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ABSTRACT 

An abstract of the thesis of Robert K. Hatt for the Master of Science in Electrical Engi

neering presented October 9, 2000. 

Title: Design and Evaluation of a Specialized Computer Architecture for 

Manipulating Binary Decision Diagrams 

Binary Decision Diagrams (BDDs) are an extremely important data structure 

used in many logic design, synthesis and verification applications. Symbolic problem 

representations make BDDs a feasible data structure for use on many problems that 

have discrete representations. Efficient implementations of BOD algorithms on gen

eral purpose computers has made manipulating large binary decision diagrams possi

ble. Much research has gone into making BOD algorithms more efficient on general 

purpose computers. Despite amazing increases in performance and capacity of such 

computers over the last decade, they may not be the best way to solve large, special

ized problems. A computer architecture designed specifically to execute algorithms on 

binary decision diagrams has been created here to evaluate the possible performance 

improvements in BOD manipulation. This specialized computer will be described and 

its implementation discussed with respect to the important aspects of efficient BDD 

manipulations. This thesis will demonstrate that significant performance increases are 

possible using a specialized computer architecture for manipulating binary decision 

diagrams. 
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Chapter 1 
Introduction 

Modem integrated circuit (IC) technology has enabled designers to build cir

cuits with millions of transistors (logic gates). In 1984 a pair of designers might have 

sat in front of a computer tenninal to capture and simulate a netlist or schematic repre

sentation of an application specific integrated circuit (ASIC) containing seven thou

sand gates. Today small teams of engineers use logic synthesis and simulation to 

design circuits with hundreds of thousands or even millions of gates. The problem of 

creating and verifying these large circuits has pushed current computer technology to 

its limits. Logic simulation alone can no longer be used for complete verification of 

these I Cs, other efficient representations of these circuits are necessary to complete the 

required design, analysis and verification. Binary Decision Diagrams are one such 

critical representation. 

Reduced Ordered Binary Decision Diagrams (ROBDDs or just BDDs) are an 

efficient data structure for the representation of many (large) boolean functions. As 

such, they have become a very important tool for use in design and verification of 

logic. In 1986 Bryant [Bryant86] described algorithms for efficient manipulation of 

BDDs. The implementation of these algorithms has led to the use of BDDs for prob

lems ranging from logic decomposition [Bertacco97] [Chang96], logic synthesis 

[CYang98J, formal verification[Bryant95], test generation, and graph manipulation 
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[Cortadella99] [Sekine97]. They are used in all modem commercial synthesis and 

logic verification tools. 

The performance of Binary Decision Diagram algorithms on a general pur

pose computer has improved since the first libraries of functions were written, and 

they have been used to solve many difficult problems. Algorithm performance varies 

depending on the BDD library package and the type of problem being solved. Differ

ent types of applications of BDDs may show different efficiency with different pack

ages because the package implementation varies. Overall the BDD can be considered 

one of the successes of design automation research. Yet, despite the efficiency of 

BDDs for representing many types of circuits, there are many types of circuits where 

the BDD representation is exponential in size. This problem cannot be overcome eas

ily as it is an inherent limitation of the ROBDD data structure. Consequently other 

types of decision diagrams, and representations, have been developed in attempts to 

address these types of circuits [Becker97][Narayan98][Minato96]. 

Current general purpose engineering workstations are typically limited by the 

fact that they are organized as 32-bit word architectures and operating systems are 

restricted by this word length constraint. Application programs run on these general 

purpose computers cannot exceed the limits imposed by the operating system. Because 

of the cost and general efficiency one computer is used for a large variety of problems, 

but for special applications this generality may limit the ability to solve large problems 

in the most efficient manner. 
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Specialized computer architectures have been created to solve many problems, 

often in response to the capacity and performance limitations of general purpose com

puters. Vector processing machines (often called super computers) from companies 

like Cray Inc., and computers to execute LISP programs from companies like Texas 

Instruments and Symbolics Corporation are some of the most common examples. A 

specialized computer for manipulating Binary Decision Diagrams should be designed 

and evaluated in an attempt to address performance and capacity when compared to 

implementations on general purpose computers. This may also give additional insight 

into the behavior of BDD algorithms and how they could be improved. 

The following chapter will give an introduction to Binary Decision Diagrams. 

It will discuss some of the primary issues involved in creating and manipulating 

BDDs. Chapter 3 will discuss performance issues involving BDDs and their different 

types of applications. Several freely available BDD packages are described and the 

BuDDy package, which is used as an example of a typical BDD package, is described 

using an example N-queens problem. Chapters 4, and 5 will describe the specialized 

computer design, simulation models and implementation issues involved with the 

design of the specialized architecture. Finally, chapter 6 will discuss the results of the 

simulations and describe the performance in comparison to a general purpose com

puter. This will allow some conclusions to be drawn and future design considerations 

to be described. 
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Chapter 2 
Binary Decision Diagram Background 

2.1 Introduction to ROBDDs 

A Reduced Ordered Binary Decision Diagram (ROBDD or just BDD) is a 

directed a-cyclic graph which represents a boolean function. The graph begins with a 

single root node. Every path starting from the root node will end at a terminal node 

which represents either Oor 1. Each non-terminal node is labelled with one of the vari

ables in the function and has two outgoing edges. The edges point to nodes which rep

resent the negative and positive co-factors of the function respectively. Shannon (and 

Boole) found that a boolean function can be described in terms of two sub-functions 

(called cofactors) when a specified variable is either zero (negative cofactor) or one 

(positive cofactor). The Shannon expansion is often described by the following for

mula 

Figure 1. Shannon Expansion 

f =x·flx=l +x·flx=O 

Figure 2. Shannon Co-factors of a Boolean function 

For the boolean function 
f = a·b+a·c 

fla = l = b 

fla O = C 



6 

The BDD for the function of one variable x is shown in Figure 3 on page 7. For 

variable x, this function is Owhen xis zero (the negative cofactor) and 1 when xis one 

(the positive cofactor). Just expanding a function with respect to the co-factors of a 

function will give a decision tree as shown in Figure 4 on page 8. To make a Reduced 

BDD duplicate nodes are not allowed. Duplicate nodes are defined as nodes which are 

labelled with the same variable and whose outgoing edges point to the same nodes 

respectively (both lo edges point to the same node, also the corresponding hi edges 

also point to a common node). In Figure 4 it can be seen that nodes labelled 4 and 5 

meet this criteria. Also all duplicated terminal nodes should be combined so that there 

are only two terminal nodes; one representing the constant O the other representing 

constant 1. Therefore nodes 8,10,12,13 are combined and nodes 9,11,14,15 are com

bined. This results in the graph in Figure 5 on page 8. Finally any node whose edges 

both point to the same node are removed from the graph and the incoming edges are 

redirected to the destination of the outgoing edges which were just removed. All of the 

steps assume the ordering of the input variables (used by the function) do not change 

in the BDD. This results in the creation of a Reduced Ordered BDD. 
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Figure 3. BDD for a single variable 

I 

0 
I 

Reduced and Ordered are the most important structural features of BDDs 

because this makes the ROBDD a canonical representation. This canonicity property 

means that given two ROBDDs for the same function (using the same variable order

ing) the graphs are isomorphic and functional equivalence can be easily tested. 

It is not feasible to first build a decision tree and then reduce it because it 

would require a number of nodes exponential in the number variables (0(2N) where N 

is the number of variables in the function) to create the original decision tree. Only 

after Bryant [Bryant86} described recursive methods of performing operations on 

BDDs did they become a useful data structure for representing and manipulating bool-

ean functions. 

Only unique nodes are stored in the tree. Thus if two nodes are to represent the 

same function (variable and co-factors) they will be represented by the same node. 

There is no redundancy in the tree, all nodes are unique 
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0 

/ 
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Figure 4. Decision Tree for a function 

Table 1: Truth 
Table for 

F=a*b+a*c 

I 
I 

I 
I 

I 

Removed Redundant Nodes Removed nodes with edges 
pointing to same destination 

Bryant's algorithms for building BDDs are based on recursive operations over 

the BDD data structure. The core operator is called the If-Then-Else operator 

ite(F,G,H) = F*G +F*H 

a b c 

0 0 0 

0 0 

0 I 0 

0 I 1 

I 0 0 

I 0 I 

I 0 

F 

2(!{ 
1 / 

~ 0 4 
1 

6~ ~ 0 1(1 11 11 13 1. 15 
0 

0~000~ 
Figure 5. Reduced Ordered BDD 

a 
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It can be used to build all two variable boolean functions. For example to cre

ate a BDD to represent a function f = a*b + a*c would only require one call to the ITE 

operator f = ite(a,b,c). But if this same function were given as a gate level schematic, 

the function must be derived by walking the netlist and building the function itera

tively. 

Figure 6. Schematic Representation of the function f = a*b + a*c 

Cl 
B 

X 
A 

co 
F 

C2 
C y 

To create a BDD for the function f =a*b + a*c would require creation of a 

single node BDD for variable (function) a, b, and c. Then intermediate functions 

shown in Figure 7 must be created to achieve the desired function f. 

Figure 7. Netlist Representation of the function f =a*b + a*c. 

Input a,b,c; 
Output f; 
f2 = aANDb 
f3 =NOT a 
f5 =f3 ANDc 
f=f2 0Rf5 



2.2 The importance of variable ordering. 

The size of the BDD is highly dependent upon the ordering in which the vari

ables are represented in the tree. Minimum size representations can always be found 

using known algorithms [Drechsler98], but the computation time to find the minimum 

representation is often unacceptable because the worst case representation of a bool

ean function using a BDD is exponential in size. As shown in Figure 8 on page 10. the 

BDD representation for the boolean function f = a * b + a* c (which might be recog

nized as a multiplexor) is represented differently depending on the chosen variable 

ordering. The dotted lines indicate the low edge (negative cofactor where the variable 

= 0). The ordering a<b<c in Figure 8a requires only 5 nodes, the ordering c<b<a in 

Figure 8b. requires 7 nodes. 

Figure 8. BDD Variable Ordering 
a<b<c c<b<a 

Figure 8a. Figure 8b. 
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A second example of the size effects of variable ordering shows the number of 

nodes used to represent the different outputs of an eight bit adder. The number of 

nodes for each adder output bit are given for a good variable ordering and a bad vari

able ordering in Table 2 on page 11. It can be seen that for the most significant bit of 

the eight bit adder ( 16 input variables, 8 output variables) a good variable ordering 

gives a BDD of only 24 nodes and a bad variable ordering gives a size of O(z(N/Z)+ 1) 

where N is the number of outputs in the add function. 

Table 2: Nodes in an 8+8 adder 

Output Good Bad 
Bit Order Order 

0 3 3 

l 6 7 

2 9 15 

3 12 31 

4 15 63 

5 18 127 

6 21 255 

7 24 5ll 

It is not always possible to know before creating the BDD what will be a good 

variable ordering. For example when reading a function from a circuit netlist, it may 

be very difficult to determine a good ordering because the function is not known in 

advance. It is possible to choose an ordering and create the BDD, then try a different 

ordering and create another BDD and determine which is smaller, but this would mean 
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that N! (N factorial) orderings must be tried to find the best ordering (with respect to 

the size of the BDD) 

Rudell [Rudel193] found that variables adjacent in the ordering can be swapped 

without affecting the other levels of the BDD. This idea that variable swapping is a 

local operation led to the variable reordering algorithm called sifting. Sifting can be 

done dynamically while the BDD is being created to try to keep the BDD size manage

able. Sifting may require exponential run time to find a minimum BDD but it is often 

not necessary to try all possible orderings because a minimal BDD is not required, the 

BDD size must be kept small enough to be managed efficiently for the available com

puting resources and problem. 

2.3 Garbage Collection 

As BDD algorithms execute, while keeping the data structure canonical, they 

call many operators whose results are used only temporarily. The nodes generated dur

ing these operations which are no longer an active part of the data structure and are not 

referenced (visible) by any root nodes are called garbage nodes. Garbage collection is 

used to retrieve these nodes and put them back on to the list of available (free) nodes. 

Garbage collection is necessary when the number of free nodes nears exhaustion, and 

can consume significant CPU time. Because of this performance penalty it is impor

tant to perform garbage collection only when necessary. 

ROBDDs can be efficient data structures for manipulating boolean functions. 

Canonicity must be maintained through all operations. Efficiently building and main-
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taining BDDs to meet those considerations is an important factor in the use of BDDs 

in many applications. The following chapter describes the main aspects of algorithm 

implementation for BDDs and their performance considerations. 
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Chapter 3 
BDD Algorithm Implementation and Performance 

3.1 Background 

In 1990 Brace, Rudell and Bryant [Brace90] described an efficient implemen

tation of a BDD package which has been the basis of most subsequent BDD packages. 

The main features of an efficient BDD package as described by Brace et. al. are: 

• A unique table for the efficient creation of new BDD nodes and making sure all cre
ated nodes are unique. 

• A computed cache to store intermediate results of operations for use during recur
sion using the ITE and other operators. 

• Efficient garbage collection to recover nodes that are no longer referenced 

• Good dynamic variable reordering heuristics to be used while BDDs are being 
manipulated 

Because BDDs are an efficient representation of boolean functions in many 

cases and exponential in others, much work has been performed on refining BDD 

algorithms for fast execution and minimum memory use on general purpose proces

sors. It has been intensely studied by various implementers of BDD library packages. 

The algorithms described by Bryant were based on efficient traversal of the BDD 

recursively in a depth first recursive manner. Many variations of these methods have 

been implemented in attempts to create more efficient packages. Most packages give 

different performance depending on the actual size and the problem being solved. No 

single approach has been proven best for all problems. 
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Many different aspects of BDDs have been studied in attempts to find more 

efficient ways to manipulate them on general purpose processors. Specifically, mem

ory reference locality [Manne97], cache effects and memory paging 

[Klarlund96][Long97] have been the target of improved BOD packages. Breadth first 

manipulation has shown improvements on some problems [Ranjan96a]. Chen 

[Chen97] implemented a hybrid approach combining breadth-first and depth-first 

BOD manipulation and showed performance improvements over both depth-first only 

and breadth-first only implementations. Parallel BOD packages that can run on net

works of workstations have been created [Milvang98][Stometta96]. All of these 

approaches incorporate design trade-offs in an attempt to create packages which can 

manipulate large BDDs faster. 

Comparisons of various packages and their efficiency for various types of 

problems have also been made; [Sentovich96]. Yang et. al.[BYang98] studied various 

aspects of BOD performance as applied to symbolic model checking algorithms. The 

study included computed cache replacement policies, garbage collection frequency as 

well as variable ordering. They have shown that a larger computed cache size can have 

a much greater effect on model checking computations than for building BDDs for 

combinational circuits. Also, because garbage collection of un-referenced nodes can 

be time consuming, it was shown that model checking computations have a large 

rebirth rate (i.e. nodes that are un-referenced will become references again later in the 

computation). This led them to conclude that garbage collection should occur less fre-
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quently. Additionally they suggested that the combined breadth-first and depth-first 

approach :might lead to additional efficiencies. 

All of this research has applied to improving algorithms on general purpose 

processors. Because the speed of these processors and the availability of large memo

ries has become more affordable during the past decade continually larger problems 

can be addressed using BDDs. There are li:mitations to 32bit computer architectures 

and operating systems that prevent them from solving extremely large problems. As 

64 bit processors and operating systems with large main memories become more avail

able, larger problems will be solvable by a general purpose architecture. 

Generally a special computer architecture is used for two reasons, capacity and 

performance. With the advent of 64-bit word architectures and operating systems, 

capacity may no longer be an advantage of a specialized computer. This only leaves 

performance as a realistic improvement provided by a special purpose BDD computer. 

Attempting to build a special purpose computer may give insight into the behavior of 

BDD algorithms and provide a platform for the analysis of architectural trade-offs for 

different architectures and BDD algorithms, much as an instruction set simulator 

:might for a general purpose computer. No published research has been found on the 

study of any specialized hardware implementation of BDD algorithms. The remainder 

of this thesis will be devoted to the description of a special purpose computer architec

ture for manipulating binary decision diagrams. 
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3.2 General Goals 

A specialized computer for evaluating BDDs would enable the efficient solu

tion of BDD problems than can be accomplished by a general purpose computer. To 

make the effort to use a specialized computer desirable it must be able to solve larger 

problems faster than existing BDD packages at a reasonable cost. 

The use of the specialized computer should be transparent to the user. Compat

ibility of the procedural interface package with an existing BDD package will allow 

easy porting of existing code. The cost of the specialized hardware must be commen

surate with the size of the problems it can solve. In other words, it should be inexpen

sive compared to not being able to solve the problem in a reasonable time. Achieving 

these high level goals would allow easy adoption of the specialized hardware. The use

ful life of the specialized computer must be such that the investment can be justified 

vs. next years general purpose computer. These goals may be unobtainable, but that is 

the purpose of this research, to find out if it is reasonable to expect to achieve the nec

essary performance to make a specialized computer worthwhile. 

A high level look at the overall architecture will give a picture of the compo

nents that are required for such a system. 

3.3 Choosing a BDD Package 

It is not the goal of the paper to compare many BDD packages to find the best 

performing package. Nor is it the purpose of this project to create an entirely new 

package for use on general purpose computers. All work will be done based on an 
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existing package and procedural interface to create a subset of the package functions 

that can be used to verify the performance of the proposed BDD computer architec

ture. Several packages available from universities have become widely used because 

they are robust and efficient. They all use various implementations to try and achieve 

improved performance and memory usage. Below, three publicly available BDD pack

ages, CUDD, CAL and BuDDY will be briefly presented. 

3.4 CUDD 

A large, comprehensive, robust and efficient library developed by Fabio 

Somenzi at the University of Colorado at Boulder. It uses complement edges in the 

internal representation and depth first recursive ITE algorithms. It is very smart about 

compacting the BDD node into 16 bytes and making sure all nodes are 16 byte 

aligned. This helps when fetching things from memory on most 32 bit processors 

which often have 32 byte cache lines. Support for many heuristics for dynamic vari

able ordering and automatically adjusting cache sizes are built in. It also supports other 

kinds of functional decision diagrams not discussed here.(ZBDDs, FDDs)[CUDD98] 

3.5 CAL 

Similar to CUDD in its use of 16 byte (aligned) nodes, this package uses 

breadth first recursion during most algorithms. It has slightly more complicated access 

to internal data structures because of the breadth first recursion, but by storing all 

nodes of a single variable contiguously in memory, the breadth first search has good 
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memory locality access (fewer cache misses), [CAL97]. It has been the basis for sev-

eral BDD packages designed to run in parallel on multiple workstations including 

[Milvang98]. 

3.6 BuDDy 

A general BDD package with all of the required features of an efficient BDD 

package including garbage collection and several dynamic variable ordering heuris

tics. Includes vector operations for word level operations on BDDs, [BuDDy99]. 

The BuDDy library of BDD functions was chosen as the BDD library to base 

the performance comparisons and implementations for this project. Though probably 

not the fastest BDD package, or the one that consumes the least memory, it is claimed 

by the author to be as fast as David Long's (CMU) original package (CUDD and CAL 

claim to be faster than that package as well) and the code is very well documented and 

readable. It is an excellent tool to study and learn about BDD algorithms. The code is 

clear, concise and more consistent than the other two packages that were looked at. It 

is for these reasons that the BuDDY package was chosen for the analysis and as a basis 

for the BDD algorithms to be modeled. 

3.7 Computing Environment 

The computing environment used as the basis for all data and statistics gath

ered in this paper is a dual Intel Pentium II Xeon with 1MB full speed 2nd level cache, 

128MB RAM and 80Mb/sec. SCSI disk drive. The operating system is Red Hat Linux 
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6.1 (SMP kernel). The compilation environment is the GNU CIC++ compiler, gee ver-

sion egcs-2.91.66 19990314/Linux (egcs-1.1.2 release) provided with the Red Hat 

Linux installation. All benchmarks are single threaded and were run on a single pro

cessor with no other non-operating system processes running. 

3.8 Performance Measures 

Code profiling is a method for finding the percent of total CPU time spent in 

each function of a program. It is a feature of the compiler used on the general purpose 

computer and is easily turned on with a single compiler switch. Approximate CPU 

time and exact number of calls is collected for each function that is profiled. It should 

be run with a variety of test cases to gain insight into where a program may need to be 

optimized. 

Several sample (simple) programs were run and profiled. None of these pro

grams is large,in the sense that they require large amounts of memory or computation 

time. They are intended to be a few test cases representative of average BDD computa-

tions. 

• N-queens - The classic constraint problem written using BDDs as the data structure. 
Place N queens on an NxN chess board such that no queen can capture another. 

• Reachability - Generate random state machines and perform reachability analysis 
This is a typical model checking type verification task to make sure design con
straints are met in possible states. 

• State Minimization - Read a description of a state machine, find equivalent states 
and combine them. Write the results out to a kiss file. 

https://egcs-2.91.66
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Figure 9. N Queens Profiles 

N queens profiles 

-+- BddCache_iriit 
-+bdd_init 

apply_rec 
bdd_makenode 

-¾-bdd_gbc 
.... bdd_mark 
-+- BddCache_rest 
-other 

7 8 9 10 11 

N 

The N queens program was run for several different values of N ranging from 

seven to eleven. These are the runs to completion in main memory. The profile was 

examined and the percentage of time spent in the BDD library functions was recorded. 

The top seven contributors to CPU time usage are shown in Figure 9 on page 21, all 

other functions are lumped into the others category. For all runs the number of nodes 

initially allocated was 1,000,003 and the computed cache size was set to 500,009. 

These numbers are prime numbers and the hash function used by BuDDy is modulus 

based which works best with prime numbers [Aho86]. The function BddCache_init is 

actually a constant time when the initial number of nodes is constant. Thus it is a much 

larger percentage of execution time in small benchmarks and a negligible percentage 
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for the larger values of N. For most realistically sized problems, it is assumed the 

BddCache_init time will be a very small percentage of the problem. As the problem 

size grows, so does the amount of time spent in apply _rec, bdd_mak:enode. Only if the 

initial number of allocated nodes is exceeded is garbage collection invoked. This 

occurred when N was equal to eleven. It can be seen that the garbage collection related 

functions bdd_gbc, bdd_mark, BDDCache_reset were negligible before N was eleven, 

but were large users of CPU time for N equal eleven. 

The results of profiling these programs is given in Table 3 on page 22. Only 

functions that contributed more than 5% of the CPU time to at least one of the test case 

runs are included by name, the remaining functions are accumulated in the category 

labeled others. The functions bdd_gbc, BddCache_reset, and bdd_mark could be com-

bined under a heading titled garbage collection. 

Table 3: Sample Program Profiles 

average %CPU for 5 runs 

State Reachability 
Function Name N queens Minimization Analysis Average 

apply_rec 32.2 7.6 31.2 23.6 

bdd_makenode 22.6 4.2 26.8 17.8 

BddCache_init 27 42.2 IO 26.4 

nocrec 5 1.6 

appquant_rec 20.2 6.7 

bdd_init 10.6 15.8 2.2 9.5 

bdd_gbc 3.4 9.4 4.3 

BddCache_reset 1.6 8.8 3.5 

bdd_mark 1.2 0.4 

others 1.4 8 10.6 6.6 
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The chart in Figure 10 on page 24 gives a good view of where time is spent. 

The functions apply_rec, bdd_makenode, and garbage collection constitute slightly 

over 50% of the CPU time used by these programs. The reachability analysis tests 

spend most of the CPU time using apply _rec to create the internal state machine repre

sentations. Also they show the use of garbage collection because the number of nodes 

created during execution exceeded the number of nodes initially allocated. The 

appquant_rec, which is the existential and universal quantification operations is 

lumped in with the "other" category, though for reachability this is also one of the pri

mary operations. It is important to note, that the numbers will vary depending on the 

arguments for the programs, the number of nodes in the initial node table and the num

ber of slots in the computed cache. In general, if too few nodes are used initially, gar

bage collection and marking operations will become large portions of the execution 

time. This is an important point, because garbage collection will become extremely 

important for operations on large BDDs. The term large is relative, for example if the 

BDD computer has a large memory then garbage collection may not be as important 

until the problem starts to fill the node memory. 

Also important here is that all of these problems have been programmed using 

a known good variable ordering appropriate for the problem. Many real world prob

lems may not have a known good variable ordering and depend on heuristics and 

dynamic variable ordering to keep the BDD sizes manageable. Because of the known 

good ordering for these problems the dynamic variable ordering was not used in any of 

the test cases. 
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Figure 10. BOD function execution time 
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The functions BddCache_init, and bdd_init show up as large percentages 

because they dominate the small test case runs. In larger runs, as was seen with the N 

queens problem, they are actually negligible compared with the other functions. 

This Chapter has given background information about BDD algorithm perfor

mance research. Several BDD packages were described and the choice of one package 

.as a basis for further research was given. The computing environment used for gather

ing the performance information was described and the performance of several BDD 

algorithms was evaluated. It was shown that on a general purpose processor most CPU 

time is spent in the recursive manipulation (apply_rec) and creation (bdd_makenode) 

of BDDs. Garbage collection time is also significant as the problems become large 
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with respect to available memory. This performance information is important to the 

remainder of the thesis because it helped guide the design choices described in subse

quent chapters. The remainder of the thesis will describe how the major parts of the 

BOD algorithms were modeled. Why the different design choices were made and 

describe the results of the simulations of the BOD Computer architecture. 
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Chapter 4 
BDD Computer Macro Architecture 

4.1 Introduction 

Within the context of accelerating execution of BDDs using special purpose 

hardware, the operation of the BDD processor on the BDD itself can be designed inde

pendently of a general purpose computer. Yet the chosen architecture will interface to 

a general purpose computer for all non-BDD related operations. The level of integra

tion and how the BDD processor interfaces to the general purpose computer varies and 

the different interface architectures have unique performance characteristics. This 

chapter describes the different macro-architectures and the issues associated with the 

design of each. 

4.2 Integrated BDD Processor 

The integrated architecture shown in Figure 11 on page 27 assumes that a BDD 

execution unit could be integrated directly into the general purpose processor. The 

BDD execution unit would share resources with the processor as well as using the 

same memory hierarchy. A new memory system and interface does not have to be 

designed. BDD operations can be implemented with special instructions that are an 

extension of the processor instruction set. The on chip integration means the BDD 

instructions will execute with the same performance as the processor. Therefore as the 
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processor semiconductor technology improves and performance increases so will the 

BDD instructions see similar improvement. 

Figure 11. Integrated BDD Execution Unit 
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There are several disadvantages of this architecture. The first is the integration 

with the general purpose processor. This is a difficult design issue and it requires 

knowledge of the processor micro architecture and IC technology being used. The 

compiler technology must be crafted to take advantage of the BDD instructions and 

programs must be recompiled to take advantage of these instructions. Alternately a 

special library of hand crafted routines could be provided that could be called by appli-

cations programs that need to access BDD instructions. 

As was described in Section 3, "BDD Algorithm Implementation and Perfor

mance," on page 14 the algorithms for BDDs are memory access intensive manipula

tion of nodes and edges in the BDD. Thus sharing the processor main memory offers 

no capacity benefits, and probably no memory access benefits. Finally this design is 
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not feasible for anyone but a large microprocessor design company and, because it is 

not a large volume application, is not worth the engineering effort required for imple

mentation. 

4.3 BDD Coprocessor 

The second architecture is shown in Figure 12 on page 29. The BDD Copro

cessor design features the BDD execution unit as a device attached to the processor 

bus. Because the unit is attached to the processor bus, there is a larger latency to exe

cute a BDD instruction than with the integrated execution unit. This design is more 

complex but is more feasible. Increases in complexity arise because the BDD copro

cessor does not share resources with the processor, must track the bus transactions, and 

has its own memory which is separate from the processor's main memory. Some of 

these complexities may be necessary to achieve high performance BDD manipulation. 

The memory structures can be customized to specifically improve performance for 

BDDs. BDD execution can take place in parallel with other programs running on the 

general purpose processor. The main disadvantage of this architecture is the increased 

design complexity and the added latency through the processor bus to execute a BDD 

instruction. If implemented as an ASIC with a general purpose processor core and 

additional BDD functionality the BDD computer could be on the same chip with the 

GP processor. This architecture might then be constrained due to 1/0 limitations of the 

ASIC package because of large data and address busses for both the general purpose 

processor and the BDD processor. 
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Figure 12. BDD Coprocessor 
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4.4 BDD Peripheral processor 

The architecture shown in Figure 13 on page 30 is very similar to the BDD 

coprocessor, but since the BDD computer resides on the PCI (or AGP) bus instead of 

the processor bus, the latency for the processor to issue a BDD instruction is much 

higher. It is also less predictable due to many more possible peripherals on the expan

sion bus. This architecture has all of the execution benefits and most of the design 

complexity of the coprocessor design, though the PCI/ AGP interface is a slightly eas

ier interface design. 
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Figure 13. BOD Peripheral Processor 
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4.5 The Software Architecture 

In addition to the hardware architecture the BDD processor must be easily 

accessible from software. In order to make the BDD functions easily integrated into 

existing programs, a library of functions will be provided to the programmer. The 

BDD library will look like a normal software library to the user, but will interface to 

the BDD processor hardware. See Figure 14 on page 31. The underlying structure of 

the hardware can change without change to the software library interface. This soft

ware architecture allows changes in the underlying software/hardware structure with

out affecting the user application program. 
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Figure 14. Software Architecture 
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Each of the different macro architectures will have different access latency to 

transfer data between the general purpose processor and the BDD processor. Generally 

the further the BDD processor interface sits from the processor, the more software 

overhead will be involved in accessing it. This is discussed along with the perfor

mance results in Section 6, "Performance Evaluation," 

4.6 Memory Subsystem 

The memory subsystem of the BDD processor is one of the main issues to con

sider during design. As was shown in Section 3, "BDD Algorithm Implementation and 

Performance," the algorithms used to manipulate large decision diagrams have mem

ory access patterns that are difficult to predict. Memory references often cause cache 

misses in a general purpose processor which means access to main memory is 

required. Also, the implementation of the unique and computed tables are amenable to 
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different types of memory structures. Because commercially available memories are 

designed with specific applications in mind, a number of types of memory were con

sidered for the different memory subsystems in the BDD processor architecture. 

4.6.1 SRAM, SSRAM 

Static RAM (SRAM) offers the highest performance in off the shelf memory 

components. SRAM with access times of 7.5 ns and below are available. Synchronous 

SRAM (SSRAM) uses a clock signal to latch the address and data signals thus making 

the interface to synchronous systems easier. Capacity is an issue for very large memo

ries as SRAMs typically only store about 8Mb per chip. 

4.6.2 DRAM, SDRAM, RDRAM 

Dynamic RAM (DRAM) offers high capacity and is the least cost per bit mem

ory available. There are a number of different variations that offer high performance 

and synchronous operation. Synchronous DRAM (SD RAM) has registers to hold out

put data and input signals to allow synchronous interface to clocked systems. The 

burst mode in the SDRAMs has been designed to effectively interface with cache 

memory systems that load data from several sequential addresses on successive clock 

cycles. Direct Rambus DRAM (RDRAM) is designed for very high speed synchro

nous burst access up to 800 MHz. The high speed of the RDRAM makes for a difficult 

design. Because DRAMS can store 128Mb per chip, typical general purpose server 

computers can be configured with gigabytes of DRAM. The latency for typical 
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DRAM is 60ns, much larger than static RAM, but once a burst is begun DRAM offers 

performance nearly the same as the faster SRAM. 

4.6.3 CAM 

Several commercial options are available for content addressable memory. 

Several companies (NetLogic Microsystems and Lara Technologies are two) offer 

CAM devices targeted at network switches which might be usable for other applica

tions. The capacity of these devices is modest compared to SRAM and DRAM. 

NetLogic SyncCAM-2 is available in 32k x 144 bit organization with speeds 

up to 100 MHz. Lara Technology offers similar features. The depth can be increased 

beyond 32k, but access must be pipelined thus increasing the average latency to find a 

match. UTMC offers a UTCAM-Engine product which is an IC designed to tum 

SSRAM or SDRAM into content addressable memory. The performance is lower than 

for the dedicated CAM, but also offers the opportunity for designing larger CAMs 

using less expensive memory components. 

4.6.4 Memory Performance Summary 

The cost per bit of the different types of memory varies significantly. Dynamic 

RAM with the least expensive cost per bit, but with the worst latency. CAM is the 

most expensive memory but the latency is size dependent. Static RAM cost is in the 

middle and has the shortest latency of the three types of memory proposed. New vari

ations of DRAM such as RD RAM and Double Data Rate SDRAM offer higher clock 
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rates and bandwidth than conventional SDRAM memory, but latency is generaUy not 

improved. These effects of specific types of DRAM have not been studied in this the

sis, but cost must be taken into account when designing a large memory system. 

4.7 Architecture and Memory Issues 

Each of the architectures described in this chapter offers different complexities 

and design issues. They have been summarized in this chapter and specific perfor

mance numbers will be given in Chapter 6, "Performance Evaluation". Table 4, 

"Macro Architecture Design Trade-offs," on page 34 shows the different architectures 

and the relative design complexity of each. 

Table 4: Macro Architecture Design Trade-offs 

Interface Estimated 
Design Instruction Capacity Design 

Architecture Complexity Latency Effect Cost 

General Purpose Pro- NA NA Limited NA 
cessor by OS 

Integrated BDD Execu- Very High Very Small None Very High 
tion Unit 

BOD Coprocessor High High (-=GP UnLim- High 
main memory) ited 

BOD Peripheral pro- Average High (2-3x GP UnLim- Average 
cessor main memory) ited 

This chapter has served to introduce some of the general cost and complexity 

issues that are involved with the design of the BDD processor. The following chapters 

will describe the design specific choices that were made in this thesis. 
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Chapter 5 
BDD Micro Architecture and Hardware Models 

5.1 Simulation and Modeling Environment 

To create and evaluate the model of the BDD Processor a combined 'C' and 

VHDL simulation environment will be used. This environment will allow for the inter

action of applications programs with the simulated BDD Processor architecture to 

determine performance on actual application programs that manipulate BDDs. This 

can then be compared to the performance obtained by running the application on a 

general purpose computer. The BDD processor will only accelerate the actual manipu

lation of the BDD library calls. The performance of the BDD processor is measured 

for specific time based on the number of BDD clock cycles and clock period for the 

portions of the program that will be accelerated. These times will be substitutes for the 

measured percentage of the program that is run on the general purpose processor. Then 

a comparison of the application run solely on the general purpose architecture with the 

application run using the BDD processor will be given. 

5.2 Processor Model 

The model has been designed to implement the BDD algorithms based on the 

BuDDy package. It is an unsophisticated implementation that attempts to use as few 

clock cycles and to make as many memory accesses concurrently as possible. The 
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models are being used as an analysis tool to estimate the performance of a simple 

hardware implementation and may not represent the best implementation. 

Figure 15. BDD Processor Functional Units 

5.3 Memory Models 

Several memory models were designed so that the different types of memory 

could be tested with a variety of latencies. The models have an abstracted interface so 

that the latency can be easily changed. The node table, unique table and CAM were 

designed with an asynchronous interface. A request is received on the input and when 

the memory has completed the request, an acknowledge signal is sent back to the 

requesting unit. As can be seen in Figure 15 on page 36, the memories also have mul

tiple ports. The memory models use a simple round robin arbitration scheme to allow 

access to the memory. This method guarantees that each functional unit will get access 

to the memory in the order the request was received. If multiple requests are received 
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simultaneously they are serviced in a priority order with the most recently serviced 

port being the lowest priority. 

5.3.1 Node Memory 

The node memory is the main memory of the BDD processor. It needs to be 

very large. This is the most critical capacity/performance trade-off in the system. Fast 

access to the node memory is required to achieve high performance. The goal of any 

BDD system is efficient node access, which means keeping the memory busy fetching 

nodes so the processing can proceed as quickly as possible. The node structure shown 

in Figure 16 on page 38 shows the intended bit widths of the different fields in the 

node structure and the VHDL record used to represent it. The field widths are chosen 

based on expected capacity requirements and memory availability; DRAM modules 

are typically 64 bits wide. The 32 bit hi-edge and lo-edge fields will allow four billion 

nodes if enough memory can be installed in the machine. This far exceeds the approx

imate 256 million node capacity of a software package which uses 28 bit node address 

fields because nodes are typically 16 bytes in size. Unused bits will be used to expand 

(if necessary) existing fields and for future enhancements. 
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Figure 16. Node structure 
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Table 5: Node Memory 
Fields 

Field Size type bdd_t is record 
level 20 level : bddvar; 
lo-edge 32 lo : bddhandle; 
hi-edge 32 hi : bddhandle; 
nextbdd 32 nextbdd : bddhandle; 

gc: gc_t;gc 2 
end record; 

e(xternal) 

future 7 

5.3.2 CAM (Computed Cache) memory 

The computed table can be implemented in several ways. It was implemented 

as if it were a true content addressable memory. Access is by content, with the result 

value returned not as an address, but as the result value stored at the found address. 

When the CAM is full it begins a FIFO overwrite, so that the first cell that was written 

to the memory is the first one to be overwritten. It can also be thought of as a circular 

buffer that once it is full starts writing at the beginning again. The CAM must be wide 

enough to hold the arguments to the BDD apply function, and must return a result 

value the size of a node handle (32 bits). 

5.3.3 Unique Table 

The unique table is used to hold references to individual nodes in the node 

memory. Because each node in the node memory must be unique this table is imple-
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mented as lookup table which holds node addresses. The node to be looked up must be 

hashed into an address in the unique table memory. The unique memory returns a node 

address which must then be looked up in node memory. It is possible that several 

nodes will hash into the same unique table location, thus requiring chaining (linking) 

of the nodes in the node table to find the correct node. Often this is combined with the 

node memory, but in this implementation it has been chosen as a separate physical 

memory. The unique table must be large to minimize hash collisions and wide enough 

to hold node handles (32 bits). 

5.3.4 Register file 

There are two register files used in the BDD computer. Both are used during 

recursive BDD operations to hold temporary node values, addresses and return codes. 

Figure 17. Register File 
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They have the same width as a node but can be accessed as a moving window 

which can be moved up/down by 1, 2, or 3 registers. This requires three separate bus

ses from the register file to the functional unit performing recursive operations. 

Because the number of variables used by a function indicates the depth of the BDD 

graph, the number of recursive calls to reach the bottom of the graph is at most equal 

to the number variables used in the BDD. Therefore, the depth of the register file 

determines the maximum number of variables that can be used in a BDD. The current 

implementation never accesses more than two registers at a time. There may be addi

tional BDD algorithms that have not been implemented here that require more tempo

rary registers during execution so the memory model was designed with some 

flexibility in mind. 
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5.3.5 MakeNode block description 

The makenode function of the BDD computer has access to the unique table 

and node table. It is responsible for finding nodes in the node table and for creation of 

all new nodes. 

Figure 18. MakeNode Pseudo-Code 

1: make_node(node) 
{ 

// do not allow both edges to point to same node 
2: if node.lo == node.hi then return low; 

//lookup the node in the unique table 
3: hash(node); 
4: look up node in node table 

{ 
walk the chain of nextbdd links 
until the node is found/not found 

} 
if found then return the found node address 

II not found, so build a new node. 
5 build new node 

{ 
get next free node from free node list 
write the input node into the free node list address 
return the free node list address 
advance to next free node 

} 

It makes sure that only unique nodes are created so there are no duplicates in 

the node table. Pseudo-code for make_node function is shown in Figure 18 on 

page 41. MakeNode was designed as a state machine. Different points in the algorithm 

were defined as states based on the function and expected effect on hardware imple

mentation size and performance. These points are shown with bold numbers before the 

beginning of the line in Figure 18 on page 41. 
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Figure 19. MakeNode FSM 

Each of the lines noted with a bold number is one of the points in the code 

which was broken down for a hardware implementation. Point 1 and 2 correspond to 

the IDLE state (see Figure 19 on page 42). Point 3 in the code corresponds to the hash 

state. Point 4 requires two states, findunique for the initial lookup in the unique table 

and findnode if a hash collision occurs and the nodes are chained. Point 5 and beyond 

is executed concurrently with the return into state IDLE. The state waitforbuild must 
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wait until the previous build (write to memory) is finished before sending the state 

machine back into the IDLE state. In short, if the code after point 5 is still executing 

from the previous call to MakeNode, the fsm will stall in waitforbuild. The state 

machines that perform the writes to node memory and unique memory are concurrent 

with the main MakeNode FSM and are shown in Figure 20 on page 43. Both are sim

ple three state machines which are IDLE, or waiting for the memory acknowledge sig

nal on one clock in state writenodemem (writeuniquemem) or several clocks in state 

writenodewait (writeuniquemem). These state machines operate concurrently with 

each other and the main MakeNode FSM because the node table and unique table are 

separate memory structures. 

Figure 20. MakeNode Build FSM 

1start build = r 
1start ouno = p· 
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5.3.6 Apply block description 

Apply is the algorithm that performs algorithmic manipulations of the BDD 

node structure to produce a result node. It is used for all 2 input boolean functions. 

Figure 21. Pseudo Code for Apply (recursive - depth first) 

set operation 
apply(left, right) 
{ 

c \ 1: check for terminal cases 
2: check cache (terminal case) 

fetch left and right nodes, compute arguments for recursive calls 
3: res 1 = apply(leftarg 1,rightarg I) 
4: res2 = apply(leftarg2,rightarg2) 
5: result = make_node(level,res l ,res2) 

c ( 6: put result in cache 
7: return result of make node 

} 

Note C: available concurrency. (in a breadth first algorithm the two calls to apply can be con
sidered concurrent). 

The operation to be performed is static for a given traversal of the BDD, there

fore, it can be stored in a register and is not required to be passed as an argument to 

apply and is set before calling apply. Terminal case check, computed cache check 

(CAM access) and fetch of left and right nodes from node memory can begin concur

rently. In reality the terminal case check at point 1 in Figure 21 on page 44 is per

formed during state warmup (See Figure 22 on page 46). The CAM is used as a cache 

for intermediate computed results during the apply operation. If the arguments to 

apply are not a terminal case, the CAM and node memory accesses are started concur

rently in state CAMFIND. Though it would be possible to start the fetch of nodes and 

check the cache concurrently with testing for the terminal cases, in all terminal cases 



45 

this would cause requests to node memory and CAM that would have to be aborted. 

Also, while terminal cases are being checked the nodes that need to be fetched are 

being computed and as such this calculation is complex enough that it might affect the 

performance to delay the memory access until the following clock cycle, so the 

accesses were moved to the CAMFIND state. Points 3 and 4 correspond to states 

updatelo and updatehi respectively. Entering these states the register file window must 

be moved so that temporary values can be held until the return point is reached. Point 

5 corresponds to state mknode, which will wait until the mknode operation is com

plete. When exiting state rnknode, the CAM write (states writecamidle and writecam) 

will begin concurrently while the main FSM moves into state RETURNCTL. The 

main FSM does not have to wait for the CAM write to complete before continuing. 
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Figure 22. FSM for apply 
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All of the apply algorithms in general purpose processor code use handles 

(addresses) as arguments. It might make sense to have entire nodes passed as argu

ments. There are several reasons why this was not chosen. First, fetches of the children 

nodes are still required to make subsequent recursive calls. Building of new nodes 

with make_node is based on the level, lo and hi handles. If the entire node is passed 

without a handle, the structure of the unique table must be redesigned. These changes 

to the algorithms were considered to be beyond the scope of what is needed to be 

accomplished in this thesis. 
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Most of the recursive algorithms require the variable level of the children to 

make a determination of the arguments for the next recursive call. It might be an 

improvement to include the level of the children in the node structure. But since the 

children node must be fetched anyway for the arguments to the subsequent calls to 

apply, it does not offer any significant performance gains. Also, this change would 

complicate the reordering algorithm and might make reordering a non-local operation. 

This was not seen as a significant enough benefit to make these changes to the node 

structure. 

5.3.7 FreeNodeControl 

This block controls the free node list. It performs initialization of the node 

memory by correctly creating the constant nodes Oand 1 and creating the free list of 

nodes. The current implementation also stores the handle of the next available node so 

that MakeNode block does not have to wait to return its value. It also performs gar

bage collection. This is why it has access to the node memory and unique memory (as 

well as sending control signals to the CAM not shown on the diagram) 

5.3.8 Garbage Collection 

In most software BDD package implementations garbage collection interrupts 

the execution of BDD algorithms. This is called serial garbage collection. One of the 

advantages of creating custom hardware is that different techniques can be used from 

the ones used in pure software implementation. An alternative to serial garbage collec-
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tion is parallel garbage collection. The garbage collection algorithm to be used is 

based on the parallel algorithm described by Lamport [Lamport76] and Dijkstra 

[Dijkstra78]. This algorithm is designed to work with multiple processes operating on 

the data structure at the same time. Thus, the BDD algorithm can continue to run while 

the garbage collection algorithm operates in parallel. The goal is to improve perfor

mance on large problems by reducing the interruptions caused by a serial garbage col

lection algorithm. The garbage collector can use memory cycles that are not used by 

the BDD algorithms. 

There are some complications introduced in garbage collection of BDD nodes. 

Nodes that are garbage collected must be removed from the unique table and added to 

the list of free nodes. The computed cache may contain references to nodes which are 

to be garbage collected. Therefore the computed cache entry must be invalidated or the 

entire cache must be invalidated (and cache operations halted) before the sweep can 

take place. The hardware clearing of the cache is much faster than in software. 

Although garbage collection can consume large amounts of processing time, 

because the cases used in this thesis are relatively small, i.e. garbage collection is not 

required, it has not been implemented. 
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5.3.9 Dynamic Variable Ordering 

Dynamic variable ordering is very important in any BDD implementation. 

Even in specialized hardware where performance exceeds that of a general purpose 

computer it is required to keep BDD sizes from becoming unreasonable and reducing 

performance. As this would require much more additional research and development, 

this topic has not been addressed in this thesis. 
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Chapter 6 
Performance Evaluation 

6.1 N Queens performance 

The N Queens problem is the simplest of the previously profiled BDD pro-

grams. It also represents a cross between manipulations on a combinational logic cir

cuit and a constraint problem, and thus, is a good choice as an problem for evaluation. 

Obtaining execution time values for general purpose programs is not a straight

forward task. The complexity of modem multi-tasking operating systems, and the pro

cessors on which they run, make it difficult to obtain highly accurate execution time 

values. There is operating system overhead involved in managing the memory space 

for each running process in the system. Cache misses during execution can cause page 

faults which must be handled by the OS. Dynamic memory allocation requires man

agement by the OS. These effects are not easily quantified, thus a simple value for the 

execution time of a program is not always achievable. In a multiprocessor system the 

OS controls how different tasks (processes) are spread across the processors. This will 

affect the operating system execution and application programs that are multi

threaded. Also, the ability of the OS to collect execution time information is limited by 

the precision of the hardware clocks available to the OS. 

For the experiments performed here, all of the sample BDD applications used 

are single threaded and were run on a single processor. No other application programs 

were running on the system when the execution time numbers were collected. Initial 



51 

CPU execution times were collected using the UNIX system call clock(). This call 

returns a number (of clock tics in microseconds). It is called before and after the area 

of interest in the algorithm that is being simulated (see Figure 23) and the difference is 

assumed to be the number of microseconds used in that part of the program. The ini

tialization time spent in bdd_init() and bdd_setvarnum() is not included in this mea

surement because it is not part of the time gathered from the BDD computer 

simulations. 

Figure 23. Algorithm for N queens 

/* Initialize with 100000 nodes, 10000 cache entries and NxN variables*/ 
bdd_init(lO0OOO, 10000); 
bdd_setvamum(N*N) 

;II get the current clock number for execution time calculation 
cputime = clock( ); 
queen= bddtrue; 

/* Build variable array */ 
X = new bdd*[N]; 
for (n=0; n<N; n++) 

X[n] = new bdd[N]; 
for (i=0 ; i<N ; i++) 

for (j=O ; j<N ; j++) 
X[i][j] = bdd_ithvar(i*N+j); 

/* Build requirements for each variable(field) */ 
for (i=0; i<N; i++) 

for (j=O; j<N; j++) 
build(i,j); 

/* Place a queen in each row*/ 
for (i=0 ; i<N ; i++ ){ 

bdd e; 
for (j=0 ; j<N ; j++) 

e I= X[i]Li]; 
queen&= e; 

} 
// get the execution time, then calculate the difference from the time collected above 

cputime = clock( ) - cputime; 
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The problem with this method is that it is not known what part of this number 

is system time and what part is actual user program time. In an attempt to clarify this, 

the unix utility time was used to gather user, system, and elapsed (wall) time for the 

same set of N queens executions. Because the runs are so short and the precision of the 

measurements is only accurate to one microsecond, five runs for each value of N were 

performed and the numbers averaged and rounded to two significant digits. 

These times are shown in Table 6, "CPU Time (sec.)," on page 52 

Table 6: CPU Time (sec.) 

clock() 
N User System Elapsed time 

4 .02 .07 .09 .005 

5 .03 .07 .09 .01 

6 .03 .08 .10 .02 

7 .06 .08 .14 .05 

8 .18 .09 .27 .17 

9 .96 .08 1.04 .91 

10* 4.86 .33 5.18 4.78 

11*+ 45.09 .45 45.50 45.10 

* larger initial node allocation 
+ Includes garbage collection time 

The execution time also depends on how many nodes are initially allocated in 

the unique and node table. All times were collected with 219983 nodes in the initial 

table. This number is used because it is a prime number slightly larger than the number 

of unique nodes generated for a value of N equal nine. Keeping the initial number of 

nodes constant means that the system overhead due to initialization should be consis

tent for all of the runs. This also means that for values of N less than nine, the general 
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purpose program could run faster than is shown here because many unused nodes are 

being initialized. In a most real world problems it is hard to have a good estimate of 

the number of required nodes, so a large initial allocation can help prevent large 

amount of time spent in garbage collection. 

The original clock() execution times are similar to the user time numbers, 

though they are slightly less. This is good since they should be less than the user time 

because the initialization time is missing from the clock time values. It can be seen that 

the system time is larger than user time for values of N less than eight. This gives less 

confidence in the quality of the execution time numbers. Eight queens is the first time 

where user time is the majority of the elapsed time, and for larger values of N the sys

tem time is less than ten percent of the elapsed time. These longer runs should have a 

smaller error in the time measurements and make a better comparison to the execution 

time for the BDD processor. 

Some of the execution time that exists in the general purpose implementation 

will still exist when using the BDD processor. The for loops and function calls shown 

in the application will still need to be executed to communicate with the BDD proces

sor and obtain the results. The access to the BDD computer might also cause the OS to 

suspend the application program until the result is returned. This will create additional 

system overhead that might not occur in the general purpose implementation of the 

program. This overhead was not accounted for in any of the times measured here. A 

more detailed implementation of the software interface as a PCI /AGP driver program 

could be used in the future to perform this evaluation. The clock() time CPU numbers 
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were used in all the performance comparisons because they measure the part of the 

algorithm that is also measured in the simulations of the BDD processor. The clock() 

functions were strategically placed to only capture the CPU time that is the same part 

of the program that was actually measured from the VHDL simulations, i.e. all initial

ization and functions that are not accelerated are not included in the clock() times that 

were collected. Only the functions that were accelerated are included in these times. 

This gives the best available comparison of the part of the algorithm that is accelerated 

by the BDD computer. 

The only BDD specific functions that were not simulated and thus not included 

in the measured time are bdd_init(), bdd_setvarnum(), and bdd_done(). Specific 

implementation of initialization and termination routines was not determined, and as 

was shown in Figure 9 on page 21, these functions use only a small percent of execu

tion time as the problem sizes increase so they were not simulated (and thus not mea

sured). 

Other CIC++ program overhead of checking arguments etc. is not included in 

the comparison times. This overhead will also exist with the BDD computer and will 

not be accelerated. Application programs that read and write netlists from files spend a 

large amount of time with this file 1/0. The read and write time might be a larger part 

of the program than actually manipulating the BDD. In the future additional applica

tions should be profiled to find how much time is spent manipulating BDDs compared 

with other parts of the program. If the time spent manipulating the BDD is small, little 

overall performance improvement will be seen. Only the part of the application pro-
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gram that calls BDD functions will be accelerated by the BDD processor. The compar-

isons presented here show the performance increase of only the BDD portion of the 

program. For the N queens problem the accelerated portion is over 90% of the execu

tion time for values of N greater than 7. Thus, for programs that are highly dependent 

on BDD manipulation, the BDD processor will show significant performance 

improvement. 

The N queens problem uses calls to only four different BDD library functions. 

For the purpose of comparing the time for algorithm completion initialization (func

tion bdd_init and bdd_done) of the BDD package is not included. This is overhead that 

does not really contribute to the actual time to perform the operations on the BDD data 

structure and is a linear time operation based on the number of nodes requested during 

initialization. It is not included in the execution time analysis. Simulations of the N 

queens problem on the BDD processor were run for values of N from four to nine. Sta

tistics for memory accesses were gathered and the number of simulated clocks were 

counted. Simulations of larger values of N were impractical because of memory limi

tations on the host computer. The results are described below. 

The simulations were run assuming all memory accesses are a single lOns 

clock cycle. This is unrealistic for very large memory implementations, but gives an 

upper bound on the performance based on the number of node memory accesses. 

The macro-architecture determines the distance of the BDD processor from the 

GP processor and affects the latency to get all operations started. All operations in the 

Co-processor model involve the CPU bus and the peripheral processor involves the 
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largest latency because it is on a peripheral bus. Both of these models must use the GP 

processor to 

• write the instruction and arguments to BDD processor 

• read of result from BDD processor 

Because the general purpose computer used is a Pentium II processor (as 

described earlier in "Computing Environment" on page 19) it is also used as the model 

for the GP with which the BDD processor is attached. On the Pentium Pro processor 

bus, it takes a minimum of seven clock cycles to perform a complete write transaction 

involving a 64 bit transfer. Also, a minimum of seven clock cycles are required for the 

read transaction to get the result back into the processor. Because the BOD operations 

may take considerable time, the use of a deferred read cycle would be necessary, so an 

additional bus transaction to complete the deferred read is necessary. A minimum total 

of 21 processor clocks are necessary to complete the transaction with the BOD proces-

sor. 

The peripheral processor configuration will have the latency of the processor 

bus, plus additional time for the chip set (3 CPU bus elks) to negotiate the peripheral 

(PCI) bus, and the PCI bus transaction is a three PCI elk minimum. Table 7, "BDD 

Processor Access Latency," on page 57 gives example latencies for a Pentium Pro Pro

cessor (includes Pentium II and Pentium III) and the PCI peripheral bus. The numbers 

for the latency are strictly the hardware numbers and do not involve the software over

head of the device driver that services the BDD processor. The same function call 



57 

overhead exists whether the general purpose function is being called or the driver 

function is being called, so it has not been included in these numbers. 

Table 7: BDD Processor Access Latency 

Architecture Pentium Pro-Bus 

elks 
write Chip lOOMhz 
+read Set elks Bus (ns) 

Integrated 0 

Co-Processor 21 210 

Peripheral 21 6 270 
Processor 

PCI Bus 

elks 
write 
+read 

0 

33Mhz 
(ns) 

66Mhz 
( ns) 

0 

6 90 45 

Slow Fast 
Total Total 

PCI33 PCI66 

0 0 

210 210 

360 305 

This latency is large compared to the 450MHz processor, but there are a rela

tively small number of calls to the BDD processor (See Table 9 on page 59). Most of 

the work is done on the BDD processor and, it turns out, that for the larger sizes of N 

the latency is only a small fraction of the actual processing time. This is shown in 

Figure 24 on page 58 
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Figure 24. Latency Effects 
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All memory access is single cycle, so it mimics a cache hit in a GP processor. 

The CAM is also single cycle access for both read and write. There is no garbage col

lection. Because the garbage collection algorithms are implemented differently, the 

sizes of the memories were chosen to avoid garbage collection to make a fair compar

ison of the general purpose algorithm and to produce estimate of the best possible per

formance. Table 8 on page 59 shows the memory latency and size characteristics used 

for the simulation. The BDD processor execution times with the latencies for the dif-
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ferent macro architectures are given in Table 9 on page 59. The BDD processor is 

Table 8: Memory Characteristics 

Latency Size 

Unique 219983 

CAM 32768 

Node 220,000 
Memory 

assumed to operate at 100 MHz which facilitates access to SRAM which can be 

accessed in less than 10 ns. Figure 25 on page 60 shows the execution times from 

Table 9 relative to the GPU execution time. All values have been normalized so the 

GPU execution time is one. This shows that the implementation, described here using 

SRAM as the memory of choice, can achieve greater than 7x performance increase 

over the GP processor for all tested values of N. 

Table 9: N Queens BDD Execution Times 

N 

4 

5 

6 

7 

8 

9 

BDD Approx. 
processor GPU 

BDD Calls elks Execution time (ns) execution 

(n)ith apply IOOMHZ Integrated Co-Processor Peripheral 
var Processor 

32 540 

50 1090 

72 1926 

98 3104 

128 4696 

162 6752 

17358 

61733 

146709 

621311 

2362891 

ll337491 

173580 293700 

617330 860930 

1467090 1886670 

6213110 6885530 

23628910 24641950 

ll3374910 114826850 

379500 NA 
1034930 10000000 

2186370 20000000 

7365830 50000000 

25365550 170000000 

115863950 910000000 
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Figure 25. BDD Execution Time (SRAM) 
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Because there is single cycle memory access, the node memory is busy less 

than 31 % of the time for all values of N. The unique memory and CAM are each busy 

less than 10% of the time. If single cycle access memory is possible, this architecture 

is very memory inefficient. CAM accesses can be concurrent with other accesses so 

are not a limiting factor. Unique reads occur sequentially before the node access so 

must be combined with node memory access to calculate the performance limit of this 

memory architecture. Figure 26 on page 61 shows the execution time using these 

assumptions. It can be seen that performance can be almost 20 times faster (for N = 9) 

than the same algorithm run on a general purpose processor which has a clock rate 4.5 
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times higher than the BDD processor. This is the best performance possible using sin

gle cycle memory access with the sizes specified inTable 8 on page 59. 

Figure 26. Best BDD Execution Time 
Normalized (Best) Execution Time 
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By changing the node memory to 60 ns DRAM and assuming a realistic cache 

access of 30 ns, the execution performance drops noticeably but is still almost 3x 

faster than the GPU for all values of N. The execution times are approximate based on 

the assumptions described here. Since all memory writes occur in parallel with other 

execution, the current design mask 30ns of all writes to node memory. CAM hits will 

mask reads to node memory. For every CAM hit in apply, it masks 2 of the node mem

ory reads. For every CAM hit in applynot, it masks 1 node memory read. Adding addi

tional 2 elks/node write, 5 clocks for non-CAM-masked read, 3 clocks for CAM 

masked reads give new normalized execution times shown in Figure 27 on page 62. 
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Figure 27. Estimated BDD Execution Time (DRAM Memory) 
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6.2 Conclusions 

One of the major considerations used during the work on this project was cost 

containment. The possibility of bui]ding the design economically using current FPGA 

and memory technology drove the decision to use a I 00MHz clock frequency for the 

BDD processor. The second reason for that choice was the interface to current Pentium 

Pro processor technology which has a I 00 MHz bus frequency. As has been shown, 

the latency of the interface to the processor is small in proportion to the actual time 

spent executing the algorithm, even when s]ower interface methods such as PCI bus 

are considered. Therefore the host processor bus speed shou]d not be an overriding 

consideration when choosing the clock rate of the BDD processor. 
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All of the comparisons in this paper are based on a general purpose processor 

clock rate of 450MHz. There are now 1 GHz processors available which should give 

roughly double the performance of the 450MHz processor used in this paper. As gen

eral purpose processors gain performance and 64-bit operating systems become preva

lent on engineering workstations within the next several years, they could readily 

outpace the performance obtainable on a dedicated BDD processor. To make the BDD 

processor a viable alternative to a general purpose processor, even higher performance 

of the BDD processor than has been shown here is needed . Additionally, the memory 

capacity of the BDD processor must be large, this might necessitate the use of some 

form of DRAM as a size and cost savings measure. This could severely impact the per

formance making the specialized architecture undesirable. There are many obstacles to 

overcome to make a specialized BDD processor architecture a viable addition to an 

engineering workstation users environment. 

6.3 Improvements and future work 

This thesis is not the end, but describes a possible starting point for exploration 

of specialized hardware for fast execution of BDD algorithms. The design used in this 

thesis is very simple. It is nearly a direct translation of the software algorithms and 

only begins to scratch the surface of an efficient hardware implementation. It could 

serve as the basis for further explorations into architectural issues specific to BDD 

algorithms. There is much work that could be done to improve performance, including 

exploration of different micro-architectures, implementation of breadth-first and paral-



64 

lei BDD algorithms, different pipeline and memory structures and, because ASIC 

technology is capable of very high performance, higher clock rates must be consid

ered. 

In order to make the design specialized hardware more flexible, a programma

ble micro-architecture should be investigated. Using memory to store micro-programs 

and redesigning the BDD processor to execute these programs has two immediate ben

efits, upgrade ability and expend ability. For patches and upgrades to the BDD algo

rithms, problems in the micro-code can be easily fixed by loading it into the 

microprogram storage. Additionally, new and experimental algorithms could be imple

mented and tested without having to redesign the hardware. 

Other BDD algorithm implementations such as BDDs with complement edges 

and breadth first execution of BDD algorithms should also be investigated for addi

tional performance improvement. These algorithms have shown improvement on gen

eral purpose processors and should also show significant performance improvement in 

hardware. Parallel BDD algorithms are also a leading candidate for hardware imple

mentation because specialized hardware can implement parallelization much more 

effectively than a network of general purpose computers. 

Several key aspects of BDD manipulation have not been investigated in this 

thesis, two are garbage collection and dynamic variable ordering. Both of these issues 

must be investigated in detail. Concurrent garbage collection offers an opportunity to 

significantly improve the performance on large BDDs by utilizing unused memory 
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bandwidth rather than interrupting algorithm execution. Dynamic variable reordering 

must be implemented for a complete and usable BDD system. 

The memory models used for the experiments in this BDD processor are quite 

simple. The commercial CAM technology used for the computed cache is currently 

limited in size and performance. Other CAM and non-CAM implementations need to 

be considered. Interleaving of the node memory for higher performance (possibly 

based on the position of a node in the order of variable) may also give improved per

formance. Combining the node and unique memory will save I/0 and might not cause 

significant performance penalties depending on the node memory speed. This will also 

allow a much larger unique table, thus reducing collisions during node lookup and 

improving performance. Using a memory to cache nodes could also be investigated, 

but because of the studies showing the unpredictable nature of BDD node access the 

cache might have to be larger than is practice. 

The use of a micro-architecture simulation environment would allow studies of 

the hardware performance. This was done with VHDL in this thesis but other imple

mentations in C++ or Verilog HDL might be better. Instrumenting existing general 

purpose BDD packages to do performance analysis might also give additional insight 

into what kind hardware structures are required for best performance. There is still 

much work remaining to be done to study and design an efficient specialized BDD 

computer architecture. 
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Appendix A 

Visual HDL Diagrams and VHDL Source Code 

This appendix shows the entire design that was created using Visual HDL from 

Summit Design Inc. It includes a graphical representation of the design hierarchy used 

for the tests in the thesis as well as all of the VHDL source code generated using 

Visual HDL. Because Visual HDL is a graphical tool, much of the design context is 

lost when looking at only the machine generated code. The source graphics contain 

design information and comments that are not induded directly in the machine gener

ated code. This information which is not visible on the diagram, may/may not appear 

in the generated source, but the generate code is complete and could be used in any 

VHDL simulation system. 

The top level testbench used for simulation is the entity testmknodeblk. This 

instantiates the design and the testbench N-queens algorithm. The entire hierarchy is 

shown graphically below followed by the graphical diagrams for each block. Finally 

the source code is given. The modules (entities/architectures) in the source code are 

listed in a bottom up order as would be needed by any VHDL compiler to resolve the 

dependences. 
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Figure 1. Design Hierarchy 
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•·VHDL code written by Rohen Hatt for 
-Masters Thesis at Portland Stale University 

·· Date : Thu Apr 6 13:01:13 2000 

•· Author Bob Hatt 

•• Company : PSU 

•· Description : Package of data types and 
--functions to be used for bdd manipulation 

library ieee; 
use ieee.std_logk_l 164.all; 
-· use ieee.numeric_std.all; 

package kernel is 

subtype bddhandle is UNSIGNED() I downto 0); 
•• subtype hashkey is UNSIGNED(3 I downto 0); 
•• subtype vanype is UNSIGNED(3 I downto 0); 
- constant uniquesize_c : UNS!GNED(31 down!o 0); 
constant bddmemsize: narural := 100000; --1024•!024; 
constant bddvarsize : natural := 1000; 
constant bdduniquetablesize : natural := 50003 ; --500997; --31 I; 
subtype bddhandle is natural; •· range O!o bddmemsize - I; 
subtype bddvar is narural; •· range Oto bddmax vamum • l; 
subtype hashkey is natural; •·?? range Oto bdduniqhashsize - l; 
subtype gc_t is natural;-· range O10 3 '?'? 
conslant hashkey _zero : hashkey := 0; 
constant bddhandle_zero : bddhandle 0: 
constant bddhandle_one : bddhandle := I; 
constant bddvar_zero : bddvar := O; 
constant bddvar_max : bddvar := bddvar'right; -- this will need to 
change for vectors 
constant bdd_minhandle : bddhandle := 2; 
constant bdd_maxhandle : bddhandle := bddmemsize- l; 
constant gc_zero : gc_t := O; 

--type bdd_t; 
type bdd_t is record 
level : bddvar; 
lo : bddhandle; 
hi : bddhandle; 
nextbdd : bddhandle; 
gc: gc_t; 

end record; 
constant bdd_t_zero : bdd_t := 
(bddvar_zero,bddhandle_zero,bddbandle_zero,bddhandle_zero,gc_zero) 

constant bdd_Unit : bdd_t :=e 
(bddvar_max,bddhandle_zero,bddhandle_zero,bddbandle_zero,gc_zero) 

type bdd_vec_t is array (natural range<>) of bdd_t; 

function hash2(a,b: bddhandle) return bashkey; 
function hash3(a,b,c : bddhandle) rerum hashkey; 
function bdd_hash(b ; bdd_t ; prime : narural) return hasbkey; 

type bddhandle_ vec_t is array (natural range <>) of bddhandle; 
type bddhandle_vec_a is access bddhandle_vec_t; 

- return codes for recursive calls 
constant retumdone: gc_t := O; 
constant retumhigh : gc_l := I; 
constant retummknode : gc_t := 3; 

-- stack cmds 

- subtype stackcmd is std_logic_ vector() downto 0); 
- constant stackpushl: s1d_logic_vector := •01•; 
-· conslant stackpop: std_logic_vector := "10"; 
type stackcmd is (stacknop.stackpush,stackpush2,slackpush3,stack
pop,stackpop2,stackpop3); 
type booleanop is 
(booleanop_zero,booleanop_and,booleanop_greater,booleanop_!hree,bo 
oleanop_less,booleanop_tive. 

booleanop_xor,booleanop_or,booleanop_nor,booleanop_biimp,booleano 
p_ten,booleanop_revimp,booleanop_not, 
booleanop_imp,booleanop_nand,booleanop_tifteen); 

subtype booleanop is UNSIGNED(3 downto 0); 
•• constant booleanop_zero : UNSIGNED:= "0000"; 
·• constant booleanop_and : UNSIGNED := "000 I"; 
•· constant booleanop_nand: UNSIGNED:= "l 110"; 
•· constant booleanop_or: UNSIGNED "0111 "; 
- constanl booleanop_nor: UNSIGNED:= "1000"; 
•· conslant booleanop_,or: UNSIGNED:= "OJ JO"; 

conslant booleanop_imp: UNSIGNED:= "I l01 "; 
constant booleanop_biimp: UNSIGNED:= "JOO!"; 
constant booleanop_revimp: UNSIGNED:= "10!1"; 

- constant booleanop_greater: UNSIGNED:= "00IO"; 
•· constan1 booleanop_less : UNSIGNED:= "0100"; 
- constant booleanop_not: UNSIGNED:= "1100"; 

cons1an1 bddcamsize : natural := 65536; •· 64k x 136 bi1s wide 
subtype camfield is natural; •· same size as handle' 
cons1an1 camfield_zero: camfield := O; 

lype camnode_t is record 
•• field I : natural; 
-· field2 : natural; 
- field3 · natural; 
•· field4 : na1ural; 
- result : natural; 
•· previndex : natural; 
-· nextindex : natural; 
- index : na1ural; 
- end record; 
- type camnode_vec_t is array (nalllral range<>) of camnode_t; 
•· constant camnode_t_zero: camnode_t := (0,0,0,0,0.0,0,0); 
end; 

Date : Thu Apr 6 13:26;57 2000 

•· Author 

Company 

- Description : 

- library ieee; 
•• use ieee.s1d_logic_J 164.all; 

use ieee.numeric_s!d.all; 

package body kernel is 

- constant uniquesize_c: UNSIGNED(31 downto 0) := X"OOOOOOlf'; 

function hash2(a,b: bddhandle) return hashkey is 
begin 
rerum ((((a+b) • (a+b+l))fl)+ a); 
end hasb2; 
function hasb3(a,b,c : bddhandle) return bashkey is 
begin 
return(hash2(hash2( a,b ),c) ); 
end hash3; 
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function bdd_hash(b : bdd_l; prime : natural) return hashkey is 
begin 
return(hash3(b.level,bJo,b.hi) MOD prime); 
end bdd_hash; 

end; 

- Date : Mon May 15 11:13:50 2000 

-- Author : Bob Hatt 

•· Company : Portland State University 

- Description : 

library work; 
use work.kernel.all; 

package campkg is 
•· cam size is specified in kernel 

constant bddcamsize : natural 251; 

type camnode_t is record 
field! natural; 
field2 : natural; 
field3 : natural; 
field4: natural; 
inde>< : natural; 
hash : natural; 
nextnode : natural; 
end record; 
type camnode_vec_t is array (natural range<>) of camnode_t; 
type camnode_vec_p is access camnode_vec_t; 
type camhashtable_t is record 
size : positive; 
freei ndex : natural; 
nodes : camnode_vec_p; 
full: boolean; 
lnil boolean; 
end record; 
constant camnode_t__:zero : camnode_t := (0,0,0,0,0,0,Q); 
•· procedure hashtableinit(table : inout camhashtable_t); 
procedure hashtableinit(table: inout camhashtable_t; size: in positive); 
procedure hashtablefind(table: inout camhasbtable_t;node: in 
camnode_t;found:out natural); 
procedure hashtableremove(table : inout camhashtable_t;node: in 
camnode_t;found : out natural); 
procedure hasbtableinsen(table : inout camhashtable_t;node: in 
camnode_t); 
procedure writecamnode(index: integer.node: camnode_t); 
procedure writecam(table : inoul camhashtable_t); 
end; 

-Date : Mon May 15 11:14:01 2000 

-- Author : Bob Hatt 

•· Company : Portland State University 

•· Description : 

use std.textio.all; 

package body campkg is 

procedure hashtableinit(table: inout camhashtable_t;size : in positive) is 

begin 
if(NOT table.init) then 
table.size:;: size; 
table.nodes:= new camnode_vec_t(l to size); 
for i in table.nodes range 
loop 
table.nodes(i) := camnode_t_zero; 
end loop; 
table.freeindex := table.nodes1ow; 
table.init := true; 
table.full := false; 
end if; 
end hashtableinit; 

procedure hashtabledelete(table: inout camhashtable_t) is 
begin 
deallocate(table.nodes); 

end; 

procedure hashtablefind(table: inout camhashtable_t;node: in 
camnode_t;found:out natural) is 
variable hash.index.nextfree,previndex : natural; 
begin 
hash := (hash3(node.fieldl ,node.field2,node.field3) MOD 
table.nodeshigh)+ I; 
index := lable.nodes(hash).inde><; 

-- walk the list until you find one that matches the node, 

found :=0; 
while( index/= 0) 
loop 
if(table.nodes(index).fieldl = node.field I AND 

table.nodes(index).field2 = node.field2 AND 
table.nodes(index).field3 = node.field3) then 
this is the one to remove 

found := index; 
return; 

exit the loop 
end if; 
previndex := index; 
index:= table.nodes(index).nextnode; 
end loop; 
return; 

end hashtablefind; 

procedure hashtableremove(table : inout camhashtable_t;node: in 
camnode_t;found : out natural) is 
variable hashjndex,nextfree,previndex : natural; 
begin 
hash (hash3(node.field l ,node.!ield2,node.field3) MOD 
table.nodeshigh)+!; 
index := table.nodes(hash).index; 

- walk the list until you !ind one that matches the node, 

found:= O; 
previ ndex := O; 
while( index/= 0) 
loop 
if(table.nodes(index).fieldl = node.field I AND 

https://return(hash3(b.level,bJo,b.hi
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table.nodes(index).field2 = node.field2 AND 
table.nodes(index).field3 = node.field3) then 
this is the one to remove 

found := index; 

if(previndex =0) then 
node is at head of chain. 

table.nodes(hash).index := table.nodes(indes).nextnode; 

else 
- !here is an prevous node in the chain. 
table.nodes(previndex).nexmode := table.nodes(index).nextnode; 
end if; 
table.nodes(index) := (field I => 0,field2 => 0.field3 => 0. field4=> 0, 
index => table.nodes(index).index,hash => 0,nexmode =>0); 

- exi1 the procedure 
return; 
end if; 
previndex := index; 
index:= table.nodes(index).ne.inode; 
end loop; 
return; 

end hashtableremove; 

procedure hashtableinsert(table : inout camhashtable_t;node: in 
camnode_t) is 
variable hash,index,nextfree : natural; 
variable tmpnode : camnode_t; 
variable found: natural; 
begin 
hash (hash3(node.fieldl .node.field2.node.field3) MOD 
table.nodes'high)+ I; 
index :: table.nodes(hash).index; 

if(table.full) then 
-- remove the current freehandle from the table 
-- then do the normal insert on the free handle 
tmpnode := (field) => table.nodes(table.freeindex).fieldl, 
field2 => table.nodes(table.freeindex).field2, 
field3 "'> table.nodes(tableJreeinde,).field3, 
field4 => table.nodes(table.freeindex).field4, 
inde, => 0,hash => 0,nextnode =>0); 
hashtableremove(table,tmpnode,found); 
if(found /,,. table.freeindex) then 
assert false report "INSERT: found I= freeindex" severity error; 
end if; 
if(found = 0) then 
assert false report "INSERT: found= o· severity error; 
end if; 

end if; 

hashtablefind(table.node,found); 
if(found I= 0) then 
assert false report "node alread in table!!!" severity error; 
end if; 
table.nodes(table.freeindex).fieldl node.fieldI; 
table.nodes(table.freeindex).field2 := node.field2; 
table.nodes(table,freeindex).field3 := node.field3; 
table.nodes(table.freeindex).field4 := node.field4; 
table.nodes(table.freeindex).nextnode := table.nodes(hash).index; 
table.nodes(table.freeindex).hash := hash; 
table.nodes(hash).index := table.freeinde,; 

if(table.freeilldex = table.size) then 
table.full := true; 
table.freeindex := I; 
else 
table.freeindex := table.freeindex + I; 

end if; 

return; 
end bashlableinsert; 

procedure writecamnode(index : integer;node: camnode_t) is 
variable rmpline : line; 
begin 
wrile(tmpline.indes); 
write(tmpline,': '); 
wri1e(tmpline,node.field l ): 
write(tmpline,', ); 
write(tmpline,node.field2); 
write(lmpline,',); 
write(tmpline,node.field3); 
wrile(tmpline. ', '); 
wrile(tmpline,node.field4); 
- wrileline(outfile,tmpline); 
writeline(output,lmpline); 

end writecamnode: 

procedure writecam(lable: inoul camhashtable_t) is 
begin 
for i in 1 to table.size 
loop 
writecamnode(i,table.nodes(i)); 
end loop; 

end writecam; 

end; 

-Date : Mon May 8 19:04:292000 

Author : Bob Hall 

-- Company : Portland State University 

- Description : 

library work; use work.kernel.all; 
library std; use s1d.1extio.all; 

package bdddebug is 

procedure writenode(handle: bddhandle;node : bdd_t); 
procedure writenode_rec(mem: in bdd_vec_t; handle:bddhandle); 
procedure writenodetable(mem: in bdd_vec_t); 
procedure printset(r : bddhandle;mem : in bdd_ vec_t); 
end; 

-- Date : Mon May 8 19:04:38 2000 

- Author : Bob Hatt 

- Company : Portland State University 

-- Description : 

package body bdddebug is 

procedure writenodetable(mem : in bdd_ vec_l) is 
-- file outfile . text; 
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variable tmpline : line; 
begin 
•· open the file 

•· file_open(outfile,"nodetable.!xt",WRITE_MODE); 
for i in mem 'range loop 
•· write the element in a te~tual format 

to the output file 
writenode(i,mem(i)); 

end loop; 

-· close the file 
·· file_close(outfile); 

end writenodetable; 

procedure writenode(handle: bddhandle;node: bdd_t) is 
variable tmpline : line; 
begin 
write(tmpline,handle); 
write(tmpline,': ); 
write(tmpline,node.Jevel); 
write(tmpline,',); 
write(tmpline,node.lo); 
write(tmpline,', ); 
write(tmpline,node.hi); 
write(tmpline,',); 
write(tmpline,node.nextbdd); 
write(tmpline,','); 
write(tmpline,node.gc); 
•· writeline(outfile,tmpline); 
writeline(output,tmpline); 

end writenode; 

procedure writenode_rec(mem: in bdd_ vec_t; handle:bddhandle) is 
variable node:bdd_t; 
begin 
node mem(handle); 
if((node.lo I= bddhandle_zero) AND 
(node.lo I= bddhandle_one)) then 
writenode_rec(mem,node.lo); 
end if; 
if((node.hi I= bddhandle_zero) AND 
(node.hi I= bddhandle_one)) then 
writenode_rec(mem,node.hi); 
end if; 
writenode(handle,node ); 

end writenode_rec; 

procedure printset(r : bddhandle;rnem : in bdd_vec_t) is 

variable set : bddhandle_vec_t(0 to bddvarsize); 
variable tmpline : line; 

procedure printsetJeC(r: bddhandle) is 
variable first : integer; 
begin 
if(r = bddhandle_zero) then 
return; 
elsif(r = bddhandle_one) then 
write(tmpline,'<'); 
writeline(output,tmpline); 
first := I; 
for i in 0 to bddvarsize 
loop 
if(set(i) > 0) then 
if(first 0) then 
write(tmpline,', '); 

write line( output,tmpline ); 
end if; 
first:= 0; 
write(tmpline,mem(r).Jevel); 
writeline(output,tmpline); 
if(set(i) = 2) then 
write(tmpline, I); 
else 
write(tmpline,0); 
end if; 
writeline(output,tmpline); 
end if; 
write(tmpline, '>); 
writeline(output,tmpline); 

end loop; 
else 
set(mem(r).level) := l; 
printset_rec(mem(r).lo); 
set(mem(r)Jevel) := 2; 
printset_rec(mem(r).hi); 
set(mem(r).level) := 0; 

end if; 

return; 
end printset_rec; 
begin 
printset_rec(r); 
end printset; 

end; 

library ieee; 
use ieee.STD_LOGIC_I 164.all; 
library work; 
use work.kernel.all; 
use work.campkg.all; 
library SYNOPSYS; 
use SYNOPSYS.ATTRIBlITES.ALL; 

entity cam is 
generic ( 

memsize : NATURAL bddcamsize; 
readdelay : NATURAL; 
writedelay ; NATURAL 
); 

port ( 
elk : in std_logic; 
rst : in std_logic; 
cam_request : in std_logic; 
cam_rw : in std_logic; 
cam_ack : out std_logic; 
cam_busy : out std_logic; 
cam_result : out camfield; 
cam_resultvalid : out std_logic; 
cam_found : out std_logic; 
cam_fieldl : in camfield; 
cam_field2 : in camfield; 
cam_field3 : in camfield; 
cam_resultin : in camfield 
); 

end cam; 

architecture cam of cam is 

constant camnode_t_zero : camnode_t :"' (field] => 0, field2 => 0, 
field3 => 0, field4 "'> 0, index 
=> 0, hash => 0, nextnode => 0) 

https://printset_rec(mem(r).hi
https://printset_rec(mem(r).lo
https://writenode_rec(mem,node.hi
https://if((node.hi
https://writenode_rec(mem,node.lo
https://if((node.lo
https://write(tmpline,node.gc
https://write(tmpline,node.hi
https://write(tmpline,node.lo
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cons1an1 maxdelay : NATURAL readdelay; 
shared variable rnem : camhashtable_t; 
signal enable : std_logic; 
signal read_wrile : std_logic; 
signal delaycni : NATURAL range Oto maxdelay; 
signal fl : camfield; 
signal f2 : camfield; 
signal f3 : camfield; 
signal f4 : camfield; 
signal resulti : camfield; 
signal cam_foundi : std_logic; 
signal tp_writecam : BOOLEAN false; 

type visuaUDLE_states is (IDLE); 

signal visual_IDLE_current, visual_IDLE_next visuaUDLE_s!ates; 
attribute STATE_ VECTOR of cam: 

architecture is "visual_IDLE_currenr"; 

begin 

Combinational process 
cam_lDLE_comb: 
process (rs!, cam_reques!, cam_fieldl. cam_field2, cam_field3, 

cam_resultin, 
cam_rw, resulti, cam_foundi, visual_lDLE_current) 

begin 
cam_ack <'-' O'; 
cam_busy <"- O'; 
fl <= camfield_zero; 
f2 <= camfield_zero; 
f3 <= camfield_zero; 
f4 <= camfield_zero; 

if (rs!= 0') then 
-~ reset all drivers to memory 
read_ write <= 'I'; 
enable <= O'; 
cam_found <= O'; 
fl <= camfield_zero; 
f2 <= camfield_zero; 
f3 <= camfield_zero: 
f4 <= camfield_zero; 
visual_lDLE_next <= IDLE; 

else 

case visual_lDLE_curren! is 
when IDLE=> 
if ( ( cam_request = 1 ') and ( camJW 'J ')) then 

cam_busy <= 'I'; 
cam_ack <= 'I'; 

set up the memory inputs 
enable <"' 'I' after Ins, O' after 9 ns; 
fl <= cam_field J ; 
f2 <= cam_field2; 
f3 <= cam_field3; 
f4 <= cam_resullin; 
-set the data and ready rafter the delay 
-· it actually takes to read the memory. 
read_ write <= 'l '; 
cam_resultvalid <= 'I '; 
cam_result <= resulli; 
cam_found <= cam_foundi; 
visual_IDLE_next <= IDLE; 

elsif ((cam_request = 'l ') and (cam_rw 0)) then 
cam_busy <= 1 '; 
cam_ack <= 'I '; 
-· set up the memory inputs 
enable<= 'l 'after Ins, U' after 9 ns; 
fl <= cam_field J; 
12 <= cam_lield2; 

f3 <= cam_lield3; 
f4 cam_resultin; 
read_ write <= O'; 
visual_IDLE_next <= IDLE; 

else 
- reset all drivers to memory 
read_write <='I'; 
enable <= U'; 
cam_found <= IJ'; 
fl <= camfield_zero; 
f2 <= camfield_zero; 
f3 <= camfield_zero; 
f4 <= camfield_zero; 
visual_lDLE_next <= IDLE; 

end if; 

when others => 

visual_lDLE_next <= IDLE; 
end case~ 

end if; 
end process; 

cam_lDLE: 
process ( elk) 
begin 

if (clk'event and elk= 'I) then 
if (rst U) then 

visual_lDLE_current <= IDLE; 
else 

visual_lDLE_current <-'- visual_JDLE_next; 
end if; 

end if; 
end process; 

this will eventually (before synthesis 
•· have to be moved outside of this unit 

so that it can represent an external memory 
cammem: 
--process (rst,enable, read_write, fl,f2,f3,f4) 
process (rst,enable) 
- variable mem : camhashtable_t; 

variable tmpnode camnode_t; 
variable found : natural; 

begin 

if (rst = 0') then in reset 
hashtableinit(mem,memsize); 
cam_foundi <= O'; 
elsif (enable 'I') then 
found:= O; 
if(read_ write = 1) then - read 
tmpnode := (field! => fl ,field2 => f2,field3 =>f3,field4 =>f4, 
hash => 0,index => O,nexmode => 0); 
hashtablefind(mem,tmpnode,found); 
if(found I= 0) then -· found it 
resulti <= mem.nodes(found).field4; 
cam_foundi <= 1 '; 
else 
resulli <= camfield_zero; 
cam_foundi <= U'; 
end if; 
else write 
tmpnode := (field l => fl ,field2 => f2,field3 =>f3,field4 =>f4, 
hash => 0,index => O,nextnode => 0); 
hashtableinsert(mem,tmpnode); 
hashtablefind(mem,unpnode,found); 
--assert false report "doing write to cam hashtable" severity note; 
-writecamnode(found,tmpnode); 
cam_foundi <= O'; 

end if; 
end if; 
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end process; 

process(tp_ writecam) 
begin 
if(tp_writecam) then 
writecam(mem); 
end if; 
end process; 

end cam; 

•· This has three ports in and three ports out. 
•· one, two. or three elements can be pushed or popped 

with the appropriate stack command. 
This just increments the stack pointer appropriately. 
The three outputs will always show the top three elements 

library ieee; 
use ieee.STD_LOG!C_I 164.all; 
library work; 
use work.kernel.all; 
library SYNOPSYS; 
use SYNOPSYS.ATTRIBUTES.ALL; 

emily bddstack is 
generic ( 

size : NATURAL := 6 
); 

port( 
elk : in std_logic; 
rst : in std_logic; 
cmd : in stackcmd; 
datain0 in bdd_t; 
datain I : in bdd_t; 
datain2 : in bdd_t; 
head0 : out bdd_t; 
head I : out bdd_t; 
head2 : out bdd_t; 
full : out std_logic; 
empty : out std_logic 
); 

end bddstack; 

architecrure bddstack of bddstack is 

signal tp_head : NATURAL; 
signal free : NATURAL; 

begin 
Start:process (elk, rst. datain0, datain I, datain2, cmd) 

variable stack : bdd_vec_l(0 to size + 4 ); 
variable head : NATURAL; 

begin process 
if elk'event and elk = 'I 'then 
if rst = O' then 

free <=0; 
head:= 0; 
for i in stack'range 
loop 
stack(i) := bdd_t_zero; 
end loop; 
empty<= 1'; 
full<= 0~ 

else 
-- "01" => push 
•• "I0"=>pop 

others=> do nothing 
casecmdis 

when stackpush => 
stack(head) datain0; 
if(head < (size)) then 
head (head + I ); 
end if; 

when stackpop => 
if(head > 0) then 
head head • l ; 
end if; 

when stackpush2 => 
stack(head+l) := datainO; 
s1ack(head) := datain I; 
if(head < (size)) then 
head (head + 2); 
end if; 

when stackpop2 "> 
if(head > l) then 
head head -2; 
else 
head 0; 
end if; 

when stackpush3 => 
stack(head+2) := datain0; 
stack(head+l) := datain I; 
stack(head) datain2; 
if(head < (size)) then 
head:: (head+ 3); 
end if; 

when stackpop3 :> 
if(head > 2) then 
head head -3: 
else 
head 0; 
end if; 

when others => 
null; 

end case; 
if(head 0) then 
empty<= 1'; 
else 
empty<= O'; 
end if; 
if(head >= size ) then 
full<= 'l'; 
else 
full<= O'; 
end if; 

head0 <= bdd_t_zero; 
headl <= bdd_t_zero; 
head2 <= bdd_t_zero; 
if(head 1) then 
head0 <= stack(head I); 
end if; 
if(head = 2) then 
head0 <= stack(head - I); 
head! <: stack(head. 2); 
elsif(head >2) then 
headO <= stack(head• l ); 
head! <= stack(head-2); 
head2 <= stack(head-3); 
end if; 

tp_head <= head; 
end if; 

end if; 
end process; 
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end bddstack; 

This has three ports in and three ports out 
•• one, two, or three elements can be pushed or popped 
•· with the appropriate stack command. 

This just increments the stack pointer appropriately. 
The three outputs will always show the top three elements 

library ieee; 
use ieee.STD _LOGJC_ 1164.all; 
library work; 
use work.kernetall; 
library SYNOPSYS; 
use SYNOPSYS.ATTRIBUTES.ALL; 

enlity handlestack is 
generic ( 

size: NATURAL := 6 
); 

port ( 
elk : in std_logic; 
rst : in std_logic; 
cmd : in stackcmd; 
datain0 : in bddhandle; 
datain l : in bddhandle; 
da1ain2: in bddhandle; 
headO : out bddhandle; 
head1 : out bddhandle; 
head2 : out bddhandle; 
foll : out std_logic; 
empty : out std_logic 
): 

end handlestack; 

architecture handlestack of handlestack is 

signal tp_head : NATURAL; 
signal free . NATURAL; 

begin 
Start:process (elk, rst, datain0, datainl, datain2, cmd) 

variable stack : bddhandle_vec_t(0 to size+ 4 ); 
variable head : NATURAL; 

begin •· process 
if clk'event and elk = '1' men 
if rst = 'O' then 

free <=0; 
head :=0; 
for i in stack'range 
loop 
stack(i) :"' bddhandle_zero; 
end loop; 
empty<= 1'; 
full<= 'O'; 

else 
"01" =>push 
"IO"=>pop 

•• others => do nothing 
case cmdis 

when stackpush => 
stack(head) := datain0; 
if(head < (size)) then 
head := (head + l ); 
end if; 

when stackpop => 
if(head > 0) then 
head := head -1 ; 
end if; 

when stackpush2 => 
stack(head+I) := datain0; 
stack(head) := datain l; 
if(head < (size)) then 
head (head + 2); 
end if; 

when stackpop2 => 
if(head > I) then 
head head -2: 
else 
bead O; 
end if: 

when stackpush3 => 
stack(head+2) := datain0; 
s1ack(head+l) := datainl; 
stack(head) datain2; 
if(head < (size)) then 
head (head + 3); 
end if; 

when stackpop3 => 
if(head > 2) then 
head head-3; 
else 
head 0· 
end if; 

when others => 
null; 

end case; 
if(head = 0) then 
empty <= 'I'; 
else 
empty <= 'O'; 
end if; 
if(head >= size ) ,hen 
full<= 'I'; 
else 
full<= O'; 
end if; 

head0 <= bddhandle _zero; 
head I <= bddhandle _zero; 
head2 <= bddhandle _zero; 
if(head I) then 
headO <= stack(head • I); 
end if; 
if(head = 2) then 
head0 <= stack(head • l ); 
headl <= stack(head • 2); 
elsif(head >2) then 
headO <= stack(head- l ); 
head) <= stack(head-2); 
head2 <= stack(head-3); 
end if; 

tp_head <= head; 
end if; 

end if; 
end process; 

end handlestack; 

library ieee; 
useieee.STD_LOGIC_l 164.all; 
library bddlib; 
use bddlib.kernel.all; 
library SYNOPSYS; 
use SYNOPSYS.ATIRIBUTES.ALL; 

entity freenodecntl is 
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generic ( 
minhandle : bddhandle := bdd_minhandle; 
maxhandle : hddhandle bdd_maxhandle 
); 

pon ( 
elk : in std_logic; 
rst : in s1d_logic; 
init : in std_logic; 
tookfreehandle I : in std_logic; 
freehandle : out bddhandle; 
freehandle_ valid : out std_logic; 
LOWONNODES : out std_logic; 
OUTOFNODES : out s1d_logic; 
nodemem_busy : in std_logic; 
nodemem_ack : in std_logic; 
nodemem_dataready : in std_logic; 
nodemem_da1aout : in bdd_t; 
nodemem_request : out std_Jogic; 
nodemem_handle : out bddhandle; 
nodemem_datain : out bdd_t; 
nodemem_rw : out std_logic 
); 

end freenodecntl; 

The init process will take 
memsize*(memdelay+ I) clocks. 

architecrure freenodecntl of freenodecntl is 

signal handle : bddhandle: 
signal nexthandle : bddhandle; 

type visual_currentslate_states is (IDLE, getnextfree, inimodes, lastinit, 
waitformem): 

signal currentstate : visual_currents1a1e_s1a1es; 
attribute STATE_ VECTOR of freenodecntl : 

architecture is "currentstate••~ 

begin 

Synchronous process 
freenodecntUDLE: 
process (elk) 
begin 

if (elk event and elk 1 ') then 
if (rst = 'O') then 

freehandle_valid<= 'O'; 
•· rum of memory interface 
nodemem_request <= '0~ 
nodemem_rw <= '1 '; 
nodemem_handle <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
currentstate <= IDLE; 

else 

case currentstate is 
when IDLE=> 
if (init = 1 ') then 

handle <= bddhandle....zero; 
nexthandle <= bddhandle_one; 
freehaodle_ valid <= 'O'; 
currentstate <= waitforrnem; 

elsif (tookfreehandlel ='I') then 
if (nex!handle = bddhandle_zero) then 

freehandle_ valid <= 'O'; 
currentstate <= IDLE; 

else 
•· set the new freehandle 

freehandle <= nexthandle; 

•· read the node to node memory @ handle 
nodemem_request <= 'I'; 
nodemem_rw <= 1 ·; 
nodemem_handle <= nexthandle; 
nodemem_datain <= bdd_t_zero; 
currentstate <= gemextfree; 

end if; 
else 

currentstate <= IDLE: 
end if; 

when getnextfree => 
if ((nodemem_ack = 'J) and (nodemem_dataready 'I')) then 

nodemem_request <= O'; 
nexthandle <= nodemem_dataout.nextbdd; 
if (nodemem_dataout.nextbdd = bddhandle_zero) then 

freehandle_valid <= 'O'; 
•· tum of memory interface 
nodemem_request <= O': 
nodemem_rw <= 'I·: 
nodemem_handle <= hddhandle_zero; 
nodemem_datain <= hdd_t-7.ero; 
currentstate <= IDLE: 

else 
-~ turn of memory Jntelface 
nodemem_request <= O': 
nodemem_rw 'I·: 
nodemem_handle <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero: 
currentstate <= IDLE; 

end if; 
else 

-- set the new freehandle 
freehandle <= nexthandle; 

•· read the node to node memory @ handle 
nodemem_request <= 'I·; 
nodemem_rw <= 'l': 
nodemem_handle <= nexthandle; 
nodemem_darain <= bdd_t_zero: 
curremstate <= getnextfree: 

end if; 

when initnodes => 
if (nodemem_ack = 'I) then 

if (handle= maxhandle) then 
nodemem_request <o0 'I '; 
nodemem_rw <= O'; 
nodemem_handle <= handle; 
nodemem_datain <= bdd_t_init: 
currentstate <= Jastinit~ 

else 
- initialize all of the node memory 
nodemem_request <= 'I'; 
nodemem_rw <= 'O'; 
nodemem_handle <'- handle; 
if(handle = bddhandle_zero) then 
•- handle Ois the constant 0 
nodemem_datain <= (level => bddvar_max, 
lo=> bddhandle_zero, hi=> bddhandle_zero, 
nextbdd => bddhandle_zero, ge=> gc_zero); 

elsif(handle = bddhandle_one) then 
- handle I is the constant I 
nodemem_ datai n <= (level => bddvar _max, 
lo=> bddhandle_one, hi=> bddhandle_one, 
nextbdd => bddhandle_one, gc=> gc__zero); 
else 
- write the node to node memory @ handle 
nodemem_datain <= (level => bddvar_rnax, 
lo=> bddhandle_zero, bi=> bddhandle_zero, 
nextbdd => nexthandle, ge=> gc_zero ); 
end if; 
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-- set the handle= nexthandle 
handle<= nexthandle; 
-- increment the next handle 
nexthandle <= nexthandle + I; 
currentstate <= initnodes; 

end if; 
else 

currentstate <='- initnodes; 
end if; 

when lastinit => 
freehandle <= minhandle; 
freehandle_ valid <= 'I'; 
nexthandle <= minhandle + I; 

turn of memory interface 
nodemem_request <= U'; 
nodemem_rw <= 1 '; 
nodemem_handle <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
currentstate <= IDLE; 

when wairfonnem => 
if (nodemem_busy = U') then 
if (handle= maxhandle) then 

nodemem_request <= 'I '; 
nodemem_rw <= U'; 
nodemem_handle <= handle; 
nodemem_datain <= bdd_t_init; 
currentstate <== lastinit; 

else 
-- initialize all of the node memory 
nodemem_request <= 'l '~ 
nodemem_rw <"' U'; 
nodemern_handle <= handle; 
if(handle = bddhandle_zero) then 

handle 0 is the constant 0 
nodemem_datain <=(level=> bddvar_rnax, 
lo => bddhandle_zero, hi => bddhandle_zero, 
nextbdd => bddhandle_zero, gc=> gc_zero); 

elsif(handle = bddhandle_ one) then 
-- handle l is the constant 1 
nodemem,_datain <=(level=> bddvar_rnax, 
lo=> bddhandle_one, hi=> bddhandle_one, 
nextbdd => bddhandle_one, gc=> gc...zero); 
else 

write the node to node memory @ handle 
nodernern_datain <=(level=> bddvar_rnax, 
lo=> bddhandle_zero, hi => bddhandle,.zero, 
nextbdd => nexthandle, gc=> gc_zero); 
end if; 
-- set the handle= ne,lhandle 
handle <= nexthandle; 

increment the ne,t handle 
nexthandle <= nexlhandle + 1; 
currentstate <= initnodes; 

end if; 
else 

C11rrentstate <= waitformem; 
end if; 

when others => 

- rum of memory interface 
nodernem,_request <= U'; 
nodemern_rw <= 1 '; 
nodernem_handle <= bddhandle_zero; 
nodernem_datain <=< bdd_t_zero: 
currentstate <= IDLE; 

end case; 
end if; 

end if; 
end process; 

outofnodes <= 1' when nexthandle = bddhandle_zero 
else U'; 

end freenodecntl: 

library ieee; 
use ieee.STD _LOGIC_l 164.all; 
library bddlib; 
use bddlib.kernel.all; 
library SYNOPSYS; 
use SYNOPSYS.ATIRIBUTES.ALL; 

entity apply is 
port ( 

elk : in std_logic; 
rst : in std_logic; 
lobddin : in bddhandle; 
hibddin : in bddhandle; 
resulthandle : out bddhandle; 
resultvalid : out std_logic; 
nodemern_dataout : in bdd_t: 
nodemem_busy : in std_logic; 
nodernem_datavalid ; in std_logic; 
nodernem_ack ; in std_logic; 
nodernern_handle : out bddhandle; 
nodemern_datain : out bdd_1; 
nodemem_rw : out std_logic; 
nodernem_request : out std_logic; 
cam_ack : in sld_logic; 
carn_busy : in sld_logic; 
cam_result : in camfield: 
cam_resultvalid : in std_logic: 
cam_found : in std_logic: 
carn_request out std_logic; 
carn_rw : out std_logic; 
carn_fieldl : out camfield; 
carn_lield2 : om camlield; 
carn_field3 : out camlield; 
cam_resultin : out camlield; 
call_datain0 : out bdd_t; 
cal!_datain1 ; out bdd_t; 
call_ dataoutO : in bdd_t; 
call_dataoutl : in bdd_t; 
call_full : in std_logic; 
call_ernpty : in std_logic; 
call_cmd ; out stackcmd; 
resull_datain : out bddhandle; 
result_dataout : in bddhandle; 
result_full : in std_logic; 
result_emply : in std_logic; 
result_cmd : out stackcmd; 
start : in std_logic; 
rnknode_start : out std_logic; 
rnknode_result : in bddhandle; 
mknode_resultvalid : in std_logic; 
mknode_level : out bddvar; 
mknode_lo : out bddhandle; 
mknode_Ju : out bddhandle; 
operator : in booleanop; 
operror : out std_logic 
); 

end apply; 

architecture apply of apply is 

signal lohandle : bddhandle; 
signal hihandle : bddhandle; 
signal camdone : std_loglc; 
signal terminalcase : std_logic; 
signal rerumcode : gc_t; 
signal lonode : bdd_t; 
signal hinode : bdd_t; 
signal localresult : bddhandle; 
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signal 1mpresult : bddhandle; 

type visual_current_lop_states is (fOP); 
constant current_lop: visual_current_top_states := TOP; 

type visual_current_main_states is (IDLE, RETURNCTL, WARMUP, 
mknode, updatehi, 

updatelo, CAMFIND); 

signal curren1_maln : visua)_current_main_states; 

type visual_TOP _TOP _CAMFIND_CAMFJNDl_states is 
(CAMFINDI, 

TOP_TOP_CAMFJND _camdone ); 

signal visual_TOP _TOP_CAMFJND_CAMFINDl_current: 
visual_TOP _TOP _CAMFIND_CAMFJNDl_sta!es; 

type visual_TOP_TOP _CAMFJND_findnode_s!ates is (findnode, 
findnode2, 

waitcamresult); 

signal visual_ TOP_ TOP_CAMFJND_findnode_current 
visual_TOP_TOP_CAMFIND_findnode_slates; 

type visual_current_ writecam_states is ( writecamidle, wntecam); 

signal current_writecam: visual_current_writecam_states: 

-- since the memory interfaces are async with 
-- each other, there is no telling which will 

get done first. 
must not exit until cam has gotten a result. 
so the node lookup must wait unlil the cam is done 
if there was a cam miss, then the exit must be from the 
findnode machine 

-- There is a potential problem if the cam 
gets done, but misses and some other transaction 
takes place on the cam. This might cause 
an erroneous exit'! 
No, because if the cam misses it will set camdone 
and the findnode machine must wait for !hat to 
exit 
cam_found is async and is set as soon as cam_resultvalid 
is recieved. The default is 'O' so it will hold that 

- value only when resullvalid='l 'or in state camdone 
begin 

- Synchronous process 
apply_TOP: 
process ( elk) 

variable appcamhit : NATURAL :=0; 
variable appcamwrite: NATURAL :=O; 
variable appcammiss : NATURAL 0; 

begin 

if (clk'event and elk= 1 ') then 
resultvalid <= U'; 
call_cmd <= stacknop; 
result_cmd <= stacknop; 
mknode_start <= U'; 
case cwrent_main is 

when IDLE=> 
if (rst = 'O') then 

current_main <= IDLE; 
elsif (stan = 1 ') then 

lohandle <= lobddin; 
hihandle <= hibddin; 
current_main <= WARMUP; 

else 
current_main <= IDLE; 

end if; 

when RETURNCTL => 
if (rst = 'O') then 

current_main <= lDLE; 
elsif (returncode = returndone) then 

- teh cam is accessed and we know it 
-- will not be busy at this poin1, then 
•· carn_ack will come back right away, 
- so there is no reason to wait. 
-for cam_ack = 'I' 
-also since we know single cycle access 
••is in place we can just turn off the request. 
-This will have to change if it is not single 
-cycle access. 
cam_request <= -0'; 
resultvalid <= 'I'; 
current_rnain <= IDLE; 

elsif (returncode = returnhigh) then 
•- teh cam is accessed and we know ii 
-- will not be busy al this point, then 
-- cam_ack will come back right away, 
-- so there is no reason to wait. 
--for cam_ack = 1' 
--also since we know single cycle access 
-is in place we can just turn off the request. 
--This will have to change if it is not single 
--cycle access. 
cam_request <= 'O'; 
-- pop call stack into local regs 
call_cmd <= stackpop2; 
lonode <= call_dataout0; 
lohandle <= call_dataout0.lo; 
hinode <= call_dataout I; 
hihandle <= call_dataout0.hi; 
-- push localresult onto result stack 
result_cmd <= stackpush; 
result_datain <= localresult; 
current_main <= updatehi; 

elsif (returncode = returnmknode) then 
- teh cam is accessed and we know it 
-- will not be busy at this point, then 
-- cam_ack will come back right away, 
- so there is no reason to wait. 
-for cam_ack 'l' 
--also since we know single cycle access 
-is in place we can just tum off the request, 
-This will have to change if it is not single 
-cycle access, 
cam_request <= U'; 
lohandle <= calLdataout0.lo; 
hihandle <= call_dataout0.hi; 

entry <= call_dataoutO.nextbdd; 
- pop call stack into local regs 
call_cmd <= stackpop; 
-- start mknode 
mknode_start <= 'I'; 
mknode_level <= call_dataoutOJevel; 
mknode_Jo <= result_dataout; 
-· the current result (from second recursive call) 
-- can be applied to the mknode hi branch. 
mknode_Iii <= localresuh; 
- pop the result stack 
result_cmd <= stackpop; 
current_main <= mknode; 

else 
current_main <= RETURNcn.; 

end if; 

when WARMUP => 
if (rst = 'O') then 

currenr_main <= IDLE; 
elsif (terrninalcase = 'l ') then 

localresult <:= tmpresult; 
current_main <= RETURNCTL; 

https://call_dataout0.hi
https://calLdataout0.lo
https://call_dataout0.hi
https://call_dataout0.lo
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else 
•· setup cam find 
cam_request <= 'I '; 
cam_rw <= 'I'; read (find); 
cam_fieldl <= lohandle; 
cam_field2 <= hihandle; 
cam_field3 <= natural(booleanop'pos(operator)); 
visual_TOP _ TOP _CAMFIND_CAMFINDJ_cwrent <= 

CAMFINDl; 
·· set up a read request 10 node memory 
nodemem_handle <= lohandle; 
nodememJequest <= 'l '; 
nodemem_.rw <= 'l '; •· read 
nodemem_datain <= bdd_t_zero; 
visual_TOP _TOP _CAMFIND_findnode_current <= findnode; 
current_main <= CAMFIND; 

end if; 

when mknode => 
if (rsl = I)') then 

current_main <= IDLE; 
elsif (mknode_resultvalid = 'l ') then 

localresult <= mknode_result; 
current_main <= RETURNCTL; 

else 
current_rnain <= mknode; 

end if; 

when updatehi => 
if (rst = IJ') then 

current_main <= IDLE; 
else 

•· set the local handles for the high edge recursion 
lohandle <= hinode.lo; 
hihandle <= hinode,hi; 

- push local regs onto the call stack 
call_datain0Jevel <= hinode.level; 
call_datainO.lo <= lohandle; 
call_datainO.hi <= hihandle; 
--calLdatain0.nextbdd <= entry; 
•· store the return code in the gc bits 
call_datainO.gc <= rerurnmknode; 
call_cmd <= stackpush; 
current_main <= WARMUP; 

end if; 

when updatelo => 
if (rst = I)') then 

curreni_rnain <= IDLE; 
·· recure on low(l),low(r) 

set the lo and hi handles 
•· also push args for high edge recursion 

high(l)Jligh(r) 

elsif (lonode.level = hinode.level) then 
- recure on low(l),low(r) 
lohandle <= lonode.lo; 
hihandle <= hinode.lo; 
- then high(l),high(r) 
•· for the high edge recursion put the 
- arguments in the second stack entry 
call_datainl.lo <= lonode.hi; 
call_dataiol.hi <= hinode.hi; 
•· store the var level for the mknode call 
call_datainl.level <= lonode.level; 
•· so must prep for s stack push 
call_datainO.Jo <= lohandle; 
call_datainO.hi <= hihandle; 
••call_datain0.nextbdd <= entry; 
call_datainO.gc <= returnhigh; 
call_cmd <= stackpush2; 
current_rnain <= WARMUP; 

•· •· recur on low(l),r 
•· •· then high(l),r 

•· •· so must prep for s stack push 
•• •· for the high edge recursion put the 

•• arguments high(l),r in the second stack entry 

elsif (lonode.level < hinode.level) then 
recur on low(l).r 

lohandle <= lonode.lo; 
hihandle <= hihandle; 
•· for the high edge recursion put the 
- arguments high(l),r in the second stack entry 
call_datain l .lo <= lonode.hi; 
call_datainl .hi<= hihandle; 
call_datain I.nextbdd <= hihandle; 
- store the var level for the mknode call 
call_datain I.level <= Jonode.level; 
•• so must prep for s stack push 
call_datain0.lo <= lohandle; 
call_datainO.hi <= hihandle; 
--call_datain0.nextbdd <= entry; 
call_datain0.gc <= returnhigh; 
call_cmd <= stackpush2; 
current_main <= WARMUP; 

•• recur on l,low(r) 
1,high(r) 

- for the high edge recursion put the 
•· arguments high(l),r in the second slack entry 

else 
.• recur on l,low(r) 

l,high(r) 
lohandle <= lohandle; 
hihandle <= hinode.lo; 

for the high edge recursion put the 
•· argumeOls high(l),r in the second stack entry 
call_datain I.lo <= lohandle; 
call_datainl.hi <= hinode.hi; 
--call_datainl .nextbdd <= hihandle; 
•• store the var level for the mknode call 
call_datain I .level <= hinode.level; 
•· so must prep for s stack push 
call_datainO.lo <= lohandle; 
call_datain0.hi <= hihandle; 
-call_datain0.nextbdd <= entry; 
call_datain0.gc <= returnhigh; 
call_cmd <= stackpush2; 
current_main <= WARMUP; 

end if; 

when CAMFIND => 
case visual_TOP _TOP _CAMFIND_CAMFINDl_current is 

when CAMFINDl => 
if (cam_ack ='I' and carnJesultvalid ='I• and camJound = 1 ') 

then 
set result handle 

localresult <= cam_result; 
cam_request <= \'.J'; 
appcamhit := appcamhit + l; 
current_rnain <= RETURNCTL; 

elsif ((cam_ack ='I') and (cam_resultvalid ='I' and camJound 

\'.J')) then 
if (rst = IJ') then 
current_main <= IDLE; 

else 
cam_request <= \'.J'; 
appcammiss appcammiss +I ; 
visual_TOP_TOP _CAMFIND_CAMFJNDl_current <= 
TOP _TOP _CAMFlND_camdone; 

end if; 
elsif (rst \'.J') then 

current_main <= IDLE; 
else 

visuaLTOP _TOP _CAMFIND_CAMFlNDl_current <= 
CAMFINDI; 

end if; 

https://call_datain0.gc
https://call_datain0.hi
https://call_datainO.lo
https://hinode.hi
https://call_datainl.hi
https://hinode.lo
https://call_datain0.gc
https://call_datainO.hi
https://call_datain0.lo
https://lonode.hi
https://lonode.lo
https://call_datainO.gc
https://call_datainO.hi
https://call_datainO.Jo
https://hinode.hi
https://call_dataiol.hi
https://lonode.hi
https://call_datainl.lo
https://hinode.lo
https://lonode.lo
https://call_datainO.gc
https://call_datainO.hi
https://call_datainO.lo
https://hinode.lo
https://nodemem_.rw
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when TOP_TOP_CAMFIND_camdone => 
if (rst = tl) then 

current_main <= IDLE; 
else 

visual_TOP_TOP_CAMFIND_CAMFINDl_current <= 
TOP_TOP_CAMFIND_camdone; 

end if; 

when others => 

current_main <= IDLE; 
end case: 
case visual_TOP_TOP_CAMFIND_findnode_current is 

- this state will lookup the nodehandle (found in the 
•• unique table) in node memory 

when findnode => 
if (rst = tl) then 

current_main <= IDLE; 
elsif ((nodemem..ack = 1) and (nodernem_datavalid ='I)) then 

nodemem_request <= I)'; 
lonode <= nodemem_dataout; 
-· set up a read request to node memory 
nodemem_handle <= hi handle; 
nodemem_request <= 'J '; 
nodemem_rw <= 'I '; •· read 
nodemem_datain <= bdd_t_zero; 
visual_TOP_TOP_CAMFIND_findnode_current <= 

findnode2; 
else 

visual_TOP_TOP_CAMFlND_findnode_current <= findnode: 
end if; 

when findnode2 => 
if (nodemem_ack 'l •and nodemem_datavalid ='J 'and cam

done = 
'I) then 

nodemem_request <= 'O'; 
hinode <= nodemem_dataout; 
current_main <= updatelo; 

elsif ((nodemem_ack = 'l ') and (nodemem_datavalid ='I')) then 
if (rst = tl') then 

current_main <= IDLE; 
else 

nodemem_request <= 'O'; 
hinode <= nodemem_dataout; 

visual_TOP_TOP_CAMFIND_findnode_current <= waitcam
result; 

end if; 
elsif (rst 0') lhen 

current_main <= IDLE; 
else 

visual_TOP_TOP_CAMFIND_findnode_current <= 
findnode2; 

end if; 

when waitcamresult => 
if (camdone = 'I ') then 

current_main <= updatelo; 
else 
if (rst = 'O') lhen 

current_main <= IDLE; 
else 
visual_TOP_TOP_CAMFIND_findnode_current <= waitcam-

result; 
end if; 

end if; 

when others => 

current_main <= IDLE; 
end case; 

when olhers => 

current_main <= IDLE; 
end case; 
case current_writecam is 

when writecamidle => 
if (mknode_resultvalid = 1 'and current_main mknode) then 

-· setup a write/insert to cam 
cam_request <= 'I'; 
cam_rw <= '0~ •· write(insen); 
cam_fieldl <= lohandle; 
cam_field2 <= hihandle; 
cam_field3 <= natural(booleanop'pos(operator)); 
cam_resultin <= mknode_result; 
current_writecam <= writecam; 

else 
current_writecam <c: writecamidle; 

end if; 

when writecam => 
if (cam_ack ='I) lhen 

•· tum off write request 
cam_request <= O'; 
cam_rw <= 'I'; 
appcamwrile := appcamwrite + I; 
current_writecam <= writecamidle; 

else 
current_writecam <= writecam; 

end if; 

when others => 

current_ writecam <= writecamidle; 
end case; 

end if; 
end process; 

•- Combinational process 
apply_TOP _comb: 
process ( current_main, 

visual_TOP_TOP_CAMFIND_CAMFINDl_current, 
visual_TOP_TOP_CAMFIND_findnode_current, current_ writecam) 

begin ·• Combinational process 
camdone <= '0~ 

case current_main is 
when CAMFIND => 
case visual_TOP_TOP_CAMFIND_CAMFINDl_current is 

when TOP_TOP_CAMFIND_camdone => 
camdone <= 1 '; 

when others => 
null; 

end case; 
when others => 

null; 
end case; 

end process; 

resulthandle <= localresult; 
retumcode <= call_dataoutO.gc; 

process(lohandle.hihandle) 
variable terminaltest : std_logic_vector(J downto 0); 
begin 
-- do some defaults so we dont get latches 
operror <= 'O'; 
terminalcase <= 'O'; 
terminaltest := "0000"; 

•• set up the terminal test values so that the terminal test 
•· case statement can work effectively 
•· terminal value 00 means handle =0 
•· termanl value 11 means handle =I 
- terminal value OJ means handle is neither of the two constants 

https://call_dataoutO.gc
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if(lohandle = bddhandle_one) then 
terminaltest(l downto 0) := "II"; 
elsif(lohandle = bddhandle_zero) then 
terminaltest(I downioO) := "00"; 
else 
tenninaltest(l downm 0) := "01"; 
end if; 

if(hihandle = bddhandle_one) then 
terminaltest(3 downto 2) := "ll "; 
elsif(hihandle = bddhandle_zero) then 
terminal!est(3 downto 2) := "00"; 
else 
terminaltest(3 downto 2) "01 "; 
end if: 

case operalor is 
when booleanop_and => 
•· leSIS for the and operator 
if(lohandle = hihandle) 1hen 
tmpresull <= lohandle; 
terminalcase <= 'I'; 
else 
case terminaltest ls 
when "0000" I "0001" I "0011" I "I I 00" l "OHlO"=> 
tmpresult <= bddhandle_zero; 
terminalcase <= 'I'; 
when "1111" => 
tmpresul1 <= bddhandle_one; 
terminalcase <= 'I'; 
when "1101" => 
tmpresult <= lohandle; 
terminalcase <= '1 '~ 
when "0111" => 
tmpresult <= hihand!e; 
terminakase <= •1 '; 
when others "'> 
•· do not assign a true value lo terminalcase because 
- this is the case where you are not in a ternina! case and muse 
- recursivly evaluate the bdd 
- neither edge is constant, not a terminal case 
tmpresult <= bddhandle_zero; 
tenninalcase <= U'; 
end case; 
end if; 
•· end tesls for the and operator 

- or operator 
when booleanop_or => 

if(lohandle = hihandle) then 
tmpresult <= lohandle; 
terminakase <= '] ?; 
else 
case terminaltest is 
when "JI JI" l "llOO" I "00ll" I "1101" ! "0111"=> 
tmpresult <= bddhandle_one; 
lerminalcase <= 'I'; 
when "01()()" "> 
tmpresult <= hihandle; 
terminalcase <= 'I'; 
when "0001" => 
tmpresult <= lohandle; 
terminalcase <= 11'; 
when "0000" => 
tmpresult <= bddhandle_zero; 
terrninalcase <= 'I'; 
when others => 
•· neither edge is constant, not a terminal case 
rmpresult <= bddhandle_zero; 
terrninalcase <= U'; 
end case; 
end if; 

end lest for the or operator 

when booleanop_xor => 

if(lohandle = hihandle) then 
tmpresuh <= bddhandle_zero; 
terminakase <= '1 ~ 
else 
case terrninaltest is 
when "0100" I "1100" => 
tmpresu!t <= hihand!e; 
termi nalease <= ·1 ·; 
when "0011" I "0001" => 
tmpresuh <= !ohandle; 
terminakase <= 'l '; 
when "0000" I "l l l I" => 
tmpresult <= bddhandle_zero; 
terminalcase <= 'I'; 
when others => 
-- neither edge is constant, not a terminal case 
tmpresult <= bddhandle_zero; 
terminalcase <= o•; 
end case: 
end if; 

end test for the xor operator 

•· nand operator 

when booleanop_nand => 

case teITTUnaJtes1 is 

when "0000" I "1100" I "0011" I "0100" I "0001" => 
•· either input is 0 
tmpresult <= bddhandle_one; 
tenninakase <= 'l '; 
when"llll"=> 
-· both inputs are one 
tmpresult <= bddhandle_zero; 
terminalcase <= 'I '; 
when others => 
-- neither edge is constant, not a terminal case 
tmpresult <= bddhandle_zero; 
terrninalcase <= U~ 
end case; 

-- end test for the nand operator 

when booleanop_nor => 

case lerm.inaltest is 
when "Ill I" I "1100" I "0011" I "1101" I "Olli"=> 

either input is I 
tmpresult <= bddhandle_zero; 
terrninalcase <= 'I'; 
when "0000" => 
tmpresul1 <= bddhandle_one; 
terrninalcase <= 1 '; 
when others => 
-· neither edge is constant, not a terminal case 
tmpresult <= bddhandle_zero; 
terminalcase <= 'O'; 
end case; 
-- end test for the or operator 

when booleanop_imp => 
case lermina1test is 
when "1100" I "0100" I "0000" I "1101" I "1111" => 

low edge is zero or high edge is one 
tmpresu!t <= bddhandle_one; 
terminalcase <= 'I'; 
when "0011" 1"0111"=> 

lo edge is one 



tmpresult <= hihandle; 
terminalcase <= 'l '; 
when others => 

neither edge is constant, not a tenninal case 
tmpresult <= bddhandle_zero; 
tenninalcase <= ti'; 
end case; 
if(lohandle bddhandle_one) then 
tmpresult <= hihandle; 
terminalcase <= 'l '; 
end if; 

when booleanop_biimp => 
case terminaltest is 
when "0000" I "llll" => 
-- low edge is zero or high edge is one 
tmpresult <= bddhandle_one; 
terminalcase <= 'I'; 
when "0011" I "1100" => 
-- Jo edge is one high edge is zero 
tmpresult <= bddhandle_z.ero; 
terminalcase <= 'I'; 
when others => 
- neither edge is constant . not a terminal case 
tmpresult <= bddhandle_zero; 
tenninalcase <= ti'; 
end case; 
-- end test for the implication operator 

-- difference (greater than) 
when booleanop _greater => 
case terminahest is 
when "0000" I" I 11 I" I" l!OO" => 
tmpresult <= bddhandle_zero; 
terminalc ase <= 'I ·; 
when "OOIJ" => 
- lo edge is one high edge is zero 
tmpresult <= bddhandfe_one; 
terminalcase <= 'I'; 
when others => 
- neither edge is constant , not a terminal case 
tmpresult <= bddhandle_zero; 
terminakase <= ti'; 
end case; 
- end test for the difference operator 

less 
when booleanop _less => 
case terminaltest is 
when "0000" I "1 ll I" I "0011" => 
tmpresult <= bddhandle_zero; 
terminalcase <='I'; 
when "1100" => 
-- hi edge is one low edge is zero 
tmpresult <= bddhandle_one; 
tenninalcase <= 'l '; 
when others => 
- neither edge is constanl , not a terminal case 
tmpresult <= bddhandle_zero; 
terminalcase <= ti'; 
end case; 
-- end terminal test for less operator 

- others 
when others=> 
-- some kind of operator error, make it terminal and return zero 
operror <= 'I'; 
terminalcase <= 'I'; 
tmpresult <= bddhandle_zero; 
end case; 
end process; 

end apply; 

library ieee; 
use ieee.STD_LOGIC_I 164.all; 

library bddlib; 
use bddlib.kernel.all; 
library SYNOPSYS; 
use SYNOPSYS.ATTRJBlITES.ALL; 

entity APPLY _NOT is 
port ( 

elk in std_logic; 
rst : in Sld_logic; 
bddin : in bddhandle; 
resulthandle : out bddhandle; 
resultvalid : out std_logic; 
nodemem_dataout : in bdd_t; 
nodemem_busy : in std_logic; 
nodemem_datavalid : in std_logic; 
nodemem_ack . in srd_logic; 
nodemem_handle : out bddhandle; 
nodemem_datain : out bdd_t; 
nodemem_rw : out std_logic; 
nodememJequest : out std_logic; 
cam_ack : in std_logic; 
cam_busy : in std_logic; 
cam_result ; in camfield; 
cam_resultvalid : in sld_logic; 
cam_found : in std_logic; 
cam_request : out std_logic; 
cam_rw : out std_logic; 
cam_field I : out camf1eld: 
cam_field2 out camfield; 
cam_field3 : out cornfield; 
cam_resuhin : out camfield; 
call_datain : out bdd_t; 
call_dataout : in bdd_t; 
call_full · in std_logic; 
call_empty : in std_logic; 
call_cmd : out stackcmd; 
result_datain : out bddhandle; 
result_dataout : in bddhandle; 
result_full : in std_logic; 
result_empty : in std_logic; 
result_cmd : out stackcmd; 
start : in srd_logic; 
mknode_start : out std_logic; 
mknode_result : in bddhandle; 
mknode_resultvalid: in std_logic; 
mknode_level : out bddvar; 
mknode_lo : out bddhandle; 
mknode_hi : out bddhandle 
); 

end APPLY _NOT; 

an:hitecrure APPLY _NOT of APPLY_NOT is 

constant operator : booleanop := booleanop _not; 
signal localhandle : bddhandle; 
signal camdone : std.Jogic; 
signal returncode: gc_t; 
signal localnode : bdd_t; 
signal localresult : bddhandle; 

type visual_current_top_states is (TOP); 
constant current_top : visual_current_top_states := TOP; 

type visual_current_main_states is (IDLE, RETURNCTL, WARMUP, 
mknode, updatehi, 

updatelo, CAMFIND); 

signal current_rnain : visual_current_main_states; 

type visual_TOP _TOP_CAMFIND_CAMFINDl..states is 
(CAMFINDI, 

TOP _TOP _CAMFlND_camdone); 
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signal visual_TOP _TOP_CAMFIND_CAMFJNDl_current: 
visual_TOP_TOP_CAMFIND_CAMFINDI _states; 

type visual_TOP_TOP_CAMFIND_findnode_states is (find node, wait
camresult); 

signal visual_ TOP_TOP_CAMANO_findnode_current : 
visual_TOP_TOP_CAMFIND_findnode_s1ates; 

type visual_current_writecam_states is (writeuniqueidle, writecam): 

signal current_writecam : visual_current_ writecam_states; 

begin 

- Synchronous process 
APPLY_NOT_TOP: 
process (elk) 

variable appnotcamhi1 : NATURAL 0; 
variable appnotcamwrite: NATURAL O; 
variable appnolcammiss : NATURAL O; 

begin 

if (clk'event and elk= 'l ') !hen 
resullvalid <= 'O'; 
call_cmd <= stacknop; 
result_cmd <= stacknop; 
mlmode_start <= 'O'; 
case current_main Is 

when IDLE=> 
if (rst = 0) then 

current_main <= IDLE; 
elsif (start= 'I') then 

localhandle <= bddin; 
curn:nt_main <= WARMUP; 

else 
current_main <= IDLE; 

end if; 

when RETURNCTL => 
if (m = 0') then 

~-um:nt_main <= IDLE; 
elsif (returncode = returndone) then 

-- since this is the only place 
- teh cam is accessed and we know it 
-- will not be busy at this point, then 
-- cam_ack will come back right away, 
~- so there is no reason to wait. 
-•for cam_ack = 'l' 
-also since we know single cycle access 
--is in place we can just turn off the request. 
--This will have to change if it is not single 
--cycle access. 
cam_request <= O'; 
resulrvalid <= 'l '; 
current_main <= IDLE; 

elsif (returncode = retummk.node) then 
•· since this is the only place 
•· teh cam is accessed and we know it 
- will not be busy at this point, then 
•· cam_ack will come back right away, 
-- so there is no reason to wait. 
•-for cam_ack = 1 ' 
--also since we know single cycle access 
--is in place we can just turn off the request. 
--This will have to change if it is not single 
--cycle access. 
cam_request <= O'; 
- pop call stack into local regs 
call_cmd <= stackpop; 
localnode <= call_dataout; 

localhandle <= call_dataout.nextbdd; 
-- start mk.node 
mk.node_start <= 'I': 
mk.node_level <= call_dataout.level; 
mk.node_lo <= result_dataout; 

the current result (from second recursive call) 
-· can be applied to the mlcnode hi branch. 
mlcnode_hi <= localresult; 
-- pop the resu It stack 
result_cmd <= stackpop; 
current_main <= mknode; 

elsif (returncode = returnhigh) then 
-- since this is the only place 
# .. teh cam is accessed and we know it 

will not be busy at this point, then 
-· cam_ack will come back right away, 
*~ so there is no reason to wait. 
--for cam_ack = 'l' 
--also since we know single cycle access 
--is in place we can just turn off the request 
--This will have to change if it is not single 
--cycle access. 
cam_request <= 'O'; 
.• pop call stack into local regs 
call_cmd <= stackpop; 
localnode <= call_dataout; 
localhandle <= call_dataout.nextbdd; 
-· push localresult onto result stack 
result_cmd <= stackpush; 
result_datain <= localresult; 
current_maln <::;:; updatehi: 

else 
current_main <= RETURNCTL; 

end if; 

when WARMUP => 
if (rst = 0) 1hen 

currenr_main <= IDLE; 
elsif (localhandle = bddhandle_zero) then 

localresult <= bddhandle_one; 
c1ment_main <= RETURNCTL; 

elsif (localhandle = bddhandle_one) then 
localresult bddhandle_zero; 
current_main <= RETURNCTL; 

else 
setup cam find 

cam_request <= 'l '; 
cam_rw <= 'I'; -- read (find); 
cam_field l <= localhandle; 
cam_field2 <"- camfield_zero; 
cam_field3 <= natural(booleanop'pos(operator)); 
visual_TOP_TOP_CAMFIND_CAMFINDl_current <= 

CAMFINDI; 
•· set up a read request to node memory 
nodemem_handle <= localhandle; 
nodemem_request <= 'I'; 
nodemem_rw <= 'I '; •· read 
nodemem_datain <= bdd_t_zero; 
visual_TOP _ TOP_CAMAND_findnode_current <= findnode; 
current_main <= CAMFIND; 

end if; 

when mk.node => 
if (rs! = 0') 1hen 

current_main <= IDLE; 
elsif (mk.node_resultvalid = 1 ') then 

localresult <= mk.node_result; 
current_main <= RETURNCTL; 

else 
current_main <= mk.node; 

end if; 

when updatehi "-> 
if (rst = 0') then 

current_main <" IDLE; 
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else 
•· push local regs onto the call stack 
call_datain.level <= localnode.level; 
call_datain.lo <= localnode.lo; 
call_datain.hi <= localnode.hi; 
call_datain.nextbdd <= localhandle; 

store the return code in the gc bits 
call_datain.gc <= rerurnmknode; 
call_cmd <= stackpush; 
•· set the arg for the hi-edge recursion. 
Jocalhandle <= localnode.hi; 
currenr_main <= WARMUP; 

end if; 

when updatelo => 
if (rst = 'O) then 

currenl_main <= IDLE; 
else 

•· push local regs onto the call stack 
call_datain <= localnode; 
call_datain.nextbdd <= localhandle; 
- store the return code in the gc bits 
call_datain.gc <= returnhigh; 
call_cmd <= stackpush; 
- set the are for the lo-edge recursion 
localhandle <= localnode.lo; 
current_main <= WARMUP; 

end if; 

when CAMFIND => 
case v1sual_TOP_TOP_CAMFIND_CAMFINDl_current is 

whenCAMFINDI => 
if (cam_ack = 'I' and cam_resultvalid 'l 'and cam_found = 'I) 

then 
-- set result handle 
localresult <= cam_result; 
cam_request <= 'O'; 
•· cam hit 
appnotcamhit appnotcamhil + I; 
current_main <= RETURNCTL; 

elsif ((cam_ack =1' and cam_resultvalid ='I) and (cam_found 

'O)) then 
if (rst = 'O) then 

current_main <= IDLE; 
else 

cam_request <= '0~ 
appnotcammiss := appnotcamrniss + I; 
visual_TOP_TOP_CAMFIND_CAMFINDl_cwrent <= 

TOP_TOP_CAMFIND_camdone; 
end if; 

elsif (rst = 'O) then 
current_main <= IDLE; 

else 
visual_TOP_TOP_CAMFIND_CAMFINDl_current <= 

CAMFINDI; 
end if; 

when TOP_TOP_CAMFIND_camdone => 
if (rst = 'O) then 

current_main <= IDLE; 
else 

visual_TOP_TOP_CAMFIND_CAMFINDl_current <= 
TOP_TOP_CAMFIND_camdone; 

end if; 

when others => 

current_main <:o IDLE; 
end case; 
case visual_TOP_TOP_CAMFIND_lindnode_current is 

-· this state will lookup the nodehandle (found in the 
•· unique table) in node memory 

when lindnode => 

if (nodemem_ack = 1' and nodemem_datavalid 'I' and cam• 
done= 

'I) then 
nodemem_request <= O'; 
localnode <= nodemem_dataout; 
current_main <= updatelo; 

elsif (nodemern_ack ='I' and nodernem_datavalid 'l) then 
if (rst 0) then 

current_main <= IDLE; 
else 

nodemem_request <= O'; 
localnode <= nodemem_daraout; 

visual_TOP_TOP _CAMFIND_lindnode_current <= waitcam• 
result; 

end if; 
elsif (rst "' 'O') then 

current_main <:o IDLE; 
else 

visual_TOP _TOP _CAMFIND_lindnode_currem <= lindnode; 
end if; 

when waitcamresult => 
if (camdone ='I) then 

current_main <= updatelo; 
else 

if (rst = 'O) then 
currem_main <= IDLE; 

else 
visual_TOP_TOP_CAMFIND_findnode_current <= waitcam-

result: 
end if; 

end if; 

when others=> 

current_rnain <= IDLE; 
end case; 

when others => 

current_main <= IDLE; 
end case; 
case current_writecam is 
when writeuniqueidle => 
if (mknode_resultvalid"' 1'and current_main = mknode) then 

•· setup a write/insert to cam 
- setup cam find 
cam_request <= 'I'; 
cam_rw <"' 'O'; •· write(insert); 
cam_lieldl <= localhandle; 
cam.Jield2 <= camlield_zero; 
cam_field3 <:o natural(booleanop'pos(operator)); 
cam_resultin <= mknode_result; 
current_writecam <= writecam; 

else 
current_writecam <= writeuniqueidle; 

end if; 

when writecam :> 
if (cam_ack = 1 ) then 

•• turn off write request 
cam_request <= 1Y; 
cam_rw <= 'I'; 
appnotcamwrite := appnotcamwrite + I; 
current_writecam <= writeuniqueidle; 

else 
current_writecam <= writecam; 

end if; 

when others => 

current_ writecam <= writeuniqueidle; 
end case; 

end if; 
end process; 

https://localnode.lo
https://call_datain.gc
https://localnode.hi
https://call_datain.gc
https://localnode.hi
https://call_datain.hi
https://localnode.lo
https://call_datain.lo
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-- Combinational process 
APPLY _NOT _TOP _comb: 
process (current_main, 

visual_TOP _TOP _CAMFIND_CAMFINDl_current, 
visual_ TOP_ TOP _CAMFIND _findnode_current, current_ writecam) 

begin -- Combinational process 
camdone <= O'; 

case current_main is 
when CAMFIND => 

case visual_TOP _TOP _CAMFlND_CAMl'lNDl_current is 
when TOP_TOP _CAMFIND_camdone => 

camdone <= 'I '; 

when others=> 
null; 

end case; 
when others => 
null; 

end case~ 
end process; 

resulthandle <= localresult; 
returncode <= call_dataout.gc; 

end APPLY _NOT; 

-- Mux the two apply routines together. 
-- these two apply functionscould be 
-- combined, but would add complexity 
-- to the FSMs so they are muxed at this 

level instead. 

library ieee; 
use ieee.STD_LOGIC_I I 64.all; 
library work; 
use work.kernel.all; 
library SYNOPSYS; 
use SYNOPSYS.ATTRIBUTES.ALL; 

entity APPLYBLK is 
port ( 

applyerror : out std_logic; 
starlO : out std_logic; 
levelO : out bddvar; 
lowO : out bddhandle; 
highO : out bddhandle; 
applyop : in booleanop; 
bddin I : in bddhandle; 
bddin2 : in bddhandle; 
call_dataou!O : in bdd_t; 
call_dataoutl : in bdd_t; 
call_dataout2 : in bdd_t; 
call_full : in std_logic; 
call_empty : in std_logic; 
call_datainO : out bdd_t; 
call_datainl ; out bdd_t; 
call_datain2 : out bdd_t; 
call_cmd : out stackcmd; 
cam_.request : out std_logic; 
CamJW : out std_logic; 
cam_fieldl : out camfield; 
cam_field2 : out camfield; 
cam_field3 : out camfield; 
camJesultin : out cam.field; 
cam_ack : in std_logic; 
cam_busy : in std_logic; 
camJesult : in camfield; 
cam_resultvalid ; in std_logic; 
cam_found ; in std_logic; 
elk : in std_logic; 
enableand : in std_logic; 
enablenot : in std_logic; 
mknode_result : in bddhandle; 

mknode_resultvalid : in std_logic; 
node_port3_ack ; in std_logic; 
node_port2_ack : in std_logic; 
node_portl_ack : in std_logic; 
node_datavalid : in std_logic; 
node_dataout : in bdd_t; 
node_busy : in std_logic; 
pon3_datain : out bdd_t; 
port3_handle ; out bddhandle; 
pon3_request : out std_logic; 
port3_;w : out std_logic: 
resulthandle : out bddhandle; 
result_datainO : out bddhandle; 
result_datain I : out bddhandle; 
result_datain2 : out bddhandle; 
result_cmd : out stackcmd; 
result_dalaoutO : in bddhandle; 
resul!_dataoutl : in bddhandle; 
result_dataout2 : in bddhandle; 
result_full : in std_logic; 
result_empty : in std_logic: 
resultvalid : out std_logic; 
rst : in std_logic; 
starlapply : in std_logic; 
starlnot : in std_logic 
); 

end APPLYBLK; 

library bddlib; 
architecture APPLYBLK of APPLYBLK is 

signal appand_call_cmd : stackcmd; 
signal appand_call_datainO : bdd_t: 
signal appand_call_datainl : bdd_t; 
signal appand_call_datain2 : bdd_t; 
signal appand_cam...fieldl : camfield; 
signal appand_cam_field2 : camfield; 
signal appand_cam_field3 : camfield; 
signal appand_cam_request : std_logic; 
signal appand_cam_resultin : camfield; 
signal appand_camJW : std_logic: 
signal appand_highO : bddhandle; 
signal appand...levelO : bddvar; 
signal appand_lowO : bddhandle; 
signal appand_port3_datain : bdd_t; 
signal appand_port3_handle : bddhandle; 
signal appand_port3_request : std_logic; 
signal appand_port3JW : std_logic; 
signal appandJesult_cmd : stackcmd; 
signal appandJesult_datainO : bddhandle; 
signal appand_result_datain I : bddhandle; 
signal appand_result_datain2 : bddhandle; 
signal appandJesulthandle : bddhandle; 
signal appandJesultvalid : std_logic; 
signal appand_startO : std_logic; 
signal appnot_call_cmd ; stackcmd; 
signal appnot_call_datainO : bdd_t; 
signal appnot_call_datainl : bdd_t; 
signal appnot_call_datain2 : bdd_t; 
signal appnot_cam ..Jieldl : camfield; 
signal appnot_cam_.field2 : camfield; 
signal appnot_cam_field3 : camfield; 
signal appnot_camJequest : std_logic; 
signal appnot_cam_resultin : camfield; 
signal appnot_caIDJW : std_logic; 
signal appnot_llighO ; bddhandle; 
signal appnot_levelO : bddvar; 
signal appnot_!owO : bddhandle; 
signal appnot_port3_datain : bdd ..J; 
signal appnot_port3_handle : bddhandle; 
signal appnot_port3_request : std_logic; 
signal appnot_port3_rw : std_logic; 

https://call_dataout.gc
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signal appnot_result_cmd : stackcmd; 
signal appnot_resull_datain0 : bddhandle; 
signal appnot_result_datain 1 : bddhandle; 
signal appnot_result_datain2 : bddhandle; 
signal appnot_resulthandle : bddhandle; 
signal appnot_resultvalid : std_logic; 
signal appnot_start0 ; std_logic; 
signal enableand_d : std_logic; 
signal enablenot_d : std_logic; 
signal visual_CI_Q : std_logic; 
signal visuaLC2_Q ; std_logic; 
component APPLY_NOT 

port ( 
elk : in std_logic; 
m : in std_logic; 
bddin : in bddhandle; 
resulthandle : out bddhandle; 
resultvalid : out std_logic; 
nodemem_dataout : in bdd_t; 
nodemem_busy : in std_logic; 
nodemem_datavalid : in std_logic; 
nodemem_ack : in std_logic; 
nodemem_handle : out bddhandle; 
nodemem_datain : out bdd_t; 
nodemem_rw : out std_logic; 
nodemem_request : out std_logic; 
cam_ack : in std_logic; 
cam_busy : in std_logic; 
cam_result : in camfield; 
cam_resultvalid : in std_logic; 
cam_found : in std_logic; 
cam_request : out std_logic; 
cam_rw : out std_logic; 
cam_field 1 : out camfield; 
cam_field2 : out camfield; 
cam_field3 : out camfield; 
cam_resultin : out camfield; 
call_datain : out bdd_t; 
call_dataout : in bdd_t; 
call_full : in std_logic; 
call_empty : in std_logic; 
call_cmd : out stackcmd; 
result_datain : out bddhandle; 
result_dataout : in bddhandle; 
result_full : in std_logic; 
result_empty : in std_logic; 
result_cmd : out stackcmd; 
start : in std_logic; 
mknode_start : out std_logic; 
mknode_result : in bddhandle; 
mknode_resultvalid : in std_logic; 
mknode_level : out bddvar; 
mknode_lo : out bddhandle; 
mknode_hi : out bddhandle 
); 

end component; 
component apply 

port ( 
elk : in std_logic; 
m : in std_logic; 
lobddin : in bddhandle; 
hibddin : in bddhandle; 
resulthandle : out bddhandle; 
resultvalid : out std_logic; 
nodemem_dataout ; in bdd_t; 
nodemem_busy : in std_logic; 
nodemem_datavalid : in std_logic; 
nodemem_ack : in std_logic; 
nodemem_handle : out bddhandle; 
nodeme111...datain : out bdd_t; 
nodemem_rw : out std_logic; 
nodemem_request : out std_logic; 
cam_ack : in std_logic; 
cam_busy ; in std_logic; 
cam_result : in camfield; 

cam_resultvalid : in std_logic: 
cam_found : in std_logic; 
cam_request : out std_logic; 
cam_rw : out std_logic; 
cam_fieldl : out camfield; 
cam_field2 : out camfield; 
cam_field3 : out camfield; 
cam_resultin : out camfield; 
call_datainO : out bdd_t; 
call_datain I : out bdd_t; 
call_dataout0 : in bdd_t; 
call_dataoutl : in bdd_t; 
call_full : in std_logic; 
call_empty : in std_logic; 
call_cmd : out stackcmd: 
result_datain : out bddhandle; 
result_dataout : in bddhandle; 
result_full : in std_logic; 
result_empty : in std_logic; 
result_cmd : out stackcmd; 
start : in std_logic; 
mknode_start : out std_logic; 
mJrnode_result : in bddhandle; 
mknode_resultvalid: in std_logic: 
mknode_level : out bddvar; 
mknode_lo : out bddhandle; 
mknode_hi : out bddhandle; 
operator : in booleanop; 
operror : out std_logic 
); 

end component; 

- Start Configuration Specification 
for all : APPLY _NOT use entity bddlib.APPLY _NOT(APPLY _NOT); 
for all : apply use entity bddlib.apply(apply); 
-- End Configuration Specification 

begin 

inst_APPLY_NOT: APPLY_NOT 
port map( 

clk=>clk, 
rst => rst, 
bddin => bddinl, 
resulthandle => appnot_resulthandle, 
resultvalid => appnot_resu!tvalid. 
nodemem_dataout => node_dataout, 
nodemem_busy => node_busy, 
nodemem_datavalid => node_datavalid, 
nodemem__ack => node_port3_ack, 
nodemem__handle => appnot_port3_liandle, 
nodemem_datain => appnot_port3_datain, 
nodemem_rw => appnot_port3_rw, 
nodemem_request => appnot_port3 _request, 
cam_ack :> cam_ack. 
cam_busy => cam_busy, 
cam_result => cam_result, 
cam_resultvalid "'> cam_resultvalid, 
cam_found :> cam_found, 
cam_request => appnot_cam_request, 
cam_rw => appnot_cam_rw, 
cam_fieldl => appnot_cam_fieldl, 
cam_field2 :> appnot_cam_field2, 
cam_field3 => appnot_cam__field3, 
cam_resultin => appoot_cam_resultin, 
call_datain :> appnot_call_dataln0, 
call_dataout => calLdataoutO, 
call_full => call_full, 
call_empty => call_empty, 
call_cmd => appnot_call_cmd, 
result_datain :> appnot_result_datalnO, 
result_dataout => result_dataoutO, 
result_full => result_full, 
result_empty => result_empty, 
result_cmd => appnot_result_cmd, 
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start=> startnot, 
mknode_start => appnot_startO, 
mknode_result => mknode_resuh, 
mknode_resullvalid => mknode_resultvalid, 
mknode_level => appnot_levelO, 
mknode_lo => appnot_lowO, 
mknode_bi => appnot_bighO); 

inst_apply: apply 
port map ( 

elk=> elk, 
rst => rst, 
lobddin => bddin I, 
hibddin => bddin2, 
resultbandle => appand_resulthandle. 
resultvalid => appand_resultvahd, 
nodemem_dataout => node_dataout. 
nodemem_busy => node_busy, 
nodemem_datavalid => node_datavalid, 
nodemem_ack => node_port3_ack, 
nodemem_handle => appand_port3_handle, 
nodemem_datain => appand_port3_datain, 
nodemem_rw => appand_port3_rw, 
nodememJequest => appand_port3_request, 
cam_ack => cam_ack; 
cam_busy => cam_busy, 
cam_result => cam_result, 
cam_resultvalid => cam_resultvalid, 
cam_found => cam_found, 
cam_request => appand_cam_request, 
cam_rw => appand_cam_rw, 
cam_fieldl => appand_cam_fieldl. 
cam_field2 => appand_cam_field2, 
cam_field3 => appand_cam_tield3, 
cam_resultin => appand_cam_resultin. 
call_datainO => appand_ca!l_datainO, 
call_datainl => appand_call_datain I, 
call_dataoutO => call_dataoutO, 
call_dataoutl => calLdataoutl, 
call_full => call_full, 
call_empty => call_empty, 
call_cmd => appand_call_cmd, 
result_datain => appand_result_datainO, 
result_dataout => result_dataoutO, 
result_full => result_full, 
result_empty "> result_empty, 
result_cmd => appand_resull_cmd, 
start=> stanapply, 
mknode_stan => appand_startO, 
mknode_resull => mknode_resuh, 
mknode_resultvalid => mknode_resultvalid, 
mknode_level => appand_levelO, 
mknode_lo => appand_lowO, 
mknode_lti => appand...highO, 
operator=> applyop, 
operror => applyerror); 

process(enablenot_d,enableand_d, 
appnot_resultbandle, 
appnot_resultvalid, 

•· result signals 
appand_resultbandle, 
appand_resultvalid) 
begin 
if(enablenot_d = 'I') then 
resultbandle <= appnot_resultbandle; 
resultvalid <= appand_resultvalid OR appnotJesultvalid; 
else 
resultbandle <= appand_resultbandle; 
resultvalid <= appand_resultvalid OR appnot_resultvalid; 
end if; 

end process; 

process(enablenot,enableand, 

appnot_resultbandle, 
appnot_resultvalid, 
-· cam signals 
appnot_cam_tieldl, 
appnot_cam_field2, 
appnot_cam_field3, 
appnot_cam_resultin, 
appnot_cam_request, 
appnot_cam_rw, 

node memory signals 
appnot_port3 _datain, 
appnot_port3_handle, 
appnot_port3 _request, 
appnot_port3_rw, 
-- call register/scack frame 
appnot_call_datainO, 
appnot_calLdatain I, 
appnot_call_datain2, 
appnot_call_cmd, 
•· result stack frame 
appnot_result_datainO, 
appnot_result_datain l, 
appnot_result_datain2, 
appnot_result_cmd, 
--mknode signals 
appnot_startO, 
appnot_levelO, 
appnoUowO, 
appnot_highO, 

apply and signals 
-· result signals 

appand_resulthandle, 
appand_resultvalid, 
•· cam signals 
appand_cam_tieldl, 
appand_cam_field2, 
appand_cam_tield3, 
appand_cam_resultin, 
appand,._cam_request, 
appand,._cam_rw, 
-- node memory signals 
appand_port3_datain, 
appand_pon3...handle, 
appand_port3_request, 
appand_pon3JW, 
-- call register/stack frame 
appand_call_datainO, 
appand_call_datain 1, 
appand_call_datain2, 
appand_call_cmd, 
-- result stack frame 
appandJesult_datainO, 
appand_result_datainl, 
appand_result_datain2, 
appand_result_cmd, 
--mknode signals 
appand_startO, 
appandJevelO, 
appandJowO, 
appand_bighO) 

subtype visual_BIT_VECTOR_O_I_O is BIT_VECTOR ( 0 to I ); 
begin 

--case visual_BIT_ VECTOR__O_I_O'(To_bitvector 
(std_ulogic_ vectorXstartnot & stanand),'O')) is 

-· APPLY_NOT 
--when •01• => 
if(enablenot = 'I') then 

•· result signals are bandies in different process 
•· cam signals 
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--cam_datain <= appnot_cam_datain; 
cam_fieldl <= appnot_cam_fieldl; 
cam_field2 <= appnot_cam_field2; 
cam_field3 <= appnot_cam_field3; 
cam_resultin <= appnot_cam_resultin; 
cam_request <= appnot_cam_request; 
cam_rw appnot_cam_rw; 
-- node memory signals 
port3_datain <= appnot_pon3_datain; 
port3_handle <= appnot_pon3_handle; 
port3_request <= appnot_pon3_request; 
port3_rw <= appnot_pon3_rw; 
-- call register/stack frame 
call_datain0 <= appnot_call_datain0; 
call_datain I <= appnot_call_datain I; 
call_datain2 <= appnot_call_datain2; 
call_cmd <= appnot_call_cmd; 
-- result stack frame 
result_datain0 <= appnot_result_datain0; 
result_datainl <= appnot_result_datainl; 
result_datain2 <= appnot_result_datain2; 
result_cmd <= appnot_result_cmd; 
--mknode signals 
start0 <= appnot_startO; 
levelO <= appnot_levelO; 
lowO <= appnot_low0; 
high0 <= appnot_high0; 

elsif( enable and = 'l ) then 

APPLY_AND 
--when "IO" I 
--when others=> 

-- result signals are handled in different processs 
cam signals 

--cam_datain <= appand_cam_datain; 
cam_fieldl <= appand_cam_field I; 
cam_field2 <= appand_cam_field2; 
cam_field3 <= appand_cam_field3; 
cam_resultin <= appand_cam_resultin; 
cam_reque.,t <= appand_cam_request; 
cam_rw <= appand_cam_rw; 
-- node memory signals 
pon3_datain <= appand_pon3_datain; 
pon3_handle <= appand_pon3_handle; 
pon3_request <= appand_pon3_request; 
port3_rw <= appand_pon3_rw; 
-- call register/stack frame 
call_dalain0 <= appand_call_datain0; 
call_datainl <= appand_call_datainl; 
call_datain2 <= appand_call_datain2; 
call_cmd <= appand_call_cmd; 
-- result stack frame 
result_datainO <= appand..,result_datain0; 
result_datainl <= appand_result_datainl; 
result_datain2 <= appand_result_datain2; 
result_cmd <= appand_result_cmd; 
--mknode signals 
start0 <= appand_startO; 
JevelO <= appand_levelO; 
low0 <= appand_low0; 
high0 <= appand_highO; 

end if; 
•-end case; 

end process; 

enableno1_d <= (visual_CI_Q); 

process (elk, rst) 
begin 
if (rst = 'O') then 

visual_Cl_Q <= U'; 
elsif (clk'event and elk= 1 ') then 

visual_Cl_Q <= (enablenot); 

end if; 
end process; 

enableand_d <= (visual_C2_Q); 

process (elk, rst) 
begin 
if (rst = U') then 

visual_C2_Q <= U'; 
elsif (clk'event and elk =1 ') !hen 

visual_C2_Q <= (enableand); 

end if; 
end process; 

end APPLYBLK; 

library ieee; 
use ieee.STO_LOGIC_l !64.all; 
library bddlib; 
use bddlib.kernel.all; 
library work; 
use work.bdddebug.all; 
library SYNOPSYS; 
use SYNOPSYS.AITRIBUTES.ALL; 

entity memctrl is 
generic ( 

readdelay : NATURAL 
writedelay : NATURAL 
memsize : NATURAL 
); 

pon( 
pon3_request : in std_Jogic; 
pon3 _ack : out std_logic; 
pon3_handle : in bddhandle; 
pon3_datain : in bdd_t; 
pon3_rw : in std_logic; 
pon2_request : in std_logic; 
pon2_ack : out std.Jogic; 
pon2_handle : in bddhandle; 
pon2_datain : in bdd_t; 
pon2_rw : in std_logic; 
ponl_request: in std_logic; 
port I_ack : DUI Sld_logic; 
ponI_handle : in bddhandle; 
ponl_datain : in bdd_t; 
ponl_rw 
datavalid 
dataoul 
busy 
elk 
rst 
); 

end memctrl; 

: in std_logic; 
: out std_logic; 

: out bdd_t; 
: out std_logic; 

: in std_logic; 
: in std_logic 

architecture memctrl of memctrl is 

constant rruudelay : NATURAL 

:=0; 
0; 

:= bddmemsize 

:= readdelay; - this 
should be maxdelay which is max(readdelay,writedelay) 

signal delaycnt : NATURAL range Oto maxdelay; 
signal delaytmp : NATURAL range 0 to maxdelay; 
signal address : bddhandle; 
signal datain : bdd_t; 



107 

signal read_ write : std_logic; 
signal enable : std_logic; 
signal Ip_writetable : BOOLEAN := false; 
signal port_ack : std_logic_ vector(! to 3 ); 
signal ibusy : std_logic; 
signal startaccess : std_logic; 

type visual_lDLE_states is (IDLE, delay); 

signal visual_IDLE_current, visual_lDLE_ne,t : visual_IDLE_states; 
attribute STATE_ VECTOR of memctrl : 

architecl1Jre is "visual_lDLE_current"; 

type visual_GOT3_states is (GOT3, GOT!, GOT2); 

signal visual_GOT3_current, visual_GOT3_next: 
visual_GOT3_states; 

signal visual_delaycnt_next : NATURAL range Oto maxdelay; 
signal visual_ibusy _next : std_logic; 

begin 

•· Combinational process 
memctrUDLE_comb: 
process (delaycnt, startaccess, read_write, port_ack, 

visual_lDLE_current) 
begin 

port3_ack <= O'; 
port2_ack <= U'; 
por!I _ack <= O'; 
enable <= U'; 
visuaUbusy_next <= U'; 
visual_delaycnt_next <= delaycnt; 

case visual_lDLE_current is 
when IDLE=> 
if ((startaceess = 'I) and ((read_write = 1 'and readdelay = 0) or ( 

read_write = U'and writedelay 0))) then 
•• set the controls to memory 
enable<= 'l' after 5 ns, O' after 9 ns; 
datavalid <= read_write; 
portLack <= port_ack(I ); 
port2_ack <= port_ack(2); 
port3_ack <= port_ack(3); 
visuaUDLE_next <= IDLE; 

elsif ((startaccess = 'I) and (read_write 1)) then 
visual_delaycnt,_next <= readdelay • I; 
visual_ibusy_next <= '1 ~; 
visuaUDLE_next <= delay; 

elsif ((startaceess 1) and (read_write = 0)) then 
visual_delaycnt_next <= writedelay • I; 
visuaUbusy_next <= 'I'; 
visual_IDLE_next <= delay; 

else 
busy<= O'; 
datavalid <= O' after I ns; 
portl_ack <= O'; 
port2_ack <= O: 
port3_ack <= 'O'; 
visual_delaycnt_next <= O; 
visualJDLE_next <= IDLE; 

end if; 

when delay => 
busy<-' 'I'; 
•· ibusy <= 1 '; 
•· portl_ack <= 'O'; 

port2_ack <= O'; 
•• port3_ack <= O'; 

if (delaycnt = 0) Lhen 
•· set the controls to memory 
enable <= 'I' after 5 ns, O' after 9 ns; 
datavalid <= read_write; 
portl_ack <= port_ack(l); 
port2_ack <= port_ack(2); 
port3_ack <= port_ack(3); 
visual_IDLE_next <= IDLE; 

else 
visual_delaycnt_next <= delaycnt • I; 
visua)_ibusy _next <= 'I'; 
visual_lDLE_neM <= delay; 

end if; 

when others=> 

visual_IDLE_next <= IDLE; 
end case; 

end process; 

memctrl_lDLE: 
process (elk) 

begin 

if (clk'event and elk= 'I) then 
if (rst = 0) then 

ibusy <= 0~ 
visual_lDLE_current <= IDLE; 

else 
delaycnt <= visual_delaycnt_next; 
ibusy <= vlsual_ibusy_next; 
visual_lDLE_current <= visual_lDLE_next; 

end if; 
end if; 

end process; 

•· Combinational process 
memctr!..GOT3_comb: 
process (ibusy, portl_request, portl_handle, portl_datain, portl_rw, 

port2_request, port2_handle, port2_datain, port2_rw, 
port3Jequest, 

port3_handle, port3_datain, port3_rw, visual_GOT3_current) 
begin 

case visual_GOT3_current is 
whenGOT3=> 
if ((ibusy = 0) and (portl_request =1 ')) then 

startaceess <= 'l '; 
set values for lhe external signals 

port_ack <= "I00"; 
•• set the controls to memory 
address <= port I _handle; 
datain <= portl_datain; 
read_ write <= port I JW: 
visual_GOT3_next <=GOT!; 

elsif ((ibusy =0) and (port2_request 'I)) then 
startaccess <= •1 •: 
•· set values for lhe external signals 
port_ack <= "010"; 

set the controls to memory 
address<= port2_handle; 
datain <= port2_datain; 
read_ write <= port2JW; 
visual_GOT3_next <= GOT2; 

elsif ((ibusy = 'O) and (port3_request = 'I)) then 
startaccess <= 'I•~ 
•· set values for the external signals 
port_ack <= "001 "; 
•· set lhe controls to memory 
address<= port3_handle; 
datain <= port3_datain; 
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read_write <= porr3_rw; 
visual_GOT3_next <= GOT3; 

else 
startaccess <= 'O'; 
visual_GOT3_next <= GOT3; 

end if; 

whenGOTl => 
if ((ibusy 'O') and (pon2_request = 'I')) then 

startaccess <= 'I'; 
-- set values for the external signals 
poo_ack <"' "010"; 
-- set lhe controls to memory 
address <= port2_handle; 
datain <= pon2_datain; 
read_ wrire <= porr2_rw; 
visual_ GOT3_next <= GOT2; 

elsif ((ibusy = 'O') and (porr3_request 'l ')) then 
startaccess <= 'I'; 
-· set values for rhe external signals 
pon_ack <= "001 "; 
-- set the controls to memory 
address <= port3 _handle; 
datain <= pon3_datain; 
read_write<= port3_rw; 
visual_GOT3_next <= GOT3; 

elsif ((ibusy = 'O') and (porll_request = 'I')) then 
stanaccess <= 'I'; 
•· set values for the external signals 
pon_ack <= "100"; 
-- set the controls to memory 
address <= port I_handle; 
datain <= pon I_datain; 
read_write <= portl_rw; 
visual_GOT3_next <= GOTI; 

else 
startaccess <= 'O;; 
visual_GOT3_ne.i <= GOTI; 

end if; 

whenGOT2=> 
if ((ibusy = 'O') and (pon3_request = 1 ')) then 

startaccess <= 'O', '1 ~ after 1 ns; 
-- set values for the external signals 
port_ack <= "001 "; 
-- set the controls to memory 
address<= pon3_handle; 
datain <= por13_datain; 
read_write <= port3_rw; 
visual_GOT3_next <= GOT3; 

elsif ((ibusy = 'O') and (ponl_request ='I')) then 
startaccess <= 'O', 'I' after I ns; 
•· set values for the external signals 
pon_ack <= "I00"; 
-- set the controls to memory 
address<= ponl_handle; 
datain <= pcrtl_datain; 
read_ write <= port I_rw; 
visual_GOT3_next <= GOT!; 

elsif ((ibusy = 'O') and (port2_request = 'I')) then 
startaccess <= 'O', 'I' after I ns; 
-· set values for the external signals 
port_ack <= "010"; 
-- set the controls to memory 
address <= port2_handle; 
datain <= port2_datain; 
read_ write <= pon2_rw; 
visual_GOT3_next <= GOT2; 

else 
startaccess <= 'O'; 
visual_GOT3_next <= GOT2; 

end if; 

when others=> 

visual_GOT3_next <= GOT3; 
end case: 

end process; 

memc1rl_GOT3: 
process (elk) 
begin 

if (elk event and elk= 'l ') then 
if (rst = 'O? then 

visual_GOTJ_current <= GOT3; 
e!se 

visual_GOT3_current <= visual_GOT3_next; 
end if: 

end if; 
end process; 

process (enable, read_write, address, datain, tp_writetable) 
variable mem: bdd_ vec_t(0 to memsize - I ); 

begin -- process 
if enable= 'I 'then 

ifread_write = 'O'then 
Hwrite 
mem(address) := datain; 

else 
-- read 
dataout <= mem(address); 

end ,f; 
end if: 

-· this is for test purposes only 
•· set the value of tp_writetable during 

debug to dump the table to a file 
if(tp_writetable) then 
writenodetable(mem); 
end if; 

end process; 
end memctrl; 

When a request is recieved, the ack signal will go 
- high indicating that the data is ready. 
-- This is a single cycle memory with no delay. 
-- on a read, Ack indicates the data is valid at the output, 
- or the write has been compleled. 
- All inputs must be held for a complete clock cycle. 

library ieee; 
use ieee.STD_LOGIC_l 164.all; 
library bddlib; 
use bddlib.kernel.all; 
use ieee.NUMERIC_STD.all; 
library SYNOPSYS; 
use SYNOPSYS.ATTRIBUTES.ALL; 

entity uniquemem is 
generic ( 

readdclay : NATURAL ::O; 
writedelay : NATURAL :=0; 
uniquesize: NATURAL := bdduniquetablesize 
); 

port ( 
ponl_ack : out std_logic; 
portl_busy : out std_logic; 
portl_dataready: out std_logic; 
ponl_da1aout : out bddhandle; 
ponl_handle : in bddhandle; 
portl_datain : in bddhandle; 
ponl_rw : in s1d_logic; 
ponl_request : in std_logic; 
elk : in std_logic; 
rst : in std_logic 
); 
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end uniquemem; 

architecture uniquemem of uniquemem is 

constant maxdelay : NATURAL := readdelay; - this should 
be maxdelay which is max(readdelay,writedelay) 

signal delaycnt : NATURAL range Oto maxdelay; 
signal address : hashkey: 
signal datain : bddhandle; 
signal dataout : bddhandle: 
signal read_write: std_logic; 
signal enable : std_logic; 

type visuaUDLE_states is (IDLE); 

signal visual_lDLE_current, visual_lDLE_next : visual_lDLE_states; 
attribute STATE_ VECTOR of uniquemem: 

architecture is "visual_lDLE_current"; 

begin 

•. Combinational process 
uniquemem_lDLE_comb: 
process (rst, portl_request, portl_handle, port l_datain, portl_rw, 

read_write~ 
visual_lDLE_current) 

begin 
portl_ack <= O'; 
port l_busy <= !J'; 
portl_dataready <= !J'; 
address <= hashkey_zero; 
datain <= bddhandle_zero: 
read_write <= 'l '; 
enable <= !J'; 

if (rst = O') then 
•· reset all drivers to memory 
read_write <= 1 '; 
enable <= !J'; 
address <= 0; 
datain<=0; 
visual_lDLE_next <= IDLE; 

else 

case visual_lDLE_current is 
when IDLE=> 
if ((port)Jequest: 'I') and (portl_rw 'I')) then 

portl_busy <= 'I'; 
portl_ack <='I'; 
•· set up the memory inputs 
enable <= 'I' after Ins; 
address <= port I _handle; 
datain <= portl_datain; 
read_write <"' 'I'; 
portl_dataready <= read_write; 
visual_IDLE_next <= IDLE; 

elsif ((portl_request ='I') and (ponl_rw = !J')) then 
portI _busy <= 1 '; 
portl_ack <='I~ 
•· set up the memory inputs 
enable<= 'l •after Ins; 
address <= port I_Jiandle; 
datain <= portl_datain; 
read_write <: O'; 
portl_dataready <= read_write; 
visual_IDLE_next <= IDLE; 

else 
•· reset all drivers to memory 
read_write <= 'l '; 

enable <= !J'; 
address <= 0; 
da1ain <= O; 
visual_lDLE_next <= IDLE; 

end if; 

when others => 

visual_lDLE_next <= IDLE; 
end case~ 

end If; 
end process; 

uniquemem_IDLE: 
process (elk) 
begin 

if (clk'event and elk= 'I') then 
if (rst O) then 

visual_lDLE_current <= IDLE; 
else 

visual_lDLE_currem <= visual_lDLE_next; 
end if; 

end if; 
end process; 

•· this will eventually (before synthesis 
have to be moved outside of this unit 

-~ so that it can represent an external memory 
uniquemem: 
process (enable, read_ write, address, datain) 

variable mem . bddhandle .• vec_t(0 to unique size • l ); 
begin 

-dataout <.o bddhandle..zero; 
if enable= 'I' then 

if read_write" !J' then 
-.. write 
mem(address) :: datain; 

else 
--read 

dataout <= mem(address); 
end if; 

end if; 
end process; 

portl_dataout <= dataout; 
end uniquemem; 

•· this is the make_node function, 
•· it controls all creation and access 
- to thenode table, 
- garbage collection will also need 
- to manipulate the node table so 
- addtional controls will need to be 
- added later, 

because Visual on Linux is crashing when trying to 
•· have concurrent machines in a sub level and 
•· controls set to async outputs, this machine has some work arounds 
- using additional conditions in instate assignments 

library ieee; 
use ieee.STD_LOGIC_l 164.all; 
library work; 
use work,kernetall; 
library SYNOPSYS; 
use SYNOPSYS,ATTRIBUTES,ALL; 

entity mknodefsm is 
generic ( 

uniquesize : NATURAL := bdduniquetablesize 
); 

port ( 
elk : in std_logic; 
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rst : in std_logic; 
start : in std_logic; 
level : in bddvar; 
low : in bddhandle; 
freehandle : in bddhandle; 
freehand le_ valid : in std_logic; 
high : in bddhandle; 
resulthandle : out bddhandle; 
resultnode : out bdd_t; 
tookfreehandle : out std_logic; 
result_ valid : out std_logic; 
unique_handle : out bddhandle; 
unique_datain : out bddhandle; 
urnque_rw : out std_logic; 
unique_request : out std_logic; 
unique_dataready : in std_logic; 
unique_ack : in std_logic; 
unique_busy : in std_logic; 
unique_dataout : in bddhandle; 
nodemem_dataout : in bdd_t; 
nodemem_busy : in std_logic; 
nodemem_dataready : in std_logic; 
nodemem_ack : in std_logic; 
nodemem_handle : out bddhandle; 
nodemem_datain : out bdd_t: 
nodemem_rw : out std_logic; 
nodemem_request : out std_logic 
): 

end mknodefsm; 

architecture mknodefsm of mknodefsm is 

signal hashval : hashkey; 
signal firsthandle : bddhandle; 
signal nodemem_handle_i : bddhandle; 
signal build_busy : std_logic; 
signal start_build : std_logic; 

type visual_ wka_states is (wk.a); 
constant visual_wka_current: visual_wka_states := wka; 

type visual_wka_wka_lDLE_states is (IDLE, FINDNODE, FINDUN
IQUE, WAITFORBUILD, 

hash); 

signal visual_wka_wka_lDLE_current: 
visual_wka_wka_lDLE_states; 

type visual_wka_wka_writenodeidle_states is (writenodeidle, writeno
demem, 

writenodewait); 

signal visual_wka_wka_writenodeidle_currenl: 
visual_ wka_ wka_ writenodeidle_states; 

type visual_wka_wka_writeuniqucidle_states is (writeuniqueidle, 
writeuniquemem 

, writeuniquewait); 

signal visual_wka_wka_writeuniqueidle_current: 
visual_wk.a_wka_ writeuniqueidle_states; 

•· The three machines on this page are concurrent 
- The writenodedle and writeuniqueidle machines 
- will be triggered when start_build is set to a l. 
•· The default value should be 0. 
•· They will run concurrently until completion. 
- when both are complete build_busy should be 0; 
•· when either is active build_busy should be active l 
begin 

•· Synchronous process 
mknodefsm_ wka: 
process (elk) 

variable uniqueaccess : NATURAL :=0: 
variable uniquehit : NATURAL :=0; 
variable uniquemiss : NATURAL O; 
variable uniquechain : NATURAL :=0; 

begin 

if (clk'event and elk= 1) then 
tookfreehandle <= 'O'; 
result_ valid <= 'O'; 
case visual_wka_wka_IDLE_current is 

when IDLE=> 
·• reset all of the outputs 

if (rs!= 'O) then 
resulthandle <= bddhandle_zero; 
result_ valid <= 'O'; 
tookfreehandle <= 'O'; 
•· •· turn off the memory interfaces 

•· unique mem outputs 
unique_handle <= bddhandle_zero: 
unique_datain <= bddhandle_zero: 
unique_rw <= 'l '; •· read 
uniqueJequesl <= 'O'; 
- nodemem outputs 
nodemem_handle_i <= bddhandle_zero: 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 'I '; •· read 
nodememJequest <= 'O'; 
visual_wka_wka_IDLE_currem IDLE; 

elsif (start = 'I) then 
result_ valid <= 'O'; 
if (low high) then 

resulthandle <= low; 
result_ valid <= T; 

•· rum off the memory interfaces 

- unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
unique_rw <= 1 ·; •· read 
unique_request <= 'O'; 
- nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 1 '; read 
nodemem_request <= 'O'; 
visual_ wka_ wka_lDLE_current <= IDLE; 

else 
hashval <= bdd_hash((level,low.high,0.o),uniquesize); 
visual_wka_wka_lDLE_current <= hash; 

end if; 
else 

visual_wka_wka_lDLE_current <= IDLE; 
end if; 

when FINDNODE => 
•· reset all of the outputs 

if (rst = O') then 
resulthandle <= bddhandle_zero; 
result_ valid <= 0'; 
tookfreehandle <= 'O'; 
•· •· turn off the memory interfaces 

•· unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
uniqueJW <= 'I'; •· read 
unique_request <= 'O'; 
- nodemem outputs 
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nodemem_handle_i <= bddhandle_zero; 
nodemem...datain <= bdd_t_zero; 
nodemem_rw <= 'I ': -· read 
nodemem_request <= 'O'; 
visual_wka_wka_IDLE_current <= IDLE; 

elsif (nodemem_ack = 'I' and nodemem_dataready = 'I') then 
nodemem_request <= 'O'; 
if ((nodemem_dataout.lo low) and (nodemem_dataout.hi 

high) and ( 
nodemem_dataout.level =level)) then 

resulthandle <= nodemem_handle_i; 
result_ valid <= 'l '; 
uniquehit uniquehit + I; 

turn off the memory interfaces 

-- unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero: 
unique_rw <= '] '; -- read 
uniqueJequest <= 'O'; 
•· nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 'I'; -- read 
nodememJequest <= "O'; 
visual_wka_wka_IDLE_current <= IDLE; 

elsif (nodemem_dataou1.nextbdd bddhandle_zero) then 
if (build_busy = 'I') then 

visual_wka_wka_lDLE_current <= WAITFORBUILD; 
else 

if (freehandle_ valid = 'I') then 
-•stan_build <= 'I'; 
resulthandle <"- freehandle; 
result_valid <"-'I'; 

turn off the memory interfaces 

-· unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
unique_rw <:; '1 '; read 
unique_request <= 'O'; 
•· nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 1 1; ~- read 
nodememJequest <= 'O'; 
visual_wka_wka_lDLE_current <= IDLE; 

else 
visual_wka_wka_IDLE_current <= WAITFORBUILD; 

end if; 
end if; 

else 
nodemem_handle_i <= nodernem_dataout.nextbdd; 
unlquechrun := unlquechain + I ; 
- set up a read request to node memory 
nodememJequest <= 'I'; 
nodememJW <= 'l'; -- read 
nodemem_datain <= bdd_t_zero; 
visual_wka_wka_lDLE_current <= FINDNODE: 

end if; 
else 

visual_wka_wka_lDLE_current <= FINDNODE; 
end if; 

wait until the unique memory access is complete 

when FINDUNIQUE => 
-- reset all of the outputs 

if (rst = l)') then 
resulthandle <= bddhandle_zero; 
result_ valid <= '0~ 
tookfreehandle <= 'O'; 
- -- turn off the memory interfaces 

unique mem outputs 
unique_handle <= bddhandle_zero: 
unique_datain <= bddhandle_zero; 
unique_rw <= T; •· read 
unique_request <= 'O'; 
-· nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 'I'; -- read 
ncx:iemem_request <::: '{t~ 

visual_wka_wka_lDLE_current <= IDLE; 
elsif (unique_ack = 'I' and unique_dataready ='1? then 

unique_request <= 'O'; 
uniqueaccess := uniqueaccess + l ~ 
if (unique_dataout =bddhandle_zero) then 

if (build_busy = 'I') then 
visual_wka_wkaJDLE_current <= WAITFORBUJLD; 

else 
if (freehandle_ valid = 'I') then 

--stan_build <= 'I'; 
resulthandle <= freehandle; 
result_ valid <= 'I'; 
•· -- turn off the memory interfaces 

•· unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
unique_rw <= 'I'; •· read 
unique_request <= 'O'; 
- nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 'J '; -- read 
nodemem_request <= 'O'; 
visual_wka_wka_IDLE_current <= IDLE; 

else 
visual_ wka_wka_lDLE_current <= WAITFORBUILD; 

end if; 
end if; 

-- stan setting up a node memory read 
must read from the handle (address) just 

-- found from the unique table 
-- first handle is needed when building a new node to 
-- put at beginnlng of chain 

else 
nodemem_handle_i <= unlque_dataout; 
firsthandle <= unique_dataout; 
•· set up a read request to node memory 
nodemem,_request <= 'I '; 
nodemem_rw <= 1 '; -- read 
nodemem_datain <= bdd_t_zero; 
visual_wka_wka_lDLE_current <= FINDNODE; 

end if; 
else 

visual_wka_wka.JDLE_current <= FINDUNIQUE; 
end if; 

when WAITFORBUILD => 
•· resei all of the outputs 

if (rst = 'O') then 
resulthandle <= bddhandle_zero; 
result_ valid <= 'O'; 
tookfreehandle <= O'; 
- -- tum off the memory interlaces 

- unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
unlque_rw <= 1 '; •· read 
unlque_request <= 0~ 
•- nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 

https://nodemem_dataout.hi
https://nodemem_dataout.lo
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nodemem_rw <= 'I '; •· read 
nodemem_request <= 'O'; 
visual_wka_wka_IDLE_current <= IDLE; 

elsif (build_busy U) !hen 
if (freehandle_ valid = '11 then 

••Start_build <= 'l '; 
resulthandle <= freehandle; 
result_valid <= 'l '; 
•• ·· turn off the memory interfaces 

~# unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
unique_rw <= 'I'; -· read 
unique_request <= U'; 
·• nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 'l '; •· read 
nodemem_request <= U'; 
visual_wka_wka_lDLE_current <= IDLE; 

else 
visual_wka_wka_lDLE_currem <= WAITFORBUILD; 

end if; 
else 

visual_wka_wka_lDLE_current <= WAITFORBUILD; 
end if; 

when hash=> 
•· reset all of the outputs 

if (rst 01 then 
resuhhandle <= bddhandle_zero; 
result_valid <= 'O'; 
tookfreehandle <= U'; 
·• •· tum off the memory interfaces 

•· unique mem outputs 
unique_handle <= bddhandle_zero; 
unique_datain <= bddhandle_zero; 
unique_rw <= 'I';·· read 
unique_request <= 'O'; 

nodemem outputs 
nodemem_handle_i <= bddhandle_zero; 
nodemem_datain <= bdd_t_zero; 
nodemem_rw <= 1 '; read 
nodemem_request <= 'O'; 
visual_wka_wka_lDLE_current <= IDLE; 

else 
start a read from the unique table memory 

unique_request <= 'I'; 
unique_rw <= 'I'; •· read 
unique_datain <= bddhandle_zero; 
unique_handle <= hashval; 
firsthandle <= bddhandle_zero; 
visual_wka_wka_lDLE_current <= FINDUNIQUE; 

end if; 

when others => 

visual_wka_wka_IDLE_current <= IDLE; 
end case; 
case visual_wka_wka_writenodeidle_curreot is 
when writenodeidle => 
if (start_build = 'I') then 

if (freehandle_ valid = 'I) !hen 
-nodernemory write request 
nodemem_hand!e_i <= freehandle; 
nodernem_request <= 1 '; 
nodemem_rw <= U'; •· write 
nodemem_datain <= (level,low,high,firsthandle,gc_zero); 

tookfreehandle <= 1 '; 
visual_ wka_wka_writenodeidle_current <= writenodemem; 

else 

visual_wka_wka_writenodeidle_current <= writenodewait; 
end if; 

else 
visual_ wka_ wka_writenodeidle_current <= writenodeidle; 

end if; 

•· write the node to node memory 

when writenodemem => 
if (nodemem_ack 1 ) then 

resulthandle <= freehandle; 
turn of write request 

nodemem_requesl <= U'; 
nodemem_rw <:.:e '1 '; 

1ookfreehandle is turned off each 
- clock by default 
visual_wka_wka_writenodeidle_current <= writenodeidle; 

else 
visual_wka_wka_writenodeidle_current <= writenodemem; 

end if; 

when writenodewail => 
if (freehandle_ valid = 'l) then 

--nodememory write request 
nodemem_handle_, <= freehandle; 
nodemem_request <= 'l '; 
nodemem_rw <= 'O'; •· write 
nodemem_datain <= (level,low,high,firsthandle,gc_zero); 

tookfreehandle <= 'I'; 
visual_wka_wka_writenodeidle_current <= writenodemem; 

else 
visual_ wka_ wka_ writenodeidle_current <= writenodewait; 

end if; 

when others => 

visual_ wka_wka_ writenodeidle_current <= writenodeidle; 
end case; 
case visual_wka_wka_ writeuniqueidle_current is 

when writeuniqueidle => 
if (stan_build = 'I') then 
if (freehandle_ valid = 'l '} !hen 

--unique memory write request 
uniqueJequesl <= 'I'; 
unique_rw <= 'O'; •· write 
unique_datain <= freehandle; 
unique_handle <= hashval; 
uniquemiss := uniquemiss + I; 
visual_ wka_wka_writeuniqueidle_current <= writeuniquemem; 

else 
visual_wka_wka_writeuniquei dle_current <= writeuniquewait; 

end if; 
else 

visual_ wka_wka_ writeuniqueidle_current <= writeuniqueidle; 
end if; 

•· write the handle to unique memory 

when writeuniquemem => 
if (unique_ack = '1 ') then 

•· tum off write request 
uoique_request <= 'O'; 
unique_rw <= 'l '; 
visual_wka_wka_writeuniqueidle_current <= writeunlqueidle; 

else 
visual_wka_wka_writeuniqueidle_current <= writeuniquemem; 

end if; 

when writeuniquewalt => 
if (freehandle_valid = 'I) !hen 
-unique memory write request 
unique_request <= 'I'; 
unique_rw <= 'O'; •· write 
unique_datain <= freehandle; 
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unique_handle <= hashval; 
uniquemiss := uniquemiss + l; 
visual_wka_wka_writeuniqueidle_current <= writeuniquemem; 

else 
visual_wka_wka_writeuniqueidle_current <= writeuniquewait; 

end if; 

when others => 

visual_wka_wka_writeuniqueidle_current <= writeuniqueidle; 
end case; 

end if; 
end process; 

Combinational process 
mknodefsm_wka_comb: 
process (nodemem_ack, nodemcm_dataready, nodemem_dataout, low, 

high, level, 
build_busy, freehandle_ valid. unique_ack, unique_dataready, 
unique_dataout, visual_ wka_wka_IDLE_current, 
visual_wka_wka_writenodeidle_currenl, 
visual_wka_ wka_ writeuniqueidle_current) 

begin -- Combinational process 
build_busy <= O'; 
stan_build <= U'; 

case visual_wka_wka_lDLE_current is 
when ANDNODE => 

if((nodemem_ack ='I) AND 
(nodemcm_dataready 'I) AND 
NOT((nodemem_dataout.lo = low) AND 

(nodemem_daraout.hi high) AND 
(nodemem_dataout.level level)) 

AND 
(nodemcm_dataoutnextbdd = bddhandle_zero) 
AND 
(build_busy = U') AND 
(freehandle_ valid 'I)) 
then 
start_build <= 'I'; 
end if; 

-- wait until the unique memory access is complete 

when ANDUNIQUE => 
if((unique_ack = 'I') AND 
(unique_dataready 1 ') AND 
(unique_dataout =bddhandle_zero) AND 
(build_busy 'O') AND 
(freehandle_valid= 'I') )then 
start_build <='I~ 
end if; 

when WAITFORBUJLD => 
if ((build_busy = 'O) AND 
(freehandle_ valid = 1 )) then 
start_build <= 'I'; 
end if; 

when others => 
null; 

end case; 
case visual_wka_wka_writenodeidle_current is 

-- write the node to node memory 

when writenodemem => 
build_busy <= 1 '; 

when writenodewait => 
build_busy <= 1 ~ 

when others => 
null; 

end case; 
case visual_wka_wka_writeuniqueidle_current is 

-- write the handle to unique memory 

when writeuniquemem => 
build_busy <= '1 '; 

when writeuniquewait => 
build_busy <='I'; 

when others=> 
null; 

end case; 
end process; 

nodemem_handle <= nodemem.),andle_j; 
end mknodefsm: 

this diagram contains the main functional units 
for the BDD processor. 
It connects the functional units with the memory 
models. 
Generics can be passed in from the above level to set 
the memory sizes 

library ieee; 
use ieee.STD_LOGIC_l 164.all; 
library work; 
use work.kernel.all; 
library SYNOPSYS; 
use SYNOPSYS.ATfRIBUTES.ALL; 

entity mknodeblk is 
generic ( 

nodememsize : NATURAL bddmemsize; 
camsize : NATURAL := bddcamsize; 
uniquesize : NATURAL := bdduniquetablesize 
); 

port ( 
applyop : in booleanop; 
bddinl : in bddhandle; 
bddin2 : in bddhandle: 
elk : in std_logic; 
enableand : in std_Jogic; 
enablenot : in std_logic; 
freehandle_valid_o : out std_logic; 
init : in srd_logic; 
LOWONNODES : out std_logic; 
tp_mknode_result : out bddhandle; 
tp_mknode_resultvalid : out std_logic; 
mkselect : in std_logic; 
start I : in std_logic; 
level l : in bddvar; 
low 1 : in bddhandle; 
high I : in bddhandle; 
OUTOFNODES : out std_logic; 
resulthandle : out bddhandle; 
resultvalid : out std_logic; 
rst : io std_logic; 
startapply : in std_logic; 
startnot : io std_logic 
); 

end mkoodeblk; 

library bddlib; 
architeeture mkoodeblk of mkoodeblk is 

signal call_cmd : stackcmd; 
signal call_datainO :bdd_t; 
signal call_datain l :bdd_t; 
signal call_datain2 :bdd_t; 
signal call_dataoutO :bdd_t; 

https://nodemem_daraout.hi
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signal call_dataoutl : bdd_t; stan : in std_logic; 
signal call_dataout2 : bdd_t; level : in bddvar; 
signal call_empty : std_logic; low : in bddhandle; 
signal call_full : std_logic; freehandle : in bddhandle; 
signal cam_ack : std_logic; freehandle_ valid : in std_logic; 
signal cam_busy : std_logic; high : in bddhandle; 
signal cam_busy_cnt : NATURAL resulthandle : out bddhandle; 
signal cam_fieldl : camfield; resultnode : out bdd_t; 
signal cam_field2 : camfield: tookfreehandle : out std_logic; 
signal cam_field3 : camfield; result_ valid : out std_logic; 
signal cam_found : std_logic; unique_handle : out bddhandle; 
signal camJequest : std_logic; unique_dalain : out bddhandle; 
signal cam_result ; camfield; unique_rw : out std_logic; 
signal cam_resultin ; camfield; unique_request : out std_logic; 
signal cam_resultvalid : std_logic; unique_dataready : in std_logic; 
signal cam_rw : std_logic; unique_ack in std_logic; 
signal freehandle : bddhandle; unique_busy : in std_logic; 
signal freehandle_valid : std_logic; unique_dataout : in bddhandle; 
signal high : bddhandle; nodemem_dataout : in bdd_t; 
signal highO : bddhandle; nodemem_busy : in std_logic; 
signal level : bddvar; nodemem_dataready: in std_logic; 
signal levelO : bddvar; nodemem_ack in std_logic; 
signal low : bddhandle; nodemem_handle : out bddhandle; 
signal low0 : bddhandle; nodemem_datain : out bdd_t; 
signal mknode_result : bddhandle; nodemem_rw : out std_logic; 
signal mknode_resultvalid ; std_logic; nodemem_request : out std_logic 
signal node_busy : std_logic; ); 
signal node_busy _cnt : NATURAL :=0; end component; 
signal node_dataout : bdd_t; component uniquernem 
signal node_datavalid : std_logic; generic ( 
signal node_portl_ack · std_logic; readdelay : NATURAL :=0; 
signal node_port2_ack : std_logic; writedelay : NATURAL :=0: 
signal node_port3_ack : std_logic; uniquesiz.e : NATURAL := bdduniquetablesize 
signal portl_datain : bdd_t; ); 
signal portl_handle : bddhandle; port ( 
signal portl_request : std_logic; port I_ack : out std_logic; 
signal portlJW : std_logic; portl_busy : out std_logic; 
signal port2_datain bdd_t; portl_dataready: out std_logic; 
signal port2_handle : bddhandle; portl_dataout : out bddhandle; 
signal port2_request : std_logic; portl_handle : in bddhandle; 
signal pon2_rw : std_logic; portl_datain : in bddhandle; 
signal port3_datain : bdd_t; portl_rw : in std_logic; 
signal port3_handle : bddhandle; port I_request : in std_logic; 
signal port3_request : std_logic; elk : in std_logic; 
signal port3_rw : std_logic; rst : in std_logic 
signal post_init_clk_cnt : NATURAL ); 
signal result_cmd : stackcmd; end component; 
signal resuh_datain0 : bddhandle; component memctrl 
signal resu!t_datain I : bddhandle; generic ( 
signal result_datain2 : bddhandle; readdelay : NATURAL :=0; 
signal result_dataout0 : bddhandle; writedelay : NATURAL :=0; 
signal resuh_dataout I : bddhandle; memsize : NATURAL := bddmemsize 
signal result_dataout2 : bddhandle; ); 
signal result_empty : std_logic; pon( 
signal result_fu!I : std_logic; port3 _request : in std_logic; 
signal stan : std_logic; port3_ack : out std_logic; 
signal startO : std_logic; port3 _handle : in bddhandle; 
signal stan_cnt : NATURAL :=0; pon3_datain : in bdd_t; 
signal tookfreehandlel : std_logic; port3_rw : in std_logic; 
signal unique_ack : std_logic; port2_reques! : in std_logic; 
signal unique_busy : std_logic; port2_ack : ou! std_logic; 
signal unique_busy _cnt : NATURAL port2_handle : in bddhandle; 
signal unique_datain : bddhand!e; port2_datain : in bdd_!; 
signal unique_dataout : bddhandle; port2_rw : in std_logic; 
signal unique_dataready : std_logic; portl_reques!: in std_logic; 
signal unique_handle : bddhandle; portl_ack : out std_logic; 
signal uniqueJequest : std_logic; portl_handle : in bddhandle; 
signal unique_rw : std_logic; portl_darain : in bdd_l; 
componenl mknodefsm ponl_rw : in std_logic; 

generic ( da1avalid : out std_logic; 
uniquesize : NATURAL bdduniquetablesize dataout : out bdd...t; 
); busy : out std_logic; 

port ( elk : in std_logic; 
elk : in std_logic; rst : in std_!ogic 
rst : in std_logic; ); 
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end component; 
component APPLYBLK 

port ( 
applyerror : ou1 std_logic; 
star10 : out std_logic; 
levelO : out bddvar; 
low0 : ou1 bddhandle; 
high0 : out bddhandle; 
applyop : in booleanop; 
l>ddin I : in bddhandle; 
bddin2 : in bddhandle; 
call_da1aou10 : in bdd_1; 
call_dataoull : in bdd_t; 
call_dataou12 : in bdd_l: 
call_full : in s1d_logic; 
call_emply : in std_logic; 
call_da1ainO : out bdd_l; 
call_datainl : out bdd_t; 
call_datain2 : out bdd_t; 
call_cmd : out stackcmd; 
cam_requesl : out std_logic; 
cam_rw : out std_logic; 
cam_field l : out camfield; 
cam_field2 : out camfield; 
cam_field3 : out camfield; 
cam_resultin : out camfield; 
cam_ack : in std_logic; 
cam_busy : in std_logic; 
cam_result : in camlield; 
cam_resultvalid : in s1d_logic; 
camJound : in s1d_logic; 
elk : in sld_logic: 
enableand : in std_logic; 
enablenot . in std_logic; 
mlmode_result . in bddhandle; 
mknode_resultvalid · in sld_logic; 
node_port3_ack : in std_logic; 
node_port2_ack : in std_logic; 
node_portl_ack : in std_logic; 
node_datavalid : in std_logic; 
node_dataout : in bdd_t; 
node_busy : in std_logic; 
port3_datain : out bdd_l; 
port3_handle : out bddhandle; 
port3_request : out std_logic; 
port3_rw : out std_logic; 
resulthandle : out bddhandle; 
result_data.in0 : out bddhandle; 
result_datainl : out bddhandle; 
result_datain2 : out bddhandle; 
result_cmd : out stackcmd; 
result_dataoutO : in bddhandle; 
result_dataoutl ; in bddhandle; 
result_dataout2 : in bddhandle; 
result_full : in std_logic; 
result_empty : in std_logic; 
resultvalid : out std_logic; 
rst : in std_logic; 
startapply : in sld_logic; 
startnot : in std_logic 
); 

end component; 
component freenodecnll 

generic ( 
minhandle : bddhandle ;= bdd_mlnhandle; 
maxhandle : bddhandle := bdd_maxhandle 
); 

port ( 
elk : in std_logic; 
rst : in std_logic; 
mil : in std_logic; 
tookfreehandle I , in std_logic; 
freehandle : out bddhandle; 
freehandle_ valid : out std_logic; 
LOWONNODES : out std_logic; 

OUTOFNODES : out std_logic; 
nodemem_busy : in std_logic; 
nodemem_ack : in std_logic; 
nodemem_dataready in std_logic; 
nodemem_dataout : in bdd_t; 
nodemem_request : out std_logic; 
nodemem_handle : out bddhandle; 
nodemem_datain : out bdd_t; 
nodemem_rw : out std_logic 
); 

end component: 
component handlestack 

generic ( 
size : NATURAL := 6 
); 

port ( 
elk in std_logic; 
rst : in std_logic; 
cmd · in stackcmd; 
datainO : in bddhandle; 
datain I : in lxldhandle; 
datain2 : in bddhandle; 
head0 : out bddhandle; 
head I . out bddhandle; 
head2 : out bddhandle; 
full : out std_logic; 
empty : out std_logic 
); 

end component; 
component bddsrack 

generic ( 
size : NATURAL := 6 
); 

port ( 
elk : in std_logic; 
rst : in std_logic; 
cmd : in stackcmd; 
datain0 : in bdd_t; 
datainl : in bdd_t; 
datain2 : in bdd_t; 
head0 : out bdd_t; 
headl : out bdd_t; 
head2 : out bdd_t; 
full : out s1d_logic; 
empty : out s1d_logic 
); 

end component; 
component cam 

generic ( 
memsize : NATURAL := bddcamsize; 
readdelay : NATURAL; 
writedelay: NATURAL 
); 

port ( 
elk : in s1d_logic; 
rsl : in std_logic; 
cam_request : in std_logic; 
cam_rw : in std_logic; 
cam_ack : out std_logic; 
cam_busy : out std_logic; 
cam_result : ou1 camfield; 
carn_resul!valid : oul sld_logic; 
cam_found : out s1d_logic; 
cam_lield I ; in camfield; 
carn_field2 : in carnfield; 
cam_field3 : in camfield; 
cam_resultin : in camfield 
); 

end component; 

•· Start Configuration Specification 
for all : mknodefsm use entity bddlib,m.knodefsm(mlmodefsm); 
for all: uniquemem use entity bddlib,uniquemem(uniquemem); 
for all: memctrl use entity bddlib.memctrl(memctrl); 
for all: APPLYBLK use entity lxldlib.APPLYBLK(APPLYBLK); 
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for all : freenodecntl use entity bddlib.freenodecntl(freenodecntl); 
for all: handlestack use entity bddlib.handlestack(handlestack): 
for all: bddstack use entity bddlib.bddstack(bddstack); 
for all : cam use entity bddlib.cam(cam); 
•• End Configuration Specification 

begin 
freehandle_ valid_o <= freehandle_ valid; 
tp_mknodeJesult <= mknode_result; 
tp_mknode_resultvalid <= mknode_resultvalid; 

mknodectrl: mknodefsm 
generic map (uniquesize) 
port map ( 

clk=>clk, 
rst => rst, 
start=> start, 
level => level, 
low=>low, 
freehandle => freehandle, 
freehandle_ valid "'> freehand le_ valid, 
high=> high, 
resulthandle => m.knode_result, 
resultnode => open, 
tookfreehandle => 1ookfreehandlel. 
result_valid => mknode_resultvalid, 
unique_handle => unique_handle. 
unique_datain => unique_datain, 
unique_rw => unique_rw, 
unique_request => unique_request. 
unique_dataready => unique_da!aready, 
unique_ack => unique_ack, 
unique_busy => unique_busy, 
unique_dataout => unique_dataout~ 
nodemem_dataout => node_dataout, 
nodemem_busy => node_busy, 
nodemem_dataready => node_datavalid, 
nodemem_ack => node__portl _ack, 
nodemem_handle => port1_handle, 
nodemem_datain => port l _da1ain, 
nodemem.JW => portl.JW, 
nodemem_request => port1_request); 

inst_uniquemem; uniquemem 
generic map (0, 

0, 
uniquesize) 

port map( 
portl_ack => unique_ack, 
portl_busy => unique_busy, 
port I_dataready => unique_ dataready, 
portl_dataour => unique_dataout, 
ponl_handle => unique_handle, 
ponl_datain => unique_datai.n, 
port I _rw => unique_rw, 
port l_reques1 => uniqueJequest, 
elk=> elk, 
rst => rst); 

nodememory: memclrl 
generic map (0, 

o. 
nodememsize) 

port map( 
pon3_requesl => port3_requesl, 
port3_ack => node_pon3_ack, 
port3_handle => pon3_handle, 
port3_datain => pon3_datain, 
pon3_rw => port3_rw, 
port2_request => port2_request, 
port2_ack => node_port2_ack, 
pon2_handle => port2_handle, 
pon2_darai.n => port2_datai.n, 
port2_rw => port2.JW, 
portl_request => portl_request, 

portl_ack => node__portl_ack, 
portl_handle => portl_handle, 
portl_datain => portl_datain, 
portl_rw => portl_rw, 
daiavalid => node_datavalid, 
dalaoul => node_da1aout, 
busy=> node_busy, 
elk=> elk, 
rst -> rst); 

APPLY_BLK:APPLYBLK 
port map ( 

applyerror => open, 
srarrO => stan0, 
levelO => level0, 
low0 => low0, 
highO => high0, 
applyop => applyop, 
bddin I "> bddin l , 
bddin2 => bddin2, 
call_da1aou10 => call_daraout0, 
call_dataoutl => call_dataoutl, 
call_dataout2 => call_da1aou12, 
calUull => call_full, 
call_empty => call_empty, 
call_datain0 => call_datainO, 
call_datainl => call_da1ainl. 
call_datain2 => call_datain2, 
call_cmd => call_cmd, 
cam_request => cam_request, 
cam_rw => cam_rw, 
cam_field 1 => cam_field 1, 
cam_field2 => cam_field2, 
cam_field3 => cam_field3, 
cam_resultin => cam_resuhin. 
cam_ack => cam_ack, 
cam_busy => cam_busy, 
cam_result .:> cam_result, 
cam_resultvalid => cam_resultvalid, 
carn_found => cam_found, 
elk=> elk, 
enableand => enableand, 
enableno1 => enablenot, 
mknode_result => mk:node_result, 
mknode_resultvalid => m.knode_resulrvalid, 
node_port3_ack => node_port3_ack, 
node_port2_ack => node_port2_ack, 
node__portl_ack => node_portl_ack, 
node_datavalid => node_datavalid, 
node_dataoul => node_dataour, 
node_busy => node_busy, 
port3_datain => porr3_datain, 
port3_handle => port3.Jiandle, 
port3 _request => port3Jequest, 
pon3_rw => port3_rw, 
resulthandle => resulthandle, 
result_darain0 => result_datain0, 
result_datain I => result_datain 1, 
resul1_datain2 => result_dataio2, 
result_cmd => result_cmd, 
result_dataout0 => result_dataout0, 
result_dataout I => result_dataoutl, 
result_dalaout2 => result_dataout2, 
result_full => result_full, 
result_empty => result_empty, 
resultvalid => resultvalid, 
rsl => rst, 
startapply '-> startapply, 
SlartnOI => startnot); 

freenodecntrl; freenodecnll 
generic map (bdd_rninbandle, 

nodememsize • l) 
port map ( 

elk=> elk, 

https://port2.JW
https://portl.JW
https://nodemem.JW
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rst => rst, 
init=>in.it, 
tookfreehandlel => tookfreehandlel, 
freehandle => freehandle, 
freehandle_ valid => freehandle_ valid, 
LOWONNODES => LOWONNODES, 
OUTOFNODF..S => OUTOFNODES, 
nodemem_busy => node_busy, 
nodemem_ack => node...pon2_ack. 
nodemem_daraready => node_datavalid, 
nodemem_dataoul => node_dataout, 
nodemem_requesr => pon2_request, 
nodemem.)iandle => pon2_handle, 
nodemem_datain => pon2_datain, 
nodemem_rw => pon2_rw); 

resultstack: handlestack 
generic map (1024) 
pon map{ 

elk=> elk, 
rst => rst, 
cmd => result_cmd, 
datainO => result_datainO, 
darainl => result_datainl, 
datain2 => result_datain2, 
headO => resull_dataoutO, 
head I=> resull_dataoutl. 
head2 => result_dataout2. 
full => result_full. 
empty=> result_empty); 

callstack: bddstack 
generic map (1024) 
ponmap( 

elk=> elk, 
rst => rst, 
cmd => call_cmd, 
datainO => call_datainO, 
datain I => call_dataio I, 
datain2 => call_datain2, 
headO => call_dataoutO, 
head) => call_dataoutl, 
head2 => call_dataout2, 
full => call_full, 
empty => call_empty); 

inst_cam: cam 
generic map (camsize, 

o. 
0) 

pon map { 
elk=> elk, 
rst => rst, 
cam_request => cam_request, 
cam_rw => cam_rw~ 
cam_ack => cam_ack, 
cam_busy ""> cam_busy, 
cam_result => cam_result, 
cam_resultvalid => cam_n:sultvalid, 
cam_found "'> cam_found, 
cam_lield I => cam_lieldl. 
cam_field2 => cam.Jield2, 
cam_field3 => cam_lield3, 
cam_resultin => cam_resuhin); 

process(rnkselect,startO,leveJO,lowO.high(),start I ,level I ,low l ,highI) 
begin 
if(mkselect = ~) then 
Stan <= stan0; 
level <= levelO; 
low<=lowO; 
high <= highO; 
else 
stan <= stan l ; 
level <= levell; 

low<= lowl: 
high<= highI; 
end if; 
end process; 

••synopsys translate off 
process(clk,rst) 
variable flag : boolean := FALSE; 
begin 
if(rst 'O) then 
node_busy_cnt <= O; 
cam_busy_cnt <= O; 
unique_busy_cnt <= O; 
elsif(clk'event and elk 'I) then 

if(freehandle_valid ='I) then 
flag true: 
end if; 
if(flag) then 
post_init_clk_cnt <= posUnit_clk_cnl + I; 
if(node_busy ='I) then 
node_busy _cnt <= node_busy _cnt+ I; 
end if; 
if(cam_busy = 'I) then 
cam_busy_cnt <= cam_busy_cnt+ I; 
end if; 
if(unique_busy = 'I') then 
unique_busy_cnt <= unique_busy_cnt+I; 
end if: 

end if: 
•• since all of the three stan sigs are mutually 

exclusive jun inc when any I is true 
if{(srarrapply = 'I) OR (startnot = 'I') OR (stanl 
start_cnt <= start_cnt + I; 
end if; 

end if; 

end process: 
••synopsys translate on 

end mk.nodeblk; 

•· Date : Wed May IO 14:35:34 2000 

•· Author : Bob Hau 

-- Company : Ponland State University 

Description : 

library ieee; use ieee.STD_LOGIC_l 164.all; 

library bddlib; use bddlib.kemel.all; 

entity mknodeblktestbench is 
generic {N : natural := 4 ); 

pon (elk : out std_logic ; 
high : out bddhandle ; 
init : out std_logic ; 
level : out bddvar ; 
low : out bddhandle ; 
rst : out std_logic ; 
stannot : out std_logic ; 
mkselect : out std_logic ; 
bddinl : out bddhandle ; 
bddin2 : out bddhandle ; 
enablenol : out std_logic ; 
enableand : out std_logic ; 
stan_mknode : out std_logic ; 

'l'))then 

https://init=>in.it
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startapply : out std_logic ; 
applyop : out booleanop ; 
LOWONNODES : in std_logic ; 
OUTOFNODES : in std_logic ; 
mknode_result : in bddhandle ; 
mknode_resultvalid : in std_logic ; 
freehand le_ valid_o : in std_logic ; 
applyresult_ valid : in std_logic ; 
applyresult : in bddhandle; 
testdone : out boolean ); 

end; 

-- Date : Wed May 10 14:35:34 2000 

-- Author : Bob Hatt 

-- Company : Ponland State University 

-- Description : 

architecture Nqueen of mknodeblktestbench is 
consiant clkperiod: time := JO ns; 
constant clkperiodplusone : time := clkperiod + Ins; 
signal clki,rsti : std_logic; 
signal queensig: bddhandle; 

begin 

-- clock with 50% duty JO ns period 
process 
begin 
clki<=O'; 
wait for 5 ns; 
while(TRUE) loop 
clki <= NOT clk.i; 
wait for 5 ns; 
end loop; 

end process; 
elk<= clki; 

--make reset active from 0,40 
rsti <= 'O', 'I' after clkperiod *4; 
rst<=rsti; 

-- make itrit active from 60-80 
init <= 'O', 1 'after clkperiod • 6, Q' after clkperiod • 8; 

- must wait for memsize*(memdelay+I) clocks until init of node mem 
is done 
-- for memsize = 256 memdelay =0, 256 clocks 

process 
procedure mknodedirect( M,lo.hi : in bddhandle) is 
begin 
- wait unti I clki = 'I '; 
mkselect <= ·1 '; 

Start_mknode <= 1 '; 
level<= !vi; 
high<= hi; 
low<=lo; 

wait for clkperiodplusone + l ns; 
start_mknode <= D'; 
wait until mlmode_resultvalid 1 '; 
end mknodedirect; 

procedure ithvar(result: out bddhandle;i : in bddvar) is 
begin 
mknodedirect(i,bddhandle_zero,bddhandle_one); 
result := mknode_result; 
end ithvar; 
procedure nithvar(result: out bddhandle:i: in bddvar) is 
begin 
mknodedirect(i.bddhandle_one,bddhandle_zero); 
result := mknode_result; 
end nithvar; 

function hardbdd_ithvar( i: in bddvar) return bddhandle is 
-- begin 
-- mknodedirect(i,bddhandle_zero,bddhandle_one); 
-- return(mknode_result); 
-- end hardbdd_ithvar; 

function hardbdd_nithvar( i : in bddvar) rerurn bddhandle is 
-- begin 
-- mknodedirect(i.bddhandle_one,bddhandle_zero); 
-- return(mknode_result); 
-- end hardbdd_nithvar; 

procedure app!y_not(result: out bddhandle;handle: in bddhandle) is 
begin 
mkselect <= Q'; 
enablenot <= 'I~ 

stannot <= '1 '; 
applyop <= booleanop_not; 
bddinl <= handle; 
bddin2 <= bddhandle_zero; 
wait for clkperiodplusone; 
startnot <= D~ 
wait until applyresult_valid = 'l '; 
result := applyresult; 
enablenot <= '0 1; 

end apply _not; 

- function hardbdd_apply_not(handle: in bddhandle) rerum bddhandle 
is 
- begin 
-- applynotdirect(bandle); 
- retwn(applyresult); 
- end hardbdd_apply_not; 

procedure apply(result: out bddhandle;handle1,handle2: in bddhandle; 
op: in booleanop) is 
begin 
rnkselect <= D'; 
enableand <"' 1 '; 
startapply <= 'I'; 
bddinl <= handle I; 
bddin2 <= handle2; 
applyop <= op: 
wait for clkperiodplusone; 

· startapply <= D'; 
wait until applyresult_valid = 1 '; 
result := applyresult; 
enableand <= D'; 
end apply; 

- function hardbdd_apply(handle I,handle2: in bddhandle; op :in bool
eanop) retwn bddhandle is 
-- begin 
-- applydireet(handlel ,handle2,op); 
-- return(applyresult); 
-· end hardbdd_apply; 



procedure init is 
begin 
start_mknode <= u•; 
startnot <= 'O'; 
enablenot <= 'O'; 
startapply <= 'O'; 
enableand <= O'; 
wait until rsti = 'I '; 
wait until freehandle_valid_o = 1'; 
wait for clkperiod/2; 
endinit; 

•· local variables for this algorithm 
constant boardsize: positive:= N; 
type bddhandle2d is amiy(natural range<>. natural range<>) of 
bddhandle; 
variable X : bddhandle2d( I 10 boardsize, I lo boardsize); 
variable queen,tmp l ,tmp2: bddhandle; 

procedure build(i.j : integer) is 
variable a,b,c,d :bddhandle := bddhandle_one; 
variable tmpl ,tmp2: bddhandle; 
variable inti : integer; 
begin 
-- no one in same column 
for kin I 10 boardsize 
loop 
if(k I= j) then 
apply_nol(tmpl ,X(i,k)); 
apply(tmp2,X(ij),tmpl ,booleanop_imp); 
apply(a,a,tmp2,booleanop_and); 
end if; 
end loop; 
-- no one in same row 
for k in I to boardsize 
loop 
if(k I= i) then 
apply_not(tmpl ,X(kj)); 
apply(lmp2,X(i j),tmpl ,booleanop_imp ); 
apply(b,b,tmp2,booleanop_and); 
end if; 
end loop; 
- no one in up right diagonal 
for k in I to boardsize 
loop 
inti := k-i+j; 
if((intl >= I) AND (inti<= boardsize)) then 
if(k I= i) then 
apply_not(tmpl.X(k,intl)); 
apply(tmp2,X(ij),tmpI, boolean op _jmp ); 
apply(c,c,tmp2,booleanop_and); 
end if; 
end if; 
end loop; 
- no one in down right diagonal 
for k in I to boardsize 
loop 
inti := i+j-k; 
if((intl >= I) AND (inti <= boardsize)) then 
if(k ,,. i) then 
apply _not(tmp I .X(k,int I)); 
apply(tmp2,X(ij),rmpl ,booleanop_imp); 
apply(d,d,rmp2,booleanop_and); 
end if; 
end if; 
end loop; 

apply(tmp l ,a,b, booleanop _and); 
apply( tmp I ,tmp I ,c,booleanop_and); 
apply(tmp l ,tmpI ,d,booleanop _and); 
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apply(queen,queen,tmp I .booleanop_and); 

end; 
begin 
init; 

•········•···• put the core algorithm here•······•···-··· 

queen := bddhandle_one; 

- initialize the board variables 
for i in l to boardsize 
loop 
for j in I lo boardsize 
loop 
ithvar(X(ij),(i-1 )•boardsize +(j-1 )); 
nithvar(tmpl ,(i-1 )*boardsize +(j-1 )); 
end loop; 
end loop; 

- put a queen in each row 
for i in I to boardsize 
loop 
tmp l := bddhandle_zero; 
for j in I to boardsize 
loop 
apply(tmpl ,nnpl,X(ij),booleanop_or): 
end loop; 
apply(queen,queen,tmp l ,booleanop_and); 
end loop; 
ASSERT false repon "queen now has in each row al each position" 
severity note; 
queensig <= queen; 

build the constra.i nts for each position 
for i in I to boardsize 
loop 
for j in I to boardsize 
loop 
build(i,j); 
assen false report "building contra.ints for i,j" severity note; 
queensig <= queen; 
end loop; 
end loop; 

---- end of program --··-·-···-···----··•·· 

queensig <= queen; 
testdone <= true; 

end process; 
end; 

library ieee; 
use ieee.STD_LOGIC_ll64.all; 
library bddlib; 
use bddlib.kernel.all; 
library SYNOPSYS; 
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use SYNOPSYS.ATTRIBlITES.ALL; 

entity tesrmknodeblk is 

end restmknodeblk; 

library bddlib; 
architecture testrnknodeblk of testmknodeblk is 

constant clkperiod : TIME := IO ns; 
constant nodememdelay : NATURAL := O; 
constant N : NATURAL 4; 
signal applyop : booleanop; 
signal applyresult : bddhandle; 
signal applyresult_valid: std_logic; 
signal bddinl : bddhandle; 
signal bddin2 : bddhandle; 
signal elk : std_logic; 
signal enableand : std_logic; 
signal enablenot : std_logic; 
signal freehandle_valid_o: std_logic; 
signal high : bddhandle; 
signal init : std_logic: 
signal level : bddvar; 
signal low : bddhandle; 
signal LOWONNODES · std_logic; 
signal rnknode_result : bddhandle; 
signal mknode_resultvalid: std_logic; 
signal rnkselect : std_logic; 
signal OUTOFNODES : std_logic; 
signal rst std_logic; 
signal start_rnknode : std_logic; 
signal startapply : std_logic; 
signal startnot : std_logic; 
signal 1estdone : BOOLEAN; 
component mknodeblktestbench 

generic ( 
N : NATURAL := 4 
); 

port ( 
elk : out std_logic; 
high : out bddhandle; 
ini1 : out std_Jogic; 
level : out bddvar; 
low : out bddhandle; 
rst : out std_logic; 
startnot : out std_logic; 
rnkselect : out std_logic; 
bddin I : out bddhandle; 
bddin2 : out bddhandle; 
enablenot : out std_Jogic; 
enableand : out std_logic; 
start_mknode : out std_logic; 
startapply : out std_logic; 
applyop : out booleanop; 
LOWONNODES : in std_logic; 
OUTOFNODES : in std_logic; 
rnknodeJesult : in bddhandle; 
rnknodeJesultvalid : in std_logic; 
freehandle_ valid_o : in std_logic; 
applyresult_ valid : in s1d_logic; 
applyresul1 : in bddhandle; 
testdooe : out BOOLEAN 
); 

end component; 
component rnknodeblk 

generic ( 
nodememsize : NATURAL := bddmemsize; 
camsize : NATURAL := bddcamsize; 
uniquesize : NATURAL := bdduniquetablesize 
); 

port ( 

applyop : in booleanop; 
bddin I : in bddhandle; 
bddin2 : in bddhandle; 
elk : in std_logic; 
enableand : in std_logic; 
enablenol : in std_logic; 
freehandle_ valid_o : out std_logic; 
init : in std_logic; 
LOWONNODES : ou1 std_logic; 
tp_rnknode_result : out bddhandle; 
rp_rnknode_resultvalid : out std_logic; 
rnkselect : in std_logic; 
starr l : in std_logic; 
level! : in bddvar; 
low l : in bddhandle; 
high I : in bddhandle; 
OUTOFNODES : out stdJogic; 
resulthandle : out bddhandle; 
resultvalid : out std_logic; 
rst : in std_logic; 
startapply : in std_logic; 
startnot : in std_logic 
); 

end component; 

•• Start Configuration Specification 
for all : rnknodeblktestbench use entity bddlib.mknodeblk1es1-

bench(Nqueen); 
for all : rnknodeblk use entity bddlib.mknodeblk(mknodeblk); 
-- End Configuration Specification 

begin 

inst_mknodeblktestbench: mknodeblktestbench 
generic map (N) 
port map( 

elk=> elk.. 
high=> high, 
init ==>init. 
level => level, 
low=>low, 
rst => rst. 
startnot => startnot, 
mkselect => rnkselect, 
bddinl => bddinl, 
bddin2 => bddin2, 
enablenot => enablenot, 
enableand => enableand, 
start_mknode => start_rnknode, 
startapply => startapply, 
applyop => applyop, 
LOWONNODES => LOWONNODES, 
OUTOFNODES => OUTOFNODES, 
rnknode_result => mknode_result, 
mlcnode_resultvalid => mlmodeJesultvalid, 
freehandle_ valid_o => freehandle_ valid_o, 
applyresult_valid=> applyresult_ valid, 
applyresult => applyresult, 
testdooe => testdone); 

Cl: rnknodeblk 
generic map (220000, 

220000, 
219983) 

port map( 
applyop => applyop, 
bddinl => bddinl, 
bddin2 => bddin2, 
elk=> elk, 
enableand => enableand, 
enablenot => enablenot, 
freehandle_ valid_o => freehandle_ valid_o, 
init=>init, 
LOWONNODES => LOWONNODES, 
tp_mknode_result => mknode_result, 
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tp_mknode_resultvalid => mknode_resultvalid, 
mkselect => mkselect, 
start! => start_mknode, 
level! => level, 
!owl s:>low, 
high I => high, 
OtITOFNODES OUTOFNODES, 
resulthandle => applyresult, 
resultvalid => applyresult_valid, 
rst => rst~ 
startapply => startapply. 
startnot => startnot); 

end testmlrnodeblk; 
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