencing the study design as reflecting an observational 

study using random sampling, which is best emulated through bootstrap sampling with   
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Table 27. Coding scheme for responses to replacement question. 

Sampling Code Description Example 

With Sampling The student references that 
their model emulates the idea 
of taking a random sample or 

re-sampling. 

I chose to do replacement 
for both, because the 
study says that we should 

assume random selection 
of diamonds. 

New data The student desires their device 

to emulate the aspect of finding 
new observations (diamonds) in 

their samples. 

When re-randomly 

sampling 48 new 
diamonds from population 

(in newspaper from 
retailer) per trial, they will 
have NEW overall data, 

so they are not FIXED 
from trial to trial. 

Obs. Study The student references that 

their model represents an 
observational study (not simply 
just “study”), or references that 

their choice best represents the 
original study's design. 

I chose to put both devices 

with replacement so that 
the original conduction of 
the study is represented. 

Without Random 

Assignment 

The student references that 

their model represents the 
process of random assignment. 

I chose “without 

replacement” for both of 
my devices because I 
wanted to simulate prices 

being randomly assigned 
to carats 

No 

duplicates 

The student desires to have all 

data points represented once 
and only once in their 
simulated data. 

Given we are comparing 

two variables, repeating 
values would not be ideal 
as the comparison may be 

thrown off if the same 
values were being seen 

over and over again. 

Experiment The student references that 
their model represents an 

experiment, or references that 
their choice best represents the 
original study's design. Be sure 

they say experiment to mean 
study design, and not as a term 

synonymous with terms like 
"study" or "research." 

The sampler was set to 
without replacement 

because it is an 
experiment with random 
assignment. 
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replacement. Students also can reference the idea that the re-simulation process under the 

null would require some idea of re-sampling new subjects. If a student chose without 

replacement, they could also similarly reference the study design, which would reflect an 

experimental design leveraging random assignment. They may also reflect a desire to 

have all values selected with no duplicates, as done in a typical randomization test. To 

encompass these ideas that emerged in the data, we coded student responses with the 

coding scheme presented in Table 27. After the type of replacement that the student used 

is identified, reasoning codes from this table were applied to their response. Unlike the 

codes for the null hypothesis, responses may be assigned multiple reasoning codes, as 

students often gave multiple justifications represented by these codes for their 

replacement choice.  

p-value. Students were asked the following question on their assessment: 

“Explain what the p-value means in the context of the problem. Do not simply state how 

strong or weak the evidence is, give an interpretation of the percentage or probability that 

you found.” To evaluate responses to this question, I identified and analyzed three main 

components of their statement: a reference to the observed slope, an inequality statement 

(e.g. the observed slope value or something larger), and a reference to assuming the null 

hypothesis is true. For each of these three components, a separate coding scheme was 

created to assess students’ responses. These coding schemes for each of these three 

components are detailed in Table 28. Each response was assigned one code from each of 

the three components to characterize each student’s interpretation of the p-value for a 

total of three codes per response. 
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Table 28. Coding scheme for responses to p-value question. 

Component Code Description Example 

Observed 

Slope 

Present References the actual slope 
value in their study or calls 
back to the slope from the 
original study. 

“There is a 0% chance that I 
would be able to obtain the slope 
from the original data…” 

Generic References the p-value 
being about some 
undefined value or other 
statistic from original study. 

“Because the p-value was 0%, 
this means that it is impossible 
for the results of the study to have 
been by random chance.” 

Missing Does not reference a value 
from original study. 

“We can conclude that the p-
value of 91% indicates strong 
evidence against the null 
hypothesis.” 

Inequality Present Explicitly gives detail that 
p-value looks for the slope 
value in the original study 
or more than what was 
provided. 

“There is a 0% chance that we 
would get a slope value as steep 
as 3721.02 or more under the 
null.” 

Implied Inequality is potentially 
implied, as observed slope 
was not close to simulated 
slope statistics. Students 
reference that their 
simulation did not produce 
slopes anything near the 
original or observed value.  

“Our original slope of about 
3,700 didn’t show up a single 
time, meaning that the samples 
with no relationship were far 
from close to what the original 
data shows.” 

Missing No inequality referenced. “There is a 29% chance that the 
price of diamonds is dependent 
on the carat size.” 

Null Detailed Gives a detailed statement 
of the null hypothesis in 
their interpretation. 

“…assuming the carat and price 
of a diamond have no association 
(under the null hypothesis).” 

Contextless References that the p-value 
assumes the null to be true 
without stating what that 
null is. 

“Under the null hypothesis results 
is valid, that we wouldn’t get the 
original value of the slope being 
3721.02 and above from the data 
I have collected.” 

Random 
Chance 

References that the p-value 
is the result of what 
happens randomly or by 
random chance without 
explaining the random 
chance process. 

“…a zero percent chance of the 
data’s original slope occurring 
randomly.” 

Missing No reference to the null or 
random chance. 

“we have around a 0% chance 
that we would get results of the 
same as the original study or 
more extreme.” 
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Analyzing student responses for these three components not only gives an 

opportunity to assess students’ conceptions of the p-value itself, but it also reveals how 

students recognized the various perspectives and levels of simulation-based inference 

identified in Case and Jacobbe’s framework. A recognition of their p-value as being a 

probability about the slopes of the least squares line gives evidence that the student 

recognizes the sampling distribution as representing this statistic rather than the observed 

data itself. And recognizing the null hypothesis in their statement also shows evidence 

that if students hold the appropriate hypothetical view of the null hypothesis, then these 

students view the data in the sampling distribution as representing a hypothetical 

perspective. While the latter point is assessed in their responses to the null hypothesis 

question, this gives some additional verification that this hypothetical perspective held 

throughout the simulation and their analysis, and that they could manage these 

perspectives throughout the analysis. 

Results 

 On the whole, students were able to procedurally carry out a test for a least 

squares line with great success on their assessment. Of the 21 students who took the 

assessment, all 21 were able to create an appropriate sampling distribution based on their 

TinkerPlots samplers, with 19 of them identifying the correct p-value and drawing an 

appropriate conclusion. For the two students that did not reach an appropriate conclusion, 

one made a reading error on the slope of the least squares line (used 370 instead of 3700) 

which affected their observed statistic that their p-value was based on, and the other used 

their sampling distribution to make an empirical confidence interval of their simulated 

results. While a confidence interval approach could be a valid method in this scenario, 
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this students’ distribution was still generated using a sampler that reflected the null 

hypothesis rather than bootstrapping on the observed data. 

 However, this does not necessarily reflect students’ understanding and 

interpretations of the procedures they conducted. To understand this, the following 

subsections will investigate the results of student responses to the three coding schemes 

developed for the null hypothesis, replacement, and p-value. I will then follow-up to 

discuss technology difficulties students faced with TinkerPlots when carrying out the test 

for the least squares line.  

Null Hypothesis 

Overall, students were mostly successful in identifying how their device 

represented the null hypothesis that a diamond’s carat was not correlated to the price. The 

table of codes for student responses is given in Table 29, which shows that 81% of 

students were able to recognize that their sampler device in TinkerPlots was randomly re-

pairing values from each variable, thus representing that there is no association. Many 

students were quite explicit about defining the process not just as “random,” but stating 

that this re-pairing process is independent, and does not bias certain pairs of values that 

may show an association. One student provided the TinkerPlots sampler shown in Figure 

25 and gave the following response: 

Table 29. Counts of codes for responses to the null hypothesis question. 

Code Count 

Re-pairing 17 (81.0%) 

Assumption 2 (9.5%) 

Replacement 2 (9.5%) 
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Regardless of the carat size randomly selected in the right device, [this will have] 

no effect [or] have an impact on the price of the diamond (can randomly sample 

any price from very low and freely pair it with any carat size). That way the 

diamond price is determined randomly, in an independent way from the carat, 

showing no linear association. 

Another student explained this idea of independence by stating that “This pairing is not 

weighted in any way (i.e. higher carat being paired with higher price).” While these 

responses show great promise in students’ probability modeling techniques in managing 

assumptions, these statements do not guarantee that students are considering their null 

hypothesis assumption throughout the analysis. An examination of students’ p-value 

interpretations will potentially triangulate this data and reveal if they potentially carried 

this assumption through the analysis.  

 

Figure 25. TinkerPlots sampler for diamonds and carat provided by student 
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Replacement 

 Students were more divided on the choice of replacement for this particular 

scenario, as shown by the counts of codes assigned in Table 30. A majority of students 

chose to use with replacement on their TinkerPlots devices, but many still chose without 

replacement. As the in-class activity on caffeine and heart rate where this simulation 

method was originally introduced leveraged sampling without replacement due to the 

experimental design, students may have received the impression that it was ideal to use 

random assignment and have no duplicated values in their samples to best simulate the 

data. This seems evident in this student’s response: 

I chose without replacement for both categories as I want the outcomes to simply 

be randomly paired up without double dipping… if we were to do with 

replacement, it would not be adequate to use the [original study’s results] and the 

new [simulated] information if the info is not kept the same… Also, I think we are 

using a Linear Association deal and that is done without replacement. 

This student gives a justification that reflects that the simulated samples best reflect the 

original study’s results if no duplicates are used in the simulated sample data, and follows 

up with the idea that testing for a linear association is done without replacement. While 

there were two students who did mistake the diamond scenario for being an experimental 

Table 30. Counts of codes for responses to the replacement question. 

Sampling Code Count 

With (13/21) Sampling 13/13 (100%) 

New data 5/13 (38.5%) 

Obs. Study 4/13 (30.8%) 

Without (8/21) Random 

Assignment 

7/8 (87.5%) 

No duplicates 7/8 (87.5%) 

Experiment 2/8 (25%) 
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design, most students who chose without replacement seemed to think that this choice 

was inherently linked to testing for linear associations. This may be due to the only in-

class activity on testing for a linear association was the caffeine and heart rate study, 

which was experimental in nature and leveraged without replacement in the TinkerPlots 

sampler.   

 For students who chose with replacement, every student attributed their choice of 

replacement to the idea that their sampler should emulate random sampling. While not 

many students explicitly stated the study design (observational study) or made it clear 

that they wanted this to represent a new set of data from a larger population, every 

student who made this choice appeared to identify the random process associated with the 

choice of replacement, like this student: 

I chose with replacement on both explanatory and response variables in order to 

simulate a random sampling from retailers such that any combination of carat 

and price is equally likely rather than simply simulating resampling from this 

same data set where there are a fixed number of diamonds of particular carat or 

price. 

This student recognized that with replacement allowed for samples within each variable 

that could have varied sets of data within each variable, which is akin to bootstrap 

sampling. While they did not reference the exact study design or see the need for samples 

to reflect a new set of diamonds, this student shows evidence that they understand the 

purpose of their choice of replacement relevant to the key random aspect that they are 

trying to emulate, which is random sampling. The following student’s response gives an 

example of a student who did give this level of detail: 

Both devices are with replacement, to represent how the original study was 

conducted (by randomly sampling 48 diamonds from the newspaper (random 
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sample sold from retailer which we can later generalize to our findings to)), and 

record their carat size and price. Both are with replacement hence, because when 

re-randomly sampling 48 new diamonds from population (in newspaper from 

retailer) per trial, they will have NEW overall data, so they are not FIXED from 

trial to trial, and we have some variability (this is what is being represented in 

this model too). Also, even though this is an observational type study… 

This student’s response shows reasoning about how the choice of with replacement 

allows the model to best represent that each sample they generate represents a new set of 

diamonds, and cites that they want to best represent the original study design, which they 

define later as an observational study. This student also recognizes the need for their 

sampler to produce “new” data, in that it represents a new random sample of diamonds, 

rather than the existing diamonds having the existing prices randomly assigned to them. 

This was only made explicit in 5 of the 13 student responses that chose with replacement, 

but reveals another aspect to students’ thinking about the impact of the choice of 

replacement and how this relates to the study design.  

 Another important feature of replacement that was not fully accounted for by the 

coding scheme is that students are often willing to reference previous activities and the 

study designs they used and relate that as confirmation for their choice. As seen by many 

of the example responses already, students’ reasoning is firmly rooted within the data 

context, and these contextual elements help students draw comparisons across various 

study designs and the TinkerPlots samplers they use to analyze them. One student who 

chose with replacement on their assessment said that “I am not trying to shuffle cards, a 

la Dolphin Therapy. This is similar to the hybrid car mpg/price model we previously 

worked on.” This student not only referenced to a previous activity on linear regression, 
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but compared also to study designs for comparing two populations like the dolphin 

therapy study.  

Students drawing connections to previous activities and data contexts was also 

observed in the classroom as students were first learning this concept in their activity on 

caffeine and heart rate. This episode here now shifts from the assessment data to the 

classroom activity on caffeine and heart rate that came earlier in the course, which was 

experimental in nature rather than an observational study like the diamonds context. 

When this group began the activity and read through the context of this caffeine study, 

Riley initially made the connection to the dolphin therapy study that they previously 

examined in class: 

Riley:  [The subjects] were put into different groups, so basically, they are 

groups, right? It's like the dolphin study again. They're put into 

different groups because they weren't given like some random 

numbers of caffeine but they were put into, you know, specifically 

assigned an amount of caffeine. 

Dabney:  Was it? Or you because you can see the [data] file already. You 

looked at the file? 

Riley:  No, I'm looking at [the context written in the activity]. It's like they 

were randomly assigned some amount of caffeine but I'm assuming 

-- oh, maybe it's not groups. Yeah.  

Dabney:  Yeah, I think it's the opposite, at least based on this limited thing 

we've read. 

Micaiah:  You're saying it's one group? 

Riley:  Oh, yes. Yeah, it is. It is a large number of numbers. Yes, it's not 

groups. 

While Riley’s initial assumption that the subjects were going to be placed into groups 

was discovered to be incorrect after looking through the data file, they did recognize the 

random assignment aspect of this study, and connected that to the dolphin study they did 
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previously in class. This conversation about the random assignment aspect of this study 

continued when they began constructing their TinkerPlots sampler: 

Riley:  Basically, we're going to shuffle the heart rate and caffeine. Is that 

all we're doing? 

Dabney:  I think so. Wait, shuffle heart rate and caffeine. Like the dolphin 

therapy?  

Riley:   Yeah, basically. 

Dabney:  Because it's an experiment? 

Riley:  Yeah. 

Dabney:  So we're gonna do without replacement for both, right? 

Riley:   Why? 

Dabney:  Because it's an experiment. 

Riley:  Seems to me like you want to use all the ones that are there just 

once each, right? Because you're disassociating them from each 

other. 

Micaiah:  Yeah. So we would say without replacement. 

Dabney: Without replacement. Right? Isn't that what I said initially? 

Riley:   Oh, I thought you said with replacement. 

Micaiah:  That's what I thought too, I must have misheard you. 

Dabney:  Without replacement. Maybe I did. But what I meant was, we are 

not adding any new -- it's like that we're just tearing the cards up 

and mixing them. We’re not pulling a new [sample]. Okay. Maybe 

I did say it the wrong way, but that is conceptually what I meant. 

Riley:  There you go. (Riley begins constructing a TinkerPlots sampler as 

shown previously in Figure 19.) 

Dabney:  Okay, and we're doing that because this is an experiment [rather 

than] an observational study. And so we want to work with the 

data points we already have. 

Riley:  Yes. Yes. Because we want to work with the data points we 

already have we don't want to -- we're not like simulating sampling 
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a million times, right? [We’re not using] different samples. We're 

still using the same people. 

These students here correctly identified the experimental nature of the caffeine study 

where subjects are randomly assigned to varying levels of caffeine. This was relevant to 

them as they built their sampler, as they wanted it to reflect this random assignment 

process, which requires sampling without replacement on both devices to ensure all data 

values from both variables are used once and only once.  

P-value 

 As mentioned previously, 19 of the 21 students were able to procedurally find the 

correct p-value in TinkerPlots based on the samplers they built. However, their 

interpretations of this as a probability may have lacked some precision. The counts of the 

codes assigned to the students’ p-value interpretations are given in Table 31. A majority 

of the class did seem to include some statement about the observed slope value from the 

original data in their response, with some other students referencing some value vaguely 

that wasn’t clearly defined as the slope. Not as many students clearly identified the 

inequality of the p-value, but given that the observed slope was clearly outside of the 

Table 31. Counts of codes for responses to the p-value interpretation question. 

Component Code Count 

Observed Slope Present 14 (66.7%) 

Generic 4 (19.0%) 

Missing 3 (14.3%) 

Inequality Present 9 (42.9%) 

Implied 7 (33.3%) 

Missing 5 (23.8%) 

Null Detailed 7 (33.3%) 

Contextless 3 (14.3%) 

Random Chance 5 (23.8%) 

Missing 6 (28.6%) 
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range of students’ simulated slope values under the null hypothesis, many students stated 

that their p-value was 0% or close to 0% because of this. It is difficult to know if students 

would have considered an inequality in their statement if there were multiple extreme 

cases to consider in their sampling distribution, but these statements seem to imply that 

they may be considering this aspect.  

 With regards to the null hypothesis in their p-value interpretations, most students 

referenced some idea of the null, but again, many lacked precision in their response. 

While seven of the students explicitly referenced their detailed null hypothesis in their 

statement, an additional eight referenced the idea of the null hypothesis without any 

further context, or referenced the idea of “random chance” without explaining the random 

chance process exactly. Regardless of the level of precision, these students show 

evidence that they may be reasoning about this sampling distribution as an artifact of the 

hypothetical world by citing this assumption in their interpretation. Still, six students did 

not reference the null in their interpretation. Of those six, four were students that did 

successfully connect their TinkerPlots sampler to the null hypothesis through recognizing 

that it is re-pairing values randomly and independently. This could show evidence that 

some students may lose this hypothetical perspective as they move toward using their 

samplers and interpreting the results, but could also simply be attributed to their response 

being an incomplete picture of their interpretation of these results.  

 Considering students statements as a whole, 13 of the 21 students provided a p-

value interpretation with all three components present, that is, no “Missing” codes were 

applied. Four of those students gave a p-value where the slope and inequality were both  
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Figure 26. TinkerPlots sampling distribution and p-value provided by student 

present and the assumption of the null hypothesis was detailed. One such example is 

given below: 

There is a close to 0% chance we’d get our observed positive 3721.02 slope from 

the data collected in original study, or more extreme (more steep/significant= 

away from 0), under the null model assuming no correlation between the carat 

size of the diamond and its price.  

This student gives a full picture of the p-value, including citing the exact slope value, a 

relevant inequality statement, and a re-statement of their null hypothesis in context. 

While this response is ideal and demonstrates coordination between the output they are 

interpreting with their constructed sampler and the null assumption that went into it, other 

students also gave interpretations that may demonstrate this as well. Consider this 

student’s p-value displayed in Figure 26 and their interpretation:  

The p-value of 0 means that there is strong evidence against the null, which 

means that it is EXTREMELY unlikely that the researchers came to their data due 

to chance… [They have] evidence that carat size and price are positively 

correlated because reaching a slope of 3721.02 did not occur once in the null 
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simulation. So, we can say that they have a significant correlative relationship 

based on the data when compared to the null. 

This student was coded as having the slope present in their interpretation, an implied 

inequality, and the null as “random chance.” Despite that they were not precise about this 

statement, they did reference the idea of the null hypothesis in their response, which was 

articulated clearly in other responses given on the assessment. While not required for the 

prompt given to the student on this question, their interpretation is inherently linked to 

the conclusion drawn from the study, showing they understand the implications of how 

they interpreted their p-value. This interpretation is also firmly rooted in the details of the 

data context as well, showing further support for CATALST students placing importance 

on the data contexts in their modeling and interpretation. Thus, other codes that indicate a 

lack of precision in their p-value interpretation may not obstruct their inferential 

reasoning overall.   

Discussion and Conclusions 

 When only considering the limitations and workarounds needed to leverage 

TinkerPlots for teaching linear regression, one might argue that other software 

alternatives that provide fewer barriers would be better for students’ learning. However, 

the evidence seen with students’ inferential reasoning while using TinkerPlots to carry 

out tests for linear regression provides reason to be hopeful about the use of CATALST 

and TinkerPlots for learning simulation-based methods. It is important to consider that 

this study only looked at one single classroom, and that it is difficult to tease apart the 

impact of the curriculum and instructor on these students. Still, given the challenges 

students have with simulation-based inference that have been identified in the literature, 
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the results of this study show that CATALST is a potentially promising avenue for 

addressing these concerns. Even with the difficulties experienced with the technology, I 

argue that the benefits students appeared to experience through modeling their 

simulations in TinkerPlots gives reason to consider the proposed software improvements 

to further student learning in this setting.  

A novel feature of TinkerPlots is the sampler device itself. Being able to create 

probability models and have students work creatively and collaboratively to build these 

samplers is the key feature that sets curricula like CATALST apart from other 

simulation-based curricula. Understanding the contextual and narrative aspects of 

statistical problems is a key feature of student reasoning in this course, as research studies 

previously discussed have shown that students have a strong desire to understand 

narrative aspects of the data and problem context (Noll et al., 2018, 2021). This was 

evident with the student attempting to determine the “narrative purpose” of using the 

formula editor in the workaround described. The results also described many episodes of 

students leveraging previously explored data contexts and applying them to new 

scenarios to aid their modeling and interpretation of statistical results. Contextual details 

of the data are key to learning and understanding statistics, and sets it apart from the more 

abstract nature of mathematics, or even traditional statistics courses that focus on 

procedures and formulas.   

These sampler devices also allow students to draw connections between different 

statistical methods and connect these aspects of designing their sampler to the study 

design. This was seen in the transcripts of the activity work, where students referenced 



186 

the Dolphin Therapy study, and connected similar features in the types of variables used 

and the experimental design using random assignment. While more focus on the choice 

of replacement and how it connects to the study design may need more attention, stud ents 

still often gave reasonable explanations for their choice of sampling, regardless if it was 

with or without replacement. Statisticians commonly leverage randomization tests that 

sample without replacement for the test of a slope, even if the study design does not 

reflect an experiment with random assignment. This is due to the minimal impact the 

choice of replacement has on the simulated results and associated p-values. However, 

focusing on the random process leveraged in a given context is important to stress for 

students for interpreting the results. While the choice of replacement and how it related to 

their study design and use of randomness was a feature of this study, this assessment did 

not focus on students’ conclusions relative to the type of inference conducted. This may 

be a potential area of research focus for CATALST students specifically in assessing 

their thinking in this area as well as developing a learning trajectory that focuses on types 

of inference with TinkerPlots. 

 Students did seem to have relative success with the two challenges previously 

identified by Case and Jacobbe’s (2018) framework: recognizing their simulation as a 

product of a hypothetical assumption and not a product of replicating real-world data, and 

distinguishing their simulated sampling distribution from observed samples. Over 80% of 

the class understood that their sampler in TinkerPlots represented the null hypothesis 

through independently re-pairing values from each of the two variables together 

randomly. While four students did not carry this assumption to their p-value 

interpretation, a majority of the class showed evidence that they viewed their simulation 
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as residing in the hypothetical world throughout the analysis. A strong majority of 

students also interpreted the p-value as a probability related to the value of a slope, 

indicating students seem to recognize their sampling distribution as a distribution of slope 

values rather than a single sample. This may be due to the nature of linear regression 

analysis, where samples of data are visualized via scatterplot rather than a univariate 

distribution. Still, students still must actively create these visualizations in TinkerPlots 

themselves, which may aid in helping students navigate the perspectives and levels 

identified by Case and Jacobbe.  

 Because this was a summative assessment for students, one may suggest that 

students prepared responses that may not reflect a deep understanding of inferential 

reasoning. This is often true for many introductory statistics courses, especially p-value 

interpretations, where students are often given a fill-in-the-blank style structure to follow 

for their p-value interpretations. The example responses provided in the results section 

show that this is not the case with this course. The wording of interpretations is up to the 

students themselves, and students do not have templates to follow for interpretations. 

Students build up their understanding and interpretations of statistical results through 

group and full class discussions, and refine them based on feedback from their peers and 

instructors. This is done to ensure that students are articulating their own thinking and 

work through statistical problems not just procedurally but conceptually. No two students 

emulated any other students’ responses word-for-word throughout the assessment, 

reflecting how students think critically about the statistical simulations conducted in the 

course. 
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 Adding the proposed functionality to TinkerPlots would bring the software in line 

with recommendations proposed by Rossman & Chance (2014) while capturing the 

benefits of using the TinkerPlots sampler. As evidenced by the students’ thinking about 

random assignment in the caffeine scenario, TinkerPlots already enables students to think 

critically about their simulation process, greatly mitigating the risk of students perceiving 

the TinkerPlots sampler as a black box device. However, these innovations would not 

only make using TinkerPlots for linear regression easier on students, it would  bring the 

simulation procedures in-line functionally and visually with other data scenarios like the 

dolphin therapy problem. After students build their samplers and generate one sample of 

data, students would work to plot their data in both scenarios. They would then use 

various TinkerPlots tools to create statistical measures on their plot that can be tracked 

over multiple simulations. The proposed innovation uses many similar visual cues as 

dolphin therapy, like the statistics being highlighted by the gray box when they can be 

collected on. Integrating these innovations into a future update of TinkerPlots would 

allow students to engage in discussions about the purpose and rationale for building their 

simulation in TinkerPlots and carry out that simulation with relative ease. 

 Future work should consider how to expand TinkerPlots to cover more concepts 

typically covered in an introductory statistics course. While the CATALST curriculum 

was intentionally designed to cover fewer topics so that more focus can be placed on 

students’ statistical thinking and reasoning (Justice et al., 2020), a limited list of topics 

covered greatly hinders its adaptation. Course outlines for introductory statistics courses 

that are determined by statistics departments frequently contain topics not covered by 

CATALST like linear regression, analysis of variance, and chi-square tests. There are 
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numerous benefits to using CATALST over other simulation-based curricula, as seen by 

the way students engaged with the simulation process in the caffeine scenario. Students 

leveraging their narrative understanding of statistical processes in this curriculum has 

been documented in various other statistical scenarios (Noll et al., 2018, 2021). In order 

to achieve a greater adaptation of CATALST, providing more activities and technology 

advancements to TinkerPlots for topics typical to the introductory statistics curriculum is 

necessary. Activities for chi-square tests have been implemented with relative success 

using TinkerPlots software (Dolor & Noll, 2015), but could consider further 

improvements to streamline the technology experience. Focus on future work should 

focus on how to implement analysis of variance in the CATALST curriculum, both on 

creating activities and suggesting potential innovations for the TinkerPlots software to 

accommodate these activities. 
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Appendix C: Assessment Questions 

This appendix provides the data and context (Chu, 1996) with 

only the questions from the assessment that are analyzed in this 

paper.  

A Singapore-based newspaper, The Straits Times, published an 

advertisement from a diamond retailer. The advertisement 

contained 48 different pictures of diamonds, with the carat (size) 

of the diamond listed along with its price in Singapore dollars. 

We will assume that this selection of diamonds in the newspaper 

is a random sample of diamonds sold from retailers. Based on 

this data, we would like to determine how to predict the price of 

a diamond based on its carat. 

The data from this study is presented in Table 32. (Students were 

provided this data via a TinkerPlots file.) 

Null Hypothesis Question: Describe how your model [that you 

provided] reflects the null hypothesis. Be sure to give a detailed 

explanation in the context of the problem.  

Replacement Question: Describe how you chose replacement 

for the model above, and how you think this best reflects the 

context of this problem. 

p-value Question: Explain what the p-value means in the 

context of the problem. Do not simply state how strong/weak the 

evidence is, give an interpretation of the percentage/probability 

that you found. 

 

 

  

Carat Price 

0.17 355 

0.16 328 

0.17 350 

0.18 325 

0.25 642 

0.16 342 

0.15 322 

0.19 485 

0.21 483 

0.15 323 

0.18 462 

0.28 823 

0.16 336 

0.2 498 

0.23 595 

0.29 860 

0.12 223 

0.26 663 

0.25 750 

0.27 720 

0.18 468 

0.16 345 

0.17 352 

0.16 332 

0.17 353 

0.18 438 

0.17 318 

0.18 419 

0.17 346 

0.15 315 

0.17 350 

0.32 918 

0.32 919 

0.15 298 

0.16 339 

0.16 338 

0.23 595 

0.23 553 

0.17 345 

0.33 945 

0.25 655 

0.35 1086 

0.18 443 

0.25 678 

0.25 675 

0.15 287 

0.26 693 

0.15 316 

Table 32. 

Diamonds data set. 
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Chapter 5: Conclusion 

 With the increased efforts to promote simulation-based curricula in the 

introductory statistics classroom as a result of Cobb’s call to action (2007), it is important 

to reflect upon how these curricula achieve his primary goal: an emphasis on conceptual 

understanding of statistical techniques. The modeling focus of the Change Agents for the 

Learning And Teaching of STatistics (CATALST) curriculum is especially relevant for 

bringing conceptual understanding to the forefront. Its use of TinkerPlots software makes 

CATALST especially powerful in revealing and assessing student thinking in various 

statistical contexts (Watson & Donne, 2009), and past work has shown that CATALST 

students engage in full statistical investigations by constructing narratives within their 

model and engages students in the full statistical investigation cycle, reinforcing their 

understanding of inferential techniques (Noll et al., 2018, 2021). This dissertation aimed 

to investigate statistical association and linear regression in a CATALST course, which is 

a topic not previously covered in the original curriculum. Given the relevance of 

statistical association in the goals of the introductory statistics course outlined in 

standards (Carver et al., 2016) and its relevance in statistical literacy (Crocker, 1981; 

McKenzie & Mikkelsen, 2007; Schield, 2017), the goals of this dissertation address a 

relevant gap in statistics education research and teaching. In the following sections, I 

summarize the main findings of the previous three chapters and highlight their main 

contributions to the field. After this, I conclude with some final remarks and future 

directions.  
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Contributions from Previous Chapters 

 Students’ Knowledge about Lines of Best Fit in a Modeling and Simulation 

Introductory Statistics Curriculum. My first paper investigated CATALST students’ 

conceptions and strategies for informally fitting lines of best fit to scatterplots. Research 

identifies many various conceptions that students hold about statistical association. These 

include the univariate conception, which is a bias toward identifying upward sloping 

associations; the localist conception, which is characterized by placing a line based only 

on a small subset of points that are often collinear, and prior beliefs, where students place 

their line based on their own beliefs about the context despite the data presented. These 

conceptions have been observed in previous studies on informal line fitting that examined 

teachers and middle school students (Casey, 2015; Casey & Wasserman, 2015). To 

further this research on the population of CATALST students, I asked the following 

research questions: What are CATALST students’ intuitive strategies for placing lines of 

best fit before and after formally learning about least squares criterion? 

 Students completed line-fitting tasks via survey instruments administered both 

before and after learning this content in their class. These questions allowed students to 

give a brief justification for their choice. Select students were invited to semi-structured 

task-based interviews to complete additional line fitting tasks, where a greater perspective 

on students’ strategies could be obtained from follow-up questions. Results from both the 

survey and interviews indicated that many of these existing conceptions still persisted 

among CATALST students. In many scenarios where the data exhibited no association, 

the students in this study justified their choice by indicating there was a positive 
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association present, indicating a univariate conception. While justification with prior 

beliefs was overall rare on surveys and interviews, it most often occurred with 

uncorrelated data, suggesting that students may often seek out associations based on their 

own beliefs even when not present in the data. This reflects patterns of social prejudice, 

where people make judgments based on their own beliefs even in the face of data that tell 

a different story. Statistics content should be structured in a way to have students 

challenge these biases so students can recognize when they are not making appropriate 

claims. 

 One promising feature that emerged from interviews is the use of offsetting 

distances as a criterion for determining the line of best fit. This criterion often emerged 

when students were presented with data that contained outliers, and made placing a line 

using strategies that divided the data above and below it were not as effective. Students 

would try to determine groups of data points whose residuals summed to zero to 

determine if their line was accurately placed. This is a promising strategy to focus on for 

future curriculum materials on informal line fitting, as this aligns with the property of a 

line of best fit having all residuals sum to zero, which is a necessary condition of the least 

squares line. Students who used this strategy seemed to use this intuitively, and provided 

many analogies to justify their use of the criterion, such as a “weight” that a data point is 

pulling on the line. Future curricula that focus on statistical association and linear 

regression should consider this criteria as a point of focus with students, as this may help 

strengthen their informal line fitting skill in a way that is agreeable with the least squares 

line.  
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 Another finding from this study was that students placed different emphasis on 

outliers depending on their placement along the y-axis. If an outlier was in the corner of 

the graph, along the extremes in the y direction, students would often successfully 

account for this outlier’s impact on the line of best fit when placing their line. However, 

for outliers in the middle of the graph along the y-axis, students would often not fully 

account for their impact on the line of best fit appropriately, often not labelling the data 

points as outliers. This study was not originally designed to test for this, and so 

confounding variables exist between the data contexts that presented these outliers, such 

as the number of outliers, the sample size, and the slope of the line. Future research could 

examine students’ perceptions of corner and middle outliers with more emphasis placed 

upon these confounding factors. 

 Comparing Student Outcomes on Testing for a Statistical Association for 

Traditional and Simulation-Based Curricula. This paper compared students across two 

classes, one which used the CATALST curriculum, and another that used a traditional 

curriculum. The focus of the comparison was with the approaches they described for 

determining whether two variables exhibit a significant linear relationship. Students from 

simulation-based courses often excel in the purpose and concepts of inferential 

techniques (Chance et al., 2018, 2022; Hildreth et al., 2018; Tintle et al., 2012, 2014), and 

this paper aims to add to this comparative literature by taking a particular focus on tests 

for the least squares line. Given the amount of descriptive statistics that surround linear 

regression and the complexity of the calculations behind these statistics, traditional 

students need to leverage software to generate output for any of these computations, 
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including conducting a hypothesis test. This may lead to a difficulty in separating the 

purpose and interpretation of descriptive and inferential statistics in this context.  

 Results from this study showed that CATALST students were far more likely to 

use inferential techniques to determine a significant linear relationship, with many more 

traditional students only suggesting examining a correlation value. After formally 

learning linear regression, CATALST students made larger gains than traditional students 

in using hypothesis tests to determine significant linear relationships. But CATALST 

students were also more likely to describe a hypothesis test for this scenario even before 

learning linear regression content in the course, suggesting that the CATALST 

curriculum is generally better at preparing students to understand the purpose of 

statistical inference. A case study of two students from each of these curricula who both 

described purely descriptive methods on their survey responses revealed gaps in their 

conceptual understanding of linear regression and hypothesis testing. After the 

interviewer hinted to both students at the idea of testing hypotheses, the CATALST 

student was able to produce and interpret a hypothesis test and distinguish it from 

descriptive methods like correlation, where the traditional student recognized these two 

methods as distinct but could not conceptually explain their differences. These results 

have implications for teaching content of linear regression. Correlation is often described 

with ranges of values that indicate levels of “strength” or “weakness” of a relationship, 

just as p-values indicate the strength of a result in light of a null hypothesis. Regardless of 

the curriculum used, instruction should be careful to make a distinction between these 

two methods, as correlation is purely an indicator of how close data is to a line, where the 
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p-value of a hypothesis test indicates if the relationship that exists within the data can be 

generalized in some manner.  

 Evidence for Further Development of TinkerPlots to Support Inferential 

Reasoning with Linear Regression. This third paper of the dissertation served two 

purposes: to demonstrate CATALST students inferential reasoning for hypothesis tests of 

the least squares line, and to suggest a technology innovation in TinkerPlots to streamline 

the technology experience with linear regression content so that learning statistical 

content is the main focus. CATALST has shown great potential in unlocking students’ 

narrative reasoning (Noll et al., 2018, 2021) and exposing their conceptual reasoning with 

modeling and inference (Watson & Donne, 2009). However, the CATALST curriculum 

does not cover all topics typically taught in an introductory statistics course, such as 

linear regression. As part of this study, I designed activities leveraging TinkerPlots to 

introduce students to linear regression and conducting a hypothesis test for a slope. These 

activities required workarounds in TinkerPlots that are cumbersome, and do not meet 

recommendations for software in a simulation-based course (Rossman & Chance, 2014). 

Still, there is great potential in using this software for teaching students modeling 

techniques and unlocking their conceptual understanding of inference. I propose a 

potential technology innovation that would bring TinkerPlots in line with Rossman and 

Chance’s recommendations while leveraging the modeling capabilities of TinkerPlots. To 

support the proposal of this technology innovation, I investigated students’ inferential 

reasoning on an assessment at the conclusion of the course. This investigation was based 

upon the following research question: How does using TinkerPlots for conducting a 



200 

hypothesis test for the least squares line aid students’ inferential reasoning and address 

common challenges faced when using simulation? 

 Analysis of student assessments was based on a combination of Case and 

Jacobbe’s (2018) framework on challenges students face in simulation-based inference 

and the relevance of experiment-to-causation inference and connection to the study 

design and model design (Pfannkuch et al., 2015). This highlighted three areas of focus 

for analysis: connecting the null hypothesis to the TinkerPlots sampler, the choice of 

sampling with or without replacement and how that impacts study design, and the 

interpretation of the sampling distribution and p-value. The findings of this study 

generally showed that students were successful on the whole in connecting their 

TinkerPlots samplers to the null hypothesis as well as interpreting their p-value and 

drawing conclusions, although some language surrounding the p-value could have been 

more precise. Student responses regarding their choice of replacement were more mixed, 

and revealed that students did not always connect their choice to the study design and the 

type of inference constructed; however, students did provide reasoning consistent with 

their choice of replacement. Given that statisticians would normally conduct 

randomization tests without replacement regardless of the study design in this scenario, 

this procedure is not out of the ordinary. However, students should be able to appreciate 

the differences between experiment-to-causation and sample-to-population inferences 

and when each type of inference is appropriate. This is a potential avenue for future study 

in developing materials that strengthen students inferential reasoning and assessing their 

effectiveness. Overall, these results show promise in the use of CATALST and 
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TinkerPlots for more advanced introductory statistics topics like linear regression for 

supporting students’ modeling techniques and inferential reasoning.  

Concluding Remarks 

 This dissertation project aimed to investigate students’ reasoning with statistical 

association and linear regression in the CATALST curriculum in order to support 

students’ statistical literacy. Originally, the activities on linear regression were created 

out of a need to meet the demands of both institutional requirements for the introductory 

course and a larger NSF project. However, the ways that students interacted with these 

activities and the TinkerPlots technology in fitting lines to scatterplots and conducting 

randomization tests with TinkerPlots sampler models provided motivation for studying 

student outcomes based on the activities.  

Statistical association is a topic necessary for statistical literacy. Visualizations 

like scatterplots and trend lines are ever present in the media, and statistics curricula 

should prepare students to read, analyze and critique statistical claims that are based in 

this data. Results from the first paper of this project focused on how students informally 

fit a line to scatterplots, which reflects how students read and summarize a linear 

relationship in a scatterplot. While the current activity sequence in CATALST showed 

that students’ line fitting strategies were not consistent with statistical practice, there was 

promise in finding strategies that are intuitive to students. This may provide future 

avenues for bridging the gap to the least squares criterion, which is conceptually 

challenging to grasp and leverage informally.  
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The final two papers focused on statistical inference with linear regression. When 

students recognize trends and linear relationships in scatterplots, inferential techniques 

are crucial for understanding the importance and relevance of that trend, and whether that 

trend is generalizable in some way. If students are to analyze a claim like the one 

discussed at the beginning of the introduction chapter about the link between autism and 

proximity to freeways, they need to know how the inference was made. Does the data 

show a strong, meaningful trend? Can a causal link be made based on how the data was 

collected? Inferential reasoning is necessary for statistical literacy to evaluate and critique 

claims like this, as the news article does not always quote the researchers who challenge 

the causal links made in the headline. These two studies provided more evidence for the 

improved student outcomes with inferential reasoning in simulation-based curricula, but 

also gives a theoretical basis for the advantages CATALST has over other simulation-

based curricula with its focus on modeling. Modeling itself is a goal of the introductory 

statistics course (Carver et al., 2016), and has the capability to enhance student learning 

of statistics concepts (Justice et al., 2018; Noll et al., 2016, 2018, 2021).  

Studies that compare statistics curricula have long focused on comparing various 

simulation-based curricula to the traditional curriculum, but future studies should take a 

focus on comparing various simulation-based curricula with a special focus on the 

technology students use. How do various applets or applications support students 

learning? What limitations do pre-constructed models in applets have on student 

outcomes? Does the modeling environment of TinkerPlots enhance students inferential 

thinking? What other benefits are there to engaging students in modeling, and what other 

tools and enhancements should a simulation offer to students? As statistical practice 
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continues to shift from frequentist to Bayesian, research is beginning to investigate 

integrating this philosophy in the introductory statistics course (Paul, 2017). Students 

modeling capabilities need not be limited to the capabilities of the TinkerPlots sampler, 

and future work should support the development of both software and curricula that 

evolves with the practice of statistics. 
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