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Abstract 

Widespread mountain snowpack declines have been occurring across the western 

United States over the last century, and are increasing in duration and severity, with 

several record-breaking low-snowpack years in the last decade. In the Pacific Northwest, 

summer streamflow is largely a result of melting snow and groundwater discharge, as 

summers are typically dry and warm in this Mediterranean bioclimate, thus making 

spring-fed rivers critical for regional water resources. However, current trends and 

predictions in hydroclimate modeling indicate spring-fed rivers will experience reduced 

summer discharge driven by the increasingly larger impact of anthropogenic climate 

change (warming) on (decreased) mountain snowpack. A prominent spring-fed tributary 

of the Willamette River (25% of its late summer baseflow), the McKenzie River, serves 

as an important water source for Oregon’s most densely populated and water-use 

intensive areas. Considering the recent record-breaking snow drought (i.e., 2015) and 

several low-snow years (2014, 2016, 2018, 2020, 2021) in the last decade, water 

managers have identified the need for estimates of groundwater transit time for this 

prominent spring-fed river.  

Presented here is a novel approach using newly sampled and developed annual 

(total) and sub-annual (early- and late-wood) Douglas-fir (Pseudotsuga menziesii) tree-

ring chronologies to disentangle multi-century groundwater dynamics, including 

statistical estimates of transit times (i.e., referred here as the time from when water 

enters an aquifer to when it exits at springs) at the headwaters of the McKenzie River at 

Clear Lake, Oregon. In addition, climate-growth relationships were assessed by pairing 

i 



ii 

six Douglas-fir tree-ring chronologies with hydroclimate data in order to examine the 

influence of a changing climate on forest ecosystems. Model results suggest a 

groundwater transit time of 5- to 15-years for the McKenzie River, Oregon. Moreover, 

the Douglas-fir stand’s growth patterns are governed by summer temperatures, with 

negative correlations found with summer temperatures prior to and during the growing 

season, suggesting low soil moisture hinders growth. Summer radial (latewood) growth 

is also influenced by Clear Lake’s levels throughout the year, with the highest 

correlations found from February to July, which coincide with warmer spring 

temperatures and accessibility to snowmelt water. The newly discovered groundwater 

transit times can aid in improving resource managers’ understanding of groundwater 

dynamics at the headwaters of the McKenzie River and how spring-fed systems can 

sustain periods of low-flow under a warming climate. 
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Chapter 1 Introduction 

The western United States mountain snowpack is significantly threatened by 

anthropogenic climate change (ACC; Mote et al., 2018; Catalano et al., 2019). An 

unequivocal consequence of anthropogenic forcing is a warmer climate, which will 

likely affect the timing, location, and amount of snowfall in the western United 

States (Livneh & Badger, 2020). Widespread reductions in mountain snowpack have 

been occurring over the last century in the western United States, but since the 

1980’s, natural variability in the climate systems has appeared to counterbalance 

snowpack reductions (Mote, 2006). However, climate model simulations indicate 

accelerated snowpack reductions will occur over the twenty-first century as 

anthropogenically driven warming amplifies, having severe impacts on hydrological 

processes and substantial socio-economic and ecological consequences (Siler et al., 

2019; Coulthard et al., 2021). Increased snow droughts and declining snowpack will 

likely lead to increased reliance on groundwater, but these phenomena are also 

projected to decrease summer baseflows in the Pacific Northwest (PNW; Mote et al., 

2018; Segura et al., 2019). 

In the western Oregon’s Cascades, runoff-dominated river systems have highly 

variable discharge rates throughout the year, making the reliability of streamflow 

baseflows of spring-fed river systems a key source of water for hydrological 

ecosystems as well as for drinking water for most of western Oregon, especially in the 

summer months when precipitation is considered scarce (Jefferson et al., 2006; Segura 
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et al., 2019). A prominent spring-fed river in this region, the McKenzie River, has a 

high unit baseflow discharge, which highlights the importance of better understanding 

the groundwater dynamics at its headwaters at Clear Lake, Oregon. Clear lake is 

located in the Higher Cascade Mountains, which are younger and more permeable 

formations than its older counterpart further west (see Section 1.3), allowing for a large 

and deeper groundwater storage (Jefferson et al., 2006; Tague et al., 2006). From a 

water supply standpoint, there is broad concern about the response that this deeper 

groundwater storage will have to a warming climate, as rivers that are primarily 

sustained by groundwater are more vulnerable to fluctuations in snowmelt levels and 

their timing than those that are predominantly fueled by runoff, owing to their slower 

recession rates (Jefferson et al., 2006; Tague et al., 2008). But a first step towards 

disentangling this larger question is to estimate the transit time, or the time it takes 

from when water enters an aquifer to when it exits at springs at Clear Lake. Previous 

transit time estimates range substantially; between 13 to 26 years (Jefferson et al., 

2006) and 30 to 31 years (Deligne, unpublished). This disagreement in transit time 

hampers the development of a more comprehensive understanding of the effects of a 

reduced snowpack on ecosystem processes and water usage downstream. 

Clear Lake receives approximately 10% of its water from the Great Spring at the 

northeastern margin of the lake, with the bulk of the remaining water coming from 

springs along the lake bottom, and in August, groundwater is the only source of water 

coming out of Clear Lake (Fig. 1.1; Stearns, 1929; Jefferson et al., 2006). In 2009, 

Deligne (unpublished) pioneered a research design comparing tree-ring radial growth 

of trees growing on a small peninsula in Clear Lake (i.e., by its outlet) with trees 
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situated on the graben wall above and west of Clear Lake (control group; Figure 1.2). 

Deligne’s study design adopted the reasonable premise that both sets of trees (outlet 

and control) grew under similar climatic conditions, but trees at the lake outlet had 

additional access to groundwater during the rain-free portion of the growing season 

(mid/late spring through late summer/early fall; Jefferson et al., 2006; Deligne, 

unpublished). Thus, by comparing radial growth in trees at the outlet to that of the 

adjacent more water-limited trees, groundwater-dependent differences could be 

quantified from their respective tree-ring growth patterns. More specific, growth 

patterns found in isolated trees growing at the control site (away from streams, lakes, 

and other trees that compete for resources), should only respond to the current year’s 

climatic conditions. However, growth patterns from isolated trees at the lake outlet 

should reflect a response to both the current year’s climatic conditions and variation in 

lake water levels. In turn, lake water levels vary from surface runoff resulting from 

snowmelt during the current year’s climate and groundwater discharge. While surface 

runoff in these young lava fields in the High Cascades is close to zero (Tague et al. 

2008), groundwater discharge is a function of the hydroclimatic conditions (both 

snowfall and snowmelt timing and amounts) that occurred during an unknown past 

period (i.e., transit time). Hence, the radial growth of the trees at the outlet in a given 

year should be autocorrelated with the growth of trees at the control site during the past 

(ca. 30-31 years; Deligne, unpublished). Although pioneering in its research design and 

use of paired analysis of tree-ring radial-growth patterns to reconstruct groundwater 

transit time, Deligne’s (unpublished) study included only 15 paired increment tree 

cores, a short-time span of dendrochronological analysis (1805–2008), conducted sub-
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optimal processing of the tree-ring samples (cross-dating), and did not evaluate the 

possible impact of tree ages or differences in geology (i.e., her control site was located 

in the Western Cascades).  

 

Figure 1.1 Clear Lake overview study area extracted from the Deligne (unpublished) 
study. (A) Map displaying the Willamette River Basin in light grey and the McKenzie 

River Basin in dark grey and (B) Clear Lake with the Great Spring (marked with a red 

dot) and adjacent young lava fields in the High Cascade Mountains.  

 

Lastly, Deligne’s pilot study also did not include the 2010 to 2020 decade, a 

period with several recorded dry/low-snowpack years, such as 2014 to 2016, 2018, and 

2020, nor did she explore differences in the groundwater transit time using early- 

(spring) vs. late- (summer) wood, which are known to experience different climatic 

sensitivities (e.g., Meko and Baisan, 2001; Torbenson et al., 2006; Stahle et al., 2009; 

Dannenberg and Wise, 2016). Furthermore, Deligne’s (unpublished) analysis did not 

evaluate the climatic parameters that in turn might affect and explain the patterns in 
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radial growth, which is essential for understanding and confirming the relationship 

between radial growth and hydroclimatic conditions at both study sites. To 

meaningfully assess groundwater dynamics of the McKenzie River, this thesis research 

will expand and modify Deligne’s (unpublished) novel approach to develop a 

dendrohydrological reconstruction of groundwater transit time and quantification of 

climate-radial growth relationships that will inform water resource managers’ 

understanding of long-term trends in streamflow for an iconic river that possesses such 

significant socio-economic relevance. 

 

Figure 1.2 Clear Lake study site LiDAR-derived DEM extracted from the Deligne 
(unpublished) study. (A) The highest hit LiDAR map displays the old-growth forest 

surrounding the Clear Lake outlet area. (B) The bare Earth LiDAR map shows the N-S 
fault that divides the older Miocene Western Cascades to the west (left) and the younger 
Holocene lava flow to the east (right). Deligne’s sampling points at the outlet site (in 

green) and their control site (in red) on older Western Cascade geology. 
 

1.2 Study Area 

The greater Willamette watershed is one of Oregon’s largest river systems, draining 

28,672 km
2 annually into the Columbia River (Sproles et al., 2017). The McKenzie River 
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basin is approximately 3,463 km2 and is a main tributary of the Willamette watershed 

(Sproles et al., 2017). The groundwater-dominated McKenzie River drains from the 

Cascade crest and runs west until it meets the run-off-dominated Willamette River in its 

northward flow (Sproles et al., 2017). Although the McKenzie River covers less than 

12% of the Willamette basin, it accounts for 25% of the Willamette River’s late summer  

baseflow and 12% of its total drainage (PNWERC, 2002; Tague et al., 2013). This makes 

the McKenzie River a key water source for municipal, agriculture, power generation, 

aquatic ecosystems, and recreation use (Tague et al., 2013). 

The western Cascades’ temperate Mediterranean hydroclimate is characterized by 

cool, wet winters and moderate, dry summers with average annual temperatures ranging 

from -1˚ C to 11˚ C (Clackamas SWCD, 2013). Exceptionally high winter precipitation 

occurs throughout the Cascades due to orographic lifting of Pacific Ocean air masses that 

leads to annual precipitation ranging from 1150 mm to 3600 mm, partitioning between 

rain and snow by elevation (Clackamas SWCD, 2013; Fayad et al., 2017). The Cascades’ 

maritime snow cover is characterized by relatively deep, wet, and warm snowpack, with 

higher elevations being snow-dominated and mid-to-low elevations receiving mixed 

precipitation regimes (i.e., rain < ca. 400 m and snow > ca. 1200 m above sea level [asl]; 

Sturm et al., 1995; Tague et al. 2008; Clackamas SWCD, 2013; Fayad et al., 2017). 

1.3 Geology of the McKenzie River Basin 

 The McKenzie basin has two distinct and adjacent geologic provinces: the 

predominantly Miocene Western Cascades to the west and the Plio-Pleistocene High 

Cascades to the east (Figure 1.2; Tague et al., 2013). The Western Cascades are 

dominated by old volcaniclastic rocks, and the High Cascades are dominated by young 
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basaltic lava outflows (Tague et al., 2013). Hydrologic flow path differences and transit 

times, when accounting for aquifer size, are driven by these distinctions (Jefferson et al., 

2006), with relatively minor differences due to climate or land use (Tague et al., 2008). 

The High Cascades’ young lava flows are extremely permeable with high vertical 

hydraulic conductivity which generate the bulk of deep groundwater flow and spring 

discharges (Jefferson et al., 2006). The high vertical conductivity allows for recharge to 

rapidly drain through the undeveloped shallow soils and into large deep aquifers, where 

Jefferson et al. (2006) reported that transit times can be on the timescale of years or 

decades. In contrast, the Western Cascade drainage system is made up of steep lateral 

hydraulic gradients, shallow bedrock, and clay aquitards that keep recharge constrained 

to the subsurface (Tague et al., 2013). 

The flow paths created by the differences in geology produce distinct hydrologic 

regimes in High Cascade watersheds that are characterized by high baseflows, slow 

recessions, and muted flood peaks (Tague & Grant, 2004). Snowmelt peaks during the 

winter and spring generate recharge that quickly enters streams in the Western 

Cascades, creating a greater contribution to flow than the High Cascades. This process 

reverses in the summer months when precipitation is scarce and the Western Cascades 

groundwater system is primarily depleted, and flow in the McKenzie River largely 

originates from the High Cascade aquifers which range from 40 m to 100 m deep 

(Manga, 1996) Tague and Grant, 2004; Jefferson et al., 2006). This study is focused on 

the groundwater-originated headwaters of the McKenzie River at Clear Lake (Figure 

1.1), located on the western edge of a graben with Holocene lava flows to the north, 
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east, and south and the Western Cascades to the west (Figure 1.2; Jefferson et al., 

2006). 

1.4 Climate Change and the McKenzie River Basin 

Mountain hydrology is projected to be highly vulnerable to warmer air 

temperatures as a result of anthropogenic forcing due to the lack of infrastructure to 

store rainwater (Barnett, 2005). Although scientists face limitations with observational 

snow records (e.g., Coulthard et al., 2021), there has still been extensive research 

documenting significant declines in western United States mountain snowpacks as well 

as a series of estimates of future changes to snowpack dynamics. Several studies have 

shown a decrease in both 1 April Snow Water Equivalent (SWE) and peak SWE, 

giving evidence to snowpack declines (Nolin & Daly, 2006; Abatzoglou, 2011; Fyfe et 

al., 2017; Harley et al., 2020; Marshall et al., 2019; Mote, 2006; Mote et al., 2005, 

2018; Pederson et al., 2011). Additionally, Mote et al. (2018) found that 21% of the 

western United States mountain snowpacks have declined since 1915, equivalent to 36 

km3 or in other words, more than the amount of water stored in Lake Mead, the western 

United States largest reservoir. In addition to the studies cited above, other research 

also found that ACC has resulted in an earlier peak SWE and timing of spring 

snowmelt, which has shifted the timing of snowmelt-derived streamflow to earlier in 

the water year in the western United States (Fritze et al., 2011; Gergel et al., 2017; 

Knowles et al., 2006.; Mote et al., 2018; Stewart et al., 2005).  

Maritime snowpacks at low elevations in the PNW, where the bulk of 

precipitation occurs at 0˚C, are most susceptible to warmer air temperatures that are 
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expected to reduce the amount of precipitation that falls as snow and stimulate earlier 

snowmelt, as warmer snowpacks are riper and require little additional energy input to 

melt (Nolin & Daly, 2006; Linveh & Badger, 2020). Changes in snow dynamics from 

anthropogenically-driven warming can lead to timing shifts in seasonal hydrographs, 

generating increased winter flow and reduced spring and summer flow (Barnett, 2005). 

Mountain region climate models for the PNW estimate future temperature increases 

ranging from 2.0˚C to 4.0˚C west of the Cascades, with temperature extremes occurring 

more rapidly over the second half of the twentieth century (Mass et al., 2022). These 

projections have been linked to reductions in summer water availability (Tague et al., 

2008). However, according to a recent analysis, a reestablished dedication to attaining 

the Paris Agreement’s long-term goal of restricting warming below 2.0˚C and striving 

to limit it to 1.5˚C above pre-Industrial levels is achievable by fully and promptly 

fulfilling all objectives (Heeter et al., 2023). Although this requires significant effort 

from countries and individuals, this finding suggests that if all objectives are met in 

full, it could help mitigate the effects of ACC, including the projected water availability 

declines in the summer months west of Oregon’s Cascades. 

Due to its low elevation, in comparison to the Rocky Mountains for instance, the 

High Cascades, and thus the Willamette River basin has been identified as 

climatologically “at-risk”, as a majority of snow in the basin accumulates at close to 

0˚C, meaning even slightly warmer temperatures can shift snow to rain (Nolin & 

Daly, 2006). Similarly, the McKenzie River basin, in particular, makes up a large 

portion of the Willamette River’s “at-risk” snow zone (Nolin & Daly, 2006). The 

McKenzie River basin generates significant flow for the Willamette River basin.  
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Thus, better contextualizing groundwater dynamics at the McKenzie River’s 

headwaters is crucial at a regional scale to help establish climate change adaptation 

strategies that can be applied in conjunction with global efforts to reduce emissions.  

The objectives of this research were to develop and quantify variations in radial 

growth of annual and sub-annual tree-ring chronologies to: (1) quantify the transit time 

of the groundwater supplying the McKenzie River’s headwaters at Clear Lake, from a 

newly created dendrohydrological groundwater reconstruction; (2) examine climate-

growth relationships and compare the geo-hydroecological mechanisms that drive 

differences in tree-growth responses between our two sites; and (3) assess the impacts 

on water resources and ecosystems downstream.  

1.5 Hypotheses 

The tree-growth at two sites, namely the waterfront and the control site, are 

hypothesized to be controlled by similar climatic factors due to the close proximity of the 

two sites, but given differences in distance to water access from Clear Lake, it is 

hypothesized that the following factors influence radial growth of trees growing at the 

waterfront site: (1) local climate conditions, that should also be present at the control site; 

(2) residual (climate) effects of temporal autocorrelation from previous growth at the 

waterfront site; and (3) residual effects from the transit time between snowmelt and 

groundwater outflow into Clear Lake. For the control site, the hypothesized factors 

affecting growth are: (1) local climate conditions that should also be present at the 

waterfront site; and (2) residual (climate) effects of temporal autocorrelation from 
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previous growth at the control site. These predictors will be examined in further detail to 

determine their impact on tree-growth at both sites (Figure 1.3). 

 
 

Figure 1.3. Conceptual model of factors influencing radial growth of the trees growing at 
my two study sites, waterfront and control, hypothesizing that growth at both sites is 

influenced by: (1) shared local climate that affects the current season growth, which 
includes temperature, precipitation, and snow; (2) residual or memory effects of temporal 
autocorrelation, which can influence growth of the current season due to factors such as 

lagged climate effects, climate variability (from inter-annual to inter-decadal scale), and 
other time-dependent processes. Moreover, it is hypothesized that (3) growth of trees at 

the waterfront site is further influenced by residual effects from groundwater outflow into 
Clear Lake, as indicated by the black arrow, to which only the roots of waterfront trees 
have direct access. 
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Chapter 2 Methods 

2.1 Tree-ring Data and Chronology Formation 

Douglas-fir (Pseudotsuga menziesii) tree-ring samples were collected in the 

summer of 2021 from two new sites at Clear Lake (ca. 900 m asl; Figure 2.1). Site 

selection was based on sample site characteristics (i.e., direct root access to the lake for 

the waterfront chronology and lack thereof for the control chronology) and the 

availability of climatically sensitive tree-growth (i.e., interannual radial growth patterns 

observed in the field from cores obtained from isolated individuals with low to no 

influence from neighboring trees; i.e., competition). Additionally, and in contrast to 

Deligne (2009)’s design, sampling was only conducted on trees growing on the young 

High Cascades. 
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Figure 2.1 Map of this thesis’ study sites showing the waterfront site (groundwater-

climate-dependent tree-growth) located around the lake perimeter, and the control site 
(climate-dependent tree-growth) east of and removed from Clear Lake. The Great Spring 

is also denoted in the northeastern margin of the lake (light blue dot), as well as the 
USGS Clear Lake Outlet Gauge (orange dot) that was used to obtain streamflow data this 
study. 

 

While trees at both sites were growing on dry, rocky lava bed outcrops and were 

influenced by the same local climate, trees growing at the climate- and groundwater-

dependent sample site, located along the perimeter of the lake (waterfront hereafter), 



 

 

14 

had direct root access to the water throughout the year (i.e., including in late spring and 

summer when moisture-water stress is highest for trees). Instead, the control sample 

site, located approximately 500 m east of Clear Lake, had no direct access to the lake 

(i.e., no access to groundwater; Figure 1.3; Tague et al., 2008; Jefferson et al., 2006). 

At the control site (climate-dependent site), sampled trees were located on mostly west-

facing slopes, at ca. 950 m asl, with the average recharge elevation (at Sand Mountain) 

at ca. 1,372 m asl (Jefferson et al., 2006). 

In addition, targeted Douglas-fir trees were selected by age (i.e., characteristics 

such as large diameter, branch-free lower trunk, gnarly crown with flattened top, thick 

bark with deep grooves), as well as minimal presence of outward disturbance (i.e., 

burn scars, and visible damage from wind and /or insect and pathogens). The sampling 

procedure used followed standard dendroclimatological methods: thirty trees were 

sampled at each site, with two cores extracted from each tree at standard breast height 

(1.37 m) using a Haglof 5.15-mm three-threaded 24-inch increment borer (Table 2.1; 

Speer, 2010). Individuals were also selected based on the presence of high-sensitivity 

growth, e.g., ring boundaries in the first core were examined for interannual variation 

prior to committing to a second core, and if growth complacency (lack of inter-annual 

growth variation) was identified, we moved to the next tree. Samples were taken at 

approximately 180˚ from each other to increase the chance of sampling locally absent  

rings, and parallel to slopes to decrease the occurrence of compression or tension 

wood (Fritts, 1976; Stokes and Smiley, 1968; Cook and Kairiukstis, 1990). Samples 

were stored in plastic straws and transported back to the Global Environmental 

Change (GEC) Laboratory at Portland State University for processing. 
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Table 2.1 Full description and location of individual trees sampled at each site at Clear 
Lake, Oregon.  

Sample Name Site Site Descriptor Lat/Long 
Length 

(yr) 

CLW_01_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°21'53" N, 

121°59'25" W 
1656-2021 

CLW_02_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°21'42"N, 

121°59'32"W 
1752-2021 

CLW_03_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°21'40" N, 

121°59'23"W 
1668-2021 

CLW_04_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°21'42" N, 

121°59'25' W 
1705-2021 

CLW_05_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°21'47" N, 

121°59'22" W 
1644-2021 

CLW_06_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°21'53" N, 

121°59'24" W 
1802-2021 

CLW_07_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'10" N, 

121°59'30" W 
1623-2021 

CLW_08_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'14" N, 

121°59'34" W 
1813-2021 

CLW_09_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'2" N, 

121°59'26" W 
1857-2021 

CLW_10_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'10 N, 

121°59'29" W 
1573-2021 

CLW_11_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'19 N, 

121°59'36" W 
1583-2021 

CLW_12_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'19 N, 

121°59'36 W 
1570-2021 

CLW_13_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'22" N, 

121°59'37 W 
1758-2021 

CLW_14_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'23" N, 

121°59'38" W 
1804-2021 

CLW_15_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'29" N, 

121°59'50" W 
1586-2021 

CLW_16_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'9'' N, 

121°59'30'' W 
1643-2021 
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Sample Name Site Site Descriptor Lat/Long 
Length 

(yr) 

CLW_17_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'9'' N, 

121°59'29'' W 
1796-2021 

CLW_18_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'12'' N, 

121°59'29'' W 
1810-2021 

CLW_19_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'14'' N, 

121°59'34'' W 
1664-2021 

CLW_20_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'16'' N, 

121°59'35'' W 
1626-2021 

CLW_21_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'18'' N, 

121°59'37'' W 
1676-2021 

CLW_22_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'18'' N, 

121°59'36'' W 
1637-2021 

CLW_23_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'22'' N, 

121°59'37'' W 
1826-2021 

CLW_24_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'29'' N, 

121°59'49” W 
1428-2021 

CLW_25_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'34'' N, 

121°59'49'' W 
1416-2021 

CLW_26_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'29'' N, 

121°59'49'' W 
1407-2021 

CLW_27_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'36'' N, 

121°59'49'' W 
1576-2021 

CLW_28_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'36"N, 

121°59'49"W 
1673-2021 

CLW_29_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'38" N, 

121°59'50" W 
1447-2021 

CLW_30_PSME Waterfront 

Climate- 

groundwater- 

dependent 

44°22'31" N, 

121°59'51" W 
1566-2021 

CLL_01_PSME Control 
Climate- 

dependent 

44°12'12'' N, 

121°59'29'' W 
1729-2021 

CLL_02_PSME Control 
Climate- 

dependent 

44°12'8'' N, 

121°59'12'' W 
1679-2021 

CLL_03_PSME Control 
Climate- 

dependent 
44°12'1” N, 

121°59'6'' W 
1730-2021 
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Sample Name Site Site Descriptor Lat/Long 
Length 

(yr) 

CLL_04_PSME Control 
Climate- 

dependent 
44°12'2” N, 

121°59'5'' W 
1724-2021 

CLL_05_PSME Control 
Climate- 

dependent 
44°12'57” N, 

121°35'27'' W 
1625-2021 

CLL_06_PSME Control 
Climate- 

dependent 
44°21'59” N, 

121°59'0'' W 
1695-2021 

CLL_07_PSME Control 
Climate- 

dependent 
44°21'55” N, 

121°59'0'' W 
1616-2021 

CLL_08_PSME Control 
Climate- 

dependent 
44°21'55” N, 

121°58'6'' W 
1666-2021 

CLL_09_PSME Control 
Climate- 

dependent 
44°21'56” N, 

121°58'58" W 
1677-2021 

CLL_10_PSME Control 
Climate- 

dependent 
44°21'55" N, 

121°58'58" W 
1518-2021 

CLL_11_PSME Control 
Climate- 

dependent 
44°21'59" N, 

121°59'11" W 
1720-2021 

CLL_12_PSME Control 
Climate- 

dependent 
44°21'59" N, 

121°59'11 W 
1637-2021 

CLL_13_PSME Control 
Climate- 

dependent 
44°21'57" N, 

121°59'09" W 
1694-2021 

CLL_14_PSME Control 
Climate- 

dependent 
44°21'57" N, 

121°59'06" W 
1419-2021 

CLL_15_PSME Control 
Climate- 

dependent 
44°21'57" N, 

121°59'05" W 
1543-2021 

CLL_16_PSME Control 
Climate- 

dependent 
44°21'57" N, 

121°59'04" W 
1462-2021 

CLL_17_PSME Control 
Climate- 

dependent 
44°21'57" N, 

121°59'03" W 
1424-2021 

CLL_18_PSME Control 
Climate- 

dependent 
44°21'55" N, 

121°59'04" W 
1485-2021 

CLL_19_PSME Control 
Climate- 

dependent 
44°21'54" N, 

121°59'02" W 
1687-2021 

CLL_20_PSME Control 
Climate- 

dependent 
44°21'53" N, 

121°59'08" W 
1333-2021 

CLL_21_PSME Control 
Climate- 

dependent 
44°21'60" N, 

121°59'13" W 
1662-2021 

CLL_22_PSME Control 
Climate- 

dependent 
44°22'1" N, 

121°59'10” W 
1796-2021 

CLL_23_PSME Control 
Climate- 

dependent 
44°22'3" N, 

121°59'4" W 
1562-2021 
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Sample Name Site Site Descriptor Lat/Long 
Length 

(yr) 

CLL_24_PSME Control 
Climate- 

dependent 
44°22'3” N, 

121°59'4" W 
1750-2021 

CLL_25_PSME Control 
Climate- 

dependent 
44°22'3" N, 

121°59'2" W 
1698-2021 

CLL_26_PSME Control 
Climate- 

dependent 
44°22'1" N, 

121°59'2" W 
1500-2021 

CLL_27_PSME Control 
Climate- 

dependent 
44°22'0” N, 

121°59'0" W 
1714-2021 

CLL_28_PSME Control 
Climate- 

dependent 
44°21'60” N, 

121°59'0" W 
1624-2021 

CLL_29_PSME Control 
Climate- 

dependent 
44°21'59” N, 

121°59'1" W 
1702-2021 

CLL_30_PSME Control 
Climate- 

dependent 
44°21'59" N, 

121°58'60" W 
1700-2021 

*Clear Lake Waterfront (CLW), Clear Lake Lava (CLL)  

Following standard processing procedures (Stokes and Smiley, 1968), tree-ring cores 

were mounted to slotted wooden mounting boards and sanded using increasingly 

finer grits of sandpaper, starting at 60 p, and increasing to 1000 p until prominent  

ring boundaries and unicellular anatomy were visible under a microscope (Speer, 

2010). Each sample was scanned in 1700 to 2400 dpi with an Epson Expression 

11000XL scanner. Using a combination of cellular anatomy and marker years as a 

guide, samples were delineated, measured, and assigned annual calendar years using 

CooRecorder software, which automatically pre-defines ring-width boundaries and 

measurements to the precision of the nearest 0.001 mm (Cybis Elektronik, 2010; 

Larsson, 2014). Samples were visually (Yamaguchi, 1991) and statistically cross-

dated (using combined approaches found in CDendro [Cybis Elektronik, 2010], 

COFECHA [Version 6.02; Holmes, 1983], and the dplR package in R [Bunn, 

2008]).  
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Standard dendroclimatological methods were used to measure and develop 

total-ring width, early-, and late-wood chronologies for each sample site, 

representing the mean tree-growth (i.e., Cook, 1985). Chronologies were developed 

using the Dendrochronology Program Library R package, dplR (Bunn, 2008). Raw 

measurements were detrended to statistically remove long-term age- and size- 

related, biological growth trends while enhancing climate-related trends in the tree-

ring measurements (Fritts, 1976; Speer, 2010). The measurements were sensitivity-

tested with varying detrending methods (i.e., smoothing spline vs. statistical model). 

A negative exponential curve was selected as the primary detrending method, 

followed by an alternative of a fitted linear model or a straight line through the mean 

in circumstances of a linear model with a negative slope (Fritts, 1976; Cook, 1985; 

Cook and Kairukstis, 1990; Stokes, 1996; Bunn, 2008).  

Next, detrended series were pre-whitened using Autoregressive Moving 

Average (ARMA) modeling to further decouple the persistent biological noise from 

climate signals in the tree-ring measurements (Holmes, 1983; Cook and Briffa, 1990; 

Cook and Peters, 1997). Autocorrelation occurs when a single year of growth 

influences multiple following years of growth (LaMarche, 1974; Speer, 2010). For 

example, a backward lagged tree-ring from 2021 (t-1) for trees growing near the 

lakefront, can inform lake levels in 2020 (t) based on autocorrelation in the tree 

metabolism and biology (i.e., storage of sugar, starches, and other non-structural 

carbon and chemical compounds), such that lake level conditions in 2020 can pre-

condition and influence growth in the following year (Cook and Kairiukstis, 1990). 
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After detrending, the tree-ring measurement series were statistically 

standardized and aggregated into dimensionless growth indices to enhance the signal 

of interest (i.e., hydroclimate) while reducing noise (i.e., disturbance, stand-

dynamics; Cook and Briffa, 1990; Speer, 2010). For both sites, the biweight robust 

mean of both cores per ring was used to compute average annual growth 

measurements (early-, late-wood, and total ring width), leading to the development of 

the final standard (contains autocorrelation) and residual or pre-whitened 

(autocorrelation removed) Douglas-fir (Pseudotsuga menziesii) chronology (Stokes 

and Smiley, 1996). Since this study capitalizes on autocorrelation, the residual 

chronology was excluded from further analysis.  

A final step was conducted to determine the adequacy of the sample size at 

capturing the population growth signal. For this, I used the Sub-Sample Strength 

(SSS) using a threshold of 0.85 to ensure the most robust timespan of the chronology 

was used for the analysis (Cook and Kairiukstis, 1990; Buras, 2017). Total ring 

width-, early-, and late-wood- chronologies were truncated where the SSS dropped 

below the standard value of 0.85 (Figures A.1., A.2.). The SSS is a measure of 

decreasing predictive power due to reductions in sample size of tree-ring series back 

in time (Buras, 2017). Chronology quality was also verified using standard tree-ring 

series statistics, such as mean sensitivity, R-BAR, and series intercorrelation (Wigley 

et al., 1984; Cook et al., 1990; Speer, 2010). Finally, a cross-correlation function 

analysis was performed with lags at an annual scale and a correlation significance at 

p < 0.05 to verify that the chronologies could serve as predictors of groundwater 

transit time.  
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2.2  Hydrologic and Climate Data 

All Snow Telemetry (SNOTEL) and snow course datasets north of 44˚9’, 

south of 44˚27’, west of 121˚42’, and east of 122˚3’ and located between 900 m to 

1500 m asl in elevation were extracted from the United States Department of 

Agriculture (USDA), Natural Resource Conservation Service’s National Water 

and Climate Center (NRCS, 2021). The criteria for elevation were determined to 

accurately depict snowfall at the two sites. Selection criteria for the data records in 

this study was as follows, the dataset: (1) could not have had more than one 

missing data-entry in a 30-year period, (2) could not contain missing consecutive 

entries, and (3) was required to be at least 60 years in length. Various climate 

datasets were run through a suite of statistical analyses to determine dataset quality 

as part of the selection criteria. Based on this criteria, local snow course (manual 

snow measurements) and SNOTEL (system of automated snow and climate 

sensors) station records were omitted as they did not meet the criteria of a record at 

least 60 years in length or had several missing consecutive entries. Instead, gridded 

high-spatial-resolution monthly mean air temperature, monthly total precipitation, 

and monthly total SWE datasets were used for this research as it provided an 

extensive and continuous record without missing values. 

Monthly mean air temperature and monthly total precipitation records were 

extracted using Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) Explorer for a 4 km2 grid at 44˚ 22’ 08” N and 121˚59’ 40” W for the 

overlapping period with the developed tree-ring chronologies of 1895 to 2021 

(PRISM Climate Group, 2014). Climate Engine Research Application was also used 
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to download TerraClimate monthly total SWE datasets for a 4 km2 grid based on 

Clear Lake’s coordinates for the overlapping period of 1959 to 2021 (Abatzoglou et 

al., 2018). Lastly, non-gridded gauged streamflow time series of monthly mean flow 

at the outlet at Clear Lake, which extends for the 1959-2021 period was accessed 

from the United States Geological Survey (USGS) database 

(https://waterdata.usgs.gov/or/nwis/uv).  

To verify the selected gridded high-spatial climate data represented robust 

records for this region, separate spearman correlations were individually performed 

between the SNOTEL stations with the longest and most complete record (Santiam 

Junction (1978-2021), McKenzie (1979-2021), and Hogg Pass (1978-2020) SNOTEL 

stations) with PRISM (mean monthly air temperature and total monthly precipitation; 

1895-2021) and TerraClimate (total SWE; 1959-2021) gridded datasets. Records 

were excluded from further analysis if correlations with other stations were not 

significant (p < 0.05) and if the spearman’s rho value was less than 0.40.  

2.3 Climate-Growth Relationships 

To determine the effect of climate on radial growth responses for the standard 

chronologies, correlations and partial correlation functions were conducted with 

monthly mean air temperature, monthly total precipitation, and monthly mean 

streamflow. Radial growth responses to SWE were indirectly explored using monthly 

mean air temperature and monthly total precipitation. Meko et al. (2011) seasonal 

correlation (SEASCORR) procedure in R package TreeClim (Zang, 2015)  was 

utilized for this step. This package allows for quantifying r values between tree-

https://waterdata.usgs.gov/or/nwis/uv
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growth and a 14-month window of integrated 1-, 2-, and 6- month, monthly and 

seasonal hydro-climate data, starting in August of the previous growing season 

through the end of the concurrent growing season (September). In addition, the 

temporal stability (stationarity) of the climate-growth relationship throughout time 

was also tested over subperiods (Figures A.19., A.20.). Significance was estimated 

using exact bootstrapping (Percival & Constantine, 2006). This analysis was then 

replicated on earlywood and latewood standard chronologies.  

2.4 Development and analysis of the reconstruction model 

Following Deligne (unpublished)’s analytical approach, several lagged multiple 

linear regression models were developed to identify the groundwater transit time in R. 

As the earlywood, latewood, and total-ring width chronologies for each site were 

significantly correlated with the hydroclimate parameters (air temperature, 

precipitation, SWE, and streamflow), and provide different information, these three 

tree-ring chronologies at each site (6 total) were used independently as model 

predictors for assessing groundwater transit time at Clear Lake. For example, 

earlywood develops from spring to summer, aligning with the timing of peak SWE and 

then peak annual discharge at Clear Lake, Oregon (Jefferson et al., 2008). After 

selecting hypothesized predictors of the response variable (groundwater transit time), 

the reconstructions were built. 

To determine the presence of autocorrelation in the tree-ring chronologies at each 

site, Partial Autocorrelation Functions (PACF) in R were used, where significant lags 

(i.e., t, t-1, t-2, etc.) were identified based on the 95% confidence level. The PACF is a 
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function that displays the occurrence of partial correlation between a series and a 

lagged version of itself, or the remaining correlation at each lag that is not accounted 

for by previous lags (i.e., not cumulative lags). Partial autocorrelation was considered 

present in scenarios where it exhibits a significant correlation of at least 5% between 

year t and successive lags (Figure 3.4). The use of lagged predictors allowed for 

information from the tree-growth and hydro-climate relationship in the previous years 

to inform the groundwater transit time (Cook and Kairiukstis, 1990). Based on these 

PACF results, I included three predictors for the waterfront growth response (Table 

2.2). The third predictor is hypothesized to represent the lagged response of trees at the 

control site to hydroclimate conditions, including snowpack, snowmelt, and 

groundwater discharge into the lake. 

Table 2.2 Predictor variables used in the set of multiple lagged regression analyses to 

predict tree-growth in year t at the waterfront site. 

1) tree-growth at the control site for year t, 

2) tree-growth at the waterfront site for years with significant partial 

autocorrelation with the same waterfront trees in year t (i.e., t-1, t-2, t-3, …), 

3) tree-growth at the control site for years without significant partial 

autocorrelation with the same control trees in year t (i.e., t-4 through t-40, 

taken one at a time and performed separately). 

 

A second set of multiple lagged regression models were performed, but this 

time exclusively on the control group. This analysis was implemented to validate that 

the results in the first set of multiple lagged regression models were displaying actual 

differences between the trees at the control and waterfront sites (Table 2.3) and to 

verify that the significant results from the first set of regressions are not due to 
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climatic patterns that are also present in the control cohort since we hypothesize both 

sites experience the same local climate (i.e., a cyclic response patterns due to El Niño-

Southern Oscillation [ENSO] or Pacific Decadal Oscillation [PDO]). In a significant 

model, any resulting lag that passes the model selection criteria (see below) for the set 

of regressions at the waterfront site (lagged models predicting tree-growth at the 

waterfront site) will give evidence to a groundwater transit signal. 

Table 2.3 Predictor variables used in the set of multiple lagged regression analyses to 

predict tree growth in year t at the control site. 

1) tree-growth at the control site for years with significant partial 

autocorrelation with the same control trees in year t (i.e., t-1, t-2, t-3, …), 

2) tree-growth at the control for years t-4 through t-40, taken one at a time and 

performed individually. 

 

After fitting the full models, a thorough diagnostic check was performed on the 

residuals both visually and statistically (Serber & Lee, 2003). Visually, the residuals were 

checked for non-linearity, normality, equal variance, and for influential outliers, whereas 

the residuals were statistically checked for normality using a Shapiro-Wilk’s test (Serber 

& Lee, 2003). The residuals were then split into two groups using the model’s median as 

a cutting point, and a F-test was performed to compare the variances. A suite of statistical 

measures (Cook’s Distance and leave-one-out) were used to check for influential outliers. 

The models were then reduced using the Akaike Information Criterion (AIC) in a hybrid 

stepwise approach in the stats package in R (Yamashita et al., 2007; R Core Team, 2022). 

After, the models checked for multicollinearity using a Variance Inflation Factor (VIF < 

4; Serber & Lee, 2003). A simple model comparison using the function ‘anova’ was 
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performed in the car R package to test if each full model was statistically different from 

its reduced version (Fox & Weisberg, 2019). The residuals of each reduced model were 

subsequently checked for significant autocorrelation using a PACF and a Durbin-Watson 

statistic (Inder, 1984). A final step included the selection of the best model based on a 

series of statistical diagnostics such as the AIC, Bayesian Information Criterion (BIC), 

and model explanatory power (adjusted R2). Models with a selection criteria of an AIC 

more than two units lower than the others were selected as best models of groundwater 

transit time (Burnham and Anderson, 2002).  
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Chapter 3 Results  

3.1 A New Network of Tree-Ring Data 

For this research, six newly developed hydroclimate-sensitive Douglas-fir 

(Pseudotsuga menziesii) chronologies (waterfront and control) have been created 

(sampled, mounted, surfaced, delineated, cross-dated) for the 1614 to 2021 AD period 

(i.e., the final SSS-truncated chronologies; Table 3.1; Figure A.1., A.2.). The average 

age of the trees that make up the control chronologies was 371 years, but individuals 

ranged from 291 to 688 years old. The mean age of trees that make up the waterfront 

chronologies was younger, at 341 years old, but individuals ranged from 164 to 614 

years old. The series intercorrelation value, which characterizes the ‘tightness’ of the 

chronology among trees, for the waterfront chronologies range from 0.445 to 0.565, 

while the control chronologies range from 0.453 to 0.590. The mean sensitivity, which 

reflect year-to-year variation in ring width, was as low as 0.178 and as high as 0.314, 

and the total RBAR, which is the mean correlation coefficient between all tree-series, 

ranged from 0.311 to 0.481 (Table 3.1). 

Table 3.1 Description of chronologies included in this study. 

Chronology 
Length 

(yrs) 

SSS Length 

(yrs)* 

Series 

(tree 

cores) 

Series 

intercorrelation 

Average 

mean 

sensitivity 

RBAR 

CLW TRW 1407 - 2021 1626 - 2021 56 0.565 0.185 0.323 

CLW EW 1407 - 2021 1626 - 2021 56 0.550 0.194 0.311 

CLW LW 1407 - 2021 1637 - 2021 56 0.445 0.306 0.481 

Control TRW 1333 - 2021 1614 - 2021 57 0.590 0.178 0.351 

Control EW 1333 - 2021 1614 - 2021 57 0.569 0.191 0.322 

Control LW 1333 - 2021 1624 - 2021 57 0.453 0.314 0.392 

*Sub-Sample Strength (SSS) represents the most robust timespan of the chronology.

*Total ring width (TRW), earlywood (EW), latewood (LW), Clear Lake Waterfront (CLW)
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3.2 Climate-Growth Relationships 

This study examined the influence of monthly variations in air temperature and 

total precipitation from 1895 to 2021 and SWE and gauge height from 1959 to 2021 on 

radial tree-growth at Clear Lake’s headwaters. The monthly average air temperature 

during this period was 7.2 ℃, although monthly minimum and maximum temperature 

ranged from as low as -7.7 ℃ and as high as 19.6 ℃ (Table A.1.). On average, this 

region received 111.6 mm of SWE per month, but values have been recorded as high as 

1097.8 mm during abnormally wet months and as little as 0.071 mm during exceptionally 

dry months. During winter months (i.e., December to February), monthly SWE totals 

averaged 332.7 mm. Monthly precipitation totals averaged 176.9 mm, with the highest 

recorded value of 885.4 mm and the lowest at 0.001 mm. Monthly gauge height on 

average raised 2.3 inches, but streamflow has been recorded to raise a maximum of 4.6 

inches and a minimum of 0.001 inches in a month. The mid to late spring months, from 

April to June, saw an average monthly air temperature of around 9 ℃ and a mean 

monthly gauge height of 2.9 inches, which corresponds with the timing of peak 

snowmelt. In contrast, the late summer months, from July to September, a period most 

stressful for tree-growth, displayed monthly gauge height averages of 1.7 inches and 

monthly air temperature averages of 15.1 ℃. 

Individual climate-growth correlations were performed to evaluate which 

variables are most influential on tree-growth at the two sites and to explore the geo-

hydro-ecological mechanisms behind differences in tree-growth response between the 

control and waterfront standard chronologies. At the monthly resolution, the results for 

the precipitation-growth analysis for the total ring width waterfront chronology indicate a 
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significant positive correlation between current year growth and monthly total 

precipitation during previous year’s August and current year’s March and June. In 

contrast, monthly total precipitation in August of the current growth year has a significant 

negative relationship (Figure 3.1). There is also a significant positive relationship 

between total ring width and monthly mean air temperatures during previous year’s 

November and current year’s March.  

At the bi-monthly resolution (2-month aggregation, reflecting the last month of 

the aggregation), and somewhat similar to the monthly results, the precipitation-growth 

relationship results display significant positive relationships between total ring width at 

the waterfront and previous July, August, and September and current year March, April, 

May, June, and July monthly total precipitation. However, significant negative 

correlations were found between current year August and September precipitation and 

total ring width growth. Additionally, a significant positive relationship between total 

ring width growth and mean air temperatures for previous year’s November, December, 

and current year’s January, March and April were found (Figure 3.1). 

Additionally, at a six-month seasonalized scale (i.e., aggregated 6 months prior to 

the month noted in the figure) there is a significant positive correlation between radial 

growth at the waterfront site and previous year spring to early fall precipitation and 

spring precipitation in the current year, but during winter this relationship is more muted. 

Lastly, there is a significant positive relationship with current year’s winter and spring 

monthly air temperatures (Figure 3.1). The growth of trees at this site have a weak 

relationship with winter precipitation, which is often in the form of snow, but the 

significant positive relationship with air temperatures as it begins to warm up in the 
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spring might indicate a period when (1) snowmelt waters become available for tree-

growth or (2) when trees exhibit an earlier onset of growth, leading to a longer growing 

season. 

 

Figure 3.1 Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width chronology at the waterfront and 

total monthly precipitation (top panels) and mean air temperature (bottom panels). On the 

x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 

the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with total precipitation (primary correlation) 

and mean air temperature (secondary/partial-correlation). The 2- and 6-months 

aggregated values reflect the last month of the aggregation, e.g., F in the 2-month top 

panel equals the growth response to total precipitation during January and February of the 

growing year. Monthly climate parameters, gridded at the 4 km2 spatial resolution, were 

obtained from PRISM (PRISM Climate Group, 2014.) and correlation coefficients are for 

the 1895-2021 period. 
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The total ring width of the control chronology displays a relatively similar 

relationship with precipitation as the waterfront site at all three tested temporal 

resolutions (monthly, bimonthly, and seasonal); e.g., a significant positive correlation 

was found with previous year August (monthly), August and September (bimonthly), and 

August through November (6-months). Instead, temperature conditions at the control had 

little to no effect on total ring width (Figure 3.2).  

 

 

Figure 3.2 Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width control chronology and total 

monthly precipitation (top panels) and mean air temperature (bottom panels). On the x-

axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 

the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with total precipitation (primary) and mean 

air temperature (secondary). The 2- and 6-months aggregated values reflect the last 

month of the aggregation. Monthly climate parameters, gridded at the 4 km2 spatial 

resolution, were obtained from PRISM (PRISM Climate Group, 2014.) and correlation 

coefficients are for the 1895-2021 period. 
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From the dozens climate-growth analyses performed for this study (Figures 

A.3. to A.18.), one that stood out is the relationship between the latewood (summer 

growth) waterfront chronology with the lake outlet stream gauge and precipitation 

records (Figure 3.3). Results suggest significant positive correlations between 

latewood growth and streamflow at all temporal scales, particularly during the 

spring and drier summer months. Specifically, a significant positive correlation 

with previous year’s December and current year’s April and August (monthly), 

previous February to current year’s May (bimonthly), and previous November 

through current year’s August (6-months) was found. These results also indicate 

that latewood growth responds positively to late spring-early summer precipitation.  

 

Figure 3.3 Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) latewood chronology at the waterfront and total 

monthly gauge height (top panels) and total monthly precipitation (bottom panels). On 

the x-axis (Ending months), the first letter to the left of each panel (A) refers to August of 

the previous growth year, and the last letter to each panel’s right (S) refers to September 



 

 

33 

of the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 

1- month (A), 2- month (B), and 6- months (C) with mean gauge height (primary) and 

total precipitation (secondary). The 2- and 6-months aggregated values reflect the last 

month of the aggregation. Monthly total precipitation, gridded at the 4 km2 spatial 

resolution, was obtained from PRISM (PRISM Climate Group, 2014.), and monthly 

average gauge height of the McKenzie River at the outlet of Clear Lake was extracted 

from USGS (USGS, 2021). Correlation coefficients are for the 1959-2021 period. 

 

3.3 Groundwater Transit Time Models  

Significant partial autocorrelation was found between tree-growth in year t and 

growth up to lag t-3 for the waterfront and control standard chronologies (Figure 3.4; i.e., 

for all three chronologies: total ring width, earlywood, latewood).  

 

 
Figure 3.4 Partial Autocorrelation Function (PACF) of the waterfront and control total 

ring width chronologies. The x-axis represents lagged values ranging from 0-30 and the 
y-axis displays correlation coefficient values. The direction of each line represents the 

direction of the relationship, with significant relationships extending beyond the dashed 
blue 95% confidence interval line. 
 

The chronology lag position in the model is indicated within the model equation 

below (3.1). The first set of regression analyses used the total ring width chronologies 
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(predicting tree-growth during year t at waterfront site). At this analysis, lags 5 and 6 

resulted in the models that had greater than two AIC units from the rest, with a 6-year lag 

having the lowest AIC values, highest r2
adj values, and lower RSMEv values (Tables 3.2, 

A.3.).  The model with a 5-year lag explains 24% of the variance of tree-growth of the 

waterfront cohort, with an equation of:  

 

𝑌 = 0.5348 + (0.3813 ×  𝐶𝐿𝑊; 𝑡 − 1) + (0.1038 ×  𝐶𝐿𝑊; 𝑡 − 2)

+ (0.0881 ×  𝐶𝐿𝑊; 𝑡 − 3) − (0.1159 𝐶𝐿𝐿; 𝑡 − 5)         (3.1) 

 

The model with a 6-year lag also explains 24% of the variance of tree-growth of the 

waterfront cohort, with an equation of:  

 

𝑌 = 0.5446 + (0.3656 ×  𝐶𝐿𝑊; 𝑡 − 1) + (0.0991 ×  𝐶𝐿𝑊;  𝑡 − 2)

+ (0.1022 𝑥 𝐶𝐿𝑊; 𝑡 − 3) − (0.1196 ×  𝐶𝐿𝐿; 𝑡 − 6)         (3.2) 

 

The residual diagnostic analysis confirmed the above models met the assumptions of 

linear regression modeling as well as have significant F-statistics indicating the models 

are not overfit (Tables 3.3, 3.4; Figures A.21., A.22., A.23., A.24.).  

Table 3.2 Model summary statistics from the best linear regression models produced in 

the first set of analyses that were performed to predict the tree-growth at the waterfront 
site. 

# of years 

lagged 

backward 

R2 Adj.R2 AIC BIC F SE RSMEv 
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6 0.252 0.241 -1025.2 -998.3 28.67 0.123 0.122 

5 0.249 0.238 -1023.9 -997.0 37.00 0.123 0.123 

 

Table 3.3 Descriptive statistics on model predictors that were included in best model 
output for the first set of regression analyses that were performed to predict the tree-

growth at the waterfront site (t-5). 

Name Value SE t-value p-value 

Intercept 0.5347 0.0754 7.091 7.76e-12 

Waterfront (t-1) 0.3812 0.0535 7.121 6.43e-12 

Waterfront (t-2) 0.1038 0.0572 1.812 0.07086 

Waterfront (t-3) 0.0880 0.0536 1.642 0.10141 

Control (t-5) -0.1159 0.0437 -2.648 0.00847 

 

Table 3.4 Descriptive statistics on model predictors included in the top best model output 

for the first set of regression analyses that were performed to predict the tree-growth at 
the waterfront site (t-6). 

Name Value SE t-value p-value 

Intercept 0.5446 0.0769 7.077 8.47e-12 

Waterfront (t-1) 0.3655 0.0540 6.765 5.84e-11 

Waterfront (t-2) 0.0990 0.0572 1.731 0.0843 

Waterfront (t-3) 0.1021 0.0535 1.908 0.0572 

Control (t-6) -0.1196 0.0440 -2.713 0.0070 

 

 Similarly, the first set of regression analyses for the earlywood chronologies led 

to comparable results, with a 5-year lag and 6-year lag yielding the models with greater 

than two AIC units from the rest (Table A.4.). The best models for the latewood 

chronologies for this part of the analysis were found to be a 15-year lag and 6-year lag 

(i.e., less than 2 AIC units apart; Table A.5.). All three chronology types (total ring width, 
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early-, and late-wood) displayed a 6-year lag as a top candidate model in the first set of 

regression analyses. 

The second set of regression analyses using the total ring width control 

chronology displayed no significant results for a 6-year lag. Instead, the best model 

resulted at a lag of 19 (Table 3.5). The model with a 19-year lag in the second regression 

analysis explains 40% of the variance in tree-growth at the control site, with a regression 

equation of:  

 

𝑌 = 0.4893 + (0.5295 ×  𝐶𝐿𝐿; 𝑡 − 1) + (0.0601 ×  𝐶𝐿𝐿; 𝑡 − 2)

+ (0.0574 ×  𝐶𝐿𝐿; 𝑡 − 3) − (0.1438 ×  𝐶𝐿𝐿; 𝑡 − 19)        (3.3) 

 

Table 3.5 Descriptive statistics for the model predictors included in best model output for 

the second set of regression analyses that were performed to predict the tree-growth at the 
control site. 

Name Value SE t-value p-value 

Intercept 0.5020 0.0649 7.726 1.17e-13 

Control lag 1 0. 5357 0.0526 10.181 < 2e-16 

Control lag 2 0.0920 0.0521 1.767 0.078087 

Control lag 19 -0.1375 0.0410 -3.347 0.000904 

 
Table 3.6 Model summary statistics for the second set of regression analyses that were 

performed to predict the tree-growth at the control site (t-19). 

# of years 

lagged 

backward 

R2 Adj.R2 AIC BIC F SE RMSEv 

19 0.403 0.396 -510.2 -486.9 78.8 0.117 0.117 

 

After meeting the residual assumptions and presenting a significant F-statistics, it 

was determined the model did not overfit (Table 3.6). Lastly, the RMSEv for the 19-year 
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lagged model is 0.117. There were no commonalities found between the total ring width, 

earlywood, and latewood chronologies for the second set of regression analyses when 

comparing the models with an AIC at least two units lower than the others (Tables A.6., 

A.7., A.8.). Therefore, it is determined the signal appearing in the first set of regression 

analyses at lags 5 to 15 is a groundwater signal and that there is likely no cyclical climate 

pattern significantly affecting both sites, at least equally since: (1) latewood radial growth 

of trees at the waterfront site significantly respond to lake levels when groundwater is the 

primary source of water entering Clear Lake (Figure 3.3), (2) factors influencing radial 

growth (other than groundwater) at both sites were meticulously controlled for, and (3) 

the same significant lagged models did not appear in each of the two regression analyses 

(i.e., top 6 lags of each).   
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Chapter 4 Discussion and Conclusion 

4.1 Groundwater Transit Time 

By implementing a novel dendrohydrological approach, groundwater transit time 

discharged into Clear Lake from underground springs in the High Cascade mountains 

was estimated at 5- to 15-years. Radial growth of trees located at the lake’s waterfront 

and upslope (control) from Clear Lake is generally favored by above average 

precipitation the prior (summer) and concurrent (spring) years, whereas temperature - and 

stream gauge-growth relationships differed between both sampled populations and 

between total-, early-, and late-wood standard chronologies, respectively.   

In Oregon’s western Cascades, there is a prominent age class of old-growth stands 

dominated by Douglas-fir of ca. 450-500 years old that regenerated as a cohort following 

widespread fires in the late 1400s and 1500s (Weisberg and Swanson, 2003; Poage et al. 

2009; Tepley et al. 2013). Very few stands that escaped these and other older widespread 

fires have Douglas-fir that are ca. 800 years old and older (Giglia 2004). The large 

majority of Douglas-fir old growth stands across Oregon’s Cascades and coastal range, 

however, are ca. 200-300 years old, which is consistent with the chronologies used for 

this study after being truncated (Beedlow et al., 2013; Restaino et al., 2016).  

Prior to selecting a chronology type for analysis, climate-growth relationships 

with the standard- and residual- chronologies were examined. At both sites, the total ring 

width standard- and residual- chronology displayed relatively similar relationships with 

total monthly precipitation and monthly mean air temperature at all three tested temporal 

scales (monthly, bimonthly, and 6-months seasonalized; Figures 3.1, 3.2, A.2.-A.5., 

A.11.-A.13.). Thus, the standard type of tree-ring chronologies (contains autocorrelation; 
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in contrast to pre-whitened residual chronologies) were selected for further analysis, 

which is a common practice in dendroclimatic and dendrohydrological studies (Coulthard 

et al., 2020; Coulthard et al., 2021). Utilizing the standard chronologies enabled this 

research to account for: (1) the potential influence of hydroclimate processes on radial 

growth prior to the year of ring formation, as identified by Cook (1985) and Cook and 

Kairiukstis (1990); and (2) the presence of autocorrelation in the hydroclimate processes 

themselves. Therefore, our groundwater transit time reconstruction model and climate-

growth relationships capitalized on the statistically persistent tree ecophysiology and 

hydroclimatic processes at play. 

The best individual models of total ring width developed for this study explain 

24% and 40% of variance in tree-growth at each site, respectively in the High Cascades. 

To the best of my knowledge, this is the first study of its kind and thus there is no 

existing literature to compare the variance of the models to. It is sensible to assume that 

non-exclusive site characteristics that influence tree-growth, but that were intentionally 

left out of the models (climate, nutrients, environmental disturbances, competition, and 

topographic location) would account for their unexplained variance. Alternatively, the 

influence of top-down parameters (i.e., climate) were directly examined through separate 

analyses at both sites, while other bottom-up variables were controlled for, e.g., site 

selection to account for variation in nutrients and water holding capacity, individual tree 

selection to account for disturbance, reduced competition, growth sensitivity, and 

detrending to account for age and size-related changes in radial growth. However, given 

the unique geology of the McKenzie River Basin and the torturous path of interstitial 

water, it is hypothesized that the groundwater transit process could be a continuous 
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phenomenon that spans over a period of 5- to 15-years (i.e., rather than operating at an 

annual scale), which can account for the remaining unexplained variance in the models. 

For example, individual significant lags, which could be viewed as a pulse signal from a 

previous input, may be less robust in describing a complex process (e.g., variance in tree 

growth at the waterfront site). However, combining these significant lags into a range of 

5- to 15- years, might collectively better describe groundwater transit time for this basin, 

with a 6-year lag displaying the most frequent significant lag (Tables A.4.-A.8.). 

Including the significant 15-year lag in this range from the model performed using 

latewood growth is further strengthened by the significant positive correlation found 

between latewood growth at the waterfront site when paired with spring and summer lake 

levels (i.e., when groundwater is the primary source entering into Clear Lake; Figure 3.3). 

This interpretation of a range of groundwater transit times aligns with previous literature, 

such as Grant et al. (2004)’s work which found a range of 5 to 10 years and Jefferson et 

al. (2006)’s research that found a range of 13 to 26 years. 

Based on model performance metrics, the lag t-6 appeared as the best 

groundwater transit time when predicting radial growth at the waterfront in all three 

chronologies (total ring width, early-, late-wood). The gauge-growth relationship 

revealed late-wood growth significantly increases when lake levels are elevated during 

the spring and summer during the growing season (i.e., bimonthly and 6-months 

seasonalized; Figure 3.3; Table A.2.). These results also correspond with the positive 

growth response to warm conditions in spring at the waterfront site. My findings align 

with Restanio et al. (2016)’s findings that radial growth of Douglas-fir growing in the 

western United States, including trees in the Oregon Central Cascades (HJA 
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Experimental Forest) and the Northern Cascade National Park in the PNW, is highly 

sensitive to soil moisture deficits. Therefore, the positive moisture-growth relationship at 

the waterfront site may be explained by higher lake levels preconditioning the soil with 

moisture for a time when latewood is actively growing (i.e., summer, when precipitation 

is scarce). These findings support the previously reported influence of summer maximum 

temperature and summer Vapor Pressure Deficit (VPD) on radial growth (latewood 

carbon isotope discrimination) of Douglas-fir trees growing higher up at Santiam 

Junction Pass in Oregon (Ratcliff et al., 2018). Overall, my results also complement well 

with the proportionally colder summer water, which is when the primary source water for 

Clear Lake is groundwater (Jefferson et al., 2006; Tague et al. 2008), making the 

latewood chronology a sound groundwater proxy.  

At the control site, the weak negative temperature influence on growth suggests 

the notion that these trees do not benefit from earlier snowmelt, as they cannot access that 

water. These differences in temperature-growth findings between the waterfront and 

control site further highlight the waterfront site benefits from access to groundwater that 

likely does not exist at the control site. Previous studies have shown that Douglas-fir 

radial growth (total ring width, early-, and late-wood) at higher elevation (at Santiam 

Junction pass; 1,139 m) had no statistically significant response to climate (i.e. 

temperature, precipitation or SWE; Ratcliff et al. 2018), suggesting that at the elevation 

of, and/or in response to dry lava-rich substrate conditions at Clear Lake, growth of 

Douglas-fir trees is moisture-limited, rather than energy-limited. 

In contrast to the moisture-limitation during summer (latewood growth) findings, 

earlier than average radial growth (earlywood) of trees at the waterfront is favored by 
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warmer than average conditions that likely lead to earlier than normal snowmelt timing 

(Figure A.6.). At the control site, cooler conditions earlier in the fall of the previous 

season is associated with increased latewood and total ring width growth, implying a 

memory effect from stressed trees (Esper et al., 2015).   

Utilizing a PACF, significant partial autocorrelation was found up to lag t-3 in 

tree-growth at the waterfront site with the growth of the same waterfront trees in year t as 

well as with tree growth at the control site with the same control trees in year t. Since 

tree-growth at both sites is governed by the same local climate, it is likely that the 

difference in autocorrelation in radial growth is due to the growth response to 

hydroclimatic processes at both sites prior to the ring formation, and the natural existence 

of autocorrelation in hydroclimatic processes. Of the predictors included in the best total 

ring width model for the first set of regression analyses, waterfront tree-growth at t-1 

exhibits the strongest positive linear relationship with tree-growth at the waterfront site in 

year t (Tables 3.3, 3.4). This high 1-yr autocorrelation is a common signature in tree-ring 

time series, associated with non-structural carbon reserves (Schweingruber, 1996; Esper 

et al., 2015). Although not as strong as waterfront tree growth at t-1, tree growth at the 

control site at t-6 displays a significant negative linear relationship with tree-growth at 

the waterfront site in year t. In this circumstance, it is sensible to infer that the negative 

relationship found between the control site at t-6 and the waterfront site at year t could be 

explained by the differences in spring temperature- and winter SWE-growth relationships 

at each site. More specifically, at the waterfront site, warm spring air temperatures seem 

to trigger an early onset of growth. However, warm spring conditions appear to be less 

favorable for tree growth at the drier, lava-rich control site (Table A.2.). These findings 
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are consistent with previous literature which has repeatedly found that Douglas-fir 

growth is limited by warm spring and summer air temperatures in the western United 

States (Restiano et al., 2016; Beedlow et al., 2012; Littel et al., 2008). 

Furthermore, variability in tree-growth at the waterfront site for year t might also 

be minorly dictated by tree-growth at the waterfront site in years t-3 followed closely by 

t-2. Although the model results did not indicate lags t-3 and t-2 were significant 

predictors of waterfront tree-growth in year t, they were retained in the final regression 

analyses due to: (1) hypotheses formed based on the significant partial autocorrelation 

values in the PACF analysis; and (2) having higher-quality model metrics (i.e., lower 

AIC, higher Adj.R2, etc.). The function 'anova' was used to compare the full model (i.e., 

included all predictors) with a reduced version that excluded insignificant predictors (lags 

t-3 and t-2), which showed that the full model was a statistically better fit than the 

reduced version. Therefore, of the four predictors included in the first set of total ring 

width regression analyses, two displayed statistically significant relationships with tree-

growth at the waterfront site at Clear Lake, Oregon. Similar results were found in the first 

set of regression analyses using the early- and late-wood chronologies.  

Lag t-19 emerged as a best model for the second set of total ring width regression 

analyses, explaining 40% of variance in tree-growth at the control site in year t. Of the 

predictors included in the final total ring width model, control tree-growth at t-1 exhibits 

the strongest positive linear relationship with tree-growth at the control site in year t 

(Table 3.5). Drawing from the climate-growth analysis, pre-conditioning soil moisture 

which in turn stimulates an increase in tree-growth in year t can be inferred from the 

observed growth response associated with increased precipitation (Figure 3.2) and cooler 



 

 

44 

fall conditions (presumably lessen evapotranspiration, Figures A.8., A.9., A.10.) prior to 

the growing season (t-1). 

Though not as strong as the slope for the control tree-growth at t-1, tree-growth at 

the control site at t-19 displayed a significant negative linear relationship with tree-

growth in year t. These results could indicate a frequency associated with longer-term 

climate modes, such as the PDO, which mediates the climate and atmospheric circulation 

patterns in the PNW at 20- to 30-year timescales (Praskievicz & Chang, 2009; Hamlet & 

Lettenmaier 1999). However, Mantua and Hare (2002) reported it has exhibited two 

warm (positive) periods in the 20th century, one ranging from 50 to 70 years and the other 

from 15 to 25 years. Furthermore, Case and Peterson (2005) show that high elevation 

Douglas-fir are negatively associated to winter PDO index prior to the growing season, 

and Pohl et al. (2013) reported ponderosa pine (Pinus ponderosa) recording weak PDO 

signals in central Oregon (east Cascades), explaining only 12% of variance in tree-

growth. Thus, the 19-year lag may be indicative of such signal, emphasizing the 

importance of further exploring the mechanisms governing it.  

In addition, variability in tree-growth at the control site for year t might also be 

minorly dictated by tree-growth at the control site in year t-2. Despite not being found as 

a significant predictor, t-2 was kept in the second regression analyses due to hypotheses 

formed based on the significant lags found in the PACF analysis and improved model 

metrics (i.e., lower AIC, higher Adj.R2, etc.). A reduced model containing only 

significant predictors (i.e., without lag t-2) was compared to the full model (i.e., 

containing lag t-2) using the function ‘anova’, and the results indicated the full model 

was a statistically better fit than the reduced version.  



 

 

45 

In contrast to the first set of regression analyses, the resulting t-19 lag was not 

found as a best model in the set of regression analyses using the earlywood chronology. 

However, Peterson and Peterson (2001) discovered mountain hemlock (Tsuga 

mertensiana) growing at low-elevation sites (i.e., elevations ranging from 1100 m to 

1585 m asl) in central Oregon exhibited negative correlations with current growth year 

summer air temperatures that were associated with decadal variability in the PDO. 

Ratcliff et al. (2018)’s work on mountain hemlock and Douglas-fir tree-ring carbon 

isotope (13C) responses to climate showed that latewood exhibited stronger responses to 

climate than its earlywood and total ring width counterparts; while mountain hemlock, as 

most shade tolerant species that gradually, transitions from early- to late-wood (rather 

than abruptly as Douglas-fir; Ratcliff et al., 2018). Peterson and Peterson (2001)’s work 

suggest that the likelihood of detecting a PDO signal may be higher in latewood growth 

compared to earlywood, as latewood develops during the late summer months coinciding 

with the period in which these associations were identified , in trees at a nearby location 

and elevation range. My stationarity analysis suggests the influence of PDO, as climate-

growth relationships change in strength in the ca. 1940s and in the ca. 1970s, decades 

when PDO changed signs across the Pacific Ocean basin (Figures 3.4, 4.1, A.20.). 
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Figure 4.1. A time series plot extracted from National Oceanic and Atmospheric 

Association (NOAA, 2023) representing the natural variability in North Pacific SST over 
the past century through Pacific Decadal Oscillation (PDO) index values. The PDO index 
value is measured in standard deviation units from the long-term mean of sea surface 

temperature (SST) in the North Pacific Ocean. The x-axis represents the years, starting 
from January 1854 and extending to present day, while the y-axis represents the PDO 

index value. The plotted time series illustrates a fluctuating pattern of positive and 
negative PDO phases over time, with some periods lasting for several decades. The 
positive (red) PDO phases are characterized by warmer-than-average SST in the North 

Pacific, while the negative (blue) PDO phases are characterized by cooler-than-average 
SST, e.g., the most recent PDO phase from approximately April 2018 to present day is 

highlighted in blue indicating the PDO index value was mostly negative, and SSTs were 
cooler-than-average in the North Pacific. 

 

4.2 Comparison with Existing Literature  

Results from this study indicate a time lag between groundwater recharge and 

discharge at Clear Lake ranging from 5- to 15-years, consistent with Grant et al. (2004)’s 

findings of young groundwater transit times ranging from 5- to 10-years for the Great 

Spring and Jefferson et al. (2006) findings of 12.9- to 26- (±1) years, depending on the 

method used. Contrarily, these results conflict with transit times found in 2009 by 

Deligne (unpublished) of 30 to 31 years. Nonetheless, the t-6 lag was found to be 
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statistically significant in Deligne’s model. The discrepancy between resulting ranges for 

groundwater transit times could be explained by Jefferson et al. (2006) use of gamma and 

simple exponential distributions to track groundwater transit times in a study area that has 

complex hydrogeology. These methods are meant to estimate transit times through 

porous medium, such as the High Cascades, but may yield unreliable results if there are 

zones within the aquifer of interconnected fractures with considerable flow or with 

stagnant water, characteristics that were unknown at the time of the study (Mazor and 

Nativ, 1992; Maloszewski et al., 2004 Jefferson et al., 2006). Additionally, Grant et al. 

(2004) and Jefferson et al. (2006) studies lacked replication (i.e., they only collected 

water in 1-2 years), which can be problematic as regional snowpack varies naturally 

internally from influences of climate variability. In contrast, this novel 

dendrohydrological approach, which captures multi-century variability in growth 

responses to climate, may be a more robust method in fine tuning a groundwater transit 

time range. 

Furthermore, the study performed by Deligne (unpublished) suggested transit 

times of 30 to 31 years, yet had a relatively small sample size (i.e., only 15 paired 

increment tree cores per site), only evaluated ~200 years, and did not control for key 

geological differences between the High and Western Cascades (Ratcliff et al., 2018), all 

of which this thesis corrected for. For example, for this study, the period of analysis was 

doubled from 200 to 400 years using reliable and robust total ring width, early-, and late-

wood chronologies that were produced from 30 paired increment cores per site (i.e., 

increased sample size). Additionally, previous studies have determined that recharge for 
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the Great Spring likely originates in the Sand Mountain’s young lava outcrops, east of 

Clear Lake in the High Cascades, where the control site was located for this study 

(Jefferson et al., 2006; Grant et al., 2004). This accounted for previous findings which 

emphasized that the young mafic outcrops west of the High Cascades play a foundational 

role in dictating groundwater flow patterns (Jefferson et al., 2006).  

4.3  Water Management and Future Trends 

According to projections made by Leung et al. (2004), Oregon’s Cascade 

snowpacks are expected to decrease to less than half of present-day size by 2050. This 

could result in significant water shortages during the summer’s low-flow period as 

indicated by Jefferson et al. (2008). Over the last six decades, winters have become 

warmer, and snow has melted earlier, causing alterations in the hydrograph (Tague and 

Grant, 2009). As a result, summer recessions are persisting 17 days longer, August 

discharges have decreased by 15%, and autumn minimum discharges have decreased by 

11% (Jefferson et al., 2008, Tague et al., 2009). Future climate projections suggest this 

trend will remain for the next 50 to 100 years. Rivers that are dominated by groundwater 

are more susceptible to changes in the amount of snowmelt and the timing compared to 

those dominated by runoff due to their slow recession (Jefferson et al., 2008). 

When compared to quicker draining watersheds with identical timing of peak 

snowmelt, the McKenzie basin demonstrates a 4-fold reduction in summer streamflow. 

According to Tague and Grant (2009), the McKenzie River is particularly sensitive to 

alterations in the amount and timing of snowmelt due to its low drainage efficiency. A 

1.5°C warming is expected to result in snowmelt occurring earlier and reduced peaks of 
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snow accumulation, with the McKenzie basin having the highest changes in volume of 

melt compared to other rivers in the region (Tague and Grant, 2009). According to 

Jefferson et al. (2008), a previous study found that the McKenzie River’s August 

discharge would decrease from current mean value by 23% if air temperatures increased 

by 2.8 °C. For perspective, the August flow at the McKenzie River at Clear Lake makes 

up 10% of the uncontrolled flow at the water intake, serving a population of more than 

175,000 people in Eugene, Oregon (U.S. Census Bureau, 2021; Tague and Grant, 2009). 

As Milly et al. (2008) suggest, this challenges the idea of stationarity that has been the 

cornerstone of water management for many years (i.e., water policies in the west were 

written during the wettest decades on record in the 1910-1920s; Pisani, 2022). However, 

according to Heeter et al. (2023), if all obligations are fulfilled in a timely manner, there 

is a chance to achieve the long-term goal of the Paris Agreement and limit global 

warming to below 2.0°C and to pursue efforts to cap warming at 1.5°C above pre-

Industrial levels.  

It is widely acknowledged that climate change has global impacts. However, 

Leibowitz et al. (2014) suggest that the adaptation measures taken to manage natural 

resources in response to climate change should be primarily carried out at the local level. 

This study provides key results that are regionally relevant as disentangling groundwater 

dynamics at Clear Lake allows us to better understand a water supply that is critical for 

municipal drinking water, agriculture, and sustaining aquatic and wildlife habitats 

particularly in the warm season when water scarcity and demand are coincidently high. 

Because climate change is expected to have significant impacts on the McKenzie basin, it 

is essential to implement effective water management practices that guarantee sustainable 
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water usage. Grant et al. (2004) explains that to preserve the high-water quality and 

quantity of the McKenzie River, it is necessary to consider three different environments: 

1) the extensive area upstream from the river, which remains poorly understood but 

contributes to the water flow in the springs; 2) the springs; and 3) the channel and 

riparian zones adjacent to the river.  

Critical water management practices should be to implement water conservation 

measures, improve water quality, and protect riparian areas. A transit time ranging from 

5- to 15-years indicates the system is consistently being recharged, and likely in balance 

with the annual amount that is discharged at the springs. Grant et al. (2004) proposed that 

spring water may be vulnerable to contaminants from atmospheric deposition or chemical 

spills in the upper recharge zones that could impact the water and persist for years after. 

Furthermore, projected changes in the quantity and form of precipitation in Oregon’s 

western Cascades may be buffered by groundwater influx in spring-fed river systems 

compared to neighboring run-off dominated rivers. Nevertheless, implementing water 

conservation measures can help reduce water demand despite a growing population, 

while ensuring sustainable use of the McKenzie River’s water resources by promoting 

water-efficient practices. By implementing this study’s findings of a 5- to 15-year 

groundwater transit time, we can proactively devise strategies to mitigate the impact of 

low flow periods by increasing water storage during high flow periods. Utilizing such a 

forward-thinking approach can advance the overall resilience of water resource 

management practices in the face of a changing climate. An example of how this can be 

achieved is through the construction of new reservoirs or enhancing existing ones (e.g., 

Barnett et al. 2005). The 2022 and 2023 winters have resulted in deep snowpack, and as 
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this study suggests, should result in increased discharge in spring and summer 2027 to 

2037, with the average pulse occurring in 2028 for managers to store.  

Moreover, Leibowitz et al. (2014) reported that the coupling of summer low flows 

and maximum air temperatures in the western United States under projected 

anthropogenic warming may increase stress in aquatic life such as the salmonoid and bull 

trout population. This stress can be compounded with various low flow impacts such as 

reduced space, increased competition, a decrease of macroinvertebrate prey and other 

food sources, and a higher likelihood of parasite and disease; all of which can have 

adverse effects on growth and survival of river salmonoids and bull trout (Leibowitz et 

al., 2014). Grant et al. (2004) also noted that river temperature is a vital characteristic for 

the habitat of bull trout. However, it has been found that spring-fed rivers, specifically 

those with high-permeability aquifers, tend to buffer climate change impacts to river 

temperatures (Grant et al., 2004; Leibowitz et al., 2014). Nonetheless, this study’s 

findings of groundwater transit times of 5- to 15-years can provide water managers the 

tools for proactive and strategic practices that allow for preservation of the ecological 

niches of these species by being able to anticipate periods of reduced flow. Jefferson and 

colleagues (2008) also reported a relationship between low flow and riparian vegetation 

mortality caused by drought stress. According to regional climate projections, these 

stressors will likely be exacerbated over the next 100 years by hotter and drier summers 

in the PNW (Jefferson et al., 2008). Riparian areas are critical for maintaining river 

ecosystem health and protecting water quality. Thus, conserving and restoring riparian 

areas can help reduce erosion and improve water quality while providing a vital habitat 

for fish and wildlife, e.g., restoration projects planned ahead of time of increased 
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discharge (2028-2029), so that planting mortality due to drought is reduced. Overall, 

applying effective water management practices for the McKenzie basin will necessitate 

the cooperation of both federal and local agencies, an assessment of the impact of human 

activity at the upstream recharge areas that influence the quantity and quality of water, 

and an analysis of how the McKenzie River behaves in the context of climate variability 

and change (Grant et al., 2004).  

4.4 Future Work and Implications 

This thesis research used a novel tree-ring-based approach to better define the 

groundwater transit time of the waters emanating into Clear Lake from the Great Spring. 

This approach can be utilized in alike basins with predominantly spring-fed rivers, such 

as the headwaters of the Clackamas River, a tributary of the Willamette River, under the 

assumption that watersheds which share similar climate and physical characteristics are 

likely to have similar hydrologic characteristics and responses. Additionally, this work 

explored the relationships between climate and tree-growth at Clear Lake to inform on 

groundwater transit time. Taking this information in tandem, findings suggest the 

latewood chronology is likely the best predictor of changes in lake levels and/or 

streamflow. Thus, utilization of latewood may prove to be crucial to advance knowledge 

on Douglas-fir species-specific sensitivity to changes in soil moisture in forests west of 

the Oregon’s Cascades in response to drought-induced decline and mortality events (e.g., 

Eilmann et al., 2012; Keen et al., 2022). Lastly, groundwater transit time results used in 

tandem with climate interactions with the McKenzie River can inform climate forecasts 

used to predict water quality and availability for the McKenzie River, which serves as 

Eugene, Oregon’s potable drinking water supply (McCarthy and Alvarez, 2014). 
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4.5 Conclusion 

The McKenzie River is a critical water source for Oregon’s most densely 

populated and water-intensive regions, providing water for agriculture, aquatic 

ecosystems, and recreation. This spring-fed river also serves as a dependable source of 

municipal drinking water for over 175,000 people residing in the Eugene area, effectively 

meeting their high water demands even throughout the dry summer months. Compared to 

runoff-dominated watersheds where subsurface storage is depleted every summer, 

groundwater-dominated watersheds discharge is sustained by aquifer storage and slow 

summer recessions even when the seasonal or annual water balance is negative (Jefferson 

et al., 2008).  

Considerate interest should be given to our spring-fed rivers given that 

temperatures are projected to continue to increase in the PNW over the next century and 

will be coupled with decreased snowpack, earlier snowmelt timing, longer recessions, 

and decreased discharge. These phenomena challenge the idea of stationarity which has 

been foundational for water management practices for several years.  

Using a novel dendrohydrological approach I was able to quantify groundwater 

transit times ranging from 5- to 15-years for the McKenzie River at its headwaters, Clear 

Lake, Oregon. These lag times are found to be consistent with other reports (Grant et al., 

2004; Jefferson et al., 2006). This approach can be utilized in alike basins with 

predominantly spring-fed rivers, such as the headwaters of the Clackamas River. In 

addition to groundwater transit time, this research examined climate-growth relationships 

at two sites in the High Cascades. Results indicate the Douglas-fir stand growing east of 

Clear Lake in the lava fields (control) prefer cool, wet summers and mild winters. The 
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Douglas-fir stand growing around the lake’s perimeter (waterfront) displayed a similar 

relationship with precipitation and summer temperature, except warm spring air 

temperatures seems to trigger early onset of the growing season in these trees while the 

control tree-growth appeared to be limited by this. Additionally, the latewood chronology 

appeared to be a promising groundwater proxy. Taken together, this thesis research 

improves our understanding of how groundwater can help sustain periods of low flow 

under a warming climate for the McKenzie River, Oregon, while also emphasizing the 

importance of future research in spring-fed rivers. 
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Appendix - Reconstructing Groundwater Transit Time from Tree -Rings 

 
 

Figure A.1. The top panel (A) displays the detrended control total ring width (TRW) 

standard chronology with years along the x-axis and unitless ring width indices (RWI) 
along the y-axis. The grey shaded box illustrates the sub-sample strength (SSS) cut-off 

point where the blue line falls below the dashed blue line 0.85 SSS threshold. The bottom 
panel (B) displays the detrended SSS-truncated chronology. 
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Figure A.2. The top panel (A) displays the detrended waterfront total ring width (TRW) 
standard chronology with years along the x-axis and unitless ring width indices (RWI) 

along the y-axis. The grey shaded box illustrates the sub-sample strength (SSS) cut-off 
point where the blue line falls below the dashed blue line 0.85 SSS threshold. The bottom 

panel (B) displays the detrended SSS-truncated chronology. 
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Table A.1. Descriptive statistics for monthly hydroclimate parameters including mean air 
temperature and total precipitation from PRISM, gridded at the 4k2 spatial resolution 

(PRISM Climate Group, 2014), total SWE from TerraClimate (Abatzoglou, 2018), and 
mean gauge height from USGS (USGS, 2014). 

Variables Min. 1st Qu. Median Mean 3rd Qu. Max. 

SWE (mm) 0.00 0.00 0.716 111.55 163.72 1097.76 

Air 

Temperature 

(℃) 
-7.70 1.80 6.90 7.23 12.70 19.60 

Precipitation 

(mm) 
0.01 58.47 140.87 176.97 259.97 885.40 

Gauge (in) 0.01 1.750 2.25 2.30 2.86 4.58 
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Figure A.3. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width waterfront residual chronology and 
monthly total precipitation (top panels) and monthly average air temperature (bottom 

panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 
to August of the previous growth year, and the last letter to each panel’s right (S) refers to 
September of the concurrent growth year. Dark bars represent significant correlations (p 

< 0.05) for 1- month (A), 2- month (B), and 6- months (C) with total precipitation 
(primary correlation) and mean air temperature (secondary/partial-correlation). The 2- 

and 6-months aggregated values reflect the last month of the aggregation; e.g., F in the 2-
month top panel equals the growth response to the total precipitation during January and 
February of the growing year. Monthly climate parameters, gridded at the 4k2 spatial 

resolution, were obtained from PRISM (PRISM Climate Group, 2014) and correlation 
coefficients are for the 1895-2021 period. 
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Figure A.4. Monthly and seasonalized correlation function coefficients between the 
Douglas-fir (Pseudotsuga menziesii) total ring width waterfront residual chronology and 
mean monthly air temperature (top panels) and monthly total precipitation (bottom 

panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 
to August of the previous growth year, and the last letter to each panel’s right (S) refers to 

September of the concurrent growth year. Dark bars represent significant correlations (p 
< 0.05) for 1- month (A), 2- month (B), and 6- months (C) with mean air temperature 
(primary correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-

months aggregated values reflect the last month of the aggregation. Monthly climate 
parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM 

Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.5. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width chronology at the waterfront and 

mean air temperature (top panels) and total monthly precipitation (bottom panels). On the 

x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 

the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with monthly mean air temperature (primary 

correlation) and monthly total precipitation (secondary/partial-correlation). The 2- and 6-

months aggregated values reflect the last month of the aggregation. Monthly climate 

parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM 

Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.6. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) earlywood (EW) waterfront chronology and mean 
monthly air temperature (top panels) and monthly total precipitation (bottom panels). On 
the x-axis (Ending months), the first letter to the left of each panel (A) refers to August of 

the previous growth year, and the last letter to each panel’s right (S) refers to September 
of the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 

1- month (A), 2- month (B), and 6- months (C) with mean air temperature (primary 
correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-months 
aggregated values reflect the last month of the aggregation. Monthly climate parameters, 

gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 
2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.7. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) latewood (LW) chronology at the waterfront and 
monthly mean air temperature (top panels) and monthly total precipitation (bottom 
panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 

to August of the previous growth year, and the last letter to each panel’s right (S) refers to 
September of the concurrent growth year. Dark bars represent significant correlations (p 

< 0.05) for 1- month (A), 2- month (B), and 6- months (C) with mean air temperature 
(primary correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-
months aggregated values reflect the last month of the aggregation. Monthly climate 

parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM 
Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.8. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) earlywood (EW) chronology at the waterfront and 

monthly total precipitation (top panels) and monthly mean air temperature (bottom 

panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 

to August of the previous growth year, and the last letter to each panel’s right (S) refers 

to September of the concurrent growth year. Dark bars represent significant correlations 

(p < 0.05) for 1- month (A), 2- month (B), and 6- months (C) with total precipitation 

(primary correlation) and mean air temperature (secondary/partial-correlation). The 2- 

and 6-months aggregated values reflect the last month of the aggregation. Monthly 

climate parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM 

(PRISM Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.9. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) latewood (LW) chronology at the waterfront and 

monthly total precipitation (top panels) and monthly mean air temperature (bottom 

panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 

to August of the previous growth year, and the last letter to each panel’s right (S) refers 

to September of the concurrent growth year. Dark bars represent significant correlations 

(p < 0.05) for 1- month (A), 2- month (B), and 6- months (C) with total precipitation 

(primary correlation) and mean air temperature (secondary/partial-correlation). The 2- 

and 6-months aggregated values reflect the last month of the aggregation. Monthly 

climate parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM 

(PRISM Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 

 

 



 

 

80 

 

Figure A.10. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width control residual chronology and 

monthly total precipitation (top panels) and monthly mean air temperature (bottom 

panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 

to August of the previous growth year, and the last letter to each panel’s right (S) refers 

to September of the concurrent growth year. Dark bars represent significant correlations 

(p < 0.05) for 1- month (A), 2- month (B), and 6- months (C) with total precipitation 

(primary correlation) and mean air temperature (secondary/partial-correlation). The 2- 

and 6-months aggregated values reflect the last month of the aggregation. Monthly 

climate parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM 

(PRISM Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.11. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width control residual chronology and 

monthly mean air temperature (top panels) and monthly total precipitation (bottom 

panels). On the x-axis (Ending months), the first letter to the left of each panel (A) refers 

to August of the previous growth year, and the last letter to each panel’s right (S) refers 

to September of the concurrent growth year. Dark bars represent significant correlations 

(p < 0.05) for 1- month (A), 2- month (B), and 6- months (C) with mean air temperature 

(primary correlation) and total precipitation (secondary/partial-correlation). The 2- and 

6-months aggregated values reflect the last month of the aggregation. Monthly climate 

parameters, gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM 

Climate Group, 2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.12. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width control chronology and monthly 
mean air temperature (top panels) and monthly total precipitation (bottom panels). On the 
x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 
the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with mean air temperature (primary 
correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-months 
aggregated values reflect the last month of the aggregation. Monthly climate parameters, 

gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 
2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.13. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) earlywood (EW) control chronology and monthly 
mean air temperature (top panels) and monthly total precipitation (bottom panels). On the 
x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 
the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with mean air temperature (primary 
correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-months 
aggregated values reflect the last month of the aggregation. Monthly climate parameters, 

gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 
2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.14. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) latewood (LW) control chronology and monthly 
mean air temperature (top panels) and monthly total precipitation (bottom panels). On the 
x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 
the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with mean air temperature (primary 
correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-months 
aggregated values reflect the last month of the aggregation. Monthly climate parameters, 

gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 
2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.15. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) earlywood (EW) control chronology and monthly 
total precipitation (top panels) and monthly mean air temperature (bottom panels). On the 
x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 
the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with total precipitation (primary correlation) 
and mean air temperature (secondary/partial-correlation). The 2- and 6-months 
aggregated values reflect the last month of the aggregation. Monthly climate parameters, 

gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 
2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.16. Monthly and seasonalized correlation function coefficients between the 
Douglas-fir (Pseudotsuga menziesii) latewood (LW) control chronology and monthly 
total precipitation (top panels) and monthly mean air temperature (bottom panels). On the 

x-axis (Ending months), the first letter to the left of each panel (A) refers to August of the 
previous growth year, and the last letter to each panel’s right (S) refers to September of 

the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 
month (A), 2- month (B), and 6- months (C) with total precipitation (primary correlation) 
and mean air temperature (secondary/partial-correlation). The 2- and 6-months 

aggregated values reflect the last month of the aggregation. Monthly climate parameters, 
gridded at the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 

2014) and correlation coefficients are for the 1895-2021 period. 
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Figure A.17. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) earlywood (EW) waterfront chronology and 

monthly gauge height (top panels) and monthly total precipitation (bottom panels). On 

the x-axis (Ending months), the first letter to the left of each panel (A) refers to August 

of the previous growth year, and the last letter to each panel’s right (S) refers to 

September of the concurrent growth year. Dark bars represent significant correlations (p 

< 0.05) for 1- month (A), 2- month (B), and 6- months (C) with gauge height (primary 

correlation) and total precipitation (secondary/partial-correlation). The 2- and 6-months 

aggregated values reflect the last month of the aggregation. Monthly total precipitation, 

gridded at the 4k2 spatial resolution, was obtained from PRISM (PRISM Climate Group, 

2014), and monthly average gauge height of the McKenzie River at the outlet of Clear 

Lake was extracted from USGS (USGS, 2021). Correlation coefficients are for the 

1959-2021 period. 
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Figure A.18. Monthly and seasonalized correlation function coefficients between the 

Douglas-fir (Pseudotsuga menziesii) total ring width waterfront chronology and monthly 

gauge height (top panels) and monthly total precipitation (bottom panels). On the x-axis 

(Ending months), the first letter to the left of each panel (A) refers to August of the 

previous growth year, and the last letter to each panel’s right (S) refers to September of 

the concurrent growth year. Dark bars represent significant correlations (p < 0.05) for 1- 

month (A), 2- month (B), and 6- months (C) with gauge height (primary correlation) and 

total precipitation (secondary/partial-correlation). The 2- and 6-months aggregated 

values reflect the last month of the aggregation. Monthly total precipitation, gridded at 

the 4k2 spatial resolution, was obtained from PRISM (PRISM Climate Group, 2014), 

and monthly average gauge height of the McKenzie River at the outlet of Clear Lake 

was extracted from USGS (USGS, 2021). Correlation coefficients are for the 1959-2021 

period. 
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Figure A.19. Climate-growth relationships performed repeatedly for a consecutive 30-

year time window with a 5-year overlap by pairing the total ring width control 

chronology with monthly mean air temperature (A) and monthly total precipitation (B). 

The x-axis displays the analysis period from 1895 to 2021. The y-axis presents calendar 

months, beginning in previous year September and ending in current growth year June. 

The colors displayed in the legend illustrate the direction of the relationship, with blue 

being a positive relationship and red signifying a negative relationship. Significant (p < 

0.05) correlations are marked with an asterisk. Monthly climate parameters, gridded at 

the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 2014). 

 

 



 

 

90 

 

Figure A.20. Climate-growth relationships performed repeatedly for a consecutive 30-

year time window with a 5-year overlap by pairing the total ring width waterfront 

chronology with monthly mean air temperature (A) and monthly total precipitation (B). 

The x-axis displays the analysis period from 1895 to 2021. The y-axis presents calendar 

months, beginning in previous year September and ending in current growth year June. 

The colors displayed in the legend illustrate the direction of the relationship, with blue 

being a positive relationship and red signifying a negative relationship. Significant (p < 

0.05) correlations are marked with an asterisk. Monthly climate parameters, gridded at 

the 4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 2014). 

 

 

 Table A.2. Summary of significant 2-month (bimonthly) and 6-month (seasonalized) 

climate-growth relationships with each of the six chronologies paired with monthly total 

precipitation, mean air temperature, and gage height. Monthly climate data, gridded at 

4k2 spatial resolution, were obtained from PRISM (PRISM Climate Group, 2014) for a 

period of 1895-2021 and monthly average gauge height was extracted from USGS 

(USGS, 2021) for a period of 1959-2021. Significant positive relationships are displayed 

in the color blue and significant negative relationships are displayed in the color red.  
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Precip 
Jul-Sep 

Mar-Apr 

May-Jul 

Aug-

Sep 

Mar-Sep 

Feb-Apr 

May-

Aug  
Jul-Sep May-Jul 

Mar-Nov 

Mar-Apr 

May-

Aug 

Temp  
Jul-Sep 

Nov-Jan 
Jun-Jul 

May-Oct 

Oct-Apr 
-- Sep-Oct -- May-Oct -- 

Gage -- -- -- -- -- -- -- -- 

Earlywood 

2-month 6-month 2-month 6-month 

Previous Current Previous Current Previous Current Previous Current 

Precip Jul-Aug  

May-Jul 

Aug-

Sep 

Mar-Oct 

Mar-Apr 

Apr-

Aug  
Jul-Sep  

May-

Jun  
Mar-Aug  --  

Temp  
Aug-Sep 

Oct-Feb 
--  

Mar-Oct 

Sep- Apr 

Apr-

May  
Sep-Oct  --  Mar-Oct  --  

Gage -- -- -- -- -- -- -- -- 

Latewood 

2-month 6-month 2-month 6-month 

Previous Current Previous Current Previous Current Previous Current 

Precip 

Jul-Sep 

Oct-Nov 

Feb-Apr 

May-Jul 

Aug-

Sep  

Apr-Dec 

Oct-Apr  

Apr-

Aug  

Jul-Nov May-Jul Apr-Dec Apr-Sep 

Temp Aug-Oct Jun-Jul Mar-Oct -- -- -- -- -- 

Gage Feb-Mar Apr- Nov-Apr May- -- -- -- -- 
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May Aug 

 

 

Table A.3. Multiple regression summary statistic results from the first set of analyses 

(predicting tree-growth at the waterfront site) using the total ring width chronologies 

with the best model denoted with an asterisk. 

# of 

Backward 

Lagged Years 

R2 Adj.R2 AIC BIC 

4 0.2348 0.2235 -1017.3952 -990.4904 

5 * 0.2491 0.2380 -1023.9105 -997.0057 

6 * 0.2520 0.2409 -1025.2221 -998.3173 

7 0.2468 0.2357 -1022.8743 -995.9695 

8 0.2391 0.2278 -1019.3256 -992.4208 

9 0.2439 0.2327 -1021.5231 -994.6183 

10 0.2354 0.2241 -1017.6538 -990.7490 

11 0.2329 0.2216 -1016.5491 -989.6443 

12 0.2329 0.2216 -1016.5327 -989.6279 

13 0.2329 0.2216 -1016.5613 -989.6565 

14 0.2347 0.2234 -1017.3429 -990.4381 

15 0.2332 0.2219 -1016.6994 -989.7946 

16 0.2343 0.2230 -1017.1781 -990.2733 

17 0.2341 0.2228 -1017.0753 -990.1705 

18 0.2339 0.2226 -1017.0053 -990.1005 

19 0.2348 0.2235 -1017.3952 -990.4904 

20 0.2359 0.2247 -1017.9178 -991.0130 

21 0.2328 0.2215 -1016.4959 -989.5911 

22 0.2357 0.2245 -1017.8238 -990.9190 

23 0.2339 0.2226 -1016.9746 -990.0698 

24 0.2380 0.2268 -1018.8591 -991.9543 

25 0.2329 0.2216 -1016.5384 -989.6336 

26 0.2359 0.2246 -1017.8886 -990.9838 

27 0.2430 0.2318 -1021.1008 -994.1960 

28 0.2381 0.2269 -1018.8886 -991.9838 

29 0.2326 0.2213 -1016.4257 -989.5209 

30 0.2337 0.2224 -1016.8846 -989.9798 

31 0.2326 0.2213 -1016.4428 -989.5209 
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Figure A.21. Visual diagnostic check of residuals of reduced and final model of the first 

set of regression analyses for the total ring width model t-5. In the top left corner is a plot 

displaying non-linearity (A) with residuals on the y-axis and the fitted values (estimated 

responses) on the x-axis. In the top right is a Q-Q plot illustrating normality (B) with the 

standardized residuals plotted on the y-axis and theoretical quantiles on the x-axis. In the 

bottom left is a plot showing equal variance (C) with the square root of the absolute value 

of standardized residuals on the y-axis and the fitted values (estimated responses) on the 

x-axis. The bottom right corner displays a plot illustrating that there are no influential 

32 0.2339 0.2226 -1016.9736 -990.0688 

33 0.2328 0.2215 -1016.5164 -989.6116 

34 0.2363 0.2251 -1018.0983 -991.1935 

35 0.2330 0.2216 -1016.5667 -989.6619 

36 0.2329 0.2216 -1016.5279 -989.6230 

37 0.2383 0.2271 -1018.9781 -992.0733 

38 0.2343 0.2231 -1017.1936 -990.2888 

39 0.2327 0.2214 -1016.4429 -989.5381 

40 0.2360 0.2248 -1017.9561 -991.0513 
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outliers via a Cook’s Distance test (D) with the standardized residual of each point on the 

y-axis and the leverage of each point on the x-axis. 

 

Figure A.22. Partial Autocorrelation Function (PACF) of the residuals from the top best 

model t-5 from the first set of regression analyses using the total ring width chronologies 

to predict growth in the waterfront trees. The x-axis represents lagged values ranging 

from 0-25 and the y-axis displays correlation coefficient values. The direction of each 

line represents the direction of the relationship, with significant relationships extending 

beyond the dashed blue 95% confidence interval line. Although lag 14 displays a 

significant relationship, a Durbin-Watson test ruled out leftover significant 

autocorrelation in the model’s residuals. 



 

 

95 

 

Figure A.23. Visual diagnostic check of residuals of reduced and final model of the first 

set of regression analyses for the total ring width model t-6. In the top left corner is a plot 

displaying non-linearity (A) with residuals on the y-axis and the fitted values (estimated 

responses) on the x-axis. In the top right is a Q-Q plot illustrating normality (B) with the 

standardized residuals plotted on the y-axis and theoretical quantiles on the x-axis. In the 

bottom left is a plot showing equal variance (C) with the square root of the absolute value 

of standardized residuals on the y-axis and the fitted values (estimated responses) on the 

x-axis. The bottom right corner displays a plot illustrating that there are no influential 

outliers via a Cook’s Distance test (D) with the standardized residual of each point on the 

y-axis and the leverage of each point on the x-axis. 
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Figure A.24. Partial Autocorrelation Function (PACF) of the residuals from the top best 

model t-6 from the first set of regression analyses using the total ring width chronologies 

to predict growth in the waterfront trees. The x-axis represents lagged values ranging 

from 0-25 and the y-axis displays correlation coefficient values. The direction of each 

line represents the direction of the relationship, with significant relationships extending 

beyond the dashed blue 95% confidence interval line. Although lag 14 displays a 

significant relationship, a Durbin-Watson test ruled out leftover significant 

autocorrelation in the model’s residuals. 

 

 

 

Table A.4. Multiple regression summary statistic results from the first set of analyses 

(predicting tree-growth at the waterfront site) using earlywood chronologies with the best 

model denoted with an asterisk. 

# of 

Backward 

Lagged 

Years 

R2 Adj.R2 AIC BIC 

4 0.2198 0.2106 -466.8651 -443.8038 

5 * 0.2310 0.2220 -471.8762 -448.8150 

6 * 0.2353 0.2263 -473.7895 -450.7282 
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7 0.2289 0.2198 -470.9176 -447.8563 

8 0.2243 0.2152 -468.8876 -445.8264 

9 0.2281 0.2190 -470.5614 -447.5002 

10 0.2188 0.2096 -466.4540 -443.3927 

11 0.2195 0.2080 -464.7458 -437.8410 

12 0.2183 0.2091 -466.2089 -443.1476 

13 0.2184 0.2092 -466.2494 -443.1881 

14 0.2203 0.2111 -467.1125 -444.0512 

15 0.2184 0.2092 -466.2523 -443.1911 

16 0.2198 0.2106 -466.8651 -443.8038 

17 0.2202 0.2110 -467.0661 -444.0049 

18 0.2220 0.2129 -467.8727 -444.8114 

19 0.2184 0.2092 -466.2541 -443.1928 

20 0.2210 0.2118 -467.3995 -444.3382 

21 0.2184 0.2092 -466.2440 -443.1827 

22 0.2202 0.2087 -465.0522 -438.1474 

23 0.2184 0.2092 -466.2823 -443.2210 

24 0.2212 0.2120 -467.4965 -444.4352 

25 0.2186 0.2094 -466.3598 -443.2985 

26 0.2227 0.2136 -468.1830 -445.1218 

27 0.2256 0.2165 -469.4729 -446.4116 

28 0.2222 0.2131 -467.9523 -444.8910 

29 0.2184 0.2092 -466.2632 -443.2020 

30 0.2210 0.2118 -467.3994 -444.3381 

31 0.2188 0.2096 -466.4279 -443.3667 

32 0.2185 0.2093 -466.3226 -443.2613 

33 0.2185 0.2093 -466.2908 -443.2295 

34 0.2214 0.2123 -467.6031 -444.5418 

35 0.2183 0.2091 -466.2079 -443.1467 

36 0.2204 0.2112 -467.1427 -444.0815 

37 0.2203 0.2112 -467.1145 -444.0532 

38 0.2222 0.2130 -467.9247 -444.8635 

39 0.2183 0.2091 -466.2067 -443.1455 

40 0.2203 0.2112 -467.1260 -444.0647 
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Table A.5. Multiple regression summary statistic results from the first set of analyses 

(predicting tree-growth at the waterfront site) using the latewood chronologies with the 

best model denoted with an asterisk. 

# of 

Backward 

Lagged Years 

R2 Adj.R2 AIC BIC 

4 0.1458 0.1381 -779.7832 -760.7275 

5 0.1404 0.1326 -777.6786 -758.6229 

6 0.1483 0.1405 -780.7293 -761.6736 

7 0.1387 0.1309 -777.0059 -757.9502 

8 0.1446 0.1368 -779.3068 -760.2511 

9 0.1383 0.1305 -776.8511 -757.7954 

10 0.1373 0.1295 -776.4693 -757.4136 

11 0.1409 0.1331 -777.8532 -758.7974 

12 0.1375 0.1297 -776.5496 -757.4939 

13 0.1422 0.1344 -778.3449 -759.2892 

14 0.1433 0.1355 -778.8034 -759.7477 

15 * 0.1570 0.1493 -784.1689 -765.1132 

16 0.1458 0.1381 -779.7832 -760.7275 

17 0.1383 0.1305 -776.8480 -757.7923 

18 0.1375 0.1297 -776.5538 -757.4981 

19 0.1379 0.1301 -776.6923 -757.6366 

20 0.1373 0.1295 -776.4704 -757.4147 

21 0.1412 0.1334 -777.9783 -758.9226 

22 0.1403 0.1325 -777.6416 -758.5859 

23 0.1443 0.1365 -779.1828 -760.1271 

24 0.1374 0.1295 -776.4821 -757.4264 

25 0.1379 0.1301 -776.6892 -757.6335 

26 0.1397 0.1319 -777.3894 -758.3337 

27 0.1403 0.1325 -777.6413 -758.5856 

28 0.1374 0.1295 -776.4902 -757.4345 

29 0.1390 0.1312 -777.1363 -758.0806 

30 0.1374 0.1295 -776.4865 -757.4307 

31 0.1467 0.1390 -780.1237 -761.0680 

32 0.1401 0.1323 -777.5405 -758.4847 

33 0.1375 0.1296 -776.5227 -757.4670 

34 0.1385 0.1306 -776.9100 -757.8543 

35 0.1374 0.1295 -776.4838 -757.4281 

36 0.1421 0.1343 -778.3405 -759.2848 
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37 0.1411 0.1332 -777.9158 -758.8601 

38 0.1435 0.1357 -778.8687 -759.8130 

39 0.1410 0.1332 -777.8895 -758.8337 

40 0.1470 0.1393 -780.2535 -761.1978 

 

 

 

Table A.6. Multiple regression summary statistic results from the second set of analyses 
(predicting tree-growth at the waterfront site) using the total ring width chronologies with 

the best model denoted with an asterisk. 

# of 

Backward 

Lagged 

Years 

R2 Adj.R2 AIC BIC 

4 0.3968 0.3899 -506.5007 -483.2343 

5 0.3897 0.3828 -502.3495 -479.0831 

6 0.3839 0.3769 -498.9539 -475.6875 

7 0.3834 0.3764 -498.6441 -475.3777 

8 0.3845 0.3775 -499.2690 -476.0026 

9 0.3833 0.3763 -498.5787 -475.3123 

10 0.3827 0.3757 -498.2391 -474.9727 

11 0.3837 0.3767 -498.8435 -475.5771 

12 0.3893 0.3823 -502.0834 -478.8170 

13 0.3849 0.3779 -499.5098 -476.2433 

14 0.3826 0.3756 -498.2119 -474.9454 

15 0.3847 0.3777 -499.4251 -476.1587 

16 0.3829 0.3759 -498.3809 -475.1145 

17 0.3971 0.3902 -506.6651 -483.3987 

18 0.3943 0.3874 -505.0326 -481.7662 

19 * 0.4030 0.3962 -510.1860 -486.9196 

20 0.3915 0.3845 -503.3588 -480.0924 

21 0.3859 0.3789 -500.1084 -476.8420 

22 0.3827 0.3757 -498.2400 -474.9736 

23 0.3830 0.3760 -498.4511 -475.1846 

24 0.3827 0.3757 -498.2707 -475.0043 

25 0.3831 0.3760 -498.4601 -475.1937 

26 0.3846 0.3776 -499.3708 -476.1044 
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27 0.3835 0.3765 -498.7079 -475.4415 

28 0.3834 0.3764 -498.6567 -475.3903 

29 0.3835 0.3765 -498.7100 -475.4436 

30 0.3848 0.3778 -499.4464 -476.1800 

31 0.3905 0.3836 -502.7911 -479.5247 

32 0.3851 0.3781 -499.6222 -476.3558 

33 0.3851 0.3781 -499.6312 -476.3648 

34 0.3828 0.3757 -498.2851 -475.0186 

35 0.3830 0.3760 -498.4170 -475.1506 

36 0.3836 0.3766 -498.7833 -475.5169 

37 0.3832 0.3762 -498.5456 -475.2792 

38 0.3832 0.3762 -498.5449 -475.2785 

39 0.3881 0.3811 -501.3660 -478.0996 

40 0.3838 0.3768 -498.8660 -475.5996 

 

 
 

Table A.7. Multiple regression summary statistic results from the second set of analyses 
(predicting tree-growth at the waterfront site) using the earlywood chronologies with the 
best model denoted with an asterisk. 

# of 

Backward 

Lagged 

Years 

R2 Adj.R2 AIC BIC 

4 0.3934 0.3865 -502.9523 -479.6859 

5 0.3876 0.3824 -501.5921 -482.2035 

6 0.3838 0.3786 -499.3983 -480.0096 

7 0.3842 0.3790 -499.6302 -480.2415 

8 0.3841 0.3789 -499.5658 -480.1771 

9 0.3837 0.3785 -499.3333 -479.9446 

10 0.3837 0.3785 -499.3373 -479.9487 

11 0.3899 0.3845 -481.7986 -462.5520 

12 0.3884 0.3815 -500.0499 -476.7835 

13 0.3852 0.3782 -498.1875 -474.9211 

14 0.3845 0.3775 -497.7589 -474.4925 

15 0.3845 0.3775 -497.7677 -474.5012 

16 0.3844 0.3775 -497.7465 -474.4800 

17 * 0.3965 0.3897 -504.8157 -481.5492 

18 * 0.3942 0.3891 -505.4623 -486.0736 
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19 0.4010 0.3957 -488.1759 -468.9293 

20 0.3899 0.3847 -502.9034 -483.5147 

21 0.3837 0.3803 -501.3325 -485.8216 

22 0.3884 0.3830 -480.9523 -461.7057 

23 0.3838 0.3785 -499.3466 -479.9579 

24 0.3843 0.3791 -499.6856 -480.2969 

25 0.3839 0.3787 -499.4290 -480.0403 

26 0.3859 0.3789 -498.5854 -475.3190 

27 0.3843 0.3791 -499.6831 -480.2945 

28 0.3837 0.3785 -499.3337 -479.9450 

29 0.3884 0.3848 -482.9520 -467.5547 

30 0.3866 0.3814 -500.9773 -481.5887 

31 0.3859 0.3806 -500.5646 -481.1759 

32 0.3906 0.3854 -503.3379 -483.9493 

33 0.3881 0.3829 -501.8957 -482.5070 

34 0.3848 0.3796 -499.9562 -480.5676 

35 0.3844 0.3791 -499.6929 -480.3042 

36 0.3842 0.3790 -499.6088 -480.2201 

37 0.3843 0.3790 -499.6412 -480.2526 

38 0.3864 0.3811 -500.8579 -481.4692 

39 0.3864 0.3812 -500.8624 -481.4738 

40 0.3850 0.3797 -500.0499 -480.6612 

 
 
 

Table A.8. Multiple regression summary statistic results from the second set of analyses 
(predicting tree-growth at the waterfront site) using the latewood chronologies with the 

best model denoted with an asterisk. 

# of 

Backward 

Lagged 

Years 

R2 Adj.R2 AIC BIC 

4 * 0.2125 0.2056 -832.6756 -813.4290 

5 0.2039 0.1969 -828.9010 -809.6544 

6 0.1912 0.1842 -823.4244 -804.1778 

7 0.1911 0.1841 -823.3830 -804.1364 

8 0.1917 0.1846 -823.6167 -804.3701 

9 0.1912 0.1841 -823.3920 -804.1454 
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10 0.1853 0.1781 -820.8699 -801.6233 

11 0.1860 0.1789 -821.1759 -801.9293 

12 0.2019 0.1950 -828.0437 -808.7970 

13 0.1884 0.1813 -822.2052 -802.9586 

14 0.1939 0.1868 -824.5603 -805.3136 

15 0.1949 0.1878 -824.9903 -805.7437 

16 0.1854 0.1783 -820.9375 -801.6909 

17 0.1898 0.1827 -822.7909 -803.5442 

18 0.1918 0.1847 -823.6439 -804.3973 

19 0.2004 0.1934 -827.3860 -808.1394 

20 0.1888 0.1817 -822.3898 -803.1432 

21 0.1852 0.1805 -822.8419 -807.4446 

22 0.1862 0.1791 -821.2602 -802.0136 

23 0.1853 0.1782 -820.8794 -801.6328 

24 0.1854 0.1782 -820.9076 -801.6610 

25 0.1854 0.1783 -820.9160 -801.6694 

26 0.1866 0.1795 -821.4489 -802.2023 

27 0.1859 0.1787 -821.1193 -801.8727 

28 0.1891 0.1820 -822.5053 -803.2586 

29 0.1852 0.1781 -820.8534 -801.6068 

30 0.1854 0.1783 -820.9243 -801.6777 

31 0.1891 0.1820 -822.5132 -803.2666 

32 0.1892 0.1821 -822.5389 -803.2923 

33 0.1899 0.1828 -822.8448 -803.5981 

34 0.1853 0.1781 -820.8642 -801.6175 

35 0.1852 0.1781 -820.8436 -801.5969 

36 0.1896 0.1825 -822.7259 -803.4793 

37 0.1862 0.1791 -821.2548 -802.0082 

38 0.1852 0.1781 -820.8421 -801.5955 

39 0.1915 0.1844 -823.5364 -804.2898 

40 0.1858 0.1787 -821.0964 -801.8498 
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