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Abstract

A multi-state model is a graphical tool widely used to illustrate a transitional

relationship between states in many applications. We will study the transition prob-

abilities of an illness-death model, which is an example of a multi-state model. We

will investigate transition probabilities using a counting process approach. Aalen-

Johansen estimator is the gold-standard in estimating a transition probability. How-

ever, Aalen-Johansen estimator may be biased when the Markov assumption is vi-

olated. Therefore, Aalen-Johansen estimator is an unreliable estimator when the

Markov assumption is violated. Several papers have published non-parametric esti-

mators that accommodate for non-Markov models using a counting process approach.

Furthermore, there are few existing work in creating a regression model for tran-

sition probabilities in the non-Markov setting. Our goal is to contribute to the few

existing work of regression models that accommodate non-Markov behavior. In cre-

ating the regression model, we use the jackknife method, pseudo-observations. In

finding parameter estimates, generalized estimation equation(GEE) will be used. An

important requirement in using pseudo-observations is that we need an unbiased esti-

mator. Aalen-Johansen estimator would be a unreliable choice since it is susceptible

to bias. We propose in using Titman estimator as an alternative estimator to cre-

ate the pseudo-observation for the regression model. Titman estimator is shown to

be unbiased from [28]. It also can be used in time-irreversible and time-reversible

models. This feature of Titman estimator allows practitioners to find the transition

probability of recovering from an illness in the illness-death model.

In a simulation study, we will compare the results when creating pseudo-observations

by using Titman estimator and Aalen-Johansen estimator. We will illustrate the

regression model using the illness-death model when recovery is not assumed and
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illness-death model when recovery is assumed. We will study when the model is

”pathologically” non-Markov and the model has a frailty effect. Both cases violate

the Markov assumption. Finally, we will analyze the liver cirrhosis dataset using our

proposed method.
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1 Introduction

Multi-state model is a popular way of illustrating an individual’s progression to

various stages. A multi-state model is a directed graph that represents the transitional

relationship between the states(nodes). Illness-death models are useful in describing

medical applications, particularly a progression of a disease. The illness-death model

is a three-state model that represents a “healthy”, “illness” and “death” state. When

recovery is not possible, it is possible for an individual to transition from being healthy

to getting ill or death. It is also possible for an individual to transition from being ill

to death. See Figure 1. We will denote the healthy state as state 0, the illness state

as state 1, and the death state as state 2. In a multi-state model, we are interested in

the transition probability of an individual moving to another state at a certain time.

The transition probability of state j to state k from time s to time t can be expressed

as

Pjk(s, t) = P (X(t) = k|X(s) = j) (1)

Figure 1: Illness-Death Model without Recovery
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Extensive research has been done in computing the state-occupation probability

and transition probability from state to state. The most well-known method was

established by Aalen and Johansen [1]. [1] created a non-parametric estimator(known

as the Aalen-Johansen estimator) that estimates state-occupation probability and

transition probability using Nelson-Aalen estimator and the product integral. Aalen-

Johansen estimator has the form,

P̂(s, t) =
∏
(s,t)

(I+ dΛ̂(u)) (2)

where P̂(s, t) is a matrix of transition probabilities. I is the identity matrix. Λ̂(u) is

a matrix of Nelson-Aalen estimators. Let dNjk(u) be the number of observed events

at time u. Let Yjk(u) be the number of individuals who are at risk of encountering

the event at time u−.

Λ̂(t) =


∫ t

0
dNjk(u)/Yjk(u) j ̸= k

−
∑

j ̸=k Λjk(t) j = k

(3)

Aalen-Johansen estimator is considered the gold standard of estimating transition

probabilities and state-occupation probabilities. Aalen-Johansen estimator assumes

the Markov assumption holds. The Markov property holds when transitioning to a

different state only depends on the state that the individual is currently at. This is a

strong assumption in many applications. When the Markov property is violated, the

Aalen-Johansen estimator may be biased in estimating transition probabilities ([21],

[2], [10], [28]). Thus, the Aalen-Johansen estimator may be a poor choice in estimat-

ing transition probabilities for non-Markov models. [9] showed that for non-Markov

models, the Aalen-Johansen estimator is a consistent estimator for state-occupation

2



probability with the assumption of independent censoring. However, this does not

hold for transition probabilities. In the past couple of decades, non-parametric esti-

mators for transition probability in the non-Markov setting have been published ([21],

[2], [10], [28]).

In survival analysis, there are few existing work in creating semi-parametric re-

gression models for transition probability in multi-state model for non-Markov mod-

els. [5] created a direct binomial regression model for transition probabilities us-

ing inverse censoring probability weighting introduced in [25].[13] created a semi-

parametric regression model using the Landmark Aalen-Johansen estimator ([23]) in

inverse-probability weighted data.

Covariates are included in many studies and datasets. We believe practitioners

will be interested in knowing whether the covariate has a postive or negative effect

to the transition probability. In addition, practitioners will be interested in which

covariate would be a significant predictor. Therefore, we would like to contribute

to the few existing semi-parametric regression model. The main tools to create our

regression model is the non-parametric estimator created by Titman [28] and the

pseudo-observation method introduced by Andersen and others [4]. These methods

will be explained in detail in the next section.

In Section 3 and Section 4, we will create a simulation study showing the pseudo-

observation method using an illness-death model without recovery and illness-death

model with recovery, respectively. In Section 3 and Section 4, we refer to non-Markov

as having a ”pathological” non-Markov behavior. In Section 5, we will discuss frailty

which is a different non-Markov behavior. In Section 6, we will analyze the liver

cirrhosis dataset using our proposed method. In Section 7, we will conclude the

dissertation with discussions and extensions.
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2 Main Methods

2.1 Titman Estimator

The concept of creating non-parametric landmark estimators for multi-state mod-

els was introduced by [10]. The concept of landmarking in estimation is considering a

subsample of the complete data when computing the estimator. For the illness-death

model with no recovery, [10] considered the subsample of individuals who are at risk

at time s. [10] focused on the non-parametric estimator of the transition probabil-

ity for the illness-death model without recovery. [28] also created a non-parametric

estimator that used landmarking. However, [28]’s estimator works for general multi-

state model where there can be more than three states. It can also accommodate for

time-reversible models where it is possible for a multi-state model to have states that

can transition in either directions. This includes the illness-death model with the

possibility of recovery. Thus, the illness-death model with recovery is an illness-death

model when it is also possible for individuals to transition from illness to healthy.

Let {X(t), t > 0} be a multi-state process such thatX(t) ∈ S = {1, 2, ..., S}.There

are S states in the process. [28] proposed an estimator of the transition of a set of

states J to another set of states K. J and K are non-empty sets and do not have

to be disjoint subsets of S. In our study, we are focusing on a more practical case

of transition of two distinct states. The transition can be simplified as moving from

state j to state k. Rk is denoted as the set of states reachable from state j, but

cannot reach state k. Ak is defined such that it is either the singleton {k} when k

is an absorbing state, or an empty set when k is not an absorbing state. Then a

competing risk process, {Cs(u), u ≥ s} can be defined as

4



Cs(u) =


0 if X(u) /∈ {Rk ∪ Ak}

1 if X(u) ∈ Ak

2 if X(u) ∈ Rk

(4)

Then P (X(t) = k|X(s) = j) can be computed as

P (X(t) = k|X(s) = j) =P (Cs(t) = 0, X(t) = k|X(s) = j)

+P (Cs(t) = 1, X(t) = k|X(s) = j)

+P (Cs(t) = 2, X(t) = k|X(s) = j)

=P (Cs(t) = 0, X(t) = k|X(s) = j) + P (Cs(t) = 1|X(s) = j)

(5)

The events, Cs(t) = 2 and X(t) = k are disjoint since Rk is the set of states that state

k is not reachable.This makes P (Cs(t) = 2, X(t) = k|X(s) = j) = 0. Considering

Cs(t) = 1, Ak is non-empty when k is an absorbing state. Also when Cs(t) = 1, the

process is at the absorbing state k. This implies that X(t) = k when Cs(t) = 1. So,

P (Cs(t) = 1, X(t) = k|X(s) = j) = P (Cs(t) = 1|X(s) = j). From this,

P (Cs(t) = 0, X(t) = k|X(s) = j) + P (Cs(t) = 1|X(s) = j)

= P (X(t) = k|Cs(t) = 0, X(s) = j)P (Cs(t) = 0|X(s) = j) + P (Cs(t) = 1|X(s) = j)

(6)

Now, let sY (u) be the risk indicator for the competing risk process, Cs(u). Nj(s)

be the set of individuals that fulfill the conditions: X(s) = j and sY (s) = 1. That is,

the individual is at state j at time s and at risk in the competing risk process, Cs(u).

Nj(s) will represent the subsample from landmarking. That is, landmarking will be
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used to subsample only individuals who are at state j at time s. Let sȲ (u) =
∑

s Y (u)

be number of individuals who are at risk at time u for the process, Cs(u). Let sN1(t)

be the counting process of observed events from type 1 and sN(t) be the counting

process of observed events of all types from Nj(s) in the competing risks model.

P (Cs(t) = 0|X(s) = j) and P (Cs(t) = 1|X(s) = j) can be estimated by using Aalen-

Johansen estimator from individuals only in Nj(s). P (X(t) = k|Cs(t) = 0, X(s) = j)

can be estimated as the proportion of individuals who are in state k at time t among

the individuals with Cs(t) = 0 in state j at time s and at risk at time t (i.e. sY (t) = 1).

Being at risk at time t requires the individual to not be censored in the study before or

at time t. We will denote this proportion as p̂k|j(t). Now the estimates for P (Cs(t) =

0|X(s) = j), P (Cs(t) = 1|X(s) = j), and P (X(t) = k|Cs(t) = 0, X(s) = j) can be

expressed as follows.

F̂0(t) = P̂ (Cs(t) = 0|X(s) = j) =
∏

v∈[s,t]

(
1− dsN(v)

sȲ (v)

)
(7)

F̂1(t) = P̂ (Cs(t) = 1|X(s) = j) =

∫ t

s

∏
v∈[s,t]

(
1− dsN(v)

sȲ (v)

)
dsN1(u)

sȲ (u)
(8)

p̂k|j(t) = P̂ (X(t) = k|Cs(t) = 0, X(s) = j)

=

∑
I(X(s) = j ,X(t) = k , sY (s) = 1 , sY (t) = 1)∑

I(X(s) = j , sY (s) = 1 , sY (t) = 1)

(9)

From this, the proposed estimator of [28] becomes

P̂jk(s, t)

= P̂ (Cs(t) = 1|X(s) = j) + P̂ (Cs(t) = 0|X(s) = j)P̂ (X(t) = k|Cs(t) = 0, X(s) = j)

= F̂1(t) + F̂0(t)p̂k|j(t)

(10)
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We will call (10) as Titman estimator. Using (10), Titman estimator of each transi-

tion of the three-state illness-death model without recovery can be expressed as the

following. In each of the cases, the competing risk model reduces to a simple survival

process.

For the transition from healthy to illness, the states {0, 1} /∈ {Rk ∪ Ak}. 2 ∈ Rk.

Then, the competing risk model can be simplified as

Cs(u) =


0 if X(u) ∈ {0, 1}

2 if X(u) = 2

Also, due to A1 = ∅, Titman estimator can be reduced to

P̂01(s, t) = P̂ (Cs(t) = 0|X(s) = 0)P̂ (X(t) = 1|Cs(t) = 0, X(s) = 0)

= F̂0(t)p̂1|0(t) (11)

where

F̂0(t) = P̂ (Cs(t) = 0|X(s) = 0) =
∏

v∈[s,t]

(
1− dsN(v)

sȲ (v)

)
p̂1|0(t) = P̂ (X(t) = 1|Cs(t) = 0, X(s) = 0)

=

∑
I(X(s) = 0 , X(t) = 1 , sY (s) = 1 , sY (t) = 1)∑

I(X(s) = 0 , sY (s) = 1 , sY (t) = 1)

For the transition from the healthy state to the death state, the states {0, 1} /∈

{Rk ∪ Ak}. 2 ∈ Ak. In this case, Cs(u) can be written as

7



Cs(u) =


0 if X(u) ∈ {0, 1}

1 if X(u) = 2

In the healthy to illness transition, 2 ∈ Rk, but in this case, 2 ∈ Ak. That is,

the death state(state 2) is an absorbing state. Since state 2 is an absorbing state,

P (X(t) = 2|Cs(t) = 0, X(s) = 0) = 0. This is because the only time X(t) = 2 is

when Cs(t) = 1.This reduces the estimator to

P̂02(s, t) = P̂ (Cs(t) = 1|X(s) = 0) = F̂1(t) (12)

where

F̂1(t) = P̂ (Cs(t) = 1|X(s) = 0) =

∫ t

s

∏
v∈[s,t]

(
1− dsN(v)

sȲ (v)

)
dsN1(u)

sȲ (u)

In competing risks, F̂1(t) is also known as the cumulative incidence function of type

1. We can directly compute the expression above, but when we have a simple survival

process we have another option. When we have a simple survival process, F̂1(t) =

1 − Ŝ(t) where Ŝ(t) is the Kaplan-Meier estimator of surviving any cause of failure.

Ŝ(t) can be represented as F̂0(t). So, F̂1(t) can be computed as

F̂1(t) = 1− F̂0(t) = 1− P̂ (Cs(t) = 0|X(s) = 0) = 1−
∏

v∈[s,t]

(
1− dsN(v)

sȲ (v)

)

This alternative way of computing the estimator is equivalent to the estimator from

[10].
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The case of transition from illness to death is similar to the healthy to death transition.

Cs(u) =


0 if X(u) ∈ {0, 1}

1 if X(u) = 2

However, the only difference in this case is that the landmark subsample contains

individuals who are ill at time s. In the healthy to death transition, a subsample of

only individuals who were healthy at time s were included. The estimator is computed

as

P̂12(s, t) = P̂ (Cs(t) = 1|X(s) = 1) = F̂1(t) (13)

where

F̂1(t) = P̂ (Cs(t) = 1|X(s) = 1) =

∫ t

s

∏
v∈[s,t]

(
1− dsN(v)

sȲ (v)

)
dsN1(u)

sȲ (u)

or alternatively

F̂1(t) = 1− F̂0(t) = 1− P̂ (Cs(t) = 0|X(s) = 1) = 1−
∏

v∈[s,t]

(
1− dsN(v)

sȲ (v)

)

2.2 Pseudo-Observations

The other main tool that we will be using is pseudo-observation. Pseudo-observations

are mainly used in jackknife methods. The pseudo-observation, denoted by θ̂i is com-

puted for each observation i. A pseudo-observation measures the contribution of each

individual observation to a summary statistic, θ̂. [4] introduced a regression of the

pseudo-observation, θ̂i on to covariates. The slopes of the covariates are estimated

using generalized estimating equations (GEE).
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To further explain pseudo-observations from [4], consider X1, ..., Xn be indepen-

dent and identically distributed random variables. In general, Xi can be a random

vector or process ({Xi(t), t ≥ 0}). Then consider the expectation, θ for some function,

h. Hence,

θ = E(h(X)) =

∫
x

h(x)f(x)dx (14)

An unbiased estimator, θ̂ = θ̂(X) exists for θ. That is,

EX(θ̂) =

∫
x

θ̂(x)f(x)dx = θ (15)

Let Z1, ..., Zn be independent and identically distributed random variables of covari-

ates. Then,

θ =

∫
x

h(x)f(x)dx =

∫
x

h(x)f(x)dx

∫
z

f(z|x)dz

=

∫
x

∫
z

h(x)f(x, z)dzdx

=

∫
x

∫
z

h(x)f(x|z)f(z)dzdx

By interchanging integrals,

=

∫
z

∫
x

h(x)f(x|z)f(z)dxdz

θ =

∫
z

E(h(X)|Z = z)f(z)dz (16)

Since the covariate, Z is considered random prior to obtaining data, the conditional

expectation should be treated as E(h(X)|Z). That is, the conditional expectation is

also a random variable. From (16), the distribution of Z will be replaced with the
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empirical distribution and define θ̂ as an estimate of the average of conditional expec-

tations, h(Xi|Zi) from a sample. Define the random variables, θi(Zi) = E(h(Xi)|Zi)

for i = 1, ..., n and the average of these random variables, θ̃(Z) = 1
n

∑
j θj(Zj).

Now, we will verify that θ̃(Z) is an unbiased estimator of θ with respect to the

joint random variables (X,Z). Hence, we will show that

EX,Z(θ̃(Z)) = EZ(θ̃(Z)) =
1

n

∑
j

EZ(θj(Zj)) = θ

To show this, consider EZ(θ̃(Z)) and EX,Z(θ̃(Z)).

EZ(θ̃(Z)) =

∫
z

θ̃(Z)f(z)dz

EX,Z(θ̃(Z)) =

∫
z

∫
x

θ̃(Z)f(x, z)dxdz

=

∫
z

∫
x

θ̃(Z)f(z)f(x|z)dxdz

=

∫
z

θ̃(Z)f(z)

∫
x

f(x|z)dxdz

=

∫
z

θ̃(Z)f(z)dz

= EZ(θ̃(Z))
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EZ(θ̃(Z)) = EZ

(
1

n

∑
j

θj(Zj)

)

=
1

n

∑
j

EZ(θj(Zj))

=
1

n

∑
j

EZ(EX(h(Xi)|Zi))

=
1

n

∑
j

EX(h(Xi))

=
1

n

∑
j

θ =
1

n
(nθ) = θ

Thus, EX,Z(θ̃(Z)) = EZ(θ̃(Z)) =
1
n

∑
j EZ(θj(Zj)) = θ. □

Let the leave-one out estimator, θ̃−i(Z) =
1

n−1
∑

j ̸=i θj(Zj). θ̃−i(Z) is θ̃(Z) without

the contribution of individual i. Considering θi(Zi) for individual i, θi(Zi) can be

written as

θi(Zi) = θ̃(Z) + (n− 1)(θ̃(Z)− θ̃−i(Z)) = nθ̃(Z)− (n− 1)θ̃−i(Z) (17)

Denote θ̂i as the individual contribution of individual i for the unbiased estimator,

θ̂(X). Similarly, θ̂i can be expressed as

θ̂i = θ̂(X) + (n− 1)(θ̂(X)− θ̂−i(X)) = nθ̂(X)− (n− 1)θ̂−i(X) (18)

Now, θ̃(Z) and θ̂(X) have the same expectation with respect to (X,Z). That is,

EX,Z(θ̃(Z)) = EX,Z(θ̂(X)). To show this,
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EX,Z(θ̂(X)) =

∫
x

∫
z

θ̂(X)f(x, z)dzdx =

∫
x

∫
z

θ̂(X)f(x)f(z|x)dzdx

=

∫
x

θ̂(X)f(x)

∫
z

f(z|x)dzdx

=

∫
x

θ̂(X)f(x)dx

= EX(θ̂(X)) = θ

We already know EX,Z(θ̃(Z)) = θ from earlier. Thus, EX,Z(θ̂(X)) = EX,Z(θ̃(Z)) = θ.

Note that we can also make similar arguments with EX,Z(θ̃−i(Z)) and EX,Z(θ̂−i(X)).

□

From these results, θi(Zi) and θ̂i have the same expectation. That is, EX,Z(θi(Zi)) =

EX,Z(θ̂i). This is critical because we will not be able to compute θ̃(Z) from the dataset.

However, the unbiased estimator, θ̂(X) can be computed from the dataset. Therefore,

the pseudo-observation is defined as (18) in which it measures the contribution of

individual i.

[4] proposed in constructing a regression model where the pseudo-observation, θ̂i

depends on the covariates, Zi for i = 1, ..., n. Let θi = θi(Zi) = E(h(Xi)|Zi). Then,

a generalized linear model in relation of θi and Zi will be

g(θi) = βTZi (19)

where β is a vector of slopes of the covariates and Zi is a vector of covariates for the

ith individual including the intercept. That is, ZT
i = [1, Zi1, ..., Zip] when there are p

covariates. Then, the inverse link function is denoted as
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µ(βTZi) = g−1(βTZi) = θi (20)

µ(βTZi) = θi is known as the mean function of the response variable.

It is also possible to have applications with multiple pseudo-observations. This

is when we are interested in multiple time points, t1, ..., tm simultaneously. θ =

[θ1, ..., θm]
T . The pseudo-observations for individual i at the lth time point would be

θ̂il = nθ̂(tl)− (n− 1)θ̂−i(tl) l = 1, ...,m (21)

Thus, there will be m pseudo-observations.

To estimate the slopes of the covariates, β, [4] proposed in constructing a nonlinear

regression where θ̂i depends on Zi.The non-linear regression method that will be used

is GEE introduced by [17].GEE are based on quasi-likelihood function. Regarding

quasi-likelihood functions, consider the exponential family,

f(y∗i ) = exp

(
y∗i η − a(η)

c(ϕ)
+ b(y∗i , ϕ)

)
(22)

where η is the canonical parameter, y∗i is the observed response variable for individual

i, and ϕ is a nuisance parameter. E(Y ∗i ) = a
′
(η) and V ar(Y ∗i ) = c(ϕ)a

′′
(η). We

denote the response variable as Y ∗ to avoid confusion on the notation between the

response variable and the risk indicator introduced in Section 1. In general from [31],

the quasi-likelihood function, QL(y∗i , µi) for the ith individual is defined as

QL(y∗i , µi) =

∫ µi

y∗i

y∗i − t

c(ϕ)V (t)
dt (23)

where y∗i is the response variable and µi = E(Y ∗i ) and V ar(Y
∗
i ) = c(ϕ)V (µi). V (.) is
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a known function. The derivative with respect to µi,

∂QL(y∗i , µi)

∂µi

=
(y∗i − µi)

c(ϕ)V (µi)
(24)

This expression is called the quasi-score function. Ultimately, the score function with

respect to β is

Ui(β) =
∂QL(y∗i , µi)

∂β
=
∂QL(y∗i , µi)

∂µi

∂µi

∂β
=

(y∗i − µi)

c(ϕ)V (µi)

∂µi

∂β
(25)

To illustrate an example of the quasi-likelihood function, consider Y ∗i that has a

Poisson distribution with mean λ. Then the exponential family will be

f(y∗i ) = exp

(
y∗i η − a(η)

c(ϕ)
+ b(y∗i , ϕ)

)
= exp (y∗i ln(λ)− λ− ln(y∗i !))

where the canonical parameter, η = ln(λ), a(η) = λ = exp(η), b(y∗i , ϕ) = −ln(y∗i !),

and c(ϕ) = 1. E(Y ∗i ) = a
′
(η) = exp(η) and V ar(Y ∗i ) = c(ϕ)a

′′
(η) = exp(η). Thus,

µi = E(Y ∗i ) = V ar(Y ∗i ) = exp(η). Since c(ϕ) = 1, this leads to V (µi) = µi. The

quasi-score function is

∂QL(y∗i , µi)

∂µi

=
(y∗i − µi)

c(ϕ)V (µi)
=
y∗i − µi

µi

For the quasi-likelihood function, after we take the anti-derivative of the quasi-score

function with respect to µi, then

QL(y∗i , µi) =

∫
∂QL(y∗i , µi)

∂µi

=

∫
y∗i − µi

µi

dµi = y∗i ln(µi)− µi
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□

In our application, the exponential family and the canonical parameter will depend

on which link function is chosen. For the quasi-likelihood function, θi is the mean

function(µi). The pseudo-observation, θ̂i is the observed response variable that will

take the role of Y ∗i . The quasi-likelihood function, QL(θ̂i, θi), the quasi-score function,

∂QL(θ̂i,θi)
∂θi

, and the score function with respect to β, Ui(β) would be

QL(θ̂i, θi) =

∫ θi

θ̂i

θ̂i − t

c(ϕ)V (t)
dt (26)

∂QL(θ̂i, θi)

∂θi
=

(θ̂i − θi)

c(ϕ)V (θi)
(27)

Ui(β) =
∂QL(θ̂i, θi)

∂β
=
∂QL(θ̂i, θi)

∂θi

∂θi
∂β

=
(θ̂i − θi)

c(ϕ)V (θi)

∂θi
∂β

(28)

Suppose that we have multiple time points, θ̂i = [θ̂i1, ..., θ̂imi
]T such that individual

i has mi pseudo-observations. When there are multiple time points, there will be a

covariance matrix with dimensions of mi ×mi rather than a single variance. Denote

the covariance matrix for individual i, Vi. Thus,

Ui(β) =
∂θi
∂β

T

V −1i (θ̂i − θi) (29)

Vi still depends on θi. With p covariates, ∂θi
∂β

is a mi × p matrix of partial derivatives.

By adding all the individuals,

U(β) =
∑
i

Ui(β) (30)

Let Vi be a working covariance matrix that has dimensions of mi ×mi where mi is
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the number of time points individual i has. Vi can be decomposed into the following.

Vi = c(ϕ)E
1/2
i Ri(γ)E

1/2
i (31)

ϕ is a scale parameter, and it is a nuisance parameter. Ei is a mi × mi diagonal

matrix of V (θij) with j representing the diagonal element. j also represents the jth

timepoint. Ri(γ) is a “working” correlation matrix. A “working” correlation ma-

trix is a correlation matrix that would make it possible to get consistent estimators

and variance estimators, even though the covariance structure was mispecified. In

the R-package, geepack, independence, exchangeable, and first-order autoregressive

“working” correlation matrices are available ([12]). These are three common ”work-

ing” correlation matrices. Independent correlation matrix is the identity matrix. An

example of an exchangeable correlation matrix is


1 γ γ

γ 1 γ

γ γ 1


An example of the first-order autoregressive correlation matrix is


1 γ γ2

γ 1 γ

γ2 γ 1


Ultimately from (29) and (30),

U(β) =
∑
i

(
∂θi
∂β

)T

V −1i (θ̂i − θi) =
∑
i

Ui(β)
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The slope estimates, β̂ can be found by solving for β for U(β) = 0. Additionally, two

assumptions are made.

i) E(U(β)) = 0 where β is the vector of true values of the slope.

ii) Ui(β) i = 1, ..., n are independent.

Finally, Theorem 1 is an asymptotic result of β̂. This theorem was stated by [4]. A

sketch of the proof showing the asymptotic normality of GEE estimates in general

was presented in [17].The complete proof of this result can be found in Appendix A.

Theorem 1
√
n(β̂ − β) is asymptotically normal with mean zero and covariance

matrix estimated Σ̂ = I(β̂)−1v̂ar(U(β))I(β̂)−1 where I(β) =
∑

i
∂θi
∂β

T
V −1i

∂θi
∂β

and

v̂ar(U(β)) =
∑

i Ui(β̂)Ui(β̂)
T . I(β) is a p× p information matrix.

2.3 Applying to Multi-state models

To relate this to transition probabilities for non-Markov models, our parameter of

interest is the transition probability. So, θ = Pjk(s, t). By choosing a link function g,

the linear model would be

g(Pijk(s, t)) = g(θi) = βTZi (32)

To create a pseudo-observation θ̂i, we would need an unbiased estimator, θ̂(X) of

the transition probability. For, non-Markov models, Aalen-Johansen estimator may

be a poor choice due to it being susceptible to bias. Alternatively, [28] showed that

Titman estimator is unbiased for Markov and non-Markov models. This leads us to

believe that Titman estimator may be a suitable estimator as θ̂(X) .

In a dataset for n individuals, we will create a pseudo-observation, θ̂i for each

individual. In a new dataset, we will use the pseudo-observation, θ̂i that we computed

from the original dataset as the response variable and the covariates, Zi for each
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individual. Then to find the slope estimates, we will use the GEE method described

in Section 2.2. Since we are interested in finding the transition probability for one

time point t, we will only need one pseudo-observation. Instead of having a covariance

matrix, we would only have one value for the variance.
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3 Simulation Study

3.1 Non-Parametric Estimator

Now, we will create a simulation to study the feasibility of our proposed idea from

Section 2.3. In this section, we will focus on the illness-death model without recovery.

First, we want to verify that Titman estimator is unbiased in a non-Markov setting.

We will use the same simulation settings as shown in [28]. In the simulation, the

transition intensities are α01 = 0.12, α02 = 0.03, and α02 = 0.1 for the Markov case.

In the non-Markov case, the transition rates are α01 = 0.12, α02 = 0.03 , and

α12 =


0.1 if X(4) = 0

0.05 if X(4) ̸= 0

(33)

The censoring distribution used are the uniform distribution (5,40) and exponential

distribution with rate=.04. The sample sizes are n = 200 and n = 500 where n is

the number of individuals in state 0 at time 0. The times, s and t are chosen so

that they are the 15th and the 45th percentile of the distribution to time to death.

In the Markov case, the times were s = 3.79 and t = 10.501. In the non-Markov

case, s = 4.674 and t = 12.791. We compute Titman estimator and Aalen-Johansen

estimator for 1,000 simulated datasets and take the average of each estimator. To find

the bias, we would also need to know the true value of the transition probability for

each transition. bias = average of the estimator − true value. The true transition

probability for each transition is computed as below. For the Markov case,
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P01(s, t) =

∫ t

s

P00(s, u)α01(u)P11(u, t)du

=

∫ t

s

exp

(
−
∫ u

s

(α01(v1) + α02(v1))dv1

)
α01(u) exp

(
−
∫ t

u

α12(v2)dv2

)
du

(34)

P02(s, t) =

∫ t

s

P00(s, u)α02(u)du+

∫ t

s

∫ t

u1

P00(s, u1)α01(u1)P11(u1, u2)α12(u2)du2du1

=

∫ t

s

exp

(
−
∫ u

s

(α01(v1) + α02(v1))dv1

)
α02(u)du

+

∫ t

s

∫ t

u1

exp

(
−
∫ u1

s

(α01(v1) + α02(v1))dv1

)
α01(u1)

× exp

(
−
∫ u2

u1

α12(v2)dv2

)
α12(u2)du2du1

(35)

P12(s, t) =

∫ t

s

P11(s, u)α12(u)du∫ t

s

exp

(
−
∫ u

s

(α12(v))dv

)
α12(u)du

(36)

For the healthy to death transition, we need to consider two cases. The first case

is when the individual transitions to the death state without a prior transition to the

illness state. The other case is when the individual first transitions to the illness state

before time t, and then transitions to the death state by time t.

For the non-Markov case, the healthy to illness transition and the healthy to death

transition remain the same as the Markov case. Since s = 4.674, all individuals who

are at the healthy state at 4.674, must also be at the healthy state at 4. The values

of s and t still differ from the Markov case. For the illness to death transition, we
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need to consider whether the individual becomes ill before time 4 or the individual

becomes ill after 4, but before s. Based on when the individual got ill, it will affect

α12.

P (X(t) = 2|X(s) = 1)

= P (X(t) = 2, X(4) = 0|X(s) = 1) + P (X(t) = 2, X(4) ̸= 0|X(s) = 1)

= P (X(t) = 2|X(4) = 0, X(s) = 1)P (X(4) = 0|X(s) = 1)

+P (X(t) = 2|X(4) ̸= 0, X(s) = 1)P (X(4) ̸= 0|X(s) = 1)

P12(s, t) =

∫ t

s

P11(s, u)α
∗
12(u)du

P00(0, 4)
∫ s

4
P00(4, v)α01(v)P11(v, s)dv∫ s

0
P00(0, v)α01(v)P11(v, s)dv

+

∫ t

s

P11(s, u)α
†
12(u)du

∫ 4

0
P00(0, v)α01(v)P11(v, s)dv∫ s

0
P00(0, v)α01(v)P11(v, s)dv

=

∫ t

s

exp

(
−
∫ u

s

α∗12(w1)dw1

)
α∗12(w1)du exp

(
−
∫ 4

0

(α01(w2) + α02(w2))dw2

)
×
∫ s

4
exp

(
−
∫ v

4
(α01(w3) + α02(w3))dw3

)
α01(v) exp

(
−
∫ s

v
α∗12(w4)dw4

)
dv∫ s

0
exp

(
−
∫ v

0
(α01(w3) + α02(w3))dw3

)
α01(v) exp

(
−
∫ s

v
α∗12(w4)dw4

)
dv

+

∫ t

s

exp

(
−
∫ u

s

α†12(w1)dw1

)
α†12(w1)du

×

∫ 4

0
exp

(
−
∫ v

0
(α01(w3) + α02(w3))dw3

)
α01(v) exp

(
−
∫ s

v
α†12(w4)dw4

)
dv∫ s

0
exp

(
−
∫ v

0
(α01(w3) + α02(w3))dw3

)
α01(v) exp

(
−
∫ s

v
α†12(w4)dw4

)
dv

(37)

where α∗12(u) = 0.1 and α†12(u) = 0.05.

Table 1-Table 3 show the bias, standard deviation, and mean squared error(MSE)

of Titman estimator and Aalen-Johansen(AJ) estimator for Markov and non-Markov

22



Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif .00042 .04224 .00178
Titman 200 Markov Exp -.00155 .05454 .00298
Titman 500 Markov Unif -.00033 .03136 .00098
Titman 500 Markov Exp -.00247 .03374 .00114
Titman 200 N-M Unif .00185 .05301 .00281
Titman 200 N-M Exp .0014 .05974 .00357
Titman 500 N-M Unif -.0016 .03422 .00117
Titman 500 N-M Exp .00154 .03871 .0015
AJ 200 Markov Unif .00004 .04061 .00165
AJ 200 Markov Exp .00013 .04822 .00233
AJ 500 Markov Unif -.00042 .0267 .00071
AJ 500 Markov Exp -.00009 .02982 .00089
AJ 200 N-M Unif .04847 .04419 .0043
AJ 200 N-M Exp .048 .05174 .00498
AJ 500 N-M Unif .04828 .0295 .0032
AJ 500 N-M Exp .04897 .03219 .00343

Table 1: Bias,Standard Deviation(SD), and MSE of Titman and Aalen-Johansen esti-
mators(AJ) for 0�1(healthy to illness) of the Illness-Death Model without Recovery

Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif -.0004 .04389 .00193
Titman 200 Markov Exp .00053 .04768 .00227
Titman 500 Markov Unif -.00026 .02887 .00083
Titman 500 Markov Exp .00141 .03128 .00098
Titman 200 N-M Unif -.0025 .05141 .00265
Titman 200 N-M Exp -.0008 .05652 .0032
Titman 500 N-M Unif .00003 .03223 .00104
Titman 500 N-M Exp .00188 .03667 .00135
AJ 200 Markov Unif .00118 .03777 .00143
AJ 200 Markov Exp .00228 .04266 .00183
AJ 500 Markov Unif -.00167 .02359 .00056
AJ 500 Markov Exp -.00098 .02674 .00072
AJ 200 N-M Unif -.04772 .04194 .00404
AJ 200 N-M Exp -.04794 .04689 .0045
AJ 500 N-M Unif -.04778 .02669 .003
AJ 500 N-M Exp -.04737 .02974 .00313

Table 2: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen es-
timators(AJ) for 0�2(healthy to death) of the Illness-Death Model without Recovery
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Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif -.00056 .0697 .00486
Titman 200 Markov Exp .00076 .07716 .00595
Titman 500 Markov Unif .00128 .04368 .00191
Titman 500 Markov Exp -.00081 .04999 .0025
Titman 200 N-M Unif .00242 .06041 .00366
Titman 200 N-M Exp -.00183 .06811 .00464
Titman 500 N-M Unif .00033 .03858 .00149
Titman 500 N-M Exp -.00137 .04398 .00194
AJ 200 Markov Unif -.00011 .05394 .00291
AJ 200 Markov Exp .00084 .05887 .00347
AJ 500 Markov Unif -.00122 .03233 .00105
AJ 500 Markov Exp -.00011 .03753 .00141
AJ 200 N-M Unif .06885 .05321 .00757
AJ 200 N-M Exp .06538 .05471 .00727
AJ 500 N-M Unif .06848 .03228 .00573
AJ 500 N-M Exp .06648 .03717 .0058

Table 3: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for 1�2(illness to death) of the Illness-Death Model without Recovery

models for all three transitions. Note that in Chapter 3 and Chapter 4, non-Markov

models will be labeled as ”N-M” in the tables. As we expected, Titman estimator

and Aalen-Johansen estimator are both unbiased in the Markov case. In the non-

Markov case, Titman estimator remains unbiased, but Aalen-Johansen estimator is

biased. In both cases, Aalen-Johansen estimator has a lower standard deviation than

Titman estimator. Titman estimator requires individuals to satisfy the conditions to

be in the set, Nj(s) . Aalen-Johansen estimator only requires indiviudals to be at risk

at time s. Therefore, Titman estimator considers a smaller set of individuals than

Aalen-Johansen estimator. Due to Titman estimator considering a smaller set of indi-

viduals, the standard deviation is higher than Aalen-Johansen estimator.Comparing

the MSE, Aalen-Johansen estimator has a smaller MSE for the Markov case and

Titman estimator has a smaller MSE for the non-Markov case. Since bias was not

an issue for either estimator for the Markov case, the lower standard deviation of

24



Aalen-Johansen estimator made its MSE smaller. For the non-Markov case, the bias

of Aalen-Johansen estimator had a bigger effect than the smaller standard deviation

when comparing it to Titman estimator. Overall, Aalen-Johansen estimator seems

like a better choice for the Markov case, and Titman estimator seems like a better

choice for the non-Markov case. This justifies our motivation in using Titman esti-

mator as an alternative estimator in creating pseudo-observation in the non-Markov

case.

3.2 Regression Using Pseudo-Observation

Now, suppose that we want to create a semi-parametric model. We simulate the

transition intensities going from state j to state k as having the Cox proportional

hazard form.

αjk(t|z) = αjk0

(
exp(β∗jkz)

)
(38)

For the Markov case, the baseline transition intensities were α010 = 0.12, α020 = 0.03,

and α120 = 0.1. For the non-Markov case, α010 = 0.12, α020 = 0.03, and

α120 =


0.1 if X(4) = 0

0.05 if X(4) ̸= 0

(39)

The slope of the transition intensities were β∗01 = β∗02 = β∗12 = 1. The model has one

binary covariate, Z ∼ Bernoulli(p = 0.5). We will compute the pseudo-observation

using Titman estimator and Aalen-Johansen estimator. Then we will find the inter-

cept estimate and slope estimate using GEE. We will use the normal link function.

We will repeat this simulation 1,000 times and average the intercept estimate and

slope estimate. We will compare them with the true value of the intercept and slope,
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respectively. We will let s = 2 and t = 6.

It is difficult to calculate analytically the true transition probability, Pjk(s, t) in the

multi-state model with a covariate. [13] in their study used a large sample and created

an empirical distribution to represent the true population. In our case, we will also

use a large sample to find the proportion of individuals who transitioned from state

j to state k between time s and time t. We sample 100,000 individuals that would

represent the population. Then from the large sample, we will compute the empirical

proportion that would represent the true transition probability. For example, for

the healthy to illness transition, the empirical proportion will be considered the true

transition probability, P01(s, t).

Let the indicator variable be I(X(t) = 1|X(s) = 0). This represents whether

the individual transitioned to the illness state by time t given that the individual is

healthy at time s. The proportion will be
∑n∗

i=1 I(X(t)=1|X(s)=0)

n∗ where n∗ are all of the

individuals out of the 100,000 individuals who are healthy at time s. The proportions

can be constructed similarly for the other two transitions. Then, we will create a

pseudo-observation using the empirical proportion, and obtain the intercept estimate

and slope estimate using GEE. We will compare the results of the intercept estimate

and slope estimate from Titman estimator and Aalen-Johansen estimator with the

results of the intercept and slope from the empirical proportion.

Table 4, Table 6, and Table 8 show the bias and the standard deviation of the inter-

cept estimate and the slope estimate using the pseudo-observation method for healthy

to illness, healthy to death, and illness to death transitions, respectively. Table 5, Ta-

ble 7, and Table 9 show the bias and the standard deviation of the predicted transition

probability when Z = 1. They also show the MSE for the intercept estimate, the slope

estimate, and the predicted transition probability when Z = 1 for healthy to illness,

healthy to death, and illness to death transitions, respectively. For the Markov case,
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Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif .0046 -.0042 .05893 .08394
Titman 200 Markov Exp .0057 -.0082 .06488 .09019
Titman 500 Markov Unif .0044 -.0055 .03772 .05332
Titman 500 Markov Exp .0051 -.0055 .04225 .0588
Titman 200 N-M Unif -.0063 .0033 .0629 .0903
Titman 200 N-M Exp -.0056 .0023 .0686 .10196
Titman 500 N-M Unif -.0049 -.0029 .03701 .0551
Titman 500 N-M Exp -.0086 .0003 .04417 .06011
AJ 200 Markov Unif .0018 -.0033 .05324 .07089
AJ 200 Markov Exp .0009 -.0055 .05761 .07959
AJ 500 Markov Unif .0019 -.0042 .03396 .04596
AJ 500 Markov Exp .0015 -.0032 .03571 .05042
AJ 200 N-M Unif .0525 -.1113 .05666 .07921
AJ 200 N-M Exp .0584 -.1154 .06175 .08471
AJ 500 N-M Unif .0547 -.1163 .03559 .05072
AJ 500 N-M Exp .0552 -.113 .03825 .05478

Table 4: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 0�1(healthy to illness)

Estimator n Model Censor Bias P̂01 SD P̂01 MSE β̂0 MSE β̂1 MSE P̂01

Titman 200 Markov Unif .0005 .06299 .00349 .00706 .00397
Titman 200 Markov Exp -.0025 .06602 .00424 .0082 .00437
Titman 500 Markov Unif -.0011 .03813 .00144 .00287 .00146
Titman 500 Markov Exp -.0004 .04222 .00181 .00349 .00178
Titman 200 N-M Unif -.0029 .06393 .004 .00817 .0041
Titman 200 N-M Exp -.0033 .0744 .00474 .0104 .00555
Titman 500 N-M Unif -.0078 .04109 .00139 .00304 .00175
Titman 500 N-M Exp -.0083 .04406 .00203 .00361 .00201
AJ 200 Markov Unif -.0015 .05182 .00284 .00504 .00269
AJ 200 Markov Exp -.0046 .059434 .00332 .00637 .00355
AJ 500 Markov Unif -.0023 .03255 .00116 .00213 .00107
AJ 500 Markov Exp -.0017 .03688 .00128 .00255 .00136
AJ 200 N-M Unif -.0588 .05536 .00597 .01866 .00652
AJ 200 N-M Exp -.057 .05991 .00722 .02049 .00684
AJ 500 N-M Unif -.0616 .03549 .00426 .0161 .00505
AJ 500 N-M Exp -.0578 .03852 .00451 .01577 .00483

Table 5: Bias and Standard Deviation(SD) of P̂01(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂01(s, t|Z = 1) using Pseudo-Observation Method of 0�1(healthy to illness)

27



Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif .0023 -.0039 .04657 .08285
Titman 200 Markov Exp .0044 -.0063 .05182 .09175
Titman 500 Markov Unif .004 -.0079 .02962 .05326
Titman 500 Markov Exp .0042 -.0053 .03323 .0568
Titman 200 N-M Unif -.0019 .0007 .0441 .07764
Titman 200 N-M Exp -.0007 -.0016 .05037 .08255
Titman 500 N-M Unif -.0008 -.0014 .02923 .05154
Titman 500 N-M Exp .0006 -.002 .03065 .05479
AJ 200 Markov Unif .0064 -.0068 .04439 .07247
AJ 200 Markov Exp .0053 -.0011 .04805 .07591
AJ 500 Markov Unif .0065 -.0061 .02718 .04432
AJ 500 Markov Exp .0053 -.0035 .03006 .0465
AJ 200 N-M Unif .1117 -.2164 .04612 .06523
AJ 200 N-M Exp .1138 -.2175 .05121 .07214
AJ 500 N-M Unif .107 -.2176 .03003 .04293
AJ 500 N-M Exp .1074 -.2162 .03169 .04525

Table 6: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 0�2(healthy to death)

Estimator n Model Censor Bias P̂02 SD of P̂02 MSE β̂0 MSE β̂1 MSE P̂02

Titman 200 Markov Unif -.0015 .06703 .00217 .00688 .0045
Titman 200 Markov Exp -.0019 .07302 .00271 .00846 .00534
Titman 500 Markov Unif -.0039 .04335 .00089 .0029 .00189
Titman 500 Markov Exp -.0011 .04539 .00112 .00325 .00206
Titman 200 N-M Unif -.0011 .05982 .00195 .00603 .00358
Titman 200 N-M Exp -.0023 .0663 .00254 .00682 .0044
Titman 500 N-M Unif -.0022 .03973 .00086 .00266 .00158
Titman 500 N-M Exp -.0014 .04416 .00094 .00301 .00195
AJ 200 Markov Unif -.0004 .05681 .00201 .0053 .00323
AJ 200 Markov Exp .0043 .05927 .00234 .00576 .00353
AJ 500 Markov Unif .0004 .03418 .00078 .002 .00117
AJ 500 Markov Exp .0017 .03729 .00093 .00218 .00139
AJ 200 N-M Unif -.1046 .04531 .0146 .05108 .01299
AJ 200 N-M Exp -.1037 .04998 .01557 .05251 .01325
AJ 500 N-M Unif -.1106 .02895 .01235 .04919 .01307
AJ 500 N-M Exp -.1089 .0322 .01254 .04879 .0129

Table 7: Bias and Standard Deviation(SD) of P̂02(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂02(s, t|Z = 1) using Pseudo-Observation Method of 0�2(healthy to death)
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Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif -.0066 .0048 .0997 .13696
Titman 200 Markov Exp -.0042 .0108 .10518 .14381
Titman 500 Markov Unif -.0023 .0052 .06114 .08239
Titman 500 Markov Exp -.0047 .0074 .06587 .08867
Titman 200 N-M Unif -.0007 .0001 .07208 .11197
Titman 200 N-M Exp .0005 .003 .07885 .117
Titman 500 N-M Unif .001 .0034 .04757 .06878
Titman 500 N-M Exp -.0005 .0023 .05056 .07075
AJ 200 Markov Unif -.0108 .0118 .07287 .09762
AJ 200 Markov Exp -.0101 .0101 .07403 .09889
AJ 500 Markov Unif -.011 .0094 .0444 .05986
AJ 500 Markov Exp -.012 .0084 .04776 .06702
AJ 200 N-M Unif .1189 -.2098 .06962 .10253
AJ 200 N-M Exp .1143 -.2127 .07336 .10842
AJ 500 N-M Unif .1126 -.215 .0442 .06373
AJ 500 N-M Exp .1077 -.211 .04754 .06651

Table 8: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 1�2(illness to death)

Estimator n Model Censor Bias P̂12 SD P̂12 MSE β̂0 MSE β̂1 MSE P̂12

Titman 200 Markov Unif -.0018 .0991 .00998 .01878 .00982
Titman 200 Markov Exp .0066 .10014 .01108 .0208 .01007
Titman 500 Markov Unif .0029 .05812 .00374 .00682 .00339
Titman 500 Markov Exp .0026 .06469 .00436 .00792 .00419
Titman 200 N-M Unif -.0007 .0928 .0052 .01254 .00861
Titman 200 N-M Exp .0036 .09863 .00622 .0137 .00974
Titman 500 N-M Unif .0043 .0559 .00226 .00474 .00314
Titman 500 N-M Exp .0018 .05955 .00256 .00501 .00355
AJ 200 Markov Unif .001 .07124 .00543 .00967 .00508
AJ 200 Markov Exp <.0001 .07697 .00558 .00988 .00592
AJ 500 Markov Unif -.0016 .04419 .00209 .00367 .00196
AJ 500 Markov Exp -.0035 .0487 .00243 .00456 .00238
AJ 200 N-M Unif -.0909 .07043 .01898 .05453 .01322
AJ 200 N-M Exp -.0984 .07944 .01845 .057 .01599
AJ 500 N-M Unif -.1023 .04459 .01463 .05029 .01245
AJ 500 N-M Exp -.1033 .04761 .01386 .04895 .01294

Table 9: Bias and Standard Deviation(SD) of P̂12(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂12(s, t|Z = 1) using Pseudo-Observation Method of 1�2(illness to death)
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the results are consistent to what we observed in Section 3.1. The bias is minimal

when using either estimator. The standard deviation is smaller for Aalen-Johansen

estimator, and this leads to a smaller MSE when using Aalen-Johansen estimator.

For this reason, we believe that for the Markov case, the pseudo-observation method

using Aalen-Johansen estimator is better.

For the non-Markov case, the results are what we conjectured in Section 2.3. The

bias when using Titman estimator is minimal, but Aalen-Johansen estimator is quite

biased. The slope estimate for Aalen-Johansen estimator is close to 0, so higher the

magnitude of the true slope, the higher the bias became when using Aalen-Johansen

estimator. The magnitude of healthy to death and illness to death transitions were

quite high. We believe that the biased Aalen-Johansen estimator is heavily influenc-

ing the intercept and has little to no effect to the slope which is close to 0. The

standard deviation is smaller when using Aalen-Johansen estimator than when using

Titman estimator. Due to the large contribution of the bias in the MSE when using

Aalen-Johansen estimator, the MSE is higher when using Aalen-Johansen estimator.

Therefore, for the non-Markov case, we believe using Titman estimator is better.

We noticed that the standard devation in the illness to death transition is concern-

ingly high. This is particularly the case when using Titman estimator. We believe

that this is because the landmark subsample of only ill individuals is low. This can

be a problem for small sample sizes. We see improvement when n = 500 compared

to when n = 200. We recommend practitioners to have larger sample sizes when

studying illness to death transitions.

We will study the asymptotic result of Theorem 1 using a simulation. We will

show the results of the illness to death transition of the non-Markov case. The

simulation was based on 1,000 datasets. Figure 2 and Figure 3 show the histograms

and Normal Q-Q plots for the slope, respectively for various sample sizes. Table 10
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Figure 2: Histogram of the Slope Estimate using Pseudo-Observation Method with
Titman Estimator for Illness-Death Model without Recovery

Figure 3: Normal QQ-Plot of the Slope Estimate using Pseudo-Observation Method
with Titman Estimator for Illness-Death Model without Recovery

shows the results of Shapiro-Wilk test for normality of the slope for various sample

sizes. We can see that for smaller n the histogram looks slightly skewed. We can

see a slight departure on the upper-tail of the Normal Q-Q plot, particularly when

n = 200. However, as n gets larger, the shape of the histogram looks closer to a

normal distribution, and the departure in the Normal Q-Q plot mitigates. When n
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n P-value

200 .0983
350 .1338
500 .8293
700 .7468
1000 .7209

Table 10: Shapiro-Wilk Test for Normality of the Slope using Pseudo-Observation
Method with Titman Estimator for Illness-Death Model without Recovery

gets larger, p-value is clearly insignificant for Shapiro-Wilk test. Overall, the results

from the histograms, Normal Q-Q plots, and Shapiro-Wilk tests verify the asymptotic

normality of Theorem 1.
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4 Illness-Death Model With Recovery

4.1 Introduction

Consider the three-state illness-death model, but with the possibility of transi-

tioning from the illness state to the healthy state. This means that it is possible for

individuals to recover from the illness. See Figure 4. This multi-state model is also

practical to medical practitioners since many individuals diagnosed with a disease

recover. We assume individuals may get ill and recover more than one time. That is,

there is no restriction in the number of times an individual becomes ill or recovers.

Figure 4: Illness-Death Model with Recovery

There will be four transitions. From [28], the competing risk process, Cs(u) re-

mains the same for the healthy to illness, the healthy to death, and the illness to death

transitions. For the transition of illness to healthy, the states, {0, 1} /∈ {Rk ∪ Ak}.

2 ∈ Rk. Then the competing risk model can be simplified to
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Cs(u) =


0 if X(u) ∈ {0, 1}

2 if X(u) = 2

Then the estimator will be

P̂10(s, t) = P̂ (Cs(t) = 0|X(s) = 1)P̂ (X(t) = 0|Cs(t) = 0, X(s) = 1)

= F̂0(t)p̂0|1(t) (40)

where

F̂0(t) = P̂ (Cs(t) = 0|X(s) = 1) =
∏

v∈[s,t]

(
1− dsN(v)

sȲ (v)

)
p̂0|1(t) = P̂ (X(t) = 0|Cs(t) = 0, X(s) = 1)

=

∑
I(X(s) = 1 , X(t) = 0 , sY (s) = 1 , sY (t) = 1)∑

I(X(s) = 1 , sY (s) = 1 , sY (t) = 1)

The landmark subsample will only consist of individuals who are ill at time s.

4.2 Non-Parametric Estimator

Similar to the illness-death model without recovery, [28] showed that Titman

estimator is unbiased for the Markov case and the non-Markov case. Similar to

Section 3.1, we want to verify that Titman estimator is unbiased in a non-Markov

setting in the illness-death model with recovery. We will use the same transition rates

that [28] used which are different from Section 3.1. For the Markov case, α01 = 0.5,

α02 = 0.02, α12 = 0.1, and α10 = 0.3. For the non-Markov case, all of the transition

rates remain the same as the Markov case except α01.
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α01 =


0.3 if X(4) = 1

0.5 if X(4) ̸= 1

(41)

In addition, we will let α01 = 0.5 for time before time 4. s and t are the 15th and

45th percentile of the time to death distribution. In the Markov case, s = 3.1927 and

t = 9.6482. In the non-Markov case, s = 3.1922 and t = 9.9237. The other settings

of the simulation remain the same as the simulation from Section 3.1.

It is difficult to compute the true transition probability as we did in Section 3.1.

This is because there are no restriction in the number of times an individual may

get ill or recover. Thus, an individual may transition between the healthy state and

the illness state arbitrary number of times. We will compute the true transition

probability using matrix exponentials involving Kolmogorov’s forward and backward

equations discussed in [14].

Suppose that we have a transition rate matrix, A. Also, consider the transition

probability matrix, P (t). In our study, we have s and t. [14] assumes that s =

0, but s does not have be 0. In our simulations, s > 0. We will let t∗ be the

length of time between s and t. Consider P (t∗) = exp(At∗). P (t∗) is the solution

to the Kolmogorov’s forward equation P
′
(t∗) = P (t∗)A, and Kolmogorov’s backward

equations P
′
(t∗) = AP (t∗). The initial condition, P (0) is the identity matrix. We

assume that
∑2

k=0 αjk = 0 for j = 0, 1, 2. Thus, we have

dP (t∗)

dt∗
=
d exp(At∗)

dt∗
= exp(At∗)A = P (t∗)A (42)

dP (t∗)

dt∗
=
d exp(At∗)

dt∗
= A exp(At∗) = AP (t∗) (43)

exp(At∗) is called a matrix exponential. exp(At∗) can be expressed as an infinite
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sum. That is, P (t∗) = exp(At∗) =
∑∞

r=0A
r (t

∗)r

r!
. By using spectral decomposition,

A = U∗DU∗−1 where U∗ is a matrix of eigenvectors. D is a diagonal matrix of

eigenvalues. By using a property of the matrix exponential, exp(At∗) can be written

as

exp(At∗) = U∗ exp(Dt∗)U∗−1 (44)

Applying the matrix exponential to the illness-death model with recovery, we have

A =


α00 α01 α02

α10 α11 α12

0 0 0


where α00 = −α01 − α02 and α11 = −α10 − α12. Let ξ =

√
(α00 − α01)2 + 4α01α10.

D =


α00+α11+ξ

2
0 0

0 α00+α11−ξ
2

0

0 0 0


where the eigenvalues are α00+α11+ξ

2
, α00+α11−ξ

2
, and 0.

U∗ =


2α01 2α01 1

−α00 + α11 + ξ −α00 + α11 − ξ 1

0 0 1


In the Markov case, we can compute the transition probabilites using (44). In the

non-Markov case, it is more complicated. We will need two transition rate matrices,

A1 and A2. This is because α01 varies based on whether X(4) ̸= 1 or X(4) = 1. Let

A1 be the transition rate matrix when X(4) ̸= 1 and A2 be the transition rate matrix
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when X(4) = 1. Since we assume α01 = 0.5 before time 4 and α01 = 0.5 when X(4) ̸=

1, we will use A1 for time before time 4. We will define the transition probability

matrix, P (1)(t∗) and P (2)(t∗) in matrix exponential form as P (1)(t∗) = exp(A1(t
∗))

and P (2)(t∗) = exp(A2(t
∗)). The matrix elements are denoted as P

(1)
jk (t∗) and P

(2)
jk (t∗)

for j = 0, 1 and k = 0, 1, 2. By using matrix exponential, we will derive the formula

of the transition probabilities for each transition. The numerical calculations were

done in R.

P01(s, t) = P (X(t) = 1|X(s) = 0)

= P (X(t) = 1, X(4) = 1|X(s) = 0) + P (X(t) = 1, X(4) ̸= 1|X(s) = 0)

= P (X(4) = 1|X(s) = 0)P (X(t) = 1|X(4) = 1, X(s) = 0)

+ P (X(4) ̸= 1|X(s) = 0)P (X(t) = 1|X(4) ̸= 1, X(s) = 0)

= P
(1)
01 (4− s)P

(2)
11 (t− 4) + P

(1)
00 (4− s)P

(1)
01 (t− 4) (45)

P02(s, t) = P (X(t) = 2|X(s) = 0)

= P (X(t) = 2, X(4) = 1|X(s) = 0) + P (X(t) = 2, X(4) ̸= 1|X(s) = 0)

= P (X(t) = 2, X(4) = 1|X(s) = 0)

+ P (X(t) = 2, (X(4) = 0 ∪X(4) = 2)|X(s) = 0)

= P (X(t) = 2, X(4) = 1|X(s) = 0)

+ P ((X(t) = 2, X(4) = 0) ∪ (X(t) = 2, X(4) = 2)|X(s) = 0)

Note that X(4) = 0 and X(4) = 2 are disjoint events.
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= P (X(t) = 2, X(4) = 1|X(s) = 0)

+ P ((X(t) = 2, X(4) = 0|X(s) = 0)

+ P (X(t) = 2, X(4) = 2)|X(s) = 0)

= P (X(4) = 1|X(s) = 0)P (X(t) = 2|X(4) = 1, X(s) = 0)

+ P (X(4) = 0|X(s) = 0)P (X(t) = 2|X(4) = 0, X(s) = 0)

+ P (X(4) = 2|X(s) = 0)P (X(t) = 2|X(4) = 2, X(s) = 0)

= P
(1)
01 (4− s)P

(2)
12 (t− 4) + P

(1)
00 (4− s)P

(1)
02 (t− 4) + P

(1)
02 (4− s) (46)

P12(s, t) = P (X(t) = 2|X(s) = 1)

= P (X(t) = 2, X(4) = 1|X(s) = 1) + P (X(t) = 2, X(4) ̸= 1|X(s) = 1)

= P (X(t) = 2, X(4) = 1|X(s) = 1)

+ P (X(t) = 2, (X(4) = 0 ∪X(4) = 2)|X(s) = 1)

= P (X(t) = 2, X(4) = 1|X(s) = 1)

+ P ((X(t) = 2, X(4) = 0) ∪ (X(t) = 2, X(4) = 2)|X(s) = 1)

Note that X(4) = 0 and X(4) = 2 are disjoint events.

= P (X(t) = 2, X(4) = 1|X(s) = 1)

+ P ((X(t) = 2, X(4) = 0|X(s) = 1)

+ P (X(t) = 2, X(4) = 2)|X(s) = 1)
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= P (X(4) = 1|X(s) = 1)P (X(t) = 2|X(4) = 1, X(s) = 1)

+ P (X(4) = 0|X(s) = 1)P (X(t) = 2|X(4) = 0, X(s) = 1)

+ P (X(4) = 2|X(s) = 1)P (X(t) = 2|X(4) = 2, X(s) = 1)

= P
(1)
11 (4− s)P

(2)
12 (t− 4) + P

(1)
10 (4− s)P

(1)
02 (t− 4) + P

(1)
12 (4− s) (47)

P10(s, t) = P (X(t) = 0|X(s) = 1)

= P (X(t) = 0, X(4) = 1|X(s) = 1) + P (X(t) = 0, X(4) ̸= 1|X(s) = 1)

= P (X(4) = 1|X(s) = 1)P (X(t) = 0|X(4) = 1, X(s) = 1)

+ P (X(4) ̸= 1|X(s) = 1)P (X(t) = 0|X(4) ̸= 1, X(s) = 1)

= P
(1)
11 (4− s)P

(2)
10 (t− 4) + P

(1)
10 (4− s)P

(1)
00 (t− 4) (48)

Table 11-14 show the bias, standard deviation, and MSE of Titman estimator and

Aalen-Johansen estimator for each transition. Titman estimator is unbiased for all

transitions for Markov and non-Markov case. Aalen-Johansen estimator is unbiased

for all transitions for Markov case. For non-Markov case of Aalen-Johansen estimator,

the bias is under .01 in the healthy to death and the illness to death transitions.

This can be close in being considered unbiased. For the healthy to illness and the

illness to healthy transitions, the bias is approximately .02. Thus, Aalen-Johansen

estimator has minimal bias in those transitions.This leads us to believe that we may

get reasonable results for the GEE estimates of the intercept and slope when using

Aalen-Johansen estimator to create the pseudo-observation in the non-Markov case.
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Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif -.00087 .05889 .00347
Titman 200 Markov Exp .0004 .06893 .00475
Titman 500 Markov Unif -.00213 .0374 .0014
Titman 500 Markov Exp .00086 .04191 .00176
Titman 200 N-M Unif -.00042 .06269 .00393
Titman 200 N-M Exp -.00028 .06806 .00463
Titman 500 N-M Unif -.00032 .03862 .00149
Titman 500 N-M Exp -.00123 .04194 .00176
AJ 200 Markov Unif -.00186 .03974 .00158
AJ 200 Markov Exp -.00215 .04553 .00208
AJ 500 Markov Unif -.00174 .02421 .00059
AJ 500 Markov Exp .00113 .02899 .00084
AJ 200 N-M Unif -.02056 .03826 .00189
AJ 200 N-M Exp -.0204 .04455 .0024
AJ 500 N-M Unif -.01957 .02695 .00111
AJ 500 N-M Exp -.01916 .02837 .00117

Table 11: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for 0�1(healthy to illness) of the Illness-Death Model with Recovery

Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif .00035 .05328 .00284
Titman 200 Markov Exp -.00025 .06381 .00407
Titman 500 Markov Unif -.00092 .03441 .00119
Titman 500 Markov Exp -.00094 .03877 .0015
Titman 200 N-M Unif -.0022 .0583 .0034
Titman 200 N-M Exp -.00174 .06005 .00361
Titman 500 N-M Unif .0004 .03647 .00133
Titman 500 N-M Exp -.00134 .03882 .00151
AJ 200 Markov Unif .00043 .03753 .00141
AJ 200 Markov Exp .00197 .0407 .00166
AJ 500 Markov Unif .00081 .02359 .00056
AJ 500 Markov Exp -.00154 .02614 .00069
AJ 200 N-M Unif -.00732 .03707 .00143
AJ 200 N-M Exp -.00844 .04038 .0017
AJ 500 N-M Unif -.00706 .02429 .00064
AJ 500 N-M Exp -.00903 .02632 .00077

Table 12: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for 0�2(healthy to death) of the Illness-Death Model with Recovery
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Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif .00015 .05088 .00259
Titman 200 Markov Exp .00081 .05408 .00293
Titman 500 Markov Unif .00145 .03339 .00112
Titman 500 Markov Exp -.00199 .03657 .00134
Titman 200 N-M Unif .00099 .05137 .00264
Titman 200 N-M Exp .00003 .05542 .00307
Titman 500 N-M Unif -.00055 .03226 .00104
Titman 500 N-M Exp -.00002 .03646 .00133
AJ 200 Markov Unif .00077 .04038 .00163
AJ 200 Markov Exp .00249 .04264 .00182
AJ 500 Markov Unif .00058 .02466 .00061
AJ 500 Markov Exp <.00001 .02778 .00077
AJ 200 N-M Unif .00719 .04026 .00167
AJ 200 N-M Exp .00647 .04503 .00207
AJ 500 N-M Unif .00637 .02539 .00069
AJ 500 N-M Exp .00603 .02675 .00075

Table 13: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for 1�2(illness to death) of the Illness-Death Model with Recovery

Estimator n Model Censor Bias SD MSE

Titman 200 Markov Unif .00249 .04947 .00245
Titman 200 Markov Exp .00242 .05391 .00291
Titman 500 Markov Unif -.00119 .02965 .00088
Titman 500 Markov Exp -.00077 .03573 .00128
Titman 200 N-M Unif -.00233 .05169 .00268
Titman 200 N-M Exp .00031 .0589 .00347
Titman 500 N-M Unif -.00013 .03205 .00103
Titman 500 N-M Exp .00155 .03614 .00131
AJ 200 Markov Unif .00249 .0336 .00114
AJ 200 Markov Exp .00101 .03803 .00145
AJ 500 Markov Unif -.00069 .02178 .00048
AJ 500 Markov Exp .00107 .02415 .00058
AJ 200 N-M Unif -.02182 .03689 .00184
AJ 200 N-M Exp -.02385 .04102 .00225
AJ 500 N-M Unif -.0222 .02353 .00105
AJ 500 N-M Exp -.02283 .02723 .00126

Table 14: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for 1�0(illness to healthy) of the Illness-Death Model with Recovery
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Similar to the illness-death model without recovery, the standard deviation of

Aalen-Johansen estimator is lower than Titman estimator. This is due to Titman esti-

mator having a smaller set of individuals due to landmarking. While Aalen-Johansen

estimator has mild bias in some transitions, MSE of Aalen-Johansen estimator is

lower than MSE of Titman estimator. This is due to the lower standard deviation

of Aalen-Johansen estimator. Thus, Aalen-Johansen estimator has the potential of

being the superior estimator to use in the pseudo-observation method when creating

a semi-parametric model.

4.3 Regression Using Pseudo-Observation

Now, suppose that we want to create a semi-parametric model. Similar to Section

3.2, we simulate the transition intensities going from state j to state k as having the

Cox proportional hazard form. We will have one binary covariate, Z ∼ Bernoulli(p =

0.5). For the Markov case, the baseline transition intensities for the transitions were

α010 = 0.5, α020 = 0.02, α120 = 0.1, and α100 = 0.3. For the non-Markov case,

α020 = 0.02, α120 = 0.1, α100 = 0.3, but

α010 =


0.3 if X(4) = 1

0.5 if X(4) ̸= 1

(49)

The rest of the simulation settings are similar to when we did the semi-parametric

study in Section 3.2. This includes letting s = 2 and t = 6. We will create the

pseudo-observation using Titman estimator and Aalen-Johansen estimator. By using

GEE, we will create a regression model of the pseudo-observation on the covariate.

Due to difficulty in calculating the true transition probability analytically, we

will compute the empirical proportion of individuals who transitioned from state
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j to state k between time s and time t. We will sample 100,000 individuals that

would represent the true population.The empirical proportion will represent the true

transition probability. Ultimately, we will create the pseudo-observation using the

empirical proportion and find the intercept and slope estimates using GEE. We will

compare the GEE estimates when using Titman estimator, Aalen-Johansen estimator,

to the GEE estimates of the empirical proportion.

Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif .0006 -.0014 .08043 .10524
Titman 200 Markov Exp .0047 .0006 .08535 .11833
Titman 500 Markov Unif .0051 -.004 .05143 .06956
Titman 500 Markov Exp .0042 -.0036 .05486 .07488
Titman 200 N-M Unif -.0037 .0088 .07935 .10446
Titman 200 N-M Exp -.0039 .0102 .0878 .11786
Titman 500 N-M Unif -.002 .0087 .05122 .0667
Titman 500 N-M Exp -.0057 .0108 .05772 .076
AJ 200 Markov Unif .0118 -.0178 .05713 .07634
AJ 200 Markov Exp .0107 -.0192 .06171 .08436
AJ 500 Markov Unif .0105 -.016 .03763 .05185
AJ 500 Markov Exp .0094 -.0166 .04107 .05246
AJ 200 N-M Unif -.0075 .0079 .05736 .07727
AJ 200 N-M Exp -.0055 .0017 .06278 .08375
AJ 500 N-M Unif -.0038 .0025 .0351 .04785
AJ 500 N-M Exp -.0074 .0066 .04021 .05342

Table 15: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 0�1(healthy to illness)

Table 15, Table 17, Table 19, and Table 21 show the bias and the standard devia-

tion of the intercept and slope estimates using the pseudo-observation method for the

healthy to illness, the healthy to death, the illness to death, and the illness to healthy

transitions, respectively. Table 16, Table 18, Table 20, and Table 22 show the bias

and the standard deviation of the predicted transition probability when Z = 1. They

also show the MSE of the intercept estimate,the slope estimate, and the predicted
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Estimator n Model Censor Bias P̂01 SD P̂01 MSE β̂0 MSE β̂1 MSE P̂01

Titman 200 Markov Unif -.0008 .07388 .00647 .01108 .00546
Titman 200 Markov Exp .0053 .08331 .00731 .014 .00697
Titman 500 Markov Unif .0011 .04664 .00267 .00486 .00218
Titman 500 Markov Exp .0007 .05203 .00303 .00562 .00271
Titman 200 N-M Unif .005 .0739 .00631 .01099 .00549
Titman 200 N-M Exp .0064 .08322 .00772 .014 .00697
Titman 500 N-M Unif .0067 .0472 .00263 .00453 .00227
Titman 500 N-M Exp .0052 .05105 .00336 .00589 .00263
AJ 200 Markov Unif -.006 .05256 .0034 .00615 .0028
AJ 200 Markov Exp -.0085 .05634 .00392 .00749 .00325
AJ 500 Markov Unif -.0055 .03398 .00153 .00294 .00119
AJ 500 Markov Exp -.0073 .03482 .00178 .00303 .00127
AJ 200 N-M Unif .0004 .05081 .00335 .00603 .00258
AJ 200 N-M Exp -.0038 .05552 .00397 .00702 .0031
AJ 500 N-M Unif -.0013 .03271 .00125 .0023 .00107
AJ 500 N-M Exp -.0008 .03641 .00167 .0029 .00133

Table 16: Bias and Standard Deviation(SD) of P̂01(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂01(s, t|Z = 1) using Pseudo-Observation Method of 0�1(healthy to illness)

Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif -.0026 .004 .06335 .10558
Titman 200 Markov Exp -.0005 .0025 .0664 .11381
Titman 500 Markov Unif .0009 .0042 .04102 .06738
Titman 500 Markov Exp -.0014 .0069 .04444 .0748
Titman 200 N-M Unif .0013 -.0078 .061 .10155
Titman 200 N-M Exp .0054 -.011 .07088 .11096
Titman 500 N-M Unif .003 -.011 .04019 .0658
Titman 500 N-M Exp .0015 -.0097 .04293 .073
AJ 200 Markov Unif .0066 .0175 .0464 .07318
AJ 200 Markov Exp .0075 .015 .04973 .07903
AJ 500 Markov Unif .0083 .0184 .02915 .04758
AJ 500 Markov Exp .0081 .0191 .03196 .05099
AJ 200 N-M Unif .0126 -.0014 .0458 .07398
AJ 200 N-M Exp .0092 .0046 .04945 .08145
AJ 500 N-M Unif .0081 .0025 .02822 .04605
AJ 500 N-M Exp .0092 .0015 .03153 .05157

Table 17: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 0�2(healthy to death)
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Estimator n Model Censor Bias P̂02 SD P̂02 MSE β̂0 MSE β̂1 MSE P̂02

Titman 200 Markov Unif .0014 .08379 .00402 .01116 .00702
Titman 200 Markov Exp .002 .09264 .00441 .01296 .00859
Titman 500 Markov Unif .005 .05158 .00168 .00456 .00269
Titman 500 Markov Exp .0056 .05759 .00198 .00564 .00335
Titman 200 N-M Unif -.0065 .08089 .00372 .01037 .00659
Titman 200 N-M Exp -.0056 .09051 .00505 .01243 .00822
Titman 500 N-M Unif -.008 .05148 .00162 .00445 .00271
Titman 500 N-M Exp -.0082 .05775 .00185 .00542 .0034
AJ 200 Markov Unif .0244 .05541 .0022 .00566 .00367
AJ 200 Markov Exp .0225 .06237 .00253 .00647 .0044
AJ 500 Markov Unif .0266 .03675 .00092 .0026 .00206
AJ 500 Markov Exp .0272 .03781 .00109 .00297 .00217
AJ 200 N-M Unif .0112 .05709 .00226 .00548 .00339
AJ 200 N-M Exp .0138 .06321 .00253 .00666 .00419
AJ 500 N-M Unif .0106 .03585 .00086 .00213 .0014
AJ 500 N-M Exp .0106 .0395 .00108 .00266 .00167

Table 18: Bias and Standard Deviation(SD) of P̂02(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂02(s, t|Z = 1) using Pseudo-Observation Method of 0�2(healthy to death)

Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif -.0012 .0003 .06947 .1006
Titman 200 Markov Exp -.0005 -.0019 .07392 .11344
Titman 500 Markov Unif -.0023 .002 .04305 .06412
Titman 500 Markov Exp -.0004 -.0033 .04642 .0713
Titman 200 N-M Unif .0024 .0012 .06782 .10161
Titman 200 N-M Exp .0054 .0005 .07634 .11196
Titman 500 N-M Unif .0025 .0039 .04349 .064
Titman 500 N-M Exp .0037 -.004 .04675 .0696
AJ 200 Markov Unif -.0112 -.0074 .04987 .07608
AJ 200 Markov Exp -.0112 -.009 .05373 .08225
AJ 500 Markov Unif -.0091 -.0083 .03169 .04819
AJ 500 Markov Exp -.0085 -.0073 .03468 .05333
AJ 200 N-M Unif -.0032 -.0114 .05074 .07605
AJ 200 N-M Exp -.0055 -.004 .05674 .0823
AJ 500 N-M Unif -.0056 -.0061 .03152 .04642
AJ 500 N-M Exp -.0065 -.0067 .03496 .05294

Table 19: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 1�2(illness to death)
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Estimator n Model Censor Bias P̂12 SD P̂12 MSE β̂0 MSE β̂1 MSE P̂12

Titman 200 Markov Unif -.0009 .07711 .00483 .01012 .00595
Titman 200 Markov Exp -.0024 .08359 .00546 .01287 .00699
Titman 500 Markov Unif -.0003 .04745 .00186 .00412 .00225
Titman 500 Markov Exp -.0037 .05364 .00216 .0051 .00289
Titman 200 N-M Unif .0036 .07685 .00461 .01033 .00592
Titman 200 N-M Exp .0059 .08449 .00586 .01254 .00717
Titman 500 N-M Unif .0065 .04781 .0019 .00411 .00233
Titman 500 N-M Exp -.0003 .0523 .0022 .00486 .00274
AJ 200 Markov Unif -.0186 .05553 .00261 .00584 .00343
AJ 200 Markov Exp -.0202 .06419 .00301 .00685 .00453
AJ 500 Markov Unif -.0174 .03631 .00109 .00239 .00162
AJ 500 Markov Exp -.0157 .03832 .00128 .0029 .00172
AJ 200 N-M Unif -.0146 .05733 .00259 .00591 .0035
AJ 200 N-M Exp -.0095 .05977 .00325 .00679 .00366
AJ 500 N-M Unif -.0117 .03489 .00103 .00219 .00135
AJ 500 N-M Exp -.0131 .03946 .00127 .00285 .00173

Table 20: Bias and Standard Deviation(SD) of P̂12(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂12(s, t|Z = 1) using Pseudo-Observation Method of 1�2(illness to death)

Estimator n Model Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 Markov Unif .0014 -.0002 .07036 .09142
Titman 200 Markov Exp .0009 -.0006 .07285 .09733
Titman 500 Markov Unif -.0006 .0031 .04304 .0574
Titman 500 Markov Exp .0009 -.0013 .04652 .06072
Titman 200 N-M Unif .0056 -.0074 .07156 .0952
Titman 200 N-M Exp .0037 -.0055 .08336 .10916
Titman 500 N-M Unif .0073 -.0087 .04325 .05926
Titman 500 N-M Exp .0057 -.0076 .04934 .06579
AJ 200 Markov Unif .0155 -.0037 .04959 .06424
AJ 200 Markov Exp .0121 .0004 .05485 .07183
AJ 500 Markov Unif .015 -.0058 .03116 .04164
AJ 500 Markov Exp .016 -.0062 .03373 .04322
AJ 200 N-M Unif .0138 -.0088 .04837 .06613
AJ 200 N-M Exp .0143 -.0019 .05464 .07125
AJ 500 N-M Unif .0142 -.0072 .03099 .04208
AJ 500 N-M Exp .0165 -.0103 .03514 .04602

Table 21: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of 1�0(illness to healthy)
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Estimator n Model Censor Bias P̂10 SD P̂10 MSE β̂0 MSE β̂1 MSE P̂10

Titman 200 Markov Unif .0011 .06038 .00495 .00836 .00364
Titman 200 Markov Exp .0003 .06442 .00531 .00947 .00415
Titman 500 Markov Unif .0025 .03784 .00185 .0033 .00144
Titman 500 Markov Exp -.0004 .04077 .00216 .00369 .00166
Titman 200 N-M Unif -.0017 .06346 .00515 .00912 .00403
Titman 200 N-M Exp -.0018 .07151 .00696 .01195 .00512
Titman 500 N-M Unif -.00143 .03883 .00192 .00359 .00151
Titman 500 N-M Exp -.00193 .04416 .00247 .00439 .00195
AJ 200 Markov Unif .0117 .04252 .0027 .00414 .00195
AJ 200 Markov Exp .0125 .04874 .00316 .00516 .00253
AJ 500 Markov Unif .0092 .02694 .0012 .00177 .00081
AJ 500 Markov Exp .0098 .02894 .00139 .00191 .00093
AJ 200 N-M Unif .005 .04566 .00253 .00445 .00211
AJ 200 N-M Exp .0124 .05162 .00319 .00508 .00282
AJ 500 N-M Unif .007 .02998 .00116 .00182 .00095
AJ 500 N-M Exp .0062 .03139 .00151 .00222 .00102

Table 22: Bias and Standard Deviation(SD) of P̂10(s, t|Z = 1), and MSE of β̂0, β̂1,
and P̂10(s, t|Z = 1) using Pseudo-Observation Method of 1�0(illness to healthy)

transition probability when Z = 1 for each transition. Since in Section 4.2, Titman

estimator was unbiased and Aalen-Johansen estimator had at most mild bias, the

regression model using the pseudo-observation worked using either estimator. This

includes using Aalen-Johansen estimator in the non-Markov case. The standard de-

viation when using Aalen-Johansen estimator is smaller than the standard deviation

when using Titman estimator. This leads to the MSE when using Aalen-Johansen

estimator being smaller than the MSE using Titman estimator. Therefore, when

creating a regression model using a pseudo-observation, Aalen-Johansen estimator

works better in this case for Markov and non-Markov cases. This leads us to believe

that Aalen-Johansen estimator does not perform poorly in every non-Markov case.

This simulation shows that as long as the estimator is unbiased, pseudo-observation

method is a valid method to create a regression model. In addition, this simulation
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shows that the pseudo-observation method works for estimators with mild bias.

Figure 5 and Figure 6 show histograms and normal QQ-plots of the slope esti-

mates, respectively. Table 23 shows p-values of Shapiro-Wilk test for various n. Slope

estimates are from the illness to healthy transition from the non-Markov case. Similar

Figure 5: Histogram of the Slope Estimate using Pseudo-Observation Method with
Titman Estimator for Illness-Death Model with Recovery

Figure 6: Normal QQ-Plot of the Slope Estimate using Pseudo-Observation Method
With Titman Estimator for Illness-Death Model with Recovery
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n P-value

200 .1554
350 .7275
500 .6521
700 .2579
1000 .8624

Table 23: Shapiro-Wilk Test for Normality of the Slope using Pseudo-Observation
Method with Titman Estimator for Illness-Death Model with Recovery

to Section 3.2, we simulated 1,000 datasets. We can see that there is slight skewness

in the histogram and departure from normality in the QQ-plot for n = 200. For the

most part, skewness and departure from normality disappear in the histogram and

QQ-plot, respectively when n gets larger. Shapiro-Wilk test also show insignificant

p-values for all n in Table 23. These results support the asymptotic normality of

Theorem 1.
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5 Frailty

5.1 Introduction

In the previous two sections, the non-Markov effect was pathological where a tran-

sition depended on a condition from a past state. In this section, we will study another

type of non-Markov effect called frailty. [6] summarize the motivation of frailty and

modeling a frailty distribution in survival models. Frailty is an unobserved hetero-

geneous effect in a survival model or multi-state model. A common application of

frailty can be found when individuals are assigned to various groups for a treatment

or getting treated at various institutions. Another application is when an unobserved

covariate influences a sub-group of the study. From the attribute of the unobserved

covariate, individuals are considered more frail based on the frailty distribution. For

example, the individual may be more likely to die sooner in survival models([6]). In

the illness-death model, an individual may transition sooner to a certain state depend-

ing on the unobserved covariate. This also includes becoming ill and recovering. The

frailty random variable must be non-negative. Commonly used frailty distributions

are gamma distribution and log-normal distribution.The unobserved heterogeneity of

frailty violates the Markov assumption because the transition would not solely depend

on the current state.

5.2 Non-Parametric Estimator

Now, we will study the bias and standard deviation of Titman estimator and

Aalen-Johansen estimator with the presence of frailty. We will create a simula-

tion study for illness-death model without recovery and illness-death model with

recovery. In this section, we will solely study the non-parametric estimator with

no consideration of covariates. Similar to the previous two sections, we will cre-
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ate a similar simulation study as [28]. We will let the frailty random variable,

W ∼ Gamma(α = 1/2, β = 2).

For the illness-death model without recovery, the transition rates are α01 = 0.12,

α02 = 0.03, and α12 = 0.1. We will have a frailty effect multiplied to the healthy to

illness and the illness to death transitions, such that α01W and α12W . Furthermore,

α00 = −α01W−α02 and α11 = −α12W . To find the true transition probability, we will

use matrix exponentials as we used it in Section 4. By using a property of the matrix

exponential, the transition probability matrix, P (t∗) = exp(At∗) where A represents

the transition rate matrix. t∗ is the length of time between s and t. Then,

A =


−0.12w − 0.03 0.12w 0.03

0 −0.1w 0.1w

0 0 0


Since the transition rate matrix, A has the gamma frailty random variable, the expo-

nential matrix depends on the frailty variable. We will denote the transition proba-

bility as P (t∗, w). The matrix element of P (t∗, w) is represented as Pij(t
∗, w) i = 0, 1

and j = 0, 1, 2. Similar to the previous two sections, s and t are chosen so that they

are the 15th and the 45th percentile of the distribution to time to death. From this,

s = 3.162 and t = 11.223. We will show how to find the true transition probability for

each transition using matrix exponentials. Since the transition probability depends

on the frailty variable, we need to find the joint distribution of the transition and the

gamma frailty. Then we will find the marginal distribution of the transition by inte-

grating the gamma frailty variable from the joint distribution. Numerical calculations

were done in R. For the healthy to illness transition,
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P (X(t) = 1, X(s) = 0) = P (X(s) = 0)P (X(t) = 1|X(s) = 0) = P00(s, w)P01(t− s, w).

B11 =
∫∞
0
P00(s, w)P01(t−s, w)f(w)dw where f(w) is a gamma density with α = 1/2

and β = 2. Since P (X(s) = 0) = P00(s, w), B21 =
∫∞
0
P00(s, w)f(w)dw. We can find

P (X(t) = 1|X(s) = 0) =
P (X(t) = 1, X(s) = 0)

P (X(s) = 0)
=
B11

B21

.

For the healthy to death transition,

P (X(t) = 2, X(s) = 0) = P (X(s) = 0)P (X(t) = 2|X(s) = 0) = P00(s, w)P02(t− s).

P02(t
∗) is the only non-zero element in the transition rate matrix that does not depend

on the frailty. B12 =
∫∞
0
P00(s, w)P02(t− s)f(w)dw. Similar to the healthy to illness

transition, P (X(s) = 0) = P00(s, w). We can find

P (X(t) = 2|X(s) = 0) =
P (X(t) = 2, X(s) = 0)

P (X(s) = 0)
=
B12

B21

.

For the illness to death transition,

P (X(t) = 2, X(s) = 1) = P (X(s) = 1)P (X(t) = 2|X(s) = 1) = P01(s, w)P12(t− s, w).

B13 =
∫∞
0
P01(s, w)P12(t− s, w)f(w)dw. Since P (X(s) = 1) = P01(s, w),

B22 =
∫∞
0
P01(s, w)f(w)dw. We can find

P (X(t) = 2|X(s) = 1) =
P (X(t) = 2, X(s) = 1)

P (X(s) = 1)
=
B13

B22

.
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Estimator n Transition Censor Bias SD MSE

Titman 200 0�1 Unif .0003 .03593 .00129
Titman 200 0�1 Exp .0006 .03955 .00156
Titman 500 0�1 Unif .0009 .02205 .00049
Titman 500 0�1 Exp -.0008 .0258 .00067
AJ 200 0�1 Unif -.0023 .03158 .001
AJ 200 0�1 Exp -.0022 .03433 .00118
AJ 500 0�1 Unif -.0017 .01961 .00039
AJ 500 0�1 Exp -.0018 .02212 .00049

Titman 200 0�2 Unif .0009 .04041 .00163
Titman 200 0�2 Exp .0014 .04481 .00201
Titman 500 0�2 Unif .0004 .02636 .0007
Titman 500 0�2 Exp -.0007 .02841 .00081
AJ 200 0�2 Unif .0033 .03869 .00151
AJ 200 0�2 Exp .0022 .0415 .00173
AJ 500 0�2 Unif .0026 .02331 .00055
AJ 500 0�2 Exp .0035 .02664 .00072

Titman 200 1�2 Unif .0003 .08642 .00747
Titman 200 1�2 Exp .0057 .09498 .00905
Titman 500 1�2 Unif .0032 .05401 .00293
Titman 500 1�2 Exp .0012 .0637 .00406
AJ 200 1�2 Unif -.0052 .06505 .00426
AJ 200 1�2 Exp -.0026 .06879 .00474
AJ 500 1�2 Unif -.0071 .04183 .0018
AJ 500 1�2 Exp -.0085 .04539 .00213

Table 24: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for All Transitions of the Illness-Death Model without Recovery with
Frailty Effect

For the illness-death model with recovery, the transition rates are α01 = 0.5,

α02 = 0.02, α12 = 0.1, and α10 = 0.3. We will have W ∼ Gamma(α = 1/2, β = 2)

multiplied to the healthy to illness transition intensity and illness to healthy transition

intensity such that we have α01W and α10W . Furthermore, α00 = −α01W − α02 and

α11 = −α10W − α01. Using matrix exponentials, we find the transition probability

matrix, P (t∗) = exp(At∗). The transtion rate matrix A is
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A =


−0.5w − 0.02 0.5w 0.02

0.3w −0.3w − 0.1 0.1

0 0 0


s = 3.9121 and t = 12.4167 which are the 15th and the 45th percentile of the distribu-

tion to time to death, respectively. The formula to find the true transition probability

using matrix exponential remains the same for the healthy to illness and healthy to

death transitions. The only difference in the illness to death transition is that illness

to death transition rate does not depend on frailty. That is, P12(t − s) instead of

P12(t− s, w). For the illness to healthy transition,

P (X(t) = 0, X(s) = 1) = P (X(s) = 1)P (X(t) = 0|X(s) = 1) = P01(s, w)P10(t− s, w).

B14 =
∫∞
0
P01(s, w)P10(t− s, w)f(w)dw. Since P (X(s) = 1) = P01(s, w),

B22 =
∫∞
0
P01(s, w)f(w)dw. From this, we can find

P (X(t) = 0|X(s) = 1) =
P (X(t) = 0, X(s) = 1)

P (X(s) = 1)
=
B14

B22

.

Table 24 and Table 25 show the bias, standard deviation, and MSE of the illness-

death model without recovery and the illness-death model with recovery, respectively.

In both models, Titman estimator is unbiased, but the standard deviation is higher

than Aalen-Johansen estimator. Aalen-Johansen estimator seems to be unbiased for

the illness-death model without recovery, but heavily biased for the illness-death

model with recovery. The transition with the smallest bias was healthy to death

transition which had at least a bias of .04. The transition with the most bias was
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Estimator n Transition Censor Bias SD MSE

Titman 200 0�1 Unif -.0009 .04368 .00191
Titman 200 0�1 Exp .0029 .04939 .00245
Titman 500 0�1 Unif -.0005 .02835 .0008
Titman 500 0�1 Exp -.0003 .0319 .00102
AJ 200 0�1 Unif .0499 .03713 .00387
AJ 200 0�1 Exp .0503 .04399 .00447
AJ 500 0�1 Unif .0482 .02372 .00289
AJ 500 0�1 Exp .0486 .02689 .00309

Titman 200 0�2 Unif .0007 .04411 .00195
Titman 200 0�2 Exp -.001 .05208 .00271
Titman 500 0�2 Unif -.0019 .02889 .00084
Titman 500 0�2 Exp .0003 .03164 .001
AJ 200 0�2 Unif .0422 .0386 .00327
AJ 200 0�2 Exp .0428 .04438 .0038
AJ 500 0�2 Unif .043 .02485 .00247
AJ 500 0�2 Exp .0401 .02844 .00242

Titman 200 1�2 Unif -.0014 .06758 .00457
Titman 200 1�2 Exp <-.0001 .07943 .00631
Titman 500 1�2 Unif .0011 .04129 .00171
Titman 500 1�2 Exp <-.0001 .04762 .00227
AJ 200 1�2 Unif -.0737 .04284 .00727
AJ 200 1�2 Exp -.0723 .04802 .00753
AJ 500 1�2 Unif -.0742 .02661 .00621
AJ 500 1�2 Exp -.0758 .03052 .00668

Titman 200 1�0 Unif .0042 .05749 .00332
Titman 200 1�0 Exp -.0005 .06508 .00424
Titman 500 1�0 Unif .0032 .03695 .00138
Titman 500 1�0 Exp .0024 .04007 .00161
AJ 200 1�0 Unif .1612 .04002 .02759
AJ 200 1�0 Exp .1573 .04394 .02667
AJ 500 1�0 Unif .1603 .02409 .02628
AJ 500 1�0 Exp .1607 .02732 .02657

Table 25: Bias, Standard Deviation(SD), and MSE of Titman and Aalen-Johansen
estimators(AJ) for All Transitions of the Illness-Death Model with Recovery with
Frailty Effect
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illness to healthy which had a bias of approximately .16.

For the illness-death model without recovery, the lower standard deviation of

Aalen-Johansen estimator caused MSE to be lower than MSE of Titman estimator.

However, for the illness-death model with recovery,the heavy bias of Aalen-Johansen

estimator caused MSE of Titman estimator to be lower than MSE of Aalen-Johansen

estimator. Evaluating the estimators’ performances, we believe that using either

estimator in creating pseudo-observation will lead to unbiased results in the semi-

parametric regression model for the illness-death model without recovery. However,

Aalen-Johansen estimator would be the better estimator to use due to its smaller

standard deviation. In the illness-death model with recovery, we believe Titman

estimator is the better estimator to use when creating pseudo-observation in the semi-

parametric regression. The bias of Aalen-Johansen estimator violates the requirement

of having an unbiased estimator in creating a pseudo-observation.

5.3 Regression Using Pseudo-Observation

Now, suppose that we want to create a semi-parametric model. Similar to the

semi-parametric subsections in the past two sections, we simulate the transition

intensities going from state j to state k as having the Cox proportional hazard

form. See (38). We will have one binary covariate, Z ∼ Bernoulli(p = 0.5).

For the illness-death model without recovery, the baseline transition intensities are

α010 = 0.12, α020 = 0.03, and α120 = 0.1. We will have a frailty random variable,

W ∼ Gamma(α = 1/2, β = 2) multiplied to the healthy to illness baseline transi-

tion intensity and illness to death baseline transition intensity such that α010W and

α120W . For the illness-death model with recovery, the baseline transition intensities

are α010 = 0.5, α020 = 0.02, α120 = 0.1, and α100 = 0.3. The frailty random variable,
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W is multiplied to the healthy to illness baseline transition intensity and illness to

healthy baseline transition intensity such that α010W and α100W . The other set-

tings are the same as the settings of the semi-parametric regression simulations of the

previous two sections. We also are letting s = 2 and t = 6. We create the pseudo-

observation using Titman estimator and Aalen-Johansen estimator. Then by using

GEE, we create a regression model of the pseudo-observation on the covariate.

Due to difficulty of computing the true transition probability analytically when

having a covariate, we will compute the empirical proportion of the transition prob-

ability from state j to state k. It consists of 100,000 observations. Similar to the last

two sections, we will create the pseudo-observation using the empirical proportion.

By using GEE, we compute the intercept and slope estimates. We compare the GEE

results using Titman estimator and Aalen-Johansen estimator to the GEE results of

the empirical proportion.

Estimator n Trans. Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 0�1 Unif -.0031 .0062 .0438 .06407
Titman 200 0�1 Exp -.0024 .0029 .04875 .06977
Titman 500 0�1 Unif -.0016 .0048 .02769 .03948
Titman 500 0�1 Exp -.0014 .0029 .03028 .04349
AJ 200 0�1 Unif -.0026 .0024 .03852 .05467
AJ 200 0�1 Exp -.0042 .0025 .04442 .06153
AJ 500 0�1 Unif -.0038 .0028 .02589 .03638
AJ 500 0�1 Exp -.0033 .004 .02869 .03999

Titman 200 0�2 Unif -.0002 .0021 .04571 .07074
Titman 200 0�2 Exp .0007 -.0025 .04959 .081
Titman 500 0�2 Unif .0015 .0005 .02767 .04639
Titman 500 0�2 Exp .0025 .0008 .03073 .05078
AJ 200 0�2 Unif .0046 .0012 .04161 .07217
AJ 200 0�2 Exp .0072 -.0015 .04702 .07654
AJ 500 0�2 Unif .0009 .0028 .02578 .04313
AJ 500 0�2 Exp .0036 .0001 .02907 .04649

Table 26: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of Illness-Death Model without Recovery for 0�1 and 0�2 Transitions
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Estimator n Trans. Censor Bias P̂jk SD P̂jk MSE β̂0 MSE β̂1 MSE P̂jk

Titman 200 0�1 Unif .0032 .04653 .00193 .00414 .00218
Titman 200 0�1 Exp .0005 .05108 .00238 .00488 .00261
Titman 500 0�1 Unif .0032 .02942 .00077 .00158 .00088
Titman 500 0�1 Exp .0015 .032 .00092 .0019 .00103
AJ 200 0�1 Unif -.0002 .04046 .00149 .003 .00164
AJ 200 0�1 Exp -.0017 .04385 .00199 .00379 .00193
AJ 500 0�1 Unif -.0011 .02559 .00069 .00133 .00066
AJ 500 0�1 Exp .0007 .02812 .00083 .00162 .00079

Titman 200 0�2 Unif .0019 .05523 .00209 .00501 .00305
Titman 200 0�2 Exp -.0019 .06315 .00246 .00657 .00399
Titman 500 0�2 Unif .0019 .03667 .00077 .00215 .00135
Titman 500 0�2 Exp .0033 .03988 .00095 .00258 .0016
AJ 200 0�2 Unif .0058 .05515 .00175 .00521 .00308
AJ 200 0�2 Exp .0057 .05755 .00226 .00586 .00335
AJ 500 0�2 Unif .0037 .03481 .00067 .00187 .00123
AJ 500 0�2 Exp .0046 .03683 .00086 .00216 .00138

Table 27: Bias and Standard Deviation(SD) of P̂jk(s, t|Z = 1); j=0, k=1,2 and MSE

of β̂0, β̂1, P̂jk(s, t|Z = 1); j=0, k=1,2 using Pseudo-Observation Method of Illness-
Death Model without Recovery for 0�1 and 0�2 Transitions

Estimator n Trans. Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 1�2 Unif .0003 -.0072 .12888 .17918
Titman 200 1�2 Exp -.0018 -.0091 .13356 .19403
Titman 500 1�2 Unif -.0026 -.0099 .0835 .11526
Titman 500 1�2 Exp .0029 -.0121 .08578 .12007
AJ 200 1�2 Unif -.0084 -.0065 .09359 .1334
AJ 200 1�2 Exp -.012 -.006 .10259 .1473
AJ 500 1�2 Unif -.0107 -.008 .0606 .08453
AJ 500 1�2 Exp -.012 -.0099 .06772 .09312

Table 28: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of Illness-Death Model without Recovery for 1�2 Transition
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Estimator n Trans. Censor Bias P̂12 SD P̂12 MSE β̂0 MSE β̂1 MSE P̂12

Titman 200 1�2 Unif -.0069 .12408 .01661 .03216 .01544
Titman 200 1�2 Exp -.0109 .14 .01784 .03773 .01972
Titman 500 1�2 Unif -.0125 .07973 .00698 .01338 .00651
Titman 500 1�2 Exp -.0093 .08388 .00737 .01456 .00712
AJ 200 1�2 Unif -.0149 .09677 .00883 .01784 .00959
AJ 200 1�2 Exp -.018 .10166 .01067 .02173 .01066
AJ 500 1�2 Unif -.0187 .05926 .00379 .00721 .00386
AJ 500 1�2 Exp -.0219 .06492 .00473 .00877 .00469

Table 29: Bias and Standard Deviation(SD) of P̂12(s, t|Z = 1) and MSE of β̂0, β̂1,
P̂12(s, t|Z = 1) using Pseudo-Observation Method of Illness-Death Model without
Recovery for 1�2 Transition

Estimator n Trans. Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 0�1 Unif .0007 .003 .05997 .0779
Titman 200 0�1 Exp -.0001 -.0029 .06542 .08656
Titman 500 0�1 Unif -.0006 -.0015 .03589 .04976
Titman 500 0�1 Exp -.0027 .0014 .04031 .05459
AJ 200 0�1 Unif .0744 -.0361 .05281 .07058
AJ 200 0�1 Exp .0737 -.0334 .05664 .07596
AJ 500 0�1 Unif .0727 -.0318 .03266 .04397
AJ 500 0�1 Exp .0734 -.0319 .03458 .04739

Titman 200 0�2 Unif .0024 -.0013 .04688 .08178
Titman 200 0�2 Exp .0001 -.0038 .0491 .0885
Titman 500 0�2 Unif .0009 -.0025 .02949 .04982
Titman 500 0�2 Exp <.0001 -.002 .03063 .05454
AJ 200 0�2 Unif .018 .0326 .04039 .07029
AJ 200 0�2 Exp .0186 .0343 .04396 .07442
AJ 500 0�2 Unif .0196 .0342 .02592 .04471
AJ 500 0�2 Exp .0192 .0356 .02794 .04718

Table 30: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of Illness-Death Model with Recovery for 0�1 and 0�2 Transitions
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Estimator n Trans. Censor Bias P̂jk SD P̂jk MSE β̂0 MSE β̂1 MSE P̂jk

Titman 200 0�1 Unif .0038 .05299 .0036 .00608 .00282
Titman 200 0�1 Exp -.003 .05789 .00428 .0075 .00336
Titman 500 0�1 Unif -.0021 .03464 .00129 .00248 .0012
Titman 500 0�1 Exp -.0014 .03747 .00163 .00298 .00141
AJ 200 0�1 Unif .0383 .04793 .00832 .00629 .00376
AJ 200 0�1 Exp .0403 .05189 .00864 .00689 .00432
AJ 500 0�1 Unif .0409 .03036 .00635 .00295 .0026
AJ 500 0�1 Exp .0415 .03348 .00658 .00326 .00284

Titman 200 0�2 Unif .0011 .06355 .0022 .00669 .00404
Titman 200 0�2 Exp -.0037 .07149 .00241 .00785 .00513
Titman 500 0�2 Unif -.0016 .04028 .00087 .00249 .00163
Titman 500 0�2 Exp -.0019 .04572 .00094 .00298 .00209
AJ 200 0�2 Unif .0506 .05448 .00196 .006 .00553
AJ 200 0�2 Exp .0529 .05824 .00228 .00672 .00619
AJ 500 0�2 Unif .0537 .03443 .00106 .00317 .00407
AJ 500 0�2 Exp .0548 .0365 .00115 .00349 .00434

Table 31: Bias and Standard Deviation(SD) of P̂jk(s, t|Z = 1); j=0, k=1,2 and MSE

of β̂0, β̂1, P̂jk(s, t|Z = 1); j=0, k=1,2 using Pseudo-Observation Method of Illness-
Death Model with Recovery for 0�1 and 0�2 Transitions

Table 26 and Table 28 show the bias and standard deviation of the intercept and

slope for each transition from the illness-death model without recovery using pseudo-

observation method. Table 30 and Table 32 show the same measurements, but for the

illness-death model with recovery. Table 27 and Table 29 show the bias and standard

deviation of the predicted transition probability when Z = 1 when using pseudo-

observation method for the illness-death model without recovery. Those tables also

show the MSE for the intercept, slope, and predicted transition probability when

Z = 1. Table 31 and Table 33 show the same measurements, but for the illness-death

model with recovery.

The results are consistent with the results from the non-parametric estimator anal-

ysis. For the illness-death model without recovery, the intercept and slope estimates

are unbiased using either estimator to create the pseudo-observation. Due to the
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smaller standard deviation when using Aalen-Johansen estimator, MSE when using

Aalen-Johansen estimator is smaller. This leads to Aalen-Johansen estimator being

the preferred estimator to use. The standard deviation of the slope of the illness to

death transition is large, especially when using Titman estimator. This is because

from landmarking, there are drastically less individuals who are ill at time s.

For the illness-death model with recovery, using Aalen-Johansen estimator leads to

biased results. Aalen-Johansen estimator was somewhat competitive in the intercept

of the healthy to death transition. In this case, the bias was mild making it have

a smaller MSE when n = 200. However, Titman estimator had a smaller MSE

when n = 500. Regarding the illness to death and illness to healthy transitions, we

see the same issue of landmarking that we saw in the illness-death model without

recovery where far less individuals are ill at time s . We see this more of an issue

Estimator n Trans. Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 200 1�2 Unif .0016 .0003 .08367 .12433
Titman 200 1�2 Exp .005 -.0091 .0911 .1332
Titman 500 1�2 Unif .0055 -.0064 .05486 .0805
Titman 500 1�2 Exp .0021 -.004 .05891 .08889
AJ 200 1�2 Unif -.0409 -.0576 .05193 .07766
AJ 200 1�2 Exp -.0422 -.0556 .05343 .08775
AJ 500 1�2 Unif -.0423 -.0554 .03212 .04849
AJ 500 1�2 Exp -.0417 -.0554 .03335 .0527

Titman 200 1�0 Unif -.006 .0056 .08116 .10814
Titman 200 1�0 Exp -.0031 .0045 .09379 .12516
Titman 500 1�0 Unif -.0058 .0046 .05235 .07029
Titman 500 1�0 Exp -.0059 .0052 .05748 .07397
AJ 200 1�0 Unif .2019 -.0395 .05233 .07308
AJ 200 1�0 Exp .2048 -.047 .05538 .07799
AJ 500 1�0 Unif .2057 -.047 .03252 .04536
AJ 500 1�0 Exp .2056 -.0461 .03653 .05105

Table 32: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of Illness-Death Model with Recovery for 1�2 and 1�0 Transitions
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Estimator n Trans. Censor Bias P̂jk SD P̂jk MSE β̂0 MSE β̂1 MSE P̂jk

Titman 200 1�2 Unif .0019 .09411 .007 .01546 .00886
Titman 200 1�2 Exp -.0041 .10218 .00832 .01783 .01046
Titman 500 1�2 Unif -.0009 .0597 .00304 .00652 .00357
Titman 500 1�2 Exp -.002 .06457 .00348 .00792 .00417
AJ 200 1�2 Unif -.0985 .05829 .00437 .00935 .0131
AJ 200 1�2 Exp -.0978 .06602 .00464 .01079 .01392
AJ 500 1�2 Unif -.0977 .03809 .00282 .00542 .011
AJ 500 1�2 Exp -.0971 .03949 .00285 .00585 .01099

Titman 200 1�0 Unif -.0005 .07055 .00662 .01173 .00498
Titman 200 1�0 Exp .0014 .08194 .00881 .01569 .00672
Titman 500 1�0 Unif -.0012 .04507 .00277 .00496 .00203
Titman 500 1�0 Exp -.0007 .04884 .00334 .0055 .00239
AJ 200 1�0 Unif .1624 .05275 .0435 .0069 .02916
AJ 200 1�0 Exp .1578 .05422 .04501 .00829 .02784
AJ 500 1�0 Unif .1587 .03202 .04337 .00427 .02621
AJ 500 1�0 Exp .1596 .03595 .04361 .00473 .02677

Table 33: Bias and Standard Deviation(SD) of P̂jk(s, t|Z = 1); j=1, k=0,2 and MSE

of β̂0, β̂1, P̂jk(s, t|Z = 1); j=1, k=0,2 using Pseudo-Observation Method of Illness-
Death Model with Recovery for 1�2 and 1�0 Transitions

Estimator n Trans. Censor Bias β̂0 Bias β̂1 SD β̂0 SD β̂1

Titman 750 1�2 Unif .0065 -.0073 .04267 .06502
Titman 750 1�2 Exp .0061 -.0087 .04606 .06862
AJ 750 1�2 Unif -.0423 -.0567 .02572 .03839
AJ 750 1�2 Exp -.0428 -.0584 .02772 .04085

Titman 750 1�0 Unif -.0049 .0046 .04086 .05439
Titman 750 1�0 Exp -.005 .0057 .04517 .06046
AJ 750 1�0 Unif .2056 -.0457 .02657 .03642
AJ 750 1�0 Exp .205 -.0463 .0289 .03995

Table 34: Bias and Standard Deviation (SD) of β̂0 and β̂1 using Pseudo-Observation
Method of Illness-Death Model with Recovery from Additional Simulations for 1�2
and 1�0 Transitions
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Estimator n Trans. Censor Bias P̂jk SD P̂jk MSE β̂0 MSE β̂1 MSE P̂jk

Titman 750 1�2 Unif -.0008 .04862 .00186 .00428 .00237
Titman 750 1�2 Exp -.0026 .05089 .00215 .00478 .0026
AJ 750 1�2 Unif -.099 .029 .00245 .00469 .01064
AJ 750 1�2 Exp -.1011 .03212 .0026 .00508 .01125

Titman 750 1�0 Unif -.0002 .03722 .00169 .00298 .00139
Titman 750 1�0 Exp .0007 .04107 .00207 .00369 .00169
AJ 750 1�0 Unif .1599 .02618 .04298 .00342 .02625
AJ 750 1�0 Exp .1593 .02818 .04286 .00374 .02617

Table 35: Bias and Standard Deviation(SD) of P̂jk(s, t|Z = 1); j=1, k=0,2 and

MSE of β̂0, β̂1, P̂jk(s, t|Z = 1); j=1, k=0,2 using Pseudo-Observation Method of
Illness-Death Model with Recovery from Additional Simulations for 1�2 and 1�0
Transitions

with the slope than the intercept. At n = 200 despite the bias, MSE of the slope

when using Aalen-Johansen estimator was quite smaller than MSE of the slope when

using Titman estimator. At n = 500, we see that MSE of the slope when using

Titman estimator improves dramatically relative to MSE of the slope when using

Aalen-Johansen estimator. However, MSE of the slope when using Aalen-Johansen

estimator is still lower. Table 34 shows the bias and standard deviation of the intercept

and slope for illness to death and illness to healthy transitions from the illness-death

model with recovery using pseudo-observation method for n = 750. Table 35 shows

the bias and standard deviation of the predicted transition probability when Z =

1 when using pseudo-observation method for the illness-death model with recovery

for n = 750. Table 35 also shows the MSE for the intercept, slope, and predicted

transition probability when Z = 1. We see that at n = 750, MSE of the slope using

Titman estimator is lower than MSE of the slope using Aalen-Johansen estimator

for both transitions. We believe that MSE of the slope using Titman estimator will

remain lower than MSE of the slope using Aalen-Johansen estimator for n > 750.

Figure 7 and Figure 8 show the histograms and normal QQ-plots for various
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Figure 7: Histogram of the Slope Estimate for Illness-Death Model with Recovery
with Frailty Effect using Pseudo-Observation Method with Titman Estimator

Figure 8: Normal QQ-Plot of the Slope Estimate for Illness-Death Model with Re-
covery with Frailty Effect using Pseudo-Observation Method with Titman Estimator
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n P-value

200 .5743
350 .5564
500 .5682
700 .9834
1000 .6062

Table 36: Shapiro-Wilk Test for Normality for Illness-Death Model with Recovery
with Frailty Effect of the Slope using Pseudo-Observation Method with Titman Es-
timator

sample sizes, respectively. Table 36 shows the p-values from Shapiro-Wilk test of

the slope. Slope estimates are from the illness to healthy transition from the illness-

death model with recovery. The histograms show a distribution similar to the normal

distribution. The QQ-plots show some mild departure at the ends, but departure from

normality does not seem to be an issue. The p-values from Shapiro-Wilk test show

insignificant results for all sample sizes listed. Hence, this supports the asymptotic

normality result of Theorem 1.
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6 Analyzing Liver Cirrhosis Data

6.1 Introduction and Preliminary Work

In the previous sections, we studied our method based on simulations. Now, we

will use pseudo-observation method to analyze a dataset. We will be using the liver

cirrhosis data available in the mstate package in R. The dataset was first introduced

in [4]. It was made available in R by [11]. The dataset consists of 488 individuals

who have their prothrombin levels monitored. Abnormal level of prothrombin can

be lethal. It can lead to liver disease and liver bleeding ([20], [30]). Another moti-

vation of the study was to investigate the usefulness of the prednisone medicine. In

the study, 251 individuals took prednisone and the remaining 237 individuals were

placebo. Individuals entered the study having normal prothrombin level or having

low prothrombin level. In the multi-state model, there will be three states: normal

prothrombin level (state 0), low prothrombin level (state 1), and death (state 2). It is

Figure 9: Multi-State Model of Liver Cirrhosis Study
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possible for an individual with normal prothrombin level or low prothrombin level to

transition to death. It is possible for an individual with low prothrombin level to tran-

Figure 10: Transition Probability, P10(s = 1000, t) and Various Values of t for Aalen-
Johansen estimator(left) and Titman estimator(right)

Figure 11: Transition Probability, P10(s = 1000, t) and Various Values of t for Aalen-
Johansen estimator and Titman estimator(Groups not separated)
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sition to normal prothrombin level. Thus, the multi-state model is an illness-death

model with recovery. See Figure 9. [28] analyzed this data using Titman estimator

as a non-parametric estimator. That is, analysis was not done using regression. The

prednisone group and placebo group were analyzed separately. s = 1000 and various

values of t were used. The low prothrombin level (state 1) to normal prothrombin level

(state 0) transition was mainly studied. Figure 10 shows the plot of the transition

probability, P10(s = 1000, t) and various values of t for Aalen-Johansen estimator and

Titman estimator. The plots are reproduced from [28]. As [28] mentioned, Titman

estimator detects a difference in the transition probability between the two groups for

majority of t. Aalen-Johansen estimator does not detect this effect. [28] suggests that

the group variable could be an unobserved effect that Titman estimator detects, but

Aalen-Johansen estimator does not detect the effect. Therefore, a frailty effect could

be present in the data. Figure 11 shows the transition probability, P10(s = 1000, t)

and various values of t with Aalen-Johansen estimator and Titman estimator in the

same plot. As we can see, there are many areas in the plot that the two estimators

are different.

6.2 Markov Testing

In Section 6.1, we see signs of frailty effect in the dataset. In some cases, based

on the scientific literature, we can expect non-Markov behavior in the multi-state

model in a particular application. However, if prior knowledge of the behavior of the

transition is not known, it is best to test whether the Markov property holds. In

using pseudo-observations, it is essential to know if the Markov property holds. If the

Markov property holds, using Aalen-Johansen estimator will be better. If the Markov

property does not hold, Aalen-Johansen estimator may not be the best option based
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on the simulation results. [24] created a Markov test using Kendall’s τ . However,

the method is only applicable to illness-death model without recovery. Titman and

Putter[29] created a Markov test that works for general cases. In this section, we

will describe [29] ’s Markov test. It is important since we will be using it to test the

Markov property for the liver cirrhosis data in Section 6.3.

[29]’s method is motivated by the log-rank test. In order to use the log-rank test,

there needs to be two different groups of individuals. S = {Xi(s) = j, Yi(s) = 1}

and Sc = {Xi(s) ̸= j, Yi(s) = 1}. If the process is Markov, at time t > s, the

transition intensity should be the same. The transition probabilities are functions of

the transtion rates, αlm(t). Let αlm(t) for l ∈ Rj whereRj is the set of states reachable

from state j. To test the Markov property, H0 : αlm(t|X(s) = j) = αlm(t|X(s) ̸= j).

Let δ
(j)
i (s) = I(X(s) = j). The log-rank statistic for transition from state l to state

m is

U (j)
s (l,m) =

n∑
i=1

∫ τ

s

(
δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

)
dN lm

i (t) (50)

where Ykl(t) = I(Xk(t−) = l)Yk(t) is the risk indicator of individual k transitioning

from state l to state m. τ is the maximum time possible for t. N lm(t) is the counting

process of individuals transitioning from state l to state m. There must be at least

one state besides state j that state l is reachable. If there is no other state that state

l is reachable, the log-rank statistic will be uniformly 0. Thus, it is necessary that

state l ∈ Rj ∩ Rjc where Rjc =
⋃

j′ ̸=j Rj′ . For example, consider an illness-death

model with recovery (healthy=0, illness=1, death=2). Suppose that j = 0 and j
′
= 1.

Let l = 1 and m = 0. Suppose we are interested in the illness to healthy transition.

R0 = {0, 1, 2} and R1 = {0, 1, 2}. Indeed, l = 1 ∈ R0 ∩R1 = {0, 1, 2}. Even though

state 2 is in the set, l and j cannot be in state 2 since it is an absorbing state.

There are two approaches to test for Markov using the log-rank statistics. One
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method is the local test, where log-rank statistics are computed individually. The

hypothesis tests are tested individually. Under the null hypothesis, the log-rank

statistics are asymptotically independent. The other method is the global test where

s is put into an interval, s ∈ [t0, tmax] ⊂ [0, τ ]. Thus, t0 ≤ s ≤ tmax and s ≤ t ≤ τ .

In the global test, the asymptotic covariance is of interest for s, s
′ ∈ [t0, tmax] where

s ≤ s
′
. For the transition from state l to state m for individual i, the asymptotic

covariance is

Cov(U (j)
s , U

(j)

s′
)

=
∑
i

∫ τ

s′
Yil(t)

(
δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

)(
δ
(j)
i (s

′
)−

∑
k δ

(j)
k (s′)Ykl(t)∑
k Ykl(t)

)
dΛ̂(t)

(51)

where Λ̂(t) =
∫ t

0

∑
k dN

(lm)
k (u)∑

k Ykl(u)
which is the Nelson-Aalen estimator.

To find estimates of the covariance and variance, consider the kth transition

time from state l to state m. The kth transition time is denoted as t(k). Let nk

be the number of individuals at risk at t(k) such that nk =
∑

i Yi(t(k)). nk can

be decomposed as nk11 + nk01 + nk10 + nk00 where nk11 =
∑

i Yi(t(k))δ
(j)
k (s)δ

(j)
i (s

′
),

nk01 =
∑

i Yi(t(k))(1 − δ
(j)
k (s))δ

(j)
i (s

′
), nk10 =

∑
i Yi(t(k))δ

(j)
k (s)(1 − δ

(j)
i (s

′
)), and

nk00 =
∑

i Yi(t(k))(1− δ
(j)
k (s))(1− δ

(j)
i (s

′
)). The covariance can be estimated as

Ĉov(U (j)
s , U

(j)

s′
) =

∑
k:t(k)≥s

′

nk11nk00 − nk01nk10

n2
k

(52)
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If s = s
′
, the variance can be estimated as

V̂ ar(U (j)
s ) =

∑
k:t(k)≥s

′

nk11(nk − nk11)

n2
k

(53)

To derive these results, note that
∑

i Yi(t(k))δ
(j)
k (s) = nk11+nk10 and

∑
i Yi(t(k))δ

(j)
k (s

′
) =

nk11 + nk01.

Cov(U (j)
s , U

(j)

s′
)

=
∑
i

∫ τ

s′
Yil(t)

(
δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

)(
δ
(j)
i (s

′
)−

∑
k δ

(j)
k (s

′
)Ykl(t)∑

k Ykl(t)

)
dΛ̂(t)

=
∑
i

∫ τ

s′
Yil(t)

(
δ
(j)
i (s)− nk11 + nk10

nk

)(
δ
(j)
i (s

′
)− nk11 + nk01

nk

)
dΛ̂(t)

=

∫ τ

s′

∑
i

Yil(t)δ
(j)
i (s)δ

(j)
i (s

′
)− nk11 + nk01

nk

∑
i

Yil(t)δ
(j)
i (s)

− nk11 + nk10

nk

∑
i

Yil(t)δ
(j)
i (s

′
) +

(
nk11 + nk10

nk

)(
nk11 + nk01

nk

)∑
i

Yil(t)dΛ̂(t)

=

∫ τ

s′
nk11 −

nk11 + nk01(nk11 + nk10)

nk

− nk11 + nk10(nk11 + nk01)

nk

+
nk(nk11 + nk10)(nk11 + nk01)

n2
k

dΛ̂(t)

=

∫ τ

s′
nk11 −

2(nk11 + nk01)(nk11 + nk10)

nk

+
(nk11 + nk01)(nk11 + nk10)

nk

dΛ̂(t)

=

∫ τ

s′
nk11 −

(nk11 + nk01)(nk11 + nk10)

nk

dΛ̂(t)

=

∫ τ

s′

nk11nk − (nk11 + nk01)(nk11 + nk10)

nk

dΛ̂(t)

=

∫ τ

s′

nk11(nk11 + nk01 + nk10 + nk00)− (nk11 + nk01)(nk11 + nk10)

nk

dΛ̂(t)
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By expanding the terms,

=

∫ τ

s′

nk11nk00 − nk01nk10

nk

dΛ̂(t)

=

∫ τ

s′

nk11nk00 − nk01nk10

nk

d

∫ t

0

∑
k dN

(lm)
k (u)∑

k Yk(u)

=

∫ τ

s′

nk11nk00 − nk01nk10

nk

dN (lm)(t)

nk

=

∫ τ

s′

nk11nk00 − nk01nk10

n2
k

dN (lm)(t)

=
∑

k:t(k)≥s
′

nk11nk00 − nk01nk10

n2
k

V̂ ar(U (j)
s )

=
∑
i

∫ τ

s

Yil(t)

(
δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

)(
δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

)
dΛ̂(t)

=

∫ τ

s

∑
i

Yil(t)

(
δ
(j)
i (s)− nk11

nk

)(
δ
(j)
i (s)− nk11

nk

)
dΛ̂(t)

=

∫ τ

s

∑
i

(
Yil(t)δ

(j)
i (s)δ

(j)
i (s)− 2

nk11

nk

∑
i

Yil(t)δ
(j)
i (s) +

n2
k11

n2
k

∑
i

Yi(t)

)
dΛ̂(t)

=

∫ τ

s

(
nk11 − 2

n2
k11

nk

+
nkn

2
k11

n2
k

)
dΛ̂(t)

=

∫ τ

s

(
nk11 − 2

n2
k11

nk

+
n2
k11

nk

)
dΛ̂(t)

=

∫ τ

s

(
nk11 −

n2
k11

nk

)
dΛ̂(t)

=

∫ τ

s

nknk11 − n2
k11

nk

dΛ̂(t)

=

∫ τ

s

nk11(nk − nk11)

nk

dΛ̂(t)
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=

∫ τ

s

nk11(nk − nk11)

nk

d

∫ t

0

∑
k dN

(lm)
k (u)∑

k Yk(u)

=

∫ τ

s

nk11(nk − nk11)

nk

dN (lm)(t)

nk

=

∫ τ

s

nk11(nk − nk11)

n2
k

dN (lm)(t)

=
∑

k:t(k)≥s

nk11(nk − nk11)

n2
k

□

For the local test, each of the U
(j)
s (l,m) are asymptotically independent. When

U
(j)
s (l,m) is standardized,

Ū (j)
s (l,m) =

U
(j)
s (l,m)√
V̂ ar(U

(j)
s )

. (54)

Then when combining the standardized log-rank statistics, it becomes a chi-square

statistic,
∑
Ū

(j)
s (l,m)

2
. The sum is over the practitioner’s desired values of s.

For the global test, under the null hypothesis, the process, {Ū (j)
s (l,m), s ∈ [t0, tmax]}

converges to a zero-mean Gaussian process with covariance function,

Cov(U
(j)
s , U

(j)

s′
)√

V ar(U
(j)
s )V ar(U

(j)

s′
)
. (55)

Furthermore, for the global test, Markov test can be tested based on a summary

statistic of the process {Ū (j)
s (l,m), s ∈ [t0, tmax]}. Commonly used summary statistics

are mean, maximum, and weighted mean. Weights are important because there may

be areas in the timeline that may have only few individuals. Without weighting,

truncating s may be necessary. Areas with few individuals should be down-weighted
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compared to other areas in the timeline. [29] proposes the weight to be

w(s) =

√
dj(s)n

(1)
j (s)n

(0)
j (s)

n
(1)
j (s) + n

(0)
j (s)

(56)

where n
(1)
j (s) =

∑
i δ

(j)
i (s)Yil(s), n

(0)
j (s) =

∑
i(1−δ

(j)
i (s))Yil(s), and dj(s) = N (lm)(τ)−

N (lm)(s).

To avoid the computation to be too expensive, [29] suggests computing Ū
(j)
s (l,m)

for selected grid time points, s1, ..., sL. Then the null distribution is the Gaussian

process only using the selected grid time points. If the global test is based on a

summary statistic using the mean or maximum, the mean of the log-rank statistics

and maximum of the log-rank statistics only using the selected grid time points will

be computed, respectively.

Instead of using Gaussian process, [18] created an approximation method using

wild bootstrap.Wild bootstrap is used more commonly in regression. The residuals

are multiplied to independent, identically distributed(i.i.d.) random variables Gih

i = 1, ..., n ; h = 1, ..., N
(lm)
i (τ). N

(lm)
i (τ) is the total number of transitions from

state l to statem for individual i. The residual portion in (50) is δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

.

δ
(j)
i (s) can be treated as the observed binary variable.

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

can be treated as

the predicted proportion of individuals who are at state j at time s. The mean and

variance of Gih are 0 and 1, respectively. This was a requirement that [32] and [19]

made when establishing wild bootstrap. It would make sense to use standard normal

distribution. However, [7] showed that using centered Poisson random variables is

better than using standard normal random variables. The wild bootstrap form of

(50) is
n∑

i=1

Ni(τ)∑
h=Ni(s)+1

(
δ
(j)
i (s)−

∑
k δ

(j)
k (s)Ykl(tih)∑
k Ykl(tih)

)
Gih (57)
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where tih is the time of the hth transition from state l to state m for individual i.

(57) will be resampled.

So far, a specific state j has been tested. [29] suggest testing the Markov property

in general by utilizing a vector of log-rank statistics. Let R∗l be the set of states

reachable to state l. Let U(s) be a vector of log-rank statistics, U
(j)
s (l,m). r∗ = |R∗l |

is the cardinality of R∗l . Let Ω be a r∗ × r∗ singular covariance matrix where the

(j, j
′
)th element of Ω is Cov

(
U

(j)
s (l,m), U

(j
′
)

s (l,m)
)
. There is one constraint. In,

U
(j)
s (l,m), δ

(j)
i (s) is unknown. Hence, it is being estimated by

∑
k δ

(j)
k (s)Ykl(t)∑
k Ykl(t)

. Under

the null hypothesis, Ks(l,m) = U(r)(s)
TΩ−1(r,r)U(r)(s) follows a chi-square distribution

with r∗−1 degrees of freedom. The one degrees of freedom lost is from the constraint.

U(r)(s) is U(s) without the rth element and Ω(r,r) is Ω without the rth row and rth

column. This is so that Ω becomes a non-singular matrix. r can be chosen arbitrarily.

When using summary statistics for global tests, the mean,maximum, and weighted

mean of Ks(l,m) from [t0, tmax] can be computed. This summarizes [29]’s method to

test the Markov property.

Non-Markov effects can also come from frailty. Commenges and Andersen [8]

established a score test for homogeneity for survival data. This can be extended

to multi-state models by considering the stratified version of this test by making

each transition intensity a strata ([29]). This would be referred to as the stratified

Commenges-Andersen test. Let individual i have the transition intensity modeled

as αlmi(t; zi) = αlm0(t, zi) exp(σϵi + βlmzi) where ϵi are i.i.d. random variables of

an unspecified distribution with mean 0 and variance 1. Let zi be a covariate for

individual i. The frailty portion of the model is exp(σϵi) . Then the score test to test

for frailty is H0 : σ = 0 where σ2 is the variance of the frailty distribution. That is,

under H0, frailty effect does not exist.

75



6.3 Data Analysis

In order to use pseudo-observation method for the liver cirrhosis data, we will

need to test whether the Markov property holds. In the analysis, we will mainly

focus on the illness to healthy transition.We will use the log-rank test. We will also

use stratified Commenges-Andersen test to test for frailty, in particular.

Regarding the log-rank test, the MarkovTest function from the mstate package

in R was used. The MarkovTest function was created by [29].The global test was

used. For the summary statistic, mean, maximum and weighted mean were used.

When testing specific j, {Ū (j)
s (l,m) s ∈ [0, 2000]}. For the weight, the recommended

formula for w(s) was used. For the overall chi-square test, Ks(l,m) was computed for

mean, maximum, and weighted mean. There were 2,000 grid times: 1,2,. . . ,2000. The

wild bootstrap was replicated 1,000 times. Gih are i.i.d. centered Poisson random

variables.

Ū
(j)
s (l,m) Test Stat P-value

Mean (j=1) .7771 .206
Mean (j=2) .7771 .206
Max (j=1) 3.212 .058
Max (j=2) 3.212 .058

Weighted Mean (j=1) .9833 .118
Weighted Mean (j=2 ) .9833 .118

Ks(l,m) Test Stat P-value

Mean .9495 .026
Max 10.317 .026

Weighted Mean 2.2812 .026

Table 37: Statistic and P-value for the State-Specific Test and Overall Test for the
Transition of Low Prothrombin Level to Normal Prothrombin Level

Table 37 shows the statistic and p-value for the state-specific test and the overall

test for the transition of low prothrombin level to normal prothrombin level. For

the state-specific test, j = 1 and j = 2 were used. Looking at the result, log-rank
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test gives mix results. From the state-specific tests, there is mild evidence at best of

violation of the Markov property. However, in the overall chi-square test, there seems

to be evidence of violation of the Markov property. When testing for frailty, the p-

value from the stratifed Commenges-Andersen test is .0019. Thus, there is significant

evidence that frailty effect exists. To summarize, we can say that there is a violation

of the Markov property due to the frailty effect. We would need to be cautious on

concluding whether a pathological non-Markov behavior exists.

Now, we will create a semi-parametric regression model of the data using pseudo-

observation method. The treatment variable (prednisone or placebo) will be a binary

covariate in the regression model. Time s = 1000 and various t will be used. Only

one pseudo-observation is needed. For the mean function, the identity link function

will be used. From the quasi-likelihood function, the variance function relative to the

mean, will follow a normal distribution. Table 38 shows the results from GEE when

using t = 1500, 2000, 2500, and 3000. Pseudo-observations using Titman estimator

and Aalen-Johansen estimator were considered. Since Titman estimator is a landmark

estimator, only individuals who are at the low prothrombin level at time s and who

are at risk at time s will be part of the subsample. It is of interest to know how large

the subsamples are. Table 39 shows the subsample size of each state and number of

individuals who are censored for various s.

Overall, the parameter estimates for each t roughly matches what we see in Figure

10. When using Aalen-Johansen estimator, the slope is close to 0. In many cases when

using Titman estimator, the slope is relatively larger than 0. Looking at the graph

and slope estimates, it seems that Titman estimator detects the treatment covariate

and Aalen-Johansen estimator does not detect the covariate. The insignificant slope

when using Aalen-Johansen estimator is shown by the high p-value.

Another important point is that the standard error when using Titman estimator

77



s=1000, t=1500
Estimator Parameter Estimate Standard Error Test Stat P-value

Titman β0 β̂0 =.2663 .0952 7.8256 .0052

Titman β1 β̂1 =.1389 .12783 1.18 .2774

AJ β0 β̂0 =.2716 .06529 17.3073 <.0001

AJ β1 β̂1 =.0024 .08704 .0007 .9784

s=1000, t=2000
Estimator Parameter Estimate Standard Error Test Stat P-value

Titman β0 β̂0 =.2555 .09706 6.9294 .0085

Titman β1 β̂1 = .2636 .13131 4.0283 .0447

AJ β0 β̂0 =.3337 .05738 33.8329 <.0001

AJ β1 β̂1 =-.0132 .07897 .028 .867

s=1000, t=2500
Estimator Parameter Estimate Standard Error Test Stat P-value

Titman β0 β̂0 =.1928 .08702 4.9091 .0267

Titman β1 β̂1 =.1733 .12559 1.9039 .1677

AJ β0 β̂0 =.3072 .05108 36.1775 <.0001

AJ β1 β̂1 =-.0106 .07172 .02192 .8823

s=1000, t=3000
Estimator Parameter Estimate Standard Error Test Stat P-value

Titman β0 β̂0 =.2311 .09568 5.8332 .0157

Titman β1 β̂1 =.1583 .13196 1.4384 .2304

AJ β0 β̂0 =.2907 .0509 32.6201 <.0001

AJ β1 β̂1 =.0175 .07143 .0597 .807

Table 38: GEE Output using Pseudo-Observation for Low to Normal Prothrombin
Level Transition for t=1500,2000,2500, and 3000

to create pseudo-observation is drastically higher than the standard error when using

Aalen-Johansen estimator to create pseudo-observations. In general, the standard

error when using Aalen-Johansen estimator being lower than the standard error when

using Titman estimator is expected. However, the difference is quite substantial.

When using Titman estimator, the high standard error for the slope caused it to be

insignificant in many cases. Looking at Table 39, there are only 61 individuals in the

subsample of low prothrombin level state at s = 1000. We believe that is substantially
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State s = 1000 s = 500 s = 365

Normal 179 213 234
Low 61 93 98
Dead 172 124 109

Censored 76 58 47

Table 39: Subsample Size for Each State for Various s

low and contributes to the high standard error. At s = 1000, we see that over half of

the sample is either dead or censored. If we set s to be smaller, fewer individuals are

dead or censored. More individuals are in the normal or low prothrombin level state.

However, far more individuals are in the normal prothrombin level state than the

lower prothrombin level state. Setting s to be smaller will likely lower the standard

error, but it is hard to say that the p-value will get lower. This data analysis shows the

importance of having a high landmark subsample size when using Titman estimator

to create pseudo-observations.

79



7 Discussion

7.1 Another Approach

In our study of multi-state models, counting processes played a critical role in find-

ing the non-parametric estimator for non-Markov transition probabilities. Counting

processes are used pervasively in multi-state models, including survival models and

competing risks models. However, counting processes are not the only way to study

transition probabilities in multi-state models. Applications of graphical models are

relevant to areas such as spatial statistics, statistical learning, and agent-based simu-

lation. One application is the Susceptible-Infectious-Recovered (SIR) model. We will

study the literature and methods. SIR model is expressed as a differential equation.



dS
dt

= bN − λS − dS

dI
dt

= λS − gI − dI

dR
dt

= gI − dR

(58)

where S is the number of susceptible individuals, I is the number of infectious individ-

uals, R is the number of recovered individuals, N is the population size, b is the birth

rate, d is the natural death rate, g is the rate of recovery from infection, and λ is the

rate at which susceptible individuals become infected. SIR models express the rate

of change of susceptible individuals, infectious individuals, and recovered individuals.

The SIR model is appropriate for diseases with lifetime immunity. Therefore, an

illness-death model with recovery when the transition of illness to healthy occurring

at most once seems to be reasonably analogous to the SIR model. [16] reviewed the

literature and methods regarding SIR models and other network models. SIR models

are well-used to model spread of infectious diseases. However, SIR models assume
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all individuals are able to interact with one another. This is not realistic when the

population is large. In many large population settings, individuals can interact with

few individuals. Alternatively, a deterministic mean-field models are used to approxi-

mate average quantity of the stochastic model. The behavior of a spread of disease is

considered to be stochastic. Two common ways to find proportion of susceptible, in-

fectious, and recovered individuals are message passing (MP) method and edge-based

compartmental model (EBCM). [26] describes these methods.

MP method analyzes each individual separately and all possible ways of an in-

dividual getting infected by its neighbor in a graphical structure. MP method was

established by [15]. Let the test individual, u be an individual that can be infected,

but cannot infect other individuals. Let v be a neighbor of u. Message is defined as

the probability of v not able to transmit the disease to u by time t. The message

is denoted as Hu←v(t). To find the probability of Hu←v(t), there are two cases to

consider. The first case is that v is intially infected at time 0 and does not transmit

the disease to u by time t. This probability is
∫ t

0
f(a)da where a is the length of time

until transmisson occurs. a is also known as the age of infection since the infection

started at time 0. f(a) is the density of an individual who was infected at time 0

transmitting the disease to a neighbor by time t. For the other case, suppose that

v was not intially infected at time 0, and was infected by one of its neighbors later.

After v was infected, suppose that it takes a length of time of a < t to attempt to

transmit the disease to u. If v was infected at t
′
> t − a, u will be infected after

time t. In addition, v must have been intially susceptible to the disease and avoided

transmisson of the disease from its neighbors until after time t − a. Suppose that

the probability of being initially susceptible is e. The probability of this case can be

modeled as e
∫ t

0
f(a)

∏
w∈N (v)\uH

v←w(t − a)da. N (v) is the set of neighbors of v.

Adding the two cases,
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Hu←v(t) = 1−
∫ t

0

f(a)

1− e
∏

w∈N (v)\u

Hv←w(t− a)

 da. (59)

Rather than analyzing a message between two individuals, the average message is de-

noted as, H1(t) is of interest. This requires configuration models(CM). An individual

has k neighbors which is defined as a degree. pk k = 0, 1, ..., is a probability distri-

bution that a random individual in the graphical structure has degree k. pk is defined

as the degree distribution. The excess degree is the number of edges the neighbor

has, excluding the edge with the test individual, u. Thus, excess degree is k− 1. The

moment generating functions for degree distribution and excess degree distribution

are respectively, G0(x) =
∑

k pkx
k and G1(x) =

1
G′

0(1)

∑
k kpkx

k−1. G′0(1) =
∑

k kpk.

To find the average message, consider
∏

w∈N (v)\uH
v←w(t − a) in (59). The excess

degree is considered since the edge to u is excluded. In addition, the product in (59)

is replaced with the moment generating function of the excess degree distribution,

G1(x). The average message, H1(t) is expressed as

H1(t) = 1−
∫ t

0

f(a) (1− eG1(H1(t− a)) da (60)

with an initial condition of H1(0) = 1. Then, the expression of the MP method

regarding susceptible, recovered, and infectious proportion can be expressed as

⟨S⟩(t) = eG0(H1(t))

⟨R⟩(t) =
∫ t

0

q(a) (1− ⟨S⟩(t− a)) da

⟨I⟩(t) = 1− ⟨S⟩(t)− ⟨R⟩(t)

(61)

For ⟨S⟩(t), e is the proportion of individuals who are intially susceptible to the disease.
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In order for the individual to remain susceptible until time t, the individual must avoid

the transmisson of the disease until time t. All neighbors are eligible to transmit

the disease. Therefore, all k neighbors need to be considered. Thus, the moment

generating function of the degree distribution, G0(x) is used. For ⟨R⟩(t), q(a) is

denoted as the density of the duration of the infection. At time a, the individual has

recovered, but needs to avoid getting susceptible again for the remaining t − a time

in order to stay recovered at time t.

Key difference between EBCM and MP method is that EBCM uses instantaneous

rates of transmission and recovery by using hazard functions, and MP method uses

raw densities. EBCM was created by [22]. However, it only works for systems with

Markov behavior. [26] extended EBCM that accommodates non-Markov behavior.

We will describe their extended EBCM. The hazard functions for transmission and

recovery are denoted respectively, ζ(a) and ρ(a). EBCM also utilizes the CM method.

The motivation of the method is to find the probability of a random test individual

is susceptible, infectious, or recovered at time t. The proportions of individuals being

susceptible, infectious, and recovered at time t are denoted as S(t), I(t) and R(t),

respectively. The model also considers the behavior of the neighbors of the random

test individual. The model needs to consider a random neighbor being susceptible,

infectious neighbors who did not transmit the disease to the test individual, and

recovered neighbors who did not transmit the disease to the test individual. The

probability densities are respectively, ΨS(t), ΨI(t), and ΨR(t). Since the edge to the

test individual is excluded, the excess degree distribution would be used. EBCM is

expressed as (62).

Θ(t) represents the probability that the test individual does not get the disease

transmitted from its neighbors until time t. Hence, Θ(t) plays the role of the message.

In EBCM, the differential equation of Θ(t) is also part of the model. It is monotoni-
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cally decreasing, and depends on ζ(a) and ψI(t, a). Since the hazard functions depend

on the age of infection, a, joint densities need to be considered. i(t, a) denotes the

joint density of infectious individuals and has an age of infection, a. ψI(t, a) denotes

the joint density of an infectious neighbor that has not transmitted the disease to the

test individual and has an age of infection, a. Furthermore, ΨI(t) =
∫ t

0
ψI(t, a)da and

I(t) =
∫ t

0
i(t, a)da. The rate of infectious neighbors and rate of infectious individuals

are denoted as ψI(t, 0) and i(t, 0), respectively. That is, rate of infectious monitors

the spread of the disease from intially-infected individuals. To compute ψI(t, 0) , the

boundary condition is the rate of susceptible neighbors getting infected. Then to

compute ψI(t, 0), the interior of −ΨS(t) is computed. Similarly, to compute i(t, 0),

the boundary condition is the rate of susceptible individuals getting infected. Then



dΘ(t)
dt

= −
∫ t

0
ζ(a)ψI(t, a)da

ΨS(t) = eG1(Θ(t))

ψI(t, 0) = −ψ̇S(t) = (1− b)δ(t) + bG2(Θ(t))
∫ t

0
ζ(a)ψI(t, a)da

( ∂
∂t
+ ∂

∂a
)ψI(t, a) = −(ζ(a) + ρ(a))ψI(t, a) 0 < a ≤ t

ΨI(t) =
∫ t

0
ψI(t, a)da

ΨR(t) = Θ−ΨS −Ψi

S(t) = eG0(Θ(t))

i(t, 0) = −Ṡ(t) = (1− b)δ(t) + eG′0(1)G1(Θ(t))
∫ t

0
ζ(a)ψI(t, a)da

( ∂
∂t
+ ∂

∂a
)i(t, a) = −ρ(a)i(t, a) 0 < a ≤ t

I(t) =
∫ t

0
i(t, a)da

R(t) = 1− S(t)− I(t)

(62)
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to compute i(t, 0), the interior of −S(t) is computed. In the first term of ψI(t, 0) and

i(t, 0), there is a δ(t). This is a Dirac delta function where the function is equal to

zero when t ̸= 0, but it spikes up to a large positive value when t = 0. The first term

represents the beginning of the infection at t = 0. Finally, there are partial differential

equations with respect to t and a for ψI(t, a) and i(t, a). This is because individuals

and its neighbors eventually recover. This behavior will depend with respect to both

t and a.

[26] showed that (61) and (62) are equivalent. They are both suitable for systems

with non-Markov behavior. There is one fundamental difference between SIR models

and multi-state models using counting processes. In SIR models, the states(nodes) of

the graph or lattice are individuals, and the disease is traveling from state to state.

In multi-state models uisng counting processes, there are less states in the model.

It is the individuals who are traveling from state to state. We believe that both

approaches are useful and have solutions to the non-Markov problem. However, the

two approaches are not comparable.

7.2 Conclusions and Remarks

In the past, there have been only few regression models that accommodate for

non-Markov models. Creating a regression model using pseudo-observations, itself is

not a new method. However, our contribution is that we applied it to the regression

model of transition probability to covariates in a multi-state model where non-Markov

behavior may exist. This includes the pathological non-Markov effect and the frailty

effect. This works for time-irreversible and time-reversible multi-state models. The

only requirement to use pseudo-observation method is that we need an unbiased

estimator. In the simulations of Section 3, Section 4, and Section 5, we saw that when
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the non-parametric estimator is unbiased or has mild bias, building a regression model

using a pseudo-observation, and estimating the parameter using GEE gives accurate

results. This shows the validity of our method.

When using Titman estimator to create the pseudo-observation, the estimates

were accurate in all cases for Markov and non-Markov models. While we cannot claim

that using Titman estimator is always better, we found it as a reliable alternative when

Aalen-Johansen estimator is biased. We recommend using [29]’s method to test for the

Markov property. We also recommend testing for frailty using stratifed Commenges-

Andersen test. If the Markov property holds, Aalen-Johansen estimator should be

used due to its smaller standard deviation. If Markov property does not hold, we

recommend practitioners to compute the non-parametric estimator, Aalen-Johansen

estimator and Titman estimator. We know that Titman estimator is unbiased in

all non-Markov cases. If the two estimators match or are close to eachother, Aalen-

Johansen estimator should be used when creating the pseudo-observation. If the

two estimators are quite apart from eachother, we believe using Titman estimator to

create the pseudo-observation is a safer option. We noticed from the simulations that

at times using Aalen-Johansen estimator to create pseudo-observations worked well,

and there were times that it performed poorly. From the simulation, we saw that

using Aalen-Johansen estimator to create the pseudo-observation lead to poor results

for pathological non-Markov models for the illness-death model without recovery and

the frailty case for the illness-death model with recovery. On the contrary, it lead

to accurate results in the frailty case for the illness-death model without recovery

and pathological non-Markov model for the illness-death model with recovery. As of

right now, we do not have a theoretical reasoning of why it worked and did not work

in certain cases. In addition, the bias also differs for various combinations of s and

t. Bias may also differ based on the transition intensities of the multi-state model.
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Hence, our choice of s, t , and the transition intensities could have an impact on

the result of the simulation. Ultimately as future work, we would like to throughly

investigate when and how Aalen-Johansen estimator is biased and unbiased. Once we

know that, we can make better recommendations to when to use Titman estimator

and when to use Aalen-Johansen estimator in creating pseudo-observations. With

this all discussed, we are still convinced that Aalen-Johansen estimator is not the

solution for every non-Markov case, and an alternative is absolutely necessary.

While using Titman estimator to create pseudo-observations lead to accurate

parameter estimates, the standard deviation was higher than when using Aalen-

Johansen estimator. This lead to higher MSE when using Titman estimator. This

was due to the subsample from landmarking. [23] created the non-parametric esti-

mator, Landmark Aalen-Johansen(LMAJ) estimator that showed that the standard

deviation was less than Titman estimator. We believe that even if we create pseudo-

observations using LMAJ estimator, the standard deviation of the parameter esti-

mates from GEE could still be an issue. [29] claimed that landmark estimators had

a trade-off between being unbiased and having a larger standard deviation.

As far as we know, solving the issue on larger standard deviation is still an on-

going problem, particularly for time-reversible models.[27] suggests pre-smoothing

the estimator to reduce the standard deviation. They focused on the non-parametric

estimator created by [10] in an illness-death model without recovery. The expres-

sion of the non-parametric estimator from [10] utilizes Kaplan-Meier estimator. [27]

pre-smoothed Kaplan-Meier estimator using binary regression and non-parametric re-

gression. While Titman estimator reduces to Kaplan-Meier estimator in some cases,

in many cases it does not. If we want to extend pre-smoothing to Titman estima-

tor, we would need to find a way to pre-smooth in cases where it does not reduce

to Kaplan-Meier estimator. [27] showed that when they specified the pre-smoothing
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function correctly, the standard deviation of the non-parametric estimator decreased

with bias slightly going up. However when the pre-smoothing function is misspeci-

fied, the bias of the non-parametric estimator heavily went up. Hence, pre-smoothing

functions may decrease the standard deviation, but with risks. If a pre-smoothing

function is misspecified, it could do more damage than good.

It is possible for pseudo-observations to be computed simultaneously to create mul-

tiple pseudo-observations. The original motivation of GEE was based on longitudinal

studies. We believe that our method can be extended to longitudinal studies. With

s being fixed and individual i having m timepoints, t1,...,tm, m pseudo-observations

can be created as (21). Our method creates a regression model based on the snapshot

of time t. The benefit of the longitudinal approach is that we would be able to see

the change of the parameter estimates from the regression model over time.

When the landmark sample was small, it contributed to even higher standard de-

viation for the non-parametric Titman estimator. When using Titman estimator to

create pseudo-observations, the standard deviation of the parameter estimates from

GEE also was substantially large. We believe that a higher sample size will ben-

efit both estimator in creating pseudo-observations. We see the standard deviation

decrease as the sample size increases. We believe that it is even more crucial when us-

ing Titman estimator, since we see major improvements as the sample size increases.

Higher sample size is good, but we also need to make sure that each landmark sub-

sample is abundantly large. In the liver cirrhosis dataset, the overall sample size was

488 which is fairly large. However, the landmark subsample when individuals had

low prothrombin level at s = 1000 was only 61. Ultimately, we would recommend the

overall sample size to be at least 500. We also recommend the landmark subsample

size to be at least 100 as a bare-minimum, and sample size of over 150 would be ideal.

We believe that bias is a bigger issue than higher standard deviation since standard
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deviation will decrease as the sample size increases. Bias will remain an issue for

any sample size. However regarding higher sample sizes, practitioners would need to

consider the financial and time aspect of the study. This is because higher sample

sizes will make the study financially expensive and more time-consuming.
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Appendix

Proof of Theorem 1

Theorem 1 states:

√
n(β̂ − β) is asymptotically normal with mean zero and covariance matrix

estimated Σ̂ = I(β̂)−1v̂ar(U(β))I(β̂)−1 where I(β) =
∑

i
∂θi
∂β

T
V −1i

∂θi
∂β

and

v̂ar(U(β)) =
∑

i Ui(β̂)Ui(β̂)
T . I(β) is a p× p information matrix.

Note:

I.We will utilize the sketch of the proof from [17] and complete the proof.

II. In our application, we only need one pseudo-observation to create a regression

model. However, in this proof, we prove the theorem in a general case where there

are multiple pseudo-observations/time points.

III. Recall the working covariance matrix structure is Vi = c(ϕ)E
1/2
i Ri(γ)E

1/2
i . Also,

θi = θi(Zi) = E(h(Xi|Zi). θi is the mean function.

IV. Important Assumptions include:

(1) E(U(β) = 0.

(2)Ui(β) i = 1, ..., n are independent.

(3)

i) γ̂(β, ϕ) is a
√
n consistent estimator when β and ϕ are known. Hence,

√
n(γ̂(β, ϕ(β))− γ) = Op(1)

ii) ϕ̂(β) is a
√
n consistent estimator when β is known. Hence,

√
n(ϕ̂(β)− ϕ) = Op(1).

iii) |∂γ̂(β,ϕ)
∂ϕ

| = Op(1).

(4) We assume mild regularity conditions.
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Proof:

Consider the first-order Taylor series expansion about β,

n∑
i=1

Ui

(
β̂, γ̂(β̂, ϕ̂(β̂))

)
≈

n∑
i=1

Ui

(
β, γ̂(β, ϕ̂(β))

)
+

n∑
i=1

∂∗Ui

(
β, γ̂(β, ϕ̂(β))

)
∂β

(β̂ − β)

n∑
i=1

Ui

(
β̂, γ̂(β̂, ϕ̂(β̂))

)
−

n∑
i=1

Ui

(
β, γ̂(β, ϕ̂(β))

)
≈

n∑
i=1

∂∗Ui

(
β, γ̂(β, ϕ̂(β))

)
∂β

(β̂ − β)

−
n∑

i=1

Ui

(
β, γ̂(β, ϕ̂(β))

)
≈

n∑
i=1

∂∗Ui

(
β, γ̂(β, ϕ̂(β))

)
∂β

(β̂ − β)

(β̂ − β) ≈

 n∑
i=1

∂∗Ui

(
β, γ̂(β, ϕ̂(β))

)
∂β

−1( n∑
i=1

Ui

(
β, γ̂(β, ϕ̂(β))

))

√
n(β̂ − β) ≈

 n∑
i=1

−
∂∗Ui(β,γ̂(β,ϕ̂(β)))

n

∂β

−1 n∑
i=1

Ui

(
β, γ̂(β, ϕ̂(β))

)
√
n



Note:

∂∗Ui

(
β, γ̂(β, ϕ̂(β))

)
∂β

=
∂ Ui

(
β, γ̂(β, ϕ̂(β))

)
∂β

+
∂ Ui

(
β, γ̂(β, ϕ̂(β))

)
∂ γ̂(β, ϕ̂(β))

(
∂ γ̂(β, ϕ̂(β))

∂β

)

=Ai +BiC.
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Let β be fixed and do a Taylor series expansion about γ.

n∑
i=1

Ui

(
β, γ̂(β, ϕ̂(β))

)
√
n

=
n∑

i=1

Ui(β, γ)√
n

+
n∑

i=1

∂Ui(β,γ)√
n

∂γ

(
γ̂(β, ϕ̂(β))− γ

)
+ op(1)

=
n∑

i=1

Ui(β, γ)√
n

+
n∑

i=1

∂Ui(β,γ)
∂γ

n

√
n
(
γ̂(β, ϕ̂(β))− γ

)
+ op(1)

= A∗ +B∗C∗ + op(1)

Consider,

B∗ =
n∑

i=1

∂Ui(β,γ)
∂γ

n

For the ith individual, ∂Ui(β,γ)
∂γ

=
∑

i

(
∂θi
∂β

)T
V −1i

∂V −1
i

∂γ
V −1i (θ̂i − θi) where

∂V −1
i

∂γ
is

ki × ki matrix where a derivative is taken for each element with respect to γ. We see

that ∂Ui(β,γ)
∂γ

is a linear function of θ̂i − θi. Then, E(θ̂i − θi) = 0. We assume that the

processes, X1(t),...,Xn(t) are i.i.d. Therefore, the individuals are i.i.d. By Strong

Law of large numbers, B∗ =
∑n

i=1

∂Ui(β,γ)

∂γ

n
converges to the mean which is 0. Thus,

B∗ = op(1).

Consider,

C∗ =
√
n
(
γ̂(β, ϕ̂(β))− γ

)
=

√
n
(
γ̂(β, ϕ̂(β))− γ̂(β, ϕ(β)) + γ̂(β, ϕ(β))− γ

)
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By identifying a first-order Taylor series expansion from the first two terms,

=
√
n

(
∂ γ̂(β, ϕ(β))

∂ϕ
(ϕ̂(β)− ϕ) + γ̂(β, ϕ(β))− γ

)

Using assumptions (3) i)-iii)

√
n

(
∂ γ̂(β, ϕ(β))

∂ϕ
(ϕ̂(β)− ϕ) + γ̂(β, ϕ(β))− γ

)
= Op(1).

Consider A∗ =
∑n

i=1
Ui(β,γ)√

n
=

√
n
∑n

i=1
Ui(β,γ)

n
. By assumption (1), E(Ui(β, γ)) = 0.

Cov(Ui(β, γ)) = Cov

((
∂θi
∂β

)T

V −1i (θ̂i − θi)

)

=

(
∂θi
∂β

)T

V −1i Cov(θ̂i)V
−1
i

(
∂θi
∂β

)

Note that Cov(θ̂i) is a ki × ki matrix where Cov(θ̂il, θ̂il′ ) for l, l
′ ∈ 1, ..., ki. Since

Ui(β, γ) are independent from assumption (2),

Cov

(
n∑

i=1

Ui(β, γ)

)
=

n∑
i=1

(
∂θi
∂β

)T

V −1i Cov(θ̂i)V
−1
i

(
∂θi
∂β

)

By Central Limit Theorem,
√
n
∑n

i=1 Ui(β, γ) has an asymptotic distribution of

normal with mean 0 and covariance matrix,
∑n

i=1

(
∂θi
∂β

)T
V −1i Cov(θ̂i)V

−1
i

(
∂θi
∂β

)
.

Consider

Ai =
∂Ui(β, γ̂(β, ϕ̂(β)))

∂β
.

The derivative of the score function,
(

∂θi
∂β

)T
V −1i (θ̂i − θi) with respect to β is

−
(

∂θi
∂β

)T
V −1i

(
∂θi
∂β

)
.
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Consider

Bi =
∂Ui(β, γ̂(β, ϕ̂(β)))

∂ γ̂(β, ϕ̂(β))
.

Bi will be a constant since β is known. Then,
∑

iBi would be a constant. Hence,∑
iBi = op(n). Consider

C =
∂ γ̂(β, ϕ̂(β))

∂β
.

C is a constant. Therefore, C = Op(1).

Looking back at the original Taylor series expansion at the beginning, we are left

with


∑n

i=1

(
∂θi
∂β

)T
V −1i

(
∂θi
∂β

)
n


−1

√
n
∑n

i=1 Ui(β, γ)

n

=

(
n∑

i=1

(
∂θi
∂β

)T

V −1i

(
∂θi
∂β

))−1√
n

n∑
i=1

Ui(β, γ)

Note that
∑n

i=1

(
∂θi
∂β

)T
V −1i

(
∂θi
∂β

)
is the information matrix, I(β).

The asymptotic covariance would be

Σ =

(
n∑

i=1

(
∂θi
∂β

)T

V −1i

(
∂θi
∂β

))−1 n∑
i=1

(
∂θi
∂β

)T

V −1i Cov(θ̂i)V
−1
i

(
∂θi
∂β

)

×

(
n∑

i=1

(
∂θi
∂β

)T

V −1i

(
∂θi
∂β

))−1
= I(β)−1V ar(U(β))I(β)−1

By Central Limit Theorem,
√
n(β̂ − β) has an asymptotic normal distribution with
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mean 0 and covariance matrix, Σ. To estimate Σ, we plug in β̂ for β. We estimate

Cov(θ̂i) with (θ̂i − θi)(θ̂i − θi)
T . Then V̂ ar(U(β)) =

∑
i Ui(β̂)(Ui(β̂)

T . So,

Σ̂ = I(β̂)−1V̂ ar(U(β))I(β̂)−1. □
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