
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

2000

Design and Evaluation of a Specialized Computer Design and Evaluation of a Specialized Computer

Architecture for Manipulating Binary Decision Architecture for Manipulating Binary Decision

Diagrams Diagrams

Robert K. Hatt
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hatt, Robert K., "Design and Evaluation of a Specialized Computer Architecture for Manipulating Binary
Decision Diagrams" (2000). Dissertations and Theses. Paper 6491.
https://doi.org/10.15760/etd.3627

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6491
https://doi.org/10.15760/etd.3627
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Robert K. Hatt for the Master of Science in Electrical Engi

neering were presented October 9, 2000, and accepted by the thesis committee and the

department.

COMMITTEE APPROVALS:

Michael Driscoll

Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:
' Dougl Hall, Chair
Department of Electrical Engineering

Sarah Mocas

ABSTRACT

An abstract of the thesis of Robert K. Hatt for the Master of Science in Electrical Engi

neering presented October 9, 2000.

Title: Design and Evaluation of a Specialized Computer Architecture for

Manipulating Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are an extremely important data structure

used in many logic design, synthesis and verification applications. Symbolic problem

representations make BDDs a feasible data structure for use on many problems that

have discrete representations. Efficient implementations of BOD algorithms on gen

eral purpose computers has made manipulating large binary decision diagrams possi

ble. Much research has gone into making BOD algorithms more efficient on general

purpose computers. Despite amazing increases in performance and capacity of such

computers over the last decade, they may not be the best way to solve large, special

ized problems. A computer architecture designed specifically to execute algorithms on

binary decision diagrams has been created here to evaluate the possible performance

improvements in BOD manipulation. This specialized computer will be described and

its implementation discussed with respect to the important aspects of efficient BDD

manipulations. This thesis will demonstrate that significant performance increases are

possible using a specialized computer architecture for manipulating binary decision

diagrams.

DESIGN AND EVALUATION OF

A SPECIALIZED COMPUTER ARCHITECTURE FOR

MANIPULATING BINARY DECISION DIAGRAMS

by

ROBERT K. HATT

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL ENGINEERING

Portland State University
2000

DEDICATION

This thesis is dedicated to my wife Carol McConnell for encouraging me to do

something I had only talked about for years, and for helping me with this opportunity

to pursue it to completion. Even more thanks to Carol for putting up with missed eve

nings and weekends while I was doing all of my school work. Also to my daughter

Maggie for being born in time to make my life more challenging and special than ever

before.

11

Table of Contents
IVList of Figures

List of Tables V

Chapter 1. Introduction 2
Chapter 2. Binary Decision Diagram Background 5

2.1 Introduction to ROBDDs 5
2.2 The importance of variable ordering. 10

2.3 Garbage Collection 12
Chapter 3. BDD Algorithm Implementation and Performance 14

3.1 Background 14

3.2 General Goals 17

3.3 Choosing a BDD Package 17

3.4 CUDD 18

3.5 CAL 18
3.6 BuDDy 19

3.7 Computing Environment 19

3.8 Performance Measures 20
Chapter 4. BDD Computer Macro Architecture 26

4.1 Introduction 26
4.2 Integrated BDD Processor 26

4.3 BDD Coprocessor 28

4.4 BDD Peripheral processor 29

4.5 The Software Architecture 30
4.6 Memory Subsystem 31

4.7 Architecture and Memory Issues 34
Chapter 5. BDD Micro Architecture and Hardware Models 35

5.1 Simulation and Modeling Environment 35

355.2 Processor Model

5.3 Memory Models 36
Chapter 6. Performance Evaluation 50

6.1 N Queens performance 50

6.2 Conclusions 62

111

6.3 Improvements and future work 63
References 66
Appendix A. Visual HDL Diagrams and VHDL Source Code 70

List of Figures in Appendix A 71
VHDL Source Code 87

iv

List of Figures
Figure 1. Shannon Expansion 5
Figure 2. Shannon Co-factors of a Boolean function 5
Figure 3. BDD for a single variable 7
Figure 4. Decision Tree for a function 8
Figure 5. Reduced Ordered BDD. 8
Figure 6. Schematic Representation of the function f =a*b + a*c 9
Figure 7. Netlist Representation of the function f =a*b + a*c. 9
Figure 8. BDD Variable Ordering 10
Figure 9. N Queens Profiles 21
Figure 10. BDD function execution time 24
Figure 11. Integrated BDD Execution Unit 27
Figure 12. BDD Coprocessor 29
Figure 13. BDD Peripheral Processor 30
Figure 14. Software Architecture 31
Figure 15. BDD Processor Functional Units 36
Figure 16. Node structure 38
Figure 17. Register File 39
Figure 18. MakeNode Pseudo-Code 41
Figure 19. MakeNode FSM 42
Figure 20. MakeNode Build FSM 43
Figure 21. Pseudo Code for Apply (recursive - depth first) 44
Figure 22. FSM for apply 46
Figure 23. Algorithm for N queens 51
Figure 24. Latency Effects 58
Figure 25. BDD Execution Time (SRAM) 60
Figure 26. Best BDD Execution Time 61
Figure 27. Estimated BDD Execution Time (DRAM Memory) 62

V

List of Tables
Table 1: Truth Table for F=a*b+a*c 8
Table 2: Nodes in an 8+8 adder 11
Table 3: Sample Program Profiles 22
Table 4: Macro Architecture Design Trade-offs 34

Table 5: Node Memory Fields 38
Table 6: CPU Time (sec.) 52

Table 7: BDD Processor Access Latency 57
Table 8: Memory Characteristics 59
Table 9: N Queens BDD Execution Times 59

1

Design and Evaluation of a
Specialized Computer Architecture for

Manipulating Binary Decision Diagrams

2

Chapter 1
Introduction

Modem integrated circuit (IC) technology has enabled designers to build cir

cuits with millions of transistors (logic gates). In 1984 a pair of designers might have

sat in front of a computer tenninal to capture and simulate a netlist or schematic repre

sentation of an application specific integrated circuit (ASIC) containing seven thou

sand gates. Today small teams of engineers use logic synthesis and simulation to

design circuits with hundreds of thousands or even millions of gates. The problem of

creating and verifying these large circuits has pushed current computer technology to

its limits. Logic simulation alone can no longer be used for complete verification of

these I Cs, other efficient representations of these circuits are necessary to complete the

required design, analysis and verification. Binary Decision Diagrams are one such

critical representation.

Reduced Ordered Binary Decision Diagrams (ROBDDs or just BDDs) are an

efficient data structure for the representation of many (large) boolean functions. As

such, they have become a very important tool for use in design and verification of

logic. In 1986 Bryant [Bryant86] described algorithms for efficient manipulation of

BDDs. The implementation of these algorithms has led to the use of BDDs for prob

lems ranging from logic decomposition [Bertacco97] [Chang96], logic synthesis

[CYang98J, formal verification[Bryant95], test generation, and graph manipulation

3

[Cortadella99] [Sekine97]. They are used in all modem commercial synthesis and

logic verification tools.

The performance of Binary Decision Diagram algorithms on a general pur

pose computer has improved since the first libraries of functions were written, and

they have been used to solve many difficult problems. Algorithm performance varies

depending on the BDD library package and the type of problem being solved. Differ

ent types of applications of BDDs may show different efficiency with different pack

ages because the package implementation varies. Overall the BDD can be considered

one of the successes of design automation research. Yet, despite the efficiency of

BDDs for representing many types of circuits, there are many types of circuits where

the BDD representation is exponential in size. This problem cannot be overcome eas

ily as it is an inherent limitation of the ROBDD data structure. Consequently other

types of decision diagrams, and representations, have been developed in attempts to

address these types of circuits [Becker97][Narayan98][Minato96].

Current general purpose engineering workstations are typically limited by the

fact that they are organized as 32-bit word architectures and operating systems are

restricted by this word length constraint. Application programs run on these general

purpose computers cannot exceed the limits imposed by the operating system. Because

of the cost and general efficiency one computer is used for a large variety of problems,

but for special applications this generality may limit the ability to solve large problems

in the most efficient manner.

4

Specialized computer architectures have been created to solve many problems,

often in response to the capacity and performance limitations of general purpose com

puters. Vector processing machines (often called super computers) from companies

like Cray Inc., and computers to execute LISP programs from companies like Texas

Instruments and Symbolics Corporation are some of the most common examples. A

specialized computer for manipulating Binary Decision Diagrams should be designed

and evaluated in an attempt to address performance and capacity when compared to

implementations on general purpose computers. This may also give additional insight

into the behavior of BDD algorithms and how they could be improved.

The following chapter will give an introduction to Binary Decision Diagrams.

It will discuss some of the primary issues involved in creating and manipulating

BDDs. Chapter 3 will discuss performance issues involving BDDs and their different

types of applications. Several freely available BDD packages are described and the

BuDDy package, which is used as an example of a typical BDD package, is described

using an example N-queens problem. Chapters 4, and 5 will describe the specialized

computer design, simulation models and implementation issues involved with the

design of the specialized architecture. Finally, chapter 6 will discuss the results of the

simulations and describe the performance in comparison to a general purpose com

puter. This will allow some conclusions to be drawn and future design considerations

to be described.

5

Chapter 2
Binary Decision Diagram Background

2.1 Introduction to ROBDDs

A Reduced Ordered Binary Decision Diagram (ROBDD or just BDD) is a

directed a-cyclic graph which represents a boolean function. The graph begins with a

single root node. Every path starting from the root node will end at a terminal node

which represents either Oor 1. Each non-terminal node is labelled with one of the vari

ables in the function and has two outgoing edges. The edges point to nodes which rep

resent the negative and positive co-factors of the function respectively. Shannon (and

Boole) found that a boolean function can be described in terms of two sub-functions

(called cofactors) when a specified variable is either zero (negative cofactor) or one

(positive cofactor). The Shannon expansion is often described by the following for

mula

Figure 1. Shannon Expansion

f =x·flx=l +x·flx=O

Figure 2. Shannon Co-factors of a Boolean function

For the boolean function
f = a·b+a·c

fla = l = b

fla O = C

6

The BDD for the function of one variable x is shown in Figure 3 on page 7. For

variable x, this function is Owhen xis zero (the negative cofactor) and 1 when xis one

(the positive cofactor). Just expanding a function with respect to the co-factors of a

function will give a decision tree as shown in Figure 4 on page 8. To make a Reduced

BDD duplicate nodes are not allowed. Duplicate nodes are defined as nodes which are

labelled with the same variable and whose outgoing edges point to the same nodes

respectively (both lo edges point to the same node, also the corresponding hi edges

also point to a common node). In Figure 4 it can be seen that nodes labelled 4 and 5

meet this criteria. Also all duplicated terminal nodes should be combined so that there

are only two terminal nodes; one representing the constant O the other representing

constant 1. Therefore nodes 8,10,12,13 are combined and nodes 9,11,14,15 are com

bined. This results in the graph in Figure 5 on page 8. Finally any node whose edges

both point to the same node are removed from the graph and the incoming edges are

redirected to the destination of the outgoing edges which were just removed. All of the

steps assume the ordering of the input variables (used by the function) do not change

in the BDD. This results in the creation of a Reduced Ordered BDD.

7

Figure 3. BDD for a single variable

I

0
I

Reduced and Ordered are the most important structural features of BDDs

because this makes the ROBDD a canonical representation. This canonicity property

means that given two ROBDDs for the same function (using the same variable order

ing) the graphs are isomorphic and functional equivalence can be easily tested.

It is not feasible to first build a decision tree and then reduce it because it

would require a number of nodes exponential in the number variables (0(2N) where N

is the number of variables in the function) to create the original decision tree. Only

after Bryant [Bryant86} described recursive methods of performing operations on

BDDs did they become a useful data structure for representing and manipulating bool-

ean functions.

Only unique nodes are stored in the tree. Thus if two nodes are to represent the

same function (variable and co-factors) they will be represented by the same node.

There is no redundancy in the tree, all nodes are unique

8

0

/
/

Figure 4. Decision Tree for a function

Table 1: Truth
Table for

F=a*b+a*c

I
I

I
I

I

Removed Redundant Nodes Removed nodes with edges
pointing to same destination

Bryant's algorithms for building BDDs are based on recursive operations over

the BDD data structure. The core operator is called the If-Then-Else operator

ite(F,G,H) = F*G +F*H

a b c

0 0 0

0 0

0 I 0

0 I 1

I 0 0

I 0 I

I 0

F

2(!{
1 /

~ 0 4
1

6~ ~ 0 1(1 11 11 13 1. 15
0

0~000~
Figure 5. Reduced Ordered BDD

a

9

It can be used to build all two variable boolean functions. For example to cre

ate a BDD to represent a function f = a*b + a*c would only require one call to the ITE

operator f = ite(a,b,c). But if this same function were given as a gate level schematic,

the function must be derived by walking the netlist and building the function itera

tively.

Figure 6. Schematic Representation of the function f = a*b + a*c

Cl
B

X
A

co
F

C2
C y

To create a BDD for the function f =a*b + a*c would require creation of a

single node BDD for variable (function) a, b, and c. Then intermediate functions

shown in Figure 7 must be created to achieve the desired function f.

Figure 7. Netlist Representation of the function f =a*b + a*c.

Input a,b,c;
Output f;
f2 = aANDb
f3 =NOT a
f5 =f3 ANDc
f=f2 0Rf5

2.2 The importance of variable ordering.

The size of the BDD is highly dependent upon the ordering in which the vari

ables are represented in the tree. Minimum size representations can always be found

using known algorithms [Drechsler98], but the computation time to find the minimum

representation is often unacceptable because the worst case representation of a bool

ean function using a BDD is exponential in size. As shown in Figure 8 on page 10. the

BDD representation for the boolean function f = a * b + a* c (which might be recog

nized as a multiplexor) is represented differently depending on the chosen variable

ordering. The dotted lines indicate the low edge (negative cofactor where the variable

= 0). The ordering a<b<c in Figure 8a requires only 5 nodes, the ordering c<b<a in

Figure 8b. requires 7 nodes.

Figure 8. BDD Variable Ordering
a<b<c c<b<a

Figure 8a. Figure 8b.

11

A second example of the size effects of variable ordering shows the number of

nodes used to represent the different outputs of an eight bit adder. The number of

nodes for each adder output bit are given for a good variable ordering and a bad vari

able ordering in Table 2 on page 11. It can be seen that for the most significant bit of

the eight bit adder (16 input variables, 8 output variables) a good variable ordering

gives a BDD of only 24 nodes and a bad variable ordering gives a size of O(z(N/Z)+ 1)

where N is the number of outputs in the add function.

Table 2: Nodes in an 8+8 adder

Output Good Bad
Bit Order Order

0 3 3

l 6 7

2 9 15

3 12 31

4 15 63

5 18 127

6 21 255

7 24 5ll

It is not always possible to know before creating the BDD what will be a good

variable ordering. For example when reading a function from a circuit netlist, it may

be very difficult to determine a good ordering because the function is not known in

advance. It is possible to choose an ordering and create the BDD, then try a different

ordering and create another BDD and determine which is smaller, but this would mean

12

that N! (N factorial) orderings must be tried to find the best ordering (with respect to

the size of the BDD)

Rudell [Rudel193] found that variables adjacent in the ordering can be swapped

without affecting the other levels of the BDD. This idea that variable swapping is a

local operation led to the variable reordering algorithm called sifting. Sifting can be

done dynamically while the BDD is being created to try to keep the BDD size manage

able. Sifting may require exponential run time to find a minimum BDD but it is often

not necessary to try all possible orderings because a minimal BDD is not required, the

BDD size must be kept small enough to be managed efficiently for the available com

puting resources and problem.

2.3 Garbage Collection

As BDD algorithms execute, while keeping the data structure canonical, they

call many operators whose results are used only temporarily. The nodes generated dur

ing these operations which are no longer an active part of the data structure and are not

referenced (visible) by any root nodes are called garbage nodes. Garbage collection is

used to retrieve these nodes and put them back on to the list of available (free) nodes.

Garbage collection is necessary when the number of free nodes nears exhaustion, and

can consume significant CPU time. Because of this performance penalty it is impor

tant to perform garbage collection only when necessary.

ROBDDs can be efficient data structures for manipulating boolean functions.

Canonicity must be maintained through all operations. Efficiently building and main-

13

taining BDDs to meet those considerations is an important factor in the use of BDDs

in many applications. The following chapter describes the main aspects of algorithm

implementation for BDDs and their performance considerations.

14 ·

Chapter 3
BDD Algorithm Implementation and Performance

3.1 Background

In 1990 Brace, Rudell and Bryant [Brace90] described an efficient implemen

tation of a BDD package which has been the basis of most subsequent BDD packages.

The main features of an efficient BDD package as described by Brace et. al. are:

• A unique table for the efficient creation of new BDD nodes and making sure all cre
ated nodes are unique.

• A computed cache to store intermediate results of operations for use during recur
sion using the ITE and other operators.

• Efficient garbage collection to recover nodes that are no longer referenced

• Good dynamic variable reordering heuristics to be used while BDDs are being
manipulated

Because BDDs are an efficient representation of boolean functions in many

cases and exponential in others, much work has been performed on refining BDD

algorithms for fast execution and minimum memory use on general purpose proces

sors. It has been intensely studied by various implementers of BDD library packages.

The algorithms described by Bryant were based on efficient traversal of the BDD

recursively in a depth first recursive manner. Many variations of these methods have

been implemented in attempts to create more efficient packages. Most packages give

different performance depending on the actual size and the problem being solved. No

single approach has been proven best for all problems.

15

Many different aspects of BDDs have been studied in attempts to find more

efficient ways to manipulate them on general purpose processors. Specifically, mem

ory reference locality [Manne97], cache effects and memory paging

[Klarlund96][Long97] have been the target of improved BOD packages. Breadth first

manipulation has shown improvements on some problems [Ranjan96a]. Chen

[Chen97] implemented a hybrid approach combining breadth-first and depth-first

BOD manipulation and showed performance improvements over both depth-first only

and breadth-first only implementations. Parallel BOD packages that can run on net

works of workstations have been created [Milvang98][Stometta96]. All of these

approaches incorporate design trade-offs in an attempt to create packages which can

manipulate large BDDs faster.

Comparisons of various packages and their efficiency for various types of

problems have also been made; [Sentovich96]. Yang et. al.[BYang98] studied various

aspects of BOD performance as applied to symbolic model checking algorithms. The

study included computed cache replacement policies, garbage collection frequency as

well as variable ordering. They have shown that a larger computed cache size can have

a much greater effect on model checking computations than for building BDDs for

combinational circuits. Also, because garbage collection of un-referenced nodes can

be time consuming, it was shown that model checking computations have a large

rebirth rate (i.e. nodes that are un-referenced will become references again later in the

computation). This led them to conclude that garbage collection should occur less fre-

16

quently. Additionally they suggested that the combined breadth-first and depth-first

approach :might lead to additional efficiencies.

All of this research has applied to improving algorithms on general purpose

processors. Because the speed of these processors and the availability of large memo

ries has become more affordable during the past decade continually larger problems

can be addressed using BDDs. There are li:mitations to 32bit computer architectures

and operating systems that prevent them from solving extremely large problems. As

64 bit processors and operating systems with large main memories become more avail

able, larger problems will be solvable by a general purpose architecture.

Generally a special computer architecture is used for two reasons, capacity and

performance. With the advent of 64-bit word architectures and operating systems,

capacity may no longer be an advantage of a specialized computer. This only leaves

performance as a realistic improvement provided by a special purpose BDD computer.

Attempting to build a special purpose computer may give insight into the behavior of

BDD algorithms and provide a platform for the analysis of architectural trade-offs for

different architectures and BDD algorithms, much as an instruction set simulator

:might for a general purpose computer. No published research has been found on the

study of any specialized hardware implementation of BDD algorithms. The remainder

of this thesis will be devoted to the description of a special purpose computer architec

ture for manipulating binary decision diagrams.

17

3.2 General Goals

A specialized computer for evaluating BDDs would enable the efficient solu

tion of BDD problems than can be accomplished by a general purpose computer. To

make the effort to use a specialized computer desirable it must be able to solve larger

problems faster than existing BDD packages at a reasonable cost.

The use of the specialized computer should be transparent to the user. Compat

ibility of the procedural interface package with an existing BDD package will allow

easy porting of existing code. The cost of the specialized hardware must be commen

surate with the size of the problems it can solve. In other words, it should be inexpen

sive compared to not being able to solve the problem in a reasonable time. Achieving

these high level goals would allow easy adoption of the specialized hardware. The use

ful life of the specialized computer must be such that the investment can be justified

vs. next years general purpose computer. These goals may be unobtainable, but that is

the purpose of this research, to find out if it is reasonable to expect to achieve the nec

essary performance to make a specialized computer worthwhile.

A high level look at the overall architecture will give a picture of the compo

nents that are required for such a system.

3.3 Choosing a BDD Package

It is not the goal of the paper to compare many BDD packages to find the best

performing package. Nor is it the purpose of this project to create an entirely new

package for use on general purpose computers. All work will be done based on an

18

existing package and procedural interface to create a subset of the package functions

that can be used to verify the performance of the proposed BDD computer architec

ture. Several packages available from universities have become widely used because

they are robust and efficient. They all use various implementations to try and achieve

improved performance and memory usage. Below, three publicly available BDD pack

ages, CUDD, CAL and BuDDY will be briefly presented.

3.4 CUDD

A large, comprehensive, robust and efficient library developed by Fabio

Somenzi at the University of Colorado at Boulder. It uses complement edges in the

internal representation and depth first recursive ITE algorithms. It is very smart about

compacting the BDD node into 16 bytes and making sure all nodes are 16 byte

aligned. This helps when fetching things from memory on most 32 bit processors

which often have 32 byte cache lines. Support for many heuristics for dynamic vari

able ordering and automatically adjusting cache sizes are built in. It also supports other

kinds of functional decision diagrams not discussed here.(ZBDDs, FDDs)[CUDD98]

3.5 CAL

Similar to CUDD in its use of 16 byte (aligned) nodes, this package uses

breadth first recursion during most algorithms. It has slightly more complicated access

to internal data structures because of the breadth first recursion, but by storing all

nodes of a single variable contiguously in memory, the breadth first search has good

19

memory locality access (fewer cache misses), [CAL97]. It has been the basis for sev-

eral BDD packages designed to run in parallel on multiple workstations including

[Milvang98].

3.6 BuDDy

A general BDD package with all of the required features of an efficient BDD

package including garbage collection and several dynamic variable ordering heuris

tics. Includes vector operations for word level operations on BDDs, [BuDDy99].

The BuDDy library of BDD functions was chosen as the BDD library to base

the performance comparisons and implementations for this project. Though probably

not the fastest BDD package, or the one that consumes the least memory, it is claimed

by the author to be as fast as David Long's (CMU) original package (CUDD and CAL

claim to be faster than that package as well) and the code is very well documented and

readable. It is an excellent tool to study and learn about BDD algorithms. The code is

clear, concise and more consistent than the other two packages that were looked at. It

is for these reasons that the BuDDY package was chosen for the analysis and as a basis

for the BDD algorithms to be modeled.

3.7 Computing Environment

The computing environment used as the basis for all data and statistics gath

ered in this paper is a dual Intel Pentium II Xeon with 1MB full speed 2nd level cache,

128MB RAM and 80Mb/sec. SCSI disk drive. The operating system is Red Hat Linux

20

6.1 (SMP kernel). The compilation environment is the GNU CIC++ compiler, gee ver-

sion egcs-2.91.66 19990314/Linux (egcs-1.1.2 release) provided with the Red Hat

Linux installation. All benchmarks are single threaded and were run on a single pro

cessor with no other non-operating system processes running.

3.8 Performance Measures

Code profiling is a method for finding the percent of total CPU time spent in

each function of a program. It is a feature of the compiler used on the general purpose

computer and is easily turned on with a single compiler switch. Approximate CPU

time and exact number of calls is collected for each function that is profiled. It should

be run with a variety of test cases to gain insight into where a program may need to be

optimized.

Several sample (simple) programs were run and profiled. None of these pro

grams is large,in the sense that they require large amounts of memory or computation

time. They are intended to be a few test cases representative of average BDD computa-

tions.

• N-queens - The classic constraint problem written using BDDs as the data structure.
Place N queens on an NxN chess board such that no queen can capture another.

• Reachability - Generate random state machines and perform reachability analysis
This is a typical model checking type verification task to make sure design con
straints are met in possible states.

• State Minimization - Read a description of a state machine, find equivalent states
and combine them. Write the results out to a kiss file.

https://egcs-2.91.66

21

70 ·

60

50

~ 40
:.::
?fl 30

20

10

0

Figure 9. N Queens Profiles

N queens profiles

-+- BddCache_iriit
-+bdd_init

apply_rec
bdd_makenode

-¾-bdd_gbc
.... bdd_mark
-+- BddCache_rest
-other

7 8 9 10 11

N

The N queens program was run for several different values of N ranging from

seven to eleven. These are the runs to completion in main memory. The profile was

examined and the percentage of time spent in the BDD library functions was recorded.

The top seven contributors to CPU time usage are shown in Figure 9 on page 21, all

other functions are lumped into the others category. For all runs the number of nodes

initially allocated was 1,000,003 and the computed cache size was set to 500,009.

These numbers are prime numbers and the hash function used by BuDDy is modulus

based which works best with prime numbers [Aho86]. The function BddCache_init is

actually a constant time when the initial number of nodes is constant. Thus it is a much

larger percentage of execution time in small benchmarks and a negligible percentage

22

for the larger values of N. For most realistically sized problems, it is assumed the

BddCache_init time will be a very small percentage of the problem. As the problem

size grows, so does the amount of time spent in apply _rec, bdd_mak:enode. Only if the

initial number of allocated nodes is exceeded is garbage collection invoked. This

occurred when N was equal to eleven. It can be seen that the garbage collection related

functions bdd_gbc, bdd_mark, BDDCache_reset were negligible before N was eleven,

but were large users of CPU time for N equal eleven.

The results of profiling these programs is given in Table 3 on page 22. Only

functions that contributed more than 5% of the CPU time to at least one of the test case

runs are included by name, the remaining functions are accumulated in the category

labeled others. The functions bdd_gbc, BddCache_reset, and bdd_mark could be com-

bined under a heading titled garbage collection.

Table 3: Sample Program Profiles

average %CPU for 5 runs

State Reachability
Function Name N queens Minimization Analysis Average

apply_rec 32.2 7.6 31.2 23.6

bdd_makenode 22.6 4.2 26.8 17.8

BddCache_init 27 42.2 IO 26.4

nocrec 5 1.6

appquant_rec 20.2 6.7

bdd_init 10.6 15.8 2.2 9.5

bdd_gbc 3.4 9.4 4.3

BddCache_reset 1.6 8.8 3.5

bdd_mark 1.2 0.4

others 1.4 8 10.6 6.6

23

The chart in Figure 10 on page 24 gives a good view of where time is spent.

The functions apply_rec, bdd_makenode, and garbage collection constitute slightly

over 50% of the CPU time used by these programs. The reachability analysis tests

spend most of the CPU time using apply _rec to create the internal state machine repre

sentations. Also they show the use of garbage collection because the number of nodes

created during execution exceeded the number of nodes initially allocated. The

appquant_rec, which is the existential and universal quantification operations is

lumped in with the "other" category, though for reachability this is also one of the pri

mary operations. It is important to note, that the numbers will vary depending on the

arguments for the programs, the number of nodes in the initial node table and the num

ber of slots in the computed cache. In general, if too few nodes are used initially, gar

bage collection and marking operations will become large portions of the execution

time. This is an important point, because garbage collection will become extremely

important for operations on large BDDs. The term large is relative, for example if the

BDD computer has a large memory then garbage collection may not be as important

until the problem starts to fill the node memory.

Also important here is that all of these problems have been programmed using

a known good variable ordering appropriate for the problem. Many real world prob

lems may not have a known good variable ordering and depend on heuristics and

dynamic variable ordering to keep the BDD sizes manageable. Because of the known

good ordering for these problems the dynamic variable ordering was not used in any of

the test cases.

24

Figure 10. BOD function execution time

bdd_init "-

appquant

not_rec_

Average % CPU
bdd_m rk,BddCache_reset,bdd_gbc

II apply _rec

■ bdd_makenode

□ BddCache_init

□ not_rec

■ appquant_rec

llbdd_init

llbdd_gbc

□ BddCache_reset

■ bdd_mark

II others

The functions BddCache_init, and bdd_init show up as large percentages

because they dominate the small test case runs. In larger runs, as was seen with the N

queens problem, they are actually negligible compared with the other functions.

This Chapter has given background information about BDD algorithm perfor

mance research. Several BDD packages were described and the choice of one package

.as a basis for further research was given. The computing environment used for gather

ing the performance information was described and the performance of several BDD

algorithms was evaluated. It was shown that on a general purpose processor most CPU

time is spent in the recursive manipulation (apply_rec) and creation (bdd_makenode)

of BDDs. Garbage collection time is also significant as the problems become large

25

with respect to available memory. This performance information is important to the

remainder of the thesis because it helped guide the design choices described in subse

quent chapters. The remainder of the thesis will describe how the major parts of the

BOD algorithms were modeled. Why the different design choices were made and

describe the results of the simulations of the BOD Computer architecture.

26

Chapter 4
BDD Computer Macro Architecture

4.1 Introduction

Within the context of accelerating execution of BDDs using special purpose

hardware, the operation of the BDD processor on the BDD itself can be designed inde

pendently of a general purpose computer. Yet the chosen architecture will interface to

a general purpose computer for all non-BDD related operations. The level of integra

tion and how the BDD processor interfaces to the general purpose computer varies and

the different interface architectures have unique performance characteristics. This

chapter describes the different macro-architectures and the issues associated with the

design of each.

4.2 Integrated BDD Processor

The integrated architecture shown in Figure 11 on page 27 assumes that a BDD

execution unit could be integrated directly into the general purpose processor. The

BDD execution unit would share resources with the processor as well as using the

same memory hierarchy. A new memory system and interface does not have to be

designed. BDD operations can be implemented with special instructions that are an

extension of the processor instruction set. The on chip integration means the BDD

instructions will execute with the same performance as the processor. Therefore as the

27

processor semiconductor technology improves and performance increases so will the

BDD instructions see similar improvement.

Figure 11. Integrated BDD Execution Unit

General Purpose
Processor

Processor bus

BDD
Execution
Unit

Processor
1/0 and
Memory
IF Chip
Set

To main
mamory and
peripherals

There are several disadvantages of this architecture. The first is the integration

with the general purpose processor. This is a difficult design issue and it requires

knowledge of the processor micro architecture and IC technology being used. The

compiler technology must be crafted to take advantage of the BDD instructions and

programs must be recompiled to take advantage of these instructions. Alternately a

special library of hand crafted routines could be provided that could be called by appli-

cations programs that need to access BDD instructions.

As was described in Section 3, "BDD Algorithm Implementation and Perfor

mance," on page 14 the algorithms for BDDs are memory access intensive manipula

tion of nodes and edges in the BDD. Thus sharing the processor main memory offers

no capacity benefits, and probably no memory access benefits. Finally this design is

28

not feasible for anyone but a large microprocessor design company and, because it is

not a large volume application, is not worth the engineering effort required for imple

mentation.

4.3 BDD Coprocessor

The second architecture is shown in Figure 12 on page 29. The BDD Copro

cessor design features the BDD execution unit as a device attached to the processor

bus. Because the unit is attached to the processor bus, there is a larger latency to exe

cute a BDD instruction than with the integrated execution unit. This design is more

complex but is more feasible. Increases in complexity arise because the BDD copro

cessor does not share resources with the processor, must track the bus transactions, and

has its own memory which is separate from the processor's main memory. Some of

these complexities may be necessary to achieve high performance BDD manipulation.

The memory structures can be customized to specifically improve performance for

BDDs. BDD execution can take place in parallel with other programs running on the

general purpose processor. The main disadvantage of this architecture is the increased

design complexity and the added latency through the processor bus to execute a BDD

instruction. If implemented as an ASIC with a general purpose processor core and

additional BDD functionality the BDD computer could be on the same chip with the

GP processor. This architecture might then be constrained due to 1/0 limitations of the

ASIC package because of large data and address busses for both the general purpose

processor and the BDD processor.

29 ·

Figure 12. BDD Coprocessor

BDD
Processor

General Purpose
Processor(s)

Processor
I/Oand
Memory
IF Chip
Set

BDD
Memory

To main
memory and
peripherals

4.4 BDD Peripheral processor

The architecture shown in Figure 13 on page 30 is very similar to the BDD

coprocessor, but since the BDD computer resides on the PCI (or AGP) bus instead of

the processor bus, the latency for the processor to issue a BDD instruction is much

higher. It is also less predictable due to many more possible peripherals on the expan

sion bus. This architecture has all of the execution benefits and most of the design

complexity of the coprocessor design, though the PCI/ AGP interface is a slightly eas

ier interface design.

30

Figure 13. BOD Peripheral Processor

General Purpose
Processor(s)

PCI/AGP

Processor
I/0 and
Memory

Processor bus IF Chip
Set

To main
memory and
peripherals

4.5 The Software Architecture

In addition to the hardware architecture the BDD processor must be easily

accessible from software. In order to make the BDD functions easily integrated into

existing programs, a library of functions will be provided to the programmer. The

BDD library will look like a normal software library to the user, but will interface to

the BDD processor hardware. See Figure 14 on page 31. The underlying structure of

the hardware can change without change to the software library interface. This soft

ware architecture allows changes in the underlying software/hardware structure with

out affecting the user application program.

31

Figure 14. Software Architecture

Operating System

Application Program

Processor

Each of the different macro architectures will have different access latency to

transfer data between the general purpose processor and the BDD processor. Generally

the further the BDD processor interface sits from the processor, the more software

overhead will be involved in accessing it. This is discussed along with the perfor

mance results in Section 6, "Performance Evaluation,"

4.6 Memory Subsystem

The memory subsystem of the BDD processor is one of the main issues to con

sider during design. As was shown in Section 3, "BDD Algorithm Implementation and

Performance," the algorithms used to manipulate large decision diagrams have mem

ory access patterns that are difficult to predict. Memory references often cause cache

misses in a general purpose processor which means access to main memory is

required. Also, the implementation of the unique and computed tables are amenable to

32

different types of memory structures. Because commercially available memories are

designed with specific applications in mind, a number of types of memory were con

sidered for the different memory subsystems in the BDD processor architecture.

4.6.1 SRAM, SSRAM

Static RAM (SRAM) offers the highest performance in off the shelf memory

components. SRAM with access times of 7.5 ns and below are available. Synchronous

SRAM (SSRAM) uses a clock signal to latch the address and data signals thus making

the interface to synchronous systems easier. Capacity is an issue for very large memo

ries as SRAMs typically only store about 8Mb per chip.

4.6.2 DRAM, SDRAM, RDRAM

Dynamic RAM (DRAM) offers high capacity and is the least cost per bit mem

ory available. There are a number of different variations that offer high performance

and synchronous operation. Synchronous DRAM (SD RAM) has registers to hold out

put data and input signals to allow synchronous interface to clocked systems. The

burst mode in the SDRAMs has been designed to effectively interface with cache

memory systems that load data from several sequential addresses on successive clock

cycles. Direct Rambus DRAM (RDRAM) is designed for very high speed synchro

nous burst access up to 800 MHz. The high speed of the RDRAM makes for a difficult

design. Because DRAMS can store 128Mb per chip, typical general purpose server

computers can be configured with gigabytes of DRAM. The latency for typical

33

DRAM is 60ns, much larger than static RAM, but once a burst is begun DRAM offers

performance nearly the same as the faster SRAM.

4.6.3 CAM

Several commercial options are available for content addressable memory.

Several companies (NetLogic Microsystems and Lara Technologies are two) offer

CAM devices targeted at network switches which might be usable for other applica

tions. The capacity of these devices is modest compared to SRAM and DRAM.

NetLogic SyncCAM-2 is available in 32k x 144 bit organization with speeds

up to 100 MHz. Lara Technology offers similar features. The depth can be increased

beyond 32k, but access must be pipelined thus increasing the average latency to find a

match. UTMC offers a UTCAM-Engine product which is an IC designed to tum

SSRAM or SDRAM into content addressable memory. The performance is lower than

for the dedicated CAM, but also offers the opportunity for designing larger CAMs

using less expensive memory components.

4.6.4 Memory Performance Summary

The cost per bit of the different types of memory varies significantly. Dynamic

RAM with the least expensive cost per bit, but with the worst latency. CAM is the

most expensive memory but the latency is size dependent. Static RAM cost is in the

middle and has the shortest latency of the three types of memory proposed. New vari

ations of DRAM such as RD RAM and Double Data Rate SDRAM offer higher clock

34

rates and bandwidth than conventional SDRAM memory, but latency is generaUy not

improved. These effects of specific types of DRAM have not been studied in this the

sis, but cost must be taken into account when designing a large memory system.

4.7 Architecture and Memory Issues

Each of the architectures described in this chapter offers different complexities

and design issues. They have been summarized in this chapter and specific perfor

mance numbers will be given in Chapter 6, "Performance Evaluation". Table 4,

"Macro Architecture Design Trade-offs," on page 34 shows the different architectures

and the relative design complexity of each.

Table 4: Macro Architecture Design Trade-offs

Interface Estimated
Design Instruction Capacity Design

Architecture Complexity Latency Effect Cost

General Purpose Pro- NA NA Limited NA
cessor by OS

Integrated BDD Execu- Very High Very Small None Very High
tion Unit

BOD Coprocessor High High (-=GP UnLim- High
main memory) ited

BOD Peripheral pro- Average High (2-3x GP UnLim- Average
cessor main memory) ited

This chapter has served to introduce some of the general cost and complexity

issues that are involved with the design of the BDD processor. The following chapters

will describe the design specific choices that were made in this thesis.

35

Chapter 5
BDD Micro Architecture and Hardware Models

5.1 Simulation and Modeling Environment

To create and evaluate the model of the BDD Processor a combined 'C' and

VHDL simulation environment will be used. This environment will allow for the inter

action of applications programs with the simulated BDD Processor architecture to

determine performance on actual application programs that manipulate BDDs. This

can then be compared to the performance obtained by running the application on a

general purpose computer. The BDD processor will only accelerate the actual manipu

lation of the BDD library calls. The performance of the BDD processor is measured

for specific time based on the number of BDD clock cycles and clock period for the

portions of the program that will be accelerated. These times will be substitutes for the

measured percentage of the program that is run on the general purpose processor. Then

a comparison of the application run solely on the general purpose architecture with the

application run using the BDD processor will be given.

5.2 Processor Model

The model has been designed to implement the BDD algorithms based on the

BuDDy package. It is an unsophisticated implementation that attempts to use as few

clock cycles and to make as many memory accesses concurrently as possible. The

36

models are being used as an analysis tool to estimate the performance of a simple

hardware implementation and may not represent the best implementation.

Figure 15. BDD Processor Functional Units

5.3 Memory Models

Several memory models were designed so that the different types of memory

could be tested with a variety of latencies. The models have an abstracted interface so

that the latency can be easily changed. The node table, unique table and CAM were

designed with an asynchronous interface. A request is received on the input and when

the memory has completed the request, an acknowledge signal is sent back to the

requesting unit. As can be seen in Figure 15 on page 36, the memories also have mul

tiple ports. The memory models use a simple round robin arbitration scheme to allow

access to the memory. This method guarantees that each functional unit will get access

to the memory in the order the request was received. If multiple requests are received

37

simultaneously they are serviced in a priority order with the most recently serviced

port being the lowest priority.

5.3.1 Node Memory

The node memory is the main memory of the BDD processor. It needs to be

very large. This is the most critical capacity/performance trade-off in the system. Fast

access to the node memory is required to achieve high performance. The goal of any

BDD system is efficient node access, which means keeping the memory busy fetching

nodes so the processing can proceed as quickly as possible. The node structure shown

in Figure 16 on page 38 shows the intended bit widths of the different fields in the

node structure and the VHDL record used to represent it. The field widths are chosen

based on expected capacity requirements and memory availability; DRAM modules

are typically 64 bits wide. The 32 bit hi-edge and lo-edge fields will allow four billion

nodes if enough memory can be installed in the machine. This far exceeds the approx

imate 256 million node capacity of a software package which uses 28 bit node address

fields because nodes are typically 16 bytes in size. Unused bits will be used to expand

(if necessary) existing fields and for future enhancements.

38

Figure 16. Node structure
128 0

Ifuture nextbdd hi-edge lo-edge level

Table 5: Node Memory
Fields

Field Size type bdd_t is record
level 20 level : bddvar;
lo-edge 32 lo : bddhandle;
hi-edge 32 hi : bddhandle;
nextbdd 32 nextbdd : bddhandle;

gc: gc_t;gc 2
end record;

e(xternal)

future 7

5.3.2 CAM (Computed Cache) memory

The computed table can be implemented in several ways. It was implemented

as if it were a true content addressable memory. Access is by content, with the result

value returned not as an address, but as the result value stored at the found address.

When the CAM is full it begins a FIFO overwrite, so that the first cell that was written

to the memory is the first one to be overwritten. It can also be thought of as a circular

buffer that once it is full starts writing at the beginning again. The CAM must be wide

enough to hold the arguments to the BDD apply function, and must return a result

value the size of a node handle (32 bits).

5.3.3 Unique Table

The unique table is used to hold references to individual nodes in the node

memory. Because each node in the node memory must be unique this table is imple-

39

mented as lookup table which holds node addresses. The node to be looked up must be

hashed into an address in the unique table memory. The unique memory returns a node

address which must then be looked up in node memory. It is possible that several

nodes will hash into the same unique table location, thus requiring chaining (linking)

of the nodes in the node table to find the correct node. Often this is combined with the

node memory, but in this implementation it has been chosen as a separate physical

memory. The unique table must be large to minimize hash collisions and wide enough

to hold node handles (32 bits).

5.3.4 Register file

There are two register files used in the BDD computer. Both are used during

recursive BDD operations to hold temporary node values, addresses and return codes.

Figure 17. Register File

Can be accessed depth
1, 2, or 3 nodes
at a time.

NODE

I ◄ node width .., ,

40

They have the same width as a node but can be accessed as a moving window

which can be moved up/down by 1, 2, or 3 registers. This requires three separate bus

ses from the register file to the functional unit performing recursive operations.

Because the number of variables used by a function indicates the depth of the BDD

graph, the number of recursive calls to reach the bottom of the graph is at most equal

to the number variables used in the BDD. Therefore, the depth of the register file

determines the maximum number of variables that can be used in a BDD. The current

implementation never accesses more than two registers at a time. There may be addi

tional BDD algorithms that have not been implemented here that require more tempo

rary registers during execution so the memory model was designed with some

flexibility in mind.

41

C

5.3.5 MakeNode block description

The makenode function of the BDD computer has access to the unique table

and node table. It is responsible for finding nodes in the node table and for creation of

all new nodes.

Figure 18. MakeNode Pseudo-Code

1: make_node(node)
{

// do not allow both edges to point to same node
2: if node.lo == node.hi then return low;

//lookup the node in the unique table
3: hash(node);
4: look up node in node table

{
walk the chain of nextbdd links
until the node is found/not found

}
if found then return the found node address

II not found, so build a new node.
5 build new node

{
get next free node from free node list
write the input node into the free node list address
return the free node list address
advance to next free node

}

It makes sure that only unique nodes are created so there are no duplicates in

the node table. Pseudo-code for make_node function is shown in Figure 18 on

page 41. MakeNode was designed as a state machine. Different points in the algorithm

were defined as states based on the function and expected effect on hardware imple

mentation size and performance. These points are shown with bold numbers before the

beginning of the line in Figure 18 on page 41.

42

Figure 19. MakeNode FSM

Each of the lines noted with a bold number is one of the points in the code

which was broken down for a hardware implementation. Point 1 and 2 correspond to

the IDLE state (see Figure 19 on page 42). Point 3 in the code corresponds to the hash

state. Point 4 requires two states, findunique for the initial lookup in the unique table

and findnode if a hash collision occurs and the nodes are chained. Point 5 and beyond

is executed concurrently with the return into state IDLE. The state waitforbuild must

43

wait until the previous build (write to memory) is finished before sending the state

machine back into the IDLE state. In short, if the code after point 5 is still executing

from the previous call to MakeNode, the fsm will stall in waitforbuild. The state

machines that perform the writes to node memory and unique memory are concurrent

with the main MakeNode FSM and are shown in Figure 20 on page 43. Both are sim

ple three state machines which are IDLE, or waiting for the memory acknowledge sig

nal on one clock in state writenodemem (writeuniquemem) or several clocks in state

writenodewait (writeuniquemem). These state machines operate concurrently with

each other and the main MakeNode FSM because the node table and unique table are

separate memory structures.

Figure 20. MakeNode Build FSM

1start build = r
1start ouno = p·

44 ·

5.3.6 Apply block description

Apply is the algorithm that performs algorithmic manipulations of the BDD

node structure to produce a result node. It is used for all 2 input boolean functions.

Figure 21. Pseudo Code for Apply (recursive - depth first)

set operation
apply(left, right)
{

c \ 1: check for terminal cases
2: check cache (terminal case)

fetch left and right nodes, compute arguments for recursive calls
3: res 1 = apply(leftarg 1,rightarg I)
4: res2 = apply(leftarg2,rightarg2)
5: result = make_node(level,res l ,res2)

c (6: put result in cache
7: return result of make node

}

Note C: available concurrency. (in a breadth first algorithm the two calls to apply can be con
sidered concurrent).

The operation to be performed is static for a given traversal of the BDD, there

fore, it can be stored in a register and is not required to be passed as an argument to

apply and is set before calling apply. Terminal case check, computed cache check

(CAM access) and fetch of left and right nodes from node memory can begin concur

rently. In reality the terminal case check at point 1 in Figure 21 on page 44 is per

formed during state warmup (See Figure 22 on page 46). The CAM is used as a cache

for intermediate computed results during the apply operation. If the arguments to

apply are not a terminal case, the CAM and node memory accesses are started concur

rently in state CAMFIND. Though it would be possible to start the fetch of nodes and

check the cache concurrently with testing for the terminal cases, in all terminal cases

45

this would cause requests to node memory and CAM that would have to be aborted.

Also, while terminal cases are being checked the nodes that need to be fetched are

being computed and as such this calculation is complex enough that it might affect the

performance to delay the memory access until the following clock cycle, so the

accesses were moved to the CAMFIND state. Points 3 and 4 correspond to states

updatelo and updatehi respectively. Entering these states the register file window must

be moved so that temporary values can be held until the return point is reached. Point

5 corresponds to state mknode, which will wait until the mknode operation is com

plete. When exiting state rnknode, the CAM write (states writecamidle and writecam)

will begin concurrently while the main FSM moves into state RETURNCTL. The

main FSM does not have to wait for the CAM write to complete before continuing.

46

Figure 22. FSM for apply

lrst ~ ·g

All of the apply algorithms in general purpose processor code use handles

(addresses) as arguments. It might make sense to have entire nodes passed as argu

ments. There are several reasons why this was not chosen. First, fetches of the children

nodes are still required to make subsequent recursive calls. Building of new nodes

with make_node is based on the level, lo and hi handles. If the entire node is passed

without a handle, the structure of the unique table must be redesigned. These changes

to the algorithms were considered to be beyond the scope of what is needed to be

accomplished in this thesis.

47

Most of the recursive algorithms require the variable level of the children to

make a determination of the arguments for the next recursive call. It might be an

improvement to include the level of the children in the node structure. But since the

children node must be fetched anyway for the arguments to the subsequent calls to

apply, it does not offer any significant performance gains. Also, this change would

complicate the reordering algorithm and might make reordering a non-local operation.

This was not seen as a significant enough benefit to make these changes to the node

structure.

5.3.7 FreeNodeControl

This block controls the free node list. It performs initialization of the node

memory by correctly creating the constant nodes Oand 1 and creating the free list of

nodes. The current implementation also stores the handle of the next available node so

that MakeNode block does not have to wait to return its value. It also performs gar

bage collection. This is why it has access to the node memory and unique memory (as

well as sending control signals to the CAM not shown on the diagram)

5.3.8 Garbage Collection

In most software BDD package implementations garbage collection interrupts

the execution of BDD algorithms. This is called serial garbage collection. One of the

advantages of creating custom hardware is that different techniques can be used from

the ones used in pure software implementation. An alternative to serial garbage collec-

48

tion is parallel garbage collection. The garbage collection algorithm to be used is

based on the parallel algorithm described by Lamport [Lamport76] and Dijkstra

[Dijkstra78]. This algorithm is designed to work with multiple processes operating on

the data structure at the same time. Thus, the BDD algorithm can continue to run while

the garbage collection algorithm operates in parallel. The goal is to improve perfor

mance on large problems by reducing the interruptions caused by a serial garbage col

lection algorithm. The garbage collector can use memory cycles that are not used by

the BDD algorithms.

There are some complications introduced in garbage collection of BDD nodes.

Nodes that are garbage collected must be removed from the unique table and added to

the list of free nodes. The computed cache may contain references to nodes which are

to be garbage collected. Therefore the computed cache entry must be invalidated or the

entire cache must be invalidated (and cache operations halted) before the sweep can

take place. The hardware clearing of the cache is much faster than in software.

Although garbage collection can consume large amounts of processing time,

because the cases used in this thesis are relatively small, i.e. garbage collection is not

required, it has not been implemented.

49

5.3.9 Dynamic Variable Ordering

Dynamic variable ordering is very important in any BDD implementation.

Even in specialized hardware where performance exceeds that of a general purpose

computer it is required to keep BDD sizes from becoming unreasonable and reducing

performance. As this would require much more additional research and development,

this topic has not been addressed in this thesis.

50

Chapter 6
Performance Evaluation

6.1 N Queens performance

The N Queens problem is the simplest of the previously profiled BDD pro-

grams. It also represents a cross between manipulations on a combinational logic cir

cuit and a constraint problem, and thus, is a good choice as an problem for evaluation.

Obtaining execution time values for general purpose programs is not a straight

forward task. The complexity of modem multi-tasking operating systems, and the pro

cessors on which they run, make it difficult to obtain highly accurate execution time

values. There is operating system overhead involved in managing the memory space

for each running process in the system. Cache misses during execution can cause page

faults which must be handled by the OS. Dynamic memory allocation requires man

agement by the OS. These effects are not easily quantified, thus a simple value for the

execution time of a program is not always achievable. In a multiprocessor system the

OS controls how different tasks (processes) are spread across the processors. This will

affect the operating system execution and application programs that are multi

threaded. Also, the ability of the OS to collect execution time information is limited by

the precision of the hardware clocks available to the OS.

For the experiments performed here, all of the sample BDD applications used

are single threaded and were run on a single processor. No other application programs

were running on the system when the execution time numbers were collected. Initial

51

CPU execution times were collected using the UNIX system call clock(). This call

returns a number (of clock tics in microseconds). It is called before and after the area

of interest in the algorithm that is being simulated (see Figure 23) and the difference is

assumed to be the number of microseconds used in that part of the program. The ini

tialization time spent in bdd_init() and bdd_setvarnum() is not included in this mea

surement because it is not part of the time gathered from the BDD computer

simulations.

Figure 23. Algorithm for N queens

/* Initialize with 100000 nodes, 10000 cache entries and NxN variables*/
bdd_init(lO0OOO, 10000);
bdd_setvamum(N*N)

;II get the current clock number for execution time calculation
cputime = clock();
queen= bddtrue;

/* Build variable array */
X = new bdd*[N];
for (n=0; n<N; n++)

X[n] = new bdd[N];
for (i=0 ; i<N ; i++)

for (j=O ; j<N ; j++)
X[i][j] = bdd_ithvar(i*N+j);

/* Build requirements for each variable(field) */
for (i=0; i<N; i++)

for (j=O; j<N; j++)
build(i,j);

/* Place a queen in each row*/
for (i=0 ; i<N ; i++){

bdd e;
for (j=0 ; j<N ; j++)

e I= X[i]Li];
queen&= e;

}
// get the execution time, then calculate the difference from the time collected above

cputime = clock() - cputime;

52

The problem with this method is that it is not known what part of this number

is system time and what part is actual user program time. In an attempt to clarify this,

the unix utility time was used to gather user, system, and elapsed (wall) time for the

same set of N queens executions. Because the runs are so short and the precision of the

measurements is only accurate to one microsecond, five runs for each value of N were

performed and the numbers averaged and rounded to two significant digits.

These times are shown in Table 6, "CPU Time (sec.)," on page 52

Table 6: CPU Time (sec.)

clock()
N User System Elapsed time

4 .02 .07 .09 .005

5 .03 .07 .09 .01

6 .03 .08 .10 .02

7 .06 .08 .14 .05

8 .18 .09 .27 .17

9 .96 .08 1.04 .91

10* 4.86 .33 5.18 4.78

11*+ 45.09 .45 45.50 45.10

* larger initial node allocation
+ Includes garbage collection time

The execution time also depends on how many nodes are initially allocated in

the unique and node table. All times were collected with 219983 nodes in the initial

table. This number is used because it is a prime number slightly larger than the number

of unique nodes generated for a value of N equal nine. Keeping the initial number of

nodes constant means that the system overhead due to initialization should be consis

tent for all of the runs. This also means that for values of N less than nine, the general

53

purpose program could run faster than is shown here because many unused nodes are

being initialized. In a most real world problems it is hard to have a good estimate of

the number of required nodes, so a large initial allocation can help prevent large

amount of time spent in garbage collection.

The original clock() execution times are similar to the user time numbers,

though they are slightly less. This is good since they should be less than the user time

because the initialization time is missing from the clock time values. It can be seen that

the system time is larger than user time for values of N less than eight. This gives less

confidence in the quality of the execution time numbers. Eight queens is the first time

where user time is the majority of the elapsed time, and for larger values of N the sys

tem time is less than ten percent of the elapsed time. These longer runs should have a

smaller error in the time measurements and make a better comparison to the execution

time for the BDD processor.

Some of the execution time that exists in the general purpose implementation

will still exist when using the BDD processor. The for loops and function calls shown

in the application will still need to be executed to communicate with the BDD proces

sor and obtain the results. The access to the BDD computer might also cause the OS to

suspend the application program until the result is returned. This will create additional

system overhead that might not occur in the general purpose implementation of the

program. This overhead was not accounted for in any of the times measured here. A

more detailed implementation of the software interface as a PCI /AGP driver program

could be used in the future to perform this evaluation. The clock() time CPU numbers

54

were used in all the performance comparisons because they measure the part of the

algorithm that is also measured in the simulations of the BDD processor. The clock()

functions were strategically placed to only capture the CPU time that is the same part

of the program that was actually measured from the VHDL simulations, i.e. all initial

ization and functions that are not accelerated are not included in the clock() times that

were collected. Only the functions that were accelerated are included in these times.

This gives the best available comparison of the part of the algorithm that is accelerated

by the BDD computer.

The only BDD specific functions that were not simulated and thus not included

in the measured time are bdd_init(), bdd_setvarnum(), and bdd_done(). Specific

implementation of initialization and termination routines was not determined, and as

was shown in Figure 9 on page 21, these functions use only a small percent of execu

tion time as the problem sizes increase so they were not simulated (and thus not mea

sured).

Other CIC++ program overhead of checking arguments etc. is not included in

the comparison times. This overhead will also exist with the BDD computer and will

not be accelerated. Application programs that read and write netlists from files spend a

large amount of time with this file 1/0. The read and write time might be a larger part

of the program than actually manipulating the BDD. In the future additional applica

tions should be profiled to find how much time is spent manipulating BDDs compared

with other parts of the program. If the time spent manipulating the BDD is small, little

overall performance improvement will be seen. Only the part of the application pro-

55

gram that calls BDD functions will be accelerated by the BDD processor. The compar-

isons presented here show the performance increase of only the BDD portion of the

program. For the N queens problem the accelerated portion is over 90% of the execu

tion time for values of N greater than 7. Thus, for programs that are highly dependent

on BDD manipulation, the BDD processor will show significant performance

improvement.

The N queens problem uses calls to only four different BDD library functions.

For the purpose of comparing the time for algorithm completion initialization (func

tion bdd_init and bdd_done) of the BDD package is not included. This is overhead that

does not really contribute to the actual time to perform the operations on the BDD data

structure and is a linear time operation based on the number of nodes requested during

initialization. It is not included in the execution time analysis. Simulations of the N

queens problem on the BDD processor were run for values of N from four to nine. Sta

tistics for memory accesses were gathered and the number of simulated clocks were

counted. Simulations of larger values of N were impractical because of memory limi

tations on the host computer. The results are described below.

The simulations were run assuming all memory accesses are a single lOns

clock cycle. This is unrealistic for very large memory implementations, but gives an

upper bound on the performance based on the number of node memory accesses.

The macro-architecture determines the distance of the BDD processor from the

GP processor and affects the latency to get all operations started. All operations in the

Co-processor model involve the CPU bus and the peripheral processor involves the

56

largest latency because it is on a peripheral bus. Both of these models must use the GP

processor to

• write the instruction and arguments to BDD processor

• read of result from BDD processor

Because the general purpose computer used is a Pentium II processor (as

described earlier in "Computing Environment" on page 19) it is also used as the model

for the GP with which the BDD processor is attached. On the Pentium Pro processor

bus, it takes a minimum of seven clock cycles to perform a complete write transaction

involving a 64 bit transfer. Also, a minimum of seven clock cycles are required for the

read transaction to get the result back into the processor. Because the BOD operations

may take considerable time, the use of a deferred read cycle would be necessary, so an

additional bus transaction to complete the deferred read is necessary. A minimum total

of 21 processor clocks are necessary to complete the transaction with the BOD proces-

sor.

The peripheral processor configuration will have the latency of the processor

bus, plus additional time for the chip set (3 CPU bus elks) to negotiate the peripheral

(PCI) bus, and the PCI bus transaction is a three PCI elk minimum. Table 7, "BDD

Processor Access Latency," on page 57 gives example latencies for a Pentium Pro Pro

cessor (includes Pentium II and Pentium III) and the PCI peripheral bus. The numbers

for the latency are strictly the hardware numbers and do not involve the software over

head of the device driver that services the BDD processor. The same function call

57

overhead exists whether the general purpose function is being called or the driver

function is being called, so it has not been included in these numbers.

Table 7: BDD Processor Access Latency

Architecture Pentium Pro-Bus

elks
write Chip lOOMhz
+read Set elks Bus (ns)

Integrated 0

Co-Processor 21 210

Peripheral 21 6 270
Processor

PCI Bus

elks
write
+read

0

33Mhz
(ns)

66Mhz
(ns)

0

6 90 45

Slow Fast
Total Total

PCI33 PCI66

0 0

210 210

360 305

This latency is large compared to the 450MHz processor, but there are a rela

tively small number of calls to the BDD processor (See Table 9 on page 59). Most of

the work is done on the BDD processor and, it turns out, that for the larger sizes of N

the latency is only a small fraction of the actual processing time. This is shown in

Figure 24 on page 58

58

Figure 24. Latency Effects

Latency (% of execution time)

I-+-Co-Processor -a- Peripheral Processor j

50.00%

45.00%

40.00%

35.00%

-;//. 30.00%

>-
g 25.00%
.!
Ill

-' 20.00%

15.00%

10.00%

5.00%

0.00%
4 5 6 7 8 9

N(Queens)

All memory access is single cycle, so it mimics a cache hit in a GP processor.

The CAM is also single cycle access for both read and write. There is no garbage col

lection. Because the garbage collection algorithms are implemented differently, the

sizes of the memories were chosen to avoid garbage collection to make a fair compar

ison of the general purpose algorithm and to produce estimate of the best possible per

formance. Table 8 on page 59 shows the memory latency and size characteristics used

for the simulation. The BDD processor execution times with the latencies for the dif-

59.

ferent macro architectures are given in Table 9 on page 59. The BDD processor is

Table 8: Memory Characteristics

Latency Size

Unique 219983

CAM 32768

Node 220,000
Memory

assumed to operate at 100 MHz which facilitates access to SRAM which can be

accessed in less than 10 ns. Figure 25 on page 60 shows the execution times from

Table 9 relative to the GPU execution time. All values have been normalized so the

GPU execution time is one. This shows that the implementation, described here using

SRAM as the memory of choice, can achieve greater than 7x performance increase

over the GP processor for all tested values of N.

Table 9: N Queens BDD Execution Times

N

4

5

6

7

8

9

BDD Approx.
processor GPU

BDD Calls elks Execution time (ns) execution

(n)ith apply IOOMHZ Integrated Co-Processor Peripheral
var Processor

32 540

50 1090

72 1926

98 3104

128 4696

162 6752

17358

61733

146709

621311

2362891

ll337491

173580 293700

617330 860930

1467090 1886670

6213110 6885530

23628910 24641950

ll3374910 114826850

379500 NA
1034930 10000000

2186370 20000000

7365830 50000000

25365550 170000000

115863950 910000000

60

0.16

0.14

0.12

0.1

-•::> 0.08
Q.
C,

□ Co-Processor

■ Peripheral Processor

0.06

0.04

0.02

0

Figure 25. BDD Execution Time (SRAM)

Normalized Execution Time

4 5 6 8 9

N(Queens)

Because there is single cycle memory access, the node memory is busy less

than 31 % of the time for all values of N. The unique memory and CAM are each busy

less than 10% of the time. If single cycle access memory is possible, this architecture

is very memory inefficient. CAM accesses can be concurrent with other accesses so

are not a limiting factor. Unique reads occur sequentially before the node access so

must be combined with node memory access to calculate the performance limit of this

memory architecture. Figure 26 on page 61 shows the execution time using these

assumptions. It can be seen that performance can be almost 20 times faster (for N = 9)

than the same algorithm run on a general purpose processor which has a clock rate 4.5

61

times higher than the BDD processor. This is the best performance possible using sin

gle cycle memory access with the sizes specified inTable 8 on page 59.

Figure 26. Best BDD Execution Time
Normalized (Best) Execution Time

0,08

om

0,06

0,05

- iii lntegreted
::._ 0,04 ■ Co-Processor
C, □ Peripheral Processor

0.03

0.02

0.01

0
4 5 6 7 8 9

N (Queens)

By changing the node memory to 60 ns DRAM and assuming a realistic cache

access of 30 ns, the execution performance drops noticeably but is still almost 3x

faster than the GPU for all values of N. The execution times are approximate based on

the assumptions described here. Since all memory writes occur in parallel with other

execution, the current design mask 30ns of all writes to node memory. CAM hits will

mask reads to node memory. For every CAM hit in apply, it masks 2 of the node mem

ory reads. For every CAM hit in applynot, it masks 1 node memory read. Adding addi

tional 2 elks/node write, 5 clocks for non-CAM-masked read, 3 clocks for CAM

masked reads give new normalized execution times shown in Figure 27 on page 62.

62

Figure 27. Estimated BDD Execution Time (DRAM Memory)
Nomallzed Execution Time 2

OA

0.35

0.3

0.25

-" :::> 0.2
CL
t,

Cl Co-Processor
■ Peripheral Processor

0.15

0.1

0.05

0
4 5 6 7 9

N (Queens)

6.2 Conclusions

One of the major considerations used during the work on this project was cost

containment. The possibility of bui]ding the design economically using current FPGA

and memory technology drove the decision to use a I 00MHz clock frequency for the

BDD processor. The second reason for that choice was the interface to current Pentium

Pro processor technology which has a I 00 MHz bus frequency. As has been shown,

the latency of the interface to the processor is small in proportion to the actual time

spent executing the algorithm, even when s]ower interface methods such as PCI bus

are considered. Therefore the host processor bus speed shou]d not be an overriding

consideration when choosing the clock rate of the BDD processor.

63

All of the comparisons in this paper are based on a general purpose processor

clock rate of 450MHz. There are now 1 GHz processors available which should give

roughly double the performance of the 450MHz processor used in this paper. As gen

eral purpose processors gain performance and 64-bit operating systems become preva

lent on engineering workstations within the next several years, they could readily

outpace the performance obtainable on a dedicated BDD processor. To make the BDD

processor a viable alternative to a general purpose processor, even higher performance

of the BDD processor than has been shown here is needed . Additionally, the memory

capacity of the BDD processor must be large, this might necessitate the use of some

form of DRAM as a size and cost savings measure. This could severely impact the per

formance making the specialized architecture undesirable. There are many obstacles to

overcome to make a specialized BDD processor architecture a viable addition to an

engineering workstation users environment.

6.3 Improvements and future work

This thesis is not the end, but describes a possible starting point for exploration

of specialized hardware for fast execution of BDD algorithms. The design used in this

thesis is very simple. It is nearly a direct translation of the software algorithms and

only begins to scratch the surface of an efficient hardware implementation. It could

serve as the basis for further explorations into architectural issues specific to BDD

algorithms. There is much work that could be done to improve performance, including

exploration of different micro-architectures, implementation of breadth-first and paral-

64

lei BDD algorithms, different pipeline and memory structures and, because ASIC

technology is capable of very high performance, higher clock rates must be consid

ered.

In order to make the design specialized hardware more flexible, a programma

ble micro-architecture should be investigated. Using memory to store micro-programs

and redesigning the BDD processor to execute these programs has two immediate ben

efits, upgrade ability and expend ability. For patches and upgrades to the BDD algo

rithms, problems in the micro-code can be easily fixed by loading it into the

microprogram storage. Additionally, new and experimental algorithms could be imple

mented and tested without having to redesign the hardware.

Other BDD algorithm implementations such as BDDs with complement edges

and breadth first execution of BDD algorithms should also be investigated for addi

tional performance improvement. These algorithms have shown improvement on gen

eral purpose processors and should also show significant performance improvement in

hardware. Parallel BDD algorithms are also a leading candidate for hardware imple

mentation because specialized hardware can implement parallelization much more

effectively than a network of general purpose computers.

Several key aspects of BDD manipulation have not been investigated in this

thesis, two are garbage collection and dynamic variable ordering. Both of these issues

must be investigated in detail. Concurrent garbage collection offers an opportunity to

significantly improve the performance on large BDDs by utilizing unused memory

65

bandwidth rather than interrupting algorithm execution. Dynamic variable reordering

must be implemented for a complete and usable BDD system.

The memory models used for the experiments in this BDD processor are quite

simple. The commercial CAM technology used for the computed cache is currently

limited in size and performance. Other CAM and non-CAM implementations need to

be considered. Interleaving of the node memory for higher performance (possibly

based on the position of a node in the order of variable) may also give improved per

formance. Combining the node and unique memory will save I/0 and might not cause

significant performance penalties depending on the node memory speed. This will also

allow a much larger unique table, thus reducing collisions during node lookup and

improving performance. Using a memory to cache nodes could also be investigated,

but because of the studies showing the unpredictable nature of BDD node access the

cache might have to be larger than is practice.

The use of a micro-architecture simulation environment would allow studies of

the hardware performance. This was done with VHDL in this thesis but other imple

mentations in C++ or Verilog HDL might be better. Instrumenting existing general

purpose BDD packages to do performance analysis might also give additional insight

into what kind hardware structures are required for best performance. There is still

much work remaining to be done to study and design an efficient specialized BDD

computer architecture.

66

References
[Aho86]. A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and
Tools, Addison Wesley Publishing, 1986.

[BuDDy99]. J. Lind-Nielsen. BuDDy: Binary Decision Diagram package, Release
1.7, Documenation. Department of Information Technology, Technical University of
Denmark, June 1999.

[Becker97]. B.Becker, R. Drechsler. "Decision Diagrams Synthesis -Algorithms,
Applications and Extensions-," Proceedings ofVLSI Design Conference, pp. 46-50,
IEEE, 1997.

[Bertacco97]. B. Bertacco, M. Damiani. 'The Disjunctive Decomposition of Logic
Functions," Digest ofPapers ofICCAD, pp. 78-82, IEEE, 1997.

[Brace90]. K.S. Brace, R.L.Rudell, R.E.Bryant. "Efficient lmplemenation of a BDD
Package," Proceedings of Design Automation Conference, pp. 40-45, ACM/IEEE,
1990.

[Bryant86]. R.E. Bryant. "Graph-Based Algorithms for Boolean Function Manipula
tion," IEEE Transactions on Computers, vol. C-35, pp. 788-701, Aug. 1986.

[Bryant95]. R.E. Bryant. "Binary Decision Diagrams and Beyond: Enabling Technolo
gies for Formal Verification," Digest ofPapers of ICCAD, pp. 326-243, IEEE, 1995.

[CAL97]. R. K. Ranjan, J. V. Sanghavi. The Cal package, Documentation. University
of California at Berkeley, 1997.

[Chang96]. S. Chang, M. Marek-Sadowska, T. Hwang. "Technology Mapping for
TLU FPGA's Based on Decomposition of Binary Decision Diagrams," IEEE Transac
tions on Computer-aided Design ofIntegrated Circuits and Systems, Vol. 15, No. 10,
pp. 1226-1236, IEEE, October 1996.

[Chen97]. Y. Chen, B. Yang, R.E.Bryant. "Breadth-First with Depth-First BDD Con
struction: A Hybrid Approach," Carnegie Mellon Univerisity CMU-CS-97-120,
1997.

[Cho94]. H. Cho, G.D. Hachtel, F. Somenzi. "Redundancy Identification/Removal
and Test Generation for Sequential Circuits Using Implicit State Enumeration," IEEE
Transactions on Computer-aided Design ofIntegrated Circuits and Systems, Vol. 12,
No. 7, pp. 935-945, IEEE, July 1993.

67

[Cortadella99]. J. Cortadella, G Valiente. A Relational View ofSubgraph Isomor
phism. Research Report LSI-99-33-R, October 1999, Technical University of Catalo
nia, Barcelona, Spain.

[CUDD98]. F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3 docu
mentation, Dept. of Electrical and Computer Engineering, University of Colorado at
Boulder, 1998.

[Dijkstra78]. E.W. Dijkstra, L Lamport, et. al. "On-theFly Garbage Collection: An
Exercise in Cooperation," Communications ofthe ACM, Vol. 21 No. 11, pp. 966-975,
November 1978.

[Drechsler98]. R. Drechsler, N. Drechsler, W. Gunther. "Fast Exact Minimization of
BDDs," Proceedings ofDesign Automation Conference, pp. 200-205, ACM/IEEE,
1998.

[Huang98]. Shi-Yu Huang, Kwang-Ting(Tim) Cheng. Formal Equivalence Checking
and Design Debugging, Kluwer Academic Publishers, 1998.

[Hachtel98]. Gary D. Hachtel, Fabio Somenzi. Logic Synthesis and Verification Algo
rithms, Chapter 6. Kluwer Academic Publishers, 1998.

[lntel96]. Intel l440BX chip set specification. Intel Inc. 1996.

[Lai94]. Y. Lai, M. Pedram, S. B. K. Vrudhula. "EVBDD-Based Algorithms for Inte
ger Linear Programming, Spectral Transformation , and Function Decomposition,"
IEEE Transactions on Computer-aided Design ofIntegrated Circuits and Systems.
Vol. 13, No. 8, pp.959-975, IEEE, August 1994.

[Lamport76]. L. Lamport. "Garbage Collection with Multiple Processes: An Exercise
in Parallelism," International Conference on Parallel Processing, pp. 50-53, IEEE,
1976.

[Long97]. D. E. Long. "The Designs of a Cache-Friendly BDD Library." Digest of
Papers of ICCAD, pp. 639-645, IEEE/ACM, Nov. 1998.

[Klarlund96]. N. K.larlund, T. Rauhe. "BDD Algorithms and Cache Misses," Basic
Research in Computer Science Report Series RS-96-26, pp. 1-15, The Danish National
Research Foundation, July 1996.

[Manne97]. S. Manne, D. Grunwald, F Somenzi. "Remembrance of Things Past:
Locality and Memory in BDDs," Proceedings ofthe Design Automation Conference,
pp. 196-201, IEEE/ACM 1997

68

[Milvang98]. K. Milvang-Jensen, A. J. Hu. "BDDNOW: A Parallel BDD Package,"
Formal Methods in CAD, 1998. Lecture Notes in Computer Science, No. 1522. pp.
501-507, Springer, 1998.

[Minato96]. S. Minato. Binary Decision Diagrams and Applications for VLSI CAD,
Kluwer Academic Publishers, 1996.

[Narayan98]. A. Narayan. "Recent Advances in BDD Based Represenations for Bool
ean Functions: A Survey," Proc. of12th International VLSI Design Conference, pp.
46-50, IEEE, 1999.

[Panda95]. S. Panda, F. Somenzi. "Who Are the Variables in Your Neighborhood,"
Digest ofPapers ofIC CAD, pp. 74-77, IEEE/ACM, 1995.

[Ranjan96a]. R. Ranjan, J.V. Sanghavi, R.K.Brayton, A. Sangiovanni-Vincentelli.
"Binary Decision Diagrams on a Network of Workstations," Proceedings ofIEEE/
ACM International Conference on Computer Design, pp. 358-364, ACM/IEEE, Oct.
1996.

[Ranjan96b]. R. Ranjan, J. V. Sanghavi, R.K.Brayton, A. Sangiovanni-Vincentelli.
"High Performance BDD Package Based on Exploiting Memory Hierarchy," Proceed
ings of33rd Design Automation Conference, pp. 635-640, ACM/IEEE, 1996.

[Rude1193]. R. Rudell. "Dynamic variable ordering for ordered binary decision dia
grams," Digest ofPapers of ICCAD, pp. 42-47, Nov. 1993.

[Sekine97]. K. Sekine, H. Imai. "Counting the Number of Paths in a Graph via
BDDs," IEICE Trans. Fundamentals, Vol. E80-A, No. 4. pp. 682-688, April 1997.

[Sentovich96]. E. M. Sentovich. "A Brief Study of BDD Package Performance." For
mal Methods in CAD 1996, Lecture Notes in Computer Science 1166, pp. 389-403.
Springer, 1996.

[Shanley95]. T. Shanley, D. Anderson. PCI System Architecture. Mindshare Inc. Add
ison-Wesley, 1995.

[Shanley97]. T. Shanley. Pentium Pro and Pentium II System Architecture. Mindshare
Inc. Addison-Wesley, 1997.

[Stometta95]. A. L. Stometta. "Implementation of an Efficient Parallel BDD Pack
age", Masters Thesis, University of California, Santa Barbara, Dec. 1995.

69

[Stometta96]. T Stometta, F. Brewer. "Implementation of and Efficient Parallel BDD
Package," Proceedings of33rd Design Automation Conference, pp. 641-644 ACM/
IEEE, 1996.

[Villa97]. T.Villa, T.Kam, R.Brayton, A. Sangiovanni-Vincentelli. "Implicit Formula
tion of Unate Covering," Synthesiss ofFinite State Machines: Logic Optimization,.
Chapter 10 pp. 301-321, Kluwer, 1997.

[BYang98J. B. Yang, RE.Bryant et.al. "A Performance Study of BDD-Based Model
Checking," Fonnal Methods in CAD 1998, Lecture Notes in Computer Science 1522,
pp. 255-290, Springer, 1998.

[CYang98J. C.Yang, V. Singhal. M. Ciesielski. "BDD Decomposition for Efficient
Logic Synthesis." Proceedings ofInternational Workshop on Logic Synthesis, pp. 2-4
1999.

70

Appendix A

Visual HDL Diagrams and VHDL Source Code

This appendix shows the entire design that was created using Visual HDL from

Summit Design Inc. It includes a graphical representation of the design hierarchy used

for the tests in the thesis as well as all of the VHDL source code generated using

Visual HDL. Because Visual HDL is a graphical tool, much of the design context is

lost when looking at only the machine generated code. The source graphics contain

design information and comments that are not induded directly in the machine gener

ated code. This information which is not visible on the diagram, may/may not appear

in the generated source, but the generate code is complete and could be used in any

VHDL simulation system.

The top level testbench used for simulation is the entity testmknodeblk. This

instantiates the design and the testbench N-queens algorithm. The entire hierarchy is

shown graphically below followed by the graphical diagrams for each block. Finally

the source code is given. The modules (entities/architectures) in the source code are

listed in a bottom up order as would be needed by any VHDL compiler to resolve the

dependences.

71

List of Figures

Figure 1. Design Hierarchy ... 72
Figure 2. TESTMKNODEBLK .. 73
Figure 3. MKNODEBLK .. 74
Figure 4. APPLYBLK ... 75
Figure 5. MEMCTRL.. 76
Figure 6. UNIQUEMEM... 77
Figure 7. MKNODEFSM .. 78
Figure 8. APPLY _NOT.TOP ... 79
Figure 9. APPLY _NOT. CAM FIND .. 80
Figure 10. APPLY.TOP ... 81
Figure 11. APPLY.CAMFIND .. 82
Figure 12. FREENODECNTL .. 83
Figure 13. CAM .. 84
Figure 14. HANDLESTACK .. 85
Figure 15. BDDSTACK .. 86

72

Figure 1. Design Hierarchy

0 bddlib :testmknodeblk {v 1.13}
(olr!wlq
0 bddlib:mknodeblktestbench{v 1.9}(mknodeblktestbench)

(o/r)
0 bddlib: mknodeblk testbench(N queen) (mknodeblk testbe

0 bddlib:mknodeblk{v1 .14}(C1)
(o/r/w/c,X bhaHj
0 bddlib: mknodefs m{v2 .2} (mknodectrl)

(ohlwiCJ t;r,;Jtt l
bddlib:wka(wka)

0 bddlib :uniqueme m{v2.3}(unique mem)
(oh)

0 bddlib:.m,emctrl{v4.2}(nodememory)
(olr/wic} CtL:iUj

0 bddlib:APPL YBLK{v1 .7}(APPL Y _BLK)
(oh)
0 bddlib:APPL Y _NOT{v2.4}(APPL Y _NOT)

(o/r/w/c) Llhatt}
bddlib:TOP(TOP)

, s bddlib:CAMFIND(CAMFIND)

s O bddlib:apply{v2.4}(apply)
(o/r/w/cJbhatt}

bddlib:TOP(TOP)

bddlib:CAMFIND(CAMFIND)

0 bddlib :freenodecntl{v2 .2} (freenodecntrl)
(o/r/w/c) bt1att)

0 bddlib:handlestack{v 1.1}(resultstack)
(o/r)

0 bddlib:bddstack{v 1.4}(callstack)
(o/r)

0 bddlib:cam{v2.4}(cam)
(o/r)

''"
""

"'"
""

"
co

ns
ta

nt
 c

ik
pe

ri
od

:
tim

e
:=

 1
0

ns
;

co
ns

ta
nt

 n
od

em
em

de
la

y
: n

at
ur

al

:=
 O

;
co

ns
ta

nt
 N

 :
na

tu
ra

l
:=

 4
;

no
oe

m
em

s1
ze

 =
>

22
0

ca
m

si
ze

 =
>

22
00

00

un
iq

ue
si

;:e
 =

>
21

99
83

L
O

W
O

N
N

O
D

E
S

.

O
U

T
O

F
N

O
D

E
S

---.

m

kn
o

d
e

re

su
lt

.
-

m
kn

o
d

e
_

re
su

ltv
a

lid

.

fr
e

e
h

a
n

d
le

va

lid

o

el
k

rs
t

hi
ah

in
it

le
ve

l

lo
w

. ; ; I

•
m

kn
o

d
e

b
lk

te
st

b
e

r~
i~

s,
an

no
1,

s1
an

_n
...

,"
"'

"•
st

ar
ta

pp
ly

,a
pp

ly
op

]
1

m
ks

e
le

ct

• .
I[e

iff
il5

1e
ni

5!
,e

na
!5

1e
an

a:
q

![6
aa

1n
1

,6
clo

1n
2J

 I
te

st
do

ne

C1

L
O

W
O

N
N

O
D

E
S

-

O
U

T
O

F
N

O
D

E
S

m
kn

od
e

re
su

lt

m
kn

o
d

e

re
su

ltv
al

i.,

fr
ee

ha
nd

le

va
lid

 ;

an
nl

vr
es

ul
t

va
lid

 -
ao

ol
vr

es
ul

t
- -

- -
a

o
o

lv
re

su
lt_

 va
lid

-

a
o

o
lv

re
su

lt

--.
,

-..
J

t.
;.

)

~
H

I
j ll ~ ti

I t'P -.1 f I
I

.t IPH I
i

I ·,
! l ' 'I 1 ! ~

I I ~l
~
~

w••• ~

''I 'g b;·•

-
m
Ill

'--

l (

m l(f
·M!

-

r
i
I

0

!5 ~ ~
i

~ s
0

,..
!

l
§

1

i 1f , ,1:1 .
fl i ,j~ I

lij
,UI

~ I~ !l It
ll ii:

¼! ~1
~

~

~

I
..__, ~

........,... .-,
~

-
u u tl UH

tf

II i (il 10·,(
l

~ i"

1:i ~~ '.i.}
~

..

1f ~ -Ul
,1 lpr ii ir ~ Ht

iJ ii im h
lt fi·! !, . ;

'---
l! z

'--L--

~-'--
-

If

)l'UIX'lddV ·t a.1niJJA

<;L

9l

•·
 r

es
et

 a
ll

dr
iv

er
s

lo
 m

em
or

y
re

ad

w
ri

te
 <

=
 '1

 ';

e
n

a
b

le
 <

=
 'O

';
ad

dr
es

s
<

=
 O

;
da

ta
in

 <
=

0
:

po

....
~ffl::

te~~~
:~t~-

:~:=1
.1 ~O

rt
--

....
po

rt
1_

bu
sy

 <
=

 '1
';

·

-=
:-w

\'IT
I!i

-j

po
rt1

 _
ac

k
<=

 '1
 ';

•·

 s
et

 u
p

 th
e

m
em

or
y

in
pu

ts

en
ab

le
 <

=
 '1

' a
ft

e
r

1 n
s;

ad

dr
es

s
<

"'
 p

or
t1

 _
ha

nd
le

;
d

a
la

in
 <

"'
 p

or
t1

_d
at

ai
n;

•·
 r

ea

th
e

 tw
o

se
pa

ra
te

 t
ra

ns
iti

on
s

fo
r

re
ad

 a
nd

 w
rit

e
a

re
 k

ep
t h

e
re

 fo
r

fu
tu

re
 c

on
si

de
ra

tio
n

if
 th

e
de

la
y

va
lu

e
fo

r
re

ad
/w

rit
e

m
us

t
be

 i
m

pl
em

en
te

d.

W
he

n
a

re
qu

es
t

is
 r

ec
ie

ve
d,

 t
he

 a
ck

 s
ig

na
l w

ill
 g

o
hi

gh
 io

d,
ca

tin
g

th
at

 t
he

 d
at

a
is

 r
ea

dy
.

T
hi

s
is

 a
 s

in
gl

e
cy

cl
e

m
e

m
o

ry
 w

ith
 n

o
 d

et
ay

.
on

 a
 r

ea
d,

 A
ck

 in
di

ca
te

s
th

e
 d

at
a

is
 v

al
id

 a
t t

he
 o

ut
pu

t,
o

r
th

e
w

rit
e

ha
s

b
e

e
n

 c
om

pl
et

ed
.

A
ll

in
pu

ts
 m

us
t b

e
h

e
ld

 fo
r

a
co

m
pl

et
e

cl
o

ck
 c

yc
le

.

•·
 t

hi
s

w
ill

 e
ve

nt
ua

lly
 (

be
fo

re
 s

yn
th

es
is

•·

 h
a

ve
 to

 b
e

m
o

ve
d

 o
ut

si
de

 o
f t

hi
s

un
it

•·
 s

o
 th

at
 it

 c
an

 r
ep

re
se

nt
 a

n
ex

te
rn

al
 m

em
or

y
un

iq
ue

m
em

:
pr

oc
es

s
(e

na
bl

e,
 r

ea
d_

w
ri

te
,

ad
dr

es
s,

 d
at

ai
n)

va

ri
ab

le
 m

em
 ·

 b
dd

ha
nd

le
_v

ec
_t

(O
 to

 u
ni

qu
es

iz
e

•
1

);
be

gi
n d
a

ta
o

u
t

<
=

 b
dd

ha
nd

le
_z

er
o;

if

en
ab

le
 =

 '1
' t

he
n

if
re

ad

w
rit

e
=

 'O
' t

he
n

--
w

rit
e

m
em

(a
dd

re
ss

)
:=

 d
at

ai
n;

el

se

--
re

ad

d
a

ta
o

u
t

<
=

 m
em

(a
dd

re
ss

);

en
d

if;

en
d

ii;

en
d

pr
oc

es
s;

po
rt1

 _
da

ta
ou

t
<

=
 d

at
ao

ut
;

IIJ

WS.!13{10N)IW ·i., a.1nilJ.t1

8l

https://a.1nilJ.t1

i
t

6L

-T
4

 •
•

-
se

tu
p

ca
m

 f
in

d
ca

m
_r

eq
ue

sl
 <

=
'1

';
ca

m
_r

w
 <

=
'1

';
-

re
ad

 (
fin

d)
;

-T
1

5
 -

•·
 s

et
 u

p
a

re
ad

 r
eq

ue
st

 to
 n

od
e

m
em

or
y

no
de

m
G

m
J,

an
dl

e
<

=
 lo

ca
lh

an
dl

e;

no
de

m
em

_r
eq

ue
st

 <
=

 '1
';

no
de

m
em

_r
w

 <
=

 '1
';

-
re

ad

no
de

m
em

_d
at

ai
n

<
=

 b
d<

U
..z

er
o;

ca
m

_f
ie

ld
1

<=
 lo

ca
lh

an
dl

e;

ca
m

_l
ie

ld
2

<=
 c

am
fie

ld
_z

er
o;

ca

m
_f

ie
ld

3
<

=
 n

at
ur

al
(b

oo
le

an
op

'p
os

(o
pe

ra
to

r)
);

1·
•

T
28

 •
•

I,•· s
et

 re
su

ll
ha

nd
le

lo

ca
lre

su
ll

<
=

 c
am

_r
es

ul
l;

ic
am

_r
eq

ue
st

 <
=

'O
';

-T
2

9
 ·

·
no

de
m

em
_r

eq
ue

st
 <

=
 'O

';
, l

oc
al

no
de

 <
=

no
de

m
em

_d
at

ao
ul

;
....

.-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

-

lh
ls

 tr
an

si
tio

n
is

 h
er

e
be

ca
us

e
V

is
ua

l w
ill

-

no
t a

llo
w

 a
rc

 fr
om

 ju
nc

tio
n

to
 e

xi
t c

on
ne

ct
or

-

tt
sh

ou
ld

 c
om

e
o

u
t o

l t
he

 ju
nc

tio
n

no
de

m
em

 a
d

<
•

'1
' A

N
D

=

;'
!
;'

,t
a
v

a
li

d
 =

'1
' A

N
D

•·
 T

30
 •

•
no

de
m

em
Je

qu
es

t <
=

'O
';

lo
ca

ln
od

e
<

=
 n

od
em

em
_d

at
ao

ul
;

1-•
-A

•_
,,

.•
.
·
·
-
·
·
-
·
"

"
"
"
-
·
 ~

-
,,

;
;,

.,
.
ca

m
 h

it

~
-
"
"
~

~
-
"

.. --
'..'

:

r::
.:t6

 -
--

·-
··

··
··

--
1

·1
ap

pn
ot

ca
m

m
is

s
:=

 a
pp

no
tc

am
m

is
s

+
 1

 ;
1•

--1
;.:

.":
.iJ

8

ca
m

 o
n

e
=

 i

0
0

0

dOJ,.X'lddV ·or .l.lil~!..il

18

Z8

£8

- re
ad

w

ri
te

<
=

 '1
':

en
ab

le
 <

=
 'O

';
ca

m
_f

ou
nd

 <
•

'O
';

f1
 <

=
ca

m
fie

ld
_

ze
ro

;
f2

 <
;:

 c
am

fle
ld

_z
er

o~

f3
 <

=
 c

am
fie

ld
__

ze
ro

;
f4

 <
=

 c
a

m
fie

ld
Je

ro
;

re
S

&
t a

ll
dr

iv
er

s
to

 m
em

or
y

ca
m

_b
us

y
<=

 ·1
 ·;

ca
m

_a
ck

 <
=

'1
';

...
 s

et
 u

p
th

e
m

em
or

y
in

pu
ts

en

ab
le

 <
=

'1
' a

fte
r

1 n
s.

 'O
' a

fte
r

9
ns

:
r1

 <
•

ca
m

_
fl

e
ld

 1
;

12
 <

=
 c

am
_f

le
ld

2;

f3
 <

c.
 c

am
_f

ie
ld

3~

14
 <

•
ca

m
_r

es
ul

tin
;

1--
1'2

 •.
--

-
-.

re
ad

_w
rlt

e
<=

 'O
';

1

nS
et

 th
e

da
ta

 a
nd

 re
ad

y
ra

tte
r

th
e

de
la

y
--

it
ac

tu
al

ly
 ta

ke
s

to
 r

ea
d

m
e

m
em

or
y,

re

ad
~w

rit
e

<-
=

'1
':

ca
m

_r
es

ui
tv

al
id

 <
=

 '1
 '~

ca

m
_r

es
ul

t
<=

 re
su

lt!
;

ca
m

_f
ou

nd
 <

,.
 c

am
_f

ou
nd

!;

L
.-

··
··

--
--

-·
·,

··
··

-·
 ..

....
....

....
..

s,
gn

m
en

 s

--
th

is
 w

iU
 e

ve
nt

ua
ny

 {
be

fO
fe

 s
yn

th
es

is

•·
ha

ve
 to

 b
e

m
ov

ed
 o

ut
su

le
 o

f
lh

is
 u

ni
l

.~
 s

o
th

al
 i

t c
an

 r
ep

re
se

nt
 a

n
ex

te
rn

al
 m

em
or

y
ca

m
m

em
:

--
pr

oc
es

s
(r

st
,e

na
bl

e,
 r

ea
d_

w
ril

e,
 1

1,
f2

,f3
,f4

)
pr

oc
es

s
(r

st
.e

na
bl

e)

va
ria

bl
e

m
em

 :
 c

am
ha

sh
ta

bl
e_

t;
va

ria
bl

e
tm

pn
od

e
; c

am
no

de
_t

;
va

ria
bl

e
to

u
n

d
: n

at
ur

al
;

be
gi

n if
(r

st
 =

 'O
')

th
en

-~
 In

 r
es

et

ha
sh

ta
bl

ei
ni

t{m
em

,m
em

sl
ze

}~

ca
rn

_f
ov

nd
i <

=
·o

·:
el

si
f (

en
ab

le
 .

: '
1

')
th

en

fo
un

d:
=

 O
;

!l(
re

a.
d_

w
rit

e;
;;;

 '1
')

!h
e

n
 -

re
ad

tm

p:
no

de
 :

=
(fi

el
d1

 =
!>

 1
1 ,

lie
ld

2
;;:;

>
f2

.fl
el

d3
 =

>f
3,

fie
ld

4
:>

M
,

h
a

sh
=

>
 O

,in
de

x
=>

 O
,n

ex
:tn

ad
e

"">
 O

);
ha

sh
la

bl
el

in
d{

m
em

.tm
po

od
a,

lo
un

d)
;

il(
fo

un
d

i=
 O

)
th

en

••
 t

ou
nd

 ii

re
su

lti
 <

;::;
 m

em
.n

od
es

(f
ou

nd
).

lie
ld

4;

ca
m

_f
ou

nd
i <

=
 '1

';
el

se
 re

su
lt!

<
=

 c
am

fle
ld

_2
er

o;

ca
m

_f
ou

nd
i <

"'
 'O

';
en

d
1f;

el

se
 -

-
w

rtt
e

tm
pn

od
e

:=
 (h

al
d1

 =
>

 f
l ,

lie
ld

2
=>

 f
2,

lie
ld

3
=>

f3
,!i

al
d4

 =
>1

4,

h
a

sh
=

>
 O

,in
de

x
""

>
o,

ne
xt

no
de

 =
>

O
):

ha
sh

ta
bl

ei
ns

er
t(

m
em

,tm
pn

oo
e)

;
ha

sh
ta

bl
ef

1n
d(

m
em

,tm
pn

od
e.

to
un

d)
:

as
se

rt
fa

ls
e

re
po

rt
~d

oi
ng

 w
rit

e
to

 c
am

 h
as

ht
ab

ie
"

se
ve

rit
y

no
te

;
w

rit
ec

am
no

de
{f

ou
nd

,tm
pn

od
e}

;
ca

m
_t

ou
nd

i
<=

 'O
';

en
d

if;

en
d

it;

en
d

pr
oc

es
s;

pr
oc

es
s(

tp
__ w

rit
ec

am
)

be
gi

n if(
lp

_
 w

ri
te

ca
m

}
th

e
n

w

rlt
ec

am
{m

em
):

en
d

it:

en
d

pr
oc

es
s:

n
e

ac
e

e
lk

:
1n

 s
td

_l
og

ic
 ;

rs

t ;
 in

 s
ld

_t
og

ic
 :

ca

m
_r

eq
ue

st
 :

 In
 s

td
_l

og
ic

 :

ca
m

_r
w

 :
in

 s
td

_t
og

ic
 :

ca

m
_a

ck
:

ou
t s

ld
_l

og
lc

 ;-
•

D
ef

au
lt

A
ss

ig
nm

en
t:

'O
'

ca
m

_b
us

y
: o

ut
 s

ld
_l

og
lc

 ;
-

D
ef

au
lt

A
ss

ig
nm

en
t

'O
'

ca
m

Je
&

ul
t

: o
ul

 c
am

fie
ld

 ;

ca
m

_
re

su
ltv

a
lld

:
o

u
t s

td
_l

og
ic

 ;

ca
m

_f
ou

nd
 :

 o
ut

 s
td

_l
og

k:
 ;

ca

m
_f

le
»:

U
 :

 in
 c

am
fle

kl
 ;

ca

m
_f

ie
ld

2
: I

n
ca

m
fie

ld
 :

ca

m
~f

ie
ld

3
: i

n
ca

m
fie

ld
 :

ca

m
_r

es
ul

tin
 :

 in
 c

am
fie

la
 ;

.j:
:,.

0

0

cl
k'

e
ve

n
t

a
n

d
 e

lk
::.

:
'1

'

ra
t a

'O

'

,a
ta

ck
pu

&
h

a
ta

c
k
p

u
th

2

T
hi

s
ha

a
lh

rf
f

p
o

rt
s

il
 a

n
d

 th
re

e
p

o
rt

s
o

u
t

o
n

e
,

tw
o

,
o

r
th

re
e

 e
!1

1
m

e
m

 c
a

n
 b

e
 p

u
s
h

e
d

 o
r

p
o

p
p

e
d

w

it
h

 1
h1

1
a

p
p

ro
p

ri
a

te
 s

ta
ck

 c
o

m
m

a
n

d
.

T
h

is
 ju

st
 in

cr
e

m
e

n
ts

 th
e

st
a

ck
 p

o
in

te
r

a
p

p
ro

p
ri

a
te

fy
.

T
h

•
th

re
e

 o
u

tp
u

ts
 w

.U
 a

tw
ev

s
sh

o
w

 t
h

e
 t

o
p

 1
h

re
a

 e
le

m
e

n
ts

.

o
th

e
rs

fr
e

e
<

•
O:

h

&
a

d
 :

"'
 O

:
lo

r
ti

n
st

a
ck

'r
a

n
g

&

lo
op

 sl
a

ck
(i

)
;c

 b
d

d
h

e
m

:t
ie

_
ze

ro
;

e
n

d
 1

oo
p;

e

m
p

ty
<

,.
,
T

;
M

l<
=

'O
';

0
0

V

I

I

i

)13V.Lsooa ·sr a.1n~!.!I

98

87

•·VHDL code written by Rohen Hatt for
-Masters Thesis at Portland Stale University

·· Date : Thu Apr 6 13:01:13 2000

•· Author Bob Hatt

•• Company : PSU

•· Description : Package of data types and
--functions to be used for bdd manipulation

library ieee;
use ieee.std_logk_l 164.all;
-· use ieee.numeric_std.all;

package kernel is

subtype bddhandle is UNSIGNED() I downto 0);
•• subtype hashkey is UNSIGNED(3 I downto 0);
•• subtype vanype is UNSIGNED(3 I downto 0);
- constant uniquesize_c : UNS!GNED(31 down!o 0);
constant bddmemsize: narural := 100000; --1024•!024;
constant bddvarsize : natural := 1000;
constant bdduniquetablesize : natural := 50003 ; --500997; --31 I;
subtype bddhandle is natural; •· range O!o bddmemsize - I;
subtype bddvar is narural; •· range Oto bddmax vamum • l;
subtype hashkey is natural; •·?? range Oto bdduniqhashsize - l;
subtype gc_t is natural;-· range O10 3 '?'?
conslant hashkey _zero : hashkey := 0;
constant bddhandle_zero : bddhandle 0:
constant bddhandle_one : bddhandle := I;
constant bddvar_zero : bddvar := O;
constant bddvar_max : bddvar := bddvar'right; -- this will need to
change for vectors
constant bdd_minhandle : bddhandle := 2;
constant bdd_maxhandle : bddhandle := bddmemsize- l;
constant gc_zero : gc_t := O;

--type bdd_t;
type bdd_t is record
level : bddvar;
lo : bddhandle;
hi : bddhandle;
nextbdd : bddhandle;
gc: gc_t;

end record;
constant bdd_t_zero : bdd_t :=
(bddvar_zero,bddhandle_zero,bddbandle_zero,bddhandle_zero,gc_zero)

constant bdd_Unit : bdd_t :=e
(bddvar_max,bddhandle_zero,bddhandle_zero,bddbandle_zero,gc_zero)

type bdd_vec_t is array (natural range<>) of bdd_t;

function hash2(a,b: bddhandle) return bashkey;
function hash3(a,b,c : bddhandle) rerum hashkey;
function bdd_hash(b ; bdd_t ; prime : narural) return hasbkey;

type bddhandle_ vec_t is array (natural range <>) of bddhandle;
type bddhandle_vec_a is access bddhandle_vec_t;

- return codes for recursive calls
constant retumdone: gc_t := O;
constant retumhigh : gc_l := I;
constant retummknode : gc_t := 3;

-- stack cmds

- subtype stackcmd is std_logic_ vector() downto 0);
- constant stackpushl: s1d_logic_vector := •01•;
-· conslant stackpop: std_logic_vector := "10";
type stackcmd is (stacknop.stackpush,stackpush2,slackpush3,stack
pop,stackpop2,stackpop3);
type booleanop is
(booleanop_zero,booleanop_and,booleanop_greater,booleanop_!hree,bo
oleanop_less,booleanop_tive.

booleanop_xor,booleanop_or,booleanop_nor,booleanop_biimp,booleano
p_ten,booleanop_revimp,booleanop_not,
booleanop_imp,booleanop_nand,booleanop_tifteen);

subtype booleanop is UNSIGNED(3 downto 0);
•• constant booleanop_zero : UNSIGNED:= "0000";
·• constant booleanop_and : UNSIGNED := "000 I";
•· constant booleanop_nand: UNSIGNED:= "l 110";
•· constant booleanop_or: UNSIGNED "0111 ";
- constanl booleanop_nor: UNSIGNED:= "1000";
•· conslant booleanop_,or: UNSIGNED:= "OJ JO";

conslant booleanop_imp: UNSIGNED:= "I l01 ";
constant booleanop_biimp: UNSIGNED:= "JOO!";
constant booleanop_revimp: UNSIGNED:= "10!1";

- constant booleanop_greater: UNSIGNED:= "00IO";
•· constan1 booleanop_less : UNSIGNED:= "0100";
- constant booleanop_not: UNSIGNED:= "1100";

cons1an1 bddcamsize : natural := 65536; •· 64k x 136 bi1s wide
subtype camfield is natural; •· same size as handle'
cons1an1 camfield_zero: camfield := O;

lype camnode_t is record
•• field I : natural;
-· field2 : natural;
- field3 · natural;
•· field4 : na1ural;
- result : natural;
•· previndex : natural;
-· nextindex : natural;
- index : na1ural;
- end record;
- type camnode_vec_t is array (nalllral range<>) of camnode_t;
•· constant camnode_t_zero: camnode_t := (0,0,0,0,0.0,0,0);
end;

Date : Thu Apr 6 13:26;57 2000

•· Author

Company

- Description :

- library ieee;
•• use ieee.s1d_logic_J 164.all;

use ieee.numeric_s!d.all;

package body kernel is

- constant uniquesize_c: UNSIGNED(31 downto 0) := X"OOOOOOlf';

function hash2(a,b: bddhandle) return hashkey is
begin
rerum ((((a+b) • (a+b+l))fl)+ a);
end hasb2;
function hasb3(a,b,c : bddhandle) return bashkey is
begin
return(hash2(hash2(a,b),c));
end hash3;

88

function bdd_hash(b : bdd_l; prime : natural) return hashkey is
begin
return(hash3(b.level,bJo,b.hi) MOD prime);
end bdd_hash;

end;

- Date : Mon May 15 11:13:50 2000

-- Author : Bob Hatt

•· Company : Portland State University

- Description :

library work;
use work.kernel.all;

package campkg is
•· cam size is specified in kernel

constant bddcamsize : natural 251;

type camnode_t is record
field! natural;
field2 : natural;
field3 : natural;
field4: natural;
inde>< : natural;
hash : natural;
nextnode : natural;
end record;
type camnode_vec_t is array (natural range<>) of camnode_t;
type camnode_vec_p is access camnode_vec_t;
type camhashtable_t is record
size : positive;
freei ndex : natural;
nodes : camnode_vec_p;
full: boolean;
lnil boolean;
end record;
constant camnode_t__:zero : camnode_t := (0,0,0,0,0,0,Q);
•· procedure hashtableinit(table : inout camhashtable_t);
procedure hashtableinit(table: inout camhashtable_t; size: in positive);
procedure hashtablefind(table: inout camhasbtable_t;node: in
camnode_t;found:out natural);
procedure hashtableremove(table : inout camhashtable_t;node: in
camnode_t;found : out natural);
procedure hasbtableinsen(table : inout camhashtable_t;node: in
camnode_t);
procedure writecamnode(index: integer.node: camnode_t);
procedure writecam(table : inoul camhashtable_t);
end;

-Date : Mon May 15 11:14:01 2000

-- Author : Bob Hatt

•· Company : Portland State University

•· Description :

use std.textio.all;

package body campkg is

procedure hashtableinit(table: inout camhashtable_t;size : in positive) is

begin
if(NOT table.init) then
table.size:;: size;
table.nodes:= new camnode_vec_t(l to size);
for i in table.nodes range
loop
table.nodes(i) := camnode_t_zero;
end loop;
table.freeindex := table.nodes1ow;
table.init := true;
table.full := false;
end if;
end hashtableinit;

procedure hashtabledelete(table: inout camhashtable_t) is
begin
deallocate(table.nodes);

end;

procedure hashtablefind(table: inout camhashtable_t;node: in
camnode_t;found:out natural) is
variable hash.index.nextfree,previndex : natural;
begin
hash := (hash3(node.fieldl ,node.field2,node.field3) MOD
table.nodeshigh)+ I;
index := lable.nodes(hash).inde><;

-- walk the list until you find one that matches the node,

found :=0;
while(index/= 0)
loop
if(table.nodes(index).fieldl = node.field I AND

table.nodes(index).field2 = node.field2 AND
table.nodes(index).field3 = node.field3) then
this is the one to remove

found := index;
return;

exit the loop
end if;
previndex := index;
index:= table.nodes(index).nextnode;
end loop;
return;

end hashtablefind;

procedure hashtableremove(table : inout camhashtable_t;node: in
camnode_t;found : out natural) is
variable hashjndex,nextfree,previndex : natural;
begin
hash (hash3(node.field l ,node.!ield2,node.field3) MOD
table.nodeshigh)+!;
index := table.nodes(hash).index;

- walk the list until you !ind one that matches the node,

found:= O;
previ ndex := O;
while(index/= 0)
loop
if(table.nodes(index).fieldl = node.field I AND

https://return(hash3(b.level,bJo,b.hi

·89

table.nodes(index).field2 = node.field2 AND
table.nodes(index).field3 = node.field3) then
this is the one to remove

found := index;

if(previndex =0) then
node is at head of chain.

table.nodes(hash).index := table.nodes(indes).nextnode;

else
- !here is an prevous node in the chain.
table.nodes(previndex).nexmode := table.nodes(index).nextnode;
end if;
table.nodes(index) := (field I => 0,field2 => 0.field3 => 0. field4=> 0,
index => table.nodes(index).index,hash => 0,nexmode =>0);

- exi1 the procedure
return;
end if;
previndex := index;
index:= table.nodes(index).ne.inode;
end loop;
return;

end hashtableremove;

procedure hashtableinsert(table : inout camhashtable_t;node: in
camnode_t) is
variable hash,index,nextfree : natural;
variable tmpnode : camnode_t;
variable found: natural;
begin
hash (hash3(node.fieldl .node.field2.node.field3) MOD
table.nodes'high)+ I;
index :: table.nodes(hash).index;

if(table.full) then
-- remove the current freehandle from the table
-- then do the normal insert on the free handle
tmpnode := (field) => table.nodes(table.freeindex).fieldl,
field2 => table.nodes(table.freeindex).field2,
field3 "'> table.nodes(tableJreeinde,).field3,
field4 => table.nodes(table.freeindex).field4,
inde, => 0,hash => 0,nextnode =>0);
hashtableremove(table,tmpnode,found);
if(found /,,. table.freeindex) then
assert false report "INSERT: found I= freeindex" severity error;
end if;
if(found = 0) then
assert false report "INSERT: found= o· severity error;
end if;

end if;

hashtablefind(table.node,found);
if(found I= 0) then
assert false report "node alread in table!!!" severity error;
end if;
table.nodes(table.freeindex).fieldl node.fieldI;
table.nodes(table.freeindex).field2 := node.field2;
table.nodes(table,freeindex).field3 := node.field3;
table.nodes(table.freeindex).field4 := node.field4;
table.nodes(table.freeindex).nextnode := table.nodes(hash).index;
table.nodes(table.freeindex).hash := hash;
table.nodes(hash).index := table.freeinde,;

if(table.freeilldex = table.size) then
table.full := true;
table.freeindex := I;
else
table.freeindex := table.freeindex + I;

end if;

return;
end bashlableinsert;

procedure writecamnode(index : integer;node: camnode_t) is
variable rmpline : line;
begin
wrile(tmpline.indes);
write(tmpline,': ');
wri1e(tmpline,node.field l):
write(tmpline,',);
write(tmpline,node.field2);
write(lmpline,',);
write(tmpline,node.field3);
wrile(tmpline. ', ');
wrile(tmpline,node.field4);
- wrileline(outfile,tmpline);
writeline(output,lmpline);

end writecamnode:

procedure writecam(lable: inoul camhashtable_t) is
begin
for i in 1 to table.size
loop
writecamnode(i,table.nodes(i));
end loop;

end writecam;

end;

-Date : Mon May 8 19:04:292000

Author : Bob Hall

-- Company : Portland State University

- Description :

library work; use work.kernel.all;
library std; use s1d.1extio.all;

package bdddebug is

procedure writenode(handle: bddhandle;node : bdd_t);
procedure writenode_rec(mem: in bdd_vec_t; handle:bddhandle);
procedure writenodetable(mem: in bdd_vec_t);
procedure printset(r : bddhandle;mem : in bdd_ vec_t);
end;

-- Date : Mon May 8 19:04:38 2000

- Author : Bob Hatt

- Company : Portland State University

-- Description :

package body bdddebug is

procedure writenodetable(mem : in bdd_ vec_l) is
-- file outfile . text;

90

variable tmpline : line;
begin
•· open the file

•· file_open(outfile,"nodetable.!xt",WRITE_MODE);
for i in mem 'range loop
•· write the element in a te~tual format

to the output file
writenode(i,mem(i));

end loop;

-· close the file
·· file_close(outfile);

end writenodetable;

procedure writenode(handle: bddhandle;node: bdd_t) is
variable tmpline : line;
begin
write(tmpline,handle);
write(tmpline,':);
write(tmpline,node.Jevel);
write(tmpline,',);
write(tmpline,node.lo);
write(tmpline,',);
write(tmpline,node.hi);
write(tmpline,',);
write(tmpline,node.nextbdd);
write(tmpline,',');
write(tmpline,node.gc);
•· writeline(outfile,tmpline);
writeline(output,tmpline);

end writenode;

procedure writenode_rec(mem: in bdd_ vec_t; handle:bddhandle) is
variable node:bdd_t;
begin
node mem(handle);
if((node.lo I= bddhandle_zero) AND
(node.lo I= bddhandle_one)) then
writenode_rec(mem,node.lo);
end if;
if((node.hi I= bddhandle_zero) AND
(node.hi I= bddhandle_one)) then
writenode_rec(mem,node.hi);
end if;
writenode(handle,node);

end writenode_rec;

procedure printset(r : bddhandle;rnem : in bdd_vec_t) is

variable set : bddhandle_vec_t(0 to bddvarsize);
variable tmpline : line;

procedure printsetJeC(r: bddhandle) is
variable first : integer;
begin
if(r = bddhandle_zero) then
return;
elsif(r = bddhandle_one) then
write(tmpline,'<');
writeline(output,tmpline);
first := I;
for i in 0 to bddvarsize
loop
if(set(i) > 0) then
if(first 0) then
write(tmpline,', ');

write line(output,tmpline);
end if;
first:= 0;
write(tmpline,mem(r).Jevel);
writeline(output,tmpline);
if(set(i) = 2) then
write(tmpline, I);
else
write(tmpline,0);
end if;
writeline(output,tmpline);
end if;
write(tmpline, '>);
writeline(output,tmpline);

end loop;
else
set(mem(r).level) := l;
printset_rec(mem(r).lo);
set(mem(r)Jevel) := 2;
printset_rec(mem(r).hi);
set(mem(r).level) := 0;

end if;

return;
end printset_rec;
begin
printset_rec(r);
end printset;

end;

library ieee;
use ieee.STD_LOGIC_I 164.all;
library work;
use work.kernel.all;
use work.campkg.all;
library SYNOPSYS;
use SYNOPSYS.ATTRIBlITES.ALL;

entity cam is
generic (

memsize : NATURAL bddcamsize;
readdelay : NATURAL;
writedelay ; NATURAL
);

port (
elk : in std_logic;
rst : in std_logic;
cam_request : in std_logic;
cam_rw : in std_logic;
cam_ack : out std_logic;
cam_busy : out std_logic;
cam_result : out camfield;
cam_resultvalid : out std_logic;
cam_found : out std_logic;
cam_fieldl : in camfield;
cam_field2 : in camfield;
cam_field3 : in camfield;
cam_resultin : in camfield
);

end cam;

architecture cam of cam is

constant camnode_t_zero : camnode_t :"' (field] => 0, field2 => 0,
field3 => 0, field4 "'> 0, index
=> 0, hash => 0, nextnode => 0)

https://printset_rec(mem(r).hi
https://printset_rec(mem(r).lo
https://writenode_rec(mem,node.hi
https://if((node.hi
https://writenode_rec(mem,node.lo
https://if((node.lo
https://write(tmpline,node.gc
https://write(tmpline,node.hi
https://write(tmpline,node.lo

91

cons1an1 maxdelay : NATURAL readdelay;
shared variable rnem : camhashtable_t;
signal enable : std_logic;
signal read_wrile : std_logic;
signal delaycni : NATURAL range Oto maxdelay;
signal fl : camfield;
signal f2 : camfield;
signal f3 : camfield;
signal f4 : camfield;
signal resulti : camfield;
signal cam_foundi : std_logic;
signal tp_writecam : BOOLEAN false;

type visuaUDLE_states is (IDLE);

signal visual_IDLE_current, visual_IDLE_next visuaUDLE_s!ates;
attribute STATE_ VECTOR of cam:

architecture is "visual_IDLE_currenr";

begin

Combinational process
cam_lDLE_comb:
process (rs!, cam_reques!, cam_fieldl. cam_field2, cam_field3,

cam_resultin,
cam_rw, resulti, cam_foundi, visual_lDLE_current)

begin
cam_ack <'-' O';
cam_busy <"- O';
fl <= camfield_zero;
f2 <= camfield_zero;
f3 <= camfield_zero;
f4 <= camfield_zero;

if (rs!= 0') then
-~ reset all drivers to memory
read_ write <= 'I';
enable <= O';
cam_found <= O';
fl <= camfield_zero;
f2 <= camfield_zero;
f3 <= camfield_zero:
f4 <= camfield_zero;
visual_lDLE_next <= IDLE;

else

case visual_lDLE_curren! is
when IDLE=>
if ((cam_request = 1 ') and (camJW 'J ')) then

cam_busy <= 'I';
cam_ack <= 'I';

set up the memory inputs
enable <"' 'I' after Ins, O' after 9 ns;
fl <= cam_field J ;
f2 <= cam_field2;
f3 <= cam_field3;
f4 <= cam_resullin;
-set the data and ready rafter the delay
-· it actually takes to read the memory.
read_ write <= 'l ';
cam_resultvalid <= 'I ';
cam_result <= resulli;
cam_found <= cam_foundi;
visual_IDLE_next <= IDLE;

elsif ((cam_request = 'l ') and (cam_rw 0)) then
cam_busy <= 1 ';
cam_ack <= 'I ';
-· set up the memory inputs
enable<= 'l 'after Ins, U' after 9 ns;
fl <= cam_field J;
12 <= cam_lield2;

f3 <= cam_lield3;
f4 cam_resultin;
read_ write <= O';
visual_IDLE_next <= IDLE;

else
- reset all drivers to memory
read_write <='I';
enable <= U';
cam_found <= IJ';
fl <= camfield_zero;
f2 <= camfield_zero;
f3 <= camfield_zero;
f4 <= camfield_zero;
visual_lDLE_next <= IDLE;

end if;

when others =>

visual_lDLE_next <= IDLE;
end case~

end if;
end process;

cam_lDLE:
process (elk)
begin

if (clk'event and elk= 'I) then
if (rst U) then

visual_lDLE_current <= IDLE;
else

visual_lDLE_current <-'- visual_JDLE_next;
end if;

end if;
end process;

this will eventually (before synthesis
•· have to be moved outside of this unit

so that it can represent an external memory
cammem:
--process (rst,enable, read_write, fl,f2,f3,f4)
process (rst,enable)
- variable mem : camhashtable_t;

variable tmpnode camnode_t;
variable found : natural;

begin

if (rst = 0') then in reset
hashtableinit(mem,memsize);
cam_foundi <= O';
elsif (enable 'I') then
found:= O;
if(read_ write = 1) then - read
tmpnode := (field! => fl ,field2 => f2,field3 =>f3,field4 =>f4,
hash => 0,index => O,nexmode => 0);
hashtablefind(mem,tmpnode,found);
if(found I= 0) then -· found it
resulti <= mem.nodes(found).field4;
cam_foundi <= 1 ';
else
resulli <= camfield_zero;
cam_foundi <= U';
end if;
else write
tmpnode := (field l => fl ,field2 => f2,field3 =>f3,field4 =>f4,
hash => 0,index => O,nextnode => 0);
hashtableinsert(mem,tmpnode);
hashtablefind(mem,unpnode,found);
--assert false report "doing write to cam hashtable" severity note;
-writecamnode(found,tmpnode);
cam_foundi <= O';

end if;
end if;

92

end process;

process(tp_ writecam)
begin
if(tp_writecam) then
writecam(mem);
end if;
end process;

end cam;

•· This has three ports in and three ports out.
•· one, two. or three elements can be pushed or popped

with the appropriate stack command.
This just increments the stack pointer appropriately.
The three outputs will always show the top three elements

library ieee;
use ieee.STD_LOG!C_I 164.all;
library work;
use work.kernel.all;
library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.ALL;

emily bddstack is
generic (

size : NATURAL := 6
);

port(
elk : in std_logic;
rst : in std_logic;
cmd : in stackcmd;
datain0 in bdd_t;
datain I : in bdd_t;
datain2 : in bdd_t;
head0 : out bdd_t;
head I : out bdd_t;
head2 : out bdd_t;
full : out std_logic;
empty : out std_logic
);

end bddstack;

architecrure bddstack of bddstack is

signal tp_head : NATURAL;
signal free : NATURAL;

begin
Start:process (elk, rst. datain0, datain I, datain2, cmd)

variable stack : bdd_vec_l(0 to size + 4);
variable head : NATURAL;

begin process
if elk'event and elk = 'I 'then
if rst = O' then

free <=0;
head:= 0;
for i in stack'range
loop
stack(i) := bdd_t_zero;
end loop;
empty<= 1';
full<= 0~

else
-- "01" => push
•• "I0"=>pop

others=> do nothing
casecmdis

when stackpush =>
stack(head) datain0;
if(head < (size)) then
head (head + I);
end if;

when stackpop =>
if(head > 0) then
head head • l ;
end if;

when stackpush2 =>
stack(head+l) := datainO;
s1ack(head) := datain I;
if(head < (size)) then
head (head + 2);
end if;

when stackpop2 ">
if(head > l) then
head head -2;
else
head 0;
end if;

when stackpush3 =>
stack(head+2) := datain0;
stack(head+l) := datain I;
stack(head) datain2;
if(head < (size)) then
head:: (head+ 3);
end if;

when stackpop3 :>
if(head > 2) then
head head -3:
else
head 0;
end if;

when others =>
null;

end case;
if(head 0) then
empty<= 1';
else
empty<= O';
end if;
if(head >= size) then
full<= 'l';
else
full<= O';
end if;

head0 <= bdd_t_zero;
headl <= bdd_t_zero;
head2 <= bdd_t_zero;
if(head 1) then
head0 <= stack(head I);
end if;
if(head = 2) then
head0 <= stack(head - I);
head! <: stack(head. 2);
elsif(head >2) then
headO <= stack(head• l);
head! <= stack(head-2);
head2 <= stack(head-3);
end if;

tp_head <= head;
end if;

end if;
end process;

93

end bddstack;

This has three ports in and three ports out
•• one, two, or three elements can be pushed or popped
•· with the appropriate stack command.

This just increments the stack pointer appropriately.
The three outputs will always show the top three elements

library ieee;
use ieee.STD _LOGJC_ 1164.all;
library work;
use work.kernetall;
library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.ALL;

enlity handlestack is
generic (

size: NATURAL := 6
);

port (
elk : in std_logic;
rst : in std_logic;
cmd : in stackcmd;
datain0 : in bddhandle;
datain l : in bddhandle;
da1ain2: in bddhandle;
headO : out bddhandle;
head1 : out bddhandle;
head2 : out bddhandle;
foll : out std_logic;
empty : out std_logic
):

end handlestack;

architecture handlestack of handlestack is

signal tp_head : NATURAL;
signal free . NATURAL;

begin
Start:process (elk, rst, datain0, datainl, datain2, cmd)

variable stack : bddhandle_vec_t(0 to size+ 4);
variable head : NATURAL;

begin •· process
if clk'event and elk = '1' men
if rst = 'O' then

free <=0;
head :=0;
for i in stack'range
loop
stack(i) :"' bddhandle_zero;
end loop;
empty<= 1';
full<= 'O';

else
"01" =>push
"IO"=>pop

•• others => do nothing
case cmdis

when stackpush =>
stack(head) := datain0;
if(head < (size)) then
head := (head + l);
end if;

when stackpop =>
if(head > 0) then
head := head -1 ;
end if;

when stackpush2 =>
stack(head+I) := datain0;
stack(head) := datain l;
if(head < (size)) then
head (head + 2);
end if;

when stackpop2 =>
if(head > I) then
head head -2:
else
bead O;
end if:

when stackpush3 =>
stack(head+2) := datain0;
s1ack(head+l) := datainl;
stack(head) datain2;
if(head < (size)) then
head (head + 3);
end if;

when stackpop3 =>
if(head > 2) then
head head-3;
else
head 0·
end if;

when others =>
null;

end case;
if(head = 0) then
empty <= 'I';
else
empty <= 'O';
end if;
if(head >= size) ,hen
full<= 'I';
else
full<= O';
end if;

head0 <= bddhandle _zero;
head I <= bddhandle _zero;
head2 <= bddhandle _zero;
if(head I) then
headO <= stack(head • I);
end if;
if(head = 2) then
head0 <= stack(head • l);
headl <= stack(head • 2);
elsif(head >2) then
headO <= stack(head- l);
head) <= stack(head-2);
head2 <= stack(head-3);
end if;

tp_head <= head;
end if;

end if;
end process;

end handlestack;

library ieee;
useieee.STD_LOGIC_l 164.all;
library bddlib;
use bddlib.kernel.all;
library SYNOPSYS;
use SYNOPSYS.ATIRIBUTES.ALL;

entity freenodecntl is

94

generic (
minhandle : bddhandle := bdd_minhandle;
maxhandle : hddhandle bdd_maxhandle
);

pon (
elk : in std_logic;
rst : in s1d_logic;
init : in std_logic;
tookfreehandle I : in std_logic;
freehandle : out bddhandle;
freehandle_ valid : out std_logic;
LOWONNODES : out std_logic;
OUTOFNODES : out s1d_logic;
nodemem_busy : in std_logic;
nodemem_ack : in std_logic;
nodemem_dataready : in std_logic;
nodemem_da1aout : in bdd_t;
nodemem_request : out std_Jogic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_t;
nodemem_rw : out std_logic
);

end freenodecntl;

The init process will take
memsize*(memdelay+ I) clocks.

architecrure freenodecntl of freenodecntl is

signal handle : bddhandle:
signal nexthandle : bddhandle;

type visual_currentslate_states is (IDLE, getnextfree, inimodes, lastinit,
waitformem):

signal currentstate : visual_currents1a1e_s1a1es;
attribute STATE_ VECTOR of freenodecntl :

architecture is "currentstate••~

begin

Synchronous process
freenodecntUDLE:
process (elk)
begin

if (elk event and elk 1 ') then
if (rst = 'O') then

freehandle_valid<= 'O';
•· rum of memory interface
nodemem_request <= '0~
nodemem_rw <= '1 ';
nodemem_handle <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
currentstate <= IDLE;

else

case currentstate is
when IDLE=>
if (init = 1 ') then

handle <= bddhandle....zero;
nexthandle <= bddhandle_one;
freehaodle_ valid <= 'O';
currentstate <= waitforrnem;

elsif (tookfreehandlel ='I') then
if (nex!handle = bddhandle_zero) then

freehandle_ valid <= 'O';
currentstate <= IDLE;

else
•· set the new freehandle

freehandle <= nexthandle;

•· read the node to node memory @ handle
nodemem_request <= 'I';
nodemem_rw <= 1 ·;
nodemem_handle <= nexthandle;
nodemem_datain <= bdd_t_zero;
currentstate <= gemextfree;

end if;
else

currentstate <= IDLE:
end if;

when getnextfree =>
if ((nodemem_ack = 'J) and (nodemem_dataready 'I')) then

nodemem_request <= O';
nexthandle <= nodemem_dataout.nextbdd;
if (nodemem_dataout.nextbdd = bddhandle_zero) then

freehandle_valid <= 'O';
•· tum of memory interface
nodemem_request <= O':
nodemem_rw <= 'I·:
nodemem_handle <= hddhandle_zero;
nodemem_datain <= hdd_t-7.ero;
currentstate <= IDLE:

else
-~ turn of memory Jntelface
nodemem_request <= O':
nodemem_rw 'I·:
nodemem_handle <= bddhandle_zero;
nodemem_datain <= bdd_t_zero:
currentstate <= IDLE;

end if;
else

-- set the new freehandle
freehandle <= nexthandle;

•· read the node to node memory @ handle
nodemem_request <= 'I·;
nodemem_rw <= 'l':
nodemem_handle <= nexthandle;
nodemem_darain <= bdd_t_zero:
curremstate <= getnextfree:

end if;

when initnodes =>
if (nodemem_ack = 'I) then

if (handle= maxhandle) then
nodemem_request <o0 'I ';
nodemem_rw <= O';
nodemem_handle <= handle;
nodemem_datain <= bdd_t_init:
currentstate <= Jastinit~

else
- initialize all of the node memory
nodemem_request <= 'I';
nodemem_rw <= 'O';
nodemem_handle <'- handle;
if(handle = bddhandle_zero) then
•- handle Ois the constant 0
nodemem_datain <= (level => bddvar_max,
lo=> bddhandle_zero, hi=> bddhandle_zero,
nextbdd => bddhandle_zero, ge=> gc_zero);

elsif(handle = bddhandle_one) then
- handle I is the constant I
nodemem_ datai n <= (level => bddvar _max,
lo=> bddhandle_one, hi=> bddhandle_one,
nextbdd => bddhandle_one, gc=> gc__zero);
else
- write the node to node memory @ handle
nodemem_datain <= (level => bddvar_rnax,
lo=> bddhandle_zero, bi=> bddhandle_zero,
nextbdd => nexthandle, ge=> gc_zero);
end if;

95

-- set the handle= nexthandle
handle<= nexthandle;
-- increment the next handle
nexthandle <= nexthandle + I;
currentstate <= initnodes;

end if;
else

currentstate <='- initnodes;
end if;

when lastinit =>
freehandle <= minhandle;
freehandle_ valid <= 'I';
nexthandle <= minhandle + I;

turn of memory interface
nodemem_request <= U';
nodemem_rw <= 1 ';
nodemem_handle <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
currentstate <= IDLE;

when wairfonnem =>
if (nodemem_busy = U') then
if (handle= maxhandle) then

nodemem_request <= 'I ';
nodemem_rw <= U';
nodemem_handle <= handle;
nodemem_datain <= bdd_t_init;
currentstate <== lastinit;

else
-- initialize all of the node memory
nodemem_request <= 'l '~
nodemem_rw <"' U';
nodemern_handle <= handle;
if(handle = bddhandle_zero) then

handle 0 is the constant 0
nodemem_datain <=(level=> bddvar_rnax,
lo => bddhandle_zero, hi => bddhandle_zero,
nextbdd => bddhandle_zero, gc=> gc_zero);

elsif(handle = bddhandle_ one) then
-- handle l is the constant 1
nodemem,_datain <=(level=> bddvar_rnax,
lo=> bddhandle_one, hi=> bddhandle_one,
nextbdd => bddhandle_one, gc=> gc...zero);
else

write the node to node memory @ handle
nodernern_datain <=(level=> bddvar_rnax,
lo=> bddhandle_zero, hi => bddhandle,.zero,
nextbdd => nexthandle, gc=> gc_zero);
end if;
-- set the handle= ne,lhandle
handle <= nexthandle;

increment the ne,t handle
nexthandle <= nexlhandle + 1;
currentstate <= initnodes;

end if;
else

C11rrentstate <= waitformem;
end if;

when others =>

- rum of memory interface
nodernem,_request <= U';
nodemern_rw <= 1 ';
nodernem_handle <= bddhandle_zero;
nodernem_datain <=< bdd_t_zero:
currentstate <= IDLE;

end case;
end if;

end if;
end process;

outofnodes <= 1' when nexthandle = bddhandle_zero
else U';

end freenodecntl:

library ieee;
use ieee.STD _LOGIC_l 164.all;
library bddlib;
use bddlib.kernel.all;
library SYNOPSYS;
use SYNOPSYS.ATIRIBUTES.ALL;

entity apply is
port (

elk : in std_logic;
rst : in std_logic;
lobddin : in bddhandle;
hibddin : in bddhandle;
resulthandle : out bddhandle;
resultvalid : out std_logic;
nodemern_dataout : in bdd_t:
nodemem_busy : in std_logic;
nodernem_datavalid ; in std_logic;
nodernem_ack ; in std_logic;
nodernern_handle : out bddhandle;
nodemern_datain : out bdd_1;
nodemem_rw : out std_logic;
nodernem_request : out std_logic;
cam_ack : in sld_logic;
carn_busy : in sld_logic;
cam_result : in camfield:
cam_resultvalid : in std_logic:
cam_found : in std_logic:
carn_request out std_logic;
carn_rw : out std_logic;
carn_fieldl : out camfield;
carn_lield2 : om camlield;
carn_field3 : out camlield;
cam_resultin : out camlield;
call_datain0 : out bdd_t;
cal!_datain1 ; out bdd_t;
call_ dataoutO : in bdd_t;
call_dataoutl : in bdd_t;
call_full : in std_logic;
call_ernpty : in std_logic;
call_cmd ; out stackcmd;
resull_datain : out bddhandle;
result_dataout : in bddhandle;
result_full : in std_logic;
result_emply : in std_logic;
result_cmd : out stackcmd;
start : in std_logic;
rnknode_start : out std_logic;
rnknode_result : in bddhandle;
mknode_resultvalid : in std_logic;
mknode_level : out bddvar;
mknode_lo : out bddhandle;
mknode_Ju : out bddhandle;
operator : in booleanop;
operror : out std_logic
);

end apply;

architecture apply of apply is

signal lohandle : bddhandle;
signal hihandle : bddhandle;
signal camdone : std_loglc;
signal terminalcase : std_logic;
signal rerumcode : gc_t;
signal lonode : bdd_t;
signal hinode : bdd_t;
signal localresult : bddhandle;

96

signal 1mpresult : bddhandle;

type visual_current_lop_states is (fOP);
constant current_lop: visual_current_top_states := TOP;

type visual_current_main_states is (IDLE, RETURNCTL, WARMUP,
mknode, updatehi,

updatelo, CAMFIND);

signal curren1_maln : visua)_current_main_states;

type visual_TOP _TOP _CAMFIND_CAMFJNDl_states is
(CAMFINDI,

TOP_TOP_CAMFJND _camdone);

signal visual_TOP _TOP_CAMFJND_CAMFINDl_current:
visual_TOP _TOP _CAMFIND_CAMFJNDl_sta!es;

type visual_TOP_TOP _CAMFJND_findnode_s!ates is (findnode,
findnode2,

waitcamresult);

signal visual_ TOP_ TOP_CAMFJND_findnode_current
visual_TOP_TOP_CAMFIND_findnode_slates;

type visual_current_ writecam_states is (writecamidle, wntecam);

signal current_writecam: visual_current_writecam_states:

-- since the memory interfaces are async with
-- each other, there is no telling which will

get done first.
must not exit until cam has gotten a result.
so the node lookup must wait unlil the cam is done
if there was a cam miss, then the exit must be from the
findnode machine

-- There is a potential problem if the cam
gets done, but misses and some other transaction
takes place on the cam. This might cause
an erroneous exit'!
No, because if the cam misses it will set camdone
and the findnode machine must wait for !hat to
exit
cam_found is async and is set as soon as cam_resultvalid
is recieved. The default is 'O' so it will hold that

- value only when resullvalid='l 'or in state camdone
begin

- Synchronous process
apply_TOP:
process (elk)

variable appcamhit : NATURAL :=0;
variable appcamwrite: NATURAL :=O;
variable appcammiss : NATURAL 0;

begin

if (clk'event and elk= 1 ') then
resultvalid <= U';
call_cmd <= stacknop;
result_cmd <= stacknop;
mknode_start <= U';
case cwrent_main is

when IDLE=>
if (rst = 'O') then

current_main <= IDLE;
elsif (stan = 1 ') then

lohandle <= lobddin;
hihandle <= hibddin;
current_main <= WARMUP;

else
current_main <= IDLE;

end if;

when RETURNCTL =>
if (rst = 'O') then

current_main <= lDLE;
elsif (returncode = returndone) then

- teh cam is accessed and we know it
-- will not be busy at this poin1, then
•· carn_ack will come back right away,
- so there is no reason to wait.
-for cam_ack = 'I'
-also since we know single cycle access
••is in place we can just turn off the request.
-This will have to change if it is not single
-cycle access.
cam_request <= -0';
resultvalid <= 'I';
current_rnain <= IDLE;

elsif (returncode = returnhigh) then
•- teh cam is accessed and we know ii
-- will not be busy al this point, then
-- cam_ack will come back right away,
-- so there is no reason to wait.
--for cam_ack = 1'
--also since we know single cycle access
-is in place we can just turn off the request.
--This will have to change if it is not single
--cycle access.
cam_request <= 'O';
-- pop call stack into local regs
call_cmd <= stackpop2;
lonode <= call_dataout0;
lohandle <= call_dataout0.lo;
hinode <= call_dataout I;
hihandle <= call_dataout0.hi;
-- push localresult onto result stack
result_cmd <= stackpush;
result_datain <= localresult;
current_main <= updatehi;

elsif (returncode = returnmknode) then
- teh cam is accessed and we know it
-- will not be busy at this point, then
-- cam_ack will come back right away,
- so there is no reason to wait.
-for cam_ack 'l'
--also since we know single cycle access
-is in place we can just tum off the request,
-This will have to change if it is not single
-cycle access,
cam_request <= U';
lohandle <= calLdataout0.lo;
hihandle <= call_dataout0.hi;

entry <= call_dataoutO.nextbdd;
- pop call stack into local regs
call_cmd <= stackpop;
-- start mknode
mknode_start <= 'I';
mknode_level <= call_dataoutOJevel;
mknode_Jo <= result_dataout;
-· the current result (from second recursive call)
-- can be applied to the mknode hi branch.
mknode_Iii <= localresuh;
- pop the result stack
result_cmd <= stackpop;
current_main <= mknode;

else
current_main <= RETURNcn.;

end if;

when WARMUP =>
if (rst = 'O') then

currenr_main <= IDLE;
elsif (terrninalcase = 'l ') then

localresult <:= tmpresult;
current_main <= RETURNCTL;

https://call_dataout0.hi
https://calLdataout0.lo
https://call_dataout0.hi
https://call_dataout0.lo

97

else
•· setup cam find
cam_request <= 'I ';
cam_rw <= 'I'; read (find);
cam_fieldl <= lohandle;
cam_field2 <= hihandle;
cam_field3 <= natural(booleanop'pos(operator));
visual_TOP _ TOP _CAMFIND_CAMFINDJ_cwrent <=

CAMFINDl;
·· set up a read request 10 node memory
nodemem_handle <= lohandle;
nodememJequest <= 'l ';
nodemem_.rw <= 'l '; •· read
nodemem_datain <= bdd_t_zero;
visual_TOP _TOP _CAMFIND_findnode_current <= findnode;
current_main <= CAMFIND;

end if;

when mknode =>
if (rsl = I)') then

current_main <= IDLE;
elsif (mknode_resultvalid = 'l ') then

localresult <= mknode_result;
current_main <= RETURNCTL;

else
current_rnain <= mknode;

end if;

when updatehi =>
if (rst = IJ') then

current_main <= IDLE;
else

•· set the local handles for the high edge recursion
lohandle <= hinode.lo;
hihandle <= hinode,hi;

- push local regs onto the call stack
call_datain0Jevel <= hinode.level;
call_datainO.lo <= lohandle;
call_datainO.hi <= hihandle;
--calLdatain0.nextbdd <= entry;
•· store the return code in the gc bits
call_datainO.gc <= rerurnmknode;
call_cmd <= stackpush;
current_main <= WARMUP;

end if;

when updatelo =>
if (rst = I)') then

curreni_rnain <= IDLE;
·· recure on low(l),low(r)

set the lo and hi handles
•· also push args for high edge recursion

high(l)Jligh(r)

elsif (lonode.level = hinode.level) then
- recure on low(l),low(r)
lohandle <= lonode.lo;
hihandle <= hinode.lo;
- then high(l),high(r)
•· for the high edge recursion put the
- arguments in the second stack entry
call_datainl.lo <= lonode.hi;
call_dataiol.hi <= hinode.hi;
•· store the var level for the mknode call
call_datainl.level <= lonode.level;
•· so must prep for s stack push
call_datainO.Jo <= lohandle;
call_datainO.hi <= hihandle;
••call_datain0.nextbdd <= entry;
call_datainO.gc <= returnhigh;
call_cmd <= stackpush2;
current_rnain <= WARMUP;

•· •· recur on low(l),r
•· •· then high(l),r

•· •· so must prep for s stack push
•• •· for the high edge recursion put the

•• arguments high(l),r in the second stack entry

elsif (lonode.level < hinode.level) then
recur on low(l).r

lohandle <= lonode.lo;
hihandle <= hihandle;
•· for the high edge recursion put the
- arguments high(l),r in the second stack entry
call_datain l .lo <= lonode.hi;
call_datainl .hi<= hihandle;
call_datain I.nextbdd <= hihandle;
- store the var level for the mknode call
call_datain I.level <= Jonode.level;
•• so must prep for s stack push
call_datain0.lo <= lohandle;
call_datainO.hi <= hihandle;
--call_datain0.nextbdd <= entry;
call_datain0.gc <= returnhigh;
call_cmd <= stackpush2;
current_main <= WARMUP;

•• recur on l,low(r)
1,high(r)

- for the high edge recursion put the
•· arguments high(l),r in the second slack entry

else
.• recur on l,low(r)

l,high(r)
lohandle <= lohandle;
hihandle <= hinode.lo;

for the high edge recursion put the
•· argumeOls high(l),r in the second stack entry
call_datain I.lo <= lohandle;
call_datainl.hi <= hinode.hi;
--call_datainl .nextbdd <= hihandle;
•• store the var level for the mknode call
call_datain I .level <= hinode.level;
•· so must prep for s stack push
call_datainO.lo <= lohandle;
call_datain0.hi <= hihandle;
-call_datain0.nextbdd <= entry;
call_datain0.gc <= returnhigh;
call_cmd <= stackpush2;
current_main <= WARMUP;

end if;

when CAMFIND =>
case visual_TOP _TOP _CAMFIND_CAMFINDl_current is

when CAMFINDl =>
if (cam_ack ='I' and carnJesultvalid ='I• and camJound = 1 ')

then
set result handle

localresult <= cam_result;
cam_request <= \'.J';
appcamhit := appcamhit + l;
current_rnain <= RETURNCTL;

elsif ((cam_ack ='I') and (cam_resultvalid ='I' and camJound

\'.J')) then
if (rst = IJ') then
current_main <= IDLE;

else
cam_request <= \'.J';
appcammiss appcammiss +I ;
visual_TOP_TOP _CAMFIND_CAMFJNDl_current <=
TOP _TOP _CAMFlND_camdone;

end if;
elsif (rst \'.J') then

current_main <= IDLE;
else

visuaLTOP _TOP _CAMFIND_CAMFlNDl_current <=
CAMFINDI;

end if;

https://call_datain0.gc
https://call_datain0.hi
https://call_datainO.lo
https://hinode.hi
https://call_datainl.hi
https://hinode.lo
https://call_datain0.gc
https://call_datainO.hi
https://call_datain0.lo
https://lonode.hi
https://lonode.lo
https://call_datainO.gc
https://call_datainO.hi
https://call_datainO.Jo
https://hinode.hi
https://call_dataiol.hi
https://lonode.hi
https://call_datainl.lo
https://hinode.lo
https://lonode.lo
https://call_datainO.gc
https://call_datainO.hi
https://call_datainO.lo
https://hinode.lo
https://nodemem_.rw

98

when TOP_TOP_CAMFIND_camdone =>
if (rst = tl) then

current_main <= IDLE;
else

visual_TOP_TOP_CAMFIND_CAMFINDl_current <=
TOP_TOP_CAMFIND_camdone;

end if;

when others =>

current_main <= IDLE;
end case:
case visual_TOP_TOP_CAMFIND_findnode_current is

- this state will lookup the nodehandle (found in the
•• unique table) in node memory

when findnode =>
if (rst = tl) then

current_main <= IDLE;
elsif ((nodemem..ack = 1) and (nodernem_datavalid ='I)) then

nodemem_request <= I)';
lonode <= nodemem_dataout;
-· set up a read request to node memory
nodemem_handle <= hi handle;
nodemem_request <= 'J ';
nodemem_rw <= 'I '; •· read
nodemem_datain <= bdd_t_zero;
visual_TOP_TOP_CAMFIND_findnode_current <=

findnode2;
else

visual_TOP_TOP_CAMFlND_findnode_current <= findnode:
end if;

when findnode2 =>
if (nodemem_ack 'l •and nodemem_datavalid ='J 'and cam

done =
'I) then

nodemem_request <= 'O';
hinode <= nodemem_dataout;
current_main <= updatelo;

elsif ((nodemem_ack = 'l ') and (nodemem_datavalid ='I')) then
if (rst = tl') then

current_main <= IDLE;
else

nodemem_request <= 'O';
hinode <= nodemem_dataout;

visual_TOP_TOP_CAMFIND_findnode_current <= waitcam
result;

end if;
elsif (rst 0') lhen

current_main <= IDLE;
else

visual_TOP_TOP_CAMFIND_findnode_current <=
findnode2;

end if;

when waitcamresult =>
if (camdone = 'I ') then

current_main <= updatelo;
else
if (rst = 'O') lhen

current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND_findnode_current <= waitcam-

result;
end if;

end if;

when others =>

current_main <= IDLE;
end case;

when olhers =>

current_main <= IDLE;
end case;
case current_writecam is

when writecamidle =>
if (mknode_resultvalid = 1 'and current_main mknode) then

-· setup a write/insert to cam
cam_request <= 'I';
cam_rw <= '0~ •· write(insen);
cam_fieldl <= lohandle;
cam_field2 <= hihandle;
cam_field3 <= natural(booleanop'pos(operator));
cam_resultin <= mknode_result;
current_writecam <= writecam;

else
current_writecam <c: writecamidle;

end if;

when writecam =>
if (cam_ack ='I) lhen

•· tum off write request
cam_request <= O';
cam_rw <= 'I';
appcamwrile := appcamwrite + I;
current_writecam <= writecamidle;

else
current_writecam <= writecam;

end if;

when others =>

current_ writecam <= writecamidle;
end case;

end if;
end process;

•- Combinational process
apply_TOP _comb:
process (current_main,

visual_TOP_TOP_CAMFIND_CAMFINDl_current,
visual_TOP_TOP_CAMFIND_findnode_current, current_ writecam)

begin ·• Combinational process
camdone <= '0~

case current_main is
when CAMFIND =>
case visual_TOP_TOP_CAMFIND_CAMFINDl_current is

when TOP_TOP_CAMFIND_camdone =>
camdone <= 1 ';

when others =>
null;

end case;
when others =>

null;
end case;

end process;

resulthandle <= localresult;
retumcode <= call_dataoutO.gc;

process(lohandle.hihandle)
variable terminaltest : std_logic_vector(J downto 0);
begin
-- do some defaults so we dont get latches
operror <= 'O';
terminalcase <= 'O';
terminaltest := "0000";

•• set up the terminal test values so that the terminal test
•· case statement can work effectively
•· terminal value 00 means handle =0
•· termanl value 11 means handle =I
- terminal value OJ means handle is neither of the two constants

https://call_dataoutO.gc

99

if(lohandle = bddhandle_one) then
terminaltest(l downto 0) := "II";
elsif(lohandle = bddhandle_zero) then
terminaltest(I downioO) := "00";
else
tenninaltest(l downm 0) := "01";
end if;

if(hihandle = bddhandle_one) then
terminaltest(3 downto 2) := "ll ";
elsif(hihandle = bddhandle_zero) then
terminal!est(3 downto 2) := "00";
else
terminaltest(3 downto 2) "01 ";
end if:

case operalor is
when booleanop_and =>
•· leSIS for the and operator
if(lohandle = hihandle) 1hen
tmpresull <= lohandle;
terminalcase <= 'I';
else
case terminaltest ls
when "0000" I "0001" I "0011" I "I I 00" l "OHlO"=>
tmpresult <= bddhandle_zero;
terminalcase <= 'I';
when "1111" =>
tmpresul1 <= bddhandle_one;
terminalcase <= 'I';
when "1101" =>
tmpresult <= lohandle;
terminalcase <= '1 '~
when "0111" =>
tmpresult <= hihand!e;
terminakase <= •1 ';
when others "'>
•· do not assign a true value lo terminalcase because
- this is the case where you are not in a ternina! case and muse
- recursivly evaluate the bdd
- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;
tenninalcase <= U';
end case;
end if;
•· end tesls for the and operator

- or operator
when booleanop_or =>

if(lohandle = hihandle) then
tmpresult <= lohandle;
terminakase <= '] ?;
else
case terminaltest is
when "JI JI" l "llOO" I "00ll" I "1101" ! "0111"=>
tmpresult <= bddhandle_one;
lerminalcase <= 'I';
when "01()()" ">
tmpresult <= hihandle;
terminalcase <= 'I';
when "0001" =>
tmpresult <= lohandle;
terminalcase <= 11';
when "0000" =>
tmpresult <= bddhandle_zero;
terrninalcase <= 'I';
when others =>
•· neither edge is constant, not a terminal case
rmpresult <= bddhandle_zero;
terrninalcase <= U';
end case;
end if;

end lest for the or operator

when booleanop_xor =>

if(lohandle = hihandle) then
tmpresuh <= bddhandle_zero;
terminakase <= '1 ~
else
case terrninaltest is
when "0100" I "1100" =>
tmpresu!t <= hihand!e;
termi nalease <= ·1 ·;
when "0011" I "0001" =>
tmpresuh <= !ohandle;
terminakase <= 'l ';
when "0000" I "l l l I" =>
tmpresult <= bddhandle_zero;
terminalcase <= 'I';
when others =>
-- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= o•;
end case:
end if;

end test for the xor operator

•· nand operator

when booleanop_nand =>

case teITTUnaJtes1 is

when "0000" I "1100" I "0011" I "0100" I "0001" =>
•· either input is 0
tmpresult <= bddhandle_one;
tenninakase <= 'l ';
when"llll"=>
-· both inputs are one
tmpresult <= bddhandle_zero;
terminalcase <= 'I ';
when others =>
-- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;
terrninalcase <= U~
end case;

-- end test for the nand operator

when booleanop_nor =>

case lerm.inaltest is
when "Ill I" I "1100" I "0011" I "1101" I "Olli"=>

either input is I
tmpresult <= bddhandle_zero;
terrninalcase <= 'I';
when "0000" =>
tmpresul1 <= bddhandle_one;
terrninalcase <= 1 ';
when others =>
-· neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= 'O';
end case;
-- end test for the or operator

when booleanop_imp =>
case lermina1test is
when "1100" I "0100" I "0000" I "1101" I "1111" =>

low edge is zero or high edge is one
tmpresu!t <= bddhandle_one;
terminalcase <= 'I';
when "0011" 1"0111"=>

lo edge is one

tmpresult <= hihandle;
terminalcase <= 'l ';
when others =>

neither edge is constant, not a tenninal case
tmpresult <= bddhandle_zero;
tenninalcase <= ti';
end case;
if(lohandle bddhandle_one) then
tmpresult <= hihandle;
terminalcase <= 'l ';
end if;

when booleanop_biimp =>
case terminaltest is
when "0000" I "llll" =>
-- low edge is zero or high edge is one
tmpresult <= bddhandle_one;
terminalcase <= 'I';
when "0011" I "1100" =>
-- Jo edge is one high edge is zero
tmpresult <= bddhandle_z.ero;
terminalcase <= 'I';
when others =>
- neither edge is constant . not a terminal case
tmpresult <= bddhandle_zero;
tenninalcase <= ti';
end case;
-- end test for the implication operator

-- difference (greater than)
when booleanop _greater =>
case terminahest is
when "0000" I" I 11 I" I" l!OO" =>
tmpresult <= bddhandle_zero;
terminalc ase <= 'I ·;
when "OOIJ" =>
- lo edge is one high edge is zero
tmpresult <= bddhandfe_one;
terminalcase <= 'I';
when others =>
- neither edge is constant , not a terminal case
tmpresult <= bddhandle_zero;
terminakase <= ti';
end case;
- end test for the difference operator

less
when booleanop _less =>
case terminaltest is
when "0000" I "1 ll I" I "0011" =>
tmpresult <= bddhandle_zero;
terminalcase <='I';
when "1100" =>
-- hi edge is one low edge is zero
tmpresult <= bddhandle_one;
tenninalcase <= 'l ';
when others =>
- neither edge is constanl , not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= ti';
end case;
-- end terminal test for less operator

- others
when others=>
-- some kind of operator error, make it terminal and return zero
operror <= 'I';
terminalcase <= 'I';
tmpresult <= bddhandle_zero;
end case;
end process;

end apply;

library ieee;
use ieee.STD_LOGIC_I 164.all;

library bddlib;
use bddlib.kernel.all;
library SYNOPSYS;
use SYNOPSYS.ATTRJBlITES.ALL;

entity APPLY _NOT is
port (

elk in std_logic;
rst : in Sld_logic;
bddin : in bddhandle;
resulthandle : out bddhandle;
resultvalid : out std_logic;
nodemem_dataout : in bdd_t;
nodemem_busy : in std_logic;
nodemem_datavalid : in std_logic;
nodemem_ack . in srd_logic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_t;
nodemem_rw : out std_logic;
nodememJequest : out std_logic;
cam_ack : in std_logic;
cam_busy : in std_logic;
cam_result ; in camfield;
cam_resultvalid : in sld_logic;
cam_found : in std_logic;
cam_request : out std_logic;
cam_rw : out std_logic;
cam_field I : out camf1eld:
cam_field2 out camfield;
cam_field3 : out cornfield;
cam_resuhin : out camfield;
call_datain : out bdd_t;
call_dataout : in bdd_t;
call_full · in std_logic;
call_empty : in std_logic;
call_cmd : out stackcmd;
result_datain : out bddhandle;
result_dataout : in bddhandle;
result_full : in std_logic;
result_empty : in std_logic;
result_cmd : out stackcmd;
start : in srd_logic;
mknode_start : out std_logic;
mknode_result : in bddhandle;
mknode_resultvalid: in std_logic;
mknode_level : out bddvar;
mknode_lo : out bddhandle;
mknode_hi : out bddhandle
);

end APPLY _NOT;

an:hitecrure APPLY _NOT of APPLY_NOT is

constant operator : booleanop := booleanop _not;
signal localhandle : bddhandle;
signal camdone : std.Jogic;
signal returncode: gc_t;
signal localnode : bdd_t;
signal localresult : bddhandle;

type visual_current_top_states is (TOP);
constant current_top : visual_current_top_states := TOP;

type visual_current_main_states is (IDLE, RETURNCTL, WARMUP,
mknode, updatehi,

updatelo, CAMFIND);

signal current_rnain : visual_current_main_states;

type visual_TOP _TOP_CAMFIND_CAMFINDl..states is
(CAMFINDI,

TOP _TOP _CAMFlND_camdone);

101

signal visual_TOP _TOP_CAMFIND_CAMFJNDl_current:
visual_TOP_TOP_CAMFIND_CAMFINDI _states;

type visual_TOP_TOP_CAMFIND_findnode_states is (find node, wait
camresult);

signal visual_ TOP_TOP_CAMANO_findnode_current :
visual_TOP_TOP_CAMFIND_findnode_s1ates;

type visual_current_writecam_states is (writeuniqueidle, writecam):

signal current_writecam : visual_current_ writecam_states;

begin

- Synchronous process
APPLY_NOT_TOP:
process (elk)

variable appnotcamhi1 : NATURAL 0;
variable appnotcamwrite: NATURAL O;
variable appnolcammiss : NATURAL O;

begin

if (clk'event and elk= 'l ') !hen
resullvalid <= 'O';
call_cmd <= stacknop;
result_cmd <= stacknop;
mlmode_start <= 'O';
case current_main Is

when IDLE=>
if (rst = 0) then

current_main <= IDLE;
elsif (start= 'I') then

localhandle <= bddin;
curn:nt_main <= WARMUP;

else
current_main <= IDLE;

end if;

when RETURNCTL =>
if (m = 0') then

~-um:nt_main <= IDLE;
elsif (returncode = returndone) then

-- since this is the only place
- teh cam is accessed and we know it
-- will not be busy at this point, then
-- cam_ack will come back right away,
~- so there is no reason to wait.
-•for cam_ack = 'l'
-also since we know single cycle access
--is in place we can just turn off the request.
--This will have to change if it is not single
--cycle access.
cam_request <= O';
resulrvalid <= 'l ';
current_main <= IDLE;

elsif (returncode = retummk.node) then
•· since this is the only place
•· teh cam is accessed and we know it
- will not be busy at this point, then
•· cam_ack will come back right away,
-- so there is no reason to wait.
•-for cam_ack = 1 '
--also since we know single cycle access
--is in place we can just turn off the request.
--This will have to change if it is not single
--cycle access.
cam_request <= O';
- pop call stack into local regs
call_cmd <= stackpop;
localnode <= call_dataout;

localhandle <= call_dataout.nextbdd;
-- start mk.node
mk.node_start <= 'I':
mk.node_level <= call_dataout.level;
mk.node_lo <= result_dataout;

the current result (from second recursive call)
-· can be applied to the mlcnode hi branch.
mlcnode_hi <= localresult;
-- pop the resu It stack
result_cmd <= stackpop;
current_main <= mknode;

elsif (returncode = returnhigh) then
-- since this is the only place
.. teh cam is accessed and we know it

will not be busy at this point, then
-· cam_ack will come back right away,
*~ so there is no reason to wait.
--for cam_ack = 'l'
--also since we know single cycle access
--is in place we can just turn off the request
--This will have to change if it is not single
--cycle access.
cam_request <= 'O';
.• pop call stack into local regs
call_cmd <= stackpop;
localnode <= call_dataout;
localhandle <= call_dataout.nextbdd;
-· push localresult onto result stack
result_cmd <= stackpush;
result_datain <= localresult;
current_maln <::;:; updatehi:

else
current_main <= RETURNCTL;

end if;

when WARMUP =>
if (rst = 0) 1hen

currenr_main <= IDLE;
elsif (localhandle = bddhandle_zero) then

localresult <= bddhandle_one;
c1ment_main <= RETURNCTL;

elsif (localhandle = bddhandle_one) then
localresult bddhandle_zero;
current_main <= RETURNCTL;

else
setup cam find

cam_request <= 'l ';
cam_rw <= 'I'; -- read (find);
cam_field l <= localhandle;
cam_field2 <"- camfield_zero;
cam_field3 <= natural(booleanop'pos(operator));
visual_TOP_TOP_CAMFIND_CAMFINDl_current <=

CAMFINDI;
•· set up a read request to node memory
nodemem_handle <= localhandle;
nodemem_request <= 'I';
nodemem_rw <= 'I '; •· read
nodemem_datain <= bdd_t_zero;
visual_TOP _ TOP_CAMAND_findnode_current <= findnode;
current_main <= CAMFIND;

end if;

when mk.node =>
if (rs! = 0') 1hen

current_main <= IDLE;
elsif (mk.node_resultvalid = 1 ') then

localresult <= mk.node_result;
current_main <= RETURNCTL;

else
current_main <= mk.node;

end if;

when updatehi "->
if (rst = 0') then

current_main <" IDLE;

102

else
•· push local regs onto the call stack
call_datain.level <= localnode.level;
call_datain.lo <= localnode.lo;
call_datain.hi <= localnode.hi;
call_datain.nextbdd <= localhandle;

store the return code in the gc bits
call_datain.gc <= rerurnmknode;
call_cmd <= stackpush;
•· set the arg for the hi-edge recursion.
Jocalhandle <= localnode.hi;
currenr_main <= WARMUP;

end if;

when updatelo =>
if (rst = 'O) then

currenl_main <= IDLE;
else

•· push local regs onto the call stack
call_datain <= localnode;
call_datain.nextbdd <= localhandle;
- store the return code in the gc bits
call_datain.gc <= returnhigh;
call_cmd <= stackpush;
- set the are for the lo-edge recursion
localhandle <= localnode.lo;
current_main <= WARMUP;

end if;

when CAMFIND =>
case v1sual_TOP_TOP_CAMFIND_CAMFINDl_current is

whenCAMFINDI =>
if (cam_ack = 'I' and cam_resultvalid 'l 'and cam_found = 'I)

then
-- set result handle
localresult <= cam_result;
cam_request <= 'O';
•· cam hit
appnotcamhit appnotcamhil + I;
current_main <= RETURNCTL;

elsif ((cam_ack =1' and cam_resultvalid ='I) and (cam_found

'O)) then
if (rst = 'O) then

current_main <= IDLE;
else

cam_request <= '0~
appnotcammiss := appnotcamrniss + I;
visual_TOP_TOP_CAMFIND_CAMFINDl_cwrent <=

TOP_TOP_CAMFIND_camdone;
end if;

elsif (rst = 'O) then
current_main <= IDLE;

else
visual_TOP_TOP_CAMFIND_CAMFINDl_current <=

CAMFINDI;
end if;

when TOP_TOP_CAMFIND_camdone =>
if (rst = 'O) then

current_main <= IDLE;
else

visual_TOP_TOP_CAMFIND_CAMFINDl_current <=
TOP_TOP_CAMFIND_camdone;

end if;

when others =>

current_main <:o IDLE;
end case;
case visual_TOP_TOP_CAMFIND_lindnode_current is

-· this state will lookup the nodehandle (found in the
•· unique table) in node memory

when lindnode =>

if (nodemem_ack = 1' and nodemem_datavalid 'I' and cam•
done=

'I) then
nodemem_request <= O';
localnode <= nodemem_dataout;
current_main <= updatelo;

elsif (nodemern_ack ='I' and nodernem_datavalid 'l) then
if (rst 0) then

current_main <= IDLE;
else

nodemem_request <= O';
localnode <= nodemem_daraout;

visual_TOP_TOP _CAMFIND_lindnode_current <= waitcam•
result;

end if;
elsif (rst "' 'O') then

current_main <:o IDLE;
else

visual_TOP _TOP _CAMFIND_lindnode_currem <= lindnode;
end if;

when waitcamresult =>
if (camdone ='I) then

current_main <= updatelo;
else

if (rst = 'O) then
currem_main <= IDLE;

else
visual_TOP_TOP_CAMFIND_findnode_current <= waitcam-

result:
end if;

end if;

when others=>

current_rnain <= IDLE;
end case;

when others =>

current_main <= IDLE;
end case;
case current_writecam is
when writeuniqueidle =>
if (mknode_resultvalid"' 1'and current_main = mknode) then

•· setup a write/insert to cam
- setup cam find
cam_request <= 'I';
cam_rw <"' 'O'; •· write(insert);
cam_lieldl <= localhandle;
cam.Jield2 <= camlield_zero;
cam_field3 <:o natural(booleanop'pos(operator));
cam_resultin <= mknode_result;
current_writecam <= writecam;

else
current_writecam <= writeuniqueidle;

end if;

when writecam :>
if (cam_ack = 1) then

•• turn off write request
cam_request <= 1Y;
cam_rw <= 'I';
appnotcamwrite := appnotcamwrite + I;
current_writecam <= writeuniqueidle;

else
current_writecam <= writecam;

end if;

when others =>

current_ writecam <= writeuniqueidle;
end case;

end if;
end process;

https://localnode.lo
https://call_datain.gc
https://localnode.hi
https://call_datain.gc
https://localnode.hi
https://call_datain.hi
https://localnode.lo
https://call_datain.lo

103

-- Combinational process
APPLY _NOT _TOP _comb:
process (current_main,

visual_TOP _TOP _CAMFIND_CAMFINDl_current,
visual_ TOP_ TOP _CAMFIND _findnode_current, current_ writecam)

begin -- Combinational process
camdone <= O';

case current_main is
when CAMFIND =>

case visual_TOP _TOP _CAMFlND_CAMl'lNDl_current is
when TOP_TOP _CAMFIND_camdone =>

camdone <= 'I ';

when others=>
null;

end case;
when others =>
null;

end case~
end process;

resulthandle <= localresult;
returncode <= call_dataout.gc;

end APPLY _NOT;

-- Mux the two apply routines together.
-- these two apply functionscould be
-- combined, but would add complexity
-- to the FSMs so they are muxed at this

level instead.

library ieee;
use ieee.STD_LOGIC_I I 64.all;
library work;
use work.kernel.all;
library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.ALL;

entity APPLYBLK is
port (

applyerror : out std_logic;
starlO : out std_logic;
levelO : out bddvar;
lowO : out bddhandle;
highO : out bddhandle;
applyop : in booleanop;
bddin I : in bddhandle;
bddin2 : in bddhandle;
call_dataou!O : in bdd_t;
call_dataoutl : in bdd_t;
call_dataout2 : in bdd_t;
call_full : in std_logic;
call_empty : in std_logic;
call_datainO : out bdd_t;
call_datainl ; out bdd_t;
call_datain2 : out bdd_t;
call_cmd : out stackcmd;
cam_.request : out std_logic;
CamJW : out std_logic;
cam_fieldl : out camfield;
cam_field2 : out camfield;
cam_field3 : out camfield;
camJesultin : out cam.field;
cam_ack : in std_logic;
cam_busy : in std_logic;
camJesult : in camfield;
cam_resultvalid ; in std_logic;
cam_found ; in std_logic;
elk : in std_logic;
enableand : in std_logic;
enablenot : in std_logic;
mknode_result : in bddhandle;

mknode_resultvalid : in std_logic;
node_port3_ack ; in std_logic;
node_port2_ack : in std_logic;
node_portl_ack : in std_logic;
node_datavalid : in std_logic;
node_dataout : in bdd_t;
node_busy : in std_logic;
pon3_datain : out bdd_t;
port3_handle ; out bddhandle;
pon3_request : out std_logic;
port3_;w : out std_logic:
resulthandle : out bddhandle;
result_datainO : out bddhandle;
result_datain I : out bddhandle;
result_datain2 : out bddhandle;
result_cmd : out stackcmd;
result_dalaoutO : in bddhandle;
resul!_dataoutl : in bddhandle;
result_dataout2 : in bddhandle;
result_full : in std_logic;
result_empty : in std_logic:
resultvalid : out std_logic;
rst : in std_logic;
starlapply : in std_logic;
starlnot : in std_logic
);

end APPLYBLK;

library bddlib;
architecture APPLYBLK of APPLYBLK is

signal appand_call_cmd : stackcmd;
signal appand_call_datainO : bdd_t:
signal appand_call_datainl : bdd_t;
signal appand_call_datain2 : bdd_t;
signal appand_cam...fieldl : camfield;
signal appand_cam_field2 : camfield;
signal appand_cam_field3 : camfield;
signal appand_cam_request : std_logic;
signal appand_cam_resultin : camfield;
signal appand_camJW : std_logic:
signal appand_highO : bddhandle;
signal appand...levelO : bddvar;
signal appand_lowO : bddhandle;
signal appand_port3_datain : bdd_t;
signal appand_port3_handle : bddhandle;
signal appand_port3_request : std_logic;
signal appand_port3JW : std_logic;
signal appandJesult_cmd : stackcmd;
signal appandJesult_datainO : bddhandle;
signal appand_result_datain I : bddhandle;
signal appand_result_datain2 : bddhandle;
signal appandJesulthandle : bddhandle;
signal appandJesultvalid : std_logic;
signal appand_startO : std_logic;
signal appnot_call_cmd ; stackcmd;
signal appnot_call_datainO : bdd_t;
signal appnot_call_datainl : bdd_t;
signal appnot_call_datain2 : bdd_t;
signal appnot_cam ..Jieldl : camfield;
signal appnot_cam_.field2 : camfield;
signal appnot_cam_field3 : camfield;
signal appnot_camJequest : std_logic;
signal appnot_cam_resultin : camfield;
signal appnot_caIDJW : std_logic;
signal appnot_llighO ; bddhandle;
signal appnot_levelO : bddvar;
signal appnot_!owO : bddhandle;
signal appnot_port3_datain : bdd ..J;
signal appnot_port3_handle : bddhandle;
signal appnot_port3_request : std_logic;
signal appnot_port3_rw : std_logic;

https://call_dataout.gc

104

signal appnot_result_cmd : stackcmd;
signal appnot_resull_datain0 : bddhandle;
signal appnot_result_datain 1 : bddhandle;
signal appnot_result_datain2 : bddhandle;
signal appnot_resulthandle : bddhandle;
signal appnot_resultvalid : std_logic;
signal appnot_start0 ; std_logic;
signal enableand_d : std_logic;
signal enablenot_d : std_logic;
signal visual_CI_Q : std_logic;
signal visuaLC2_Q ; std_logic;
component APPLY_NOT

port (
elk : in std_logic;
m : in std_logic;
bddin : in bddhandle;
resulthandle : out bddhandle;
resultvalid : out std_logic;
nodemem_dataout : in bdd_t;
nodemem_busy : in std_logic;
nodemem_datavalid : in std_logic;
nodemem_ack : in std_logic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_t;
nodemem_rw : out std_logic;
nodemem_request : out std_logic;
cam_ack : in std_logic;
cam_busy : in std_logic;
cam_result : in camfield;
cam_resultvalid : in std_logic;
cam_found : in std_logic;
cam_request : out std_logic;
cam_rw : out std_logic;
cam_field 1 : out camfield;
cam_field2 : out camfield;
cam_field3 : out camfield;
cam_resultin : out camfield;
call_datain : out bdd_t;
call_dataout : in bdd_t;
call_full : in std_logic;
call_empty : in std_logic;
call_cmd : out stackcmd;
result_datain : out bddhandle;
result_dataout : in bddhandle;
result_full : in std_logic;
result_empty : in std_logic;
result_cmd : out stackcmd;
start : in std_logic;
mknode_start : out std_logic;
mknode_result : in bddhandle;
mknode_resultvalid : in std_logic;
mknode_level : out bddvar;
mknode_lo : out bddhandle;
mknode_hi : out bddhandle
);

end component;
component apply

port (
elk : in std_logic;
m : in std_logic;
lobddin : in bddhandle;
hibddin : in bddhandle;
resulthandle : out bddhandle;
resultvalid : out std_logic;
nodemem_dataout ; in bdd_t;
nodemem_busy : in std_logic;
nodemem_datavalid : in std_logic;
nodemem_ack : in std_logic;
nodemem_handle : out bddhandle;
nodeme111...datain : out bdd_t;
nodemem_rw : out std_logic;
nodemem_request : out std_logic;
cam_ack : in std_logic;
cam_busy ; in std_logic;
cam_result : in camfield;

cam_resultvalid : in std_logic:
cam_found : in std_logic;
cam_request : out std_logic;
cam_rw : out std_logic;
cam_fieldl : out camfield;
cam_field2 : out camfield;
cam_field3 : out camfield;
cam_resultin : out camfield;
call_datainO : out bdd_t;
call_datain I : out bdd_t;
call_dataout0 : in bdd_t;
call_dataoutl : in bdd_t;
call_full : in std_logic;
call_empty : in std_logic;
call_cmd : out stackcmd:
result_datain : out bddhandle;
result_dataout : in bddhandle;
result_full : in std_logic;
result_empty : in std_logic;
result_cmd : out stackcmd;
start : in std_logic;
mknode_start : out std_logic;
mJrnode_result : in bddhandle;
mknode_resultvalid: in std_logic:
mknode_level : out bddvar;
mknode_lo : out bddhandle;
mknode_hi : out bddhandle;
operator : in booleanop;
operror : out std_logic
);

end component;

- Start Configuration Specification
for all : APPLY _NOT use entity bddlib.APPLY _NOT(APPLY _NOT);
for all : apply use entity bddlib.apply(apply);
-- End Configuration Specification

begin

inst_APPLY_NOT: APPLY_NOT
port map(

clk=>clk,
rst => rst,
bddin => bddinl,
resulthandle => appnot_resulthandle,
resultvalid => appnot_resu!tvalid.
nodemem_dataout => node_dataout,
nodemem_busy => node_busy,
nodemem_datavalid => node_datavalid,
nodemem__ack => node_port3_ack,
nodemem__handle => appnot_port3_liandle,
nodemem_datain => appnot_port3_datain,
nodemem_rw => appnot_port3_rw,
nodemem_request => appnot_port3 _request,
cam_ack :> cam_ack.
cam_busy => cam_busy,
cam_result => cam_result,
cam_resultvalid "'> cam_resultvalid,
cam_found :> cam_found,
cam_request => appnot_cam_request,
cam_rw => appnot_cam_rw,
cam_fieldl => appnot_cam_fieldl,
cam_field2 :> appnot_cam_field2,
cam_field3 => appnot_cam__field3,
cam_resultin => appoot_cam_resultin,
call_datain :> appnot_call_dataln0,
call_dataout => calLdataoutO,
call_full => call_full,
call_empty => call_empty,
call_cmd => appnot_call_cmd,
result_datain :> appnot_result_datalnO,
result_dataout => result_dataoutO,
result_full => result_full,
result_empty => result_empty,
result_cmd => appnot_result_cmd,

105

start=> startnot,
mknode_start => appnot_startO,
mknode_result => mknode_resuh,
mknode_resullvalid => mknode_resultvalid,
mknode_level => appnot_levelO,
mknode_lo => appnot_lowO,
mknode_bi => appnot_bighO);

inst_apply: apply
port map (

elk=> elk,
rst => rst,
lobddin => bddin I,
hibddin => bddin2,
resultbandle => appand_resulthandle.
resultvalid => appand_resultvahd,
nodemem_dataout => node_dataout.
nodemem_busy => node_busy,
nodemem_datavalid => node_datavalid,
nodemem_ack => node_port3_ack,
nodemem_handle => appand_port3_handle,
nodemem_datain => appand_port3_datain,
nodemem_rw => appand_port3_rw,
nodememJequest => appand_port3_request,
cam_ack => cam_ack;
cam_busy => cam_busy,
cam_result => cam_result,
cam_resultvalid => cam_resultvalid,
cam_found => cam_found,
cam_request => appand_cam_request,
cam_rw => appand_cam_rw,
cam_fieldl => appand_cam_fieldl.
cam_field2 => appand_cam_field2,
cam_field3 => appand_cam_tield3,
cam_resultin => appand_cam_resultin.
call_datainO => appand_ca!l_datainO,
call_datainl => appand_call_datain I,
call_dataoutO => call_dataoutO,
call_dataoutl => calLdataoutl,
call_full => call_full,
call_empty => call_empty,
call_cmd => appand_call_cmd,
result_datain => appand_result_datainO,
result_dataout => result_dataoutO,
result_full => result_full,
result_empty "> result_empty,
result_cmd => appand_resull_cmd,
start=> stanapply,
mknode_stan => appand_startO,
mknode_resull => mknode_resuh,
mknode_resultvalid => mknode_resultvalid,
mknode_level => appand_levelO,
mknode_lo => appand_lowO,
mknode_lti => appand...highO,
operator=> applyop,
operror => applyerror);

process(enablenot_d,enableand_d,
appnot_resultbandle,
appnot_resultvalid,

•· result signals
appand_resultbandle,
appand_resultvalid)
begin
if(enablenot_d = 'I') then
resultbandle <= appnot_resultbandle;
resultvalid <= appand_resultvalid OR appnotJesultvalid;
else
resultbandle <= appand_resultbandle;
resultvalid <= appand_resultvalid OR appnot_resultvalid;
end if;

end process;

process(enablenot,enableand,

appnot_resultbandle,
appnot_resultvalid,
-· cam signals
appnot_cam_tieldl,
appnot_cam_field2,
appnot_cam_field3,
appnot_cam_resultin,
appnot_cam_request,
appnot_cam_rw,

node memory signals
appnot_port3 _datain,
appnot_port3_handle,
appnot_port3 _request,
appnot_port3_rw,
-- call register/scack frame
appnot_call_datainO,
appnot_calLdatain I,
appnot_call_datain2,
appnot_call_cmd,
•· result stack frame
appnot_result_datainO,
appnot_result_datain l,
appnot_result_datain2,
appnot_result_cmd,
--mknode signals
appnot_startO,
appnot_levelO,
appnoUowO,
appnot_highO,

apply and signals
-· result signals

appand_resulthandle,
appand_resultvalid,
•· cam signals
appand_cam_tieldl,
appand_cam_field2,
appand_cam_tield3,
appand_cam_resultin,
appand,._cam_request,
appand,._cam_rw,
-- node memory signals
appand_port3_datain,
appand_pon3...handle,
appand_port3_request,
appand_pon3JW,
-- call register/stack frame
appand_call_datainO,
appand_call_datain 1,
appand_call_datain2,
appand_call_cmd,
-- result stack frame
appandJesult_datainO,
appand_result_datainl,
appand_result_datain2,
appand_result_cmd,
--mknode signals
appand_startO,
appandJevelO,
appandJowO,
appand_bighO)

subtype visual_BIT_VECTOR_O_I_O is BIT_VECTOR (0 to I);
begin

--case visual_BIT_ VECTOR__O_I_O'(To_bitvector
(std_ulogic_ vectorXstartnot & stanand),'O')) is

-· APPLY_NOT
--when •01• =>
if(enablenot = 'I') then

•· result signals are bandies in different process
•· cam signals

106

--cam_datain <= appnot_cam_datain;
cam_fieldl <= appnot_cam_fieldl;
cam_field2 <= appnot_cam_field2;
cam_field3 <= appnot_cam_field3;
cam_resultin <= appnot_cam_resultin;
cam_request <= appnot_cam_request;
cam_rw appnot_cam_rw;
-- node memory signals
port3_datain <= appnot_pon3_datain;
port3_handle <= appnot_pon3_handle;
port3_request <= appnot_pon3_request;
port3_rw <= appnot_pon3_rw;
-- call register/stack frame
call_datain0 <= appnot_call_datain0;
call_datain I <= appnot_call_datain I;
call_datain2 <= appnot_call_datain2;
call_cmd <= appnot_call_cmd;
-- result stack frame
result_datain0 <= appnot_result_datain0;
result_datainl <= appnot_result_datainl;
result_datain2 <= appnot_result_datain2;
result_cmd <= appnot_result_cmd;
--mknode signals
start0 <= appnot_startO;
levelO <= appnot_levelO;
lowO <= appnot_low0;
high0 <= appnot_high0;

elsif(enable and = 'l) then

APPLY_AND
--when "IO" I
--when others=>

-- result signals are handled in different processs
cam signals

--cam_datain <= appand_cam_datain;
cam_fieldl <= appand_cam_field I;
cam_field2 <= appand_cam_field2;
cam_field3 <= appand_cam_field3;
cam_resultin <= appand_cam_resultin;
cam_reque.,t <= appand_cam_request;
cam_rw <= appand_cam_rw;
-- node memory signals
pon3_datain <= appand_pon3_datain;
pon3_handle <= appand_pon3_handle;
pon3_request <= appand_pon3_request;
port3_rw <= appand_pon3_rw;
-- call register/stack frame
call_dalain0 <= appand_call_datain0;
call_datainl <= appand_call_datainl;
call_datain2 <= appand_call_datain2;
call_cmd <= appand_call_cmd;
-- result stack frame
result_datainO <= appand..,result_datain0;
result_datainl <= appand_result_datainl;
result_datain2 <= appand_result_datain2;
result_cmd <= appand_result_cmd;
--mknode signals
start0 <= appand_startO;
JevelO <= appand_levelO;
low0 <= appand_low0;
high0 <= appand_highO;

end if;
•-end case;

end process;

enableno1_d <= (visual_CI_Q);

process (elk, rst)
begin
if (rst = 'O') then

visual_Cl_Q <= U';
elsif (clk'event and elk= 1 ') then

visual_Cl_Q <= (enablenot);

end if;
end process;

enableand_d <= (visual_C2_Q);

process (elk, rst)
begin
if (rst = U') then

visual_C2_Q <= U';
elsif (clk'event and elk =1 ') !hen

visual_C2_Q <= (enableand);

end if;
end process;

end APPLYBLK;

library ieee;
use ieee.STO_LOGIC_l !64.all;
library bddlib;
use bddlib.kernel.all;
library work;
use work.bdddebug.all;
library SYNOPSYS;
use SYNOPSYS.AITRIBUTES.ALL;

entity memctrl is
generic (

readdelay : NATURAL
writedelay : NATURAL
memsize : NATURAL
);

pon(
pon3_request : in std_Jogic;
pon3 _ack : out std_logic;
pon3_handle : in bddhandle;
pon3_datain : in bdd_t;
pon3_rw : in std_logic;
pon2_request : in std_logic;
pon2_ack : out std.Jogic;
pon2_handle : in bddhandle;
pon2_datain : in bdd_t;
pon2_rw : in std_logic;
ponl_request: in std_logic;
port I_ack : DUI Sld_logic;
ponI_handle : in bddhandle;
ponl_datain : in bdd_t;
ponl_rw
datavalid
dataoul
busy
elk
rst
);

end memctrl;

: in std_logic;
: out std_logic;

: out bdd_t;
: out std_logic;

: in std_logic;
: in std_logic

architecture memctrl of memctrl is

constant rruudelay : NATURAL

:=0;
0;

:= bddmemsize

:= readdelay; - this
should be maxdelay which is max(readdelay,writedelay)

signal delaycnt : NATURAL range Oto maxdelay;
signal delaytmp : NATURAL range 0 to maxdelay;
signal address : bddhandle;
signal datain : bdd_t;

107

signal read_ write : std_logic;
signal enable : std_logic;
signal Ip_writetable : BOOLEAN := false;
signal port_ack : std_logic_ vector(! to 3);
signal ibusy : std_logic;
signal startaccess : std_logic;

type visual_lDLE_states is (IDLE, delay);

signal visual_IDLE_current, visual_lDLE_ne,t : visual_IDLE_states;
attribute STATE_ VECTOR of memctrl :

architecl1Jre is "visual_lDLE_current";

type visual_GOT3_states is (GOT3, GOT!, GOT2);

signal visual_GOT3_current, visual_GOT3_next:
visual_GOT3_states;

signal visual_delaycnt_next : NATURAL range Oto maxdelay;
signal visual_ibusy _next : std_logic;

begin

•· Combinational process
memctrUDLE_comb:
process (delaycnt, startaccess, read_write, port_ack,

visual_lDLE_current)
begin

port3_ack <= O';
port2_ack <= U';
por!I _ack <= O';
enable <= U';
visuaUbusy_next <= U';
visual_delaycnt_next <= delaycnt;

case visual_lDLE_current is
when IDLE=>
if ((startaceess = 'I) and ((read_write = 1 'and readdelay = 0) or (

read_write = U'and writedelay 0))) then
•• set the controls to memory
enable<= 'l' after 5 ns, O' after 9 ns;
datavalid <= read_write;
portLack <= port_ack(I);
port2_ack <= port_ack(2);
port3_ack <= port_ack(3);
visuaUDLE_next <= IDLE;

elsif ((startaccess = 'I) and (read_write 1)) then
visual_delaycnt,_next <= readdelay • I;
visual_ibusy_next <= '1 ~;
visuaUDLE_next <= delay;

elsif ((startaceess 1) and (read_write = 0)) then
visual_delaycnt_next <= writedelay • I;
visuaUbusy_next <= 'I';
visual_IDLE_next <= delay;

else
busy<= O';
datavalid <= O' after I ns;
portl_ack <= O';
port2_ack <= O:
port3_ack <= 'O';
visual_delaycnt_next <= O;
visualJDLE_next <= IDLE;

end if;

when delay =>
busy<-' 'I';
•· ibusy <= 1 ';
•· portl_ack <= 'O';

port2_ack <= O';
•• port3_ack <= O';

if (delaycnt = 0) Lhen
•· set the controls to memory
enable <= 'I' after 5 ns, O' after 9 ns;
datavalid <= read_write;
portl_ack <= port_ack(l);
port2_ack <= port_ack(2);
port3_ack <= port_ack(3);
visual_IDLE_next <= IDLE;

else
visual_delaycnt_next <= delaycnt • I;
visua)_ibusy _next <= 'I';
visual_lDLE_neM <= delay;

end if;

when others=>

visual_IDLE_next <= IDLE;
end case;

end process;

memctrl_lDLE:
process (elk)

begin

if (clk'event and elk= 'I) then
if (rst = 0) then

ibusy <= 0~
visual_lDLE_current <= IDLE;

else
delaycnt <= visual_delaycnt_next;
ibusy <= vlsual_ibusy_next;
visual_lDLE_current <= visual_lDLE_next;

end if;
end if;

end process;

•· Combinational process
memctr!..GOT3_comb:
process (ibusy, portl_request, portl_handle, portl_datain, portl_rw,

port2_request, port2_handle, port2_datain, port2_rw,
port3Jequest,

port3_handle, port3_datain, port3_rw, visual_GOT3_current)
begin

case visual_GOT3_current is
whenGOT3=>
if ((ibusy = 0) and (portl_request =1 ')) then

startaceess <= 'l ';
set values for lhe external signals

port_ack <= "I00";
•• set the controls to memory
address <= port I _handle;
datain <= portl_datain;
read_ write <= port I JW:
visual_GOT3_next <=GOT!;

elsif ((ibusy =0) and (port2_request 'I)) then
startaccess <= •1 •:
•· set values for lhe external signals
port_ack <= "010";

set the controls to memory
address<= port2_handle;
datain <= port2_datain;
read_ write <= port2JW;
visual_GOT3_next <= GOT2;

elsif ((ibusy = 'O) and (port3_request = 'I)) then
startaccess <= 'I•~
•· set values for the external signals
port_ack <= "001 ";
•· set lhe controls to memory
address<= port3_handle;
datain <= port3_datain;

108

read_write <= porr3_rw;
visual_GOT3_next <= GOT3;

else
startaccess <= 'O';
visual_GOT3_next <= GOT3;

end if;

whenGOTl =>
if ((ibusy 'O') and (pon2_request = 'I')) then

startaccess <= 'I';
-- set values for the external signals
poo_ack <"' "010";
-- set lhe controls to memory
address <= port2_handle;
datain <= pon2_datain;
read_ wrire <= porr2_rw;
visual_ GOT3_next <= GOT2;

elsif ((ibusy = 'O') and (porr3_request 'l ')) then
startaccess <= 'I';
-· set values for rhe external signals
pon_ack <= "001 ";
-- set the controls to memory
address <= port3 _handle;
datain <= pon3_datain;
read_write<= port3_rw;
visual_GOT3_next <= GOT3;

elsif ((ibusy = 'O') and (porll_request = 'I')) then
stanaccess <= 'I';
•· set values for the external signals
pon_ack <= "100";
-- set the controls to memory
address <= port I_handle;
datain <= pon I_datain;
read_write <= portl_rw;
visual_GOT3_next <= GOTI;

else
startaccess <= 'O;;
visual_GOT3_ne.i <= GOTI;

end if;

whenGOT2=>
if ((ibusy = 'O') and (pon3_request = 1 ')) then

startaccess <= 'O', '1 ~ after 1 ns;
-- set values for the external signals
port_ack <= "001 ";
-- set the controls to memory
address<= pon3_handle;
datain <= por13_datain;
read_write <= port3_rw;
visual_GOT3_next <= GOT3;

elsif ((ibusy = 'O') and (ponl_request ='I')) then
startaccess <= 'O', 'I' after I ns;
•· set values for the external signals
pon_ack <= "I00";
-- set the controls to memory
address<= ponl_handle;
datain <= pcrtl_datain;
read_ write <= port I_rw;
visual_GOT3_next <= GOT!;

elsif ((ibusy = 'O') and (port2_request = 'I')) then
startaccess <= 'O', 'I' after I ns;
-· set values for the external signals
port_ack <= "010";
-- set the controls to memory
address <= port2_handle;
datain <= port2_datain;
read_ write <= pon2_rw;
visual_GOT3_next <= GOT2;

else
startaccess <= 'O';
visual_GOT3_next <= GOT2;

end if;

when others=>

visual_GOT3_next <= GOT3;
end case:

end process;

memc1rl_GOT3:
process (elk)
begin

if (elk event and elk= 'l ') then
if (rst = 'O? then

visual_GOTJ_current <= GOT3;
e!se

visual_GOT3_current <= visual_GOT3_next;
end if:

end if;
end process;

process (enable, read_write, address, datain, tp_writetable)
variable mem: bdd_ vec_t(0 to memsize - I);

begin -- process
if enable= 'I 'then

ifread_write = 'O'then
Hwrite
mem(address) := datain;

else
-- read
dataout <= mem(address);

end ,f;
end if:

-· this is for test purposes only
•· set the value of tp_writetable during

debug to dump the table to a file
if(tp_writetable) then
writenodetable(mem);
end if;

end process;
end memctrl;

When a request is recieved, the ack signal will go
- high indicating that the data is ready.
-- This is a single cycle memory with no delay.
-- on a read, Ack indicates the data is valid at the output,
- or the write has been compleled.
- All inputs must be held for a complete clock cycle.

library ieee;
use ieee.STD_LOGIC_l 164.all;
library bddlib;
use bddlib.kernel.all;
use ieee.NUMERIC_STD.all;
library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.ALL;

entity uniquemem is
generic (

readdclay : NATURAL ::O;
writedelay : NATURAL :=0;
uniquesize: NATURAL := bdduniquetablesize
);

port (
ponl_ack : out std_logic;
portl_busy : out std_logic;
portl_dataready: out std_logic;
ponl_da1aout : out bddhandle;
ponl_handle : in bddhandle;
portl_datain : in bddhandle;
ponl_rw : in s1d_logic;
ponl_request : in std_logic;
elk : in std_logic;
rst : in std_logic
);

109

end uniquemem;

architecture uniquemem of uniquemem is

constant maxdelay : NATURAL := readdelay; - this should
be maxdelay which is max(readdelay,writedelay)

signal delaycnt : NATURAL range Oto maxdelay;
signal address : hashkey:
signal datain : bddhandle;
signal dataout : bddhandle:
signal read_write: std_logic;
signal enable : std_logic;

type visuaUDLE_states is (IDLE);

signal visual_lDLE_current, visual_lDLE_next : visual_lDLE_states;
attribute STATE_ VECTOR of uniquemem:

architecture is "visual_lDLE_current";

begin

•. Combinational process
uniquemem_lDLE_comb:
process (rst, portl_request, portl_handle, port l_datain, portl_rw,

read_write~
visual_lDLE_current)

begin
portl_ack <= O';
port l_busy <= !J';
portl_dataready <= !J';
address <= hashkey_zero;
datain <= bddhandle_zero:
read_write <= 'l ';
enable <= !J';

if (rst = O') then
•· reset all drivers to memory
read_write <= 1 ';
enable <= !J';
address <= 0;
datain<=0;
visual_lDLE_next <= IDLE;

else

case visual_lDLE_current is
when IDLE=>
if ((port)Jequest: 'I') and (portl_rw 'I')) then

portl_busy <= 'I';
portl_ack <='I';
•· set up the memory inputs
enable <= 'I' after Ins;
address <= port I _handle;
datain <= portl_datain;
read_write <"' 'I';
portl_dataready <= read_write;
visual_IDLE_next <= IDLE;

elsif ((portl_request ='I') and (ponl_rw = !J')) then
portI _busy <= 1 ';
portl_ack <='I~
•· set up the memory inputs
enable<= 'l •after Ins;
address <= port I_Jiandle;
datain <= portl_datain;
read_write <: O';
portl_dataready <= read_write;
visual_IDLE_next <= IDLE;

else
•· reset all drivers to memory
read_write <= 'l ';

enable <= !J';
address <= 0;
da1ain <= O;
visual_lDLE_next <= IDLE;

end if;

when others =>

visual_lDLE_next <= IDLE;
end case~

end If;
end process;

uniquemem_IDLE:
process (elk)
begin

if (clk'event and elk= 'I') then
if (rst O) then

visual_lDLE_current <= IDLE;
else

visual_lDLE_currem <= visual_lDLE_next;
end if;

end if;
end process;

•· this will eventually (before synthesis
have to be moved outside of this unit

-~ so that it can represent an external memory
uniquemem:
process (enable, read_ write, address, datain)

variable mem . bddhandle .• vec_t(0 to unique size • l);
begin

-dataout <.o bddhandle..zero;
if enable= 'I' then

if read_write" !J' then
-.. write
mem(address) :: datain;

else
--read

dataout <= mem(address);
end if;

end if;
end process;

portl_dataout <= dataout;
end uniquemem;

•· this is the make_node function,
•· it controls all creation and access
- to thenode table,
- garbage collection will also need
- to manipulate the node table so
- addtional controls will need to be
- added later,

because Visual on Linux is crashing when trying to
•· have concurrent machines in a sub level and
•· controls set to async outputs, this machine has some work arounds
- using additional conditions in instate assignments

library ieee;
use ieee.STD_LOGIC_l 164.all;
library work;
use work,kernetall;
library SYNOPSYS;
use SYNOPSYS,ATTRIBUTES,ALL;

entity mknodefsm is
generic (

uniquesize : NATURAL := bdduniquetablesize
);

port (
elk : in std_logic;

110

rst : in std_logic;
start : in std_logic;
level : in bddvar;
low : in bddhandle;
freehandle : in bddhandle;
freehand le_ valid : in std_logic;
high : in bddhandle;
resulthandle : out bddhandle;
resultnode : out bdd_t;
tookfreehandle : out std_logic;
result_ valid : out std_logic;
unique_handle : out bddhandle;
unique_datain : out bddhandle;
urnque_rw : out std_logic;
unique_request : out std_logic;
unique_dataready : in std_logic;
unique_ack : in std_logic;
unique_busy : in std_logic;
unique_dataout : in bddhandle;
nodemem_dataout : in bdd_t;
nodemem_busy : in std_logic;
nodemem_dataready : in std_logic;
nodemem_ack : in std_logic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_t:
nodemem_rw : out std_logic;
nodemem_request : out std_logic
):

end mknodefsm;

architecture mknodefsm of mknodefsm is

signal hashval : hashkey;
signal firsthandle : bddhandle;
signal nodemem_handle_i : bddhandle;
signal build_busy : std_logic;
signal start_build : std_logic;

type visual_ wka_states is (wk.a);
constant visual_wka_current: visual_wka_states := wka;

type visual_wka_wka_lDLE_states is (IDLE, FINDNODE, FINDUN
IQUE, WAITFORBUILD,

hash);

signal visual_wka_wka_lDLE_current:
visual_wka_wka_lDLE_states;

type visual_wka_wka_writenodeidle_states is (writenodeidle, writeno
demem,

writenodewait);

signal visual_wka_wka_writenodeidle_currenl:
visual_ wka_ wka_ writenodeidle_states;

type visual_wka_wka_writeuniqucidle_states is (writeuniqueidle,
writeuniquemem

, writeuniquewait);

signal visual_wka_wka_writeuniqueidle_current:
visual_wk.a_wka_ writeuniqueidle_states;

•· The three machines on this page are concurrent
- The writenodedle and writeuniqueidle machines
- will be triggered when start_build is set to a l.
•· The default value should be 0.
•· They will run concurrently until completion.
- when both are complete build_busy should be 0;
•· when either is active build_busy should be active l
begin

•· Synchronous process
mknodefsm_ wka:
process (elk)

variable uniqueaccess : NATURAL :=0:
variable uniquehit : NATURAL :=0;
variable uniquemiss : NATURAL O;
variable uniquechain : NATURAL :=0;

begin

if (clk'event and elk= 1) then
tookfreehandle <= 'O';
result_ valid <= 'O';
case visual_wka_wka_IDLE_current is

when IDLE=>
·• reset all of the outputs

if (rs!= 'O) then
resulthandle <= bddhandle_zero;
result_ valid <= 'O';
tookfreehandle <= 'O';
•· •· turn off the memory interfaces

•· unique mem outputs
unique_handle <= bddhandle_zero:
unique_datain <= bddhandle_zero:
unique_rw <= 'l '; •· read
uniqueJequesl <= 'O';
- nodemem outputs
nodemem_handle_i <= bddhandle_zero:
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 'I '; •· read
nodememJequest <= 'O';
visual_wka_wka_IDLE_currem IDLE;

elsif (start = 'I) then
result_ valid <= 'O';
if (low high) then

resulthandle <= low;
result_ valid <= T;

•· rum off the memory interfaces

- unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <= 1 ·; •· read
unique_request <= 'O';
- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 1 '; read
nodemem_request <= 'O';
visual_ wka_ wka_lDLE_current <= IDLE;

else
hashval <= bdd_hash((level,low.high,0.o),uniquesize);
visual_wka_wka_lDLE_current <= hash;

end if;
else

visual_wka_wka_lDLE_current <= IDLE;
end if;

when FINDNODE =>
•· reset all of the outputs

if (rst = O') then
resulthandle <= bddhandle_zero;
result_ valid <= 0';
tookfreehandle <= 'O';
•· •· turn off the memory interfaces

•· unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
uniqueJW <= 'I'; •· read
unique_request <= 'O';
- nodemem outputs

111

nodemem_handle_i <= bddhandle_zero;
nodemem...datain <= bdd_t_zero;
nodemem_rw <= 'I ': -· read
nodemem_request <= 'O';
visual_wka_wka_IDLE_current <= IDLE;

elsif (nodemem_ack = 'I' and nodemem_dataready = 'I') then
nodemem_request <= 'O';
if ((nodemem_dataout.lo low) and (nodemem_dataout.hi

high) and (
nodemem_dataout.level =level)) then

resulthandle <= nodemem_handle_i;
result_ valid <= 'l ';
uniquehit uniquehit + I;

turn off the memory interfaces

-- unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero:
unique_rw <= '] '; -- read
uniqueJequest <= 'O';
•· nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 'I'; -- read
nodememJequest <= "O';
visual_wka_wka_IDLE_current <= IDLE;

elsif (nodemem_dataou1.nextbdd bddhandle_zero) then
if (build_busy = 'I') then

visual_wka_wka_lDLE_current <= WAITFORBUILD;
else

if (freehandle_ valid = 'I') then
-•stan_build <= 'I';
resulthandle <"- freehandle;
result_valid <"-'I';

turn off the memory interfaces

-· unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <:; '1 '; read
unique_request <= 'O';
•· nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 1 1; ~- read
nodememJequest <= 'O';
visual_wka_wka_lDLE_current <= IDLE;

else
visual_wka_wka_IDLE_current <= WAITFORBUILD;

end if;
end if;

else
nodemem_handle_i <= nodernem_dataout.nextbdd;
unlquechrun := unlquechain + I ;
- set up a read request to node memory
nodememJequest <= 'I';
nodememJW <= 'l'; -- read
nodemem_datain <= bdd_t_zero;
visual_wka_wka_lDLE_current <= FINDNODE:

end if;
else

visual_wka_wka_lDLE_current <= FINDNODE;
end if;

wait until the unique memory access is complete

when FINDUNIQUE =>
-- reset all of the outputs

if (rst = l)') then
resulthandle <= bddhandle_zero;
result_ valid <= '0~
tookfreehandle <= 'O';
- -- turn off the memory interfaces

unique mem outputs
unique_handle <= bddhandle_zero:
unique_datain <= bddhandle_zero;
unique_rw <= T; •· read
unique_request <= 'O';
-· nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 'I'; -- read
ncx:iemem_request <::: '{t~

visual_wka_wka_lDLE_current <= IDLE;
elsif (unique_ack = 'I' and unique_dataready ='1? then

unique_request <= 'O';
uniqueaccess := uniqueaccess + l ~
if (unique_dataout =bddhandle_zero) then

if (build_busy = 'I') then
visual_wka_wkaJDLE_current <= WAITFORBUJLD;

else
if (freehandle_ valid = 'I') then

--stan_build <= 'I';
resulthandle <= freehandle;
result_ valid <= 'I';
•· -- turn off the memory interfaces

•· unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <= 'I'; •· read
unique_request <= 'O';
- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 'J '; -- read
nodemem_request <= 'O';
visual_wka_wka_IDLE_current <= IDLE;

else
visual_ wka_wka_lDLE_current <= WAITFORBUILD;

end if;
end if;

-- stan setting up a node memory read
must read from the handle (address) just

-- found from the unique table
-- first handle is needed when building a new node to
-- put at beginnlng of chain

else
nodemem_handle_i <= unlque_dataout;
firsthandle <= unique_dataout;
•· set up a read request to node memory
nodemem,_request <= 'I ';
nodemem_rw <= 1 '; -- read
nodemem_datain <= bdd_t_zero;
visual_wka_wka_lDLE_current <= FINDNODE;

end if;
else

visual_wka_wka.JDLE_current <= FINDUNIQUE;
end if;

when WAITFORBUILD =>
•· resei all of the outputs

if (rst = 'O') then
resulthandle <= bddhandle_zero;
result_ valid <= 'O';
tookfreehandle <= O';
- -- tum off the memory interlaces

- unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unlque_rw <= 1 '; •· read
unlque_request <= 0~
•- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;

https://nodemem_dataout.hi
https://nodemem_dataout.lo

112

nodemem_rw <= 'I '; •· read
nodemem_request <= 'O';
visual_wka_wka_IDLE_current <= IDLE;

elsif (build_busy U) !hen
if (freehandle_ valid = '11 then

••Start_build <= 'l ';
resulthandle <= freehandle;
result_valid <= 'l ';
•• ·· turn off the memory interfaces

~# unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <= 'I'; -· read
unique_request <= U';
·• nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 'l '; •· read
nodemem_request <= U';
visual_wka_wka_lDLE_current <= IDLE;

else
visual_wka_wka_lDLE_currem <= WAITFORBUILD;

end if;
else

visual_wka_wka_lDLE_current <= WAITFORBUILD;
end if;

when hash=>
•· reset all of the outputs

if (rst 01 then
resuhhandle <= bddhandle_zero;
result_valid <= 'O';
tookfreehandle <= U';
·• •· tum off the memory interfaces

•· unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <= 'I';·· read
unique_request <= 'O';

nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 1 '; read
nodemem_request <= 'O';
visual_wka_wka_lDLE_current <= IDLE;

else
start a read from the unique table memory

unique_request <= 'I';
unique_rw <= 'I'; •· read
unique_datain <= bddhandle_zero;
unique_handle <= hashval;
firsthandle <= bddhandle_zero;
visual_wka_wka_lDLE_current <= FINDUNIQUE;

end if;

when others =>

visual_wka_wka_IDLE_current <= IDLE;
end case;
case visual_wka_wka_writenodeidle_curreot is
when writenodeidle =>
if (start_build = 'I') then

if (freehandle_ valid = 'I) !hen
-nodernemory write request
nodemem_hand!e_i <= freehandle;
nodernem_request <= 1 ';
nodemem_rw <= U'; •· write
nodemem_datain <= (level,low,high,firsthandle,gc_zero);

tookfreehandle <= 1 ';
visual_ wka_wka_writenodeidle_current <= writenodemem;

else

visual_wka_wka_writenodeidle_current <= writenodewait;
end if;

else
visual_ wka_ wka_writenodeidle_current <= writenodeidle;

end if;

•· write the node to node memory

when writenodemem =>
if (nodemem_ack 1) then

resulthandle <= freehandle;
turn of write request

nodemem_requesl <= U';
nodemem_rw <:.:e '1 ';

1ookfreehandle is turned off each
- clock by default
visual_wka_wka_writenodeidle_current <= writenodeidle;

else
visual_wka_wka_writenodeidle_current <= writenodemem;

end if;

when writenodewail =>
if (freehandle_ valid = 'l) then

--nodememory write request
nodemem_handle_, <= freehandle;
nodemem_request <= 'l ';
nodemem_rw <= 'O'; •· write
nodemem_datain <= (level,low,high,firsthandle,gc_zero);

tookfreehandle <= 'I';
visual_wka_wka_writenodeidle_current <= writenodemem;

else
visual_ wka_ wka_ writenodeidle_current <= writenodewait;

end if;

when others =>

visual_ wka_wka_ writenodeidle_current <= writenodeidle;
end case;
case visual_wka_wka_ writeuniqueidle_current is

when writeuniqueidle =>
if (stan_build = 'I') then
if (freehandle_ valid = 'l '} !hen

--unique memory write request
uniqueJequesl <= 'I';
unique_rw <= 'O'; •· write
unique_datain <= freehandle;
unique_handle <= hashval;
uniquemiss := uniquemiss + I;
visual_ wka_wka_writeuniqueidle_current <= writeuniquemem;

else
visual_wka_wka_writeuniquei dle_current <= writeuniquewait;

end if;
else

visual_ wka_wka_ writeuniqueidle_current <= writeuniqueidle;
end if;

•· write the handle to unique memory

when writeuniquemem =>
if (unique_ack = '1 ') then

•· tum off write request
uoique_request <= 'O';
unique_rw <= 'l ';
visual_wka_wka_writeuniqueidle_current <= writeunlqueidle;

else
visual_wka_wka_writeuniqueidle_current <= writeuniquemem;

end if;

when writeuniquewalt =>
if (freehandle_valid = 'I) !hen
-unique memory write request
unique_request <= 'I';
unique_rw <= 'O'; •· write
unique_datain <= freehandle;

113

unique_handle <= hashval;
uniquemiss := uniquemiss + l;
visual_wka_wka_writeuniqueidle_current <= writeuniquemem;

else
visual_wka_wka_writeuniqueidle_current <= writeuniquewait;

end if;

when others =>

visual_wka_wka_writeuniqueidle_current <= writeuniqueidle;
end case;

end if;
end process;

Combinational process
mknodefsm_wka_comb:
process (nodemem_ack, nodemcm_dataready, nodemem_dataout, low,

high, level,
build_busy, freehandle_ valid. unique_ack, unique_dataready,
unique_dataout, visual_ wka_wka_IDLE_current,
visual_wka_wka_writenodeidle_currenl,
visual_wka_ wka_ writeuniqueidle_current)

begin -- Combinational process
build_busy <= O';
stan_build <= U';

case visual_wka_wka_lDLE_current is
when ANDNODE =>

if((nodemem_ack ='I) AND
(nodemcm_dataready 'I) AND
NOT((nodemem_dataout.lo = low) AND

(nodemem_daraout.hi high) AND
(nodemem_dataout.level level))

AND
(nodemcm_dataoutnextbdd = bddhandle_zero)
AND
(build_busy = U') AND
(freehandle_ valid 'I))
then
start_build <= 'I';
end if;

-- wait until the unique memory access is complete

when ANDUNIQUE =>
if((unique_ack = 'I') AND
(unique_dataready 1 ') AND
(unique_dataout =bddhandle_zero) AND
(build_busy 'O') AND
(freehandle_valid= 'I'))then
start_build <='I~
end if;

when WAITFORBUJLD =>
if ((build_busy = 'O) AND
(freehandle_ valid = 1)) then
start_build <= 'I';
end if;

when others =>
null;

end case;
case visual_wka_wka_writenodeidle_current is

-- write the node to node memory

when writenodemem =>
build_busy <= 1 ';

when writenodewait =>
build_busy <= 1 ~

when others =>
null;

end case;
case visual_wka_wka_writeuniqueidle_current is

-- write the handle to unique memory

when writeuniquemem =>
build_busy <= '1 ';

when writeuniquewait =>
build_busy <='I';

when others=>
null;

end case;
end process;

nodemem_handle <= nodemem.),andle_j;
end mknodefsm:

this diagram contains the main functional units
for the BDD processor.
It connects the functional units with the memory
models.
Generics can be passed in from the above level to set
the memory sizes

library ieee;
use ieee.STD_LOGIC_l 164.all;
library work;
use work.kernel.all;
library SYNOPSYS;
use SYNOPSYS.ATfRIBUTES.ALL;

entity mknodeblk is
generic (

nodememsize : NATURAL bddmemsize;
camsize : NATURAL := bddcamsize;
uniquesize : NATURAL := bdduniquetablesize
);

port (
applyop : in booleanop;
bddinl : in bddhandle;
bddin2 : in bddhandle:
elk : in std_logic;
enableand : in std_Jogic;
enablenot : in std_logic;
freehandle_valid_o : out std_logic;
init : in srd_logic;
LOWONNODES : out std_logic;
tp_mknode_result : out bddhandle;
tp_mknode_resultvalid : out std_logic;
mkselect : in std_logic;
start I : in std_logic;
level l : in bddvar;
low 1 : in bddhandle;
high I : in bddhandle;
OUTOFNODES : out std_logic;
resulthandle : out bddhandle;
resultvalid : out std_logic;
rst : io std_logic;
startapply : in std_logic;
startnot : io std_logic
);

end mkoodeblk;

library bddlib;
architeeture mkoodeblk of mkoodeblk is

signal call_cmd : stackcmd;
signal call_datainO :bdd_t;
signal call_datain l :bdd_t;
signal call_datain2 :bdd_t;
signal call_dataoutO :bdd_t;

https://nodemem_daraout.hi
https://NOT((nodemem_dataout.lo

114

signal call_dataoutl : bdd_t; stan : in std_logic;
signal call_dataout2 : bdd_t; level : in bddvar;
signal call_empty : std_logic; low : in bddhandle;
signal call_full : std_logic; freehandle : in bddhandle;
signal cam_ack : std_logic; freehandle_ valid : in std_logic;
signal cam_busy : std_logic; high : in bddhandle;
signal cam_busy_cnt : NATURAL resulthandle : out bddhandle;
signal cam_fieldl : camfield; resultnode : out bdd_t;
signal cam_field2 : camfield: tookfreehandle : out std_logic;
signal cam_field3 : camfield; result_ valid : out std_logic;
signal cam_found : std_logic; unique_handle : out bddhandle;
signal camJequest : std_logic; unique_dalain : out bddhandle;
signal cam_result ; camfield; unique_rw : out std_logic;
signal cam_resultin ; camfield; unique_request : out std_logic;
signal cam_resultvalid : std_logic; unique_dataready : in std_logic;
signal cam_rw : std_logic; unique_ack in std_logic;
signal freehandle : bddhandle; unique_busy : in std_logic;
signal freehandle_valid : std_logic; unique_dataout : in bddhandle;
signal high : bddhandle; nodemem_dataout : in bdd_t;
signal highO : bddhandle; nodemem_busy : in std_logic;
signal level : bddvar; nodemem_dataready: in std_logic;
signal levelO : bddvar; nodemem_ack in std_logic;
signal low : bddhandle; nodemem_handle : out bddhandle;
signal low0 : bddhandle; nodemem_datain : out bdd_t;
signal mknode_result : bddhandle; nodemem_rw : out std_logic;
signal mknode_resultvalid ; std_logic; nodemem_request : out std_logic
signal node_busy : std_logic;);
signal node_busy _cnt : NATURAL :=0; end component;
signal node_dataout : bdd_t; component uniquernem
signal node_datavalid : std_logic; generic (
signal node_portl_ack · std_logic; readdelay : NATURAL :=0;
signal node_port2_ack : std_logic; writedelay : NATURAL :=0:
signal node_port3_ack : std_logic; uniquesiz.e : NATURAL := bdduniquetablesize
signal portl_datain : bdd_t;);
signal portl_handle : bddhandle; port (
signal portl_request : std_logic; port I_ack : out std_logic;
signal portlJW : std_logic; portl_busy : out std_logic;
signal port2_datain bdd_t; portl_dataready: out std_logic;
signal port2_handle : bddhandle; portl_dataout : out bddhandle;
signal port2_request : std_logic; portl_handle : in bddhandle;
signal pon2_rw : std_logic; portl_datain : in bddhandle;
signal port3_datain : bdd_t; portl_rw : in std_logic;
signal port3_handle : bddhandle; port I_request : in std_logic;
signal port3_request : std_logic; elk : in std_logic;
signal port3_rw : std_logic; rst : in std_logic
signal post_init_clk_cnt : NATURAL);
signal result_cmd : stackcmd; end component;
signal resuh_datain0 : bddhandle; component memctrl
signal resu!t_datain I : bddhandle; generic (
signal result_datain2 : bddhandle; readdelay : NATURAL :=0;
signal result_dataout0 : bddhandle; writedelay : NATURAL :=0;
signal resuh_dataout I : bddhandle; memsize : NATURAL := bddmemsize
signal result_dataout2 : bddhandle;);
signal result_empty : std_logic; pon(
signal result_fu!I : std_logic; port3 _request : in std_logic;
signal stan : std_logic; port3_ack : out std_logic;
signal startO : std_logic; port3 _handle : in bddhandle;
signal stan_cnt : NATURAL :=0; pon3_datain : in bdd_t;
signal tookfreehandlel : std_logic; port3_rw : in std_logic;
signal unique_ack : std_logic; port2_reques! : in std_logic;
signal unique_busy : std_logic; port2_ack : ou! std_logic;
signal unique_busy _cnt : NATURAL port2_handle : in bddhandle;
signal unique_datain : bddhand!e; port2_datain : in bdd_!;
signal unique_dataout : bddhandle; port2_rw : in std_logic;
signal unique_dataready : std_logic; portl_reques!: in std_logic;
signal unique_handle : bddhandle; portl_ack : out std_logic;
signal uniqueJequest : std_logic; portl_handle : in bddhandle;
signal unique_rw : std_logic; portl_darain : in bdd_l;
componenl mknodefsm ponl_rw : in std_logic;

generic (da1avalid : out std_logic;
uniquesize : NATURAL bdduniquetablesize dataout : out bdd...t;
); busy : out std_logic;

port (elk : in std_logic;
elk : in std_logic; rst : in std_!ogic
rst : in std_logic;);

115

end component;
component APPLYBLK

port (
applyerror : ou1 std_logic;
star10 : out std_logic;
levelO : out bddvar;
low0 : ou1 bddhandle;
high0 : out bddhandle;
applyop : in booleanop;
l>ddin I : in bddhandle;
bddin2 : in bddhandle;
call_da1aou10 : in bdd_1;
call_dataoull : in bdd_t;
call_dataou12 : in bdd_l:
call_full : in s1d_logic;
call_emply : in std_logic;
call_da1ainO : out bdd_l;
call_datainl : out bdd_t;
call_datain2 : out bdd_t;
call_cmd : out stackcmd;
cam_requesl : out std_logic;
cam_rw : out std_logic;
cam_field l : out camfield;
cam_field2 : out camfield;
cam_field3 : out camfield;
cam_resultin : out camfield;
cam_ack : in std_logic;
cam_busy : in std_logic;
cam_result : in camlield;
cam_resultvalid : in s1d_logic;
camJound : in s1d_logic;
elk : in sld_logic:
enableand : in std_logic;
enablenot . in std_logic;
mlmode_result . in bddhandle;
mknode_resultvalid · in sld_logic;
node_port3_ack : in std_logic;
node_port2_ack : in std_logic;
node_portl_ack : in std_logic;
node_datavalid : in std_logic;
node_dataout : in bdd_t;
node_busy : in std_logic;
port3_datain : out bdd_l;
port3_handle : out bddhandle;
port3_request : out std_logic;
port3_rw : out std_logic;
resulthandle : out bddhandle;
result_data.in0 : out bddhandle;
result_datainl : out bddhandle;
result_datain2 : out bddhandle;
result_cmd : out stackcmd;
result_dataoutO : in bddhandle;
result_dataoutl ; in bddhandle;
result_dataout2 : in bddhandle;
result_full : in std_logic;
result_empty : in std_logic;
resultvalid : out std_logic;
rst : in std_logic;
startapply : in sld_logic;
startnot : in std_logic
);

end component;
component freenodecnll

generic (
minhandle : bddhandle ;= bdd_mlnhandle;
maxhandle : bddhandle := bdd_maxhandle
);

port (
elk : in std_logic;
rst : in std_logic;
mil : in std_logic;
tookfreehandle I , in std_logic;
freehandle : out bddhandle;
freehandle_ valid : out std_logic;
LOWONNODES : out std_logic;

OUTOFNODES : out std_logic;
nodemem_busy : in std_logic;
nodemem_ack : in std_logic;
nodemem_dataready in std_logic;
nodemem_dataout : in bdd_t;
nodemem_request : out std_logic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_t;
nodemem_rw : out std_logic
);

end component:
component handlestack

generic (
size : NATURAL := 6
);

port (
elk in std_logic;
rst : in std_logic;
cmd · in stackcmd;
datainO : in bddhandle;
datain I : in lxldhandle;
datain2 : in bddhandle;
head0 : out bddhandle;
head I . out bddhandle;
head2 : out bddhandle;
full : out std_logic;
empty : out std_logic
);

end component;
component bddsrack

generic (
size : NATURAL := 6
);

port (
elk : in std_logic;
rst : in std_logic;
cmd : in stackcmd;
datain0 : in bdd_t;
datainl : in bdd_t;
datain2 : in bdd_t;
head0 : out bdd_t;
headl : out bdd_t;
head2 : out bdd_t;
full : out s1d_logic;
empty : out s1d_logic
);

end component;
component cam

generic (
memsize : NATURAL := bddcamsize;
readdelay : NATURAL;
writedelay: NATURAL
);

port (
elk : in s1d_logic;
rsl : in std_logic;
cam_request : in std_logic;
cam_rw : in std_logic;
cam_ack : out std_logic;
cam_busy : out std_logic;
cam_result : ou1 camfield;
carn_resul!valid : oul sld_logic;
cam_found : out s1d_logic;
cam_lield I ; in camfield;
carn_field2 : in carnfield;
cam_field3 : in camfield;
cam_resultin : in camfield
);

end component;

•· Start Configuration Specification
for all : mknodefsm use entity bddlib,m.knodefsm(mlmodefsm);
for all: uniquemem use entity bddlib,uniquemem(uniquemem);
for all: memctrl use entity bddlib.memctrl(memctrl);
for all: APPLYBLK use entity lxldlib.APPLYBLK(APPLYBLK);

116

for all : freenodecntl use entity bddlib.freenodecntl(freenodecntl);
for all: handlestack use entity bddlib.handlestack(handlestack):
for all: bddstack use entity bddlib.bddstack(bddstack);
for all : cam use entity bddlib.cam(cam);
•• End Configuration Specification

begin
freehandle_ valid_o <= freehandle_ valid;
tp_mknodeJesult <= mknode_result;
tp_mknode_resultvalid <= mknode_resultvalid;

mknodectrl: mknodefsm
generic map (uniquesize)
port map (

clk=>clk,
rst => rst,
start=> start,
level => level,
low=>low,
freehandle => freehandle,
freehandle_ valid "'> freehand le_ valid,
high=> high,
resulthandle => m.knode_result,
resultnode => open,
tookfreehandle => 1ookfreehandlel.
result_valid => mknode_resultvalid,
unique_handle => unique_handle.
unique_datain => unique_datain,
unique_rw => unique_rw,
unique_request => unique_request.
unique_dataready => unique_da!aready,
unique_ack => unique_ack,
unique_busy => unique_busy,
unique_dataout => unique_dataout~
nodemem_dataout => node_dataout,
nodemem_busy => node_busy,
nodemem_dataready => node_datavalid,
nodemem_ack => node__portl _ack,
nodemem_handle => port1_handle,
nodemem_datain => port l _da1ain,
nodemem.JW => portl.JW,
nodemem_request => port1_request);

inst_uniquemem; uniquemem
generic map (0,

0,
uniquesize)

port map(
portl_ack => unique_ack,
portl_busy => unique_busy,
port I_dataready => unique_ dataready,
portl_dataour => unique_dataout,
ponl_handle => unique_handle,
ponl_datain => unique_datai.n,
port I _rw => unique_rw,
port l_reques1 => uniqueJequest,
elk=> elk,
rst => rst);

nodememory: memclrl
generic map (0,

o.
nodememsize)

port map(
pon3_requesl => port3_requesl,
port3_ack => node_pon3_ack,
port3_handle => pon3_handle,
port3_datain => pon3_datain,
pon3_rw => port3_rw,
port2_request => port2_request,
port2_ack => node_port2_ack,
pon2_handle => port2_handle,
pon2_darai.n => port2_datai.n,
port2_rw => port2.JW,
portl_request => portl_request,

portl_ack => node__portl_ack,
portl_handle => portl_handle,
portl_datain => portl_datain,
portl_rw => portl_rw,
daiavalid => node_datavalid,
dalaoul => node_da1aout,
busy=> node_busy,
elk=> elk,
rst -> rst);

APPLY_BLK:APPLYBLK
port map (

applyerror => open,
srarrO => stan0,
levelO => level0,
low0 => low0,
highO => high0,
applyop => applyop,
bddin I "> bddin l ,
bddin2 => bddin2,
call_da1aou10 => call_daraout0,
call_dataoutl => call_dataoutl,
call_dataout2 => call_da1aou12,
calUull => call_full,
call_empty => call_empty,
call_datain0 => call_datainO,
call_datainl => call_da1ainl.
call_datain2 => call_datain2,
call_cmd => call_cmd,
cam_request => cam_request,
cam_rw => cam_rw,
cam_field 1 => cam_field 1,
cam_field2 => cam_field2,
cam_field3 => cam_field3,
cam_resultin => cam_resuhin.
cam_ack => cam_ack,
cam_busy => cam_busy,
cam_result .:> cam_result,
cam_resultvalid => cam_resultvalid,
carn_found => cam_found,
elk=> elk,
enableand => enableand,
enableno1 => enablenot,
mknode_result => mk:node_result,
mknode_resultvalid => m.knode_resulrvalid,
node_port3_ack => node_port3_ack,
node_port2_ack => node_port2_ack,
node__portl_ack => node_portl_ack,
node_datavalid => node_datavalid,
node_dataoul => node_dataour,
node_busy => node_busy,
port3_datain => porr3_datain,
port3_handle => port3.Jiandle,
port3 _request => port3Jequest,
pon3_rw => port3_rw,
resulthandle => resulthandle,
result_darain0 => result_datain0,
result_datain I => result_datain 1,
resul1_datain2 => result_dataio2,
result_cmd => result_cmd,
result_dataout0 => result_dataout0,
result_dataout I => result_dataoutl,
result_dalaout2 => result_dataout2,
result_full => result_full,
result_empty => result_empty,
resultvalid => resultvalid,
rsl => rst,
startapply '-> startapply,
SlartnOI => startnot);

freenodecntrl; freenodecnll
generic map (bdd_rninbandle,

nodememsize • l)
port map (

elk=> elk,

https://port2.JW
https://portl.JW
https://nodemem.JW

117

rst => rst,
init=>in.it,
tookfreehandlel => tookfreehandlel,
freehandle => freehandle,
freehandle_ valid => freehandle_ valid,
LOWONNODES => LOWONNODES,
OUTOFNODF..S => OUTOFNODES,
nodemem_busy => node_busy,
nodemem_ack => node...pon2_ack.
nodemem_daraready => node_datavalid,
nodemem_dataoul => node_dataout,
nodemem_requesr => pon2_request,
nodemem.)iandle => pon2_handle,
nodemem_datain => pon2_datain,
nodemem_rw => pon2_rw);

resultstack: handlestack
generic map (1024)
pon map{

elk=> elk,
rst => rst,
cmd => result_cmd,
datainO => result_datainO,
darainl => result_datainl,
datain2 => result_datain2,
headO => resull_dataoutO,
head I=> resull_dataoutl.
head2 => result_dataout2.
full => result_full.
empty=> result_empty);

callstack: bddstack
generic map (1024)
ponmap(

elk=> elk,
rst => rst,
cmd => call_cmd,
datainO => call_datainO,
datain I => call_dataio I,
datain2 => call_datain2,
headO => call_dataoutO,
head) => call_dataoutl,
head2 => call_dataout2,
full => call_full,
empty => call_empty);

inst_cam: cam
generic map (camsize,

o.
0)

pon map {
elk=> elk,
rst => rst,
cam_request => cam_request,
cam_rw => cam_rw~
cam_ack => cam_ack,
cam_busy ""> cam_busy,
cam_result => cam_result,
cam_resultvalid => cam_n:sultvalid,
cam_found "'> cam_found,
cam_lield I => cam_lieldl.
cam_field2 => cam.Jield2,
cam_field3 => cam_lield3,
cam_resultin => cam_resuhin);

process(rnkselect,startO,leveJO,lowO.high(),start I ,level I ,low l ,highI)
begin
if(mkselect = ~) then
Stan <= stan0;
level <= levelO;
low<=lowO;
high <= highO;
else
stan <= stan l ;
level <= levell;

low<= lowl:
high<= highI;
end if;
end process;

••synopsys translate off
process(clk,rst)
variable flag : boolean := FALSE;
begin
if(rst 'O) then
node_busy_cnt <= O;
cam_busy_cnt <= O;
unique_busy_cnt <= O;
elsif(clk'event and elk 'I) then

if(freehandle_valid ='I) then
flag true:
end if;
if(flag) then
post_init_clk_cnt <= posUnit_clk_cnl + I;
if(node_busy ='I) then
node_busy _cnt <= node_busy _cnt+ I;
end if;
if(cam_busy = 'I) then
cam_busy_cnt <= cam_busy_cnt+ I;
end if;
if(unique_busy = 'I') then
unique_busy_cnt <= unique_busy_cnt+I;
end if:

end if:
•• since all of the three stan sigs are mutually

exclusive jun inc when any I is true
if{(srarrapply = 'I) OR (startnot = 'I') OR (stanl
start_cnt <= start_cnt + I;
end if;

end if;

end process:
••synopsys translate on

end mk.nodeblk;

•· Date : Wed May IO 14:35:34 2000

•· Author : Bob Hau

-- Company : Ponland State University

Description :

library ieee; use ieee.STD_LOGIC_l 164.all;

library bddlib; use bddlib.kemel.all;

entity mknodeblktestbench is
generic {N : natural := 4);

pon (elk : out std_logic ;
high : out bddhandle ;
init : out std_logic ;
level : out bddvar ;
low : out bddhandle ;
rst : out std_logic ;
stannot : out std_logic ;
mkselect : out std_logic ;
bddinl : out bddhandle ;
bddin2 : out bddhandle ;
enablenol : out std_logic ;
enableand : out std_logic ;
stan_mknode : out std_logic ;

'l'))then

https://init=>in.it

118

startapply : out std_logic ;
applyop : out booleanop ;
LOWONNODES : in std_logic ;
OUTOFNODES : in std_logic ;
mknode_result : in bddhandle ;
mknode_resultvalid : in std_logic ;
freehand le_ valid_o : in std_logic ;
applyresult_ valid : in std_logic ;
applyresult : in bddhandle;
testdone : out boolean);

end;

-- Date : Wed May 10 14:35:34 2000

-- Author : Bob Hatt

-- Company : Ponland State University

-- Description :

architecture Nqueen of mknodeblktestbench is
consiant clkperiod: time := JO ns;
constant clkperiodplusone : time := clkperiod + Ins;
signal clki,rsti : std_logic;
signal queensig: bddhandle;

begin

-- clock with 50% duty JO ns period
process
begin
clki<=O';
wait for 5 ns;
while(TRUE) loop
clki <= NOT clk.i;
wait for 5 ns;
end loop;

end process;
elk<= clki;

--make reset active from 0,40
rsti <= 'O', 'I' after clkperiod *4;
rst<=rsti;

-- make itrit active from 60-80
init <= 'O', 1 'after clkperiod • 6, Q' after clkperiod • 8;

- must wait for memsize*(memdelay+I) clocks until init of node mem
is done
-- for memsize = 256 memdelay =0, 256 clocks

process
procedure mknodedirect(M,lo.hi : in bddhandle) is
begin
- wait unti I clki = 'I ';
mkselect <= ·1 ';

Start_mknode <= 1 ';
level<= !vi;
high<= hi;
low<=lo;

wait for clkperiodplusone + l ns;
start_mknode <= D';
wait until mlmode_resultvalid 1 ';
end mknodedirect;

procedure ithvar(result: out bddhandle;i : in bddvar) is
begin
mknodedirect(i,bddhandle_zero,bddhandle_one);
result := mknode_result;
end ithvar;
procedure nithvar(result: out bddhandle:i: in bddvar) is
begin
mknodedirect(i.bddhandle_one,bddhandle_zero);
result := mknode_result;
end nithvar;

function hardbdd_ithvar(i: in bddvar) return bddhandle is
-- begin
-- mknodedirect(i,bddhandle_zero,bddhandle_one);
-- return(mknode_result);
-- end hardbdd_ithvar;

function hardbdd_nithvar(i : in bddvar) rerurn bddhandle is
-- begin
-- mknodedirect(i.bddhandle_one,bddhandle_zero);
-- return(mknode_result);
-- end hardbdd_nithvar;

procedure app!y_not(result: out bddhandle;handle: in bddhandle) is
begin
mkselect <= Q';
enablenot <= 'I~

stannot <= '1 ';
applyop <= booleanop_not;
bddinl <= handle;
bddin2 <= bddhandle_zero;
wait for clkperiodplusone;
startnot <= D~
wait until applyresult_valid = 'l ';
result := applyresult;
enablenot <= '0 1;

end apply _not;

- function hardbdd_apply_not(handle: in bddhandle) rerum bddhandle
is
- begin
-- applynotdirect(bandle);
- retwn(applyresult);
- end hardbdd_apply_not;

procedure apply(result: out bddhandle;handle1,handle2: in bddhandle;
op: in booleanop) is
begin
rnkselect <= D';
enableand <"' 1 ';
startapply <= 'I';
bddinl <= handle I;
bddin2 <= handle2;
applyop <= op:
wait for clkperiodplusone;

· startapply <= D';
wait until applyresult_valid = 1 ';
result := applyresult;
enableand <= D';
end apply;

- function hardbdd_apply(handle I,handle2: in bddhandle; op :in bool
eanop) retwn bddhandle is
-- begin
-- applydireet(handlel ,handle2,op);
-- return(applyresult);
-· end hardbdd_apply;

procedure init is
begin
start_mknode <= u•;
startnot <= 'O';
enablenot <= 'O';
startapply <= 'O';
enableand <= O';
wait until rsti = 'I ';
wait until freehandle_valid_o = 1';
wait for clkperiod/2;
endinit;

•· local variables for this algorithm
constant boardsize: positive:= N;
type bddhandle2d is amiy(natural range<>. natural range<>) of
bddhandle;
variable X : bddhandle2d(I 10 boardsize, I lo boardsize);
variable queen,tmp l ,tmp2: bddhandle;

procedure build(i.j : integer) is
variable a,b,c,d :bddhandle := bddhandle_one;
variable tmpl ,tmp2: bddhandle;
variable inti : integer;
begin
-- no one in same column
for kin I 10 boardsize
loop
if(k I= j) then
apply_nol(tmpl ,X(i,k));
apply(tmp2,X(ij),tmpl ,booleanop_imp);
apply(a,a,tmp2,booleanop_and);
end if;
end loop;
-- no one in same row
for k in I to boardsize
loop
if(k I= i) then
apply_not(tmpl ,X(kj));
apply(lmp2,X(i j),tmpl ,booleanop_imp);
apply(b,b,tmp2,booleanop_and);
end if;
end loop;
- no one in up right diagonal
for k in I to boardsize
loop
inti := k-i+j;
if((intl >= I) AND (inti<= boardsize)) then
if(k I= i) then
apply_not(tmpl.X(k,intl));
apply(tmp2,X(ij),tmpI, boolean op _jmp);
apply(c,c,tmp2,booleanop_and);
end if;
end if;
end loop;
- no one in down right diagonal
for k in I to boardsize
loop
inti := i+j-k;
if((intl >= I) AND (inti <= boardsize)) then
if(k ,,. i) then
apply _not(tmp I .X(k,int I));
apply(tmp2,X(ij),rmpl ,booleanop_imp);
apply(d,d,rmp2,booleanop_and);
end if;
end if;
end loop;

apply(tmp l ,a,b, booleanop _and);
apply(tmp I ,tmp I ,c,booleanop_and);
apply(tmp l ,tmpI ,d,booleanop _and);

· 119

apply(queen,queen,tmp I .booleanop_and);

end;
begin
init;

•········•···• put the core algorithm here•······•···-···

queen := bddhandle_one;

- initialize the board variables
for i in l to boardsize
loop
for j in I lo boardsize
loop
ithvar(X(ij),(i-1)•boardsize +(j-1));
nithvar(tmpl ,(i-1)*boardsize +(j-1));
end loop;
end loop;

- put a queen in each row
for i in I to boardsize
loop
tmp l := bddhandle_zero;
for j in I to boardsize
loop
apply(tmpl ,nnpl,X(ij),booleanop_or):
end loop;
apply(queen,queen,tmp l ,booleanop_and);
end loop;
ASSERT false repon "queen now has in each row al each position"
severity note;
queensig <= queen;

build the constra.i nts for each position
for i in I to boardsize
loop
for j in I to boardsize
loop
build(i,j);
assen false report "building contra.ints for i,j" severity note;
queensig <= queen;
end loop;
end loop;

---- end of program --··-·-···-···----··•··

queensig <= queen;
testdone <= true;

end process;
end;

library ieee;
use ieee.STD_LOGIC_ll64.all;
library bddlib;
use bddlib.kernel.all;
library SYNOPSYS;

120

use SYNOPSYS.ATTRIBlITES.ALL;

entity tesrmknodeblk is

end restmknodeblk;

library bddlib;
architecture testrnknodeblk of testmknodeblk is

constant clkperiod : TIME := IO ns;
constant nodememdelay : NATURAL := O;
constant N : NATURAL 4;
signal applyop : booleanop;
signal applyresult : bddhandle;
signal applyresult_valid: std_logic;
signal bddinl : bddhandle;
signal bddin2 : bddhandle;
signal elk : std_logic;
signal enableand : std_logic;
signal enablenot : std_logic;
signal freehandle_valid_o: std_logic;
signal high : bddhandle;
signal init : std_logic:
signal level : bddvar;
signal low : bddhandle;
signal LOWONNODES · std_logic;
signal rnknode_result : bddhandle;
signal mknode_resultvalid: std_logic;
signal rnkselect : std_logic;
signal OUTOFNODES : std_logic;
signal rst std_logic;
signal start_rnknode : std_logic;
signal startapply : std_logic;
signal startnot : std_logic;
signal 1estdone : BOOLEAN;
component mknodeblktestbench

generic (
N : NATURAL := 4
);

port (
elk : out std_logic;
high : out bddhandle;
ini1 : out std_Jogic;
level : out bddvar;
low : out bddhandle;
rst : out std_logic;
startnot : out std_logic;
rnkselect : out std_logic;
bddin I : out bddhandle;
bddin2 : out bddhandle;
enablenot : out std_Jogic;
enableand : out std_logic;
start_mknode : out std_logic;
startapply : out std_logic;
applyop : out booleanop;
LOWONNODES : in std_logic;
OUTOFNODES : in std_logic;
rnknodeJesult : in bddhandle;
rnknodeJesultvalid : in std_logic;
freehandle_ valid_o : in std_logic;
applyresult_ valid : in s1d_logic;
applyresul1 : in bddhandle;
testdooe : out BOOLEAN
);

end component;
component rnknodeblk

generic (
nodememsize : NATURAL := bddmemsize;
camsize : NATURAL := bddcamsize;
uniquesize : NATURAL := bdduniquetablesize
);

port (

applyop : in booleanop;
bddin I : in bddhandle;
bddin2 : in bddhandle;
elk : in std_logic;
enableand : in std_logic;
enablenol : in std_logic;
freehandle_ valid_o : out std_logic;
init : in std_logic;
LOWONNODES : ou1 std_logic;
tp_rnknode_result : out bddhandle;
rp_rnknode_resultvalid : out std_logic;
rnkselect : in std_logic;
starr l : in std_logic;
level! : in bddvar;
low l : in bddhandle;
high I : in bddhandle;
OUTOFNODES : out stdJogic;
resulthandle : out bddhandle;
resultvalid : out std_logic;
rst : in std_logic;
startapply : in std_logic;
startnot : in std_logic
);

end component;

•• Start Configuration Specification
for all : rnknodeblktestbench use entity bddlib.mknodeblk1es1-

bench(Nqueen);
for all : rnknodeblk use entity bddlib.mknodeblk(mknodeblk);
-- End Configuration Specification

begin

inst_mknodeblktestbench: mknodeblktestbench
generic map (N)
port map(

elk=> elk..
high=> high,
init ==>init.
level => level,
low=>low,
rst => rst.
startnot => startnot,
mkselect => rnkselect,
bddinl => bddinl,
bddin2 => bddin2,
enablenot => enablenot,
enableand => enableand,
start_mknode => start_rnknode,
startapply => startapply,
applyop => applyop,
LOWONNODES => LOWONNODES,
OUTOFNODES => OUTOFNODES,
rnknode_result => mknode_result,
mlcnode_resultvalid => mlmodeJesultvalid,
freehandle_ valid_o => freehandle_ valid_o,
applyresult_valid=> applyresult_ valid,
applyresult => applyresult,
testdooe => testdone);

Cl: rnknodeblk
generic map (220000,

220000,
219983)

port map(
applyop => applyop,
bddinl => bddinl,
bddin2 => bddin2,
elk=> elk,
enableand => enableand,
enablenot => enablenot,
freehandle_ valid_o => freehandle_ valid_o,
init=>init,
LOWONNODES => LOWONNODES,
tp_mknode_result => mknode_result,

121

tp_mknode_resultvalid => mknode_resultvalid,
mkselect => mkselect,
start! => start_mknode,
level! => level,
!owl s:>low,
high I => high,
OtITOFNODES OUTOFNODES,
resulthandle => applyresult,
resultvalid => applyresult_valid,
rst => rst~
startapply => startapply.
startnot => startnot);

end testmlrnodeblk;

	Design and Evaluation of a Specialized Computer Architecture for Manipulating Binary Decision Diagrams
	Let us know how access to this document benefits you.
	Recommended Citation

