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Abstract

The central statistical problem of survival analysis is to determine and characterize

the conditional distribution of a survival time given a history of some observed

health markers.

This dissertation contributes to the modeling of such conditional distributions in

a setup where the health markers evolve randomly over time in a manner that can

be represented by an Ito stochastic process, that is, a stochastic process that can be

written as a sum of a time integral of some stochastic process and an Ito integral

of some stochastic process, with both integrands subject to certain restrictions.

The random survival time is modeled as a deterministic function of a generating

random variable that is related to the random evolution of the health markers,

where the deterministic function is chosen so that the survival time has the desired

distribution function.

The dissertation presents two families of such models. In the first family of mod-

els, the generating variable of the survival time is an Ito integral over the positive

half-line, with the observable health marker at any given time represented by the

same integral up to that time.

The second family of models involves a linear filtering framework, in which the

generating variable a↵ects linearly a number of observable health markers that

evolve as Ito processes.

The dissertation o↵ers formulas for conditional distribution, survival, and hazard

functions of the survival time, and the relevance of each model is demonstrated

with a simulation.
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This application of a filtering model is not limited to the analysis of survival times.

The dissertation shows that instead of a positive survival time we can use a return

to a financial asset which can be positive or negative.

To apply the model in that context, we need to determine the distribution of log

returns. The dissertation includes a goodness-of-fit investigation of some possible

statistical distributions of a long history of log returns to the S & P 500 stock mar-

ket index, concluding that we can use the generalized hyperbolic distribution to

describe such returns.

With a number of investors, who think in terms of a normal distribution of log

returns, providing the observable forecast markers, there is the problem of forcing

the convergence of forecast markers to actual log returns at the end of the forecast-

ing period. That problem is solved by using a multi-dimensional Brownian bridge

process to model forecasting error.
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1 Introduction

The central statistical problem of survival analysis is to determine and characterize

the conditional distribution of a survival time given a history of some observed

health markers.

A survival time, also called lifetime, time to outcome, time to event, time to failure,

and random time, is a positive, unbounded, random variable.

In medical research survival time may be time from beginning of treatment to

cure, time from exposure to risk factor to onset of medical condition, or time from

diagnosis of medical condition to death.

In engineering and reliability theory survival time may be time to failure of an in-

dustrial system or its components, or the time to failure of a manufactured prod-

uct, see for example Rausand et al. [29].

Economists analyze survival times of economic expansions and contractions, see

for example Gamerman andWest [20], Besedes and Prusa [3] and Tadeu et al. [37].

Survival analysis has natural applications in actuarial science, see for example

Pitacco [28].

In sociology, survival times have been used to study the speed of di↵usion of new

ideas through social networks, see for example Wu et al. [42].

Frequently used existing models of survival analysis are the Kaplan-Meier empir-

ical estimator, the Cox proportional hazards model, and the accelerated failure

time model.
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The Kaplan-Meier estimator is a complementary empirical distribution of survival

time, adjusted for possible right censoring.

The proportional hazards model is a regression of log hazard function on a vector

of covariates and an unknown baseline hazard function, and it can be estimated

without the knowledge or estimation of the baseline hazard. This model provides

ratios of hazard functions of pairs of patients rather than individual hazards.

The accelerated failure time model is an alternative to the proportional hazards

model, and constitutes a regression of log survival time on a vector of covariates

and log baseline survival time.

Thosemodels are described in greater detail in Kalbfleisch and Prentice [23], Table-

man and Kim [36], Aalen et al. [1], Collett [11], Emmert-Streib and Dehmer [17],

and Ibrahim et al. [22].

The existing models do not account for the nature of the stochastic evolution of the

health markers or covariates. In this dissertation, I introduce stochastic processes

associated with stochastic di↵erential equations, and methods of stochastic filter-

ing, to provide new models grounded in the theory of probability and statistics,

for capturing present knowledge about the future evolution of the health markers,

in the calculation of conditional survival probabilities given the present value of

the health markers.

The proposed new approach is an improvement over the widely used Cox propor-

tional hazards model and the related accelerated failure time model. In addition

to capturing the implications of the stochastic evolution of the health markers, the

new models provide individual conditional survival functions and hazard func-

tions, and work even when estimation of the proportional hazards model by par-

- 2 -



tial likelihood fails. Finally, the new models are generalizable to richer setups that

capture more complex stochastic behaviors of health markers and therapies.

Specifically, the research problem addressed in this dissertation is to develop, ana-

lyze, and describe applications of a model of random survival times and relevant,

randomly arriving information, in which we can determine explicitly, at any de-

sired time, the conditional distribution function, conditional survival function,

and conditional hazard function of the survival time given the cumulative, ran-

domly arriving information.

This dissertation describes two families of new models.

In the first family of models randomly arriving information is an Ito process that

is a solution of a suitable stochastic di↵erential equation involving the Wiener

process, and where the survival time is generated by the limit of the solution Ito

process at infinity.

A stochastic di↵erential equation

dXt = a (Xt , t)dt + b (Xt , t)dWt

is short-hand notation for the integral equation in unknown stochastic process Xt

Xt = X0 +
Z

t

0
a (Xs ,s)ds +

Z
t

0
b (Xs ,s)dWs

where a (x, t) and b (x, t) are deterministic functions for which the integrals ex-

ist. Gihman and Skorohod [21] and Friedman [19] o↵er a rigorous discussion of

stochastic di↵erential equations.

- 3 -



For example, the stochastic process

Xt = X0 exp
"✓
fi�

1
2
„2

◆
t +„Wt

#

is the solution of the stochastic di↵erential equation

dXt = fiXtdt +„XtdWt

where fi is a constant, „ is a positive constant, and the initial value X0 is a given

log-normally distributed random variable. The solution Xt has a log-normal dis-

tribution.

Because theWiener processWt does not converge to a finite random variable when

time t goes to infinity, the process Xt does not converge to a finite random variable.

The stochastic di↵erential equation

dXt = k (fi�Xt)dt +„dWt

with constant fi and k,„ > 0, and a given initial, normally distributed, random

variable X0, has a solution, called the Ornstein-Uhlenbeck process, which, as t

goes to infinity, converges to a normally distributed random variable with mean

fi and variance
„2

2k
, which does not depend on the initial value X0. Therefore,

observing X0, or more generally, observing the history of the process Xu ,0  u  s

for some s > 0, does not help us predict the realization of the limit of Xt when t

goes to infinity.

Next, consider a modified Ornstein-Uhlenbeck stochastic di↵erential equation

- 4 -



dXt = kexp(�‘t) (fi�Xt)dt +„exp(�‘t)dWt

where ‘ is a positive constant. This equation has a solution that converges to a

finite random variable when time t goes to infinity, and the distribution of the

limiting random variable depends on the initial value X0. Therefore, observing

the solution at some finite time helps us predict its value at infinity.

The construction of the first family of models of survival time utilizes stochastic

di↵erential equations whose solutions have the two properties: i) The solution con-

verges to a finite random variable, and ii) The distribution of this limiting random

variable depends on the initial value of the solution.

In such a situation, the survival time is defined as a certain deterministic function

of the limiting random variable, giving the survival time the desired distribution,

and the solution in finite time represents the randomly evolving health marker.

The solution of the model is the conditional distribution of the survival time, given

the observed history of the health marker.

The model is tractable because of the distributional characteristics of the Ito pro-

cesses used, and produces explicit formulas for the conditional distribution func-

tion, survival function, and hazard function of the survival time, and delivers their

random evolution over time.

The second family of models uses a normally distributed random variable ⁄ that,

again, generates a survival time with any desired distribution function. The ran-

dom variable ⁄ is unobservable, but the Ito stochastic process, representing a

health marker or a vector of health markers, and defined by
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d‡t = (A0 +A1⁄)dt + B1dWt

is assumed to be observable. The function, or vector and matrices A0, A1 and

B1 can be constants, functions of time, or, with some restrictions, functions of

the health markers ‡t and time. This sets up a filtering framework, due initially

to Kalman [24] and Bucy and Joseph [9], and extended by many others, see for

example Liptser and Shiryaev [27].

With suitable restrictions on the coe�cients A0, A1, and B1, the conditional dis-

tribution of the random variable, or random vector, ⁄, given the observed history

F
‡
t of the health marker(s) ‡t, is normal, with conditional meanmt = Ñ

⇣
⁄
���F ‡

t

⌘
and

conditional variance ’t = var
⇣
⁄
���F ‡

t

⌘
, which are given as solutions of stochastic dif-

ferential equations. Depending on the coe�cients A0, A1 and B1, the conditional

variance ’t may be a solution of a first order ordinary di↵erential equation of Ric-

cati type.

To demonstrate the relevance of this model the dissertation describes the results

of a simulation study with a four-dimensional vector of health markers: Blood

pressure, cholesterol, blood sugar, and hemoglobin.

This application of a filtering model is not limited to the analysis of survival times.

The dissertation shows that instead of a positive survival time we can use a return

to a financial asset which can be positive or negative.

To apply the model in that context, we need to determine the desired distribution

of log returns. The dissertation includes a goodness-of-fit investigation of possi-

ble statistical distributions of a long history of log returns to the S & P 500 stock

- 6 -



market index, concluding that we can use the generalized hyperbolic distribution

to describe such returns.

With a number of investors, who think in terms of a normal distribution of log

returns, providing the observable forecast markers, there is the problem of forcing

the convergence of forecast markers to actual log returns at the end of the fore-

casting period. That problem is solved by using a multi-dimensional Brownian

bridge process to model forecasting error. Critical to this modification is the fact

that the unobservable random variable or vector ⁄ in the observation equation can

be replaced by a vector Ito process ⁄t, so that we have a state equation of the form

d⁄t = (a0 + a1⁄t)dt + b1dWt

and an observation equation of the form

d‡t = (A0 +A1⁄t)dt + B1dWt

Chapter 2 reviews the basic properties of random, or survival, times, the Wiener

stochastic process, the Ito integral, and the Ito stochastic process. Subsequently,

Ito processes are used to model dynamic health markers for a survival time, or

dynamic forecast markers for financial investment, to compute the conditional

distribution of a survival time, or stock index return, respectively.

Chapter 3 describes the first model, and starts by reviewing the concept of a

stochastic di↵erential equation and its solution, and characterizes solutions of

stochastic di↵erential equations that can be used to model a survival time and
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a dynamic health marker that can be used to compute the conditional distribution

of the survival time given the observed history of the health marker.

Chapter 4 describes the results of a simulation study of the model constructed in

Chapter 3. There are 30 patients for whom the survival time is the arrival time

of some symptoms, and that survival time is generated by the limit of a solution

of a certain stochastic di↵erential equation. In addition, each patient possesses a

health marker represented by the solution in finite time. The results of the model

are described and comparedwith the results of the Cox proprtional hazardsmodel.

Chapter 5 describes the stochastic filtering methodology that I propose to use to

present a second family of models of random times and their conditional distribu-

tions given randomly arriving information. The chapter describes both a heuristic

derivation of filtering equations and their relation to a familiar problem of conju-

gate distributions in Bayesian analysis, and some of the formal, general filtering

context for the derivation of non-linear filtering equation and its common special

case. The discussion includes both univariate and multivariate cases.

Chapter 6 describes the results of a simulation study of a model with one unob-

servable random variable and several observable health markers. There are 20 pa-

tients and four health markers: Diastolic blood pressure, high-density lipoprotein

(HDL) cholesterol, fasting blood sugar level, and blood hemoglobin. The simula-

tion includes the estimation of the parameters of the filtering model, the dynam-

ics of the estimated conditional moments, and the resulting survival probabilities

compared to actual survival times.

Chapter 7 describes the construction of a filtering model for the forecasting of

stock market returns. Following an investigation of the distribution of a long his-
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tory of log returns to the S & P 500 stock market index, the chapter describes a

model with several forecast markers with dynamic noise represented by a multi-

dimensional Brownian bridge process, to compute the conditional distribution of

future log returns to the index.
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2 General Concepts

2.1 Basic Properties of Random Times

2.1.1 Hazard Functions

A random time ‰ is a positive, unbounded random variable. In other words, ‰

satisfies è (‰ > 0) = 1 and for every t > 0 we have è (‰ > t) > 0.

In survival analysis, the complementary distribution function is called a survival

or survivor function. If F is the distribution function of a random time ‰, then the

survival function is S(t) = è (‰ > t) = 1� F (t).

If the distribution function of a random time ‰ has density f (t), then we define a

hazard function of ‰ as

h(t) = lim
u!0

è (‰  t + u

���‰ > t)

u

= lim
u!0

F (t + u)� F (t)
uS(t)

=
f (t)
S(t)

(2.1)

It is easy to see that

h(t) = �
d logS(t)

dt

(2.2)

Therefore, we can recover the distribution function from the hazard function

- 10 -



F (t) = 1� exp
"
�

Z
t

0
h(u)du

#
(2.3)

The function H(t) =
Z

t

0
h(u)du is called cumulative hazard function.

2.1.2 Mean Residual Life and Mean Tail Life

Mean Residual Life

For a random time ‰ and a positive, non-random time t denote

m(t) = Ñ
⇣
‰
���‰ > t

⌘
� t (2.4)

The function m(t) is called mean residual life and describes conditional expected

time to event in excess of time t given that time to event is greater than time t.

We can compute mean residual life for a random time ‰ with distribution function

F (t), density function f (t), and survival function S(t) as follows.

For t < u, the conditional probability distribution is

è
⇣
‰  u

���‰ > t

⌘
=

F (u)� F (t)
1� F (t)

(2.5)

Di↵erentiating with respect to u, we get the conditional density
f (u)
S(t)

. Therefore

Ñ
⇣
‰
���‰ > t

⌘
=

Z
1

t

uf (u)du

S(t)
(2.6)
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Assuming that lim
u!1

uS(u) = 0, we can rewrite the numerator on the right side of

Equation (2.6)

Z
1

t

uf (u)du =
Z
1

t

udF (u)

= �

Z
1

t

udS(u)

= �uS(u)
�����
1

t

+
Z
1

t

S(u)du

= tS(t) +
Z
1

t

S(u)du

(2.7)

Using the definition in Equation (2.4) and Equation (2.6), we get

m(t) =

Z
1

t

S(u)du

S(t)
(2.8)

For example, when the distribution of the random time ‰ is Weibull with shape

parameter k and rate parameter ›, the survival function is S(t) = exp
h
� (›t)k

i
.

Therefore

m(t) =

Z
1

t

exp
h
� (›u)k

i
du

exp
h
� (›t)k

i (2.9)

To compute the integral in the preceding equation, substitute v = (›u)k, then

dv = k›(›u)k�1du. Next, ›u = v

1
k , therefore, (›u)k�1 = v

k�1
k . It follows that

du =
dv

k›v
k�1
k

. The integral becomes now
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1
k›

Z
1

(›t)k
e�v v

1
k
�1
dv =

1
k›

»
1
k
, (›t)k

�
(2.10)

and, therefore

m(t) =
exp

h
(›t)k

i

k›
»
1
k
, (›t)k

�
(2.11)

where » is the upper incomplete gamma function. In the special case when k =

1, we get that mean residual life of an exponentially distributed random time is

m(t) =
1
›
, which reflects the memoryless nature of the exponential distribution.

Mean Tail Life

It is useful, especially for applications to investment losses, not to subtract t, and

introduce a related concept in which the argument of mean residual life is changed

from time t to the quantile ” = S(t), and which I will call mean tail life. For

0 < ”  1, define

n(”) = Ñ
h
‰
���‰ > S

�1(”)
i

(2.12)

The definition implies that for 0 < ”  1 we have n(”) = m

h
S
�1(”)

i
+ S
�1(”). In

particular, for a strictly decreasing survival function S, we have n(1) =m(0).

Using Equation (2.8) we can compute mean tail life from

n(”) =

Z
1

S�1(”)
S(u)du

”
+ S
�1(”)

(2.13)
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For example, the survival function of a Weibull distribution with shape parameter

k and scale parameter › is S(t) = exp
h
� (›t)k

i
. Therefore

n(”) =

Z
1

S�1(”)
exp

h
� (›u)k

i
du

”
+ S
�1(”)

(2.14)

To compute the integral in the preceding equation, substitute v = (›u)k, then

dv = k›(›u)k�1du. Next, ›u = v

1
k , therefore, (›u)k�1 = v

k�1
k . It follows that

du =
dv

k›v
k�1
k

. The integral becomes now

1
k›

Z
1

� log”
e�v v

1
k
�1
dv =

1
k›

»
1
k
,� log”

�
(2.15)

where » above is the upper incomplete gamma function. The lower limit of inte-

gration is � log” because when u = S
�1(”) then (›u)k = � log”.

To compute the additive term S
�1(”), start with S(t) = ” = exp

h
�(›t)k

i
. Solving for

t we get t = S
�1(”) =

1
›
(� log”)

1
k . Therefore

n(”) =
1

k›”
»
1
k
,� log”

�
+
1
›
(� log”)

1
k (2.16)

We can simplify Equation (2.16) by using the following property of the upper in-

complete gamma function

»(x +1,y) = x»(x,y) + y
x exp(�y) (2.17)

Therefore
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»
✓
1+

1
k
,� log”

◆
=

1
k
»
✓1
k
,� log”

◆
+”(� log”)

1
k (2.18)

and

1
›”

»
✓
1+

1
k
,� log”

◆
=

1
k›”

»
✓1
k
,� log”

◆
+
1
›
(� log”)

1
k (2.19)

We have the simplified formula

n(”) =
1
›”

»
✓
1+

1
k
,� log”

◆
(2.20)

Of course, if we parametrize theWeibull distributionwith scale › in Equation (2.20),

we need to replace › by
1
›
. In the special case when k = 1, we get for the exponen-

tial distribution n(”) =
1� log”

›
. This simple case helps illustrate the di↵erence

between mean residual life and mean tail life.

2.2 Stochastic Processes

Let (“ ,A,è ) be a probability space, where “ is a sample space, A is a „-field of

events, and è is a probability measure.

A stochastic process Xt is a family of random variables indexed by time 0  t <1.

The stochastic processes in this dissertation are the Wiener process, also called

Brownian motion, and its extension to the so-called Ito process. Stochastic pro-

cesses carry information, that I will use to condition the distribution of random

times. I will list the definitions of those concepts below.
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2.2.1 The Wiener Process and Its Natural Filtration

A Wiener process on a given probability space is a stochastic process Wt that can

be written as a measurable function W : “ ⇥ë +! ë , such that

1. W (È,0) = 0 for all È 2 “ .

2. For any 0 6 s 6 t 6 u the random variables W (È,u) �W (È, t) and W (È, t) �

W (È,s) are independent (the Wiener process has independent increments).

3. For any t > 0 the random variable W (È, t) has normal distribution with zero

mean and variance t.

It can be shown that a Wiener process exists, that its sample paths are continu-

ous with probability one and not di↵erentiable with probability one Borodin and

Salminen [5].

It is useful to formalize the concept of information carried by the Wiener process.

The definition is general and applies to any stochastic process.

A filtration is an increasing family {Ft ; t 2 ë +} of „-fields Ft ⇢ A, where Ft con-

tains events that are decidable at time t. Increasing here means that information

becomes increasingly refined over time, that is, if s 6 t then Fs ⇢ Ft.

A filtration satisfies the usual conditions if and only if:

1. It is right continuous, meaning that for every t � 0 we have
T

u>tFu = Ft.

The interpretation of this condition is that information at time t is exactly

equal to information just after t, there is no jump in information right after

time t. The intersection
T

u>tFu represents information right after t, and is

sometimes denoted by Ft+.
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2. It satisfies „
⇣S

t�0Ft

⌘
⇢ A. The „-field „

⇣S
t�0Ft

⌘
is frequently denoted F1.

This requirement means that all decidable events are in A.

3. It is complete, meaning that F0 contains all the negligible sets of A. Notice

that because F0 ⇢ Ft for every t � 0, we have that every Ft contains all the

negligible sets of A.

A probability space (“ ,A,è ) equipped with a filtration Ft is called a filtered prob-

ability space and denoted (“ ,A,è ,Ft)

For example, the natural filtration of aWiener processWt is an increasing family of

„-fields Ft such that Ft is the smallest „-field with respect to which all the random

variables
n
Ws

���0 6 s 6 t

o
are measurable.

The natural filtration of a Wiener process satisfies the usual conditions.

For a further discussion of the Wiener process see, for example Revuz and Yor [32]

and Borodin and Salminen [5].

2.2.2 Martingales on a Filtered Probability Space

A random variable X on the probability space (“ ,A,è ) is called integrable if and

only if Ñ
⇣���X

���
⌘
<1. The normed space of integrable random variables on (“ ,A,è )

is denoted L1 (“ ,A,è ).

A stochastic process Xt on a filtered probability space (“ ,A,è ,Ft) is called adapted

to the filtration Ft if and only if for every t > 0 the random variable Xt is Ft-

measurable.
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Let X be an integrable random variable on the probability space (“ ,A,è ) and G

a sub-„-field of A. We say that the random variable Y is a conditional mean of X

given G if and only if:

1. Y is G-measurable.

2. Y is integrable.

3. For every A 2 G we have Ñ ( AY) = Ñ ( AX).

The existence of conditional mean is guaranteed by the Radon-Nikodym theorem

which says that ifê is a second probability measure on (“ ,A) such that, if è (A) = 0

then ê (A) = 0, then there is an almost surely unique random variable ‡, called the

Radon-Nikodym derivative of ê with respect to è , such that ê (A) = Ñ ( A‡).

Let X be a positive random variable, otherwise we separate X into positive and

negative parts. On G define the probability measure ê (A) = Ñ ( AX). Then the

Radon-Nikodym derivative
dê
dè

is the conditional expectation Ñ
⇣
X

���G
⌘
.

Conditional mean has the following tower property: If the sub-„-fields G andH of

A are such that G ⇢H then Ñ
h
Ñ
⇣
X

���H
⌘ ���G

i
= Ñ

⇣
X

���G
⌘
. The tower property says that a

coarse average of a fine average is the coarse average.

On the probability space (“ ,A,è ) let A 2 A and G be a sub-„-field of A. The

conditional probability è
⇣
A

���G
⌘
is the conditional mean Ñ

⇣
A

���G
⌘
.

A stochastic process Xt on a filtered probability space (“ ,A,è ,Ft) is called a (è ,F )-

martingale if and only if:

1. The process Xt is adapted to the filtration Ft.

2. For each t > 0 the random variable Xt is integrable.
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3. For each 0 6 s 6 t we have, è -almost-surely the equality

Ñ
⇣
Xt

���Fs
⌘

= Xs
(2.21)

If conditions 1 and 2 are satisfied, and instead of condition 3we have the inequality

Ñ
⇣
Xt

���Fs
⌘
� Xs, then the process Xt is called a sub-martingale.

For example, the Wiener process Wt is a martingale with respect to its natural

filtration. Indeed, Wt �Ws is independent of Fs, and therefore

Ñ
⇣
Wt �Ws

���Fs
⌘

= Ñ (Wt �Ws) = 0 (2.22)

Other examples of martingales on the natural filtration the Wiener process are

W
2
t � t and exp

✓
�
1
2
t +Wt

◆
.

A martingale has uncorrelated increments. Indeed, for 0 6 u 6 v 6 s 6 t we have

by the tower property of conditional expectation

Ñ
h
(Xv �Xu) (Xt �Xs)

i
= Ñ

(
Ñ
h
(Xv �Xu) (Xt �Xs)

���Fv
i)

(2.23)

By pullout

Ñ
(
Ñ
h
(Xv �Xu) (Xt �Xs)

���Fv
i)

= Ñ
(
(Xv �Xu)Ñ

h
(Xt �Xs)

���Fv
i)

(2.24)

By another application of the tower property

Ñ
h
(Xt �Xs)

���Fv
i

= Ñ
h
Ñ
⇣
Xt �Xs

���Fs
⌘ ���Fv

i
= 0 (2.25)
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Finally, Ñ (Xv �Xu) = Ñ
h
Ñ
⇣
Xv �Xu

���Fu
⌘ i

= 0 and similarly Ñ (Xt �Xs) = 0, so that the

increments Xv � Xu and Xt � Xs are uncorrelated. It follows that a martingale rep-

resents cumulative serially uncorrelated, but possibly serially dependent, noise.

2.2.3 Ito Integrals

Informally, an Ito integral is a special integral whose integrator is a Wiener pro-

cess. The integral is special because the Wiener process has infinite variation on

finite time intervals with probability one, and the usual construction of the Stielt-

jes integral fails for such integrators.

In addition, the quadratic variation of the Wiener process is positive, which intro-

duces another di↵erence between the Ito integral and the Stieltjes integral. This

di↵erence appears even with simple integrands. For example, if g is a continuous,

bounded function of time (on finite intervals) such that g (0) = 0, then

Z
t

0
g (s)dg (s) =

g
2 (t)
2

(2.26)

By contrast, if Wt is a Wiener process, which is also a continuous, bounded func-

tion of time (a.s. on finite intervals) and satisfies W0 = 0, then we have

Z
t

0
WsdWs =

W
2
t � t

2
(2.27)

Consider a partition 0 = t0 < t1 < . . . < tn = t of the interval
h
0, t

i
and the sum
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nº

i=1

Wti�1

⇣
Wti
�Wti�1

⌘
= Wt0

⇣
Wt1
�Wt0

⌘
+ · · ·+Wtn�1

⇣
Wtn
�Wtn�1

⌘
(2.28)

From the identity

2Wti�1

⇣
Wti
�Wti�1

⌘
= 2Wti�1

…Wti

=
⇣
Wti�1

+…Wti

⌘2
�W

2
ti�1
�

⇣
…Wti

⌘2
(2.29)

We get the approximating sum of the integral 2
Z

t

0
WsdWs

2
nº

i=1

Wti�1
…Wti

=
nº

i=1

"⇣
Wti�1

+…Wti

⌘2
�W

2
ti�1

#
�

nº

i=1

⇣
…Wti

⌘2
(2.30)

The first sum on the right side of Equation (2.30) telescopes into W
2
t �W

2
0 = W

2
t ,

and the second sum is interesting. If we consider for a moment Wt = g (t) to be

a Stieltjes-integrable function, then the second sum goes to zero. If, however, Wt

is a Wiener process, then the second sum goes to t, the quadratic variation of the

Wiener process on the interval
h
0, t

i
. That is how we get the di↵erence between

Equation (2.26) and Equation (2.27).

It is important to recognize that one of the aspects of the Ito integral is that in the

approximating sum the integrand is evaluated at the left point of the partition in-

terval, thereforeWti�1
…Wti

but notW‰i…Wti
where ti�1 6 ‰i 6 ti , as in the definition

of the Stieltjes integral. In general, because of the infinite variation of the Wiener

process, the sum W‰i…Wti
converges only for ‰i = ti�1. The silver lining of that
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restriction is that, given suitable technical restrictions on the integrand function,

the Ito integral is a martingale.

Formally, let Ft be a family of „-fields generated by the Wiener process Wt, such

family is called the natural filtration of Wt. Let g (t) be a separable, progressively

measurable stochastic process that is adapted to the filtration Ft and such that

è
 Z

t

0
g
2 (s)ds <1

!
= 1. Then the Ito integral

Z
t

0
g (s)dWs can be defined and

satisfies for admissible integrands g and h and constants ” and ‘

Z
t

0

h
” g (s) + ‘ h (s)

i
dWs = ”

Z
t

0
g (s)dWs + ‘

Z
t

0
h (s)dWs

(2.31)

If, in addition, the stochastic process g (t) satisfies Ñ
 Z

t

0
g
2 (s)ds

!
<1 then the Ito

integral has the following three properties:

1. Ñ
 Z

t

0
g (s)dWs

!
= 0.

2. Ñ
"Z

t

0
g (s)dWs

#2
= Ñ

"Z
t

0
g
2 (s)ds

#
.

3. The stochastic process Xt =
Z

t

0
g (s)dWs is a continuous Ft-martingale.

Property 2 above is called Ito isometry.

For further details of the definitions and properties of Ito integrals see, for exam-

ple, Friedman [19] and Revuz and Yor [32].

2.2.4 Ito Processes

Let a (t) be a separable, progressively measurable, and adapted process such that

è
 Z

t

0

���a (s)
���ds <1

!
= 1, and b (t) be a separable, progressively measurable, and
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adapted process such that è
 Z

t

0
b
2 (s)ds <1

!
= 1. Then the process

Xt = X0 +
Z

t

0
a (s)ds +

Z
t

0
b (s)dWs

(2.32)

is called an Ito process. The Ito process in Equation (2.32) is frequently written in

the shorthand notation

dXt = a (t)dt + b (t)dWt
(2.33)

For example, Equation (2.27) can be written

W
2
t =

Z
t

0
ds +

Z
t

0
2WsdWs

(2.34)

or in shorthand notation, dW2
t = dt +2WtdWt. Therefore, W2

t is an Ito process.

The Ito integral with respect to a Wiener process can be extended to an Ito integral

with respect to an Ito process. We define an integral with respect to an Ito process

Z
t

0
g (s)dXs =

Z
t

0
g (s)a (s)ds +

Z
t

0
g (s)b (s)dWs

(2.35)

where g is a separable, progressively measurable, adapted process such that

è
 Z

t

0
g
2 (s)ds <1

!
= 1. In shorthand notation the definition is

g (t)dXt = g (t)a (t)dt + g (t)b (t)dWt
(2.36)
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There is an important formula for the change of variables in an Ito integral. Its

simplified version is as follows. Let X1t and X2t are the Ito processes, written in

shorthand notation

dXit = ai (t)dt + bi (t)dWt for i = 1,2 (2.37)

then it can be shown that the process X1tX2t is also an Ito process, written in

shorthand notation

d (X1tX2t) = X1tdX2t +X2tdX1t + b1 (t)b2 (t)dt (2.38)

Equation (2.38) is a special case of the following theorem, which is called Ito’s

formula.

Let

dXt = a (t)dt + b (t)dWt
(2.39)

a(t) and b(t) are stochastic processes such that the integrals
Z

t

0
a(u)du and

Z
t

0
b(u)dWu exist, ” < ‘ real numbers, and let f (x, t) :

h
”,‘

i
⇥

h
0,T

i
! ë be con-

tinuous together with the partial derivatives fx , fxx , and ft. Then f (Xt , t) is the Ito

process

df (Xt , t) =
"
ft (Xt , t) + fx (Xt , t)a (t) +

1
2
fxx (Xt , t)b2 (t)

#
dt + fx (Xt , t)b (t)dWt

(2.40)

Equation (2.40) is similar to the standard calculus formula for total di↵erential,

but has the additional term
1
2
fxx (Xt , t)b2 (t)dt. Informally, the additional term is
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from second-order Taylor expansion of f (Xt , t) and heuristically that (dWt)
2 = dt

df (Xt , t) = ft (Xt , t)dt + fx (Xt , t)dXt +
1
2
ftt (Xt , t) (dt)2

+
1
2
fxx (Xt , t) (dXt)

2 + ftx (Xt , t)dtdXt

= ft (Xt , t)dt + a (t) fx (Xt , t)dt + b (t) fx (Xt , t)dWt +
1
2
b
2(t)fxx (Xt , t)dt

=
h
ft (Xt , t) + a (t) fx (Xt , t) +

1
2
b
2(t)fxx (Xt , t)

i
dt + b (t) fx (Xt , t)dWt

(2.41)

The first two lines of Equation (2.41) contain one term (dXt)
2 that appears to be

of second order but actually is of first order because the quadratic variation of the

Wiener process is positive (dWt)
2 = dt. The fourth line of Equation (2.41) omits

the other terms of order greater than one.

For example, consider the Ito process

dXt = fiXtdt +„XtdWt
(2.42)

For intuitive understanding, we can rewrite it as
dXt

Xt

= fidt + „dWt, which de-

scribes a combination of exponential growth at rate fi and scaled white noise with

variance „2. Choose f (x, t) = logx and apply Ito’s formula to get

d logXt =
 
fi
1
Xt

Xt �
1
2

1
X
2
t

„2
X
2
t

!
dt +„

1
Xt

XtdWt

=
✓
fi�

1
2
„2

◆
dt +„dWt

(2.43)
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Integrating, we get the representation

logXt � logX0 =
✓
fi�

1
2
„2

◆
t +„Wt

(2.44)

and finally

Xt = X0 exp
"✓
fi�

1
2
„2

◆
t +„Wt

#
(2.45)

For further details of the definitions and properties of Ito processes see, for exam-

ple, Friedman [19] and Gihman and Skorohod [21].

2.2.5 Predictable Quadratic Covariation Process

The concept of predictable quadratic covariation process is readily defined in terms

of the following theorem called the Doob-Meyer decomposition theorem:

Let è be a given probability measure, Ft be a given filtration, and let Xt be a non-

negative (è ,Ft)-sub-martingale.

Then there is a predictable, non-decreasing, right-continuous process At such that

the process Xt � At is a (è ,Ft)-martingale. The process At is called a compensator

of the process Xt. If we also require that A0 = 0 then the process At is unique.

I will o↵er only a heuristic explanation of a predictable process. Heuristically, a

predictable process At is adapted to the filtration Ft�. For example, a determinis-

tic process is predictable, and a left-continuous process is predictable. There are

many predictable processes that are not deterministic or left-continuous.

The word "decomposition" in the name of the theorem comes from the fact that if

we denote the martingale Xt � At by Mt then we can write Xt = At +Mt, which is a
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decomposition of the sub-martingale Xt into a predictable process and a martin-

gale.

For example, theWiener process Xt =Wt has a compensator At = 0 for all t because

Wt = 0+Wt and Wt is a martingale.

As another example, the process Xt = W
2
t has a compensator At = t. First, Xt = W

2
t

is a sub-martingale because of Jensen’s inequality: Convex function of an average is

less or equal than the average of a convex function, Ê
h
Ñ (X)

i
 Ñ

h
Ê (X)

i
, where X is

an integrable random variable and Ê is a convex function from ë into ë . Square is

a convex function, therefore,
h
Ñ (X)

i2
 Ñ

⇣
X
2
⌘
. Applying this inequality to X =Wt

and using conditional means given Fs we have

Ñ
⇣
W

2
t

���Fs
⌘
�

h
Ñ
⇣
Wt

���Fs
⌘ i2

= W
2
s

(2.46)

We got that W2
t is a sub-martingale, and of course, it is adapted and non-negative.

Now we can apply the Doob-Meyer decomposition theorem, which tells us that

there is a unique predictable, non-decreasing, right-continuous process At such

that A0 = 0 and W
2
t �At is a martingale. We want to show that At = t.

It is easy to see that W2
t � t is a martingale, and then the claim will follow from the

uniqueness of At such that A0 = 0. First, for 0  s  t, we have W
2
t =

h
(Wt �Ws) +

Ws

i2
= (Wt �Ws)

2 + 2(Wt �Ws)Ws +W
2
s .

Therefore
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Ñ
⇣
W

2
t

���Fs
⌘

= Ñ
h
(Wt �Ws)

2
���Fs

i
+2Ñ

h
(Wt �Ws)Ws

���Fs
i
+ Ñ

⇣
W

2
s

���Fs
⌘

= Ñ
h
(Wt �Ws)

2
i
+2Ñ (Wt �Ws)Ws +W

2
s

= t � s +0+W
2
s

(2.47)

In deriving Equation (2.47) we used the fact that the increment Wt �Ws is inde-

pendent of the history of the Wiener process up to time s, and that the variance of

the increment Wt �Ws is t � s.

We got that Ñ
⇣
W

2
t

���Fs
⌘
=W

2
s + t � s, which is the same as Ñ

⇣
W

2
t � t

���Fs
⌘
=W

2
s � s.

The preceding example involved the calculation of a compensator of a sub-

martingale which is a square of the martingale Wt. We can generalize this to the

square of any martingale Mt because Xt = M
2
t is a non-negative sub-martingale.

The proof is the same as the proof for Xt =Wt using Jensen’s inequality

Ñ
⇣
M

2
t

���Fs
⌘
�

h
Ñ
⇣
Mt

���Fs
⌘ i2

= M
2
s

(2.48)

The Doob-Meyer decomposition theorem tells us that M2
t has a unique compen-

sator At such that A0 = 0. This unique compensator is called the predictable

quadratic variation process of the martingale Mt and is denoted by hM,Mit. From

the Doob-Meyer theorem we know that hM,Mit is a predictable, non-decreasing,

right-continuous process and that M2
t � hM,Mit is a martingale.

The fact that W2
t � t is a martingale tells us that hW ,Wit = t.
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Next, consider the Ito integral Mt =
Z

t

0
g(u)dWu . We know that Mt is a martingale,

and therefore, hM,Mit exists. Using a method similar to the calculation of hW ,Wit,

we can show that

hM,Mit =
Z

t

0
g
2(u)du (2.49)

Indeed

Ñ
⇣
M

2
t

���Fs
⌘

= Ñ
h
(Mt �Ms)

2
���Fs

i
+2Ñ

h
(Mt �Ms)Ms

���Fs
i
+ Ñ

⇣
M

2
s

���Fs
⌘

= Ñ
h
(Mt �Ms)

2
i
+2MsÑ

⇣
Mt �Ms

���Fs
⌘
+M

2
s

=
Z

t

s

g
2(u)du +0+M

2
s

(2.50)

We get that M2
t �

Z
t

0
g
2(u)du is a martingale, and therefore, hM,Mit =

Z
t

0
g
2(u)du.

We can now take one more step and define the predictable quadratic covariation

process of two martingales Mt and Nt as

hM,Nit =
1
2

⇣
hM +N,M +Nit � hM,Mit � hN,Nit

⌘
(2.51)

With this definition, we can do a little algebra to show that the process MtNt �

hM,Nit is a martingale.

In the special case when Mt =
Z

t

0
g(u)dWu and Nt =

Z
t

0
h(u)dWu we have

hM,Nit =
Z

t

0
g(u)h(u)du (2.52)
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so that MtNt �

Z
t

0
g(u)h(u)du is a martingale.
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3 A Random Time with Learning

3.1 Three Revealing Examples

3.1.1 First Example

Consider the following three examples of a stochastic di↵erential equation and its

solution. The first example is

dXt = aXtdt + bXtdWt
(3.1)

where a is a constant and b,X0 are positive constants. To solve this stochastic

di↵erential equation, apply Ito’s formula to the function f (x) = logx to get

d logXt =
✓
a�

1
2
b
2
◆
dt + bdWt

(3.2)

It follows that Xt = X0 exp
✓
a�

1
2
b
2
◆
t + bWt

�
. The process Xt is called exponential

or geometric Wiener process. Because the Wiener process Wt does not converge to

a finite random variable when t goes to infinity, the exponential Wiener process Xt

does not converge to a finite random variable either.
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3.1.2 Second Example

The second example is the stochastic di↵erential equation

dXt = ‹ (fi�Xt)dt +„dWt
(3.3)

where fi,X0 are constants, and ‹,„ are positive constants. The solution to this

stochastic di↵erential equation is the mean-reverting Ornstein-Uhlenbeck process.

To obtain a solution, apply Ito’s formula to the function f (x, t) = A(t)+B(t)x, where

A(t) and B(t) are functions of time to be chosen later. We get the partial derivatives

ft = A
0(t) + B

0(t)x, fx = B(t), and fxx = 0. It follows that

df (Xt , t) =
h
A
0(t) + B

0(t)Xt +‹ (fi�Xt)B(t)
i
dt +„B(t)dWt

(3.4)

Now choose the functions A(t),B(t) such that A0(t)+‹fiB(t) = 0 and B
0(t)�‹B(t) = 0.

Then the stochastic di↵erential equation becomes df (Xt , t) = „B(t)dWt. Solving

those two ordinary di↵erential equations yields

B(t) = exp(‹t)

A(t) = �‹fi
Z

t

0
exp(‹u)du

= �fi
h
exp(‹t)�1

i

(3.5)

Putting those calculations together, we get f (Xt , t)� f (X0,0) = „
Z

t

0
B(u)dWu .
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�fi
h
exp(‹t)�1

i
+exp(‹t)Xt �X0 = „

Z
t

0
exp(‹u)dWu

(3.6)

Xt = exp(�‹t)X0 +fi
h
1� exp(�‹t)

i
+„exp(�‹t)

Z
t

0
exp(‹u)dWu

(3.7)

From the properties of the Ito integral, Xt has normal distribution with mean and

variance

Ñ (Xt) = exp(�‹t)X0 +fi
h
1� exp(�‹t)

i

var(Xt) = „2 exp(�2‹t)
Z

t

0
exp(2‹u)du

= „2 exp(�2‹t)
exp(2‹t)�1

2‹

= „21� exp(�2‹t)
2‹

(3.8)

When t goes to infinity, the process Xt converges to a normally distributed random

variable with mean fi and variance
„2

2‹
. It is important to recognize that the lim-

iting random variable does not depend on the initial value X0, and as I will show

next, is not suitable for generating a random time with learning.

3.1.3 Third Example

The third example is the stochastic di↵erential equation

dXt = b(t)dWt
(3.9)
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where the positive function b(t) is such that
Z
1

0
b
2(t)dt < 1. Then the solu-

tion Xt = X0 +
Z

t

0
b(u)dWu has normal distribution with mean X0 and variance

Z
t

0
b
2(u)du. The process Xt converges to a limiting random variable

X = X0 +
R
1

0 b(u)dWu
(3.10)

which has normal distribution with mean X0 and variance
Z
1

0
b
2(u)du. Note that

the distribution of X depends on the initial value X0.

More generally, let F W
t be the natural filtration of the Wiener process Wt. For any

t > 0 we can write

X = Xt +
Z
1

t

b(u)dWu
(3.11)

Because Xt is F W
t - measurable and for u > t the increment Wu �Wt is indepen-

dent of F W
t , the integral

Z
1

t

b(u)dWu is independent of F W
t , and the conditional

mean of the integral given F W
t is equal to its marginal mean Ñ

"Z
1

t

b(u)dWu

#
= 0.

Similarly, the conditional variance of X given F W
t is the marginal variance of the

integral
Z
1

t

b(u)dWu . We get

Ñ
⇣
X

���F W
t

⌘
= Xt

var
⇣
X

���F W
t

⌘
=

Z
1

t

b
2(u)du

(3.12)

Equation (3.12) suggests the following model of a random time. Let F be a strictly

increasing distribution function on ë +, and denote by – the standard normal dis-
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tribution function. Then, the function Ë : ë ! ë + defined by Ë(z) = F
�1

h
– (z)

i

is strictly increasing, and if Z has standard normal distribution then the random

variable Ë(Z) has distribution function F .

As a concrete illustration, consider two possible choices for the distribution func-

tion F of the random time ‰: A Weibull distribution and a gamma distribution.

Panel (A) of Figure 3.1 shows a Weibull density and a gamma density with pa-

rameters chosen to make the distributions similar in the sense of equal means and

equal variances. The value of the shape parameter for the Weibull distribution is

k = 2.00, and the value of the scale parameter is › = 10.00 (rate parameter is 0.1).

The value of the shape parameter for the gamma distribution is k = 3.66, and the

value of the scale parameter is › = 2.42 (rate parameter is about 0.4132). The

common value of the mean of the two distributions is 8.86, and the common value

of the variance is 24.60. Panel (B) of Figure 3.1 shows the resulting functions Ë for

the two distributions. We see that the function Ë is increasing and convex for both

distributions, and that the function Ë corresponding to the gamma distribution
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grows faster for large values of its argument than the function Ë corresponding to

the Weibull distribution.

Panel (A) Densities
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Figure 3.1. The function Ë for Weilbull and gamma distributions. The blue line corre-
sponds to the Weibull distribution and the red line corresponds to the gamma distribu-
tion.

Assume, for simplicity, that X0 = 0 and that
Z
1

0
b
2(u)du = 1 (by rescaling the

function b). Define a random time ‰ = Ë(X). Noting that F W
t = F X

t , we have

è
⇣
‰  y

���F X
t

⌘
= è

h
Ë(X)  y

���F X
t

i

= è
h
X  Ë�1(y)

���F X
t

i

= –

"
Ë�1(y)�Xt

„t

#
(3.13)

where „2
t =

Z
1

t

b
2(u)du. Equation (3.13) allows us to calculate the conditional

distribution of the random time ‰ given the history of the process Xt. In addition,

given the conditional distribution, we can calculate the conditional survival func-
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tion, the conditional hazard function, the conditional mean residual life, and the

conditional mean tail life of the random time ‰.

It is important to recognize that the first example in Equation (3.1) does not allow

such construction of a random time because the process Xt there does not have a

limiting random variable X. Similarly, the second example in Equation (3.3) does

not allow a construction of a random time because the distribution of the limiting

random variable X does not depend on the initial value X0. I will discuss below

how we can modify the first and second example to make the construction of a

random time feasible.

To continue the concrete illustration of this example, choose b(t) =
p

÷exp
✓
�
÷
2
t

◆
.

Then,
Z
1

0
b
2(t)dt = 1, and „2

t = var
⇣
X

���F X
t

⌘
=

Z
1

t

b
2(u)du = exp(�÷t).

In the context of this illustration, the conditional survival function at time t, given

F
X
t is

S

⇣
y

���F W
t

⌘
= è

⇣
‰ > y

���F X
t

⌘

= –

"
Xt �Ë�1(y)

„t

# (3.14)

where „t = exp
✓
�
÷
2
t

◆
.

Figure 3.2 shows the e↵ect of randomly arriving information in the current il-

lustrative example. Panel (A) displays conditional survival functions given unfa-

vorable information Xt = �0.8 for some time t > 0 and a range of values of time

0  y  40 years. The solid gray line corresponds to unconditional Weibull distri-

bution of the random time, and the dashed gray line corresponds to unconditional

gamma distribution of the random time. The solid blue line corresponds to con-
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ditional survival function when the unconditional distribution is Weibull, and the

dashed blue line corresponds to conditional survival function when the uncon-

ditional distribution is gamma. Panel (B) displays conditional survival functions

given favorable information Xt = 0.8 for some time t > 0 and a range of values

of time 0  y  40 years. As in Panel (A), the solid gray line corresponds to un-

conditional Weibull distribution of the random time, and the dashed gray line

corresponds to unconditional gamma distribution of the random time. The solid

red line corresponds to conditional survival function when the unconditional dis-

tribution is gamma, and the dashed red line corresponds to conditional survival

function when the unconditional distribution is gamma.
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Panel (B) Marginal & Favorable Info
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Figure 3.2. Marginal and conditional survival functions for Weibull and gamma. Gray
lines refer to marginal survival, blue lines are conditional on unfavorable information
Xt = �0.8, and red lines are conditional on favorable information Xt = 0.8. Solid lines
refer to Weibull distribution, dashed lines refer to gamma distribution. The value of the
parameter in the integrand function b(t) is ÷ = 0.2.

Figure 3.3 shows random arrival of information and survival probabilities for a

fixed future time horizon y = 10 years. Panel (A) shows two sample paths of the
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health marker Xt. The blue line corresponds to a health marker trending mostly

up, signifying largely favorable information, and the red line corresponds to a

health marker trending down starting at time t = 7, signifying increasing unfavor-

able information. Panel (B) shows the corresponding survival probabilities past

a fixed time horizon of 10 years. The blue line shows this probability trending

up because of the favorable information in the health marker. The red line shows

this probability beginning to fall at time t = 7 because the down-trending health

marker. The lines correspond to conditional probabilities when the unconditional

distribution is Weibull. The evolution of survival probabilities is similar when the

unconditional distribution of the random time is a matched gamma.

Panel (A) Evolution of Health Marker
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Panel (B) Survival Probabilities

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Time t

Su
rv

iva
l p

ro
ba

bi
lit

y

Figure 3.3. Random arrival of information and survival probabilities for a fixed future
time horizon y = 10 years. Panel (A) shows two types of randomly arriving information,
and Panel (B) shows the corrsponding survival probabilities for a fixed future time horizon
y = 10. The lines correspond to conditional probabilities when the unconditional distri-
bution is Weibull. The value of the parameter in the integrand function b(t) is ÷ = 0.2.
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3.2 Linear StochasticDi↵erential Equations for Construction of RandomTime

In this section, I will characterize linear stochastic di↵erential equations that allow

the construction of a random time. Based on the three examples above, we are

looking for equations whose solutions converge to a limiting random variable that

depends on the initial value of the solution.

3.2.1 Solution of the Linear Stochastic Di↵erential Equation

Consider the one-dimensional linear stochastic di↵erential equation

dXt =
h
a0(t) + a1(t)Xt

i
dt +

h
b0(t) + b1(t)Xt

i
dWt

(3.15)

The solution procedure is to solve first the associated homogeneous stochastic dif-

ferential equation

dYt = a1(t)Ytdt + b1(t)YtdWt
(3.16)

and then apply the two-dimensional Ito’s formula to the process
Xt

Yt

. We get the

solution of the homogeneous equation by applying the one-dimensional Ito’s for-

mula to the function f (x) = log(x)

d log(Yt) =
h
a1(t)� 1

2b
2
1(t)

i
dt + b1(t)dWt

(3.17)

Integrating both sides we get
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Yt = Y0 exp
(Z

t

0

h
a1(u)� 1

2b
2
1(u)

i
du +

Z
t

0
b1(u)dWu

)
(3.18)

Next, consider the two-dimensional Ito’s formula for the Ito processes

dXt = a (Xt , t)dt + b1 (Xt , t)dW1t + b2 (Xt , t)dW2t

dYt = A (Yt , t)dt + B1 (Yt , t)dW1t + B2 (Yt , t)dW2t

(3.19)

For the function f (x,y, t) Ito’s formula is

df (Xt ,Yt , t) =
Åf
Åx

(Xt ,Yt , t)dXt +
Åf
Åy

(Xt ,Yt , t)dYt +
Åf
Åt

(Xt ,Yt , t)dt

+
1
2
Å2f
Åx2

(Xt ,Yt , t) (dXt)
2 +

Å2f
ÅxÅy

(Xt ,Yt , t)dXtdYt

+
1
2
Å2f
Åy2

(Xt ,Yt , t) (dYt)
2

(3.20)

where

(dXt)
2 =

h
b
2
1 (Xt , t) + b

2
2 (Xt , t)

i
dt

dXtdYt =
h
b1 (Xt , t)B1 (Yt , t) + b2 (Xt , t)B2 (Yt , t)

i
dt

(dYt)
2 =

h
B
2
1 (Yt , t) + B

2
2 (Yt , t)

i
dt

(3.21)

For the processes in Equation (3.15) and Equation (3.16) we get
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d

 
Xt

Yt

!
=

dXt

Yt

�
XtdYt

Y
2
t

�
dXtdYt

Y
2
t

+
1
2
2Xt (dYt)

2

Y
3
t

=

h
a0(t) + a1(t)Xt

i
dt +

h
b0(t) + b1(t)Xt

i
dWt

Yt

�
a1(t)XtYtdt + b1(t)XtYtdWt

Y
2
t

�

h
b0(t) + b1(t)Xt

i
b1(t)Ytdt

Y
2
t

+
Xtb

2
1(t)Y

2
t dt

Y
3
t

=

h
a0(t)� b0(t)b1(t)

i
dt + b0(t)dWt

Yt

(3.22)

Integrating both sides

Xt

Yt

�
X0

Y0
=

Z
t

0

a0(u)� b0(u)b1(u)
Yu

du +
Z

t

0

b0(u)
Yu

dWu
(3.23)

We can see that Equation (3.23) does not depend on the value of Y0. Therefore, we

can set Y0 = 1 and get

Xt = Yt

"
X0 +

Z
t

0

a0(u)� b0(u)b1(u)
Yu

du +
Z

t

0

b0(u)
Yu

dWu

#
(3.24)

3.2.2 First Example Revisited

Modify the stochastic di↵erential equation in Equation (3.1) into the form

dXt = a(t)Xtdt + b(t)XtdWt
(3.25)
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where a(t) is a real function of time such that
Z
1

0
|a(t)|dt < 1, and b(t) is a real

positive function of time such that
Z
1

0
b
2(t)dt <1. From Equation (3.24) we get

the solution

Xt = X0 exp
(Z

t

0

h
a(u)� 1

2b
2(u)

i
du +

Z
t

0
b(u)dWu

)
(3.26)

The process Xt in Equation (3.26) converges to a limiting random variable X. The

distribution of X is normal and depends on the initial value of X0.

3.2.3 Second Example Revisited

Modify the stochastic di↵erential equation in Equation (3.3) into the form

dXt = ‹e�”t (fi�Xt)dt +„e�‘t dWt
(3.27)

where ‹,”,‘ > 0. To solve this equation let f (x, t) = a(t) + b(t)x, then ft = a
0(t) +

b
0(t)x, fx = b(t), and fxx = 0. Using Ito’s formula

df (Xt , t) =
h
a
0(t) + b

0(t)Xt +‹e�”t (fi�Xt)b(t)
i
dt +„e�‘t b(t)dWt

(3.28)

Tomake the term a
0(t)+b0(t)Xt+‹e�”t (fi�Xt)b(t) equal to zero set b0(t) = ‹e�”t b(t)

and a
0(t) = �‹fie�”t b(t).

The first di↵erential equation can be rewritten
d logb(t)

dt
= ‹e�”t so that logb(t) =

�
‹
”
e�”t +A and b(t) = Bexp


�
‹
”
e�”t

�
. We want b(0) = 1 so that

b(t) = exp
‹
”
(1� e�”t)

�
.
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The derivative of exp(�he�”t) is ”hexp(�he�”t)e�”t. Therefore

Z
t

0
”hexp(�he�”u)e�”u du =

Z
t

0
d exp(�he�”u)

= exp(�he�”t)� exp
⇣
�he0

⌘

= exp(�he�”t)� exp(�h)

(3.29)

We get that

a (t) = �‹fiexp
✓‹
”

◆Z t

0
exp

✓
�
‹
”
e�”u

◆
e�”u du

= �fiexp
✓‹
”

◆
exp

✓
�
‹
”
e�”t

◆
� exp

✓
�
‹
”

◆�

= fi
⇢
1� exp


k

”
(1� e�”t)

��

= fi
h
1� b(t)

i

(3.30)

To do a check for correctness, when ” goes to zero we get

a (t) = fi
h
1� exp(‹t)

i

b (t) = exp(‹t)

(3.31)

which is the result when solving the Ornstein-Uhlenbeck stochastic di↵erential

equation.
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The solution of our stochastic di↵erential equation is

a(t) + b(t)Xt �X0 = „
Z

t

0
e�‘u b(u)dWu

Xt =
1

b(t)

"
X0 � a(t) +„

Z
t

0
e�‘u b(u)dWu

#

=
X0

b(t)
+fi

"
1�

1
b(t)

#
+

„
b(t)

Z
t

0
e�‘u b(u)dWu

(3.32)

and
1

b(t)
= exp


�
‹
”
(1� e�”t)

�
, so that

Xt = X0 exp

�
‹
”
(1� e�”t)

�
+fi

⇢
1� exp


�
‹
”
(1� e�”t)

��

+ „exp

�
‹
”
(1� e�”t)

�Z t

0
e�‘u b(u)dWu

(3.33)

When t goes to infinity in Equation (3.33), the stochastic process Xt converges to

a limiting random variable whose distribution depends on the initial value X0.

Therefore, the solution of the modified Ornstein-Uhlenbeck process is suitable for

generating a random time with learning.

I defer using the modified Ornstein-Uhlenbeck process for generating a random

time to future research, and look now only at the behavior of the integral term

Jt = „exp

�
‹
”
(1� e�”t)

�Z t

0
e�‘u exp

‹
”
(1� e�”u)

�
dWu

(3.34)

Perhaps not surprisingly, the behavior depends again on the magnitude of the pa-

rameter ‘.
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3.3 A Random Time with Learning

3.3.1 Choice of a Weight Function

In the preceding modeling options, the positive integrand b(t) in the Ito integralZ
t

0
b(u)dWu can be called a weight function. Here I o↵er two additional options

for a weight function and plot their shapes and the shapes of the conditional vari-

ance functions.

The first weight function is based on the exponential density.

f (t) = ›exp(�›t)

b(t) =
h
f (t)

i1
2

S(t) = exp(�›t)

var
⇣
X

���F X
t

⌘
= S(t)

(3.35)
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Figure 3.4. Integrand function and conditional variance based on exponential density. The
blue lines are calculated with rate parameter › = 0.1. The red lines are calculated with rate
parameter › = 0.5.

The second weight function is based on the lognormal density.

f (t) =
1

p

2·„2t
exp

2
66664
(log t �fi)2

2„2

3
77775

b(t) =
h
f (t)

i1
2

S(t) = –
✓fi� log t

„

◆

var
⇣
X

���F X
t

⌘
= S(t)

(3.36)
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Figure 3.5. Integrand function and conditional variance based on log-normal density. The
blue lines are calculated with location parameter fi = 3 and scale parameter „ = 0.25. The
red lines are calculated with location parameter fi = 3 and scale parameter „ = 1.

3.3.2 Conditional Distribution Function

I am going to refer to two time variables, t and y, the time variable t denotes the

time of observation of the health marker Xt, and the time variable y serves as an

argument of the conditional distribution function, conditional density function,

conditional survival function, etc. Both t and y are measured from a common

origin that can be the time the patient was born, the time the patient was put under

observation for the first time, or another time that is suitable for the modeling

requirements. There is a flexibility in choosing the time origin, depending on the

specific application of the model. Given the interpretation of the time variables t

and y, we must have y � t.

- 48 -



For y < t, we have è
⇣
‰  y

���F X
t ,‰ > t

⌘
= 0, and for y � t, we have

F
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���F X
t ,‰ > t

⌘
= è

⇣
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���F X
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⌘

=
è
⇣
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���F X
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⌘

è
⇣
‰ > t

���F X
t

⌘

=
–

"
Ë�1(y)�Xt

„t

#
�–

"
Ë�1(t)�Xt

„t

#

1�–
"
Ë�1(t)�Xt

„t

#

(3.37)

where „t = exp
✓
�
÷
2
t

◆
.

To calculate the conditional density function observe that Ë�1 (y) = –�1
h
F (y)

i
.

Therefore

–
h
Ë�1 (y)

i
= –

(
–�1

h
F (y)

i)

= F (y)

(3.38)

and Ê
h
Ë�1 (y)

idË�1 (y)
dy

= f (y) where f is the density of F .

It follows that
dË�1 (y)

dy
=

f (y)

Ê
h
Ë�1 (y)

i (3.39)

and for y � t

f

⇣
y

���F X
t ,‰ > t

⌘
=

Ê

"
Ë�1(y)�Xt

„t

#
f (y)

„tÊ
h
Ë�1 (y)

i

1�–
"
Ë�1(t)�Xt

„t

# (3.40)
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where „t = exp
✓
�
÷
2
t

◆
. Note that when t = 0 and X0 = 0 then f

⇣
y

���F X

0 ,‰ > 0
⌘
= f (y).
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Figure 3.6. Random arrival of information, unconditional survival density, and condi-
tional densities of survival time given information at time t = 5 and given that the patient
is alive at time t = 5. Panel (A) shows two types of randomly arriving information. In Panel
(B), the unconditional density is Weibull with shape parameters 2 and scale parameter 10,
and the conditional densities are based on the unconditional Weibull density. The blue
line corresponds to X5 = 0.889, the red line corresponds to X5 = 0.240. The value of the
parameter in the integrand function b(t) is ÷ = 0.2.

3.3.3 Conditional Survival Function

For y < t, we have è
⇣
‰ > y

���F X
t ,‰ > t

⌘
= 1, and for y � t, we have

S

⇣
y

���F X
t ,‰ > t

⌘
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⇣
‰ > y

���F X
t ,‰ > t

⌘

=
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Ë�1(y)�Xt
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#

1�–
"
Ë�1(t)�Xt

„t

#
(3.41)
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where „t = exp
✓
�
÷
2
t

◆
.

3.3.4 Conditional Hazard Function

Using Equation (3.40) for the conditional density of the random time and Equation

(3.41) for conditional survival function, we get for y � t
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(3.42)

It is important to keep in mind that the time variables t and y are measured from

the same origin.

Figures 3.7 through 3.9 illustrate the behavior and flexibility of the conditional

hazard functions in this model.

Figure 3.7 illustrates the behavior of unconditional and conditional hazard func-

tions when the unconditional distribution of the random time is Weibull with

shape parameter k = 2 and scale parameter › = 10. Panel (A) of Figure 3.7 shows

the random evolution of the health marker Xt in two patients. Focusing on ob-

servation time t = 2, we get for patient 1 (blue line) the value X2 = 0.576 and for

patient 2 (red line) the value X2 = �0.342. Panel (B) of Figure 3.7 shows the uncon-
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ditional hazard function (gray line), the conditional hazard function for patient 1

(blue line) and the conditional hazard function for patient 2 (red line), all as func-

tions of the time variable y. As is the case for shape parameter greater than 1,

the unconditional hazard function is increasing. Because of the favorable value of

the health marker for patient 1, the hazard line for patient 1 starts below the un-

conditional hazard line, but eventually rises above the unconditional hazard line

reflecting the uncertainty about the future evolution of the health marker. The

hazard line for patient 2 starts above the unconditional hazard line due to the un-

favorable value of the health marker, and increases faster than the unconditional

hazard line.
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Figure 3.7. Random arrival of information, unconditional hazard function, and condi-
tional hazard functions given information at time t = 2 and given that the patients are
alive at time t = 2. The blue line in Panel (A) corresponds to X2 = 0.576 and the red line
corresponds to X2 = �0.342. Panel (B) shows the unconditional and conditional hazards
corresponding to an unconditional Weibull distribution with shape parameter k = 2 and
scale parameter › = 10. The value of the parameter in the weight function b(t) is ÷ = 0.2.

Figure 3.8 resembles Figure 3.7 with a shift in observation time from t = 2 to t = 5.

As Panel (A) shows, the shift corresponds to the value X5 = 1.592 for patient 1
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(blue line), and X5 = �1.028 for patient 2 (red line). Panel (B) of Figure 3.8 is drawn

with the same vertical scale as Figure 3.7 for convenient comparison. The uncon-

ditional hazard function (gray line) remains unchanged, the conditional hazard

function for patient 1 (blue line) is more convex than in Panel (B) of Figure 3.7, re-

flecting both the increase in the value of the observed health marker and the shift

in observation time from t = 2 to t = 5. The hazard function of patient 2 (red line)

rises for all values of the time variable y, reflecting the more unfavorable value of

the observed health marker.
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Figure 3.8. Random arrival of information, unconditional hazard function, and condi-
tional hazard functions given information at time t = 5 and given that the patients are
alive at time t = 5. The blue line in Panel (A) corresponds to X5 = 1.592 and the red line
corresponds to X5 = �1.028. Panel (B) shows the unconditional and conditional hazards
corresponding to an unconditional Weibull distribution with shape parameter k = 2 and
scale parameter › = 10. The value of the parameter in the weight function b(t) is ÷ = 0.2.

Figure 3.9 shows again observation time t = 5, and di↵ers from Figure 3.8 in the

value of the shape parameter k = 0.5 of the unconditional Weibull distribution.

The unconditional hazard function (gray line) in Panel (B) reflects the fact that the
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hazard function of the Weibull distribution is decreasing for k < 1. The condi-

tional hazard function of patient 1 (blue line) is now almost flat and the condi-

tional hazard function of patient 2 (red line) is decreasing, almost parallel to the

unconditional hazard function, but with higher values because of the unfavorable

value of the health marker for patient 2.
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Figure 3.9. Random arrival of information, unconditional hazard function, and condi-
tional hazard functions given information at time t = 5 and given that the patients are
alive at time t = 5. The blue line in Panel (A) corresponds to X5 = 1.592 and the red line
corresponds to X5 = �1.028. Panel (B) shows the unconditional and conditional hazards
corresponding to an unconditional Weibull distribution with shape parameter k = 0.5 and
scale parameter › = 10. The value of the parameter in the weight function b(t) is ÷ = 0.2.
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Panel (A) As Function of Health Marker
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Panel (B) As Function of Observation Time
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Figure 3.10. Conditional hazard as function of single argument with other arguments
held constant. Panel (A) shows conditional hazard as a function of the health marker Xt

for k = 2 (green line) and k = 0.5 (brown line) at t = 5. Panel (B) shows conditional hazard
as a function of observation time t for k = 2.2 (blue line), k = 2 (green line), k = 1.5 (purple
line) and k = 0.5 (brown line) at Xt = 1.5. The value of time y is constant at y = 15, the
scale parameter of the unconditional Weibull distribution is constant at › = 10, and the
parameter of the weight function is constant at ÷ = 0.2.

3.3.5 Conditional Mean Residual Life

Using Equation (2.8) for the integral representation of the mean residual life and

Equation (3.41) for the conditional survival function, we get for y � t

m

⇣
y

���F X
t ,‰ > t

⌘
=

Z
1

y

S

⇣
u

���F X

t ,‰ > t

⌘
du
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���F X
t ,‰ > t

⌘ (3.43)
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where S

⇣
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# and „t = exp
✓
�
÷
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t

◆
. The integral in

Equation (3.43) has to be evaluated numerically.

Figure 3.11 and Figure 3.12 illustrate the behavior of unconditional and condi-

tional mean residual life for observation times t = 2 and t = 5, respectively, when

the unconditional distribution is Weibull with shape parameter k = 2 and scale

parameter › = 10. In accordance with intuition, the conditional mean residual

life for patient 1 (blue line) dominates the unconditional mean residual life (gray

line), which in turn, dominates the mean residual life for patient 2 (red line). This

is explained by the more favorable value of the health marker for patient 1 than

for patient 2. When we shift the observation time from t = 2 to t = 5, all three

mean residual life functions shift down, corresponding to the shift in observation

time. Moreover, the mean residual life of patient 1 (blue line) declines less than

the mean residual life of patient 2 (red line) because of the improvement in the
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value of the health marker of patient 1 and worsening in the value of the health

marker of patient 2.
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Figure 3.11. Random arrival of information, unconditional mean residual life function,
and conditional mean residual life functions given information at time t = 2 and given
that the patients are alive at time t = 2. The blue line in Panel (A) corresponds to X2 =
0.576 and the red line corresponds to X2 = �0.342. Panel (B) shows the unconditional
and conditional mean residual life functions corresponding to an unconditional Weibull
distribution with shape parameter k = 2 and scale parameter › = 10. The value of the
parameter in the weight function b(t) is ÷ = 0.2.
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Panel (A) Evolution of Health Marker
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Panel (B) Unconditional and Conditional Mean Residual Life
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Figure 3.12. Random arrival of information, unconditional mean residual life function,
and conditional mean residual life functions given information at time t = 5 and given
that the patients are alive at time t = 5. The blue line in Panel (A) corresponds to X5 =
1.592 and the red line corresponds to X5 = �1.028. Panel (B) shows the unconditional
and conditional mean residual life functions corresponding to an unconditional Weibull
distribution with shape parameter k = 2 and scale parameter › = 10. The value of the
parameter in the weight function b(t) is ÷ = 0.2.

Figure 3.13 illustrates the behavior of mean residual life when the unconditional

distribution of the random time is Weibull with shape parameter k = 0.5 and scale

parameter › = 10. Because the unconditional hazard function of the Weibull dis-

tribution with shape parameter k < 1 is decreasing, the unconditional mean resid-

ual life function (gray line) shifts up and becomes increasing. The conditional

mean residual life for patient 1 (blue line) also shifts up, but remains decreas-

ing, because of the uncertainty associated with the random evolution of the health
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marker. Finally, the mean residual life of patient 2 (red line) shifts up but remains

almost flat.
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Figure 3.13. Random arrival of information, unconditional mean residual life function,
and conditional mean residual life functions given information at time t = 5 and given
that the patients are alive at time t = 5. The blue line in Panel (A) corresponds to X5 =
1.592 and the red line corresponds to X5 = �1.028. Panel (B) shows the unconditional
and conditional mean residual life functions corresponding to an unconditional Weibull
distribution with shape parameter k = 0.5 and scale parameter › = 10. The value of the
parameter in the weight function b(t) is ÷ = 0.2.

3.3.6 Conditional Mean Tail Life
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Comparing the definitions of conditional mean residual life and conditional mean

tail life implies that for 0 < ”  1
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In particular
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� t and we get the desired result. This is reflected

in Figure 3.11 and Figure 3.14.

Using Equation (2.13) we can compute mean tail life from
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Inverting Equation (3.41), we get
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where „t = exp
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Equation (3.44) has to be evaluated numerically.
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Figure 3.14. Random arrival of information, unconditional mean tail life function, and
conditional mean tail life functions given information at time t = 2 and given that the
patients are alive at time t = 2. The blue line in Panel (A) corresponds to X2 = 0.576
and the red line corresponds to X2 = �0.342. Panel (B) shows the unconditional and con-
ditional mean tail life functions corresponding to an unconditional Weibull distribution
with shape parameter k = 2 and scale parameter › = 10. The value of the parameter in the
weight function b(t) is ÷ = 0.2.
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Figure 3.15. Random arrival of information, unconditional mean tail life function, and
conditional mean tial life functions given information at time t = 5 and given that the
patients are alive at time t = 5. The blue line in Panel (A) corresponds to X5 = 1.592
and the red line corresponds to X5 = �1.028. Panel (B) shows the unconditional and con-
ditional mean tail life functions corresponding to an unconditional Weibull distribution
with shape parameter k = 2 and scale parameter › = 10. The value of the parameter in the
weight function b(t) is ÷ = 0.2.
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Figure 3.16. Random arrival of information, unconditional mean tail life function, and
conditional mean tail life functions given information at time t = 5 and given that the
patients are alive at time t = 5. The blue line in Panel (A) corresponds to X5 = 1.592
and the red line corresponds to X5 = �1.028. Panel (B) shows the unconditional and con-
ditional mean tail life functions corresponding to an unconditional Weibull distribution
with shape parameter k = 0.5 and scale parameter › = 10. The value of the parameter in
the weight function b(t) is ÷ = 0.2.
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4 Simulation and Comparison with Cox Model

4.1 Simulation

The essential feature of the model introduced in Chapter 3 is the stochastic evo-

lution of the health marker and the ability to compute conditional survival and

hazard functions. To illustrate the di↵erences between the newmodel and the Cox

proportional hazards model it is helpful to have a health marker that has a non-

zero drift and which converges to a finite random variable Y when time goes to

infinity. This limiting random variable then defines the survival time of the model

‰ = Ë(Y).

Consider the following setup. A number n of subjects have been diagnosed with

a medical condition and were instructed to isolate at home until onset of symp-

toms, at which time they will be hospitalized. To help estimate the arrival time of

symptoms, the subjects are given a test with a single health marker, first at time

0, and then every 10 days until hospitalized. This health marker corresponds to

a single covariate in the Cox proportional hazards model analysis of the data and

represents conditioning information in the model introduced in Chapter 3.

The health marker Yt = logXt is generated by the Ito process

dXt = e�÷t (fiXtdt +„XtdWt) (4.1)

The solution of the stochastic di↵erential equation in Equation (4.1) is obtained as

follows.
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Consider a function f (x, t) = a (t) + logx, then

fx =
1
x

fxx = �
1
x2

ft = a
0(t)

(4.2)

and, using Ito’s formula

df (Xt , t) =
 
a
0 +

1
Xt

fie�÷t Xt �
1
2

1
X
2
t

„2 e�2÷t X2
t

!
dt +

1
Xt

„e�÷t XtdWt
(4.3)

Simplifying

df (Xt , t) =
✓
a
0 +fie�÷t �

1
2
„2 e�2÷t

◆
dt +„e�÷t dWt

(4.4)

We will solve for a (t) such that

a
0 =

1
2
„2 e�2÷t �fie�÷t (4.5)

then

a (t) =
fi
÷
e�÷t �

„2

4÷
e�2÷t +c (4.6)

If we set c so that a (0) = 0 then f (X0,0) = logX0 and

a (t) =
„2

4÷

⇣
1� e�2÷t

⌘
�
fi
÷

⇣
1� e�÷t

⌘
(4.7)
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Next we have

f (Xt , t) = f (X0,0) +„
Z

t

0
e�÷u dWu

(4.8)

and therefore

logXt = logX0 +
fi
÷

⇣
1� e�÷t

⌘
�
„2

4÷

⇣
1� e�2÷t

⌘
+„

Z
t

0
e�÷u dWu

(4.9)

Consider the drift of the process Yt = logXt in Equation (4.9). This drift is 0 at time

t = 0. Because

d

dt

hfi
÷

⇣
1� e�÷t

⌘
�
„2

4÷

⇣
1� e�2÷t

⌘ i
= fie�÷t �

„2

2
e�2÷t (4.10)

the drift is positive and increasing if fi �
„2

2
. As time goes to infinity, the drift

tends to a positive limit
fi
÷
�
„2

4÷
.

Figure 4.1 illustrates a sample path and the mean function of this process for pa-

rameter values fi = 0.08, „ = 0.4, and ÷ = 0.05. Each individual sample path can
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be distant from the mean function, and the probability weighted average of all the

sample paths converges to the mean function.

0.
0
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Figure 4.1. A sample path of the Ito process in Equation (4.9) (red line) and its mean
function (blue line). Parameter values are fi = 0.08, „ = 0.4, ÷ = 0.05.

The process Yt = logXt has normal distribution with mean and variance

Ñ (Yt) = Y0 +
fi
÷

⇣
1� e�÷t

⌘
�
„2

4÷

⇣
1� e�2÷t

⌘

var(Yt) =
„2

⇣
1� e�2÷t

⌘

2÷

(4.11)

The random variable Y = lim
t!1

Yt has normal distribution with mean and variance

Ñ (Y) = Y0 +
fi
÷
�
„2

4÷

var(Y) =
„2

2÷

(4.12)

The time of arrival of symptoms is ‰ = F
�1

h
–? (Y)

i
, where –? is the normal distri-

bution function with mean and variance shown in Equation (4.12) and F is Weibull
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with shape parameter k = 1.8 and scale parameter › = 22. The random time ‰ has

the specified Weibull distribution.

Table 4.1 shows the generated values of the health marker process Yt and, in the

last column, the generated time of onset of symptoms in days.

Table 4.1. Simulated values of health marker and time of onset of symptoms

Scores

Time 0 Time 10 Time 20 Time 30 Time 40 Time 50 Time 60
Time of
Onset

1 -0.31 -0.35 -0.44 28
2 -0.54 -0.37 13
3 -0.42 -0.66 19
4 1.23 1.43 2.12 1.87 1.69 1.55 53
5 -0.26 -0.23 0.11 0.07 34
6 0.39 0.47 0.42 0.51 39
7 -0.59 -0.56 14
8 -1.26 -1.09 -1.07 22
9 -0.98 -0.73 -0.85 26

10 -0.61 -0.40 12
11 -0.74 -0.58 17
12 0.37 0.72 0.63 0.77 34
13 -0.55 -0.62 11
14 1.00 1.03 1.92 1.85 1.99 1.76 58
15 1.84 1.47 1.52 2.11 2.06 47
16 -0.31 -0.45 -0.38 21
17 -0.40 -0.36 18
18 -3.22 7
19 -0.26 -0.15 16
20 -1.26 -1.09 -1.07 21
21 -0.76 -0.64 -0.53 24
22 -3.01 -2.53 14
23 -0.56 -0.39 -0.26 29
24 -0.48 -0.55 -0.53 21
25 -0.83 -0.66 18
26 -1.01 -1.14 -0.85 23
27 -2.66 8
28 -0.42 -0.29 11
29 0.03 -0.37 0.24 0.17 31
30 -0.63 -0.57 18
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4.2 Parameter Estimation of the Ito Process Yt

Let Yt = h (t)+„
Z

t

0
e�÷u dWu . The conditional distribution of Yt given F Y

s is normal

and its moments follow from writing

Yt = Ys + Yt � Ys
(4.13)

Because Yt � Ys is independent of Ys we can write

Ñ
⇣
Yt

���F Y
s

⌘
= Ys + Ñ (Yt � Ys)

= Ys + h (t)� h (s) +„Ñ
 Z

t

s

e�÷u dWu

!

= Ys + h (t)� h (s)

(4.14)

Also

var
⇣
Yt

���F Y
s

⌘
= var(Yt � Ys)

= „2 var
 Z

t

s

e�÷u dWu

!

= „2
Z

t

s

e�2÷u du

= „2e
�2÷s
�e�2÷t

2÷

(4.15)

The function h(t) = Y0 +
fi
÷

⇣
1� e�÷t

⌘
�
„2

4÷

⇣
1� e�2÷t

⌘
depends on the parameters ÷,

fi, and „. Letting t!1 in Equation (4.14) we get

Ñ
⇣
Y

���F Y
s

⌘
= Ys +

fi
÷
e�÷s �

„2

4÷
e�2÷s (4.16)
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Similarly, from Equation (4.15) we have

var
⇣
Y

���F Y
s

⌘
= „2e

�2÷s

2÷
(4.17)

We observe a sample y1, . . . ,yn of the process Yt at times s1, . . . ,sn. The joint density

of the sample is the product

f (y1, . . . ,yn) = f (y1) f
⇣
y2

���y1
⌘
f

⇣
y3

���y1,y2
⌘
· · · f

⇣
yn

���y1, . . . ,yn�1
⌘

(4.18)

Therefore, we can write the log-likelihood function for the parameters ÷,fi,„, in-

dexed by the given sample

Ñ (÷,fi,„;y1, . . . ,yn) = �
1
2

nº

i=1

log
h
Ÿ (si )� Ÿ (si�1)

i

�
1
2

nº

i=1

h
yi � yi�1 � h (si ) + h (si�1)

i2

Ÿ (si )� Ÿ (si�1)

(4.19)

where h (s) =
fi
÷

⇣
1� e�÷s

⌘
�
„2

4÷

⇣
1� e�2÷s

⌘
, h (t) � h (s) is the conditional mean of

Yt �Ys given F Y
s , Ÿ (s) = �„2e

�2÷s

2÷
, Ÿ (t)�Ÿ (s) is the conditional variance of Yt given

F
Y
s , and y0 = s0 = 0.

For estimation, I used the R function optim. Table 4.2 shows the true and the

estimated parameter values.

- 70 -



Table 4.2. True and estimated parameter values.

Parameter True Estimated
÷ 0.05 0.045
fi 0.08 0.053
„ 0.40 0.494

4.3 Cox Proportional Hazards Model and Partial Likelihood

Cox Cox [12] and Cox [13] proposed a relative risk model with explanatory vari-

ables, or covariates, on which the failure times of individuals may depend. Con-

sider a vector of covariates Z 0 =
⇣
Z1, . . . ,Zp

⌘
and a hazard function indexed by those

covariates in the following way

h (t;Z) = h0 (t)exp(Z 0‘) (4.20)

where h0(t) is an unknown baseline hazard function and ‘ is the vector of param-

eters ‘0 =
⇣
‘1, . . . ,‘p

⌘
. In the basic model, the covariates Z and the parameters ‘

are constant, and known at the time origin t = 0. The baseline hazard h0(t) can be

interpreted as the hazard h(t;0) at Z = 0. The Cox model can be also written in a

logarithmic form

logh (t;Z) = logh0 (t) + exp(Z 0‘) (4.21)

For many random times ‰ the Cox proportional hazards model can be derived as

follows. Denote by H(t) the cumulative hazard function of the survival time ‰, and
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let g be a strictly increasing function g : ë +! ë + such that g(0) = 0. Then

è
h
g(‰) > t

i
= è

h
‰ > g

�1(t)
i

= exp
(
�H

h
g
�1(t)

i) (4.22)

Therefore, H
h
g
�1(t)

i
is the cumulative hazard function of the random time g(‰).

Now let ‰ have an exponential distribution with rate parameter ›, and suppose

that the function g is di↵erentiable. Then the random time g(‰) has the cumulative

hazard function ›g�1(t) and the hazard function
›

g0
⇥
g�1(t)

⇤ . If we set › = exp(Z 0‘)

then we get the Cox proportional hazards model

h (t;Z) =
1

g0
⇥
g�1(t)

⇤ exp(Z 0‘) (4.23)

where h (t;Z) is the hazard function of the random time g(‰). Moreover, if we

choose g(t) = F
�1

h
G (t)

i
where F is a strictly increasing distribution function on

(0,1), and G is the exponential distribution function with rate parameter › = 1,

then the random time g(‰) has distribution function F .

Cox Cox [12] and Cox [13] proposed a partial likelihood method for the estimation

of the parameters ‘ which treats the baseline hazard h0(t) as a nuisance function.

Assume for now that there is no censoring and that there are no ties of failure

times, so that exactly one individual fails at each failure time, I will return to these

issues later. Consider n individuals with failure times ‰i where 1  i  n. Denote

by Ai the event that individual i does not fail before time t and fails in the time
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interval [t, t +…t). Then the probability of the event Ai is

è (Ai ) =
è (t  ‰i < t +…t)

è (t  ‰i )
(4.24)

Select a specific individual i and compute the conditional probability that i will

fail in the time interval [t, t +…t), given that exactly one of the n individuals fails

in the time interval [t, t + …t). In other words, assuming that there are no tied

failure times, and given that one of them fails at time t, what is the conditional

probability it will be individual i .

We are interested in the conditional probability of specific individual i surviving

up to but not including time t and failing in the time interval [t, t + …t), given

that exactly one of the n individuals alive just prior to time t fails in the time

interval [t, t+…t). Then the conditioning event is A1[· · ·[An and è (A1 [ · · ·[An) =
nº

i=1

è (Ai ). Therefore

è (Ai |A1 [ · · ·[An) =
è (Ai )

è (A1 [ · · ·[An)

=
è (Ai )
nº

i=1

è (Ai )

=

è (t  ‰i < t +…t)
è (t  ‰i )

nº

j=1

è
⇣
t  ‰j < t +…t

⌘

è
⇣
t  ‰j

⌘

(4.25)

Because the distribution function of each failure time ‰j is di↵erentiable, it is also

continuous, and when …t goes to zero we get that the desired conditional proba-
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bility is

è (Ai |A1 [ · · ·[An) =
hi (t)
nº

j=1

hj (t)
(4.26)

where hj (t) is the hazard function of the failure time ‰j computed at time t.

The way this is converted into a partial likelihood function is illustrated by the fol-

lowing example. We have a sample of n = 5 individuals N = (1,2,3,4,5) and their

failure times, without censoring, T = (7,3,11,5,8). We also have one covariate Z

with corresponding values Z = (0,1,2,�1,3).

Arrange the failure times in increasing order and arrange the individuals and co-

variate values in the corresponding order, that is, T = (3,5,7,8,11),N = (2,4,1,5,3),

and Z = (1,�1,0,3,2). The conditional probability that the failure time of individ-

ual i = 2 is ti = 3, given that the failure time of one individual is t = 3, is

exp(‘)
exp(‘) + exp(�‘) + 1+ exp(3‘) + exp(2‘)

(4.27)

Equation (4.27) comes from the Cox model in Equation (4.20), and the fact that

we can cancel the baseline hazard H0(t) in the numerator and the denominator of

Equation (4.27).

Next, the conditional probability that the failure time of individual i = 4 is ti = 5,

given that the failure time of one individual is t = 5, is

exp(�‘)
exp(�‘) + 1+ exp(3‘) + exp(2‘)

(4.28)
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Continuing in this manner, we get the partial likelihood function

Lp =
exp(‘)

exp(‘) + exp(�‘) + 1+ exp(3‘) + exp(2‘)

⇥
exp(�‘)

exp(�‘) + 1+ exp(3‘) + exp(2‘)

⇥
1

1+exp(3‘) + exp(2‘)

⇥
exp(3‘)

exp(3‘) + exp(2‘)

(4.29)

The partial likelihood function in Equation (4.29), and the corresponding partial

log-likelihood, have a maximum at ‘ = �0.6, as shown in Panel (A) of Figure 4.2.

It is important to note that the partial likelihood function does not always have

a maximum at a finite value of ‘. For example, if we change the vector of the

covariate Z to Z = (3,5,1,4,2), then the partial log-likelihood function is increasing

asymptotically toward zero, as illustrated Panel (B) of Figure 4.2.

The reason for the non-existence of a maximum is that, when sorted in the order

of failure times, the covariate vector is Z = (5,4,3,2,1) and the partial likelihood
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function is

Lp =
exp(5‘)

exp(5‘) + exp(4‘) + exp(3‘) + exp(2‘) + exp(‘)

⇥
exp(4‘)

exp(4‘) + exp(3‘) + exp(2‘) + exp(‘)

⇥
exp(3‘)

exp(3‘) + exp(2‘) + exp(‘)

⇥
exp(2‘)

exp(2‘) + exp(‘)

=
1

1+exp(�‘) + exp(�2‘) + exp(�3‘) + exp(�4‘)

⇥
1

1+exp(�‘) + exp(�2‘) + exp(�3‘)

⇥
1

1+exp(�‘) + exp(�2‘)

⇥
1

1+exp(�‘)

(4.30)

It is clear from the last four lines of Equation (4.30) that each one of the multi-

plicative terms there is an increasing function of ‘, therefore the product does not

have a maximum for a finite value of ‘.

This problem with maximization of the partial likelihood is known, but does not

appear to be widely discussed in the literature. One mention of this problem ap-

pears in Kalbfleisch and Prentice [23], where it is relegated to item 4.1 in the sec-

tion Exercises and Complements in Chapter 4.
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Figure 4.2. Panel (A) shows the partial log-likelihood function in this example when
Z = (0,1,2,�1,3), and Panel (B) shows the partial log-likelihood function when Z =
(3,5,1,4,2).

The partial likelihood estimator of the parameter ‘ is the value of ‘ that maximizes

the partial likelihood function or partial log-likelihood function, if a maximum

exists.

4.3.1 General Formulation of Partial Likelihood

We can write an expression for the survival function in the Cox model, but it de-

pends on the unknown baseline survival function. First, the cumulative hazard

function is H (t;Z) = H (t0)exp(Z 0‘), therefore

logS (t;Z) = �H(t;Z)

= �H0(t)exp(Z 0‘)

= exp(Z 0‘) logS0(t)

(4.31)
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Therefore, S (t;Z) =
h
S0(t)

iexp(Z 0‘)
. Next, we can write the likelihood function for

n individuals with independent failure times t1 < t2 < · · · < tn (no ties of failure

times). Each density at failure time is f (ti ;Zi ) = h (ti ;Zi )S (ti ;Zi ). The likelihood

function is

L (‘; t1, . . . , tn,Z1, . . . ,Zn) =
nΩ

i=1

f (ti ;Zi )

=
nΩ

i=1

h (ti ;Zi )S (ti ;Zi )
(4.32)

For each 1  i  n the risk set Ri is the set of all the indexes i  j  n, that is, the

index set of all the individuals who are at risk at time ti . Multiplying and dividing

by
º

j2Ri

h0 (ti )exp
⇣
Z
0

j‘
⌘
, we can write the likelihood function

L (‘; t1, . . . , tn,Z1, . . . ,Zn) =
nΩ

i=1

h0 (ti )exp(Z 0i ‘)º

j2Ri

h0 (ti )exp
⇣
Z
0

j‘
⌘

2
6666664
º

j2Ri

h0 (ti )exp
⇣
Z
0

j‘
⌘
3
7777775S (ti ;Zi )

=
nΩ

i=1

exp(Z 0
i
‘)º

j2Ri

exp
⇣
Z
0

j‘
⌘

2
6666664
º

j2Ri

h0 (ti )exp
⇣
Z
0

j‘
⌘
3
7777775S (ti ;Zi )

(4.33)

The right side of the second line of Equation (4.33) is a product of three factors,

the first of which is
exp(Z 0

i
‘)º

j2Ri

exp
⇣
Z
0

j‘
⌘ corresponding to the calculation of conditional

probability in Equation (4.26). This factorization of the likelihood function, treat-

ing the baseline hazard h0(t) as a nuisance function, is the basis for the partial

likelihood

Lp (‘;Z1, . . . ,Zn) =
nΩ

i=1

exp(Z 0
i
‘)º

j2Ri

exp
⇣
Z
0

j‘
⌘ (4.34)
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When we use only one factor in Equation (4.33) and ignore the two other factors

that also involve ‘, we are not using all the information in the observed sample.

The benefits are, as argued by Cox [12] and Cox [13], simplification and an increase

in robustness.

When right censoring is present, the partial likelihood function becomes

Lp (‘;Z1, . . . ,Zn,÷1, . . . ,÷n) =
nΩ

i=1

2
66666666666664

exp(Z 0
i
‘)º

j2Ri

exp
⇣
Z
0

j‘
⌘

3
77777777777775

÷i

(4.35)

where ÷i is the censoring indicator at time ti , that is, ÷i = 1 if ti is a failure time,

and ÷i = 0 if ti is a censoring time.

Cox Cox [12] points out that the covariates Z can be deterministic functions of

time. The form of the partial likelihood function will then be a straightforward

extension of the partial likelihood with constant covariates. For example, consider

n = 5 individuals with ordered failure times T = (31,32,45,52,53), corresponding

values of the first covariate Z1 = (1,0,1,1,0), and a second covariate defined as the

function of time Z2(t) = Z1(log t � c), where c is the average value of log t in this

sample. Then, Z2 = (�0.292,0,0.081,0.226,0), and we get that partial likelihood

is maximized for ‘1 = 2.004 and ‘2 = �8.884. If, however, Z2(t) = log t�c then the

partial likelihood function does not have a maximum.

The partial likelihood function can also be modified to allow tied failure times.

Cox Cox [12] proposed the following method. Denote by di the number of indi-

viduals failing at time i . Then, the calculation of conditional probability in Equa-

tion (4.25) is replaced by the conditional probability of the specific di individuals
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surviving up to but not including time t and failing in the time interval [t, t +…t),

given that exactly di of the n individuals alive just prior to time t fail in the time

interval [t, t +…t). With that modification, the partial likelihood changes to

Lp (‘;Z1, . . . ,Zn,d1, . . . ,dn) =
nΩ

i=1

exp(U 0
i
‘)º

j2Si

exp
⇣
V
0

jK
‘
⌘ (4.36)

where Sj is the set of all dj-tuples from the risk set at time tj , Ui is the sum of

the covariates Z for the di individuals that fail at time ti , and Vjk is the sum of the

covariates Z for the dj individuals in dj-tuple number k. As this calculation may

be time consuming in the presence of many ties, Efron [16] has proposed a fast

and accurate approximation.

An asymptotic theory of maximum likelihood estimation based on a partial likeli-

hood appears in Wong [41].

For limitations of the Cox model with time-dependent covariates see Fisher and

Lin [18].

The following is an important and well-known fact about partial likelihood esti-

mation. If instead of the sample T = (7,3,11,5,8), we have a sample such that

S =
h
g(7),g(3),g(11),g(5),g(8)

i
where g is a positive increasing function, then the

partial likelihood function, constructed as above, would be exactly the same. This

has an important implication for the comparison of the Cox model with the model

introduced in Chapter 3.

In the model introduced in Chapter 3, we have a random variable X with distri-

bution function – , that can be, but doesn’t have to be, normal. We then consider
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another distribution F and define a survival time ‰ = F
�1

h
– (X)

i
which has the

distribution function F .

Consider two random times generated by the random variable X =
Z
1

0
b (u)dWu ,

defined by ‰1 = F
�1
1

h
– (X)

i
and ‰2 = F

�1
2

h
– (X)

i
.

Then F1 (‰1) = F2 (‰2), and ‰2 is a positive increasing function of ‰1, i.e., ‰2 =

F
�1
2

h
F1 (‰1)

i
, and the estimated parameters of the Cox model are the same for both

survival times ‰1 and ‰2.

In the model introduced in Chapter 3, the conditional hazard functions of the two

survival times, given Xt =
Z

t

0
b (u)dWu , are di↵erent.

For clinical applications of the Cox model, see for example Spruance et al. [33].

4.4 Estimating a Cox Model with Time Dependent Covariates

Next, I use the partial likelihood method of Cox to estimate the proportional haz-

ards model. The idea is to recognize that we have time dependent covariate and

to assume that it is a step functions of time. Thus, for subject 1 in Table 4.1 the

covariate X1 (t) has a constant value of �0.31 between time 0 and time 9, a con-

stant value of �0.35 between time 10 and time 19, and a constant value of �0.44

between time 20 and time 28.

For estimation, I used the function coxph of the R package survival. The func-

tion coxph requires as input an object of class survival, which I built with the

Surv function by entering each subject several times using censoring intervals

without an event, and one last time with an event. For example, for subject 1 in

Table 4.1 the entries are shown in Table 4.3.
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Table 4.3. Data entry for subject 1 in Table 4.1.

Start Stop Event
0 10 0

10 20 0
20 28 1

Patient 18 in Table 4.1 gets only one input line as shown in Table 4.4.

Table 4.4. Data entry for subject 18 in Table 4.1.

Start Stop Event
0 7 1

Table 4.5 shows the estimation results of the parameter of the Cox proportional

hazards model for all the 30 subjects. The 30 subjects generate 86 lines of data

with 30 events. Likelihood ratio test statistic is 27.76with p-value of 1⇥10�7, and

the Wald test statistic is 24.03 with p-value of 9⇥10�7.

Table 4.5. Estimation results for the Cox proportional hazards model with time dependent
covariate.

Parameter z-Score p-Value
�1.3655 �4.9020 9.47⇥10�7

exp(Parameter) Lower 0.95 Upper 0.95
0.2553 0.1479 0.4406

4.5 Model Comparison

We can use the 30 values of time to onset of symptoms, as shown in the last col-

umn of Table 4.1, to compute the Kaplan-Meier estimator of the time to onset of

symptoms. Using the survfit function of the R package survival we get the

survival function presented in Figure 4.3.
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Figure 4.3. Kaplan-Meier marginal survival function for all subjects.

Using the general formula for conditional survival functions in Equation (3.41)

and the estimated values of model parameters in Table 4.2, we can plot the in-

dividual conditional survival functions for every subject. Figure 4.4 shows those

conditional survival functions, given the measured value of the health marker at

time 0, for subjects 1 (blue), 8 (red), 15 (olive), 22 (magenta), and 29 (gray).
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Figure 4.4. New model individual conditional survival function for subjects 1 (blue), 8
(red), 15 (olive), 22 (magenta), and 29 (gray).
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We can see in Table 4.1 that larger values of the health marker are associated with

longer time to onset of symptoms. Table 4.1 and Figure 4.4 show a good correspon-

dence between between observed health markers at time 0, individual survival

times, and individual conditional survival functions.

The Cox model allows the calculation of hazard ratios, and the new model intro-

duced in Chapter 3 allows the calculation of the individual conditional hazard and

survival functions. To do a comparison of the two models, I calculated and plotted

the hazard ratios for both models for some of the 30 subjects listed in Table 4.1.

An examination of Table 4.1 shows that subject 14 has the longest time to the onset

of symptoms, and therefore, it makes sense to use the results for subject 14 as the

denominator in hazard ratios for all the other subjects.

Consider for example subject 12. From Table 4.1, the measured health marker of

subject 12 at time 0 is 0.37, and themeasured healthmarker for subject 14 at time 0

is 1.00. The estimated parameter of the Coxmodel is a single number ‘ = �1.3655,

therefore, the estimated hazard ratio of subject 12 to subject 14 is constant in the

time interval from day 0 to day 9 with the value

exp
h
‘z12 (0)

i

exp
h
‘z14 (0)

i =
exp(�1.3655⇥0.37)
exp(�1.3655⇥1.00)

= 2.364

(4.37)

Continuing this comparison to time 10, we get the hazard ratio for times 10 through

19
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exp
h
‘z12 (10)

i

exp
h
‘z14 (10)

i =
exp(�1.3655⇥0.72)
exp(�1.3655⇥1.03)

= 1.527

(4.38)

For times 20 to 29 the hazard ratio is

exp
h
‘z12 (20)

i

exp
h
‘z14 (20)

i =
exp(�1.3655⇥0.63)
exp(�1.3655⇥1.92)

= 5.821

(4.39)

For times 30 to 34 we get the hazard ratio

exp
h
‘z12 (30)

i

exp
h
‘z14 (30)

i =
exp(�1.3655⇥0.77)
exp(�1.3655⇥1.85)

= 4.370

(4.40)

Figure 4.5 shows the log of estimated hazard ratio in the Cox model for subjects

12 and 14.
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Figure 4.5. Log hazard ratio for subjects 12 and 14 in a Cox model with time-varying
covariates.

Figure 4.6 shows the log of estimated hazard ratio in the new model for subjects

12 and 14. The hazard ratio is not a step function here, and there is a particularly

large increase on day 20, when the measured health marker of subject 14 increases

significantly. An examination of the two figures reveals that all the piecewise con-

stant values of the hazard ratio intersect the corresponding lines in the newmodel.
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Figure 4.6. Log hazard ratio for subjects 12 and 14 in the new model.
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4.6 A Case When the Cox Model Cannot Be Used

The new model delivers results even when the Cox model cannot be used because

the partial likelihood function does not have a maximum.

Consider a health marker that evolves as

dXt = be�÷t XtdWt b and ÷ positive constants (4.41)

Apply Ito’s formula with f (x) = logx to get

d logXt = �
1
2
b
2 e�2÷t dt + be�÷t dWt

and assume parameter values: X0 = 100,b = 0.05, and ÷ = 0.03.

Integrating both sides

log
Xt

X0
= �

1
2
b
2
Z

t

0
e�2÷u du + b

Z
t

0
e�÷u dWu

= �
b
2

2
1� e�2÷t

2÷
+ b

Z
t

0
e�÷u dWu

(4.42)

Therefore

Xt = X0 exp
 
�
b
2

2
1� e�2÷t

2÷
+ b

Z
t

0
e�÷u dWu

!
(4.43)

The positive, continuous martingale
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Xt = X0 exp
 
�
b
2

2
1� e�2÷t

2÷
+ b

Z
t

0
e�÷u dWu

!
(4.44)

converges with probability 1 to the random variable

X = X0 exp
 
�
b
2

4÷
+ b

Z
1

0
e�÷u dWu

!
(4.45)

The variance of the Ito integral is

var
 Z

t

0
e�÷u dWu

!
=

Z
t

0
e�2÷u du =

1� e�2÷t

2÷
(4.46)

Therefore:

1. Distribution of Xt is log-normal

Yt = logXt ⇠ ç
 
logX0 �

b
2

2
1� e�2÷t

2÷
,b2

1� e�2÷t

2÷

!
.

2. Distribution of X is log-normal Y = logX ⇠ ç
 
logX0 �

b
2

4÷
,
b
2

2÷

!
.

Because the increment Y � Yt is independent of F Y
t , the conditional distribution

of Y given the history of observations F Y
t is normal with conditional mean and

variance

Ñ
⇣
Y

���F Y
t

⌘
= Ñ

⇣
Yt + Y � Yt

���F Y
t

⌘

= Yt + Ñ
⇣
Y � Yt

���F Y
t

⌘

= Yt + Ñ
⇣
Y � Yt

⌘

= Yt �
b
2

4÷
e�2÷t

(4.47)
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var
⇣
Y

���F Y
t

⌘
= var

⇣
Yt + Y � Yt

���F Y
t

⌘

= var
⇣
Y � Yt

���F Y
t

⌘

= var
⇣
Y � Yt

⌘

= b
2
Z
1

t

e�2÷u du

=
b
2

2÷
e�2÷t

(4.48)

As before, define the random survival time as

‰ = Ë(Y) = F
�1

8>><>>:–
2
66664
Y � Ñ (Y)
p
var(Y)

3
77775

9>>=>>; (4.49)

The conditional distribution of the survival time ‰ given cumulative information

at observation time t is for future time r � t

è
⇣
‰  r

���F X
t

⌘
= è

⇣
Y  Ë�1(r)

���F Y
t

⌘

= –

2
666666664

Ë�1(r)� Ñ
⇣
Y

���F Y
t

⌘

q
var

⇣
Y

���F Y
t

⌘

3
777777775

= –

"
Ë�1(r)� logXt

„t

+
„t

2

#

(4.50)

where Ë is strictly increasing, and therefore, invertible, and „2
t =

b
2

2÷
e�2÷t.
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The conditional survival function of the survival time ‰, given cumulative infor-

mation at observation time t and the condition ‰ > t, written as a function of future

time r � t

è
⇣
‰ > r

���F X
t ,‰ > t

⌘
=

1�–
"
Ë�1(r)� logXt

„t

+
„t

2

#

1�–
"
Ë�1(t)� logXt

„t

+
„t

2

# (4.51)

The conditional hazard function of the survival time ‰, given cumulative informa-

tion at observation time t and the condition ‰ > t, written as a function of future

time r � t, is

h

⇣
r

���F X
t ,‰ > t

⌘
=

f

⇣
r

���F X
t ,‰ > t

⌘

è
⇣
‰ > r

���F X
t ,‰ > t

⌘

=
Ê

"
Ë�1(r)� logXt

„t

+
„t

2

#

1�–
"
Ë�1(r)� logXt

„t

+
„t

2

#
„f (r)

„tÊ

"
Ë�1(r)�fi

„

#

(4.52)

Suppose Y0 is known and we observe the process Yt at times t1 < t2 < · · · < tp.

Denote the observed values y1,y2, . . . ,yp. The observations do not come from i.i.d.

random variables, but accounting for the fact that the process Yt has the Markov

property, we can write the joint density

f

⇣
y1,y2, . . . ,yp

⌘
= f (y1) f

⇣
y2

���y1
⌘
f

⇣
y3

���y2
⌘
· · · f

⇣
yp

���yp�1
⌘

(4.53)

From properties of normal distribution we have for ti�1 < ti
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mi = Ñ
⇣
Yti

���Yti�1
⌘

= Ñ
⇣
Yti

⌘
+
cov

⇣
Yti

,Yti�1
⌘

var
⇣
Yti�1

⌘
h
Yti�1
� Ñ

⇣
Yti�1

⌘ i

= Yti�1
�
b
2

2
e�2÷tti�1 �e�2÷ti

2÷

= Yti�1
�
1
2
’i

(4.54)

’i = var
⇣
Yti

���Yti�1
⌘

= var
⇣
Yti

⌘
�

cov2
⇣
Yti

,Yti�1
⌘

var
⇣
Yti�1

⌘

= b
2e
�2÷ti�1 �e�2÷ti

2÷

(4.55)

The formulas are also valid for Ñ
⇣
Yt1

⌘
and var

⇣
Yt1

⌘
if we set t0 = 0. Log-likelihood

is

Ñ = �
1
2

pº

i=1

log’i �
1
2

pº

i=1

(yi �mi )
2

’i

+ · · · (4.56)

Now generate 10 simulated subjects with health marker covariate process param-

eters X0 = 100, b = 0.05, and ÷ = 0.03, and use for the distribution function F a

Weibull distribution with shape parameter 2.3 and scale parameter 20. Table 4.6

shows the values of the health marker observed at time t = 5 together with the

values of the random survival time computed from Equation (4.49).
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Table 4.6. Simulation Results of 10 Subjects.

Patient
ID

Covariate Xt

at t = 5

Standardized
Covariate Xt

at t = 5

Log Covariate
Yt

at t = 5

Limit Log
Covariate Yt
as t!1

Survival
Time ‰
in Years

1 100.58 0.534 4.611 4.880 30.32
2 89.16 -0.458 4.490 4.576 16.69
3 110.14 1.365 4.702 4.998 35.94
4 82.73 -1.017 4.416 4.356 8.54
5 90.37 -0.353 4.504 4.687 21.49
6 87.14 -0.634 4.468 4.510 14.04
7 112.35 1.557 4.722 5.020 36.97
8 102.60 0.710 4.631 4.890 30.81
9 91.44 -0.260 4.516 4.722 23.03

10 77.82 -1.444 4.354 4.290 6.58

Maximizing the likelihood function in Equation (4.56) I got estimates of the model

parametersbb = 0.0493 and b÷ = 0.0283.

Figure 4.7 shows the 10 individual conditional survival functions computed from

Equation (4.51) using estimated model parameters and the value of the health

marker covariate observed at tine t = 5.

Figure 4.8 shows the 10 individual conditional hazard functions computed from

Equation (4.52) using estimated model parameters and the value of the health

marker covariate observed at tine t = 5.
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Figure 4.7. Individual conditional survival functions for the 10 subjects.
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Figure 4.8. Individual conditional hazard functions for the 10 subjects.

Figure 4.9 shows the Kaplan-Meier empirical survival function in this example,

together with 95% confidence intervals calculated by the exponential Greenwood

method, and the 10 individual conditional survival functions calculated from the

new model.

There is general agreement between the conditional survival functions and the

intervals, but the conditional survival functions are more pessimistic for subjects

with low covariates at observation time t = 5.
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Figure 4.9. Kaplan-Meier empirical estimator and individual conditional survival func-
tions for the 10 subjects.

For this simulation of conditional survival and hazard functions in the new model

with one covariate the partial likelihood estimator of the parameter ‘ does not

exist. Figure 4.10 shows the dependence of the partial likelihood function on ‘

using standardized covariate Xt for improved numerical stability. Cox model can-

not be used in this simulation, but at observation time t the new model predicts

individual hazard functions for future times r � t.
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Figure 4.10. Partial likelihood function in the simulation of 10 subjects.
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5 Filtering for a Random Time

5.1 Introduction

This chapter describes the stochastic filtering methodology that I propose to use

to present a second family of models of random times and their conditional distri-

butions given randomly arriving information.

Arriving information is modeled as health markers or biomarkers. A biomarker

is an objective sign of medical state which can be measured accurately and re-

producibly. Biomarkers Definitions Working Group [4] defines a biomarker as an

objectively measured indicator of life processes or response to treatment. But even

with accuracy, biomarkers are often measured with error and it is unclear that

the resulting biases are su�ciently considered in the medical research literature

Brakenhol↵ et al. [6]. Examples of measurement errors include blood pressure,

body chemistry, exposure to pollutants, or exposure to nutrients. Other examples

of measurement errors involve functionality in relation to disability, symptoms of

post-traumatic shock disorder, and symptoms of choronic inflamation.

Measurement error may arise from inaccurate instruments, discrete observation of

continuous processes, lack of compliance with measurement protocols, measure-

ment of external ambient rather than individual exposure (such as pollution), and

increased use of "big data" databases such as routine care records and insurance

claims, not originally intended for research purposes Brakenhol↵ et al. [7]. One

way to represent measurement errors is to introduce latent or unobservable med-
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ical states, and observable biomarkers that represent the true medical states with

some measurement error.

To connect the two families of models I will briefly restate the model introduced

in Chapter 3 using new notation that makes a clear distinction between observable

and unobservable objects and is, therefore, more suitable for a filtering framework.

The first family of models, introduced in Chapter 3, involves an unobservable ran-

dom variable

⁄ =
Z
1

0
b(u)dWu

(5.1)

and an observable process

‡t =
Z

t

0
b(u)dWu

(5.2)

Then

mt = Ñ
⇣
⁄
���F ‡

t

⌘

= Ñ
⇣
⁄
���F W

t

⌘

= Ñ
"
‡t +

Z
1

t

b(u)dWu

���F W

t

#

= ‡t

(5.3)

and

’t = var
⇣
⁄
���F ‡

t

⌘

= var
⇣
⁄
���F W

t

⌘

= var
"
‡t +

Z
1

t

b(u)dWu

���F W

t

#

=
Z
1

t

b
2(u)du

(5.4)
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To introduce the second family of models, consider an unobservable Ito process

⁄t = ⁄0 +
Z

t

0
(a0 + a1⁄u)du +

Z
t

0
b1dW1,u +

Z
t

0
b2dW2,u (5.5)

and an observable Ito process

‡t = ‡0 +
Z

t

0
(A0 +A1⁄u)du +

Z
t

0
B2dW2,u (5.6)

When the Ito process ⁄t converges to a limiting random variable ⁄, this framework

allows a definition of a random time ‰ = Ë(⁄), whereË is a positive increasing func-

tion. The observable Ito process ‡t represents the randomly arriving information,

and we are interested in computing the conditional distribution

è
⇣
‰  y

���F ‡
t

⌘
= è

h
⁄  Ë�1(y)

���F ‡
t

i
(5.7)

and its associated conditional survival, conditional hazard, conditional mean resid-

ual life, and conditional mean tail life functions.

The problem of calculating the conditional distribution è
⇣
⁄t  y

���F ‡
t

⌘
is called

a filtering problem, and the problem of calculating the conditional distribution

è
⇣
⁄t  y

���F ‡
s

⌘
where s < t is called an extrapolation problem.

The filtering and extrapolation problems have solutions, but this modeling of a

random time and its conditional distribution given randomly arriving information

is new. This modeling is particularly suitable for practical applications with multi-

dimensional information processes, and also allows the introduction of Bayesian

analysis by the inclusion of a prior distribution of the initial state of the unobserv-

able Ito process that generates the random survival time.
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5.2 A Heuristic Derivation of a Filter of an Unobservable Random Variable

We have an unobservable, normal random variable ⁄ and a discrete-time observa-

tion process

‡t+1 = A0(t,‡) +A1(t,‡)⁄ + B(t,‡)◊t+1 (5.8)

The error term ◊t+1 and ⁄ are assumed to be independent, and the error term

is standard normal. The prior distribution of ⁄ is the conditional distribution

è
⇣
⁄  y

���‡0
⌘
assumed to be ç (fi,„) with known mean fi and variance „2. The nota-

tion for A0(t,‡),A1(t,‡) and B(t,‡) is short for A0 (t,‡0,‡1, · · · ,‡t) ,A1 (t,‡0,‡1, · · · ,‡t),

and B (t,‡0,‡1, · · · ,‡t).

As in the model in Chapter 3, because the unobservable random variable ⁄ is nor-

mal, it generates a random time ‰ through ‰ = Ë (⁄) where Ë = F
�1
� – with –

denoting the normal distribution function with mean fi and variance „2, and F is

the (strictly increasing) distribution function that we desire for the random time

‰, given ‡0.

We can redefine the function A0 a bit and rewrite Equation (5.8) as

‡t+1 � ‡t = A0(t,‡) +A1(t,‡)⁄ + B(t,‡)◊t+1 (5.9)

To obtain an observation process in continuous time, with the error term repre-

sented by an increment of a Wiener process, we can rewrite Equation (5.9) for

time increment …t and make explicit the variance of the error term to be …t

‡t+…t � ‡t = A0(t,‡)…t +A1(t,‡)⁄…t + B(t,‡)
p

…t◊t+…t (5.10)
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Denote mt = Ñ
⇣
⁄
���‡0,‡…t ,‡2…t , . . . ,‡t

⌘
and ’t = var

⇣
⁄
���‡0,‡…t ,‡2…t , . . . ,‡t

⌘
. From the

conditional distribution of a multivariate normal given another multivariate nor-

mal we get the formulas

…mt =
A1(t,‡)’t…t

B2(t,‡)…t +
h
A1(t,‡)…t

i2
’t

h
…‡t �A0(t,‡)…t �A1(t,‡)mt…t

i

…’t = �
A
2
1(t,‡)’

2
t

B2(t,‡)
…t

(5.11)

where …‡t = ‡t+…t � ‡t and …mt = mt+…t �mt. Dividing the numerator and the de-

nominator of the fraction on the right side of the first equation in Equation (5.11)

by …t and making …t go to zero we get the continuous-time observation process

d‡t =
h
A0(t,‡) +A1(t,‡)⁄

i
dt + B(t,‡)dWt

(5.12)

where A0(t,‡),A1(t,‡),B(t,‡) are functions of time and the history of the process

‡t up to time t. From Equation (5.11) we get the filter

dmt =
A1’t

B2

h
d‡t � (A0 +A1mt)dt

i

d’t = �
A
2
1’

2
t

B2 dt

(5.13)

where, for simplicity, I omitted the arguments of the functions A0,A1,B .

To solve the filtering equations, start with the second line of Equation (5.13) and

rewrite it in the form
d’t

’2
t

= �
A
2
1dt

B2 . Integrating both sides and using the initial
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condition ’0 = „2 we get

’t =
„2

1+„2
Z

t

0

✓
A1

B

◆2
du

(5.14)

To continue the solution, use the two-dimensional Ito’s formula to compute d
mt

’t

d
mt

’t

=
1
’t

dmt �
mt

’2
t

d’t

=
A1

B
dWt +

mt

’2
t

A
2
1’

2
t

B2 dt

=
A1

B2 (d‡t �A0dt)

(5.15)

Integrating both sides, and using the initial conditions m0 = fi and ’0 = „2 yields

mt

’t

�
fi
„2 =

Z
t

0

A1

B2 (d‡u �A0du) (5.16)

We get the solution of the filtering equations is

mt =
fi+„2

Z
t

0

A1

B2 (d‡u �A0du)

1 +„2
Z

t

0

✓
A1

B

◆2
du

’t =
„2

1+„2
Z

t

0

✓
A1

B

◆2
du

(5.17)
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5.2.1 Relation to Bayesian Analysis and Conjugate Distributions

Equation (5.17) is an extension of the derivation of a formula for a posterior con-

jugate distribution when the prior and the likelihood are normal. Let the condi-

tional distribution of data X given random variable ⁄ be normal unknown mean ⁄

and known variance B
2. Assume a normal prior for ⁄ with known mean fi and

known variance „2. Those parameters of the prior distribution are frequently

called hyper-parameters. Our objective is to derive the posterior distribution of

⁄ given an observation of a single value X. After that, we will extend the posterior

distribution to an observation of a finite sample X1, . . . ,Xn.

The random variables X and ⁄ have a joint normal distribution given by f (X,⁄) =

f (X |⁄)f (⁄). We want to determine f (⁄|X), and there is a shortcut in doing it. Recall

that for joint normal distribution of X and ⁄, the conditional mean is

Ñ (X |⁄) = Ñ (X) +
cov(X,⁄)
var(⁄)

h
⁄ � Ñ (⁄)

i

= ⁄

(5.18)

for every ⁄. Therefore, cov(X,⁄) = var(⁄) = „2. And Ñ (X) = Ñ (⁄) = fi.

In addition,

var(X |⁄) = var(X)�
cov2(X,⁄)
var(⁄)

= var(X)� var(⁄)

(5.19)

Therefore, var(X) = var(X |⁄) + var(⁄) = B
2 +„2.
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Applying those same two relationships, we can compute

Ñ (⁄|X) = Ñ (⁄) +
cov(X,⁄)
var(X)

h
X � Ñ (X)

i

= fi+
„2

B2 +„2 (X �fi)

=
B
2

B2 +„2fi+
„2

B2 +„2X

=
B
2fi+„2

X

B2 +„2

=

fi
„2 +

X

B2

1
„2 +

1
B2

var(⁄|X) = var(⁄)�
cov2(X,⁄)
var(X)

= „2
�

„4

B2 +„2

=
B
2„2

B2 +„2

=
1

1
„2 +

1
B2

(5.20)

We can use Equation (5.20) for a quick derivation of the posterior distribution of

⁄ given observations X1, . . . ,Xn. We know that X is a su�cient statistic for ⁄ and
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that X |⁄ ⇠ ç
 
⁄,

B
2

n

!
. Therefore,

Ñ (⁄|X1, . . . ,Xn) =

fi
„2 +

nX

B2

1
„2 +

n

B2

=

fi
„2 +

nº

i=1

Xi

B2

1
„2 +

n

B2

var(⁄|X1, . . . ,Xn) =
1

1
„2 +

n

B2

(5.21)

We will turn now to a heuristic derivation of Equation (5.17). To simplify things a

bit, assume that A0 = 0 and A1 = 1, and replace dt by a finite (non-infinitesimal)

time interval …t. Also, assume that B is constant and write …‡t instead of d‡t and

…Wt instead of dWt. Then, the observation equation, Equation (5.12), becomes

…‡t = ⁄…t + B…Wt
(5.22)

The conditional distribution of …‡t given ⁄…t is normal with mean ⁄…t and vari-

ance B2…t, and the prior distribution of ⁄…t is normal withmean fi…t and variance

„2(…t)2.
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Applying Equation (5.20) we get

Ñ (⁄…t|…‡1, · · · ,…‡n) =

fi…t
„2(…t)2

+

nº

i=1

…‡i

B2…t
1

„2(…t)2
+

n

B2…t

=

fi
„2 +

nº

i=1

…‡i

B2

1
„2 +

n…t

B2

…t

=

fi
„2 +

‡t � ‡0
B2

1
„2 +

t

B2

…t

var(⁄…t|…‡1, . . . ,…‡n) =
1

1
„2(…t)2

+
n

B2…t

=
1

1
„2 +

t

B2

(…t)2

(5.23)

Therefore

Ñ (⁄|…‡1, . . . ,…‡n) =

fi
„2 +

‡t � ‡0
B2

1
„2 +

t

B2

var(⁄|…‡1, . . . ,…‡n) =
1

1
„2 +

t

B2

(5.24)

which is the same as Equation (5.17) when A0 = 0,A1 = 1 and B is constant.

5.3 Model of a Survival Time with Filtering

I will use this example to illustrate the computation of a conditional survival func-

tion is A0 = 0, A1 = 1, and B =
1
p

2÷
e�÷t, we have then
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‡t = ‡0 +⁄t +
1
p

2÷

Z
t

0
e�÷u dWu

mt =
fi+2÷„2

Z
t

0
e2÷u d‡u

1+„2
⇣
e2÷t �1

⌘

’t =
„2

1+„2
⇣
e2÷t �1

⌘

(5.25)

If ⁄
���‡0 ⇠ ç (0,1) then

mt = 2÷
Z

t

0
e�2÷(t�u) d‡u

’t = e�2÷t

(5.26)

For a numerical example choose ÷ = 0.02 and generate a standard normal vari-

able ⁄ and an approximate Wiener process Wt with time increment dt = 0.01 and

n = 8000 time steps that will cover the time interval from t = 0 to t = 80 years.

Panel (A) of Figure 5.1 shows a simulated observation process ‡t, Panel (B) shows

the conditional mean mt, and Panel (C) shows the square root of the conditional
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variance ’t. The gray line in Panel (B) shows the generated value of the unobserv-

able random variable ⁄.

(A) Simulated Process ξt
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(B) Simulated Process mt
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(C) Simulated Process γt
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Figure 5.1. Observation process ‡t and filter mt , ’t . The process ‡t , the conditional mean
mt , and the conditional variance ’t are generated by Equation (5.25) with parameter val-
ues fi = 0, „ = 1 and ÷ = 0.02. The realized value of ⁄ is ⁄ = 0.2352.

A Weibull distribution function F with shape parameter k = 5 and scale parameter

› = 85 has mean ›»
✓
1+

1
k

◆
= 78.04 and standard deviation

›

r
»
✓
1+

2
k

◆
�

h
»
✓
1+

1
k

◆ i2
= 17.88.

The same transformation that I used in Chapter 3, ‰ = Ë (⁄) = F
�1
�– (⁄), where ⁄

is a standard normal variable, defines a random time (survival time) with distri-

bution function F .
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The conditional distribution of the random time ‰ given the history F ‡
t of the

observation process ‡t is

è
⇣
‰  y

���F ‡
t

⌘
= è

h
Ë (⁄)  y

���F ‡
t

i

= è
h
⁄  Ë�1 (y)

���F ‡
t

i

= –

"
Ë�1 (y)�mt
p
’t

#

(5.27)

The corresponding conditional survival function is

è
⇣
‰ > y

���F ‡
t

⌘
= –

"
mt �Ë�1 (y)
p
’t

#
(5.28)

At age t, the conditional survival function given survival to time t and the history

of the observation process ‡t is

S

⇣
y

���F ‡
t ,‰ > t

⌘
= è

⇣
‰ > y

���F ‡
t ,‰ > t

⌘
=

–

"
mt �Ë�1 (y)
p
’t

#

–

"
mt �Ë�1 (t)
p
’t

# for y � t

(5.29)

In this simulation the random variable ⁄ has the realization ⁄ = 0.2352 which

gives the realization of the random time ‰ = Ë (0.2352) = 83.21,

For illustration, consider two ages, t = 40 and t = 60. The conditional mean mt at

age t = 40 is m40 = 0.0317, and conditional standard deviation p’t at age t = 40

is p’40 = 0.3012. The conditional mean mt at age t = 60 is m60 = 0.0746, and

conditional standard deviation p’t at age t = 60 is p’60 = 0.1653.
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Figure 5.2 shows the conditional survival functions at age t = 40 and t = 60 ob-

tained by substituting those realized values of mt and ’t into Equation (5.29).

(A) Age 40

40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

y

C
on

di
tio

na
l s

ur
vi

va
l

(B) Age 60
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Figure 5.2. Conditional survival function at age 40 and age 60. The conditional sur-
vival functions were computed using Equation (5.29) where mt and ’t come from Equa-
tion (5.26) with parameter value ÷ = 0.02.

5.4 Model Modification to Allow Fluctuations Around True Value

Consider again the model in Section 4.6 with the extra condition that the health

marker can be observed only with a measurement error, or alternatively, that the

process that generates the survival time is the true medical condition, and the

health marker is a noisy observation of the true medical condition.

Accordingly, specify the true medical condition an an unobservable process ⁄t,

and the health marker as an observable process ‡t, as follows
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d⁄t = �
1
2
b
2 e�2÷t dt + be�÷t dW1,t

d‡t = ‹ (⁄t � ‡t)dt + BdW2,t

(5.30)

There is a conditional prior on ⁄0 given F ‡
0 given by ç

⇣
fi,„2

⌘

è
⇣
⁄0  r

���F ‡
0

⌘
= –

✓
r �fi
„

◆
(5.31)

The filtering equations are

dmt = �
1
2
b
2 e�2÷t dt +

‹’t

B2

h
d‡t �‹ (mt � ‡t)dt

i

d’t =
 
b
2 e�2÷t �

‹2’2
t

B2

!
dt

(5.32)

with the initial conditions m0 = m and ’0 = „2; The unobservable process ⁄t con-

verges to a limiting random variable ⁄, whose conditional distribution given F ‡
0

is

⁄ ⇠ ç
 
m �

b
2

4÷
,
b
2

2÷

!
(5.33)

The random survival time ‰ is defined

‰ = Ë(⁄) = F
�1
�–

"⁄ �
⇣
m �

b
2

4÷

⌘

b

p

2÷
#

(5.34)

That gives survival time ‰ conditional distribution F given F ‡
0 . The next task is to

compute the conditional distribution of ‰ given F ‡
t for t > 0. We have
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è
⇣
‰  r

���F ‡
t

⌘
= è

h
Ë(⁄)  r

���F ‡
t

i

= è
h
⁄  Ë�1(r)

���F ‡
t

i
(5.35)

The conditional distribution of ⁄ given F ‡
t is normal with moments that can be

computed from mt and ’t.

The model can be easily extended to a multidimensional observable process ‡t =
�
‡1,t , . . . ,‡n,t

�0.

To solve the filtering model in Equation (5.32) denote by ft a non-vanishing, con-

tinuously di↵erentiable deterministic function of time, and apply Ito’s formula to

the ratio
mt

ft

d

 
mt

ft

!
=

dmt

ft

�
mtdft

f
2
t

=
1
ft

(
�
1
2
Ÿtdt +

‹’t

B2

h
d‡t �‹ (mt � ‡t)dt

i)
�
mtdft

f
2
t

=
1
ft

h
�
1
2
Ÿtdt +

‹’t

B2 (d‡t +‹‡tdt)
i
�

 
‹2’t

B2 dt +
dft

ft

!
mt

ft

(5.36)

where Ÿt = b
2 e�2÷t. If we can choose ft to be such that

‹2’t

B2 dt +
dft

ft

= 0 then

d

 
mt

ft

!
=

1
ft

h
�
1
2
Ÿtdt +

‹’t

B2 (d‡t +‹‡tdt)
i

(5.37)

Integrating both sides and rearranging terms

mt

ft

=
m0

f0
�
1
2

Z
t

0

Ÿu
fu

du +
‹
B2

Z
t

0

’u

fu

(d‡u +‹‡udu) (5.38)
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To find the function ft write

d log ft
dt

= �
‹2’t

B2
(5.39)

Combining Equation (5.39) with the second line of Equation (5.32) gives

d log ft
dt

=
d log’t

dt
�
Ÿt
’t

(5.40)

Integrating both sides and rearranging terms

log
ft

’t

� log
f0

’0
= �

Z
t

0

Ÿu
’u

du (5.41)

Choosing f0 = ’0 we get

ft = ’t exp
 
�

Z
t

0

Ÿu
’u

du

!
(5.42)

Substitution into Equation (5.43) yields

mt = ’t exp
 
�

Z
t

0

Ÿu
’u

du

!"
m

„2 �
1
2

Z
t

0

Ÿu
’u

exp
 Z

u

0

Ÿs
’s

ds

!
du

+
‹
B2

Z
t

0
exp

 Z
u

0

Ÿs
’s

ds

!
(d‡u +‹‡udu)

# (5.43)

The function ’t satisfies a Riccati ordinary di↵erential equation which I solve in

Section 5.5.
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5.5 Ornstein-Uhlenbeck Observation Process

Consider a model of an unobservable Ito process ⁄t

⁄t = ⁄0 +
Z

t

0
b1(u)dW1,u (5.44)

and an observable Ito process ‡t

‡t = ‡0 +
Z

t

0

h
A0(u) +A1(u)⁄t

i
du +

Z
t

0
B2(u)dW2,u (5.45)

Assume that the function b1(t) is such that
Z
1

0
b
2
1(t)dt <1. Let ⁄ be the limit of

the process ⁄t when t goes to infinity, and define the random time ‰ = Ë(⁄). This

allows us to combine the model introduced in Chapter 3 with a filtering model in-

troduced in this chapter. The di↵erence between this formulation and the models

in the preceding two examples is that now we observe the process ⁄t with an error,

rather than observe the random variable ⁄ with an error.

Denote mt = Ñ
⇣
⁄t

���F ‡
t

⌘
and ’t = var

⇣
⁄t

���F ‡
t

⌘
. Again, the di↵erence is that now mt

and ’t are conditional moments of ⁄t rather than ⁄.

As I will describe in Section 5.6.2, the filtering equations in this case are

dmt =
A1 (t)’t

B
2
2 (t)

n
d‡t �

h
A0(t) +A1 (t)mt

i
dt

o

d’t

dt
= b

2
1(t)�

A
2
1(t)

B
2
2(t)

’2
t

(5.46)
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It is worth noting that the di↵erence between Equation (5.46), where ⁄t is an Ito

process, and Equation (5.13), where ⁄ is a random variable, is the term b
2
1(t) ac-

counting for the dynamic nature of ⁄t.

The conditional mean Ñ
⇣
⁄
���F ‡

t

⌘
is equal to mt because

Ñ
⇣
⁄
���F ‡

t

⌘
= Ñ

⇣
⁄t

���F ‡
t

⌘
+ Ñ

 Z
1

t

b1(u)dWu

���F ‡
t

!

= mt + Ñ
 Z
1

t

b1(u)dWu

!

= mt

(5.47)

The conditional variance ’t is a solution of a Riccati ordinary di↵erential equation

in the second line of Equation (5.46). I will show the solution of this Riccati equa-

tion for the case when b1(t) = bexp(�ht) where b,h and B2 are positive constants

and A1 is a constant.

Let

P(t) = b
2
1(t)

R = �
A
2
1

B
2
2

(5.48)

Then, the Riccati equation becomes ’0t = P(t) + R’2
t . It is known that the substitu-

tion ’t = �
÷0t
R÷t

transforms a Riccati equation into a second order linear ordinary

di↵erential equation

÷00t + P(t)R÷t = 0 (5.49)
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Denote s = kexp(�ht) where k is a positive constant to be specified later, and Ÿs =

÷t. Then
ds

dt
= �hs and

÷0t = �hsŸ0s

÷00t =
⇣
� hŸ0s � hsŸ

00
s

⌘
(�hs)

= h
2
sŸ0s + h

2
s
2Ÿ00s

(5.50)

Denote g =
A
2
1

B
2
2

b
2, choose k =

p
g

h
, then g = k

2
h
2 and g exp(�2ht) = h

2
k
2 exp(�2ht) =

h
2
s
2, and we get

s
2Ÿ00s + sŸ0s � s

2Ÿs = 0 (5.51)

Equation (5.51) is a second-order linear di↵erential equation calledmodified Bessel

equation of order zero, with two linearly independent solutions I0(s) and K0(s),

called, respectively, modified Bessel function of the first kind and modified Bessel

function of the second kind.

Accounting for the substitution s =
p
g

h
exp(�ht) and ÷t = Ÿs we get that the general

solution of the di↵erential equation for ÷t is

÷t = C1I0

"
A1b

B2h
exp(�ht)

#
+C2K0

"
A1b

B2h
exp(�ht)

#
(5.52)

Making use of the formulas

I
0

0(x) = I1(x)

K
0

0(x) = �K1(x)

(5.53)
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the corresponding derivative is

÷0t = �C1
A1b

B2
exp(�ht)I1

"
A1b

B2h
exp(�ht)

#
+C2

A1b

B2
exp(�ht)K1

"
A1b

B2h
exp(�ht)

#

(5.54)

Reversing another substitution we have

’t =
B
2
2

A
2
1

÷0t
÷t

=
B
2
2

A
2
1

�C1
A1b

B2
exp(�ht)I1

"
A1b

B2h
exp(�ht)

#
+C2

A1b

B2
exp(�ht)K1

"
A1b

B2h
exp(�ht)

#

C1I0

"
A1b

B2h
exp(�ht)

#
+C2K0

"
A1b

B2h
exp(�ht)

#

=
B2b

A1

�C1I1

"
A1b

B2h
exp(�ht)

#
+C2K1

"
A1b

B2h
exp(�ht)

#

C1I0

"
A1b

B2h
exp(�ht)

#
+C2K0

"
A1b

B2h
exp(�ht)

# exp(�ht)

=
B2b

A1

�CI1

"
A1b

B2h
exp(�ht)

#
+ K1

"
A1b

B2h
exp(�ht)

#

CI0

"
A1b

B2h
exp(�ht)

#
+ K0

"
A1b

B2h
exp(�ht)

# exp(�ht)

(5.55)

To determine the constant C, assume that ’0 = var
⇣
⁄0

���F ‡
0

⌘
is known. Then we can

write

’0 =
B2b

A1

�CI1

 
A1b

B2h

!
+ K1

 
A1b

B2h

!

CI0

 
A1b

B2h

!
+ K0

 
A1b

B2h

! (5.56)

It follows that
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C =
K1

 
A1b

B2h

!
�
A1’0
B2b

K0

 
A1b

B2h

!

I1

 
A1b

B2h

!
+
A1’0
B2b

I0

 
A1b

B2h

! (5.57)

Next, ⁄ = ⁄t +
Z
1

t

b1(u)dW1,u , and therefore

var
⇣
⁄
���F ‡

t

⌘
= var

⇣
⁄t

���F ‡
t

⌘
+ var

"Z
1

t

b1(u)dW1,u

#

= ’t +
Z
1

t

b
2
1(u)du

(5.58)

It follows that

var
⇣
⁄
���F ‡

t

⌘
=

Bb

A1

�CI1

"
A1b

B2h
exp(�ht)

#
+ K1

"
A1b

B2h
exp(�ht)

#

CI0

"
A1b

B2h
exp(�ht)

#
+ K0

"
A1b

B2h
exp(�ht)

# exp(�ht)

+
b
2 exp(�2ht)

2h

(5.59)

The conditional distribution of ⁄ given F ‡
t is normal with mean mt and variance

given in Equation (5.59).
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Figure 5.3 shows the evolution of the conditional variance ’t of the stochastic pro-

cess ⁄t and conditional variance var
⇣
⁄
���F ‡

t

⌘
of the random variable ⁄.

(A) Conditional Variance γt of θt
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(B) Conditional Variance of θ
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Figure 5.3. Panel (A) shows conditional variance ’t of the stochastic process ⁄t and Panel
(B) shows conditional variance var

⇣
⁄
���F ‡

t

⌘
of the random variable ⁄. In both panels, the

blue line corresponds to ’0 = 0.1 and the red line corresponds to ’0 = 0.0225. The value
of the other parameters are b = 0.1, h = 0.05, A1 = 1, and B2 = 1.

To interpret the plot of ’t when ’0 = 0.0225, consider a simpler case of Equa-

tion (5.46) where b1(t) = 1, A0(t) = 0, A1(t) = 1, and B2(t) = 1. In that case, the dif-

ferential equation for conditional variance ’t is ’0t = 1�’2
t . The solution depends

on whether the initial value ’0 is less than 1 or greater than 1. If ’0 < 1, then

the solution is ’t = tanh(t +atanh’0), which is an increasing function. If ’0 > 1,

then the solution is ’t =
’0 + 1+ (’0 �1)exp(�2t)
’0 + 1� (’0 �1)exp(�2t)

, which is a decreasing function.

Allowing for the more complicated situation presented in Figure 5.3, this helps

explain why the conditional variance ’t initially increases and then decreases for

a small initial value of ’0.
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As a special case of the preceding discussion, consider an Ornstein-Uhlenbeck ob-

servation process

d‡t = ‹ (⁄t � ‡t)dt + B2dW2,t (5.60)

where ‹ and B2 are positive constants. In this case A0 = �‹‡t and A1 = ‹. The

observation process ‡t fluctuates around the unobservable process ⁄t.

The first line of Equation (5.46) becomes

dmt =
‹’t

B
2
2

h
d‡t �‹(mt � ‡t)dt

i
(5.61)

The only change in the second line of Equation (5.46) is A1 = ‹.

Equation (5.61) is recursive, and we can solve the corresponding finite-di↵erence

equation numerically using the values of ’t from Equation (5.55). The finite-

di↵erence equation is

mt =
 
1�

‹2’t�…t…t

B
2
2

!
mt�…t �

‹’t�…t (1�‹…t)
B
2
2

‡t�…t +
‹’t�…t

B
2
2

‡t (5.62)

Figure 5.4 shows a simulated path of the unobservable process ⁄t and the corre-

sponding biomarker ‡t, and the conditional mean process mt of the unobservable

process given the observed histoary of the biomarker. Panel (A) illustrates the

convergence of the unobservable process to a random variable, and the mean-

reverting nature of the biomarker around the unobservable process. Panel (B)

shows that the quality of estimation is good. The conditional mean mt of ⁄t was

computed using the finite-di↵erence Equation (5.62).
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(A) Processes θt and ξt
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Figure 5.4. Panel (A) shows a simulated path of the unobservable process ⁄t (blue line) and
the corresponding path of the biomarker ‡t (red line). Panel (B) shows a simulated path of
the unobservable process ⁄t (blue line) and the conditional mean mt of the unobservable
process given the history of the biomarker (green line). Parameter values are: h = 0.05,
b =
p

2h, ‹ = 0.5, B2 = 0.1, ‡0 = 0, m0 = 0, ’0 = 0.1, ⁄0 ⇠ ç (m0,’0).

5.6 A General Filtering Framework

This section describes a rigorous justification for the filtering equations which I

described heuristically, it follows the approach of Liptser and Shiryaev [27].

5.6.1 Optimal Filtering Equation

Let (“ ,A,è ,Ft) be a filtered probability space. We will use the generic notation

(gt ,Ft) for a stochastic process gt that is adapted to the filtration Ft.

In this setup there are three stochastic processes:

1. An unobservable process (⁄t ,Ft).

2. An observable process (‡t ,Ft).
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3. An estimated process (ht ,Ft).

We assume that the observable process (‡t ,Ft) is an Ito process

‡t = ‡0 +
Z

t

0
Audu +

Z
t

0
BudWu

(5.63)

where (At ,Ft) is integrable and the integrand in the Ito integral is
⇣
Bt ,F

‡
t

⌘
. Stated

di↵erently, cumulative observation noise is conditionally normal, given the history

of the process ‡t.

We also assume that (ht ,Ft) has the representation

ht = h0 +
Z

t

0
Hudu +Xt

(5.64)

where (Ht ,Ft) is integrable and (Xt ,Ft) is a square-integrable martingale.

Introduce the following additional notation:

1. The predictable quadratic covariation process hX,Wit such that the process

XtWt � hX,Wit is an Ft-martingale.

2. The process (Dt ,Ft) such that

Dt =
dhX,Wit

dt

(5.65)

3. For any integrable process (gt ,Ft) denote

·t (g) = Ñ
⇣
gt

���F ‡
t

⌘
(5.66)
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Then we have the following representation of the estimate ·t (h)

d·t (h) = ·t (H)dt +
·t (D )Bt +·t (hA)�·t (h)·t (A)

B
2
t

h
d‡t �·t (A)dt

i
(5.67)

Furthermore, define

Wt =
Z

t

0

d‡u �·u (A)du
Bu

(5.68)

The process
⇣
Wt ,F

‡
t

⌘
is a Wiener process and for every t � 0 we have F W

t = F ‡
t ,

that is, the Wiener process Wt carries the same information as the observation

process ‡t. The Wiener process Wt is called an innovation process.

We can write the representation of the estimate ·t (h) in the form

d·t (h) = ·t (H)dt +
·t (D )Bt +·t (hA)�·t (h)·t (A)

Bt

dWt
(5.69)

5.6.2 Application of the General Filtering Framework

Let the unobservable process ⁄t be the Ito process

d⁄t = a1 (t)⁄tdt + b1 (t)dW1,t + b2 (t)dW2,t (5.70)

and let the observable process be

d‡t = A1 (t)⁄tdt + B2 (t)dW2,t (5.71)
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By assumption, the Wiener processes W1,t and W2,t are independent. The preced-

ing formulation allows the noise in the unobservable process ⁄t to be correlated

with observation noise.

The first part of the filtering problem is the calculation of mt = Ñ
⇣
⁄t

���F ‡
t

⌘
.

Set ht = ⁄t, then

At = A1 (t)⁄t

Bt = B1 (t)

Wt = W2,t

Ht = a1 (t)⁄t

Xt =
Z

t

0
b1 (u)dW1,u +

Z
t

0
b2 (u)W2,u

(5.72)

We know that the process

"Z
t

0
b1 (u)dW1,u +

Z
t

0
b2 (u)dW2,u

#
W2,u �

Z
t

0
b2 (u)du (5.73)

is an Ft-martingale, therefore

hX,Wit =
Z

t

0
b2du (5.74)
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and Dt = b2 (t). Denote

mt = ·t (h)

= ·t (⁄)

= Ñ
⇣
⁄t

���F ‡
t

⌘

’t = Ñ
h
(⁄t �mt)

2
���F ‡

t

i

= Ñ
⇣
⁄2
t

���F ‡
t

⌘
�m

2
t

(5.75)

Then

·t (h) = mt

·t (A) = A1 (t)mt

·t (hA) = ·t

⇣
A1⁄2

⌘

= A1 (t)Ñ
⇣
⁄2
t

���F ‡
t

⌘

= A1 (t)
⇣
’t +m

2
t

⌘

·t (H) = a1 (t)mt

·t (D ) = b2 (t)

(5.76)

From Equation (5.67) we get the filtering equation for the conditional mean mt

dmt = a1 (t)mtdt +
b2 (t)B2 (t) +A1 (t)

⇣
’t +m

2
t

⌘
�mtA1 (t)mt

B
2
2 (t)

h
d‡t �A1 (t)mtdt

i

= a1 (t)mtdt +
b2 (t)B2 (t) +A1 (t)’t

B
2
2 (t)

h
d‡t �A1 (t)mtdt

i

(5.77)
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We can also write the filtering equation for the conditional mean in terms of the

innovation process Wt

dmt = a1 (t)mtdt +
b2 (t)B2 (t) +A1 (t)’t

B2 (t)
dWt

(5.78)

If we modify the stochastic di↵erential representation of the unobservable process

⁄t in Equation (5.70) by adding a free term a0(t) to the drift, and similarly modify

the drift of the observation equation in Equation (5.71) by adding to the drift a

free term A0(t), the first filtering equation becomes

dmt =
h
a0(t) + a1 (t)mt

i
dt +

b2 (t)B2 (t) +A1 (t)’t

B
2
2 (t)

(
d‡t �

h
A0(t) +A1 (t)mt

i
dt

)

(5.79)

The second part of the filtering problem is the calculation of ·t

⇣
⁄2

⌘
. Apply Ito’s

formula to the function f (⁄) = ⁄2 and the representation of ⁄t in Equation (5.70)

to get

d⁄2
t =

h
2a1 (t)⁄2

t + b
2
1 (t) + b

2
2 (t)

i
dt +2b1 (t)⁄tdW1,t +2b2 (t)⁄tdW2,t (5.80)
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Set ht = ⁄2, then

At = A1 (t)⁄t

Bt = B1 (t)

Wt = W2,t

Ht = 2a1 (t)⁄2
t + b

2
1 (t) + b

2
2 (t)

Xt = 2
Z

t

0
b1 (u)⁄udW1,u +2

Z
t

0
b2 (u)⁄uW2,u

(5.81)

We now get Dt = 2b2 (t)⁄t. Furthermore, now

·t (h) = ’t +m
2
t

·t (A) = A1 (t)mt

·t (hA) = A1 (t)·t

⇣
⁄3

⌘

·t (H) = 2a1 (t)
⇣
’t +m

2
t

⌘
+ b

2
1 (t) + b

2
2 (t)

·t (D ) = 2b2 (t)mt

(5.82)

Substituting Equation (5.82) into Equation (5.67) delivers

d·t (h) =
h
2a1 (t)

⇣
’t +m

2
t

⌘
+ b

2
1 (t) + b

2
2 (t)

i
dt

+
2b2 (t)B2 (t)mt +·t (hA)�·t (h)·t (A)

B
2
2 (t)

h
d‡t �A1 (t)mtdt

i (5.83)
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Continuing to transform Equation (5.83) write

·t (hA)�·t (h)·t (A) = A1 (t)·t

⇣
⁄3

⌘
�A1 (t)mt

⇣
’t +m

2
t

⌘

= A1 (t)
h
·t

⇣
⁄3

⌘
�mt

⇣
’t +m

2
t

⌘ i

= 2A1 (t)mt’t

(5.84)

The last line of Equation (5.84) follows from the calculation of the third moment

of a normal distribution.

Di↵erentiate the moment generating function M (r) = exp
✓
fi+

1
2
„2

r
2
◆
of ç

⇣
fi,„2

⌘

to get M 000 (r) =
h
3„2 +

⇣
fi+„2

r

⌘2 i ⇣
fi+„2

r

⌘
exp

✓
fi+

1
2
„2

r
2
◆
, therefore, the third mo-

ment is M
000 (0) = fi

⇣
3„2 +fi2

⌘
, which we can rewrite M

000 (0) = fi
⇣
„2 +fi2

⌘
+ 2fi„2,

and it follows that ·t

⇣
⁄3

⌘
=mt

⇣
’t +m

2
t

⌘
+2mt’t.

Recalling that ·t (h) = ’t +m
2
t , and using the form with the innovation process,

Equation (5.83) becomes

d

⇣
’t +m

2
t

⌘
=

h
2a1 (t)

⇣
’t +m

2
t

⌘
+ b

2
1 (t) + b

2
2 (t)

i
dt

+
2b2 (t)B2 (t)mt +2A1 (t)mt’t

B2 (t)
dWt

(5.85)

Applying Ito’s formula to the function f (m) = m
2 and the representation of mt in

Equation (5.78)

dm
2
t =

8>><>>:2a1 (t)m
2
t +

"
b2 (t)B2 (t) +A1 (t)’t

B2 (t)

#29>>=>>;dt

+ 2
b2 (t)B2 (t) +A1 (t)’t

B2 (t)
mtdWt

(5.86)
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Subtracting Equation (5.86) from Equation (5.85) we get the filtering equation for

the conditional variance ’t

d’t =

8>><>>:2a1 (t)’t + b
2
1 (t) + b

2
2 (t)�

"
b2 (t)B2 (t) +A1 (t)’t

B2 (t)

#29>>=>>;dt (5.87)
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6 Multivariate Filtering Models

6.1 General Setting

In this section we consider models with multi-dimensional observation process

and either multi-dimensional or one-dimensional unobservable random variable

or stochastic process.

When the unobservable is a multi-dimensional random variable, the model is suit-

able for the analysis of competing risks. When the unobservable is one-dimensional,

themodel is an alternative to, or an improvement on, the Cox proportional hazards

model.

More specifically, consider a m-dimensional unobservable process ⁄t =

0
BBBBBBBBBBBBBBBBBBB@

⁄1,t

...

⁄m,t

1
CCCCCCCCCCCCCCCCCCCA

and

a n-dimensional observable process ‡t =

0
BBBBBBBBBBBBBBBBBBB@

‡1,t

...

‡n,t

1
CCCCCCCCCCCCCCCCCCCA

that are solutions of the stochastic

di↵erential equations

d⁄t = (a0 + a1⁄t)dt + b1dW1,t + b2dW2,t

d‡t = (A0 +A1⁄t)dt + B1dW1,t + B2dW2,t

(6.1)
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In Equation (6.1) W1,t is a m-dimensional Wiener process, W2,t is a n-dimensional

Wiener process, the processesW1,t andW2,t are independent, a0 is am-dimensional

vector, a1 is a m ⇥m matrix, b1 is a m ⇥m matrix, b2 is a m ⇥ n matrix, A0 is a n-

dimensional vector, A1 is a n ⇥m matrix, B1 is a n ⇥m matrix, and B2 is a n ⇥ n

matrix.

All the proposed models of the conditional distribution of a random time are of

this general form.

The filtering equations for this general setup are

dmt = (a0 + a1mt)dt +
⇣
b1B

0

1 + b2B
0

2 +’tA
0

1

⌘⇣
B1B

0

1 + B2B
0

2

⌘�1

⇥

h
d‡t � (A0 +A1mt)dt

i

d’t =
"
b1b

0

1 + b2b
0

2 + a1’t +’ta
0

1

�

⇣
b1B

0

1 + b2B
0

2 +’tA
0

1

⌘⇣
B1B

0

1 + B2B
0

2

⌘�1 ⇣
b1B

0

1 + b2B
0

2 +’tA
0

1

⌘0
#
dt

(6.2)

6.1.1 Several Unobservable Random Variables and Several Observable Pro-

cesses

Consider the model

d‡t = (A0 +A1⁄)dt + BdWt
(6.3)

where the unobservable ⁄ is a m-dimensional random vector and the observable

‡t is a n-dimensional stochastic process.
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The filtering equations are

dmt = ’tA
0

1 (BB
0)�1

h
d‡t � (A0 +A1mt)dt

i

d’t

dt
= �’tA

0

1 (BB
0)�1A1’t

(6.4)

Equation (6.4) has an explicit solution

mt =
"
I + »

Z
t

0
A
0

1 (BB
0)�1A1du

#�1"
fi+ »

Z
t

0
A
0

1 (BB
0)�1 (d‡u �A0du)

#

’t =
"
I + »

Z
t

0
A
0

1 (BB
0)�1A1du

#�1
»

(6.5)

A vector mean-reverting Ornstein-Uhlenbeck process fits this observation model

d‡t = k (fl�⁄)dt + BdWt
(6.6)

where k is a m ⇥m matrix and fl is a m-dimensional vector.

One possible application of this model is a situation of competing risks, where

there are multiple causes of the event of interest. The random variables ⁄1, . . . ,⁄m

generate the corresponding random times ‰1, . . . ,‰m, with the event of interest oc-

curring at the random time ‰ =min(‰1, . . . ,‰m). This points to a future direction in

which this model can be taken.

6.2 One Unobservable Random Variable and Several Observable Processes

The model in this section can serve as an alternative to, and possible improvement

on, the Cox proportional hazards model. The proposed model does not require
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the assumption of proportional hazards, naturally allows the covariates to evolve

stochastically over time, and allows us to write the likelihood function from which

the parameters of the model can be estimated.

In this model we have one generating random variable ⁄ and a vector of observable

processes ‡t =

0
BBBBBBBBBBBBBBBBBBB@

‡1,t

...

‡n,t

1
CCCCCCCCCCCCCCCCCCCA

. With independent observation noises the model is

d

0
BBBBBBBBBBBBBBBBBBB@

‡1,t

...

‡n,t

1
CCCCCCCCCCCCCCCCCCCA

=

2
66666666666666666664

0
BBBBBBBBBBBBBBBBBBB@

A01

...

A0n

1
CCCCCCCCCCCCCCCCCCCA

+

0
BBBBBBBBBBBBBBBBBBB@

A11

...

A1n

1
CCCCCCCCCCCCCCCCCCCA

⁄

3
77777777777777777775

dt +

0
BBBBBBBBBBBBBBBBBBB@

B1

. . .

Bn

1
CCCCCCCCCCCCCCCCCCCA

d

0
BBBBBBBBBBBBBBBBBBB@

W1,t

...

Wn,t

1
CCCCCCCCCCCCCCCCCCCA

(6.7)

This is a model of the general form given in Equation (6.1).

To illustrate the application of this model we can think of the unobservable ran-

dom variable ⁄ as the true condition of a patient’s health, and think of the ob-

servable processes ‡1,t , . . . ,‡n,t as diastolic blood pressure, level of high-density

lipoprotien (HDL) cholesterol, fasting blood sugar, and level of hemoglobin.

From Equation (6.2) we get

dmt = ’tA
0

1

⇣
B1B

0

1

⌘�1 h
d‡t � (A0 +A1mt)dt

i

d’t

dt
= �’tA

0

1

⇣
B1B

0

1

⌘�1
A1’t

(6.8)
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Further manipulation of the first line of Equation (6.8) yields

dmt = ’tA
0

1

⇣
B1B

0

1

⌘�1 h
d‡t � (A0 +A1mt)dt

i

= ’t

 

A11 . . . A1n

!

0
BBBBBBBBBBBBBBBBBBBBBB@

1
B
2
1

. . .

1
B
2
n

1
CCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBB@

d‡1,t � (A01 +A11mt)dt

...

d‡n,t � (A0n +A1nmt)dt

1
CCCCCCCCCCCCCCCCCCCA

= ’t

nº

i=1

d‡i ,t � (A0i +A1imt)dt

B
2
i

(6.9)

Similarly, for the second line of Equation (6.8)

d’t

dt
= �

0
BBBBB@

nº

i=1

A1i

B
2
i

1
CCCCCA’

2
t (6.10)

We can derive an explicit solution of the filter

mt =

fi+„2
nº

i=1

A1i

B
2
i

�
‡i ,t �A0i t

�

1+„2
nº

i=1

 
A1i

Bi

!2
t

’t =
„2

1+„2
nº

i=1

 
A1i

Bi

!2
t

(6.11)

where fi = Ñ
⇣
⁄
���F ‡

0

⌘
and „2 = var

⇣
⁄
���F ‡

0

⌘
.
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6.3 Simulation of Model with One Unobservable Random Variable and Sev-

eral Observable Processes

6.3.1 Derivation of Maximum Likelihood Estimators of Model Parameters

To estimate the parameters A0i , A1i , and Bi , we will omit the subscript i for econ-

omy of notation. We have

‡t = ‡0 + (A0 +A1⁄) t + BWt
(6.12)

To estimate model parameters, we consider a sample of patients for whom we ob-

serve their realizations of ‡t and the time of death ‰. Because ⁄ = Ë�1 (‰), we equiv-

alently observe the realized value of ⁄ for each patient in the sample. Therefore,

given an observation of ⁄

Ñ
⇣
‡t

���⁄
⌘

= ‡0 + (A0 +A1⁄) t

var
⇣
‡t

���⁄
⌘

= B
2
t

cov
⇣
‡t ,‡s

���⁄
⌘

= B
2
s

(6.13)
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It follows that

Ñ
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���‡s ,⁄
⌘

= Ñ
⇣
‡t

���⁄
⌘
+
cov

⇣
‡t ,‡s

���⁄
⌘
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⇣
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���⁄
⌘

h
‡s � Ñ

⇣
‡s

���⁄
⌘i

= ‡s + (A0 +A1⁄) (t � s)

var
⇣
‡t

���‡s ,⁄
⌘

= var
⇣
‡t

���⁄
⌘
�

cov2
⇣
‡t ,‡s

���⁄
⌘

var(‡s)

= B
2 (t � s)

(6.14)

Suppose ‡0 is known and we observe the process ‡t at times t1 < t2 < · · · < tm.

Denote the observed values x1,x2, . . . ,xm, then we have

f (x1,x2, . . . ,xm) = f (x1) f
⇣
x2

���x1
⌘
f

⇣
x3

���x1,x2
⌘
· · · f

⇣
xm

���x1,x2, . . . ,xm�1
⌘

(6.15)

Accounting for the fact that the process ‡t has the Markov property, we can sim-

plify Equation ( 6.15) to the form

f (x1,x2, . . . ,xm) = f (x1) f
⇣
x2

���x1
⌘
f

⇣
x3

���x2
⌘
· · · f

⇣
xm

���xm�1
⌘

(6.16)

Combining equation 6.14 and equation 6.16 we get the relevant part of the log-

likelihood function for patients i from i = 1 to i = 20, and a representative health

marker
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log
h
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2
⇣
tj � tj�1
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�
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pº
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miº
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h ⇣
xi ,j � xi ,j�1

⌘
� (A0 +A1⁄i )

⇣
tj � tj�1

⌘ i2

B2
⇣
tj � tj�1

⌘

(6.17)

where p = 20 is the number of patients in the cross validation set,mi is the number

of observations for patient i , and by definition, t0 = 0. The number of observations

of each one of the four health markers is di↵erent for di↵erent patients because

they have di↵erent survival times.

Di↵erentiating the relevant part of log-likelihood in equation 6.17 with respect to

A0 and A1, and equating the derivative to zero, we get the first order conditions

for maximizing log-likelihood with respect to those two parameters.

A0

pº

i=1

tmi
+A1

pº

i=1

⁄i tmi
=

pº

i=1

⇣
xi ,tmi

� xi ,0

⌘

A0

pº

i=1

⁄i tmi
+A1

pº

i=1

⁄2
i tmi

=
pº

i=1

⇣
xi ,tmi

� xi ,0

⌘
⁄i

(6.18)

The first order conditions in equation 6.18 resemble the normal equations in a

weighted linear regression. The solutions are
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(6.19)

It is important to recognize that the maximum likelihood estimators of the param-

eters A0 and A1 do not require continuous observation of the healthmarker process

‡t of any patient, as the estimators in equation 6.19 depends only on the initial

and final observations of the process ‡t represented by xi ,0 and xi ,tmi
respectively.

Similarly, di↵erentiating equation 6.17 with respect ot B2, we get the estimator

c
B2 =

0
BBBBB@

pº

i=1

mi

1
CCCCCA

�1 pº

i=1

miº

j=1

h ⇣
xi ,j � xi ,j�1

⌘
�

⇣
bA0 + bA1⁄i

⌘⇣
tj � tj�1

⌘ i2

tj � tj�1
(6.20)

Unfortunately, the maximum likelihood estimator in equation 6.20 requires fre-

quent observation of the health marker processes of all patients, and may not be

well-suited for practical application. To deal with issue, I experimented with a

simplified version of this estimator which requires observations only 10 times a

year. As the simulations results in Table 6.5 show, the simplified estimator for B2

delivers very good results.
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6.3.2 Simulation Results

To fix ideas in the following simulation, I chose four health markers: Diastolic

blood pressure, high-density lipoprotein (HDL) cholesterol, fasting blood sugar

level, and blood hemoglobin. The normal levels of those health markers are as

follows. Health diastolic blood pressure is below 80 mmHg, healthy level of high-

density cholesterol is 60 mg/dL or higher, fasting blood sugar level is 99 mg/dL

or lower, and healthy blood hemoglobin level is roughly between 13.2 and 16.5

gm/dL. For some of those markers, there are di↵erence between men and women,

which I disregard in this simulation. All the results in this simulation are for

illustration only, I do not claim that the simulated levels of those health markers

have the simulated e↵ect on longevity.

Table 6.1 shows the assumed initial levels of the four health markers in a simulated

group of twenty patients. The last column of the table shows the survival times

of the patients, which have been sampled with a Weibull distribution with shape

parameter equal to 4, and scale parameter equal to 10.
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Table 6.1. Patient data for simulation. Columns (2) through (5) show initial levels of four
biomarkers. Column (6) shows survival times drawn from a Weibull distribution with
shape parameter k = 4, and scale parmater › = 10.

Patient
No.

Initial Diastolic
Blood Pressure

Initial HDL
Choesterol

Initial Fasting
Blood Sugar

Initial Level
of Hemoglobin

Survival
Time

1 85 55 99 14.8 7.86
2 82 56 98 14.9 8.02
3 90 50 110 12.7 6.46
4 76 62 92 14.9 10.23
5 87 54 101 14.4 8.49
6 77 60 94 14.9 10.12
7 72 63 90 15.3 11.43
8 83 57 95 14.5 9.00
9 73 64 91 15.0 10.46

10 75 59 92 15.0 8.78
11 86 54 105 14.0 7.69
12 87 52 110 13.8 7.76
13 88 52 112 13.4 6.79
14 81 55 99 14.5 8.25
15 83 51 111 13.5 8.53
16 82 53 109 14.1 8.43
17 72 61 90 15.0 10.91
18 79 56 98 14.6 8.32
19 90 50 121 12.0 5.75
20 70 64 90 15.3 12.57
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The assumed values of the model parameters are: A0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, A1 =
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,

B =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.20

0.18

0.15

0.04

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Next, recalling that ⁄ = Ë�1(‰) = –�1
h
F (‰)

i
, where F is the Weibull distribution

used in the simulation and – is the standard normal distribution function. I calcu-

lated the values of ⁄ corresponding to the 20 survival times in Table 6.1. Table 6.2

shows the 20 survival times and corresponding values of the generating random

variable ⁄.

Table 6.2. Survival times and corresponding values of generating Variable

Patient
No.

Survival
Time ‰

Generating
Variable ⁄

Patient
No.

Survival
Time ‰

Generating
Variable ⁄

1 7.86 -0.4753 11 7.69 -0.5385
2 8.02 -0.4147 12 6.79 -0.5125
3 6.46 -0.9952 13 8.25 -0.8724
4 10.23 0.4276 14 8.53 -0.3298
5 8.49 -0.2399 15 8.25 -0.2248
6 10.12 0.3844 16 8.43 -0.2624
7 11.43 0.9099 17 10.91 0.6983
8 9.00 -0.0473 18 8.32 -0.3036
9 10.46 0.5185 19 5.75 -1.2616

10 8.78 -0.1306 20 12.57 1.3893
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Figure 6.1 through Figure 6.4 show a realization of the stochastic evolution of

the four health markers in the sample of the 20 patients. The length of the lines

corresponds to the survival time of the patients. Each patient has an assigned color

that is consistent through the four markers.
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Figure 6.1. Evolution of diastolic blood pressure in 20 patients.
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Figure 6.2. Evolution of high-density lipoprotein cholesterol in 20 patients.
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Figure 6.3. Evolution of fasting blood sugar in 20 patients.
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Figure 6.4. Evolution of blood hemoglobin level in 20 patients.

Table 6.3 through Table 6.5 display the results of estimating the parameters A0i ,

A1i , and Bi in the context of 20-fold leave-one-out cross-validation analysis in

- 143 -



which we systematically leave out each one of the patients in turn and estimate

the parameters from the data of the remaining 19 patients, using Equation (6.19)

and the simplified version of Equation (6.20), as discussed immediately following

that equation. The 20 estimates of each one of the 12 parameters are close both to

their true values and to each other.

Table 6.3. Estimation of Parameter Vector A0

Leave
Out bA01

bA02
bA03

bA04
Leave
Out bA01

bA02
bA03

bA04

True -0.6750 -0.6250 -0.5000 -0.1250 True -0.6750 -0.6250 -0.5000 -0.1250
1 -0.6792 -0.6142 -0.4895 -0.1288 11 -0.6800 -0.6161 -0.4865 -0.1275
2 -0.6805 -0.6163 -0.4878 -0.1288 12 -0.6803 -0.6140 -0.4883 -0.1288
3 -0.6795 -0.6121 -0.4889 -0.1290 13 -0.6800 -0.6140 -0.4893 -0.1285
4 -0.6778 -0.6147 -0.4888 -0.1296 14 -0.6805 -0.6188 -0.4945 -0.1294
5 -0.6718 -0.6170 -0.4908 -0.1277 15 -0.6769 -0.6180 -0.4900 -0.1295
6 -0.6826 -0.6149 -0.4931 -0.1277 16 -0.6781 -0.6127 -0.4878 -0.1292
7 -0.6733 -0.6134 -0.4863 -0.1284 17 -0.6796 -0.6143 -0.4932 -0.1296
8 -0.6792 -0.6111 -0.4900 -0.1286 18 -0.6799 -0.6066 -0.4900 -0.1290
9 -0.6771 -0.6081 -0.4894 -0.1293 19 -0.6801 -0.6147 -0.4896 -0.1286

10 -0.6796 -0.6183 -0.4885 -0.1294 20 -0.6822 -0.6143 -0.4875 -0.1292

Table 6.4. Estimation of Parameter Vector A1

Leave
Out No. bA11

bA12
bA13

bA14
Leave
Out No. bA11

bA12
bA13

bA14

True 0.6750 0.6250 0.5000 0.1250 True 0.6750 0.6250 0.5000 0.1250
1 0.6678 0.6068 0.5078 0.1202 11 0.6677 0.6045 0.5082 0.1201
2 0.6668 0.6027 0.5090 0.1203 12 0.6673 0.6045 0.5094 0.1198
3 0.6634 0.6062 0.5084 0.1218 13 0.6687 0.6047 0.5106 0.1197
4 0.6739 0.6008 0.5073 0.1216 14 0.6649 0.6078 0.5130 0.1207
5 0.6684 0.6047 0.5112 0.1197 15 0.6661 0.6062 0.5096 0.1206
6 0.6719 0.6042 0.5112 0.1209 16 0.6668 0.6036 0.5085 0.1205
7 0.6674 0.6084 0.5065 0.1214 17 0.6661 0.6027 0.5025 0.1195
8 0.6665 0.6035 0.5092 0.1204 18 0.6672 0.5995 0.5098 0.1204
9 0.6667 0.5986 0.5096 0.1200 19 0.6743 0.6066 0.5105 0.1193

10 0.6669 0.6048 0.5084 0.1199 20 0.6381 0.6002 0.5116 0.1205
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Table 6.5. Estimation of Parameter Vector B

Leave
Out No. bB1

bB2
bB3

bB4
Leave
Out No. bB1

bB2
bB3

bB4

True 0.2000 0.1800 0.1500 0.0400 True 0.2000 0.1800 0.1500 0.0400
1 0.1993 0.1743 0.1441 0.0401 11 0.1983 0.1744 0.1435 0.0402
2 0.1983 0.1746 0.1440 0.0401 12 0.1982 0.1741 0.1446 0.0402
3 0.1984 0.1745 0.1446 0.0398 13 0.1987 0.1744 0.1445 0.0402
4 0.1977 0.1746 0.1436 0.0396 14 0.1994 0.1737 0.1440 0.0401
5 0.1988 0.1751 0.1434 0.0402 15 0.1992 0.1752 0.1442 0.0400
6 0.1975 0.1754 0.1433 0.0400 16 0.1976 0.1731 0.1444 0.0402
7 0.1973 0.1733 0.1449 0.0400 17 0.1983 0.1745 0.1441 0.0401
8 0.1980 0.1751 0.1447 0.0400 18 0.1986 0.1750 0.1434 0.0402
9 0.1991 0.1737 0.1431 0.0402 19 0.1986 0.1747 0.1439 0.0402

10 0.1992 0.1741 0.1439 0.0402 20 0.1989 0.1760 0.1441 0.0399

Figure 6.5 displays the evolution of the 20 conditional means mt = Ñ
⇣
⁄
���F ‡

t

⌘
where

‡t represents the n = 4 health markers in the simulation, using the 20-fold leave-

one-out estimation of the filter parameters. The values of mt were computed from

the first line of Equation (6.11). The colors assigned to the patients are consistent

throughout and corresponds to the colors in Figure 6.1 through Figure 6.4 of the

evolution of the four health markers. We can see that after a burn-in period of

about one year, the conditional means converge, for each patient, to values that

are close to the corresponding true values of the generating random variable ⁄.

Figure 6.6 shows the conditional standard deviation p’t computed from the sec-

ond line of Equation (6.11). Panel (A) shows the evolution of the conditional

standard deviation of the shortest-lived patient, and Panel (B) shows the evolu-

tion of the conditional standard deviation of the longest-lived patient. The figure

shows only those two patients because all the 20 conditional standard deviations

are close, and mostly di↵er in their evolution times. It is also important to note

that the smooth evolution of the conditional standard deviation comes from the
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normal distribution of the generating variable ⁄, so that conditional standard de-

viation is only function of time and does not depend on the observed history of

the health markers. Finally, the conditional standard deviation declines rapidly to

fairly small values, further supporting the accuracy of the estimated conditional

means.
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Figure 6.5. Conditional mean mt = Ñ
⇣
⁄
���F ‡
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⌘
of 20 patients.
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(A) Shortest−Lived Patient
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(B) Longest−Lived Patient
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Figure 6.6. Square root of conditional variance ’t = var
⇣
⁄
���F ‡

t

⌘
of two patients.

Table 6.6 shows the 20 values of the conditional meanmt for t equal to ‰i�2, that is,

two years before the survival time of each patient. The purpose of calculating those

numbers is to determine, for each patient, the probability that the patient survives

six months or longer beyond his or her actual survival time ‰i . The formula for

calculating this probability comes from the following equation

è
⇣
‰ > y

���F ‡
t

⌘
= è

h
⁄ > Ë�1 (y)

���F ‡
t

i

= –

"
mt �Ë�1(y)
p
’t

# (6.21)

where t = ‰i � 2 and y = ‰i + 0.5. The simulation was repeated 100 times and av-

erage probabilities are shown in the last column of Table 6.6. None of the average

probabilities is more than 5.5 percent.
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In addition, Figure 6.7 shows the histograms of those probabilities for each one

of the 20 patients. For each patient, the frequency of such probability of survival

being between 0 and 5 percent is at least 80 out of 100. We can see from those

results that the probabilities of survival of six months or longer beyond the actual

survival time are small for all patients.

Table 6.6. Conditional Mean and Standard Deviation, and Average Probability of Survival
6 Months Beyond Time ‰

Leave Out
Patient No.

Generating
Variable ⁄

Cond Mean
2 Yr Before Death

Cond Std Dev
2 Yr Before Death

Average Prob of
Survival 6 Mos After ‰

1 -0.4753 -0.4951 0.0605 0.0177
2 -0.4157 -0.3701 0.0601 0.0140
3 -0.9952 -0.9958 0.0695 0.0347
4 0.4276 0.2937 0.0512 0.0031
5 -0.2399 -0.2768 0.0579 0.0092
6 0.3844 0.4852 0.0518 0.0057
7 0.9099 0.9557 0.0480 0.0018
8 -0.0473 0.0433 0.0556 0.0072
9 0.5185 0.4861 0.0508 0.0020

10 -0.1306 -0.1181 0.0566 0.0066
11 -0.5385 -0.4237 0.0615 0.0241
12 -0.5125 -0.4601 0.0614 0.0239
13 -0.8724 -0.9386 0.0676 0.0408
14 -0.3298 -0.2303 0.0587 0.0137
15 -0.2248 -0.2420 0.0578 0.0155
16 -0.2624 -0.2673 0.0582 0.0086
17 0.6983 0.7039 0.0494 0.0013
18 -0.3036 -0.3702 0.0585 0.0155
19 -1.2616 -1.3934 0.0766 0.0544
20 1.3893 1.3127 0.0450 0.0018
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Figure 6.7. Histogram of probability of survival 6 months beyond time ‰.

- 149 -



7 Forecasting Investment Performance

7.1 Introduction

This chapter describes a financial application of the models developed in the pre-

ceding chapters. Working with real data for the period 1928 to 2021, I estimate

the distribution of weekly log-returns to the S & P 500 stock market index. As it

is clear that the normal distribution doest not fit log-return data, I show the re-

sults of working first with an asymmetric Laplace distribution, and second, with a

noraml-Laplace distribution. The latter is a convolution of a normal distribution

and an asymmetic Laplace distribution.

After arriving at a suitable approximate distribution of log-returns, I apply the

model developed in the preceding chapters to a problem of aggregating forecasts

made by analysts with a normally distributed error into a group forecast that cor-

responds to the fitted normal-Laplace distribution of log-returns.

7.2 Standard & Poor 500 Stock Index Weekly Data

Description of Data

• Data source: Yahoo Finance

• Starting date: December 30, 1927

• Ending date: December 31, 2021

• Starting index value: 17.66

• Ending index value: 4766.18
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• Range of index values: 4.41, 4766.18

• Sample size of log-returns: 4903

• Range of weekly log-returns: -0.205370, 0.149385

Sample moments of weekly log-returns

• Mean: 0.001142

• Standard deviation: 0.024958

• Skewness: -0.610736

• Excess kurtosis: 6.645062
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Figure 7.1 shows the S & P 500 weekly closing prices, the natural log of weekly

closing prices, and weekly log price returns (dividends not included).
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Figure 7.1. S & P 500 weekly closing price, weekly log of closing price, and weekly log
price return.
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7.3 Fitting a Normal Distribution to Log Returns

Maximum likelihood estimation produces the result

bfi = 0.001142

b„ = 0.024956

(7.1)

Log-likelihood of the fitted parameters is 11138.19.

AIC of the fitted parameters is -22272.38.

Figure 7.2 shows the Q-Q plot for the fitted normal distribution.
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Figure 7.2. Q-Q plot for fitted normal distribution.

Next, Figure 7.3 shows logarithmic tail plots with the sample (blue circles) and the

fitted normal distribution (black line). The logarithm is base 10 for more intuitive

interpretation, that is, a di↵erence of 1 means a probability ratio of 10, a di↵erence

of 2 means a probability ratio of 100, and so on.
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For meaningful examination, we need to consider the left tail and the right tail

separately, with the examination of the right tail being based on the complemen-

tary distribution or survival function.
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Figure 7.3. Goodness-of-fit tail plots for fitted normal distribution. Panel (A) shows left
tail of empirical and fitted distribution functions and Panel (B) shows right tail of empiri-
cal and fitted complementary distribution functions.
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The Á2 test used here for goodness-of-fit follows the method of Vose (Vose [40]).

The sample of size N = 4903 is divided into the integer part of (4N)
2
5 groups (here

52), with 51 groups of equal size (here 94) and the 52nd group picking up the rest

of the sample. It is important to keep in mind that the Á2 test depends on the

definition of groups.

The resulting Á2 statistic is 635.116 with 52 � 2 � 1 = 49 degrees of freedom and

corresponding p-value of 6.488⇥ 10�103. Table 7.1 and Table 7.2 break down the

calculation of the Á2 statistic.

The interpretation of the numbers in the Group column is as follows. Denote the

number in row 1  i  52 by gi . Then Group 1 is (�1,g1], Group 52 is (g52,1),

and every other Group i is (gi�1,gi ].
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Table 7.1. Á2 Test for Normmal.

Group Observed Expected
1 -0.0594 94 37.364
2 -0.0444 94 129.576
3 -0.0362 94 163.591
4 -0.0300 94 187.932
5 -0.0265 94 138.444
6 -0.0233 94 146.236
7 -0.0208 94 128.672
8 -0.0187 94 112.355
9 -0.0168 94 111.243
10 -0.0152 94 103.663
11 -0.0137 94 96.641
12 -0.0122 94 98.957
13 -0.0107 94 100.268
14 -0.0095 94 84.436
15 -0.0083 94 92.441
16 -0.0071 94 87.089
17 -0.0059 94 85.444
18 -0.0048 94 87.339
19 -0.0037 94 83.494
20 -0.0027 94 77.954
21 -0.0017 94 77.508
22 -0.0006 94 83.275
23 0.0002 94 66.839
24 0.0011 94 66.907
25 0.0020 94 71.547
26 0.0030 94 73.971
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Table 7.2. Á2 Test for Normal (Cont.)

Group Observed Expected
27 0.0037 94 61.575
28 0.0046 94 69.343
29 0.0054 94 59.266
30 0.0061 94 56.431
31 0.0069 94 55.282
32 0.0077 94 64.646
33 0.0085 94 63.614
34 0.0095 94 68.319
35 0.0104 94 68.180
36 0.0113 94 69.228
37 0.0120 94 47.375
38 0.0132 94 82.222
39 0.0141 94 65.800
40 0.0151 94 63.519
41 0.0161 94 67.784
42 0.0172 94 72.975
43 0.0187 94 95.398
44 0.0204 94 101.826
45 0.0222 94 100.122
46 0.0242 94 106.732
47 0.0267 94 119.702
48 0.0291 94 107.764
49 0.0322 94 120.288
50 0.0378 94 175.032
51 0.0485 94 206.157
52 0.0485 109 141.235

Using a Lilliefors-corrected (Lilliefors [26]) Kolmogorov-Smirnov test in the R

package KScorrect, when the parameters of the normal distribution are estimated

from the sample, we get p-value of 2⇥10�4.

Using a Stephens-corrected (Stephens [35]) Anderson-Darling test in the R pack-

age nortest, when the parameters of the normal distribution are estimated from

the sample, we get p-value of < 2.2⇥10�16.
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Using a Stephens-corrected (Stephens [35]) Cramer-vonMises test in the R package

nortest, when the parameters of the normal distribution are estimated from the

sample, we get p-value of 7.37⇥10�10.

Using a Lilliefors-Stephens-Dallal-Wilkinson-corrected (Lilliefors [26], Stephens

[34], Dallal andWilkinson [14]) Kolmogorov-Smirnov test in the R package nortest,

when the parameters of the normal distribution are estimated from the sample, we

get p-value of < 2.2⇥10�16.

For additional details of the various corrections see Thode [38].

Using a Braun-corrected (Braun [8]) Anderson-Darling test in the R package goftest,

when the parameters of the normal distribution are estimated from the sample, we

get p-value of 0.3914.

Using a Braun-corrected (Braun [8]) Cramer-vonMises test in the R package goftest,

when the parameters of the normal distribution are estimated from the sample, we

get p-value of 0.2673.

Those results illustrate the low power of some of the available analytical goodness-

of-fit tests when the parameters of the fitted distribution are estimated from the

sample, and the importance of graphical methods in assessing goodness of fit. See

for example Casella and Berger [10], Klugman et al. [25], Delignette-Muller and

Dutang [15], and references cited there.

7.4 Asymmetric Laplace and Double Pareto Distributions

7.4.1 Asymmetric Laplace Distribution

Univariate Laplace distribution is the distribution of a random variable
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X = k +U � V (7.2)

where k is a constant, U has exponential distribution with rate ‘, V has an expo-

nential distribution with rate ”, and U and V are independent.When ” , ‘ the

Laplace distribution is called asymmetric.

Univariate, asymmetric Laplace distribution has three parameters: Rate parame-

ters ” > 0 and ‘ > 0, and location parameter k. Its density function is

f (x) =
”‘
”+ ‘

⇥

8>>>>>><>>>>>>:

exp
⇣
�”|x � k|

⌘
if x  k

exp
⇣
� ‘|x � k|

⌘
if x > k

(7.3)

or alternatively

f (x) =
”‘
”+ ‘

⇥

8>>>>>><>>>>>>:

exp
h
”(x � k)

i
if x  k

exp
h
� ‘(x � k)

i
if x > k

(7.4)

The corresponding distribution function is

F (x) =

8>>>>>>><>>>>>>>:

‘
”+ ‘

exp
h
”(x � k)

i
if x  k

1�
”

”+ ‘
exp

h
� ‘(x � k)

i
if x > k

(7.5)

If random variable X has asymmetric Laplace distribution then
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Ñ (X) = k +
1
‘
�
1
”

var(X) =
1
”2 +

1
‘2

skew(X) = 2
”3
� ‘3

�
”2 + ‘2

�3
2

ex.kurt(X) = 6
”4 + ‘4

�
”2 + ‘2

�2

(7.6)

where skew(X) = Ñ

2
66664

 
X �fi
„

!3377775, and ex.kurt(X) = Ñ

2
66664

 
X �fi
„

!4377775 � 3. It can be shown

that for the asymmetric Laplace distribution �2 < skew(X) < 2 and 3 < ex.kurt(X) <

6.

Maximum Likelihood Estimation of Parameters

The log-likelihood function of an i.i.d. sample x = (x1,x2, . . . ,xn) from an asymmet-

ric Laplace distribution is

Ñ(”,‘,k;x) = n log
”‘
”+ ‘

�”
nº

i=1

(xi � k)
�
� ‘

nº

i=1

(xi � k)
+ (7.7)

where

- 160 -



(x � k)� =

8>>>>>><>>>>>>:

|x � k| if x  k

0 if x > k

(x � k)+ =

8>>>>>><>>>>>>:

0 if x  k

|x � k| if x > k

(7.8)

Assume for a moment that we know the values of the parameters ” and ‘. Then

the estimation of k consists of minimizing the function

M(k;x) = ”
nº

i=1

(xi � k)
� + ‘

nº

i=1

(xi � k)
+ (7.9)

Without loss of generality, we can assume that the xi are order statistics, that is,

they are arranged in non-decreasing order. Then the function M(k;x) is piecewise

linear and continuous (polygonal line), which is decreasing for all k  x1 and in-

creasing for all k > xn. Therefore, M(k;x) attains a global minimum at one of the

sample points xi .

For example, when k  x1 we have M(k;x) = ‘
nº

i=1

(xi � k), when x1 < k  x2 we have

M(k;x) = ” (k � x1) + ‘
nº

i=2

(xi � k), and when k > xn we have M(k;x) = ”
nº

i=1

(k � xi ).

Assume now for a moment that we know k and want to derive the maximum like-

lihood estimators of ” and ‘. Di↵erentiating the log-likelihood function in Equa-

tion (7.7) with respect to ”, and separately, with respect to ‘, and equating the

derivatives to zero, we get
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ÅÑ
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n
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�
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�
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(xi � k)
� = 0

ÅÑ
Å‘

=
n

‘
�

n

”+ ‘
�

nº

i=1

(xi � k)
+ = 0

(7.10)

Multiply the first line in Equation (??) by ” and the second line by ‘ and rearrabge

terms to get

n‘
”+ ‘

= ”
nº

i=1

(xi � k)
�

n”
”+ ‘

= ‘
nº

i=1

(xi � k)
+

(7.11)

Assuming that the distribution is two-sided, that is, neither sum above is zero,

gives

‘
”

=
”
‘

nº

i=1

(xi � k)
�

nº

i=1

(xi � k)
+

(7.12)

and

‘
”

=

vuuuuuuuuuuuuuuut

nº

i=1

(xi � k)
�

nº

i=1

(xi � k)
+

(7.13)
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Denote p =

s
nº

i=1

(xi � k)
� and q =

s
nº

i=1

(xi � k)
+. Then using Equation (7.11) and

Equation (7.13) we get the estimators

b” =
n

p(p+ q)

b‘ =
n

q(p+ q)

(7.14)

The strategy for obtaining the estimators is to try bk = xi for each 1  i  n and

calculate the corresponding b” and b‘ to get the largest value of the log-likrlihood

function.

7.4.2 Double Pareto Distribution

If log-returns to the S & P 500 index have an asymmetric Laplace distribution,

then the index itself has a double Pareto distribution.

Let Y = Y0 exp(X) and denote Y0 exp(k) = K.

The resulting double Pareto density function is

g(y) =
”‘
”+ ‘

⇥

8>>>>>>><>>>>>>>:

y
”�1

K” if y  K

K
‘

y‘+1
if y > K

(7.15)

The corresponding distribution function is
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G (y) =

8>>>>>>><>>>>>>>:

‘
”+ ‘

✓
y

K

◆”
if y  K

1�
”

”+ ‘

✓
K

y

◆‘
if y > K

(7.16)

If random variable Y has double Pareto distribution then

Ñ (Y) =
”‘

(”+1)(‘ �1)
K if ‘ > 1

var(Y) =
”‘

(”+1)2(‘ �1)2

"
(”+1)2(‘ �1)2

(”+2)(‘ �2)
�”‘

#
K
2 if ‘ > 2

(7.17)

7.5 Normal-Laplace Distribution

Reed and Jorgensen [31] and Reed [30] introduced a normal Laplace distribution, a

four-parameter distribution with location parameter fi, scale parameter „ > 0, and

two rate parameters ”,‘ > 0. By definition, a random variable X with a normal-

Laplace distribution has the representation

X = fi+„Z +U � V (7.18)

where Z is standard normal, U is exponential with rate parameter ‘, and V is

exponential with rate parameter ”. The normal-Laplace density function is

f (x) =
”‘
”+ ‘

Ê
✓
x �fi
„

◆"
h

✓
”„ +

x �fi
„

◆
+ h

✓
‘„ �

x �fi
„

◆#
(7.19)
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where Ê(z) is standard normal density function, – (z) is the standard normal dis-

tribution function, and h(z) =
1�– (z)
Ê(z)

is one over the standard normal hazard

function.

The normal Laplace distribution function is

F (x) = –
✓
x �fi
„

◆
+Ê

✓
x �fi
„

◆" ‘
”+ ‘

h

✓
”„ +

x �fi
„

◆
�

”
”+ ‘

h

✓
‘„ �

x �fi
„

◆#
(7.20)

The first five cumulants of the normal-Laplace distribution are

‹1 = fi+
1
‘
�
1
”

‹2 = „2 +
1
”2 +

1
‘2

‹3 =
2
‘3
�

2
”3

‹4 =
6
”4 +

6
‘4

‹5 =
24
‘5
�
24
”5

(7.21)

The cumulant formulas can be used to compute estimators of mean, variance,

skewness, and kurtosis. Care, however, needs to be taken with the computation

to avoid nummerical instability, and products of the form Êh have to calculated

using log transform.
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7.6 Fitting a Normal Laplace Distribution to Log Returns

Maximum likelihood estimation produces the result

bfi = 0.005640

b„ = 0.005521

b” = 53.806293

b‘ = 70.989143

(7.22)

Log-likelihood of the fitted parameters is 11648.30.

AIC of the fitted parameters is -23288.60.

Figure 7.4 shows the Q-Q plot for the fitted normal Laplace distribution.
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Figure 7.4. Q-Q plot for fitted normal Laplace distribution.
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Next, Figure 7.5 shows logarithmic tail plots with the sample (blue circles) and the

fitted normal Laplace distribution (black line). The logarithm is base 10 for more

intuitive interpretation, that is, a di↵erence of 1 means a probability ratio of 10, a

di↵erence of 2 means a probability ratio of 100, and so on.
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For meaningful examination, we need to consider the left tail and the right tail

separately, with the examination of the right tail being based on the complemen-

tary distribution or survival function.
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Figure 7.5. Goodness-of-fit tail plots for fitted normal Laplace distribution. Panel (A)
shows left tail of empirical and fitted distribution functions and Panel (B) shows right tail
of empirical and fitted complementary distribution functions.
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The Á2 test used here for goodness-of-fit follows the method of Vose (Vose [40]).

The sample of size N = 4903 is divided into the integer part of (4N)
2
5 groups (here

52), with 51 groups of equal size (here 94) and the 52nd group picking up the rest

of the sample. It is important to keep in mind that the Á2 test depends on the

definition of groups.

The resulting Á2 statistic is 70.747 with 52�4�1 = 47 degrees of freedom and cor-

responding p-value of 0.014. Table 7.3 and Table 7.4 break down the calculation

of the Á2 statistic.

The interpretation of the numbers in the Group column is as follows. Denote the

number in row 1  i  52 by gi . Then Group 1 is (�1,g1], Group 52 is (g52,1),

and every other Group i is (gi�1,gi ].
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Table 7.3. Á2 Test for Normmal Laplace.

Group Observed Expected
1 -0.0594 94 87.986
2 -0.0444 94 109.533
3 -0.0362 94 109.728
4 -0.0300 94 120.174
5 -0.0265 94 89.587
6 -0.0233 94 97.644
7 -0.0208 94 89.485
8 -0.0187 94 81.473
9 -0.0168 94 84.198
10 -0.0152 94 82.007
11 -0.0137 94 79.858
12 -0.0122 94 85.500
13 -0.0107 94 90.824
14 -0.0095 94 80.020
15 -0.0083 94 91.589
16 -0.0071 94 90.340
17 -0.0059 94 92.672
18 -0.0048 94 99.049
19 -0.0037 94 98.900
20 -0.0027 94 96.108
21 -0.0017 94 99.154
22 -0.0006 94 110.424
23 0.0002 94 91.405
24 0.0011 94 93.789
25 0.0020 94 102.572
26 0.0030 94 108.158
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Table 7.4. Á2 Test for Normal Laplace (Cont.)

Group Observed Expected
27 0.0037 94 91.344
28 0.0046 94 103.895
29 0.0054 94 89.314
30 0.0061 94 85.183
31 0.0069 94 83.308
32 0.0077 94 96.886
33 0.0085 94 94.394
34 0.0095 94 99.893
35 0.0104 94 97.737
36 0.0113 94 96.846
37 0.0120 94 64.708
38 0.0132 94 108.983
39 0.0141 94 83.976
40 0.0151 94 78.204
41 0.0161 94 80.285
42 0.0172 94 82.754
43 0.0187 94 102.493
44 0.0204 94 102.511
45 0.0222 94 94.218
46 0.0242 94 93.736
47 0.0267 94 97.564
48 0.0291 94 81.616
49 0.0322 94 84.875
50 0.0378 94 113.527
51 0.0485 94 123.839
52 0.0485 109 108.731

The R package KScorrect for a Lilliefors-corrected (Braun [8]) Kolmogorov-

Smirnov test, when the parameters of the fitted distribution are estimated from

the sample, does not support the normal Laplace distribution.

Using a Braun-corrected (Braun [8]) Anderson-Darling test in the R package goftest,

when the parameters of the normal Laplace distribution are estimated from the

sample, we get p-value of 0.2757.
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Using a Braun-corrected (Braun [8]) Cramer-vonMises test in the R package goftest,

when the parameters of the normal Laplace distribution are estimated from the

sample, we get p-value of 0.9204.

Those results illustrate the low power of some of the available analytical goodness-

of-fit tests when the parameters of the fitted distribution are estimated from the

sample, and the importance of graphical methods in assessing goodness of fit. See

for example Casella and Berger [10], Klugman et al. [25], Delignette-Muller and

Dutang [15], and references cited there.

7.7 Generalized Hyperbolic Distribution

The generalized hyperbolic distribution was introduced by Barndor↵-Nielsen [2]

to describe size distribution of sand particles in deposits created by the wind.

A normal mean-variance mixture is a random variable X that has the representa-

tion

X = fi+’Y +„
p

YZ

where Z is standard normal random variable, Y is non-negative random variable

whose distribution is called mixing distribution, Z and Y are independent, fi, ’ are

constants, and „ is a positive constant.

The distribution of X is called generalized hyperbolic (GH) when the mixing dis-

tribution is generalized inverse Gaussian (GIG) with the three-parameter density
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g(y) =
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The parameters ›,Ë,Á satisfy one of the three cases:

1. › < 0, Ë � 0, Á > 0.

2. › = 0, Ë > 0, Á > 0.

3. › > 0, Ë > 0, Á � 0.

Special cases of the generalized inverse Gaussian distribution include:

1. Inverse Gaussian distribution when › = �
1
2
.

2. Gamma distribution when › > 0 and Á = 0.

3. Inverse gamma distribution when › < 0 and Ë = 0.

When Ë > 0 and Á > 0 the normmal mean-variance mixture variable X has the

six-parameter generalized hyperbolic density
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K is modified Bessel function of the second kind.

Call this the (›,Ë,Á,fi,„,’) parametrization.
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This parametrization has a downside of an identification problem: For any k > 0

the densities f (x;›,Ë,Á,fi,„,’) and f

✓
x;›,kË,

Á
k
,fi,k„,k’

◆
are the same.

For parameter estimation, we need to reduce the number of parameters from six

to five. A way that has nummerical advantages for estimation is to require that the

mean of the GIG mixing distribution of the random variable Y be one

Ñ (Y) =
r

Á
Ë

K›+1

⇣p
ËÁ

⌘

K›

⇣p
ËÁ

⌘ = 1

Denote ” =
p
ËÁ, then

Ë = ”
K›+1 (”)
K› (”)

Á =
”2

Ë
= ”

K› (”)
K›+1 (”)

7.8 Fitting a Generalized Hyperbolic Distribution to Log Returns

Maximum likelihood estimation using the (›,”,fi,„,’) parametrization produces

the result

b› = �1.224968

b” = 0.4686233

bfi = 0.004847

b„ = 0.024415

b’ = �0.003705

(7.23)
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from which we can also compute the estimators

bË = 0.198124

bÁ = 1.108435

(7.24)

Log-likelihood of the fitted parameters is 11672.97.

AIC of the fitted parameters is -23335.94.

Figure 7.6 shows the Q-Q plot for the fitted generalized hyperbolic distribution.
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Figure 7.6. Q-Q plot for fitted generalized hyperbolic distribution.

Next, Figure 7.7 shows logarithmic tail plots with the sample (blue circles) and the

fitted generalized hyperbolic distribution (black line). The logarithm is base 10 for

more intuitive interpretation, that is, a di↵erence of 1 means a probability ratio of

10, a di↵erence of 2 means a probability ratio of 100, and so on.
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For a meaningful examination, we need to consider the left tail and the right tail

separately, with the examination of the right tail being based on the complemen-

tary distribution or survival function.
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Figure 7.7. Goodness-of-fit tail plots for fitted generalized hyperbolic distribution. Panel
(A) shows left tail of empirical and fitted distribution functions and Panel (B) shows right
tail of empirical and fitted complementary distribution functions.
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The Á2 test used here for goodness-of-fit follows the method of Vose (Vose [40]).

The sample of size N = 4903 is divided into the integer part of (4N)
2
5 groups (here

52), with 51 groups of equal size (here 94) and the 52nd group picking up the rest

of the sample. It is important to keep in mind that the Á2 test depends on the

definition of groups.

The resulting Á2 statistic is 60.250 with 52�5�1 = 46 degrees of freedom and cor-

responding p-value of 0.077. Table 7.5 and Table 7.6 break down the calculation

of the Á2 statistic.

The interpretation of the numbers in the Group column is as follows. Denote the

number in row 1  i  52 by gi . Then Group 1 is (�1,g1], Group 52 is (g52,1),

and every other Group i is (gi�1,gi ].
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Table 7.5. Á2 Test for Generalized Hyperbolic

Group Observed Expected
1 -0.0594 94 96.384
2 -0.0444 94 89.512
3 -0.0362 94 91.592
4 -0.0300 94 105.310
5 -0.0265 94 82.197
6 -0.0233 94 93.056
7 -0.0208 94 88.208
8 -0.0187 94 82.486
9 -0.0168 94 87.137
10 -0.0152 94 86.426
11 -0.0137 94 85.352
12 -0.0122 94 92.368
13 -0.0107 94 98.872
14 -0.0095 94 87.457
15 -0.0083 94 100.179
16 -0.0071 94 98.600
17 -0.0059 94 100.655
18 -0.0048 94 106.784
19 -0.0037 94 105.608
20 -0.0027 94 101.532
21 -0.0017 94 103.551
22 -0.0006 94 113.869
23 0.0002 94 93.127
24 0.0011 94 94.548
25 0.0020 94 102.326
26 0.0030 94 106.815
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Table 7.6. Á2 Test for Generalized Hyperbolic (Cont.)

Group Observed Expected
27 0.0037 94 89.464
28 0.0046 94 101.076
29 0.0054 94 86.438
30 0.0061 94 82.160
31 0.0069 94 80.189
32 0.0077 94 93.184
33 0.0085 94 90.850
34 0.0095 94 96.369
35 0.0104 94 94.670
36 0.0113 94 94.324
37 0.0120 94 63.376
38 0.0132 94 107.487
39 0.0141 94 83.533
40 0.0151 94 78.383
41 0.0161 94 81.069
42 0.0172 94 84.172
43 0.0187 94 104.998
44 0.0204 94 105.607
45 0.0222 94 97.251
46 0.0242 94 96.509
47 0.0267 94 99.639
48 0.0291 94 82.236
49 0.0322 94 83.960
50 0.0378 94 109.024
51 0.0485 94 114.071
52 0.0485 109 109.013

The R package KScorrect for a Lilliefors-corrected (Braun [8]) Kolmogorov-

Smirnov test, when the parameters of the fitted distribution are estimated from

the sample, does not support the generalized hyperbolic distribution.

Using a Braun-corrected (Braun [8]) Anderson-Darling test in the R package goftest,

when the parameters of the generalized hyperbolic distribution are estimated from

the sample, we get p-value of 0.9846.
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Using a Braun-corrected (Braun [8]) Cramer-vonMises test in the R package goftest,

when the parameters of the generalized hyperbolic distribution are estimated from

the sample, we get p-value of 0.9860.

Those results should be interpreted with caution because of the low power of some

of the available analytical goodness-of-fit tests when the parameters of the fitted

distribution are estimated from the sample, but combined with the Á2 test, the

Q-Q plot, the log tail plots, and the relative AIC values, we should not reject the

generalized hyperbolic distribution for a long history of weekly log returns.

Tail behavior of the generalized hyperbolic distribution was investigated by von

Hammerstein E. A. [39].

Whereas the normal distribution has light tails, and the normal Laplace distribu-

tion has exponential tails, the generalized hyperbolic distribution has semi-heavy

tails

f (x) ⇡ C(�x)›�1 exp(ax) as x!�1

f (x) ⇡ Cx
›�1 exp(�bx) as x!1

where a,b,C are positive constants determined by the parameters of the distribu-

tion. Thus, the tails resemble the right tail of a gamma distribution.

Because estimated › is negative, and |x| < 1, the tails are heavier than exponential

tails, but less heavy than power tails (tails of a power distribution).
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7.9 A Forecasting Model

Many investors, including institutional portfolio managers, think of stock log re-

turns as being approximately normally distributed. That manifests itself when

they talk about a large negative return, such as �0.15, and note that it represents

six standard deviations (normal probability 10�9 and should occur only once every

billion weeks or 20 million years.

We can use the filtering model for the conditional distribution of survival times to

develop a model that will deliver dynamic conditional distributions of weekly log

returns, based on the generalized hyperbolic distribution, from either individual

or group forecasts of investors who think in terms of normal distributions.

One obstacle we need to overcome in the modeling is the fact that stock returns

are observable, and therefore, weekly return forecasts must converge at the end of

the week to the actual log return. I overcame this obstacle by modeling dynamic

forecast noise as a Brownian bridge process.

Brownian bridge is a Wiener process restricted to be zero at a specified, determin-

istic, future time T . Heuristically, a possible description of a Brownian bridge is

an Ito process that satisfies the stochastic di↵erential equation

dZt =
1

T � t
(0� Zt)dt + dWt

(7.25)

In words, Brownian bridge is a mean-reverting Ito process which fluctuates around

zero, and whose speed of adjustment goes to infinity as time t goes to the future

time T . Rewriting Equation 7.25 we get the defining equation of a Brownian bridge
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dZt = �
Zt

T � t
dt + dWt

(7.26)

Equation 7.26 is easy to solve. Denote Yt =
Z

t

0

dWu

T � u
and apply Ito’s formula to the

process Zt = (T � t)Yt. Define the deterministic function f (Y , t) = (T � t)Y , then

dYt = 0⇥ dt +
1

T � t
dWt

df (Yt , t) =
"
Åf
Åt

(Yt , t) + 0⇥
Åf
ÅY

(Yt , t) +
1
2
Å2f
ÅY2 (Yt , t)

✓ 1
T � t

◆2#
dt

+
Åf
ÅY

(Yt , t)
1

T � t
dWt

= �Yt +0⇥ (T � t) +
1
2
⇥0⇥

✓ 1
T � t

◆2
+ (T � t)

1
T � t

dWt

= �
Zt

T � t
dt + dWt

(7.27)

Therefore, the Brownian bridge has the representation

Zt = (T � t)
Z

t

0

dWu

T � u
(7.28)
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Figure 7.8 shows a simulated path of Brownian bridge.
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Figure 7.8. Simulated Brownian bridge process. Brownian bridge is a Wiener process
constrained to be zero at a specified, non-random, future time.

I model the observable processes of the investors as

d‡i ,t = ⁄n+1dt + Si ,i dZi ,t
(7.29)

where ⁄n+1 is the normally distributed generating random variable for the weekly

log return ‰ = F
�1

h
– (⁄n+1)

i
, 1  i  n, n is the number of investors, and the Brow-

nian bridge process Zi ,t is

dZi ,t = �
Zi ,t

T � t
dt +

1
Si ,i

iº

j=1

Bi ,j dWj ,t (7.30)
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where S
2
i ,i =

iº

j=1

B
2
1,i ,j . That relies on the fact that if W1,t , . . . ,Wn,t are independent

Wiener processes and ”1, . . . ,”n are constants such that
nº

i=1

”2
i = 1 then the linear

combination
nº

i=1

”iWi ,t is also a Wiener process.

The distribution function F is the fitted generalized hyperbolic distribution of log

returns, and – is a suitable normal distribution.

The Brownian bridge processes are unobservable, and for consistent notation I

will use for them the symbols ⁄i ,t. Thus we have a model with n +1 unobservable

processes ⁄1,t ,⁄2,t , . . . ,⁄n,t ,⁄n+1,t, where the process ⁄n+1,t has constant paths be-

cause it is a random variable ⁄n+1. We are interested in estimating the conditional

distribution of ⁄n+1 given F ‡
t for every time 0 < t < T .

It follows that we have a partially observable process (⁄t ,‡t) that satisfies the state

stochastic di↵erential equations

d⁄t = a1,t⁄tdt + b1dW1,t (7.31)

where ⁄t is a (n +1)⇥1 vector

⁄t =

0
BBBBBBBBBBBBBBBBBBB@

⁄1,t

...

⁄n+1,t

1
CCCCCCCCCCCCCCCCCCCA

(7.32)

a1,t is a (n ++1)⇥ (n +1) matrix
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a1,t =

0
BBBBBBBBBB@

�
1

T � t
In 0

0 0

1
CCCCCCCCCCA

(7.33)

b1 is a (n +1)⇥ n matrix

b1 =

0
BBBBBBBBBB@

S
�1
B1

0

1
CCCCCCCCCCA

(7.34)

and W1,t is a n-dimensional Wiener process

Wt =

0
BBBBBBBBBBBBBBBBBBB@

W1,1,t

...

W1,n+1,t

1
CCCCCCCCCCCCCCCCCCCA

(7.35)

d‡t = A1,t⁄tdt + B1dW1,t (7.36)

where ‡t is a n ⇥1 vector

‡t =

0
BBBBBBBBBBBBBBBBBBB@

‡1,t

...

‡n,t

1
CCCCCCCCCCCCCCCCCCCA

(7.37)

A1,t is a n ⇥ (n +1) matrix
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A1,t =
 

�
1

T � t
S 1

!
(7.38)

B1 is a n ⇥ n matrix given by the lower triangular component of the Cholesky

decomposition of the covariance matrix of the forecast markers “ = B1B
0

1, and

S =

0
BBBBBBBBBBBBBBBBBBB@

S1,1 0

...
...

0 Sn,n

1
CCCCCCCCCCCCCCCCCCCA

(7.39)

This falls within the general scheme of evolution of observable and unobservable

processes given in Equation (6.1) and reproduced here for convenience

d⁄t = (a0 + a1⁄t)dt + b1dW1,t + b2dW2,t

d‡t = (A0 +A1⁄t)dt + B1dW1,t + B2dW2,t

(7.40)

The corresponding filtering equations are given in Equation (6.2) and reproduced

below

dmt = (a0 + a1mt)dt +
⇣
b1B

0

1 + b2B
0

2 +’tA
0

1

⌘⇣
B1B

0

1 + B2B
0

2

⌘�1

⇥

h
d‡t � (A0 +A1mt)dt

i

d’t =
"
b1b

0

1 + b2b
0

2 + a1’t +’ta
0

1

�

⇣
b1B

0

1 + b2B
0

2 +’tA
0

1

⌘⇣
B1B

0

1 + B2B
0

2

⌘�1 ⇣
b1B

0

1 + b2B
0

2 +’tA
0

1

⌘0
#
dt

(7.41)
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7.10 Simulation of the Forecasting Model

The simulation setup has six investors with a positive-definite correlation matrix

represented by its upper triangular part for greater readability

‚ =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0.7 0.4 0.3 0.5 0.2

1 0.4 0.6 0.8 0.3

1 0.2 0.3 0.1

1 0.5 0.2

1 0.6

1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.42)

The full correlation matrix is

‚ =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1.0 0.7 0.4 0.3 0.5 0.2

0.7 1.0 0.4 0.6 0.8 0.3

0.4 0.4 1.0 0.2 0.3 0.1

0.3 0.6 0.2 1.0 0.5 0.2

0.5 0.8 0.3 0.5 1.0 0.6

0.2 0.3 0.1 0.2 0.6 1.0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.43)

Diagonal matrix of standard deviations is
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S =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.03 0 0 0 0 0

0 0.05 0 0 0 0

0 0 0.03 0 0 0

0 0 0 0.04 0 0

0 0 0 0 0.02 0

0 0 0 0 0 0.03

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.44)

The resulting covariance matrix of is

“ = S‚S =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.00090 0.00105 0.00036 0.00036 0.00030 0.00018

0.00105 0.00250 0.00060 0.00120 0.00080 0.00045

0.00036 0.00060 0.00090 0.00024 0.00018 0.00009

0.00036 0.00120 0.00024 0.00160 0.00040 0.00024

0.00030 0.00080 0.00018 0.00040 0.00040 0.00036

0.00018 0.00045 0.00009 0.00024 0.00036 0.00090

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.45)

Covariance matrix “ is positive definite because all its eigenvalues are positive.

Cholesky decomposition of “ gives us the lower triangular matrix B1 such that

“ = B1B
0

1
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B1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.030 0 0 0 0 0

0.035 0.035707 0 0 0 0

0.012 0.005041 0.027029 0 0 0

0.012 0.021844 �0.000522 0.031282 0 0

0.010 0.012603 �0.000131 0.000148 0.011880 0

0.006 0.006721 �0.000588 0.000667 0.018107 0.022139

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.46)

The sum of squares of each row of the matrix B1 is a square of the corresponding

diagonal entry of the matrix S

iº

j=1

B
2
1,i ,j = S

2
i ,i (7.47)

The equations that generate the six individual forecasts are

d‡t = A1,t⁄tdt + B1dW1,t (7.48)

where
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‡t =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

‡1,t
‡2,t
‡3,t
‡4,t
‡5,t
‡6,t

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, ⁄t =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

⁄1,t

⁄2,t

⁄3,t

⁄4,t

⁄5,t

⁄6,t

⁄7,t

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, A1,t =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
S1,1

T � t
0 0 0 0 0 1

0 �
S2,2

T � t
0 0 0 0 1

0 0 �
S3,3

T � t
0 0 0 1

0 0 0 �
S4,4

T � t
0 0 1

0 0 0 0 �
S5,5

T � t
0 1

0 0 0 0 0 �
S6,6

T � t
1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

W1,t =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

W1,1,t

W1,2,t

W1,3,t

W1,4,t

W1,5,t

W1,6,t

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and the matrices B1 and S as above. The Wiener proces W1,t is six-dimensional

because ⁄7,t = ⁄7 is a random variable.

In this simulation, ⁄7,t = 0.04, which corresponds to a weekly return to the S &

P 500, based on the fitted generalized hyperbolic distribution of ‰ = Ë (0.04) =

F
�1

h
– (0.04)

i
= 0.0340, where F is the fitted generalized hyperbolic distribution

with parameters shown below, and – is a normal distribution with mean 0.001

and standard deviation 0.025.

To recall, the parameters of the fitted generalized hypergeometric distribution are

- 190 -



› = �1.224968

” = 0.4686233

fi = 0.004847

„ = 0.024415

’ = �0.003705

(7.49)

The parameters of the normal distribution that characterizes the thinking of the

investors can be chosen at will (as long as the standard deviation is positive), and in

this simulation I chose them to be equal, respectively, to themean and the standard

deviation of the fitted generalized hyperbolic distribution above.

Table 7.7 shows the correspondence between values of the generating random vari-

able ⁄7 and the weekly log return to the S & P 500, based on the fitted generalized

hyperbolic distribution of ‰ = Ë (⁄7) = F
�1

h
– (⁄7)

i
.
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Table 7.7. Correspondence between selected values of the generating random variable ⁄7
and the weekly log return ‰.

⁄7 ‰ ⁄7 ‰

-0.08 -0.1754 0.00 0.0019

-0.07 -0.1243 0.01 0.0088

-0.06 -0.0860 0.02 0.0159

-0.05 -0.0582 0.03 0.0241

-0.04 -0.0384 0.04 0.0340

-0.03 -0.0243 0.05 0.0467

-0.02 -0.0137 0.06 0.0632

-0.01 -0.0054 0.07 0.0847

Figure 7.9 through Figure 7.14 show the simulated paths of the six forecast mark-

ers. The time scale is Sunday for time 0, Monday for time 1, etc., Friday for time 5.

At each time t on the horizontal axis, the forecasted value of the generating ran-

dom variable ⁄7 is the slope of a straight line from the initial point of the forecast

path to the point on the the forecast path at time t.

Figure 7.15 groups the paths of all six forecast markers for ease of comparison.
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Figure 7.9. Simulated observed path of investor 1. At each time t on the horizontal axis,
the forecasted value of the generating random variable ⁄7 is the slope of a straight line
from the initial point of the forecast path to the point on the the forecast path at time t.
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Figure 7.10. Simulated observed path of investor 2. At each time t on the horizontal axis,
the forecasted value of the generating random variable ⁄7 is the slope of a straight line
from the initial point of the forecast path to the point on the the forecast path at time t.
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Figure 7.11. Simulated observed path of investor 3. At each time t on the horizontal axis,
the forecasted value of the generating random variable ⁄7 is the slope of a straight line
from the initial point of the forecast path to the point on the the forecast path at time t.
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Figure 7.12. Simulated observed path of investor 4. At each time t on the horizontal axis,
the forecasted value of the generating random variable ⁄7 is the slope of a straight line
from the initial point of the forecast path to the point on the the forecast path at time t.
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Figure 7.13. Simulated observed path of investor 5. At each time t on the horizontal axis,
the forecasted value of the generating random variable ⁄7 is the slope of a straight line
from the initial point of the forecast path to the point on the the forecast path at time t.
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Figure 7.14. Simulated observed path of investor 6. At each time t on the horizontal axis,
the forecasted value of the generating random variable ⁄7 is the slope of a straight line
from the initial point of the forecast path to the point on the the forecast path at time t.
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Figure 7.15. Simulated observed paths of all six investors. At each time t on the horizontal
axis, the forecasted value of the generating random variable ⁄7 is the slope of a straight
line from the initial point of the forecast path to the point on the the forecast path at time
t.
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Next, with six investors we have a seven-dimensional unobservable process ⁄t. The

first six components ⁄1,t , . . . ,⁄6,t, of the vector ⁄t are the six Brownian bridge pro-

cesses that represent the forecast noise of the forecasts, and the seventh component

of ⁄t is the generating random variable ⁄7,t = ⁄7.

Each of the six Brownian bridge processes ⁄i ,t , 1  i  6 evolves as

d⁄i ,t = �
⁄i ,t

T � t
dt + dW1,i ,t

=
1

T � t

�
0�⁄i ,t

�
dt + dW1,i ,t

(7.50)

The seventh component, the generating random variable ⁄7,t = ⁄7 evolves as

d⁄7,t = 0dt +0dW1,t (7.51)

Therefore, the vector process ⁄t evolves as

d⁄t = a1,t⁄tdt + b1dW1,t (7.52)

where
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⁄t =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

⁄1,t

⁄2,t

⁄3,t

⁄4,t

⁄5,t

⁄6,t

⁄7,t

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, a1,t =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
1

T � t
0 0 0 0 0 0

0 �
1

T � t
0 0 0 0 0

0 0 �
1

T � t
0 0 0 0

0 0 0 �
1

T � t
0 0 0

0 0 0 0 �
1

T � t
0 0

0 0 0 0 0 �
1

T � t
0

0 0 0 0 0 0 0

1
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and b1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

It can be shown that thematrix b1 is the lower triangular component of the Cholesky

decomposition of the correlation matrix ‚with a row of zeros added at the bottom.

The filtering equation for conditional mean is

dmt = a1,tmtdt +
⇣
b1B

0

1 +’tA
0

1,t

⌘⇣
B1B

0

1

⌘�1 �
d‡t �A1,tmtdt

� (7.53)
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A heuristic comparison for jointly normally distributed random vectors ⁄ and ‡

Ñ
⇣
⁄
���‡
⌘

= Ñ (⁄) + cov(⁄,‡)
h
var(‡)

i�1h
‡ � Ñ (‡)

i
(7.54)

The filtering equation for conditional variance is

d’t =
h
a1,t’t +’ta

0

1,t + b1b
0

1 �
⇣
b1B

0

1 +’tA
0

1,t

⌘⇣
B1B

0

1

⌘�1 ⇣
b1B

0

1 +’tA
0

1,t

⌘0 i
dt

(7.55)

A heuristic comparison for jointly normally distributed random vectors ⁄ and ‡

cov
⇣
⁄
���‡
⌘

= var(⁄)� cov(⁄,‡)
h
var(‡)

i�1h
cov(⁄,‡)

i0 (7.56)

Equation (7.53) and Equation (7.55) can be converted to approximating di↵erence

equations and solved numerically.

I used initial value m0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

0

m7,0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, where m7,0 =
‡1,0 + ‡2,0 + ‡3,0 + ‡4,0 + ‡5,0 + ‡6,0

6
.
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I also used the initial value ’0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 ’0,7,7

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where ’0,7,7 =

vt
1
6

6º

i=1

S
2
i ,i .

Figure 7.16 shows the resulting path of m7,t, which quickly converges to small

fluctuations around the true value ⁄7 = 0.04.

Figure 7.17 shows the conditional variance ’7,t. Because the vector (⁄t ,‡t) is nor-

mally distributed, the conditional variance ’t is a function of time only and does

not depend on the observed values of the vector ‡t.
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Figure 7.16. Path of the conditional mean m7,t for the unobservable log return for the
week under consideration.
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Figure 7.17. Conditional variance ’7,7,t for the unobservable log return for the week under
consideration.

For example, at the end of Wednesday, conditional mean is m7,t = 0.0396 and

conditional variance is ’7,7,t = 4.2295⇥10�5.

We can can calculate the conditional distribution of weekly log return ‰ = Ë(⁄)

è
⇣
‰  y

���F ‡
t

⌘
= è

h
Ë (⁄)  y

���F ‡
t

i

= è
h
⁄  Ë�1(y)

���F ‡
t

i

= –

"
Ë�1(y)�m
p
’

#

where – is standard normal distribution, Ë�1(y) = e–�1
h
F (y)

i
, and e– is the fitted

normal distribution used by the investors.

- 205 -



We also have

è
⇣
‰ > y

���F ‡
t

⌘
= –

"
m �Ë�1(y)
p
’

#

If y = 0.034 we have Ë�1(0.034) = 0.04 and we have the conditional probability

è
⇣
‰ > 0.034

���F ‡
t

⌘
= –

 
0.0396�0.04
p

4.2295⇥10�5

!

= 0.4755

For comparison, the unconditional (marginal) probability using fitted generalized

hyperbolic distribution is

è (‰ > 0.034) = 0.060
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8 Conclusion

This chapter o↵ers a summary of the contributions, and describes opportunities

for future work.

The central statistical problem of survival analysis is to determine and characterize

the conditional distribution of a survival time given a history of some observed

health markers.

The dissertation presents two families of models in which the health markers

evolve randomly over time in a manner that can be represented by Ito stochas-

tic processes, and the survival time is modeled as a suitably chosen deterministic

function of a random variable, called here a generating random variable, that is

related to the random evolution of the health markers. The deterministic function

is chosen to give the survival time the desired distribution function.

In the first family of models, the generating variable of the survival time is an Ito

integral over the positive half-line, with the observable health marker at any given

time represented by the same integral up to that time.

More precisely, in the first family of models, the health marker is a solution of a

specified stochastic di↵erential equation, chosen so that the solution process of the

stochastic di↵erential equation converges to a finite random variable when time

goes to infinity, and the distribution of this limit random variable depends on the

history of the solution process.

In that setup, the dissertation provides formulas for the conditional distribution

function of the survival time, given the observed history of the health marker, and
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its relatives: the conditional survival function and the conditional hazard function.

The relevance of this family of models is demonstrated via a simulation study and

a comparison of the new model with the traditional proportional hazards model.

A limitation of the first family of models presented in this dissertation is that they

involve one health marker, which can represent a single symptom or treatment or

a weighted average index of symptoms and treatments. A potential way to remove

this limitation is discussed below in paragraphs describing future research oppor-

tunities. In addition, the second family of models does not have this limitation.

The second family of models involves a linear filtering framework, in which the

generating variable, or a vector of generating variables, linearly a↵ects a number

of observable health markers that evolve as Ito processes.

The generating variable, or the vector of generating variables, is unobservable,

and its conditional mean and variance, given the health markers, are estimated

by stochastic filtering methods. Because the conditional distribution of the gen-

erating variables, given the history of the health markers, is normal, conditional

mean and variance determine the conditional distribution. In addition, the gen-

erating random variables can be limits of unobservable Ito processes, called here

generating processes, that influence the evolution of the health markers.

To demonstrate the relevance of this model the dissertation describes the results

of a simulation study with a four-dimensional vector of health markers.

The usefulness of the filtering framework is not limited to computing conditional

distributions of survival times – instead of a positive survival time we can use a

return to a financial asset which can be positive or negative.
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To apply the model in that context, the dissertation fits a generalized hyperbolic

distribution to weekly log returns to the S & P 500 stock market index.

There are a number of investors who observe individual forecast markers and use

them to form a joint forecast of the weekly log return. Because the weekly log re-

turn, unobservable during the week, is observable at the end of the week, the mod-

eling of forecasting noise is done through a multi-dimensional Brownian bridge

process.

In the filtering models considered in this dissertation, the conditional variance is a

deterministic function of time. This is a limitation, but may be overcome through

an enlargement of the set of stochastic di↵erential equations used to model the

health markers, and/or an enlargement of the set of stochastic di↵erential equa-

tions used to model the generating processes.

The modeling frameworks developed in this dissertation o↵er several avenues for

further work and development.

In the context of the first family of models, further development may involve the

characterization of the conditional distribution of survival time that arises from

an alternative specification of the stochastic di↵erential equation that describes

the evolution of the health marker.

In addition, although the health markers that are used in this family of models

can be a weighted average of several symptoms and/or treatments, a more gen-

eral setup would allow several correlated health marker processes. Such extension

can be accomplished by a linear transformation of the several generating variables

associated with the several health markers, and using the fact that we know the

- 209 -



distribution of a product of a finite number of independent uniform random vari-

ables on the unit interval.

In the second family of models, further development could include the introduc-

tion of observable measures of treatment, such as blood level of a drug that a↵ects

the evolution of one or more of the generating processes.

Another possible extension is a multi-dimensional model of generating processes

and/or generating variables, applied to the problem of modeling competing risks.

Another extension of the filtering model of survival times is a model with non-

linear dependence of the health markers on the generating processes or generating

variables.

In the application to investment analysis, the fitting of the generalized hyperbolic

distribution to log returns suggests that the variance of log returns has a general-

ized inverse Gaussian distribution. With that assumption, the return forecasting

model can be modified into a variance forecasting model, keeping in mind that the

variance of stock log returns is never observable.
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