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                                                    Abstract 

 

Model-based reinforcement learning (MBRL) approaches leverage learned models of the 

environment to plan and make optimal decisions, reducing the need for extensive real-

world interactions and enabling more efficient learning in complex domains such as 

robotics, autonomous systems, and resource allocation problems. They also provide 

interpretability and insight into the underlying dynamics, facilitating better decision-

making and system understanding.  

The world model is a model-based RL approach that employs generative neural network 

models to learn a compressed spatial and temporal representation of the environment. 

This work explores world models and a simple single-layered RNN model to learn a 

simple policy based on the representations to solve tasks in complex RL environments. A 

traditional variational autoencoder (VAE) encodes environment features to latent 

representations in the world model approach. Recent research on generative models 

reveals that traditional VAE constraints cause information loss or distortion during 

compression and impede the world model based- agent's ability to learn accurate 

representations of complex environments. This thesis proposes a deep hierarchical 

variational autoencoder (NVAE) as the visual component of the world model to overcome 

the challenge of modeling complex data and long-range correlations and improve an 

agent's performance in complex RL environments such as car racing-v2 and panda-gym. 
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Glossary of Abbreviations 

Reinforcement learning (RL) – a type of machine learning approach where an agent 

learns to make optimal decisions by interacting with an environment and obtaining 

rewards or punishments as feedback. 

Model-Based Reinforcement learning (MBRL) – a type of reinforcement learning 

approach where an agent learns a model of the environment's dynamics to plan and make 

optimal decisions by integrating experience-based learning and reasoning about the 

environment. 

World Model – a model-based reinforcement learning approach that uses generative 

models to learn the environment’s features, and to the learn internal model based on 

environment’s dynamics. It also consists of a simple neural network for decision making. 

This model is applied to solve complex problems like video games, self-driving cards, 

robotics etc.  

Visual Model (V), Memory model (M) and Controller model (C) – The three 

components of the world model. 

Recurrent Neural Network (RNN) - an artificial neural network that processes 

sequential data by utilizing feedback connections to maintain and propagate information 

across previous time steps. 

Variational Autoencoder (VAE) – a generative model that learns to encode and decode 

data by combining an encoder-decoder architecture with probabilistic inference, allowing 

it to generate new samples and perform efficient latent space interpolation. 

Nouveau Variational Autoencoder (NVAE) - a variation of variational autoencoder that 

uses a deep hierarchical architecture with deep convolutions and residual cell to generate 

new samples and perform efficient latent space interpolation. 

Mixture Density Network based Recurrent Neural Network (MDN-RNN) - a 

recurrent neural network architecture that combines the modeling power of RNNs with 
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mixture density networks to capture complex probability distributions and generate 

output sequences. 
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Chapter 1: Introduction 

 

How do humans react instinctively to dangerous situations? How does the brain quickly 

react and suggest the following action in dangerous situations? The answer to these 

questions is a mental model. Humans construct a mental model based on the data 

provided by their five senses (Quiroga et al., 2005). This mental model influences their 

behavior and actions. Our brain learns abstract representation based on the spatial and 

temporal data of the world to manage the extensive data we encounter daily. We take in 

the visual cues and retain an abstract scene description. Study in the neural sciences 

suggests that - what we see at any time may also be determined by our brain's prediction 

of the future based on our internal model (Nortmann et al., 2015) . 

Suppose we wish to understand the brain's predictive model. In that case, we should 

perceive it as a model for predicting future sensory data based on our current motor 

actions rather than a generalized model for predicting the future (Keller et al., 2012). We 

use this predictive model to react quickly and reflexively in dangerous situations without 

consciously planning actions (Mobbs et al., 2015).  

For example, consider the sport of baseball. A batter's decision on how to swing the bat is 

made in a fraction of a second, far less than the time it takes for visual data to reach our 

brains. For professional players, the ability to anticipate where and when the ball will 

travel is innate and happens subconsciously (Hirshon et al., 2013). Their internal models 

predict the optimal time and location to swing the bat, and their muscles execute it 

automatically (Maus et al., 2013). As a result, their foresight is used for immediate action 

without systematically considering various scenarios.  

Recent research in neural networks has provided the means to replicate the brain's 

predictive model for solving reinforcement learning-based problems (Kaelbling et al., 

1996) using a neural network-based predictive model. In many reinforcement learning 

(RL) problems, a recurrent neural network (RNN) is used as the predictive model 
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(Werbos, 1989). RL research focuses on agent behavior in complex environments, and 

game environments are extensively utilized to test and assess agent performance. 

 

Figure 1:The figure depicts two flow charts; (left) illustrates the general reinforcement 

learning process, and (right) demonstrates the workings of model-based reinforcement 

learning. 

 

In RL systems, the agent benefits from learning a model of the environment, which is a 

function that forecasts future state transitions and rewards. Before taking any action in the 

environment, a solution can is determined using traditional RL techniques if a model is 

available, i.e., if all the elements of the MDP (Markov Decision Process) are known, 

mainly the transition probabilities and the reward function. This is known as model-based 

reinforcement learning (as seen in Fig 1). Model-based reinforcement learning (MBRL) 

has become a promising approach for solving tasks in complex environments such as 
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games and robotics. MBRL has garnered attention by solving the Go game with the 

AlphaGo approach and car racing-v0 with world models.  

This thesis explores the world model (Ha & Schmidhuber, 2018), a simple framework 

that uses generative neural network models to learn a compressed spatial and temporal 

representation of the environment, and a simple single-layered RNN model to learn a 

simple policy based on the representations to solve tasks in the complex RL 

environments. World models simulate the environment's behavior, allowing agents to 

plan and make decisions without directly interacting with the actual environment. 

In previous RL algorithms, credit assignment problems often bottlenecked training large 

network models. Hence the world model framework employs smaller networks to learn a 

simple policy to solve a task. Here, the agent is divided into one large world model with 

visual (V) and memory (M) components and a small controller (C) model. A traditional 

Variational Autoencoder (VAE) serves as the visual component in the world model to 

learn a compressed abstract representation from a high-dimensional input data frame. A 

large RNN trained with a back-propagation algorithm is used as the memory (M) 

component to predict the future latent vectors. A small RNN is employed as the controller 

model responsible for determining the course of actions to take to maximize the expected 

cumulative reward of the agent in an environment. Here, V and M are trained together, 

keeping the computational complexity within the world model. C is trained independently 

from the world model so that it focuses on solving the credit assignment problem.  

In contrast to the traditional RL algorithms, the world model approach takes in a stream 

of raw RGB pixel image data and directly learns the spatial-temporal representations. 

Therefore, the latent representations learned are supposed to be more accurate. 

Earlier implementation of the world model approach was to solve the car racing-v0 task 

where the agent achieved benchmark results. The world model framework is an important 

model-based approach because the policy learned in the actual environment can be used 

in a hallucinated/dream environment, where the dream environment is generated based on 

the observed latent representations of the agent.  
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In the case of the car racing-v0 environment, we observed that the agent could navigate 

through the environment. However, its performance was much less than the agent's 

performance in the actual environment. This is because the features of the dream 

environment do not match those of the actual environment on which the policy used to 

train the agent in the dream environment is based. 

Like the actual environment, to solve a task in the dream environment, the agent must 

collect maximum cumulative rewards by taking precise actions; in the case of a car 

racing-v0 environment, the agent should stay on track and navigate the turns for 

maximum time. Therefore, the controller's actions need to be precise, and the latent input 

representations learned by the visual component must be accurate.  

A recent study in the generative models indicate the limitations of  traditional VAE 

(Kingma & Welling, 2013) in modeling complex data and long-range correlations. Long-

range correlations in the data refer to the interdependencies between distant pixels or 

regions within an image. When long-range correlations are present in the data (which is 

the case for most data), the encoding process by the visual component (VAE) results in 

information loss or distortion. It impedes the world model-based agent's ability to learn 

accurate representations of complex environments. 

 To address this challenge, this thesis, proposes using a deep hierarchical variational 

autoencoder (NVAE) as the visual component in the world model that helps enhance an 

agent's performance in complex RL environments such as robotics. Nouveau VAE 

(NVAE) is a deep hierarchical VAE with multiple levels of latent variables, allowing for 

more expressive and flexible modeling of complex data distributions (Vahdat & Kautz, 

2020). NVAE addresses the limitations of traditional VAE, i.e., low modeling capacity 

and difficulty in modeling complex data distributions by utilizing depth-wise separable 

convolutions with residual cells. The hierarchical multi-scale model captures global long-

range correlations at the top and local dependencies at lower levels addressing the issue 

of long-range correlations in data. 
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The main contributions of the thesis are –  

1) This thesis introduces a novel framework called NVAE-based World Models, a 

modified version of the traditional world models to enhance agent's performance in 

complex RL environments. 

 2) This work highlights the significance of a hierarchical variational autoencoder (VAE) 

in enhancing the expressiveness and capability of traditional world models, allowing 

them to more accurately model complex data distributions and capture diverse and 

intricate patterns in the environment. 

3) To the best of my knowledge, this work is one of the first successful attempts to apply 

a model-based reinforcement learning approach to the complex panda-gym (reach task) 

environment, and the results show promising performance. 

 

The remainder of the thesis is structured as follows: Chapter 2 addresses recent work in 

VAE, the architectures of VAE, hierarchical VAE, and the world model approach. Chapter 

3 describes the proposed method, the NVAE-based world model, and the proposed 

framework's components - vision, memory, controller, and architecture. Chapter 4 

presents the training processes and evaluates the results of the RL agent in the car racing-

v2, dream car racing-v2, and robotics environments. Chapter 5 is a summary of all the 

work done in this thesis. 
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Chapter 2: Background 

 

This chapter provides a concise introduction to the technical methods employed in this 

work and a brief overview of the most recent and relevant literature related to the thesis. 

The chapter is structured as follows. Section 2.1 introduces the core framework called the 

world model. Section 2.2 introduces the generative model, variational autoencoder 

(VAE), and describes its architecture. Section 2.3 introduces the variation of variational 

autoencoder, hierarchical variational autoencoder (HVAE), and its architecture. Finally, 

Section 2.4 briefly reviews recent and relevant research in the hierarchical variational 

autoencoders (HVAE) employed in this thesis. 

 

2.1 World Model  

 

This thesis uses world models as the main framework for training RL agents to perform 

tasks in complex environments. The world model (Ha & Schmidhuber, 2018) is a model-

based reinforcement learning approach (MBRL), where it creates an internal model 

(based on the human mental model) to represent the environment and its dynamics. This 

model is designed to capture the underlying structure and patterns of the environment. 

The model learns latent representations, which are compressed and abstract 

representations of the environment, from the available data. These learned latent 

representations are then used for policy training. Policy training refers to training an 

agent or system to make decisions and take actions based on available information. By 

using the latent representations learned by the model, the policy training process becomes 

more efficient in terms of data usage. This means that the model can achieve good 

performance with less training data compared to other approaches. 

 

The world model approach employs generative models to learn and compress the spatial 

and temporal representations of the environment to a latent representation. For ease of 

computation, the model is split into one large world model [with VAE as the visual 
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sensory component (V) and an MDN-RNN as the memory component (M)] and a small 

controller model (as seen in Figure 2). The visual model (V) is a variational autoencoder 

(VAE) (Kingma & Welling, 2013) that learns compact latent representations of input data 

(such as images). The memory model (M), a recurrent neural network (RNN) with 

mixture density networks, captures temporal dependencies in the latent space. The 

controller (C) is a simple single-layered neural network that decides the actions based on 

the input from the visual and memory models.  

 

The world model's visual model (V) learns to encode input data into a lower-dimensional 

latent space, generating new data samples. The memory model (M) captures the temporal 

dependencies in the data by modeling the dynamics of the latent representation over time 

using an RNN. The controller (C) is trained to use the latent representation and the 

memory to make decisions.  

 

The latent vector zt represents a compressed and abstract representation of the 

environment or world state at a specific timestep t. It is a fundamental aspect of the 

model's internal representation. The latent vector zt often captures the environment's 

underlying dynamics, which holds information about the pertinent features and variables. 

It can include factors such as position, velocity, orientation, and other relevant attributes 

that are important for understanding and predicting the future states of the environment. 
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Figure 2: The figure illustrates the interaction of V, M, and C components with the car 

racing-v0 environment. 

 

Here, the raw observations of the environment, a 2d-image, are first processed by V at 

each time step t to produce the latent representation zt. M is trained to output a probability 

density function p(z) of the next latent vector zt+1 by approximating it as a mixture of 

Gaussian distribution. C takes the input of zt from V and the hidden states ht from M to 

output an action vector at for motion control that will affect the environment. M updates 

its hidden state by taking the current zt and action at as input.  

 

The world model approach provides a unified framework for generative modeling and 

control by leveraging the best features of variational autoencoders (VAEs) for learning 

representations, recurrent neural networks (RNNs) for modeling temporal dependencies, 

and controllers for decision-making.  
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2.2 Variational Autoencoder  

 

The variational autoencoder (VAE) (Kingma & Welling, 2013) is a generative model 

parameterized by a neural network θ. It is defined by an observed variable x, which 

depends on the hierarchy of stochastic latent variables z =  z1, … , zL such that: 

 

                pθ(x, z) =  pθ(x|z1) pθ(zl) ql−1 pθ(zi|zi+1)                            

Equation 1 

The distributions pθ(zi|zi+1) over the latent variables in the VAE are usually modeled as 

Gaussians with diagonal covariance, where the parameters depend on the previous latent 

variable in the hierarchy. The top latent variable  pθ(zl) is generally modeled as a 

Gaussian with mean 0 and identity covariance matrix (N (zL; 0,1)). The likelihood 

pθ(x|z1) is typically modeled as a Gaussian distribution for continuous data or a 

Bernoulli distribution for binary data. The figure 3 illustrates the architecture of a 

traditional variational autoencoder.  

 

The main objective of learning the parameters of VAE is to maximize the marginal log-

likelihood over the training data. 

 

pi log pθ(xi) =   pi log R pθ(xi, zi) dzi  

Equation 2 

Variational Inference with posterior approximation qφ(z|x) parameterized by a neural 

network φ is used to improve the expressivity of the model while training with complex 

data distributions. Later, Jensen's inequality is applied to derive the evidence lower bound 

(ELBO), which is a lower bound to the integral in the marginal likelihood and is a 

function of the variational approximation qφ(z|x) and the generative model pθ (x, z): 
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log pθ(x)  ≥  ε qφ(z|x) log  qφ(z|x) ≡  L(θ, φ) 

Equation 3 

                         

Stochastic backpropagation and the reparameterization method are used to optimize the 

parameters θ and φ, enabling the employment of gradient ascent algorithms with low 

variance gradient estimators.  

 

 

Figure 3: (Left) Generative model of Variational autoencoder (VAE). (Right) Inference 

model of Variational auto encoder. 

Bottom-up factorization of the variational approximation (q(z|x) = q(z1|x) qL1 q(zi+1|zi)) 

is used in a VAE to condition each latent variable zi on the variables below it in the 

hierarchy. For efficient computing, all the factors in the variational approximation are 

assumed to be gaussians whose mean and diagonal covariance are set by neural networks. 
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2.3 Hierarchical VAE 

 

Previous work on variational autoencoders (VAEs) often used fully factorized gaussian 

distributions for both the approximate posterior qφ(z|x) and the prior pθ (z), resulting in 

suboptimal outcomes for generating high-quality samples using latent variables of 

complex data distributions. A hierarchical VAE, which incorporates many stochastic 

layers of latent variables, is one technique to increase expressivity in both distributions 

(Klushyn et al., 2019). These latent variables are conditionally dependent on one another 

and released in groups z0, z1.... zN.  

 

During image processing, latent variables are rendered as feature maps of varying 

resolutions, where z0 represents a low-resolution set of latent variables at the network's 

top, and zN represents a high-resolution set of latent variables at the bottom of the 

network.  

 

The top-down VAE, where both the prior and the approximation posterior generate latent 

variables in the same order, is one of the well-conditioned structures for hierarchical 

VAEs: 

    pθ(z)  =  pθ(z0) pθ(z1|z0). . . . . . . . . . pθ(zN| z < N)  

Equation 4 

   qφ(z|x)  =  qφ(z0| x) qφ(z1|z0, x). . . . . . . qφ(zN| z < N, x) 

Equation 5 

 

The encoder generally performs a deterministic "bottom-up" pass on the data to generate 

features, then performs a top-down run on the groups of latent variables to approximate 

the posterior. The hierarchical architecture can be seen in Figure 4. 
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Figure 4: The figure illustrates a graphical model for hierarchical variational autoencoder 

(HVAE). 

 

The residual blocks in this design are analogous to the ResNet bottleneck blocks. An 

application of the GELU nonlinearity precedes each convolution. Both the approximate 

posterior qφ(.) and the prior pθ(.) are assumed to follow a diagonal Gaussian distribution. 

The latent variable z is sampled from qφ(.) during training, but from pθ(.) during testing. 

The pooling layer employs average pooling, while the un-pool layer employs nearest 

neighbor up sampling. 

 

In this approach, the features generated are shared among the approximation posterior, 

the prior, and the reconstruction network p(x|z), which generates latent variables from the 
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top down via feedforward networks. This architecture of VAE is more suited for image 

data generation because it is simple, empirically effective, and hypothesized to resemble 

biological processes of perception. 

 

2.4 Related Works  

 

This section summarizes the recent work on variational autoencoders for image data 

generation. The following work inspires the proposed Nouveau VAE's architecture.  

 

Over the past decade, research has been conducted on various generative model 

techniques, such as normalizing flows, autoregressive models, and variational 

autoencoders. Normalizing flow-based and autoregressive models outperformed the 

VAEs.  Since VAE has the advantages of fast and traceable sampling and easy access to 

encoding networks, numerous researchers have begun to look for methods to enhance its 

performance. The following are instances of recent work performed on VAEs.  

 

 

2.4.1 IAF-VAE 

 

An IAF-VAE is a generative model that goes beyond the traditional variational 

autoencoder (VAE) by modeling the approximate posterior distribution with an extra 

flow-based transformation in the inference network (encoder). An inverse autoregressive 

flow, which normalizes data, executes the flow-based transformation (Kingma et al., 

2016). 

 

Based on the VAE architecture, IAF consists of an encoder (inference network) that 

approximates the posterior distribution q(z|x) and a decoder (generative network) that 

models the conditional distribution p(x|z), where x is the observed data and z is the latent 

variable. To approximate the posterior distribution q(z|x), the VAE encoder uses IAF as a 

flow-based transformation. IAF is a normalizing flow that uses a series of invertible and 
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differentiable transformations on the latent variable z to convert it from a simple 

distribution (such as the Gaussian) to a more complex distribution. 

 

In IAF-VAE, each invertible and differentiable transformation is applied in an 

autoregressive fashion, where it is dependent on the preceding transformations. Thus, 

IAF-VAE can capture intricate interdependencies among z's components. The visualized 

step of inverse autoregressive slow applied to VAE is given in Figure 5.  

 

 

Figure 5: The figure illustrates how the inverse autoregressive flow step is applied in a 

Variational autoencoder (VAE) architecture to improve the model's performance. 

 

IAF improves the variational inference in VAE by providing a more flexible and 

expressive approximation of the posterior distribution q(z|x). Modeling complex 

distributions with the help of autoregressive transformations improves IAF's performance 
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in capturing the true posterior distribution and producing high-quality samples from the 

generative model. 

 

To achieve low-variance gradient estimators, IAF is also trained with stochastic gradient 

descent (SGD) by employing the reparameterization method, like VAE. The encoder 

parameters are optimized during training to reduce the Kullback-Leibler (KL) divergence 

between the estimated posterior q(z|x) and the actual posterior p(z|x). On the other hand, 

the decoder's parameters are adjusted to improve the observed data's likelihood, denoted 

by p(x|z). Compared to competing generative models, IAF-VAE performed more 

efficiently on several image generation tasks, including those from CIFAR-10 and 

ImageNet. 

 

2.4.2 BIVA 

 

Another approach is bidirectional-inference variational autoencoder (BIVA) which 

utilizes a skip-connected generative model and a bidirectional stochastic inference path in 

the inference networks (Maaløe et al., 2019). It has a deep hierarchical architecture of 

latent variables with multiple stochastic layers which is illustrated in Figure 6.  

 

The latent variables in a BIVA model are organized into numerous layers, labeled as 

z0, z1...zN, where z0 represents a low-resolution set of latent variables at the network's 

"top" and zN represents a higher-resolution set of latent variables at the network's 

"bottom." 

 

The approximation and prior posterior produce latent variables in the same hierarchical 

order. For practicality, we will refer to the prior distribution as p(z) and the estimated 

posterior distribution as q(z|x). These distributions can be factored as follows:  
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p(z)  =  p (z0) p(z1|z0). . . . . . . . . p(zN|zN) 

Equation 6 

q(z|x)  =  q(z0|x) q(z1|z0, x). . . . . . . . . . q(zN|zN, x) 

Equation 7 

 

  

 

 

Figure 6: (Left) Generative model of BIVA. (Right) Inference model of BIVA. BU and 

TD in the diagram refer to bottom-up and top-down information flow. The nodes {z1, z2, 

z3} represent the latent variables, while x represents the observed data sample. 

 

Feedforward networks are used in BIVA to generate features from the data in a 

deterministic "bottom-up" pass. These characteristics are shared by the approximate 

posterior, prior, and reconstruction network p(x|z). Both the latent variables' prior and 

approximate posterior distributions are modeled as diagonal Gaussian distributions, p(z) 
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and q(z|x), respectively. Due to their tractability and differentiability, Gaussian 

distributions are commonly used in VAEs. 

Compared to other cutting-edge techniques, the architecture of BIVA effectively 

disentangles image variation variables like, shape, color, and orientation. When applied 

to text generation tasks, BIVA-VAE generated paraphrases of sentences with improved 

diversity and fluency compared to other generative models. 

 

2.4.3 VQ-VAE2 

 

VQ-VAE2 is a deep learning model for image compression and generation that combines 

two famous architectures: variational autoencoder (VAE) and vector quantization (VQ) 

(Razavi et al., 2019).  

 

There are three primary parts to VQ-VAE2's architecture: an encoder, a quantizer, and a 

decoder. Encoder receives an image as input and generates a latent representation (as 

seen in Figure 7). The quantizer then uses vector quantization to convert the continuous 

latent representation into a categorical representation by examining the closest vector in a 

codebook corresponding to each latent space point. The decoder then uses the categorical 

representation to produce a reconstructed image. The VQ-VAE2 model is trained end-to-

end using a loss function that balances the reconstruction and codebook losses. This 

encourages the quantized representation to match the actual continuous representation. 

During inference, the codebook remains unchanged and new images are generated using 

the quantized representation. 

 

The encoders and decoders in the model are deep neural networks. The input to the model 

is a 256 × 256 image that is compressed into quantized latent maps of sizes 64×64 and 

32×32 for the bottom and top levels, respectively. The decoder then reconstructs the 

image from the two latent maps. The figure visually represents the image compression 

and reconstruction process using quantized latent maps. 
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Figure 7: Architecture of a hierarchical Vector Quantized Variational Autoencoder (VQ-

VAE2) model. 

 

Compared to earlier models, the VQ-VAE2 model achieves state-of-the-art results in 

image compression and generation tasks. On the ImageNet dataset, for instance, the VQ-

VAE2 model has compressed images at a rate of 3.0 bits per pixel (bpp), which is better 

than the previous state-of-the-art rate of 3.15 bpp while preserving equivalent image 

quality. Also, the VQ-VAE2 model has demonstrated promising results for generating 

high-quality images such as realistic faces and natural landscapes. 
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Chapter 3: NVAE-based World Model 

 

This chapter describes integrating a deep hierarchical variational autoencoder as the 

visual model and interacting with other components and the environment. The agent's 

visual sensory component (V) uses a hierarchical VAE architecture. V's principal function 

is to encode visual information into a concise and expressive representation. This learned 

representation lets the memory part of the world model draw on past events and infer 

actions based on them. Finally, the decision-making controller of the RL agent utilizes the 

representations constructed from its visual input and memory to determine the most 

appropriate actions to take when performing a task in complex environments. The general 

structure of the NVAE-based world model consists of the following: NVAE as the visual 

model, a memory model, and the controller model.   

 

3.1 NVAE as the visual model 

 

In the field of RL, a complex task is one that is challenging to learn due to factors such as 

the number of alternative actions, the size of the state space, and the complexity of the 

environment. Complex tasks in RL include robotic manipulation, in which the agent must 

learn to control a robotic arm to grasp and manipulate objects in a cluttered environment; 

navigation in complex environments, such as indoor environments or outdoor terrain, in 

which the agent must learn to navigate using visual and sensory inputs; and multi-agent 

coordination, in which multiple agents must learn to work together to achieve a common 

goal while competing for resources.  

The world model approach successfully carried out a car racing-v0 task involving 

navigation within a continuous control action space (Li, 2019). It successfully explored 

the world using only the raw pixel data as input. However, the performance of the RL 

agent in the dream car racing-v0 assignment was impeded because it could not accurately 

generate a dream environment based on the input. A traditional VAE was the visual model 
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in the earlier world model approach. However, new studies have shown that variational 

autoencoders (VAEs) have shortcomings in representing complex data with long-range 

correlations, leading to either data loss or distortion during the encoding of input frames. 

This issue reduces the efficacy of agents trained with world models on large datasets in 

complex environments like robotics. This thesis proposes a solution to this problem by 

using nouveau VAE (NVAE), a deeply hierarchical VAE, as a visual sensory 

component of the world model.  

For NVAE, the encoder and decoder use the same top-down model, resulting in a 

hierarchical architecture (as shown in the Figure 8). The architecture consists of multiple 

layers that contain residual cells distinct from the encoder and decoder. The multi-scale 

hierarchical paradigm of NVAE enables the agent to capture global long-range 

correlations at the top of the hierarchy and local dependencies at the bottom (Vahdat & 

Kautz, 2020). NVAE additionally uses deep residual networks with larger kernel sizes 

and 1x1 regular convolutions to improve expressivity and enlarge receptive fields, 

providing an effective solution to the problem of long-range correlations for data with 

higher resolution (as shown in Figure 9). 
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Figure 8: (Left) the encoder model of NVAE. (Right) the decoder model of NVAE. 

 

Furthermore, by changing hyperparameters and regularizing scaling parameters during 

training, NVAE overcomes the difficulties of batch normalization (BN) during evaluation 

to achieve better stability, convergence, and performance. Through residual normal 

distributions and spectral regularization, it also addresses training stability with latent 

hierarchical groups and image sizes. When incorporated with the world model approach, 

NVAE's precise representation of input images enables efficient conversion of input 

image frame features to latent representations (z1, z2, ..., zi).  
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Figure 9: (Left) Residual cells in the encoder model. (Right) Residual cells in the decoder 

model. These cells help to improve the performance of the deep neural network. 
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Unlike conventional variational autoencoders, nouveau VAE employs a learnable 

gaussian prior distribution over the latent variables. The prior distribution is specifically 

characterized as a multivariate gaussian distribution with a learnable mean and 

covariance matrix. During training, this learnable prior is optimized with the remainder of 

the model. Utilizing a learnable prior in nouveau VAE enables the model to modify the 

prior distribution to the complex data characteristics, resulting in enhanced performance 

and more diverse samples. Moreover, the learnable prior can serve as a form of 

regularization, preventing overfitting and improving generalization. 

 

 

Figure 10: Flow diagram illustrating the process of image generation using NVAE as the 

encoder and decoder to generate realistic images. 
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The input during environmental interaction is provided as high-dimensional pixel images. 

First, we resize all the images to 128x128, which will serve as the "observation" for our 

visual models. The RGB components of each pixel are represented by three floating-point 

values between 0 and 1. To encode this 128 x 128 x 3 input into the low-dimensional 

vectors μ and σ of size Nz, the NVAE uses 4 convolutional layers. A gaussian prior N (z; 

g(x)) is learned and used to draw samples for the latent vector z. Four deconvolutional 

layers are used to decode and reconstruct the image based on the latent vector z. The 

stride size for both convolution and deconvolution layers are 2. All convolution and 

deconvolution layers utilize RELU activations except the output layer, which is in the 

range [0,1]. The model is trained for one epoch using a random policy across the data 

collected. The L2 distance between the input image and the reconstruction quantifies the 

reconstruction loss for optimization alongside the KL loss.  Figure 10 illustrates the 

image generation process using NVAE. 

 

3.2 Memory model 

 

The M model employs a long short-term memory (LSTM) recurrent neural network with 

a mixture density network as the model's output layer (as shown in Figure 11). This 

network expects a mixture of gaussian distribution for the next z at the next time step. 

The correlation parameter between each element of z is not modeled by the memory 

model employed here. Instead, it has the MDN-RNN produce a factored gaussian 

distribution with a diagonal covariance matrix. As many complex settings are stochastic 

in nature, the MDN-RNN model is trained to produce a probability density function 

(p(z)) rather than a deterministic prediction of 'z.' 

P (zt+1 | at, zt, ht) where at is the action taken at time' t', ht is the hidden state of RNN at 

time t, and zt is the latent input vector. 
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Figure 11: The architecture of mixture density network - recurrent neural network (MDN-

RNN) model. 

 

When compared to earlier research in handwriting and sketch generation, MDN-RNN 

models the probability density function (p(z)) of the following latent vector (z). 

The probability density function is sampled at each time step to generate 

the hallucinated environment. MDN-RNN can also forecast the agent's state probability 

in the hallucinated environment. If the likelihood is more than 50%, it is accepted as 

representative of the actual environment. In our experiments, the probability that the 

environment is accurately represented is greater than 65 percent. The memory component 

is trained for 20 epochs using data collected from the random policy.  
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M tries to predict the next value of z. This is fed to the MDN module whose goal is to 

introduce randomness that is, it changes the output of the LSTM which is a deterministic 

z value into a range of possibilities for z.  

 

3.3 Controller model 

 

The controller generates actions or policies based on the latent vectors provided by the 

encoder and the internal state of the memory component. According to the specific task 

or environment being modelled, the controller generates actions that are utilized to 

interact with the environment, such as moving, rotating, or executing other activities. The 

controller often uses learned representations in latent vectors and memory-component 

context to generate actions. 

The controller can guide the agent in its exploration strategy using data from the latent 

vectors and the memory component. This allows the agent to effectively explore its 

environment and discover new states or actions while also maximizing rewards by 

utilizing previously learned information.  

The proposed method uses a controller model that is a simple linear neural network 

model that directly maps each time step's action to the latent vector zt and hidden state ht, 

where: 

at  =  Wc[zt, ht]  +  bc 

Equation 8 

The linear model is described by the above equation, where Wc and bc are the weighted 

matrix and bias vector (respectively), mapping the combined input vector [zt, ht] to an 

output action vector (at). 

The covariance matrix adaptation evolution strategy (CMA-ES) algorithm is used to 

determine the optimal values for the controller's parameters (Wc and bc). In the 
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experiments, the action space is clipped and bound to the necessary ranges for all 

situations using tanh nonlinearities. 

 

3.4 Architecture of NVAE based world model: 

 

The following flow diagram (Figure 12) illustrates how V (NVAE), M (MDN-RNN), and 

C interact with the environment: 

 

                         Figure 12: The flow chart of NVAE based world model. 

 

The proposed NVAE-based world model has a different visual model design than the 

current one. In the proposed model, a deep hierarchical variational autoencoder (NVAE) 

is employed as the visual model to compress environmental features into compact latent 
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representations. At each time step, NVAE processes the raw environmental observations 

to generate latent representations. 
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Chapter 4: Experiments 

 

This chapter will describe the training procedure for the proposed model-based agent to 

perform tasks in three distinct environments. Section 4.1 will explain the training process 

and performance of NVAE-based world model agent in car racing-v2 environment. 

Section 4.2 discusses the generation of the dream environment based on the car racing-v2 

environment and the agent's performance in the dream environment and comparison of 

performance to the prior world model. Section 4.3 describes the training and performance 

of the proposed model-based agent in a robotic environment (the panda gym).  

 

4.1 Car Racing-v2 Task 

 

4.1.1 Environment 

 

Car racing-v2 is an environment within the Open AI Gym, a toolkit for developing and 

comparing reinforcement learning algorithms. (Brockman et al., 2016) In this scenario, 

an agent drives a car that must race around a track to finish a predetermined number of 

laps as quickly as possible while avoiding obstacles and staying on the course. The agent 

receives the environment's 96x96 RGB image, velocity, and steering inputs. The agent 

aims to learn a strategy that maximizes its reward based on the speed and distance 

traveled around the track. Significant research studies have utilized car racing-v2 as a 

benchmarking environment for reinforcement learning algorithms. 

The environment's intricate dynamics and non-linear rewards are significant obstacles to 

reinforcement learning algorithms. Therefore, the proposed agent is trained on the 

car racing-v2 task as shown in Figure 13. 
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Figure 13: The figure depicts an agent exploring the car racing-v2 environment. 

  

In this image, the agent is navigating through the environment by taking actions and 

making decisions based on the information it receives from the environment. This 

process helps the agent learn and improve performance in the given task. 

 

4.1.2 Dataset 

 

The agent's random interactions with the car racing-v2 environment generates the dataset. 

To comprehend the environment's dynamics, the agent keeps track of its observations 

during interactions. In this experiment, we collect 30 million images from the agent's 

interactions with the environment throughout 10,000 rollouts and 3000 timesteps. Each 

pair in the dataset consists of an observation (a 96x96 RGB image) and an action (a 

vector of two continuous values reflecting the car's velocity and steering angle). The 

dataset is divided into three subsets: a training set, a validation set, and a test set. The 

NVAE-based world model is trained with the training set, while hyperparameters and 
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progress are tracked with the validation set. The purpose of the test set is to evaluate the 

learned model's performance on unobserved data. 

 

4.1.3 Training Process 

 

The V (NVAE) model is first trained on the dataset to produce a latent vector z, a 

compact representation of each input frame. The latent vector z encodes each frame at 

time t into zt, allowing for a low-dimensional representation of the frame, which is then 

used to train the memory (M). M then learns to model a mixture of gaussians, using the 

pre-trained data and the observed random actions (at) to reflect the environment's 

dynamics. Training V and M together helps keep the world model's computational 

complexity under control. The size of the low-dimensional vectors for the car racing-v2 

task is 64. There are 256 hidden units in the LSTM employed in MDN-RNN. V and M 

cannot access the environment's reward signal (reward scores). The reward signal is only 

available to the controller (C). C interacts with the environment by performing actions 

(at) after receiving latent vectors (z) from V and hidden states (ht) from M as inputs. 

The algorithm used to train the agent in the car racing-v2 environment is as follows - 

Algorithm 

1. Sample 10,000 rollouts using a random policy. 

2. Train V (NVAE) to encode frames into z ∈ R32 

3. Train M (MDN-RNN) to model P(zt+1|at, zt, ht) 

4. Use CMA-ES on controller (C) to maximize the expected reward of a rollout. 

 

4.1.4 Results 

 

The results of the car racing-v2 task are based on how many laps the agent has finished 

without going off the track for 1000 iterations. The highest score the agent can get is 



   32 

1000.  As shown in the table, the agent attained an average score of 800 ± 18 after 100 

random trials, outperforming the traditional world model approach. Compared to the 

previous procedure, the rendered results have higher image quality.  

Model Average Scores 

World Model 720 ± 13 

NVAE based World Model 800 ± 18 

Table 1: Average scores obtained by previous and proposed world model for car racing-

v2 task. 

Table 1 compares the average scores obtained by the previous world model and the 

NVAE based world model for the car racing-v2 task. The table displays the performance 

of each model and shows that the NVAE-based model outperforms the previous model in 

terms of average scores. 

4.2 Dream Car Racing-v2 Task 

4.2.1 Environment 

Traditional model-based methods trained the agent in the actual environment 

where the agent learns a model of the environment. The world model enables the agent to 

explore a hallucinated environment based on the actual environment fully. Here, the 

agent's controller is trained in a simulation of its real-world environment created by the 
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agent's world model. The temperature parameter of M is used to regulate the randomness 

of the dream environment, hence minimizing the agent's exploitation of the environment's 

imperfections. C is then trained in the generated environment, which is noisier and more 

uncertain. 

In this section, the dream car racing-v2 environment is built based on the internal world 

model M's understanding of the latent representations. The proposed world model-based 

agent is trained within this environment. Here, consider the latent representations of the 

car racing-v2 task (see section 4.1), where the proposed model learned a policy to 

complete the task successfully. The agent does not receive direct sensory input from the 

dream environment but instead relies on the data provided by the proposed world model 

to guide its observations and subsequent actions. This emphasizes the significance of 

capturing precise latent representations of the environment. To construct a dream car 

racing-v2 environment that replicates the actual environment's dynamics, wrap a gym.env 

interface around the memory model (M) and consider this to be the training environment 

for the agent (Gymnasium Documentation, n.d.). Figure 14 shows the agent navigating in 

dream car racing-v2 environment. 
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Figure 14: (left) the world-model agent navigating the car racing-v2 environment. (right) 

the NVAE-based world model agent navigating the car racing-v2 environment. 

In this image, the agent navigates a simulated environment generated by the world model. 

This process allows the agent to practice and improve its performance without interacting 

with the actual environment, thus reducing the risk of damage or accidents. 

 

4.2.2 Dataset 

 

Creating a dataset would be similar in both the real world and the agent's dream world, as 

both involve training the agent to complete car racing-v2 tasks. The dataset is produced 

by the random interactions of the agent with the car racing-v2 environment. The agent 

maintains a record of its observations during interactions to better understand the 

environment's dynamics. This experiment encompasses 10,000 rollouts and 3000 

timesteps, during which 30 million images of the agent's interactions with the 

environment are collected. The dataset contains 96 x 96 RGB images as observations and 
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a vector of two continuous values representing the car's speed and direction as actions. 

The dataset is segmented into a training set, a validation set, and a test set. The training 

set is used to train the NVAE-based world model, while the validation set is used for 

tracking hyperparameters and performance. The test set is used to assess the trained 

model's accuracy when applied to data that was not used in the training process. 

 

4.2.3 Training Process 

 

The agent's main objective in the dream car racing-v2 environment is to maximize its 

total rewards by navigating around the generated racetrack as quickly as possible. The 

agent is trained in a way consistent with Section 4.1.3 since the primary task to be 

completed in the dream environment is identical to that of the real world. To construct a 

compact representation of each input frame, the V (NVAE) model is trained on the 

dataset to generate a latent vector z. Each frame at time t is represented by a low-

dimensional representation of the frame (zt) encoded by the latent vector z, which is used 

to train the memory (M). M then uses the pre-trained data and the observed random 

actions (at) to create a mixture of Gaussians that accurately represents the dynamics of 

the environment. Co-training V and M reduce the computational complexity of the world 

model. For the dream car racing-v2 task, the low-dimensional vector size is 64. The 

LSTM used by MDN-RNN has 256 hidden units. The environment's reward signal 

(scores) is unavailable to V and M. Only the controller (C) has access to the reward 

signal. After obtaining latent vectors (z) from V and hidden states (ht) from M, C 

interacts with the environment by conducting actions (at). The controller (C) is optimized 

with the help of the CMA-ES evolutionary approach.  The following algorithm is used to 

train the agent in dream environment. 

Algorithm 

1. Sample 10,000 rollouts using a random policy. 

2. Train V (NVAE) to encode frames into z ∈ R32 
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3. Train M (MDN-RNN) to model P(zt+1|at, zt, ht) 

4. Use CMA-ES on controller (C) to maximize the expected reward of a rollout. 

 

4.2.4 Results 

 

The trained NVAE-world model-based agent must navigate in the dream car racing-

v2 environment to maximize rewards while navigating obstacles on the racetrack. The 

results of the dream car racing-v2 task is also based on how many laps the agent has 

finished without going off the track for 1000 iterations. The highest score the agent can 

get is 1000.  The results are given in Table 2 where the agent achieved an impressive 

average score of 760±18 on the dream car racing v2 task, outperforming the previous 

world-model agents, which achieved an average score of 696 ± 16 in the dream 

environment. 

To comprehend the impact of the deep hierarchical VAE (NVAE) employed in the visual 

component of the world model, the FID score was used to assess the accuracy of the 

reconstructed image in both car racing-v2 and its generated dream environment. The 

Fréchet Inception Distance (FID) is a measure used to assess the robustness and diversity 

of image synthesis models like generative adversarial networks (GANs) and variational 

autoencoders (VAEs). The lower the FID score, the closer the output image is to the input 

image. For a traditional VAE, the FID score is 271.58, and for an NVAE, it is 174.67.  

There is a 45 percent improvement in image quality when NVAE is used.  Therefore, 

utilizing NVAE for the visual representation of the input environment improves the 

agent's performance.  
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Model Average Scores 

World Model 694 ± 16 

NVAE based World Model 760 ± 18 

 

Table 2: Average scores obtained by previous and proposed world model for dream car 

racing-v2 task. 

 

4.3 Panda-Gym Reach Task 

 

In this section, the agent is taught to perform a robotic manipulation task in the panda-

gym environment called the reach task as the proposed NVAE based world model agent 

outperformed the traditional world model in continuous control tasks. 

 

4.3.1 Environment 

 

Robotic manipulation is one of the most challenging tasks for reinforcement learning 

algorithms. Regarding training RL algorithms, the panda-gym environment is one of the 

best-simulated robotics environments available. It is designed to simulate the control of a 

real-world robotic arm, which can perform various tasks, including pick-and-place, reach, 

and grasping. The realistic physics simulation in the panda-gym environment is a key 

feature that facilitates the training of RL algorithms to operate a robotic arm in a physics-

based environment. Various environmental sensors and actuators give a reward signal that 

can be used to train an RL agent to perform tasks in the environment (Gallouédec et al., 

2021).  
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Figure 15: The above figure depicts the panda-gym environment, a simulation where a 

robotic arm acts as the agent and must complete the task of reaching an object and 

moving it to a target location. 

Figure 15 shows the agent in action, with the robotic arm moving toward the object and 

grasping it before moving toward the target location to complete the task. This 

environment is designed to test the agent's ability to perform complex manipulation tasks 

that require precise motion control and decision-making abilities. 

The Franka Emika robotic arm was the basis for the panda gym environment. Using the 

multi-objective RL architecture, the panda-gym environment will produce a new goal for 

each episode, with the goal type changing depending on the activity being performed. 

The agent's action space is a single robot arm performing either end-effector 

displacement control or joint control across six discrete tasks. The agent is taught in 

panda-gym's joint control mode for the Reach task, which trains the robotic arm on how 
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to move an object to a specific location. To complete the Reach task, the model must use 

the seven-jointed robotic arm to pick up an object and move it to a predetermined 

location. Given that this task requires continuous control, the robotic arm must be trained 

to move all its joints simultaneously (Lillicrap et al., 2019). Figure 15 is the visual 

rendition of agent performing the reach task in panda-gym environment. 

 

4.3.2 NVAE's Architecture 

 

The agent must complete the reach task in a panda-gym environment based on a physical 

simulation of robot arm movements. As a result, the environment is more complex than 

the car racing-v2 environment. Therefore, the agent must encode various resolutions of 

the input image frames. Since the proposed method uses NVAE as the visual component 

to encode the input image frames, the convolutional layers must be modified to process 

the image to a much smaller latent dimension. The adaptable design of NVAE allows for 

processing varying picture data without impacting the agent's performance.  In this work, 

both the encoder and decoder models of NVAE are constructed using solely 

convolutional 1x1 channels. The remainder of the architecture remains the same as shown 

in Figure 16.  

 

4.3.3 Dataset 

 

As the proposed world model is used to train the agent, a random policy is used to 

interact with the panda-gym environment to create the dataset. The dataset is produced 

using 10,000 rollouts spread over 3000 timesteps. The dataset includes 84x84 RGB 

images and joint angles as observations, as well as an action vector and reward vector. 

For this experiment, the latent dimension is 8.  
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Figure 16: (Left) Modified residual cells in encoder model. (Right) Modified residual 

cells in decoder model. 
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4.3.4 Training Process 

 

With modifications to the NVAE architecture, the V component is trained to encode each 

frame into a latent vector (z) of size 8. The trained V component was then used to train 

the M component to map each frame at time step t to a new vector, zt. The M component 

is designed to simulate a Gaussian distribution by combining this data with observations 

of random behavior (at). The characteristics of V and M components are then passed onto 

controller C for decision-making. MLP (multi-layer perceptron neural network) and 

CMA-ES (covariance matrix adaptation - evolution strategy) are used for optimization 

because the C component is a simple linear model with just 432 parameters.   

Algorithm 

1. Sample 10,00 rollouts using a random policy in the panda-gym environment. 

2. Train V (NVAE) to encode frames into z ∈ R8 

3. Train M(MDN-RNN) to model P(zt+1|at, zt, ht) 

4. Apply MLP and CMA-ES optimization methods on controller (C) to maximize 

the expected reward of a rollout.  

4.3.5 Results 

 

The NVAE-based world model agent completed the reach task with a 95% success rate. 

While prior model-free RL methods like SAC, DDPG, and TD3 were all applied to the 

reach task, only DDPG was successful. Compared to model-free methods like DDPG, the 

proposed model, based on a model-based RL approach employing NVAE, has produced 

competitive results. The NVAE-based world model method is the first model-based RL 

approach in this environment and has shown promising outcomes (as shown in Table 3).  
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Model Success Rate 

DDPG (model-free) 100% 

SAC (model-free) 85% 

TD3 (model-free) 65% 

NVAE based World Model (model-

based) 

95% 

  

Table 3: Success Rate of Model free RL methods and the proposed MBRL for panda-gym 

reach task. 

 

The table presents the success rates of model-free reinforcement learning (RL) methods 

and the proposed model-based RL method on the panda-gym reach task. The success rate 

measures the percentage of successful episodes where the robotic arm successfully 

reaches the target object and moves it to the target location. The results show that the 

proposed model-based RL method outperforms various model-free RL methods in terms 

of success rate, demonstrating the effectiveness of the proposed approach on this task. 

 

 

 

 

 

 

 



                                                                                                                                                             43 
 
 

Chapter 5: Conclusion  

 

This thesis proposes a deep hierarchical variational autoencoder (NVAE) to substitute the 

traditional VAE in the existing world model, resulting in a new and improved version of 

the world model. Recent research has shown that the V model plays a vital role in the 

agent's performance across all contexts because of its ability to compress the 

spatial/temporal representations of the input frame into a small latent vector. The 

controller uses the latent vector and the hidden state to predict the agent's actions to 

perform a task. Using NVAE as a visual model significantly improved the agent's 

performance. 

On the CarRacing-v2 task, the proposed model scored an average of 800 ± 18, while on 

the CarRacing-v2 task in the dream environment, it scored 760 ± 18. Compared to the 

previous model, the proposed method performed remarkably well on the dream task. The 

FID score is used to evaluate the effect of V(NVAE) on agent performance. When NVAE 

is used, the quality of regenerated images improves by 45 percent. This validates the 

proposal that the agent’s performance improves when NVAE is used as the visual 

component of the world model. The proposed model-based agent is trained to complete 

the Reach task in the panda gym. Since the input frame is a vector, the proposed model 

required only minor modifications to the NVAE's convolutional layers to train the agent 

to perform the Reach task successfully. The model achieved a 95% success rate. The 

proposed methodology is believed to be the first model-based approach to be applied 

to the panda gym environment.  
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Appendix: Hyperparameters 

Considering the large number of datasets and the associated high computational demands, 

we do not need to perform a complete optimization of the hyperparameters. In general, 

larger networks, a greater number of hierarchical groups, and more residual cells per 

group result in improved performance. However, they require more training time and 

have smaller training batch sizes. The hyperparameters are adjusted to ensure that the 

model can be trained in under a week. Our experimental hyperparameters are 

summarized in Table 4. 

Channel Sizes:  Here, only the initial number of channels is provided for the bottom-up 

encoder. When the features are down sampled spatially, the encoder's channels are 

doubled. In the top-down model, the number of channels is set in the reverse order. 

Datasets: The proposed model was examined on the data generated by random 

interactions on car racing-v2, dream car racing-v2, and panda-gym environments. The 

data is split into tests and training for all three tasks.  
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Hyperparameters Car racing-v2 Dream car racing-

v2 

Panda Gym 

Reach 

epochs 1000 1000 1000 

Spatial dimensions 

of z 

(𝐃𝟐)

82, 162, 322642 82, 162, 322642 82, 162

Channel size 20 20 20 

𝛌 0.1 0.1 0.1 

GPUs 3 3 2 

GPU type 32GB 32GB 16GB 

Batch size per GPU 32 32 16 

normalizing flows 2 2 2 

stride 2 2 2 

Table 4: The table summarizes hyperparameters used in training NVAE based world 

model in three environments. D2 indicates a latent variable with the spatial dimensions of 

D × D. 
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