Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
2000

Design and Evaluation of a Specialized Computer
Architecture for Manipulating Binary Decision
Diagrams

Robert K. Hatt
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation

Hatt, Robert K., "Design and Evaluation of a Specialized Computer Architecture for Manipulating Binary
Decision Diagrams" (2000). Dissertations and Theses. Paper 6491.

https://doi.org/10.15760/etd.3627

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6491
https://doi.org/10.15760/etd.3627
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Robert K. Hatt for the Master of Science in Electrical Engi-

neering were presented October 9, 2000, and accepted by the thesis committee and the

department.
COMMITTEE APPROVALS:
owski, Chair
Michaemriscbll
Sarah Mocas
Representative of the Office of Graduate Studies
DEPARTMENT APPROVAL:

lag Hall, Chair
Department of Electrical Engineering

ABSTRACT

An abstract of the thesis of Robert K. Hatt for the Master of Science in Electrical Engi-

neering presented October 9, 2000.

Title: Design and Evaluation of a Specialized Computer Architecture for

Manipulating Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are an extremely important data structure
used in many logic design, synthesis and verification applications. Symbolic problem
representations make BDDs a feasible data structure for use on many problems that
have discrete representations. Efficient implementations of BDD algorithms on gen-
eral purpose computers has made manipulating large binary decision diagrams possi-
ble. Much research has gone into making BDD algorithms more efficient on general
purpose computers. Despite amazing increases in performance and capacity of such
computers over the last decade, they may not be the best way to solve large, special-
ized problems. A computer architecture designed specifically to execute algorithms on
binary decision diagrams has been created here to evaluate the possible performance
improvements in BDD manipulation. This specialized computer will be described and
its implementation discussed with respect to the important aspects of efficient BDD
manipulations. This thesis will demonstrate that significant performance increases are
possible using a specialized computer architecture for manipulating binary decision

diagrams.

DESIGN AND EVALUATION OF
A SPECIALIZED COMPUTER ARCHITECTURE FOR

MANIPULATING BINARY DECISION DIAGRAMS

by

ROBERT K. HATT

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
ELECTRICAL ENGINEERING

Portland State University
2000

DEDICATION
This thesis is dedicated to my wife Carol McConnell for encouraging me to do
something I had only talked about for years, and for helping me with this opportunity
to pursue it to completion. Even more thanks to Carol for putting up with missed eve-
nings and weekends while I was doing all of my school work. Also to my daughter
Maggie for being born in time to make my life more challenging and special than ever

before.

Table of Contents

List of Figures

List of Tables

Chapter 1. Introduction

Chapter 2. Binary Decision Diagram Background

2.1 Introduction to ROBDDs
2.2 The importance of variable ordering.

2.3 Garbage Collection
Chapter 3. BDD Algorithm Implementation and Performance

3.1 Background
3.2 General Goals
3.3 Choosing a BDD Package

34 CUDD
3.5 CAL
3.6 BuDDy

3.7 Computing Environment

3.8 Performance Measures
Chapter 4. BDD Computer Macro Architecture

4.1 Introduction

4.2 Integrated BDD Processor
4.3 BDD Coprocessor

4.4 BDD Peripheral processor
4.5 The Software Architecture
4.6 Memory Subsystem

4.7 Architecture and Memory Issues
Chapter 5. BDD Micro Architecture and Hardware Models

5.1 Simulation and Modeling Environment
5.2 Processor Model

5.3 Memory Models
Chapter 6. Performance Evaluation

6.1 N Queens performance
6.2 Conclusions

v

oo

10

12
14

14
17
17
18
18
19
19
20
26
26
26
28
29
30
31
34
35

35
35

36
50

50
62

il

6.3 Improvements and future work

References

Appendix A. Visual HDL Diagrams and VHDL Source Code
List of Figures in Appendix A
VHDL Source Code

63
66
70
71
87

iii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

List of Figures

Shannon Expansion

Shannon Co-factors of a Boolean function
BDD for a single variable

Decision Tree for a function

Reduced Ordered BDD.

o0 OO ~3 n Lh

Schematic Representation of the function f = a*b + a*c 9

Netlist Representation of the function f = a*b + a*c.
BDD Variable Ordering

N Queens Profiles

BDD function execution time

Integrated BDD Execution Unit

BDD Coprocessor

BDD Peripheral Processor

Software Architecture

BDD Processor Functional Units

Node structure

Register File

MakeNode Pseudo-Code

MakeNode FSM

MakeNode Build FSM

Pseudo Code for Apply (recursive - depth first)
FSM for apply

Algorithm for N queens

Latency Effects

BDD Execution Time (SRAM)

Best BDD Execution Time

Estimated BDD Execution Time (DRAM Memory)

9
10
21
24
27
29
30
31
36
38
39
41
42
43
44
46
51
58
60
61
62

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

List of Tables

Truth Table for F=a*b+a*c

Nodes in an 8+8 adder

Sample Program Profiles

Macro Architecture Design Trade-offs
Node Memory Fields

CPU Time (sec.)

BDD Processor Access Latency
Memory Characteristics

N Queens BDD Execution Times

11
22
34
38
52
57
59
59

Design and Evaluation of a
Specialized Computer Architecture for
Manipulating Binary Decision Diagrams

Chapter 1
Introduction

Modern integrated circuit (IC) technology has enabled designers to build cir-
cuits with millions of transistors (logic gates). In 1984 a pair of designers might have
sat in front of a computer terminal to capture and sirnulate a netlist or schematic repre-
sentation of an application specific integrated circuit (ASIC) containing seven thou-
sand gates. Today small teams of engineers use logic synthesis and simulation to
design circuits with hundreds of thousands or even millions of gates. The problem of
creating and verifying these large circuits has pushed current computer technology to
its limits. Logic simulation alone can no longer be used for complete verification of
these ICs, other efficient representations of these circuits are necessary to complete the
required design, analysis and verification. Binary Decision Diagrams are one such
critical representation.

Reduced Ordered Binary Decision Diagrams (ROBDDs or just BDDs) are an
efficient data structure for the representation of many (large) boolean functions. As
such, they have become a very important tool for use in design and verification of
logic. In 1986 Bryant {Bryant86] described algorithms for efficient manipulation of
BDDs. The implementation of these algorithms has led to the use of BDDs for prob-
lems ranging from logic decomposition [Bertacco97] [Chang96], logic synthesis

[CYang98], formal verification[Bryant95], test generation, and graph manipulation

[Cortadella99] [Sekine97]. They are used in all modern commercial synthesis and
logic verification tools.

The performance of Binary Decision Diagram algorithms on a general pur-
pose computer has improved since the first libraries of functions were written, and
they have been used to solve many difficult problems. Algorithm performance varies
depending on the BDD library package and the type of problem being solved. Differ-
ent types of applications of BDDs may show different efficiency with different pack-
ages because the package implementation varies. Overall the BDD can be considered
one of the successes of design automation research. Yet, despite the efficiency of
BDDs for representing many types of circuits, there are many types of circuits where
the BDD representation is exponential in size. This problem cannot be overcome eas-
ily as it is an inherent limitation of the ROBDD data structure. Consequently other
types of decision diagrams, and representations, have been developed in attempts to
address these types of circuits [Becker97][Narayan98][Minato96].

Current general purpose engineering workstations are typically limited by the
fact that they are organized as 32-bit word architectures and operating systems are
restricted by this word length constraint. Application programs run on these general
purpose computers cannot exceed the limits imposed by the operating system. Because
of the cost and general efficiency one computer is used for a large variety of problems,
but for special applications this generality may limit the ability to solve large problems

in the most efficient manner.

4

Specialized computer architectures have been created to solve many problems,
often in response to the capacity and performance limitations of general purpose com-
puters. Vector processing machines (often called super computers) from companies
like Cray Inc., and computers to execute LISP programs from companies like Texas
Instruments and Symbolics Corporation are some of the most common examples. A
specialized computer for manipulating Binary Decision Diagrams should be designed
and evaluated in an attempt to address performance and capacity when compared to
implementations on general purpose computers. This may also give additional insight
into the behavior of BDD algorithms and how they could be improved.

The following chapter will give an introduction to Binary Decision Diagrams.
It will discuss some of the primary issues involved in creating and manipulating
BDDs. Chapter 3 will discuss performance issues involving BDDs and their different
types of applications. Several freely available BDD packages are described and the
BuDDy package, which is used as an example of a typical BDD package, is described
using an example N-queens problem. Chapters 4, and 5 will describe the specialized
computer design, simulation models and implementation issues involved with the
design of the specialized architecture. Finally, chapter 6 will discuss the results of the
simulations and describe the performance in comparison to a general purpose com-
puter. This will allow some conclusions to be drawn and future design considerations

to be described.

Chapter 2
Binary Decision Diagram Background

2.1 Introduction to ROBDDs

A Reduced Ordered Binary Decision Diagram (ROBDD or just BDD) is a
directed a-cyclic graph which represents a boolean function. The graph begins with a
single root node. Every path starting from the root node will end at a terminal node
which represents either O or 1. Each non-terminal node is labelled with one of the vari-
ables in the function and has two outgoing edges. The edges point to nodes which rep-
resent the negative and positive co-factors of the function respectively. Shannon (and
Boole) found that a boolean function can be described in terms of two sub-functions
(called cofactors) when a specified variable is either zero (negative cofactor) or one
(positive cofactor). The Shannon expansion is often described by the following for-
mula

Figure 1. Shannon Expansion
f = X’flle +i'ﬂx=0

Figure 2. Shannon Co-factors of a Boolean function

For the boolean function
f=a-b+
=b

fla:l
N

=C

a=0

it

6

The BDD for the function of one variable x is shown in Figure 3 on page 7. For
variable x, this function is O when x is zero (the negative cofactor) and 1 when x is one
(the positive cofactor). Just expanding a function with respect to the co-factors of a
function will give a decision tree as shown in Figure 4 on page 8. To make a Reduced
BDD duplicate nodes are not allowed. Duplicate nodes are defined as nodes which are
labelled with the same variable and whose outgoing edges point to the same nodes
respectively (both lo edges point to the same node, also the corresponding hi edges
also point to a common node). In Figure 4 it can be seen that nodes labelled 4 and 5
meet this criteria. Also all duplicated terminal nodes should be combined so that there
are only two terminal nodes; one representing the constant O the other representing
constant 1. Therefore nodes 8,10,12,13 are combined and nodes 9,11,14,15 are com-
bined. This results in the graph in Figure 5 on page 8. Finally any node whose edges
both point to the same node are removed from the graph and the incoming edges are
redirected to the destination of the outgoing edges which were just removed. All of the
steps assume the ordering of the input variables (used by the function) do not change

in the BDD. This results in the creation of a Reduced Ordered BDD.

Figure 3. BDD for a single variable

Reduced and Ordered are the most important structural features of BDDs
because this makes the ROBDD a canonical representation. This canonicity property
means that given two ROBDDs for the same function (using the same variable order-
ing) the graphs are isomorphic and functional equivalence can be easily tested.

It is not feasible to first build a decision tree and then reduce it because it
would require a number of nodes exponential in the number variables (O(2N) where N
is the number of variables in the function) to create the original decision tree. Only
after Bryant [Bryant86] described recursive methods of performing operations on
BDDs did they become a useful data structure for representing and manipulating bool-
ean functions.

Only unique nodes are stored in the tree. Thus if two nodes are to represent the
same function (variable and co-factors) they will be represented by the same node.

There is no redundancy in the tree, all nodes are unique

Figure 4. Decision Tree for a function

Table 1: Truth
Table for 1
F=a*b+a*c P
a b ¢} F // o
E————————— 2 ‘ 3
0 0 010
0o 0o 1]1 ’® ‘
01 ofo 4_* 5 6 ¥ >
0 1 1}1
;g‘;‘o’ 8y 10 Y11 1 Y13 1§ Y 15
11 ol 0 1 0 1 0 0|1 1
1o

Figure 5. Reduced Ordered BDD

Removed Redundant Nodes

Removed nodes with edges
pointing to same destination

Bryant’s algorithms for building BDDs are based on recursive operations over

the BDD data structure. The core operator is called the If-Then-Else operator

ite(F,GH) = F*G + F*H

9

It can be used to build all two variable boolean functions. For example to cre-
ate a BDD to represent a function f = a*b + a*c would only require one call to the ITE
operator f = ite(a,b,c). But if this same function were given as a gate level schematic,
the function must be derived by walking the netlist and building the function itera-
tively.

Figure 6. Schematic Representation of the function f = a*b + a*c

To create a BDD for the function f = a*b + a*c would require creation of a
single node BDD for variable (function) a, b, and c. Then intermediate functions

shown in Figure 7 must be created to achieve the desired function f.
Figure 7. Netlist Representation of the function f = a*b + a*c.

Input a,b,c;
Output f;

f2 = a ANDb
f3=NOTa
f5=1f3 ANDc¢
f=f20R 5

10
2.2 The importance of variable ordering.

The size of the BDD is highly dependent upon the ordering in which the vari-
ables are represented in the tree. Minimum size representations can always be found
using known algorithms [Drechsler98], but the computation time to find the minimum
representation is often unacceptable because the worst case representation of a bool-
ean function using a BDD is exponential in size. As shown in Figure 8 on page 10. the
BDD representation for the boolean function f =a * b + a * ¢ (which might be recog-
nized as a multiplexor) is represented differently depending on the chosen variable
ordering. The dotted lines indicate the low edge (negative cofactor where the variable
= 0). The ordering a<b<c in Figure 8a requires only 5 nodes, the ordering c<b<a in
Figure 8b. requires 7 nodes.

Figure 8. BDD Variable Ordering

a<b<«c c<b<a

Figure 8a. Figure 8b.

11
A second example of the size effects of variable ordering shows the number of
nodes used to represent the different outputs of an eight bit adder. The number of
nodes for each adder output bit are given for a good variable ordering and a bad vari-
able ordering in Table 2 on page 11. It can be seen that for the most significant bit of
the eight bit adder (16 input variables, 8 output variables) a good variable ordering
N2yl

gives a BDD of only 24 nodes and a bad variable ordering gives a size of 02!

where N is the number of outputs in the add function.

Table 2: Nodes in an 8+8 adder

Output Good Bad
Bit Order Order
0 3 3

1 6 7

2 9 15

3 12 31

4 15 63

5 18 127

6 21 255

7 24 511

It is not always possible to know before creating the BDD what will be a good
variable ordering. For example when reading a function from a circuit netlist, it may
be very difficult to determine a good ordering because the function is not known in
advance. It is possible to choose an ordering and create the BDD, then try a different

ordering and create another BDD and determine which is smaller, but this would mean

12

that N! (N factorial) orderings must be tried to find the best ordering (with respect to
the size of the BDD)

Rudell [Rudell93] found that variables adjacent in the ordering can be swapped
without affecting the other levels of the BDD. This idea that variable swapping is a
local operation led to the variable reordering algorithm called sifting. Sifting can be
done dynamically while the BDD is being created to try to keep the BDD size manage-
able. Sifting may require exponential run time to find a minimum BDD but it is often
not necessary to try all possible orderings because a minimal BDD is not required, the
BDD size must be kept small enough to be managed efficiently for the available com-

puting resources and problem.

2.3 Garbage Collection

As BDD algorithms execute, while keeping the data structure canonical, they
call many operators whose results are used only temporarily. The nodes generated dur-
ing these operations which are no longer an active part of the data structure and are not
referenced (visible) by any root nodes are called garbage nodes. Garbage collection is
used to retrieve these nodes and put them back on to the list of available (free) nodes.
Garbage collection is necessary when the number of free nodes nears exhaustion, and
can consume significant CPU time. Because of this performance penalty it is impor-
tant to perform garbage collection only when necessary.

ROBDD:s can be efficient data structures for manipulating boolean functions.

Canonicity must be maintained through all operations. Efficiently building and main-

13

taining BDDs to meet those considerations is an important factor in the use of BDDs
in many applications. The following chapter describes the main aspects of algorithm

implementation for BDDs and their performance considerations.

14 -

Chapter 3
BDD Algorithm Implementation and Performance

3.1 Background

In 1990 Brace, Rudell and Bryant [Brace90] described an efficient implemen-
tation of a BDD package which has been the basis of most subsequent BDD packages.

The main features of an efficient BDD package as described by Brace et. al. are:

* A unique table for the efficient creation of new BDD nodes and making sure all cre-
ated nodes are unique.

» A computed cache to store intermediate results of operations for use during recur-
sion using the ITE and other operators.

» Efficient garbage collection to recover nodes that are no longer referenced

¢ Good dynamic variable reordering heuristics to be used while BDDs are being
manipulated
Because BDDs are an efficient representation of boolean functions in many

cases and exponential in others, much work has been performed on refining BDD
algorithms for fast execution and minimum memory use on general purpose proces-
sors. It has been intensely studied by various implementers of BDD library packages.
The algorithms described by Bryant were based on efficient traversal of the BDD
recursively in a depth first recursive manner. Many variations of these methods have
been implemented in attempts to create more efficient packages. Most packages give
different performance depending on the actual size and the problem being solved. No

single approach has been proven best for all problems.

15

Many different aspects of BDDs have been studied in attempts to find more
efficient ways to manipulate them on general purpose processors. Specifically, mem-
ory reference locality [Manne97], cache effects and memory paging
[Klarlund96]}[Long97] have been the target of improved BDD packages. Breadth first
manipulation has shown improvements on some problems [Ranjan96a]. Chen
[Chen97] implemented a hybrid approach combining breadth-first and depth-first
BDD manipulation and showed performance improvements over both depth-first only
and breadth-first only implementations. Paralle]l BDD packages that can run on net-
works of workstations have been created [Milvang98][Stornetta96]. All of these
approaches incorporate design trade-offs in an attempt to create packages which can
manipulate large BDDs faster.

Comparisons of various packages and their efficiency for various types of
problems have also been made; [Sentovich96]. Yang et. al.[BYang98] studied various
aspects of BDD performance as applied to symbolic model checking algorithms. The
study included computed cache replacement policies, garbage collection frequency as
well as variable ordering. They have shown that a larger computed cache size can have
a much greater effect on model checking computations than for building BDDs for
combinational circuits. Also, because garbage collection of un-referenced nodes can
be time consuming, it was shown that model checking computations have a large
rebirth rate (i.e. nodes that are un-referenced will become references again later in the

computation). This led them to conclude that garbage collection should occur less fre-

16

quently. Additionally they suggested that the combined breadth-first and depth-first
approach might lead to additional efficiencies.

All of this research has applied to improving algorithms on general purpose
processors. Because the speed of these processors and the availability of large memo-
ries has become more affordable during the past decade continually larger problems
can be addressed using BDDs. There are limitations to 32bit computer architectures
and operating systems that prevent them from solving extremely large problems. As
64 bit processors and operating systems with large main memories become more avail-
able, larger problems will be solvable by a general purpose architecture.

Generally a special computer architecture is used for two reasons, capacity and
performance. With the advent of 64-bit word architectures and operating systems,
capacity may no longer be an advantage of a specialized computer. This only leaves
performance as a realistic improvement provided by a special purpose BDD computer.
Attempting to build a special purpose computer may give insight into the behavior of
BDD algorithms and provide a platform for the analysis of architectural trade-offs for
different architectures and BDD algorithms, much as an instruction set simulator
might for a general purpose computer. No published research has been found on the
study of any specialized hardware implementation of BDD algorithms. The remainder
of this thesis will be devoted to the description of a special purpose computer architec-

ture for manipulating binary decision diagrams.

17
3.2 General Goals

A specialized computer for evaluating BDDs would enable the efficient solu-
tion of BDD problems than can be accomplished by a general purpose computer. To
make the effort to use a specialized computer desirable it must be able to solve larger
problems faster than existing BDD packages at a reasonable cost.

The use of the specialized computer should be transparent to the user. Compat-
ibility of the procedural interface package with an existing BDD package will allow
easy porting of existing code. The cost of the specialized hardware must be commen-
surate with the size of the problems it can solve. In other words, it should be inexpen-
sive compared to not being able to solve the problem in a reasonable time. Achieving
these high level goals would allow easy adoption of the specialized hardware. The use-
ful life of the specialized computer must be such that the investment can be justified
vs. next years general purpose computer. These goals may be unobtainable, but that is
the purpose of this research, to find out if it is reasonable to expect to achieve the nec-
essary performance to make a specialized computer worthwhile.

A high level look at the overall architecture will give a picture of the compo-

nents that are required for such a system.

3.3 Choosing a BDD Package

It is not the goal of the paper to compare many BDD packages to find the best
performing package. Nor is it the purpose of this project to create an entirely new

package for use on general purpose computers. All work will be done based on an

18

existing package and procedural interface to create a subset of the package functions
that can be used to verify the performance of the proposed BDD computer architec-
ture. Several packages available from universities have become widely used because
they are robust and efficient. They all use various implementations to try and achieve
improved performance and memory usage. Below, three publicly available BDD pack-

ages, CUDD, CAL and BuDDY will be briefly presented.

3.4 CUDD

A large, comprehensive, robust and efficient library developed by Fabio
Somenzi at the University of Colorado at Boulder. It uses complement edges in the
internal representation and depth first recursive ITE algorithms. It is very smart about
compacting the BDD node into 16 bytes and making sure all nodes are 16 byte
aligned. This helps when fetching things from memory on most 32 bit processors
which often have 32 byte cache lines. Support for many heuristics for dynamic vari-
able ordering and automatically adjusting cache sizes are built in. It also supports other

kinds of functional decision diagrams not discussed here.(ZBDDs, FDDs)[CUDD98]

3.5 CAL

Similar to CUDD in its use of 16 byte (aligned) nodes, this package uses
breadth first recursion during most algorithms. It has slightly more complicated access
to internal data structures because of the breadth first recursion, but by storing all

nodes of a single variable contiguously in memory, the breadth first search has good

19

memory locality access (fewer cache misses), [CAL97]. It has been the basis for sev-
eral BDD packages designed to run in parallel on multiple workstations including

[Milvang98].

3.6 BuDDy

A general BDD package with all of the required features of an efficient BDD
package including garbage collection and several dynamic variable ordering heuris-
tics. Includes vector operations for word level operations on BDDs, [BuDDy99].

The BuDDy library of BDD functions was chosen as the BDD library to base
the performance comparisons and implementations for this project. Though probably
not the fastest BDD package, or the one that consumes the least memory, it is claimed
by the author to be as fast as David Long’s (CMU) original package (CUDD and CAL
claim to be faster than that package as well) and the code is very well documented and
readable. It is an excellent tool to study and learn about BDD algorithms. The code is
clear, concise and more consistent than the other two packages that were looked at. It
is for these reasons that the BuDDY package was chosen for the analysis and as a basis

for the BDD algorithms to be modeled.

3.7 Computing Environment
The computing environment used as the basis for all data and statistics gath-
ered in this paper is a dual Intel Pentium II Xeon with 1MB full speed 2nd level cache,

128MB RAM and 80Mb/sec. SCSI disk drive. The operating system is Red Hat Linux

20

6.1 (SMP kernel). The compilation environment is the GNU C/C++ compiler, gcc ver-
sion egcs-2.91.66 19990314/Linux (eges-1.1.2 release) provided with the Red Hat
Linux installation. All benchmarks are single threaded and were run on a single pro-

cessor with no other non-operating system processes running.

3.8 Performance Measures

Code profiling is a method for finding the percent of total CPU time spent in
each function of a program. It is a feature of the compiler used on the general purpose
computer and is easily turned on with a single compiler switch. Approximate CPU
time and exact number of calls is collected for each function that is profiled. It should
be run with a variety of test cases to gain insight into where a program may need to be
optimized.

Several sample (simple) programs were run and profiled. None of these pro-
grams is large, in the sense that they require large amounts of memory or computation
time. They are intended to be a few test cases representative of average BDD computa-

tions.

» N-queens - The classic constraint problem written using BDDs as the data structure.
Place N queens on an NxN chess board such that no queen can capture another.

¢ Reachability - Generate random state machines and perform reachability analysis
This is a typical model checking type verification task to make sure design con-
straints are met in possible states.

« State Minimization - Read a description of a state machine, find equivalent states
and combine them. Write the results out to a kiss file.

https://egcs-2.91.66

21

Figure 9. N Queens Profiles

N queens profiles

-+~ BddCache_init

-3 bdd_init
apply_rec

- bdd_makenode

- bdd_gbc

-o- bdd_mark

—+ BddCache_rest

- other

% time

The N queens program was run for several different values of N ranging from
seven to eleven. These are the runs to completion in main memory. The profile was
examined and the percentage of time spent in the BDD library functions was recorded.
The top seven contributors to CPU time usage are shown in Figure 9 on page 21, all
other functions are lumped into the others category. For all runs the number of nodes
initially allocated was 1,000,003 and the computed cache size was set to 500,009.
These numbers are prime numbers and the hash function used by BuDDy is modulus
based which works best with prime numbers [Aho86]. The function BddCache_init is
actually a constant time when the initial number of nodes is constant. Thus it is a much

larger percentage of execution time in small benchmarks and a negligible percentage

22

for the larger values of N. For most realistically sized problems, it is assumed the
BddCache_init time will be a very small percentage of the problem. As the problem
size grows, so does the amount of time spent in apply_rec, bdd_makenode. Only if the
initial number of allocated nodes is exceeded is garbage collection invoked. This
occurred when N was equal to eleven. It can be seen that the garbage collection related
functions bdd_gbc, bdd_mark, BDDCache_reset were negligible before N was eleven,
but were large users of CPU time for N equal eleven.

The results of profiling these programs is given in Table 3 on page 22. Only
functions that contributed more than 5% of the CPU time to at least one of the test case
runs are included by name, the remaining functions are accumulated in the category
labeled others. The functions bdd_gbc, BddCache_reset, and bdd_mark could be com-

bined under a heading titled garbage collection.

Table 3: Sample Program Profiles

average % CPU for 5 runs

State Reachability

Function Name N queens Minimization Analysis Average
apply_rec 322 7.6 31.2 23.6
bdd_makenode 22.6 4.2 26.8 17.8
BddCache_init 27 42.2 10 26.4
not_rec 5 1.6
appquant_rec 20.2 6.7
bdd_init 106 15.8 22 95
bdd_gbc 34 94 4.3
BddCache_reset 1.6 8.8 35
bdd_mark 1.2 04

others 14 8 10.6 6.6

23

The chart in Figure 10 on page 24 gives a good view of where time is spent.
The functions apply_rec, bdd_makenode, and garbage collection constitute slightly
over 50% of the CPU time used by these programs. The reachability analysis tests
spend most of the CPU time using apply_rec to create the internal state machine repre-
sentations. Also they show the use of garbage collection because the number of nodes
created during execution exceeded the number of nodes initially allocated. The
appquant_rec, which is the existential and universal quantification operations is
lumped in with the "other" category, though for reachability this is also one of the pri-
mary operations. It is important to note, that the numbers will vary depending on the
arguments for the programs, the number of nodes in the initial node table and the num-
ber of slots in the computed cache. In general, if too few nodes are used initially, gar-
bage collection and marking operations will become large portions of the execution
time. This is an important point, because garbage collection will become extremely
important for operations on large BDDs. The term large is relative, for example if the
BDD computer has a large memory then garbage collection may not be as important
until the problem starts to fill the node memory.

Also important here is that all of these problems have been programmed using
a known good variable ordering appropriate for the problem. Many real world prob-
lems may not have a known good variable ordering and depend on heuristics and
dynamic variable ordering to keep the BDD sizes manageable. Because of the known
good ordering for these problems the dynamic variable ordering was not used in any of

the test cases.

24

Figure 10. BDD function execution time

Average % CPU
bdd_mark,BddCache_reset,bdd_gbc

apply_rec

bdd_init

| B apply_rec

B bdd_makenode
3 BddCache_init
I not_rec

B appquant_rec

A bdd_init

bdd_gbc

1 BddCache_reset
M bdd_mark

BddCache_ini , bdd_makenode & others

N

appquant

not_rec__

The functions BddCache_init, and bdd_init show up as large percentages
because they dominate the small test case runs. In larger runs, as was seen with the N
queens problem, they are actually negligible compared with the other functions.

This Chapter has given background information about BDD algorithm perfor-
mance research. Several BDD packages were described and the choice of one package

-as a basis for further research was given. The computing environment used for gather-
ing the performance information was described and the performance of several BDD
algorithms was evaluated. It was shown that on a general purpose processor most CPU
time is spent in the recursive manipulation (apply_rec) and creation (bdd_makenode)

of BDDs. Garbage collection time is also significant as the problems become large

25

with respect to available memory. This performance information is important to the
remainder of the thesis because it helped guide the design choices described in subse-
quent chapters. The remainder of the thesis will describe how the major parts of the
BDD algorithms were modeled. Why the different design choices were made and

describe the results of the simulations of the BDD Computer architecture.

26
Chapter 4
BDD Computer Macro Architecture

4.1 Introduction

Within the context of accelerating execution of BDDs using special purpose
hardware, the operation of the BDD processor on the BDD itself can be designed inde-
pendently of a general purpose computer. Yet the chosen architecture will interface to
a general purpose computer for all non-BDD related operations. The level of integra-
tion and how the BDD processor interfaces to the general purpose computer varies and
the different interface architectures have unique performance characteristics. This
chapter describes the different macro-architectures and the issues associated with the

design of each.

4.2 Integrated BDD Processor

The integrated architecture shown in Figure 11 on page 27 assumes that a BDD
execution unit could be integrated directly into the general purpose processor. The
BDD execution unit would share resources with the processor as well as using the
séme memory hierarchy. A new memory system and interface does not have to be
designed. BDD operations can be implemented with special instructions that are an
extension of the processor instruction set. The on chip integration means the BDD

instructions will execute with the same performance as the processor. Therefore as the

27

processor semiconductor technology improves and performance increases so will the

BDD instructions see similar improvement.

Figure 11. Integrated BDD Execution Unit

General Purpose
Processor

BDD
Execution
Unit

PCI/AGP

K

Processor bus

Processor
1/0 and
Memory
IF Chip
Set

-

To main

marmory and

peripherals

There are several disadvantages of this architecture. The first is the integration

with the general purpose processor. This is a difficult design issue and it requires

knowledge of the processor micro architecture and IC technology being used. The

compiler technology must be crafted to take advantage of the BDD instructions and

programs must be recompiled to take advantage of these instructions. Alternately a

special library of hand crafted routines could be provided that could be called by appli-

cations programs that need to access BDD instructions.

As was described in Section 3, “BDD Algorithm Implementation and Perfor-

mance,” on page 14 the algorithms for BDDs are memory access intensive manipula-

tion of nodes and edges in the BDD. Thus sharing the processor main memory offers

no capacity benefits, and probably no memory access benefits. Finally this design is

28

not feasible for anyone but a large microprocessor design company and, because it is
not a large volume application, is not worth the engineering effort required for imple-

mentation.

4.3 BDD Coprocessor

The second architecture is shown in Figure 12 on page 29. The BDD Copro-
cessor design features the BDD execution unit as a device attached to the processor
bus. Because the unit is attached to the processor bus, there is a larger latency to exe-
cute a BDD instruction than with the integrated execution unit. This design is more
complex but is more feasible. Increases in complexity arise because the BDD copro-
cessor does not share resources with the processor, must track the bus transactions, and
has its own memory which is separate from the processor’s main memory. Some of
these complexities may be necessary to achieve high performance BDD manipulation.
The memory structures can be customized to specifically improve performance for
BDDs. BDD execution can take place in parallel with other programs running on the
general purpose processor. The main disadvantage of this architecture is the increased
design complexity and the added latency through the processor bus to execute a BDD
instruction. If implemented as an ASIC with a general purpose processor core and
additional BDD functionality the BDD computer could be on the same chip with the
GP processor. This architecture might then be constrained due to I/O limitations of the
ASIC package because of large data and address busses for both the general purpose

processor and the BDD processor.

29 -

Figure 12. BDD Coprocessor

' BDD DD
M
General Purpose - Processor emory
Processor(s)
To main
Processor memory and
1/0 and peripherals

Processor bus | Memory

IF Chip
Set

4.4 BDD Peripheral processor

The architecture shown in Figure 13 on page 30 is very similar to the BDD
coprocessor, but since the BDD computer resides on the PCI (or AGP) bus instead of
the processor bus, the latency for the processor to issue a BDD instruction is much
higher. It is also less predictable due to many more possible peripherals on the expan-
sion bus. This architecture has all of the execution benefits and most of the design
complexity of the coprocessor design, though the PCI/AGP interface is a slightly eas-

ier interface design.

30

Figure 13. BDD Peripheral Processor

General Purpose
Processor(s)

. BDD
. Processor

Processor bus

Processor
1/0 and
Memory
IF Chip
Set

4.5 The Software Architecture

i

PCVAGP

To main
memory and
peripherals

In addition to the hardware architecture the BDD processor must be easily

accessible from software. In order to make the BDD functions easily integrated into

existing programs, a library of functions will be provided to the programmer. The

BDD library will look like a normal software library to the user, but will interface to

the BDD processor hardware. See Figure 14 on page 31. The underlying structure of

the hardware can change without change to the software library interface. This soft-

ware architecture allows changes in the underlying software/hardware structure with-

out affecting the user application program.

31

Figure 14. Software Architecture

Operating System

Application Program BDD
Processor

Each of the different macro architectures will have different access latency to
transfer data between the general purpose processor and the BDD processor. Generally
the further the BDD processor interface sits from the processor, the more software
overhead will be involved in accessing it. This is discussed along with the perfor-

mance results in Section 6, “Performance Evaluation,”

4.6 Memory Subsystem

The memory subsystem of the BDD processor is one of the main issues to con-
sider during design. As was shown in Section 3, “BDD Algorithm Implementation and
Performance,” the algorithms used to manipulate large decision diagrams have mem-
ory access patterns that are difficult to predict. Memory references often cause cache
misses in a general purpose processor which means access to main memory is

required. Also, the implementation of the unique and computed tables are amenable to

32

different types of memory structures. Because commercially available memories are
designed with specific applications in mind, a number of types of memory were con-

sidered for the different memory subsystems in the BDD processor architecture.

4.6.1 SRAM, SSRAM

Static RAM (SRAM) offers the highest performance in off the shelf memory
components. SRAM with access times of 7.5 ns and below are available. Synchronous
SRAM (SSRAM) uses a clock signal to latch the address and data signals thus making
the interface to synchronous systems easier. Capacity is an issue for very large memo-

ries as SRAMs typically only store about 8Mb per chip.

4.6.2 DRAM, SDRAM, RDRAM

Dynamic RAM (DRAM) offers high capacity and is the least cost per bit mem-
ory available. There are a number of different variations that offer high performance
and synchronous operation. Synchronous DRAM (SDRAM) has registers to hold out-
put data and input signals to allow synchronous interface to clocked systems. The
burst mode in the SDRAMs has been designed to effectively interface with cache
memory systems that load data from several sequential addresses on successive clock
cycles. Direct Rambus DRAM (RDRAM) is designed for very high speed synchro-
nous burst access up to 800 MHz. The high speed of the RDRAM makes for a difficult
design. Because DRAMS can store 128Mb per chip, typical general purpose server

computers can be configured with gigabytes of DRAM. The latency for typical

33

DRAM is 60ns, much larger than static RAM, but once a burst is begun DRAM offers

performance nearly the same as the faster SRAM.

4.6.3 CAM

Several commercial options are available for content addressable memory.
Several companies (NetLogic Microsystems and Lara Technologies are two) offer
CAM devices targeted at network switches which might be usable for other applica-
tions. The capacity of these devices is modest compared to SRAM and DRAM.

NetLogic SyncCAM-2 is available in 32k x 144 bit organization with speeds
up to 100 MHz. Lara Technology offers similar features. The depth can be increased
beyond 32k, but access must be pipelined thus increasing the average latency to find a
match. UTMC offers a UTCAM-Engine product which is an IC designed to turn
SSRAM or SDRAM into content addressable memory. The performance is lower than
for the dedicated CAM, but also offers the opportunity for designing larger CAMs

using less expensive memory components.

4.6.4 Memory Performance Summary

The cost per bit of the different types of memory varies significantly. Dynamic
RAM with the least expensive cost per bit, but with the worst latency. CAM is the
most expensive memory but the latency is size dependent. Static RAM cost is in the
middle and has the shortest latency of the three types of memory proposed. New vari-

ations of DRAM such as RDRAM and Double Data Rate SDRAM offer higher clock

34

rates and bandwidth than conventional SDRAM memory, but latency is generally not

improved. These effects of specific types of DRAM have not been studied in this the-

sis, but cost must be taken into account when designing a large memory system.

4.7 Architecture and Memory Issues

Each of the architectures described in this chapter offers different complexities

and design issues. They have been summarized in this chapter and specific perfor-

mance numbers will be given in Chapter 6, “Performance Evaluation”. Table 4,

“Macro Architecture Design Trade-offs,” on page 34 shows the different architectures

and the relative design complexity of each.

Table 4: Macro Architecture Design Trade-offs

Interface

Design Instruction
Architecture Complexity Latency
General Purpose Pro- NA NA

Cessor

Integrated BDD Execu- Very High Very Small
tion Unit

BDD Coprocessor High High (~=GP
main memory)

BDD Peripheral pro- Average High (2-3x GP

cessor main memory)

Capacity
Effect
Limited
by OS8
None

UnLim-
ited
UnLim-
ited

Estimated
Design
Cost

NA

Very High
High

Average

This chapter has served to introduce some of the general cost and complexity

issues that are involved with the design of the BDD processor. The following chapters

will describe the design specific choices that were made in this thesis.

35

Chapter 5
BDD Micro Architecture and Hardware Models

5.1 Simulation and Modeling Environment

To create and evaluate the model of the BDD Processor a combined "C’ and
VHDL simulation environment will be used. This environment will allow for the inter-
action of applications programs with the simulated BDD Processor architecture to
determine performance on actual application programs that manipulate BDDs. This
can then be compared to the performance obtained by running the application on a
general purpose computer. The BDD processor will only accelerate the actual manipu-
lation of the BDD library calls. The performance of the BDD processor is measured
for specific time based on the number of BDD clock cycles and clock period for the
portions of the program that will be accelerated. These times will be substitutes for the
measured percentage of the program that is run on the general purpose processor. Then
a comparison of the application run solely on the general purpose architecture with the

application run using the BDD processor will be given.

5.2 Processor Model
The model has been designed to implement the BDD algorithms based on the
BuDDy package. It is an unsophisticated implementation that attempts to use as few

clock cycles and to make as many memory accesses concurrently as possible. The

36

models are being used as an analysis tool to estimate the performance of a simple

hardware implementation and may not represent the best implementation.

Figure 15. BDD Processor Functional Units

5.3 Memory Models

Several memory models were designed so that the different types of memory
could be tested with a variety of latencies. The models have an abstracted interface so
that the latency can be easily changed. The node table, unique table and CAM were
designed with an asynchronous interface. A request is received on the input and when
the memory has completed the request, an acknowledge signal is sent back to the
requesting unit. As can be seen in Figure 15 on page 36, the memories also have mul-
tiple ports. The memory models use a simple round robin arbitration scheme to allow
access to the memory. This method guarantees that each functional unit will get access

to the memory in the order the request was received. If multiple requests are received

37

simultaneously they are serviced in a priority order with the most recently serviced

port being the lowest priority.

5.3.1 Node Memory

The node memory is the main memory of the BDD processor. It needs to be
very large. This is the most critical capacity/performance trade-off in the system. Fast
access to the node memory is required to achieve high performance. The goal of any
BDD system is efficient node access, which means keeping the memory busy fetching
nodes so the processing can proceed as quickly as possible. The node structure shown
in Figure 16 on page 38 shows the intended bit widths of the different fields in the
node structure and the VHDL record used to represent it. The field widths are chosen
based on expected capacity requirements and memory availability; DRAM modules
are typically 64 bits wide. The 32 bit hi-edge and lo-edge fields will allow four billion
nodes if enough memory can be installed in the machine. This far exceeds the approx-
imate 256 million node capacity of a software package which uses 28 bit node address
fields because nodes are typically 16 bytes in size. Unused bits will be used to expand

(if necessary) existing fields and for future enhancements.

38

Figure 16. Node structure

128 0
future €| &9 nextbdd hi-edge lo-edge | level
1
Table 5: Node Memory
Fields

Field Size type bdd_t is record

level 20 level : bddvar;

lo-edge 32 lo : bddhandle;

hi-edge 32 hi : bddhandle;

nextbdd 32 nextbdd : bddhandle;

gc 2 gc:ge t;

end record;

e(xternal) 1

future 7

5.3.2 CAM (Computed Cache) memory

The computed table can be implemented in several ways. It was implemented
as if it were a true content addressable memory. Access is by content, with the result
value returned not as an address, but as the result value stored at the found address.
When the CAM is full it begins a FIFO overwrite, so that the first cell that was written
to the memory is the first one to be overwritten. It can also be thought of as a circular
buffer that once it is full starts writing at the beginning again. The CAM must be wide
enough to hold the arguments to the BDD apply function, and must return a result

value the size of a node handle (32 bits).

5.3.3 Unique Table
The unique table is used to hold references to individual nodes in the node

memory. Because each node in the node memory must be unique this table is imple-

39

mented as lookup table which holds node addresses. The node to be looked up must be
hashed into an address in the unique table memory. The unique memory returns a node
address which must then be looked up in node memory. It is possible that several
nodes will hash into the same unique table location, thus requiring chaining (linking)
of the nodes in the node table to find the correct node. Often this is combined with the
node memory, but in this implementation it has been chosen as a separate physical
memory. The unique table must be large to minimize hash collisions and wide enough

to hold node handles (32 bits).

5.3.4 Register file
There are two register files used in the BDD computer. Both are used during

recursive BDD operations to hold temporary node values, addresses and return codes.

Figure 17. Register File

14 NODE
2 { 3{ NODE Ky
NODE
Can be accessed depth
1, 2, or 3 nodes
at a time.

< node width >

40

They have the same width as a node but can be accessed as a moving window
which can be moved up/down by 1, 2, or 3 registers. This requires three separate bus-
ses from the register file to the functional unit performing recursive operations.
Because the number of variables used by a function indicates the depth of the BDD
graph, the number of recursive calls to reach the bottom of the graph is at most equal
to the number variables used in the BDD. Therefore, the depth of the register file
determines the maximum number of variables that can be used in a BDD. The current
implementation never accesses more than two registers at a time. There may be addi-
tional BDD algorithms that have not been implemented here that require more tempo-
rary registers during execution so the memory model was designed with some

flexibility in mind.

41
5.3.5 MakeNode block description
The makenode function of the BDD computer has access to the unique table

and node table. It is responsible for finding nodes in the node table and for creation of

all new nodes.

Figure 18. MakeNode Pseudo-Code

1: make_node(node)

{

// do not allow both edges to point to same node
2: if node.lo == node.hi then return low;

// look up the node in the unique table
3: hash(node);
4: look up node in node table

{

walk the chain of nextbdd links
until the node is found/not found

}

if found then return the found node address
// not found, so build a new node.
5¢ build new node

{

C/ get next free node from free node list
write the input node into the free node list address
return the free node list address
advance to next free node

}

It makes sure that only unique nodes are created so there are no duplicates in
the node table. Pseudo-code for make_node function is shown in Figure 18 on
page 41. MakeNode was designed as a state machine. Different points in the algorithm
were defined as states based on the function and expected effect on hardware imple-

mentation size and performance. These points are shown with bold numbers before the

beginning of the line in Figure 18 on page 41.

42
Figure 19. MakeNode FSM

fmtao 3
L)
s modemem_daiaont ko = low) ANG
odemen:_da s = tigh) AND
b {rodamaen_dotoul vl = leved)
Tetat =t
e

‘w‘ns_m = buddhandie_zwo

: Taskd, basy =1

Each of the lines noted with a bold number is one of the points in the code
which was broken down for a hardware implementation. Point 1 and 2 correspond to
the IDLE state (see Figure 19 on page 42). Point 3 in the code corresponds to the hash
state. Point 4 requires two states, findunique for the initial lookup in the unique table
and findnode if a hash collision occurs and the nodes are chained. Point 5 and beyond

is executed concurrently with the return into state IDLE. The state waitforbuild must

43

wait until the previous build (write to memory) is finished before sending the state
machine back into the IDLE state. In short, if the code after point 5 is still executing
from the previous call to MakeNode, the fsm will stall in waitforbuild. The state
machines that perform the writes to node memory and unique memory are concurrent
with the main MakeNode FSM and are shown in Figure 20 on page 43. Both are sim-
ple three state machines which are IDLE, or waiting for the memory acknowledge sig-
nal on one clock in state writenodemem (writeuniquemem) or several clocks in state
writenodewait (wrifeuniquememy). These state machines operate concurrently with
each other and the main MakeNode FSM because the node table and unique table are

separate memory structures.

Figure 20. MakeNode Build FSM

writenodeidle

reenandie_vaid g

44 -
5.3.6 Apply block description

Apply is the algorithm that performs algorithmic manipulations of the BDD
node structure to produce a result node. It is used for all 2 input boolean functions.

Figure 21. Pseudo Code for Apply (recursive - depth first)

set operation
apply(left, right)
{

2: check cache (terminal case)
fetch left and right nodes, compute arguments for recursive calls
3: res] = apply(leftarg 1 rightargl)
4: res2 = apply(leftarg2, rightarg2)
5: result = make_node(level,res1,res2)
C < 6: put result in cache
}

C < 1: check for terminal cases

7: return result of make node

Note C: available concurrency. (in a breadth first algorithm the two calls to apply can be con-
sidered concurrent).

The operation to be performed is static for a given traversal of the BDD, there-
fore, it can be stored in a register and is not required to be passed as an argument to
apply and is set before calling apply. Terminal case check, computed cache check
(CAM access) and fetch of left and right nodes from node memory can begin concur-
rently. In reality the terminal case check at point 1 in Figure 21 on page 44 is per-
formed during state warmup (See Figure 22 on page 46). The CAM is used as a cache
for intermediate computed results during the apply operation. If the arguments to
apply are not a terminal case, the CAM and node memory accesses are started concur-
rently in state CAMFIND. Though it would be possible to start the fetch of nodes and

check the cache concurrently with testing for the terminal cases, in all terminal cases

45

this would cause requests to node memory and CAM that would have to be aborted.
Also, while terminal cases are being checked the nodes that need to be fetched are
being computed and as such this calculation is complex enough that it might affect the
performance to delay the memory access until the following clock cycle, so the
accesses were moved to the CAMFIND state. Points 3 and 4 correspond to states

updatelo and updatehi respectively. Entering these states the register file window must

be moved so that temporary values can be held until the return point is reached. Point

5 corresponds to state mknode, which will wait until the mknode operation is com-

plete. When exiting state mknode, the CAM write (states writecamidle and writecam)
will begin concurrently while the main FSM moves into state RETURNCTL. The

main FSM does not have to wait for the CAM write to complete before continuing.

46
Figure 22. FSM for apply

Imknode_resulivalld 71

All of the apply algorithms in general purpose processor code use handles
(addresses) as arguments. It might make sense to have entire nodes passed as argu-
ments. There are several reasons why this was not chosen. First, fetches of the children
nodes are still required to make subsequent recursive calls. Building of new nodes
with make_node is based on the level, lo and hi handles. If the entire node is passed
without a handle, the structure of the unique table must be redesigned. These changes
to the algorithms were considered to be beyond the scope of what is needed to be

accomplished in this thesis.

47

Most of the recursive algorithms require the variable level of the children to
make a determination of the arguments for the next recursive call. It might be an
improvement to include the level of the children in the node structure. But since the
children node must be fetched anyway for the arguments to the subsequent calls to
apply, it does not offer any significant performance gains. Also, this change would
complicate the reordering algorithm and might make reordering a non-local operation.
This was not seen as a significant enough benefit to make these changes to the node

structure.

5.3.7 FreeNodeControl

This block controls the free node list. It performs initialization of the node
memory by correctly creating the constant nodes 0 and 1 and creating the free list of
nodes. The current implementation also stores the handle of the next available node so
that MakeNode block does not have to wait to return its value. It also performs gar-
bage collection. This is why it has access to the node memory and unique memory (as

well as sending control signals to the CAM not shown on the diagram)

5.3.8 Garbage Collection

In most software BDD package implementations garbage collection interrupts
the execution of BDD algorithms. This is called serial garbage collection. One of the
advantages of creating custom hardware is that different techniques can be used from

the ones used in pure software implementation. An alternative to serial garbage collec-

48

tion is paralle] garbage collection. The garbage collection algorithm to be used is
based on the parallel algorithm described by Lamport [Lamport76] and Dijkstra
{Dijkstra78]. This algorithm is designed to work with multiple processes operating on
the data structure at the same time. Thus, the BDD algorithm can continue to run while
the garbage collection algorithm operates in parallel. The goal is to improve perfor-
mance on large problems by reducing the interruptions caused by a serial garbage col-
lection algorithm. The garbage collector can use memory cycles that are not used by
the BDD algorithms.

There are some complications introduced in garbage collection of BDD nodes.
Nodes that are garbage collected must be removed from the unique table and added to
the list of free nodes. The computed cache may contain references to nodes which are
to be garbage collected. Therefore the computed cache entry must be invalidated or the
entire cache must be invalidated (and cache operations halted) before the sweep can
take place. The hardware clearing of the cache is much faster than in software.

Although garbage collection can consume large amounts of processing time,
because the cases used in this thesis are relatively small, i.e. garbage collection is not

required, it has not been implemented.

49

5.3.9 Dynamic Variable Ordering

Dynamic variable ordering is very important in any BDD implementation.
Even in specialized hardware where performance exceeds that of a general purpose
computer it is required to keep BDD sizes from becoming unreasonable and reducing
performance. As this would require much more additional research and development,

this topic has not been addressed in this thesis.

50

Chapter 6
Performance Evaluation

6.1 N Queens performance

The N Queens problem is the simplest of the previously profiled BDD pro-
grams. It also represents a cross between manipulations on a combinational logic cir-
cuit and a constraint problem, and thus, is a good choice as an problem for evaluation.

Obtaining execution time values for general purpose programs is not a straight-
forward task. The complexity of modern multi-tasking operating systems, and the pro-
cessors on which they run, make it difficult to obtain highly accurate execution time
values. There is operating system overhead involved in managing the memory space
for each running process in the system. Cache misses during execution can cause page
faults which must be handled by the OS. Dynamic memory allocation requires man-
agement by the OS. These effects are not easily quantified, thus a simple value for the
execution time of a program is not always achievable. In a multiprocessor system the
OS controls how different tasks (processes) are spread across the processors. This will
affect the operating system execution and application programs that are multi-
threaded. Also, the ability of the OS to collect execution time information is limited by
the precision of the hardware clocks available to the OS.

For the experiments performed here, all of the sample BDD applications used
are single threaded and were run on a single processor. No other application programs

were running on the system when the execution time numbers were collected. Initial

51

CPU execution times were collected using the UNIX system call clock(). This call
returns a number {of clock tics in microseconds). It is called before and after the area
of interest in the algorithm that is being simulated (see Figure 23) and the difference is
assumed to be the number of microseconds used in that part of the program. The ini-
tialization time spent in bdd_init() and bdd_setvarnum() is not included in this mea-
surement because it is not part of the time gathered from the BDD computer

simulations.

Figure 23. Algorithm for N queens

/* Initialize with 100000 nodes, 10000 cache entries and NxN variables */
bdd_init(100000, 10000);
bdd_setvarnum(N*N)
;// get the current clock number for execution time calculation
cputime = clock();
queen = bddtrue;
/* Build variable array */
X = new bdd*[N};
for (n=0 ; n<N ; n++)
X[n] = new bdd[N];
for (i=0 ; i<N ; i++)
for (j=0; j<N ; j++)
X[i][j] = bdd_ithvar(i*N+j);
/* Build requirements for each variable(field) */
for (i=0 ; i<N ; i++)
for (j=0; j<N ; j++)
build(i,j);
/* Place a queen in each row */
for (i=0 ; i<N ; i++){
bdd e;
for (=0 ; j<N ; j++)
e l= X[il{j];
queen &= ¢€;
/ }get the execution time, then calculate the difference from the time collected above
cputime = clock() - cputime;

52

The problem with this method is that it is not known what part of this number
is system time and what part is actual user program time. In an attempt to clarify this,
the unix utility time was used to gather user, system, and elapsed (wall) time for the
same set of N queens executions. Because the runs are so short and the precision of the
measurements is only accurate to one microsecond, five runs for each value of N were
performed and the numbers averaged and rounded to two significant digits.

These times are shown in Table 6, “CPU Time (sec.),” on page 52

Table 6: CPU Time (sec.)

clock()

N User System Elapsed time

4 .02 07 09 005

5 03 07 .09 .01

6 03 .08 10 02

7 .06 08 .14 .05

8 18 .09 27 17

9 96 .08 1.04 91

10* 4.86 .33 5.18 4.78
11%+ 45.09 45 45.50 45.10

* larger initial node allocation
+ Includes garbage collection time

The execution time also depends on how many nodes are initially allocated in
the unique and node table. All times were collected with 219983 nodes in the initial
table. This number is used because it is a prime number slightly larger than the number
of unique nodes generated for a value of N equal nine. Keeping the initial number of
nodes constant means that the system overhead due to initialization should be consis-

tent for all of the runs. This also means that for values of N less than nine, the general

53

purpose program could run faster than is shown here because many unused nodes are
being initialized. In a most real world problems it is hard to have a good estimate of
the number of required nodes, so a large initial allocation can help prevent large
amount of time spent in garbage collection.

The original clock() execution times are similar to the user time numbers,
though they are slightly less. This is good since they should be less than the user time
because the initialization time is missing from the clock time values. It can be seen that
the system time is larger than user time for values of N less than eight. This gives less
confidence in the quality of the execution time numbers. Eight queens is the first time
where user time is the majority of the elapsed time, and for larger values of N the sys-
tem time is less than ten percent of the elapsed time. These longer runs should have a
smaller error in the time measurements and make a better comparison to the execution
time for the BDD processor.

Some of the execution time that exists in the general purpose implementation
will still exist when using the BDD processor. The for loops and function calls shown
in the application will still need to be executed to communicate with the BDD proces-
sor and obtain the results. The access to the BDD computer might also cause the OS to
suspend the application program until the result is returned. This will create additional
system overhead that might not occur in the general purpose implementation of the
program. This overhead was not accounted for in any of the times measured here. A
more detailed implementation of the software interface as a PCI /AGP driver program

could be used in the future to perform this evaluation. The clock() time CPU numbers

54

were used in all the performance comparisons because they measure the part of the
algorithm that is also measured in the simulations of the BDD processor. The clock()
functions were strategically placed to only capture the CPU time that is the same part
of the program that was actually measured from the VHDL simulations, i.e. all initial-
ization and functions that are not accelerated are not included in the clock() times that
were collected. Only the functions that were accelerated are included in these times.
This gives the best available comparison of the part of the algorithm that is accelerated
by the BDD computer.

The only BDD specific functions that were not simulated and thus not included
in the measured time are bdd_init(), bdd_setvarnum(), and bdd_done(). Specific
implementation of initialization and termination routines was not determined, and as
was shown in Figure 9 on page 21, these functions use only a small percent of execu-
tion time as the problem sizes increase so they were not simulated (and thus not mea-
sured).

Other C/C++ program overhead of checking arguments etc. is not included in
the comparison times. This overhead will also exist with the BDD computer and will
not be accelerated. Application programs that read and write netlists from files spend a
large amount of time with this file /O. The read and write time might be a larger part
of the program than actually manipulating the BDD. In the future additional applica-
tions should be profiled to find how much time 1s spent manipulating BDDs compared
with other parts of the program. If the time spent manipulating the BDD is small, little

overall performance improvement will be seen. Only the part of the application pro-

55

gram that calls BDD functions will be accelerated by the BDD processor. The compar-
isons presented here show the performance increase of only the BDD portion of the
program. For the N queens problem the accelerated portion is over 90% of the execu-
tion time for values of N greater than 7. Thus, for programs that are highly dependent
on BDD manipulation, the BDD processor will show significant performance
improvement.

The N queens problem uses calls to only four different BDD library functions.
For the purpose of comparing the time for algorithm completion initialization (func-
tion bdd_init and bdd_done) of the BDD package is not included. This is overhead that
does not really contribute to the actual time to perform the operations on the BDD data
structure and is a linear time operation based on the number of nodes requested during
initialization. It is not included in the execution time analysis. Simulations of the N
queens problem on the BDD processor were run for values of N from four to nine. Sta-
tistics for memory accesses were gathered and the number of simulated clocks were
counted. Simulations of larger values of N were impractical because of memory limi-
tations on the host computer. The results are described below.

The simulations were run assuming all memory accesses are a single 10ns
clock cycle. This is unrealistic for very large memory implementations, but gives an
upper bound on the performance based on the number of node memory accesses.

The macro-architecture determines the distance of the BDD processor from the
GP processor and affects the latency to get all operations started. All operations in the

Co-processor model involve the CPU bus and the peripheral processor involves the

56

largest latency because it is on a peripheral bus. Both of these models must use the GP

processor to

« write the instruction and arguments to BDD processor

« read of result from BDD processor

Because the general purpose computer used is a Pentium II processor (as
described earlier in “Computing Environment” on page 19) it is also used as the model
for the GP with which the BDD processor is attached. On the Pentium Pro processor
bus, it takes a minimum of seven clock cycles to perform a complete write transaction
involving a 64 bit transfer. Also, a minimum of seven clock cycles are required for the
read transaction to get the result back into the processor. Because the BDD operations
may take considerable time, the use of a deferred read cycle would be necessary, so an
additional bus transaction to complete the deferred read is necessary. A minimum total
of 21 processor clocks are necessary to complete the transaction with the BDD proces-
Sor.

The peripheral processor configuration will have the latency of the processor
bus, plus additional time for the chip set (3 CPU bus clks) to negotiate the peripheral
(PCI) bus, and the PCI bus transaction is a three PCI clk minimum. Table 7, “BDD
Processor Access Latency,” on page 57 gives example latencies for a Pentium Pro Pro-
cessor (includes Pentium IT and Pentium IIT) and the PCI peripheral bus. The numbers
for the latency are strictly the hardware numbers and do not involve the software over-

head of the device driver that services the BDD processor. The same function call

overhead exists whether the general purpose function is being called or the driver

function is being called, so it has not been included in these numbers.

Table 7: BDD Processor Access Latency

57

Slow Fast

Architecture Pentium Pro-Bus PCI Bus Total Total

clks clks

write Chip 100Mhz | write 33Mhz 66Mhz

+read Setclks Bus(ns) } 4+read (ns) (ns) PCI 33 PCI66
Integrated 0 0 0 0
Co-Processor 21 210 0 210 210
Peripheral 21 6 270 6 90 45 360 305
Processor

This latency is large compared to the 450MHz processor, but there are a rela-

tively small number of calls to the BDD processor (See Table 9 on page 59). Most of

the work is done on the BDD processor and, it turns out, that for the larger sizes of N

the latency is only a small fraction of the actual processing time. This is shown in

Figure 24 on page 58

58
Figure 24. Latency Effects

Latency (% of execution time)

{—#—Co-Processor —# Peripheral Processor |

§0.00%

45.00% -

40.00% -\

35.00% ~ e e

30.00% .

26.00% \ \-"\"“
20.00% \
15.00%

Latency %

10.00% -

5.00% B \\\
0.00% . : ' ‘ :
7 8 9

N {Queens)

All memory access is single cycle, so it mimics a cache hit in a GP processor.
The CAM is also single cycle access for both read and write. There is no garbage col-
lection. Because the garbage collection algorithms are implemented differently, the
sizes of the memories were chosen to avoid garbage collection to make a fair compar-
ison of the general purpose algorithm and to produce estimate of the best possible per-
formance. Table 8 on page 59 shows the memory latency and size characteristics used

for the simulation. The BDD processor execution times with the latencies for the dif-

59-
ferent macro architectures are given in Table 9 on page 59. The BDD processor is

Table 8: Memory Characteristics

Latency Size

Unique 1 219983
CAM 1 32768
Node 1 220,000
Memory

assumed to operate at 100 MHz which facilitates access to SRAM which can be
accessed in less than 10 ns. Figure 25 on page 60 shows the execution times from
Table 9 relative to the GPU execution time. All values have been normalized so the
GPU execution time is one. This shows that the implementation, described here using
SRAM as the memory of choice, can achieve greater than 7x performance increase

over the GP processor for all tested values of N.

Table 9: N Queens BDD Execution Times

BDD Approx.
processor GPU
N || BDD Calls clks Execution time (ns) execution
(mith apply 100MHZ Integrated Co-Processor Peripheral
var Processor
4 32 540 17358 173580 293700 379500 NA
5 50 1090 61733 617330 860930 1034930 10000000
6 72 1926 146709 1467090 1886670 2186370 20000000
7 98 3104 621311 6213110 6885530 7365830 50000000
8 128 4696 2362891 23628910 24641950 25365550 170000000
9 162 6752 11337491 113374910 114826850 115863950 910000000

0.16

0.14 4

0.12

0.3

0.08

GPU=1

0.06

0.04

0.02

Figure 25. BDD Execution Time (SRAM)

Normalized Execution Time

N (Queens}

60

QL a-Processor
W Peripheral Processor |

Because there is single cycle memory access, the node memory is busy less

than 31% of the time for all values of N. The unique memory and CAM are each busy

less than 10% of the time. If single cycle access memory is possible, this architecture

is very memory inefficient. CAM accesses can be concurrent with other accesses so

are not a limiting factor. Unique reads occur sequentially before the node access so

must be combined with node memory access to calculate the performance limit of this

memory architecture. Figure 26 on page 61 shows the execution time using these

assumptions. It can be seen that performance can be almost 20 times faster (for N = 9)

than the same algorithm run on a general purpose processor which has a clock rate 4.5

61

times higher than the BDD processor. This is the best performance possible using sin-
gle cycle memory access with the sizes specified inTable 8 on page 59.

Figure 26. Best BDD Execution Time

Normatlized (Best) Execution Time

0.08

0.07

0.06

0.05
- Bintegreted
o 0.04 | | B Co-Procassor
o

CIPeripheral Processor

0.03

0.02 {—

0.01 4

N {Queens)

By changing the node memory to 60 ns DRAM and assuming a realistic cache
access of 30 ns, the execution performance drops noticeably but is still almost 3x
faster than the GPU for all values of N. The execution times are approximate based on
the assumptions described here. Since all memory writes occur in parallel with other
execution, the current design mask 30ns of all writes to node memory. CAM hits will
mask reads to node memory. For every CAM hit in apply, it masks 2 of the node mem-
ory reads. For every CAM hit in applynot, it masks 1 node memory read. Adding addi-
tional 2 clks/node write, 5 clocks for non-CAM-masked read, 3 clocks for CAM

masked reads give new normalized execution times shown in Figure 27 on page 62.

62
Figure 27. Estimated BDD Execution Time (DRAM Memory)

KNomalized Execution Time 2

0.4

0.35

0.3 4

0.25

0.2

GPU=1

B Co-Processor
W Paripheral Processor

0.1 4

0.05 1

N (Queens)

6.2 Conclusions

One of the major considerations used during the work on this project was cost
containment. The possibility of building the design economically using current FPGA
and memory technology drove the decision to use a 100MHz clock frequency for the
BDD processor. The second reason for that choice was the interface to current Pentium
Pro processor technology which has a 100 MHz bus frequency. As has been shown,
the latency of the interface to the processor is small in proportion to the actual time
spent executing the algorithm, even when slower interface methods such as PCI bus
are considered. Therefore the host processor bus speed should not be an overriding

consideration when choosing the clock rate of the BDD processor.

63

All of the comparisons in this paper are based on a general purpose processor
clock rate of 450MHz. There are now 1 GHz processors available which should give
roughly double the performance of the 450MHz processor used in this paper. As gen-
eral purpose processors gain performance and 64-bit operating systems become preva-
lent on engineering workstations within the next several years, they could readily
outpace the performance obtainable on a dedicated BDD processor. To make the BDD
processor a viable alternative to a general purpose processor, even higher performance
of the BDD processor than has been shown here is needed . Additionally, the memory
capacity of the BDD processor must be large, this might necessitate the use of some
form of DRAM as a size and cost savings measure. This could severely impact the per-
formance making the specialized architecture undesirable. There are many obstacles to
overcome to make a specialized BDD processor architecture a viable addition to an

engineering workstation users environment.

6.3 Improvements and future work

This thesis is not the end, but describes a possible starting point for exploration
of specialized hardware for fast execution of BDD algorithms. The design used in this
thesis is very simple. It is nearly a direct translation of the software algorithms and
only begins to scratch the surface of an efficient hardware implementation. It could
serve as the basis for further explorations into architectural issues specific to BDD
algorithms. There 1s much work that could be done to improve performance, including

exploration of different micro-architectures, implementation of breadth-first and paral-

64

lel BDD algorithms, different pipeline and memory structures and, because ASIC
technology is capable of very high performance, higher clock rates must be consid-
ered.

In order to make the design specialized hardware more flexible, a programma-
ble micro-architecture should be investigated. Using memory to store micro-programs
and redesigning the BDD processor to execute these programs has two immediate ben-
efits, upgrade ability and expend ability. For patches and upgrades to the BDD algo-
rithms, problems in the micro-code can be easily fixed by loading it into the
microprogram storage. Additionally, new and experimental algorithms could be imple-
mented and tested without having to redesign the hardware.

Other BDD algorithm implementations such as BDDs with complement edges
and breadth first execution of BDD algorithms should also be investigated for addi-
tional performance improvement. These algorithms have shown improvement on gen-
eral purpose processors and should also show significant performance improvement in
hardware. Parallel BDD algorithms are also a leading candidate for hardware imple-
mentation because specialized hardware can implement parallelization much more
effectively than a network of general purpose computers.

Several key aspects of BDD manipulation have not been investigated in this
thesis, two are garbage collection and dynamic variable ordering. Both of these issues
must be investigated in detail. Concurrent garbage collection offers an opportunity to

significantly improve the performance on large BDDs by utilizing unused memory

65

bandwidth rather than interrupting algorithm execution. Dynamic variable reordering
must be implemented for a complete and usable BDD system.

The memory models used for the experiments in this BDD processor are quite
simple. The commercial CAM technology used for the computed cache is currently
limited in size and performance. Other CAM and non-CAM implementations need to
be considered. Interleaving of the node memory for higher performance (possibly
based on the position of a node in the order of variable) may also give improved per-
formance. Combining the node and unique memory will save I/O and might not cause
significant performance penalties depending on the node memory speed. This will also
allow a much larger unique table, thus reducing collisions during node lookup and
improving performance. Using a memory to cache nodes could also be investigated,
but because of the studies showing the unpredictable nature of BDD node access the
cache might have to be larger than is practice.

The use of a micro-architecture simulation environment would allow studies of
the hardware performance. This was done with VHDL in this thesis but other imple-
mentations in C++ or Verilog HDL might be better. Instrumenting existing general
purpose BDD packages to do performance analysis might also give additional insight
into what kind hardware structures are required for best performance. There is still
much work remaining to be done to study and design an efficient specialized BDD

computer architecture.

66

References

[Aho86]. A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and
Tools, Addison Wesley Publishing, 1986.

[BuDDy99]. J. Lind-Nielsen. BuDDy: Binary Decision Diagram package, Release
1.7, Documenation. Department of Information Technology, Technical University of
Denmark, June 1999.

[Becker97]. B.Becker, R. Drechsler. "Decision Diagrams Synthesis - Algorithms,
Applications and Extensions -," Proceedings of VLSI Design Conference, pp. 46-50,
IEEE, 1997.

[Bertacco97]. B. Bertacco, M. Damiani. "The Disjunctive Decomposition of Logic
Functions," Digest of Papers of ICCAD, pp. 78-82, IEEE, 1997.

[Brace90]. K.S. Brace, R.L.Rudell, R.E.Bryant. "Efficient Implemenation of a BDD
Package," Proceedings of Design Automation Conference, pp. 40-45, ACM/IEEE,
1990.

[Bryant86]. R.E. Bryant. "Graph-Based Algorithms for Boolean Function Manipula-
tion," IEEE Transactions on Computers, vol. C-35, pp. 788-701, Aug. 1986.

[Bryant95]. R.E. Bryant. "Binary Decision Diagrams and Beyond: Enabling Technolo-
gies for Formal Verification," Digest of Papers of ICCAD, pp. 326-243, IEEE, 1995.

[CAL97]. R. K. Ranjan, J. V. Sanghavi. The Cal package, Documentation. University
of California at Berkeley, 1997.

[Chang96]. S. Chang, M. Marek-Sadowska, T. Hwang. "Technology Mapping for
TLU FPGA'’s Based on Decomposition of Binary Decision Diagrams," IEEE Transac-
tions on Computer-aided Design of Integrated Circuits and Systems, Vol. 15, No. 10,
pp- 1226-1236, IEEE, October 1996.

[Chen97]. Y. Chen, B. Yang, R.E.Bryant. "Breadth-First with Depth-First BDD Con-
struction: A Hybrid Approach,” Carnegie Mellon Univerisity CMU-CS-97-120,
1997.

[Cho94]. H. Cho, G. D. Hachtel, F. Somenzi. "Redundancy Identification/Removal
and Test Generation for Sequential Circuits Using Implicit State Enumeration,” IEEE

Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 12,
No. 7, pp. 935-945, IEEE, July 1993.

67

[Cortadella99]. J. Cortadella, G. Valiente. A Relational View of Subgraph Isomor-
phism. Research Report LSI-99-33-R, October 1999, Technical University of Catalo-
nia, Barcelona, Spain.

[CUDD98]. F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3 docu-
mentation, Dept. of Electrical and Computer Engineering, University of Colorado at
Boulder, 1998.

[Dijkstra78]. E.W. Dijkstra, L Lamport, et. al. "On-theFly Garbage Collection: An
Exercise in Cooperation," Communications of the ACM, Vol. 21 No. 11, pp. 966-975,
November 1978.

[Drechsler98]. R. Drechsler, N. Drechsler, W. Gunther. “Fast Exact Minimization of
BDDs," Proceedings of Design Automation Conference, pp. 200-205, ACM/IEEE,
1998.

[Huang98]. Shi-Yu Huang, Kwang-Ting(Tim) Cheng. Formal Equivalence Checking
and Design Debugging, Kluwer Academic Publishers, 1998.

[Hachtel98]. Gary D. Hachtel, Fabio Somenzi. Logic Synthesis and Verification Algo-
rithms, Chapter 6. Kluwer Academic Publishers, 1998.

[Intel96]. Intel 1440BX chip set specification. Intel Inc. 1996.

[Lai94]. Y. Lai, M. Pedram, S. B. K. Vrudhula. "EVBDD-Based Algorithms for Inte-
ger Linear Programming, Spectral Transformation , and Function Decomposition,”
IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems.
Vol. 13, No. 8, pp.959-975, IEEE, August 1994.

[Lamport76]. L. Lamport. "Garbage Collection with Multiple Processes: An Exercise
in Parallelism," International Conference on Parallel Processing, pp. 50-53, IEEE,
1976.

[Long97]. D. E. Long. "The Designs of a Cache-Friendly BDD Library,"” Digest of
Papers of ICCAD, pp. 639-645, IEEE/ACM, Nov. 1998.

[Klarlund96]. N. Klarlund, T. Rauhe. "BDD Algorithms and Cache Misses," Basic
Research in Computer Science Report Series RS-96-26, pp. 1-15, The Danish National
Research Foundation, July 1996.

[Manne97]. S. Manne, D. Grunwald, F Somenzi. "Remembrance of Things Past:
Locality and Memory in BDDs," Proceedings of the Design Automation Conference,
pp. 196-201, IEEE/ACM 1997

68

[Milvang98]. K. Milvang-Jensen, A. J. Hu. "BDDNOW: A Parallel BDD Package,"
Formal Methods in CAD, 1998. Lecture Notes in Computer Science, No. 1522. pp.
501-507, Springer, 1998.

[Minato96]. S. Minato. Binary Decision Diagrams and Applications for VLSI CAD,
Kluwer Academic Publishers, 1996.

[Narayan98]. A. Narayan. "Recent Advances in BDD Based Represenations for Bool-
ean Functions: A Survey,” Proc. of 12th International VLSI Design Conference, pp.
46-50, IEEE, 1999.

[Panda95]. S. Panda, F. Somenzi. “Who Are the Variables in Your Neighborhood,”
Digest of Papers of ICCAD, pp. 74-77, IEEE/ACM, 1995.

[Ranjan96a}. R. Ranjan, J.V. Sanghavi, R.K.Brayton, A. Sangiovanni-Vincentelli.
"Binary Decision Diagrams on a Network of Workstations,” Proceedings of IEEE/
ACM International Conference on Computer Design, pp. 358-364, ACM/IEEE, Oct.
1996.

[Ranjan96b]. R. Ranjan, J.V. Sanghavi, R.K.Brayton, A. Sangiovanni-Vincentelli.
"High Performance BDD Package Based on Exploiting Memory Hierarchy," Proceed-
ings of 33rd Design Automation Conference, pp. 635-640, ACM/IEEE, 1996.

[Rudell93]. R. Rudell. "Dynamic variable ordering for ordered binary decision dia-
grams,"” Digest of Papers of ICCAD, pp. 42-47, Nov. 1993.

[Sekine97]. K. Sekine, H. Imai. "Counting the Number of Paths in a Graph via
BDDs," IEICE Trans. Fundamentals, Vol. ES80-A, No. 4. pp. 682-688, April 1997.

[Sentovich96]. E. M. Sentovich. "A Brief Study of BDD Package Performance.” For-
mal Methods in CAD 1996, Lecture Notes in Computer Science 1166, pp. 389-403.
Springer, 1996.

[Shanley95]. T. Shanley, D. Anderson. PCI System Architecture. Mindshare Inc. Add-
1son-Wesley, 1995.

[Shanley97]. T. Shanley. Pentium Pro and Pentium II System Architecture. Mindshare
Inc. Addison-Wesley, 1997.

[Stornetta95]. A. L. Stornetta. "Implementation of an Efficient Parallel BDD Pack-
age", Masters Thesis, University of California, Santa Barbara, Dec. 1995.

69

[Stornetta96]. T Stornetta, F. Brewer. “Iﬁiplementation of and Efficient Parallel BDD
Package,” Proceedings of 33rd Design Automation Conference, pp. 641-644 ACM/
1EEE, 1996.

[Villa97]. T.Villa, T.Kam, R.Brayton, A. Sangiovanni-Vincentelli. "Implicit Formula-
tion of Unate Covering,”" Synthesiss of Finite State Machines: Logic Optimization,.
Chapter 10 pp. 301-321, Kluwer, 1997.

[BYang98}. B. Yang, R.E.Bryant et.al. "A Performance Study of BDD-Based Model
Checking,” Formal Methods in CAD 1998, Lecture Notes in Computer Science 1522,
Pp- 255-290, Springer, 1998.

[CYang98]. C.Yang, V. Singhal. M. Ciesielski. "BDD Decomposition for Efficient
Logic Synthesis." Proceedings of International Workshop on Logic Synthesis, pp. 2-4
1999.

70

Appendix A

Visual HDL Diagrams and VHDL Source Code

This appendix shows the entire design that was created using Visual HDL from
Summit Design Inc. It includes a graphical representation of the design hierarchy used
for the tests in the thesis as well as all of the VHDL. source code generated using
Visual HDL. Because Visual HDL is a graphical tool, much of the design context is
lost when looking at only the machine generated code. The source graphics contain
design information and comments that are not included directly in the machine gener-
ated code. This information which is not visible on the diagram, may/may not appear
in the generated source, but the generate code is complete and could be used in any
VHDL simulation system.

The top level testbench used for simulation is the entity testmknodeblk. This
instantiates the design and the testbench N-queens algorithm. The entire hierarchy is
shown graphically below followed by the graphical diagrams for each block. Finally
the source code is given. The modules (entities/architectures) in the source code are
listed in a bottom up order as would be needed by any VHDL compiler to resolve the

dependences.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

List of Figures
Design Hierarchyccocooiiviiiiirieee e, 72
TESTMKNODEBLKooooviiiiiiiiiieeecee e 73
MEKNODEBLK ..ot 74
APPLYBLEK e 75
MEMUCTRL. ..ot 76
UNIQUEMEM......cooiiitiiieiieecereeenrteree e 77
MEKNODEFSM ..ottt 78
APPLY_NOT.TOP......coooiiiiieete e 79
APPLY_NOT.CAMFINDcccooviiiiiiiieniieneeeieee 80
APPLY.TOP ...t 81
APPLY.CAMFINDcccooiiiiiiieie e 82
FREENODECNTL ..o 83
CAM et 84
HANDLESTACK ..ottt 85
BDDSTACK ...t 86

71

72

Figure 1. Design Hierarchy

© bddib: testmknodeblk{v1 13}
{ofriw/c)bhia

@ bddlib: mknodeblktestbenoh{v1 9}(mknodebktestbench)
{ofr}

[« bddlib:mknodebktestbench{Nqueen){mknodebktestbe

@ bddiib:mknodebk{v1.14}{(C1)

(ofrfwlcy bt

bddlib: mknodefsm{v2.2}(mknodectri)
(irwi ety

bddlib wka(wka)

bddlib:uniquemem{v2.3}{uniqguemem)
(O.’[rj}

bddlib: memctr!{v4.2}(nodememory)
{Clfitwicibhatt

bddthPPLYBLK{w T}APPLY_BLK)
(Oa x}

bddlib APPLY_NOT{v24}{APPLY_NOT)
(ofrfwic bhaty)
bddlib: TOP{TOP)

bddlib:CAMFIND(CAMFIND)

bddlib:apply{v2.4}{apply)
(ofrfwicibhatt]
bddlib:TOP(TOP)

bddlib:CAMFIND(CAMFIND)

° bddiib: freenodeontl{vfz 2}{freenodecntrl)
(ofrfwic)bhatt
T @ bddhb handlestack{v 1.1}{resultstack)
o/r)
bddhb bddstack{v1.4}{callstack)
47 (o)
€ Pddib:cam{v2.4}(cam)
=7 (o)

73

Figure 2. TESTMKNODEBLK

jinsaiAidde

T TN AT: 5

——
auopIsel

JInsaAdde

pliea yinsaiAjdde

& pijeA” ajpueyaaly 10 ! Eo}&w.wmv%:w umm ofleqisepiigapowiw O pieA 9|putydY
pPlEAnsar apowI piealinsel apoww
» }insaJ” spoudw ol ynses spowj .
T $3G0NH0LNO e S3GONIOINO -
B SIAONNOMO1 Wi S3AONNOMOT
yby
181
Ao
£86612 <= au_ww:cm::.~ !ﬂg
000022 <= 6ZI5We0
(122 <= 9ZISWBWaDpoy

o= feineu N JUelsuod
0= emnieu : ARBPULIBLIBPOU JUBISUCD
‘sU QL = ew : pousdyip Wesuco

74

Figure 3. MKNODEBLK

conturs P man Ao et
[t iy P ——
.

ey <

75

Figure 4. APPLYBLK

|

g i
Hil

{4l 5
etk
HH i il
il
g;
]

s 1t B {
il 1 |
HEH H

76

Figure 5. MEMCTRL

T
¥iE

3
3
;;s

H

i
i
|
3

1

gsg : I‘:yu'”'
i
5

§EEER

B
83
.f:ﬁfé

TYEET]

i
R

5

i s:gié j
S&“g
gig%’}

i

H

3

‘g -
el

!

feppe-pod = wou~gped
K "UOG ¥ 0 200
{hwyodd » wou ™00,
P 2 pSARYD
BN 0, WS S I 5, &> et
Koo o5 o g e -
oy

w00t piaw
" 1
B g

g dify
x_-si.o%“hﬂ-“ofﬁ“:
o Soaccir yoms £ B

) e

g
LDl = ORI
P -

e
WD »: {ESRInOES

wyi
RGO, w S E0 |
LT,
) - OTI0GI 00 DI OBATDOR il
THONEIMT] U A “aNs DIe; “erieuw) Weecoxd]

ey

77

inoeep = noelep” Luod
‘paiusws|dill 6q 1SNW BIEM/PESS 10} BNJBA

,mmmmo.a pue Aejep ey 4t UOHEBIBPISUOD BININY
\ m: pus 10} BISY 1oy 818 SJUM pue pes:
{(SSeIppE) WO => So.wummm 10} sucHisues) eleiedes om) ey}
peo)--
ospp
‘urejep =: {sseippelwsw
BJIM--

42y} g, = slum peel jt

usyy, |, = 8|qeus ji

‘0iszZ BjpueyYppg => JN0BIRp -
uiiaq

{1 - 921Is9nbiun 0] O} TOBATOIPUBYPRG | WS BIGBLIEA
{urelep ‘SSeIPPE 'S1UMTPESI ‘B|qRUS) $S600.d
‘wewanbiun
Alowaiu [euisixe Ue Juasaldel UBD) jey) 08 --
WUN Sil) JO OPISING POACW aq 0} SABY «-
SISBYIUAS 810j2q) AJENIUSAS [IIM SIY) -
e e e e ‘weep” Lpod => upgiep

]
‘olumTpess => Apeeleiep” | pod|
m 10, => oM pESS
; A R

AN
L om0 =ML

Figure 6. UNIQUEMEM

SIUUDISS Y] ‘ejpuey” LUod => sseippe
su| Jsye i, => 8|qeus
sindut Alowsew syl dn 188 --
L1, => qoe” Luod

L1, = AsngLuod

o 3] ==

‘elum pess => Apreselep” L uod
‘1, => DM PEBS

10 => uejep

(D =» ssaippe

L0, => eyqeus

L1, => 8lum T pee!

Asowisi O} SIOAUP B 1858 --
AR I

“90As %0010 8191dWOS B 205 PISY 8q 1snw sindu) |y
'p81e1duIn0 uesq SBY BIUM Byl 10

nding ey 1@ pifea S| B1eN Byl SEIBIIPU NIV ‘PRSI B U0
“Aeep o yiw Alowew Bioho Mmc_u ¥ 85U

“Apees st elep syl ey bunesipu ybiy

b i rulis soe By; ‘paABINe S| isanbes B UBUM

78

Figure 7. MKNODEFSM

AR
P
CIRYGpuED « froeten wnban
e BUNAHOALIVA
_ D, b g
.‘
AN
0
- AR A
O
- ol
Om®,
B el ot
A

https://a.1nilJ.t1

79

Figure 8. APPLY_NOT.TOP

“aodous o> puci e
OO IS8 i 0k
g > 4 W
NN I O PO A
IS OAI0 PU L4 PAL LAIE)
roemy ow o o oy
WAPORD R > W EOON
U o syt
Socami s -
i o sy,
.; v iedee
W R OHK JRIO -
[
AN * FONIS)
w f_u!.an.s!M
T e]
o e > opupe)
Dons o> uc”
A0 [9P0r O YoM 0 958
-l
.gss..nax TR
,.\.t)/
}. » Pernes o wrzr ()
AT oy g |
UM s

80

4N0BIeR” WOWIBPOL => eRoUED0)
10, => senbsi wauepou
L

N

20128ULI0D X8 O} UCRM] WGl D18 MO|(E JOU
{liM [BNSIA BSNBOSG BI6Y SI LOIISURI SI | | INORIED "WeLLIePOL) => SPOUIEI0E

_ 1| + sSrueoouddy =: mmEEwu.acn%m

4 lwr.ovc.ao

ONY |, = piIeABIEp Wwewepou
ANV 1, = 0BT Wwewepou

UoROUN] BU: JO 10 BLIOD PINOUS 3 =

. APPLY_NOT.CAMFIND

1+ Wpuesioudde = EESE:%»

nsar wes = mseueas)

L, = peaynses”wes;
NV 1, = 0BT wesy

Figure 9

ANV .4, Q.mZBmQ uwed
ONY 1, = ¥or weo

|
xcoﬁicovmoa.ago_ooaﬁ:zmc => EPIBI_Weo
i I PIBYUIRD => 2pIeYTWeD
‘8|pURYIE0D] => LDIBY_Wed
{puy) EE 11, => mTwes

/ 10, => yoanbes Eovaoc

oL, = pleABiEp” WML pOU

a0y vunnv uielep” WeLspou
v&m_ -4, = AL
* 5, = 156nbes™ Eoc.wnﬁ.
) => apuey L
E§Eo§o~ﬁ§§ua:~3
- Gl

81

Figure 10. APPLY.TOP

82

Figure 11. APPLY.CAMFIND

T3 DIOU I 3 08 0, B DrRee DS B
u‘za.tﬂsagl‘:?nghﬁis!v

ﬂ!t}_x“gggagﬂ.l

LR 11005 S PN IXP BU LIOKE WAL WBD § B S04 4

83

Figure 12. FREENODECNTL

84

Figure 13. CAM

¢ PIORWERS Ui UNINS81"uIeD)]

£ DIOYUWED Ut : £PIBY RO

L plBWRI Ul ; ZpisYyTwed

* DIBjUIBD L1 {prBY Twes

< i50["PIS INO © PURO)UED

£ 5iB0[PIS 100 ¢ PREAINSD “WeS

I pieywes o : INses Wi

0, uBwUBISSY Iinejaq - H60IPIS 100 © ASNGTuiED)
0, uswubrssy ineeq - oIfio]pIS 1o © XoB_Wes
> ool pis u T wes

+ oifloi s Ut ysenboswes

i pus
10, => PUNOy WED
CIEZ TP BYLUBD = JINS6s
os@
LB, ®> jpunofTwes
SpIoY (PUNOJISSPCLI B => MNSES
it puniag -~ usy} (0 =7 punopjt
‘{punocy spoudu)weunpuegRIYsSeyY
{0 <= BpOUNAU'(<= XBPUY'(<= USBY
"pie= PPIBN'TI<= EPIY'2) <= ZDIBII' L) <= (piaY) =i spoutuy
pess - uay} (1, = pjum pees)y
0 =: punoj
uay {1, = ejjeun) j51e
L0, => pUnoy Twed
*{eisBW WA NIBIAEIUSEY
10802 uf - uaig (0. =183} gt

wbey
‘|esten : punoj B|qeLEA
‘-apounses ¢ spoudwl BjqeLIEA
TTO|0RIUSBYLIED | WO GIqRURA -
(o1qeue’iss) ss8001d
(L1'E)Z) |} 'S DRS) ‘2 1QRUeTISl) §50001d--

Arowsiu 21I01X8 UR JUeSoxds) VB It e U8 -
HUN SIyL 4O BPISINT POADL 8Q O BABY -
SISBUIUAS BI016QG) AIBniuBaa fim SILg -

sjuswiutissy

DESI -

* oiBoI"pis ut 118
{ BOIDS < D)
ooepapl
188650:d pue 07> m.:wauam
pus LSS -4 St
usluluesaim
ueyl {Weasium " di
uifiaq, S >
{wesejum dissaxd
5580044 pus!

unnsesTwed => ¢y

, Epiel wed => £y

L Wpul Zpiey_wes =» 2§

Jipus _ _ A pleyTwes =

, N PUNO) WD = > PUNO| RS 18U § JBJE 0, ‘SUL JBYE |, => BiqHUS

10, => punojTwe? ynser => ynses wed Singuy AIOWBLW 8y; 9N 185 -«

P punoyep t L1 => pIeANNSSs Wed 11, => HOBTWED

*810U Ausaes piqelusey wes o] sium Ouiop, uoda ase; Jesse T4, => 8l pess L1, => AsngqTwed

H{punoy” 3 Ypu “Alowaw oy} pees o] Seyel Ayenioe i -- - of -

K ‘W) Aeipp oy} 8yRl ADES) PUE BIED BI) 165
{0 <= BPOUINBLIQ <= XSPUI'Q Mn ysey d bt % Nl
Fi<= pRIOYTI<= E0IBY'2) <= ZRIBY'L) <= (Di9Y) = spoudui] = "
QM - 615 syi\ii.,w. 21900 W2

= MJTWIED

O S MI e

‘0487 PIBYUIRY => ¢}

‘0187 PIOWED =)

‘piez pieywes =» 2
10I827PIBURD => §)

1,0, => BUNOJ Wed

L0, => aqeus

L => SlumTpEs)

AIoWsw o} $18AUD 1B 1958 ~
o 4 9 N

85

Figure 14. HANDLESTACK

L0, = gy s Py

B0 puz

&

ﬁL_j

P
L3, = Qdwe v
‘dooy pus
losBZTspuBupeg = (I0els
docy £usn
sfuernoeis W {10
E

10 = peey

1D => 863 4+ L)

sio10 b
% A

Py
Zysn
S
doghioejs
ysndxosis
f 3 4 A

@
-

; /

sjuswiere 8641 40} SUI MOYUS SABMIE i SIndine 685G eyl
-Aereudosdde jepnod Xouv)s ey sjueusioy isnf Suy)
‘puBwIwIeS ¥IB)s sieudoidde Byl yuM

paddod so peysnd eq ued sjusiusie seag 10 '0M) 'BUD
ine spod sely; pue o spod esny) gy SIYL

&

g

b, ® M2 PUR JUBAB D

“Thia has theee pons in end Bhree ports o,

orw, twe, or Swoe siements can b sishad o popowd
Wittt frue spproprista stack comenanct.
?Etﬂg.wsii‘!?ﬂ.h&

The Free oulputs wil siways show the top sarvunts

othary

¥

MOVLSAdY ST 2an3iy

93

--YHDL. code written by Robert Hatt for
~Masters Thesis at Portland State University

-- Date :Thu Apr 6 13:01:13 2000
-~ Author : BobHatt
- Company : PSU

-- Description : Package of data types and
--functions to be used for bdd manipulation

library ieee;
use ieee.std_logic_1164.all,
~- use jeee numeric_std.all;

package kernel is

-- subtype bddhandle is UNSIGNED(31 downto 0);

-~ subtype hashkey is UNSIGNED(31 downto 0);

-~ subtype vantype is UNSIGNED(31 downto 0);

- constant uniquesize_c¢ : UNSIGNED(31 downto O);

constant bddmemsize : natural := 100000; --3024%1024;
constant bddvarsize : natural := 1000;

constant bdduniquetablesize : natural := 50003 ; --500997; --311;
subtype bddhandle is natural; -- range 0 to bddmemsize - 15
subtype bddvar is natural; -- range 0 to bddmaxvamum - 1;
subtype hashkey is natural; --77 range 0 to bddunighashsize ~ 1;
subtype gc_tis natural; —- range O to 3 777

constant hashkey_zero : hashkey 1= 0;
constant bddhandle_zero : bddhandle = 0.
constant bddhandle_one : bddhandle :=
constant bddvar_zero : bddvar = 0;
constant bddvar_max : bddvar := bddvarright; -- this will need to
change for vectors

constant bdd_minhandle : bddhandle := 2;

constant bdd_maxhandle : bddhandle ;= bddmemsize-1;

constant gc_zero : gc_t:=0;

y

--type bdd_t;
type bdd_t is record
level : bddvar;
lo : bddhandle;
hi : bddhandle;
nextbdd : bddhandle;
geige t;
end record;
constant bdd_t_zero : bdd_t :=
(bddvar_zero,bddhandle_zero,bddhandle_zero,bddhandle_zero,gc_zero)

constant bdd_t_init : bdd_t :=
(bddvar_max,bddhandle_zero bddhandle_zero,bddhandle_zero,gc_zero)

+

type bdd_vec_tis array (natural range <>} of bdd_t;

function hash2(a,b : bddhandle) return hashkey,;
function hash3(a,b.c : bddhandle) return hashkey;

function bdd_hash(b : bdd_t ; prime natural) retumn hashkey;

type bddhandle_vec_t is array (natural range <>} of bddhandle;
type bddhandle_vec_a is access bddhandle_vec_t;

~ return codes for recursive calls
constant returndone : gc_t := 0;
constant returphigh 1 ge t:=1;
constant returnmknode @ ge_t:=3;

-- stack emds

87

~-- subtype stackemd is std_logic_vector(] downto 0);

-~ constant stackpushi : std_logic_vector := "01°;

-~ constant stackpop : std_logic_vector := "10";

type stackernd is (stacknop,stackpush,stackpush?,stackpush3 stack-
pop,stackpop.stackpop3);

type booleanop is

{booleanop_zero booleancp_and booleanop_greater, booleanop_three,bo
oleanop_less.booleancp_five,

booleanop_xor,beoleanop_or,booleanop_nor,booleanop_biimp.bocleano
p.ten,booleanop. revimp,booleanop_not,
booleanop_imp,booleanop_nand booleanop_fifteen);

- subtype booleanop is UNSIGNED(3 downto 0);

-« constant booleanop_zero : UNSIGNED = "0000",

- constant booleanop_and : UNSIGNED = "0001™;

-- constant booleanop_nand : UNSIGNED = "110%

-- constant hooleanop_or : UNSIGNED = "0111";

- constant booleanop_nor : UNSIGNED == "1000™;
- constant booleanop_xor : UNSIGNED := "01107;
-- constant booleanop_imp : UNSIGNED := "1101";

- constant booleanop _biimp : UNSIGNED = "1001";
-+ constant booleanop_revimp 1 UNSIGNED = "1011";
- constant booleanop_greater : UNSIGNED:= "00107;
- constant booleanop_less : UNSIGNED = "01007;
- constant booleanop_not : UNSIGNED := “1100";

constant bddcamsize : natural := 65536; -- 64k x 136 bits wide
subtype camfield is natural; -- same size as handle?

constant carnfield_zero : camfield = 0;

- type camnode_t is record

-~ fieldl - natural;

- field2 : natural;

- field3 : patural;

-- field4 : natural;

-~ result : natural;

-- previndex : natural;

-- nextindex : natural;

- index ; natural;

-- end record;

- type camnode_vec_t is array (natural range <>} of camnode_t;
-« constant camnode _1_zero ; camnode_t := (0,0,0,0,0,0,0,0);
end;

-- Date

-~ Author

- Company

- Description

: Thu Apr 6 13:26:57 2000

- library icee;
- use jeeg.std_logic_1164.all;
- use jeee.numeric_std.all;

package body kernel is

— constant uniquesize_c : UNSIGNED(31 downto 0) := X"0000001f";

function hash2(a,b : bddhandle) return hashkey is
begin

rewrn ((((a+b) * (a+b+1)M2) + a);

end hash2;

function hash3(a,b,c : bddh
begin
returnthashZ¢hash2(a,b).c));
end hash3;

dle) return hashkey is

function bdd_hash(b : bdd_t; prime : natural} return hashkey is
begin
refurn(bash3(b.level,b.Jo,b.hi) MOD prime);

end bdd_hash;
end;
- Date : Mon May 15 11:13:50 2000

- Author : Bob Hart

- Company : Portland State University

-~ Description :

library work;
use work kernelall;

package campkg is
-« cam size is specified in kernel
-~ constant bddcamsize : natural = 251;

type camnode_t is record

field] : patural;

field2 : natural;

field3 : natural;

field4 : natural;

index : natural;

hash : natural;

nextnode : natural;

end record;

type camnoede_vec_t is array (natural range <>) of camnode_t;
type camnode_vec_p is access cammode_vec_t;
type cambashtable_t is record

size : positive;

freeindex : patural;

nodes : camnode_vec_p;

full : boolean;

init : boolean;

end record;

constant camnode_t_zero : camnode_t := (0,0,0,0,0,0,0);
-- procedure hashtableinit(table ; inout camhashtable_t);

heahloing Tnch

procedure h table : inout ble_t; size : in positive);
procedure hashtablefind(table : inout camhashiable_t;node: in
camnode_t:found:out natural);

procedure hashtableremove(table : inout camhashtable_t;node: in
camnode_t;found : out natural);

procedure hashiableinsert(table : inout camhashtable_t;node: in
camnode_t);

procedure writecamnode(index : integer;node : camnode_t);

procedure writecam(table : inout cambashtable_t);

end;

«- Date : Mon May 15 11:14:01 2000
-- Author : Bob Hant

- Company : Portland State University

- Description :

use std.textio.all;

package body campkg is

procedure hashtableinit(table : inout camhashtable_t;size : in positive) is

begin

if(NOT table.init) then

table.size ;= size;

table nodes := new camnode_vec_t(] to size);
for i in table.nodesYange

loop

table.nodes(i) := camnode_1_zero;
end loop;

table freeindex .= table.nodeslow;
table.init 1= true;

table.full .= false;

end if;

end hashtableinit;

procedure hashtabledelete(table : inout camhashtable_t) is
begin
deallocate(table.nodes);

end;
procedure hashtablefind{table : inout camshashtable_t;node: in

camnode_t; found:out natural) is
variable hash,index nextfree previndex | natural;

begin
hash = (hash3(node.field1,node field2, node field3) MOD
table.nodeshigh)+1;

index := table.nodes(hash).index;

-- walk the list until you find one that matches the node,

found = 0;
while(index /= 0)
loop

if(table.nodes(index).field! = node.fieldl AND
table.nodes(index).field2 = node.field2 AND
table.nodes(index).field3 = node.field3} then

- this is the one to remove

found := index;

return;

-- exit the joop

end if;

previndex 1= index;

index:= table.nodes(index).nextnode;

end loop;

return;

end hashtablefind;
procedure hashtableremove(table : inout camhashtable_t;node: in

camnode_t:found : out patural) is
variable hash.index nextfree,previndex : natural;

begin
hash := (hash3(node.field] node field2,node.field3) MOD
table.nodeshigh)y+1;

index := tabke nodes(hash).index;
-- walk the list until you find one that matches the node,

found = 0;

previndex :=0;

while(index /= 0}

loop

if(table. nodes(index).field! = node.fieldl AND

https://return(hash3(b.level,bJo,b.hi

table.nodes(index).field2 = node field2Z AND
table.nodes(index).field3 = node.field3) then
-- this is the one to remove
found := index;

if(previndex = 0) then
- pode is at head of chain.
table.nodes(hash).index := table.nodes(index). nextnode;

else

— there is an prevous node in the chain.

table nodes(previndex).nextnode = 1able nodes(index).nextnode;

end if;

table.nedes(index) = (fieldl => 0,field2 => 0,field3 => 0, fieldd=> 0,
index =>» table.nodes(index).index,hash => 0,nextnode =>0};

-~ exit the procedure

return;

end if;

previndex := index;

index:= table.nodes(index).nextnode;
end loop;

remrn;

end hashtableremove;

procedure hashtableinsert(table : incot camhashtable_t;node: in
camnode_) is

variable hash index, nexifree : nataral;

variable tmpnode : camnode_t;

variable found: natural;

begin

hash := (hash3(node field1,node.field2,node.field3) MOD
table.nodeshighH+1;

index := table.nodes(hash}.index;

if{table.full) then

-- remove the current frechandle from the table

-- then do the normal insert on the free handle

tmpnode = (field] => table.nodes(table.freeindex).field1,
fieldZ => table nodes{table freeindex).field2,

field3 => table.nodes(iable. freeindex).field3,

field4 => table.nodes(table.freeindex).fieldd,

index => 0,hash => 0,nextnode =>0);
rashtableremove(table,tmpnede, found);

if(found /= table. freeindex) then

assert false report "INSERT: found /= freeindex” severity error;
end if;

if(found = 0) then

assert false report "INSERT: found = 0" severity error;
end if;

end if;

hashtablefind(table,node, found);

if{found /= 0) then

assert false report "node alread in table!!!” severity error;
end if;

table.nodes{1able. freeindex) fieldl := node fieldl;
table.nodes(table. freeindex).field2 = node.field2;
table.nodes(table. freeindex).field3 := node field3;
table.nodes(table. freeindex).fieldd := node.fieldd;
table.nodes(table.freeindex).nextnode ;= table.nodes(hash).index;
table.nodes(table.freeindex).hash := hash;
table.nodes(hash).index ;= table.frecindex;

if(table.freeindex = table.size) then
table full == true;

table.freeindex = 1;

else

table.frecindex := table freeindex + 1;

-89

end if;

return;
end hashtableinsert;

procedure writecamnode(index : integerinode : cammode §) is
variable tmpline : line;
begin

write(tmpline index);
write(tmpline,”’);
write(tmplinenode field1)
write(tmpline,’);
write(tmpline, node.field2);
write(tmpline,’’);
write{tmpline,node field3);
write(tmpline,.);
write(tmpline,node field4),
~ writeline(outfile tmpline),
writeline(output tmpline);

end writecamnode:

procedure writecam{table : inout camhashtable_t) is
begin

for iin 1 to rable.size

loop

writecamnode(i.table.nodes(i));

end loop;

end writecam;

end;

-~ Date : Mon May § 19:04:29 2000

-~ Author : Bob Hatt

-- Company : Portland State University

- Description :

library work; use work kernel all;
Library std; use std.textio.all;

package bdddebug is

procedure writenode(handle: bddhandle;node : bdd_t);

procedure writenode_rec(mem: in bdd_vec_t; handle:bddhandle);
procedure writenodetable(mem : in bdd_vec_1);

procedure printset(r : bddhandle;mem : in bdd_vec_t);

end;

- Date : Mon May 8 19:04:38 2000

- Author :Bob Hatt

- Company : Portland State University

- Description :

package body bdddebug is

procedure writenodetable{mem : in bdd_vec_t) is
-~ file outfile : texr;

variable tmpline : line;
begin
-- open the file

-- file_open(outfile,"nodetable.txt” WRITE_MODE};
for i in mem'range loop

-- write the element in 2 textual format

- to the output file

writenode(i,mem(i));

end loop;

-- close the fike
-- file_close(outfile);

end writenodetable;

procedure writenode(handle: bddhandle;node : bdd_t) is
variable tmpiine : line:

begin

write(tmpline handle);
write{tmpline,”};
write(tmpline,node.level);
write(tmpline,’”);
write(tmpline node.lo);
write(tmpline,’,);
write(tmpline node.hi);
write(tmpline,’,);
write(tmpline,node.nextbdd);
write(tmpline,’)’);
write(tmpline,node.gc):

-- writeline(outfile,tmpline);
writeline{output tmpline);

end writenode;

procedure writenode_rec(mem: in bdd_vec_t; handle:bddhandie) is

vanable node:bdd_t;

begin

node := mem(handle);

if((node.lo /= bddhandle_zero) AND
(node.)o /= bddhandle_one)) then
writenode,_rec(mem,node.Jo);

end if;,

if((node.hi /= bddhandle_zero) AND
{node.hi /= bddhandle_one)) then
writenode_rec(mem,node.hi);

end if;

writenode(handle,node);

end writenode_rec;

procedure printset(r : bddhandie;mem : in bdd_vec_t) is

variable set : bddhandle_vec_t{0 to bddvarsize);
variable tmpline : line;

procedure printset_rec(r : bddhandle) is
variable first : integer;

begin

i(r = bddhandle_zero) then
return;

elsif(r = bddhandle_one) then
write(tmpline, <’);
writeline(output,unpline);
first = 1;

for i in 0 to bddvarsize

loop

if{set(i) > ©) then

if(first = 0) then
write(tmpline,’,’);

writeline(output,tmpline);
end if;

first 1= 0;
write(rmpline,mem(r).level);
writeline(output,tmpline);
if(set(i) = 2) then
write(tmpline,1);

else

write(tmpline,0);

end if;
writeline(output,tmpline);
end if;

write(tmpline,>");
writeline{output tmpline),

end loop;

else

set{mem(r).level) .= i;
printset_rec(mem(r).lo);
set{mem(r) level) = 2;
printset_rec(memir).hi);
settmem(r).level) ;= 0;

end if:

return;

end printset_rec;
begin
printset_rec(r);

end printset;

end;

library ieee;

use ieee STD_LOGIC_1164.all;

library work;

use work kernel.all;
use work.campkg.all,
library SYNOPSYS;

use SYNOPSYS ATTRIBUTES ALL;

entity cam is
generic {

memsize : NATURAL

= bddcamsize;

readdelay : NATURAL;

writedelay : NATURAL
)%
port (

clk : in std_logic;
5t : in std_logic;
cam_request :in std_logic;
cam_rw 1 in std_logic;
cam_ack : out std_logic;
cam_busy : out std_logic;
cam_result : out camfield,
cam_resultvalid : out std_logic;
cam_found : out std_logic;

cam_fieldl :in camfield;
cam_field2 :in camfield;
cam_field3 :in camfield;
cam_gesultin : in camfield

%

end cam;

architecture cam of cam is

constant camnode_t_zero : camnode_t

field3 => 0, field4 =» 0, index

== 0, hash => 0, nexinode => 0}

90

= (field] => 0, field2 => 0,

https://printset_rec(mem(r).hi
https://printset_rec(mem(r).lo
https://writenode_rec(mem,node.hi
https://if((node.hi
https://writenode_rec(mem,node.lo
https://if((node.lo
https://write(tmpline,node.gc
https://write(tmpline,node.hi
https://write(tmpline,node.lo

constant maxdelay : NATURAL o= readdelay:
shared variable mem : camhashtable_t;

signal enable : std_jogic;

signal read_write - std_logic;

signal delayenmt : NATURAL range O to maxdelay;
signal f1 : camfield;

signal 2 : camfield;

signal {3 : camfield;

signal 4 : camfield;

signal resuit : camfteld;

signal cam_foundi : std_logic;

signal tp_writecam :BOOLEAN 2= false;

type visual_IDLE_states is (IDLE);

signal visual_IDLE_current, visual_IDLE_next: visual_IDLE_states;
attribute STATE_VECTOR of cam :
architecture is "visual_IDLE_current™;

begin

- Combinational process
cam_IDLE_comb:
process {rst, cam_request, cam_field], cam_field2, cam_field3,
car_resultin,
cam_tw, resulti, cam_foundi, visual_IDLE_current)

begin

cam_ack <= 07,

cam_busy <= 0%

f1 <= camfield_zero;

2 <= camfield_zero;

3 <= camfield_zero;

14 <= camfield_zero;

if (rst = 0) then
-- reset all drivers to memory
read_write <=1
enable <= 0%
cam_found <= 07,
{1 <= camfield_zero;
2 <= camfield_zero;
3 <= camfield_zero;
4 <= camfield_zero;
visual_IDLE_next <= IDLE;
else

case visual_IDLE_current is
when IDLE =>
if ((vam_request = T and (cam_rw = ")) then
cam_busy <="1";
cam_ack <="1";
- set up the memory inputs
enable <= '1"after 1ns, U’ after 9 ns;
fl <= cam_field);
2 <= cam_field2;
f3 <= cam_field3;
f4 <= cam_resultin;
--set the data and ready rafier the delay
-« jtactually takes to read the memory.
read_write <='1%
cam_resultvalid <= 1%
cam_result <= resulti;
cam_found <= cam_foundi;
visual_IDLE_next <= IDLE;
elsif ((cam_request = "I’y and (cam_rw = ¥)) then
cam_busy <="17
cam_ack <= 1",
-- set up the memory inputs
enable <= "1"after Ins, U after 9 ps;
{1 <= cam_field];
2 <= cam_field2;

3 <= cam_field3;

f4 <= cam_resultin;

read_write <= 0"

visual_[DLE_next <= IDLE;
else

-~ reset all drivers 1o memory

read_write <= '1"

enable <= 0"

cam_found <= 0}

f1 <= camfield_zero;

2 <= camfield_zero,;

3 <= camfield_zero;

{4 <= camfield_zero;

visual_IDLE_next <= IDLE;
end if;

when others =>

visual_IDLE_next <= IDLE,;
end case;
end if;
end process;

cam_IDLE:
process {cik)
begin

if (clk'event and clk = 1) then
if {rst = 0) then
visual_IDLE_current <= IDLE;
else
visual _IDLE_current <= visual_IDLE_next;
end if;
end if;
end process;

-- this will eventually (before synthesis
- have to be moved outside of this unit
- 50 that it can represent an external memory
canunem:
~process {rst.enable, read_write, £1,2,13,f4)
process (rst.enable)
- variable mem : carnhashtable_t;
variable tmpnode : camnode_t;
variable found : natural;
begin

if {rst = 0) then - in reset

hashtableinit(mem, memsize),

cam_foundi <= 0’}

elsif {enable = "1} then

found := 0;

if(read_write = ' ') then -- read

mmpnode := (field] => f1,field2 => £2,field3 =>f3 fieldd =>4,
hash => 0,index => 0,nextnode => 0);

hashtablefind(mer, mpnode,found);

if{found /= 0) then -- found it

resulti <= mem.nodes(found).ficld4;

cam_foundi <=7

else

resulti <= camfield_zero;

cam_foundi <= 0%

end if;

else - write

rmpnode = (field] => f1 field2 => {2 field3 =>f3 fieldd =>f4,
hash => Oindex => 0,nextoode => 0);

hashtableinsert(merm, tmpnode);
hashtablefind{mem,unprode,found);

--assert false report "doing write to cam hashtable” severity note;
~writecamnode(found, inpnode);

cam_foundi <= 0%

end if;
end if;

91

end process;

process(tp_writecam)
begin
if(tp_writecam) then
writecam{mem);
end if;
end process;

end cam;

-~ This has three ports in and three ponts out.

-~ one, two, or three elements can be pushed or popped

- with the appropriate stack command.

-~ This just increments the stack pointer appropriately.
-~ The three outputs will always show the top three elements

library ieee;

use ieee. STD_LOGIC_1164.al;
library work;

use work.kernel.all;

library SYNOPSYS;

use SYNOPSYS ATTRIBUTES ALL;

entity bddstack is
generic {

size : NATURAL =6

X

port(
clk rinstd_logic;
st :in std_logic;
cmd :in stackemnd;
datainQ : in bdd_r;
datain! : in bdd_t;
datain? : in bdd_t;
head0 : out bdd_t;
headl :outbdd_t;
head2 : out bdd_t;
full : out std_logic;
empty out std_logic
%

end bddstack;
architecture bddstack of bddstack is
signal tp_bhead : NATURAL;

signal free : NATURAL;

begin

Start:process (clk, rst, datain{, dataini, datain2, cmd)

variable stack : bdd_vec_t(Otosize +4);
variable head : NATURAL;
begin -- process
if clk'event and clk = 1" then
if rst = U then
free <=0;
head ;=0
for i in stack’range
loop
stack(i) ;= bdd_t_zero;
end loop;
empty <= 1%
full <= 0%
else
-- "01" ==> push
-~ "1Q" ==> pop
-~ others ==> do nothing
case cmd is

when siackpush =>
stack(head) := datain0;
if(head < (size}) then
head = (head + 1);
end if;

when stackpop =>
if(bead > 0) then
head := head -1;
end if;

when stackpush2 =>
stack(head+1) := datain0;
stack{head) := datainl;
ifthead < (size)) then
head ;= (head + 2);
end if;

when stackpop2 =>
if(head > 1) then
head := head -2;
else
head := 0;
end if;

when stackpush3 =>
stack(head+2) = datain(y;
stack(head+1) = datainl;
stack(head) = datain2;
ifthead < (size}) then
head 1= thead + 3);
end if;

when stackpop3 =>
ifthead > 2) then
head := head -3,
else
head := O;
end if;

when others =>
null;

end case;
if(head = 0) then
empty <= 1%
else
empty <= 0%
end if;
ifthead >= size) then
full «="17%
else
full <= 0%
end if:

head0 <= bdd_t_zero;
head] <= bdd_t_zero;
head2 <= bdd_t_zero;
ifthead = 1) then

head(<= stack(head - 1);
end if;

ifthead = 2) then

head0 <= stack(head - 1);
head] <= stack(head - 2);
elsif(head >2) then
head(<= stack(head-1);
head] <= stack(head-2);
head2 <= stack(head-3);
end if;

tp_head <= head;
end if;
end if;
end process;

92

end bddstack; when stackpush2 =>
stack{hcad+1) = datain0,

~-- This has three ports in and three ports out. stack{head) = datain};
- one, two, or three elements can be pushed or popped if(head « (sized) then
-- with the appropriate stack command. head (= (head + 2);

- This just increments the stack pointer appropriately. end if;

- The three outputs will always show the top three elements
when stackpop? =>

library ieee; if(head » 1) then
use ieee. STD_LOGIC_1164.al; head := head -2;
library work; else

use work kernel all, head := O
library SYNOPSYS; end if;

use SYNOPSYS.ATTRIBUTES.ALL;
when stackpush3 =>
stack{head+2) = datainQ,;

entity handlestack is stack{head+1) := dataini;
generic (stack(head) = datain2;
size : NATURAL =6 if(head < (size)) then
, head = (head + 3);
port (end if;
clk :instd_logic;
rst in std_logic; when stackpop3 =>
cmd :in stackemd; ifthead > 2) then
datain{ : in bddhandle; head ;= head -3;
datainl : in bddhandle; else
datain2 : in bddhandle; head 1= 0;
head0 : out bddhandle; end if;
headl : out bddhandle;
head2 : out bddhandie; when others =>
full out std_logic; null;
empty :out std_logic end case;
¥ ifthead = O3 then
empty <= 1",
end handlestack; else
empty <= U,
end if;
architecture handlestack of handlestack is ifthead »>= size) then
full <= 17
signal tp_head : NATURAL, else
signal free : NATURAL; full «= 03
end if;
begin
Start:process (clk, rst, datainQ, darainl, datain2, cmd) head0 <= bddhandle_zero;
variable stack : bddhandle_vec_t(0 to size + 4); head] <= bddhandle_zero;
variable head : NATURAL; head2 <= bddhandle_zero;
begin - process ifthead = 1) then
if clk'event and clk = "' then head0 <= stack(head - 1);
ifrst = 0 then end if;
free <=0, ifthead = 2) then
head ;= 0; head0 <= stack(head - 1);
for t in stackrange head} <= stack(head - 2);
loop elsif(head >2) then
stack(i) := bddhandle_zero; head0 <= stack(head-1);
end loop; head] <= stack(head-2);
empty <= 1" head? <= stack(head-3);
full <=0 end if;
else
== "01" ==> push tp_head <= head;
~ "10" ==> pop end if;
-~ others ==> do nothing end if;
case cmd is end process;
when stackpush => end handlestack;
stack(head) := datain0;
if(head < (size)) then library iece;
head := (head + 1}; use feee. STD_LOGIC_1164 all;
end if; Tibrary bddlib;
use bddlib.kernel all;
when stackpop => library SYNOPSYS;
if(head > 0) then use SYNOPSYS.ATTRIBUTES.ALL;
head = head -1;
end if;

entity freenodecntl is

generic {
minhandle : bddhandie == bdd_minhandle;
maxhandle : bddhandle = bdd_maxhandle
)
port (
clk s instd_logic;
rst < instd_logic;
init s instd_dogic;
tookfreehandlel :in std_logic;
freehandle - out bddhandl

freehandle_valid : out std_logic;
LOWONNODES : out std_logic;
OUTOFNODES : out std_logic;
nodemem_busy : in std_logic;
nodemem_ack : in std_logic;
nodemem_dataready : in std_logic;
nodemem_dataout : in bdd_t;
nodemem_request : out std_logic;
nodemem_handle : out bddhandle;
nodemem_datain : cut bdd_t;
nodemem_rw : out std_logic

¥

end freenodecnt!;

-~ The init process will take
- memsize*(memdelay+1) clocks.

architecture freenodecntl of freenodecnt] is

signal handle : bddbandle;
signal nexthandle : bddhandle;

type visual_currentstate_states is (IDLE, getnextfree, initnodes, lastinit,
waitformern);

signal currentstate © visual _currentstate_states;
attribute STATE_VECTOR of freenodecntl
architecture is "currenistate™;

begin

-- Synchronous process
freenodecntl_IDLE:
process (clk}

begin

if {clk'event and ¢lk = 17 then

if (rst = 0 then
freehandle_valid <= 0"
~- turn of memory interface
nodemem_request <= 0%
nodemem_rw <="17
nodemem_handle <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
cutrentstate <= IDLE;

else

case currentstate is
when IDLE =>
if (init = '1") then
handle <= bddhandle_zero;
nexthandle <= bddhandle_one;
freehandle_valid <= 0"
currentstate <= waitformem;
elsif {tookfreehandlel = "1 then
if (nexthandle = bddhandle_zero) then
frechandle_valid <= 07,
currentstate <= IDLE;
else
-« set the new frechandle

94

frechandle <= nexthandile;

-- read the node to node memery @ handle
nodemem_request <= 1",
nodemem_rw <= 1"
nodemem_handle <= nexthandle:
nodemem _datain <= bdd_t_zero;
currentstate <= getnextfree;
end if;
else
currentstate <= IDLE:
end if;

when geinextiree =>
if ((nodemem_ack = '1) and (nodemem_dataready = '17)) then

nodemem_request <= 0%

nexthandle <= nodemem_dataout.nextbdd;

if {nodemem_dataout.nexsbdd = bddhandle_zero) then
freehandle_valid <= 0%
-- turn of memory mterface
nodemern_request <= 0"
nodemem_rw <= 17
nodemem_handle <= bddhandle_zero;
nedemem_datain <= bdd_t_zero,
currentstate <= [DLE:

else
-- turn of memory interface
nodemem_request <= 07
nodemem_rw <=}
nodemers_handle <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
currentstate <= IDLE,

end if;

else
-- set the new freehandle
freehandle <= nexthandle;

-- read the node to node memory @ handle
nodemem_request <=1,
nodemem_rw <= 1,
nodemem_handle <= nexthandle;
nodemerm_datain <= bdd_t_zero;
currenistate <= getnexifree;

end if;

when initnodes =>
if (nodemem_ack = ‘1) then

if (handle = maxhandle) then
nodemerm_request <= 1"
nodemem_rw <= 0,
nodemem_handle <= handle;
nodemem_datain <= bdd_t_init;
cusrentstate <= lastinit,

else
- initiatize all of the node memory
nodemem_request <= 1%
nodemem_rw <=0
nodemem_handle <= handle;
if{handle = bddhandle_zero) then
-- handle 0 is the constant O
nodemem_datain <= (Jjevel => bddvar_max,
1o => bddhandle_zero, hi => bddhandle_zero,
nextbdd => bddhandle_zero, ge=> gc_zero),

elsif(handle = bddhandle_one) then

-- handle 1 is the constant |
podemem_datain <= (level => bddvar_max,
Io => bddhandle_one, hi => bddhandle_one,
nextbdd => bddhandle_one, gc=> gc_zero);
else

- write the node 1o node memory @ handle
nodemem_datain <= (level => bddvar_max,
lo => bddhandle_zero, bi => bddhandle_zero,
nextbdd => nexthandle, ge=> gc_zero);

end if;

-- set the handie = nexthandle
handle <= nexthandle;
-- increment the next handie
nexthandle <= nexthandle + I;
currentstate <= initnodes;
end if;
else
currentstate <= initnodes;
end if;

when lastinit =>
freehandle <= minhandle;
freehandle_valid <= '1";
nexthandle <= minhandle + 1;
-~ turn of memory interface
nodemem_request <= 07
podemem_rw <= 1"
nod ,_handle <= bddhandle_zero,
nodemem_datain <= bdd_t_zero;
currentstate <= IDLE;

when waitformem =>
if (nodemem_busy = 1) then
if {handle = maxhandle} then
nodemem_request <="17%
nodemem_rw <= U,
nodemem_handle <= handle;
nodemem_datain <= bdd_1_init;
curventstate <= lastinit;
else
-~ initialize al} of the node memory
nodemem_request <= 1",
nodemem_rw <= 07
nodemem_handle <= handle;
if{handle = bddhandle_zero) then
-~ handle O is the constant 0
nodemem_datain <= {level => bddvar_max,
lo => bddhandle_zero, hi => bddhandle_zero,
nextbdd => bddhandle_zero, gc=> gc_zero);

eksif(handle = bddhandle _one) then
-~ handle 1 is the constant 1
nodemem_datain <= (Jevel => bddvar_max,
Jo => bddhandle_one, hi => bddhandle_one,
nextbdd => bddhandle_one, gc=> gc_zero);
else
-- write the node to node memory @ handle
nodemem_datain <= (level => bddvar_max,
o => bddbandle_zero, hi => bddhandle_zero,
nextbdd => nexthandle, pc=> gc_zero);
end if;
-- set the handle = nexthandle
handle <= nexthandle;
-~ incrernent the next handle
nexthandle <= nexthandle + 1;
currentstate <= inimodes;
end if;
else
currentstate <= waitformem;
end if,

when others =>

-- turn of memory interface
nodemem_request <= 0%

outofnodes <= ‘1" when nexthandle = bddhandle_zero

else U
end freenodecntl;

library ieee;

use teee. STD_LOGIC_1164.all;

library bddlib;
use bddlib.kernel.all;
library SYNOPSYS;

use SYNOPSYS ATTRIBUTES. ALL:

entity apply is
port {

¢k > in std_logic;

st < in std_logic;
lobddin : in bddhandle;
hibddin 1 in bddhandle;
resulthandle : out bddhandle;
resultvalid : out std_logic;

nodemem_dataout : inbdd_t

nodemem_busy

cin std_logic:

nodemem_datavalid : instd_logic,

nodemem_ack

: in std_logic;

nodemem_handle : out bddhandie;

nodemem_datain

coutbdd_t;

nodemem_rw 1 out std_logic;
nodemem_request : out std_logic;
cam_ack :in std_logic:
cam_busy :in std_logic;
cam_result : in camfield:
cam_resultvalid :in stid_logic:
cam_found s in std_logic:
cam_request : out std_logic;
cam_rw : out std_logic;
cam_ficldl : out camfield;
cam_field2 : out camfield;
cam_field3 : out camfield;
cam_resultin : out camfield;
call_datain0 :outbdd_t;
call_dataini :out bdd_t;
call_datacut0 :in bdd_t;
call_dataout] :inbdd_y;

call_full s in std_logic;

nodemen_rw <= 1%,

hddh

&

d . handle <=

le_zero;

nodemem_datain <= bdd_t_zero;

currentstate <= IDLE;
end case;
end if;
end if;
end process;

call_empty : in std_logic;
call_cmd out stackemd;
result_datain : out bddhandle;
result_dataout : in bddhandle;
result_full : in std_logic;
result_empty :instd_logic;
result_cmd : out stackemd;
start : in std_logic;
mknode_start : out std_logic:
mknode_result : in bddhandle;
mknode_resultvalid : in std_logic;
mknode_level : out bddvar;
mknode_lo : out bddhandle;
mknode_hi : out bddhandle;
operator : in booleanop;
operror < out std_logic
%

end apply;

architecture apply of apply is

signal lohandle : bddhandle;
signal hihandle : bddhandle;
signal camdone : std_logic;
signal terminalcase : std_logic;
signal reurncode @ ge f;
signal lonode :bdd .t
signal hinode cbdd_t;
signal locakresult : bddhandle;

95

signal tmpresult : bddhandle;

type visual_current_top_states is (TOP);
constant current_top : visual_current_top_states := TOP;

type visual_current_main_states is (IDLE, RETURNCTL, WARMUP,

mknode, updatehi,
updatelo, CAMFIND);

signal curvent_main : visual_current_main_states;

type visual _TOP_TOP_CAMFIND_CAMFINDI _states is

(CAMFIND1,

TOP_TOP_CAMFIND_camdone),

signal visual_TOP_TOP_CAMFIND_CAMFIND] _current :

visual_TOP_TOP_CAMFIND_CAMFINDI _states;

type visual_TOP_TOP_CAMFIND_findnode_states is (findnode,

findnode2,
waitcamresult);

signal visval_"TOP_TOP_CAMFIND_findnode_current :
visual_TOP_TOP_CAMFIND_findnode_states:

type visual_current_writecam_states is (writecamidle, writecam);

signal current_writecam : visual_current_writecam_states;

-- since the memory interfaces are async with

-~ ¢ach other, there is no telling which wili

-~ get done first,

- must not exit untif cam has gotien a result.

- 50 the node lookup must wait until the cam is done

-~ if there was a cam miss, then the exit must be from the
~-- findnode machine

-- There is a potential problem if the cam

— gets done, but misses and some other transaction
- takes place on the cam. This might cause

- aD erroneous exit?

-« Mo, because if the cam misses it will set camdone
- and the findnode machine must wait for that to

- exit.

-- cam_found is async and is set as soon as cam_resultvalid

- is recieved. The default is 0" s0 it will hold that
~ value only when resultvalid="1"or in state camdone
begin

- Synchronous process

apply TOP:

process (chk)

variable appcarohit : NATURAL = 0;
variable appcamwrite : NATURAL =0
variable appcammiss : NATURAL =
begin

if (clk’event and clk = 1) then
resultvalid <= 07,
call_cmd <= stacknop;
result_cmd <= stacknop;
mknode_start <= O,
case current_main is
when IDLE =>
if (rst = 0 then
current_main <= IDLE;
elsif (start = "1} then
Iohandle <= lobddin;
hihandle <= hibddin;
current,_main <<= WARMUP;
else
current_main <= IDLE;

end if;

when RETURNCTL =>

if (rst = D) then
current_main <= IDLE;
elsif {returncode = returndone) then
-- teh cam is accessed and we know it
-- will not be busy at this point, then
-- cam_ack will come back right away,
- s0 there 18 no reason to wait.
~for cam_ack = 1"
—-also since we know single cycle access

--is in place we can just turn off the request.

-This will have to change if it is not single
~cycle access.
cam_gequest <= 0}
resujtvalid <= 1"
current_main <= IDLE;
elsif (returncode = returnhigh) then
-- teh cam is accessed and we know it
-- will not be busy at this point, then
-- cam_ack will come back nght away,
-- 50 there is no reason to wait.
-for cam_ack =1’
-~also since we know single cycle access

~-is in place we can just turn off the request.

-~This will have to change if it is not single
~cycle access.
cam_request <= 0’}
~- pop call stack into jocal regs
call_cmd <= stackpop2;
lonode <= call_dataoutd;
lohandle <= call_dataout.lo;
hinede <= call_dataoutl;
hihandle <= call_dataoutO.hi;
-- push localresult onto result stack
result_cmd <= stackpush;
resuli_datain <= localresult;
current_main <= updaiehi;
elsif (returncode = returnmknode) then
- teh cam is accessed and we know it
-- will not be busy at this point, then
-- cam_ack will comne back right away,
- 50 there is no reason to wait.
—for cam_ack="1"
--also since we know single cycle access

—-is in place we cap just turn off the request,

~This will have to change if it is not single
—cycle access.

cam_request <= 0’

lohandle <= call_dataoutQ.lo;
hihandle <= call_dataoutQ.hi;

~ entry <= call, dataoutQ.nextbdd;

- pop call stack into focal regs
call_cmd <= stackpop;

-- start mknode

mknode_start <= 17

mknode_level <= call_dataoutQ.level,
mknode_lo <= result_dataout;

-- the current result (from second recursive call)

-~ can be applied to the mknode hi branch.
mknode_hi <= localresult;
~ pop the result stack
result_cmd <= stackpop;
current_main <= mknode;
else
current_main <= RETURNCTL;
end if;

when WARMUP =>

if (rst = V) then
current_main <= IDLE;

elsif (terminalcase = "1 then
localresult <= tmpresult;
current_main <= RETURNCTL,;

96

https://call_dataout0.hi
https://calLdataout0.lo
https://call_dataout0.hi
https://call_dataout0.lo

else
-- setup cam find
cam_request <='1";
cam_rw <= '1% - read (find);
cam_fieldl <= Iohandie;
cam_field2 <= hihandle;
cam_field3 <= natural(booleanoppos(operator));
visual TOP_TOP_CAMFIND_CAMFINDI1_current <=

CAMFINDT;

-- set up a read request to node memory
nodemem_handle <= Johandle;
nodemem_request <= 1"
nodemem_rw <= "1"; -- read
nodemem_datain <= bdd_t_zero;
visual "TOP_TOP_CAMFIND_findnode_current <= findnode;
current_main <= CAMFIND;
end if;

when mimode =>

if (rst = V) then
current,_main <= IDLE;

elsif (mknode_resultvalid = '1) then
localresult <= mknode_result;
current_main <= RETURNCTL;

else
current_main <= mknode;

end if;

when updatehi =>
if (rst = 0% then
current_main <= IDLE;
else
-- set the local handles for the high edge recursion
fohandle <= hinode.lo;
hihandle <= hinode.hi;

-~ push Jocal regs onto the call stack
call_datain0.level <= hinode.level,
call_datain0.lo <= lohandle;
call_datain0.hi <= hihandle;
—-call_datain0.nextbdd <= entry;
-- store the return code in the ge bits
call_datain0.gc <= returnmknode;
call_cmd <= stackpush;
current_main <= WARMUP;

end if;

when updatelo =>
if (xst = 07 then
current_main <= IDLE;
-- recure on low(l),Jow(r)
-- set the Jo and hi handles
-~ also push args for high edge recursion
-~ high(hightr)

elsif {lonode. level = hinode. level) then
- recure on low(l),low(r)
lohandle <= lonode lo;
hihandle <= hinode.lo;
—then high(l}.high(r)
- for the high edge recursion put the
- arguments in the second stack entry
call_datainl.lo <= lonode. hi;
call_datainl.hi <= hinode.hi;
- store the var level for the mknode call
call_datainl.level <= lonode.level;
-~ 50 must prep for s stack push
call_datain0.lo <= lohandle;
call_datain0.hi <= hihandle;
--call_datain0.nextbdd <= entry;
call_datain0.gc <= returnhigh;
call_cmd <= stackpush2;
current_main <= WARMUP;

- -« reCur on Jow(l)r

«- -~ then high(l),r

97

-- -- 50 must prep for s stack push
-- -- for the high edge recursion put the
-~ -~ arguments high(l),r in the second stack entry

elsif (lenode.level < hinode.level) then
- recur on low(h.r
lohandle <= lonode lo;
hihandle <= hihandle;
-- for the high edge recursion put the
- arguments high(l),r in the second stack entry
call_datain] lo <= lonode hi;
call_datain} hi <= hihandle;
call_datain}.nextbdd <= hihandle;
-« store the var Jevel for the mknode call
call_datain] level <= lonode.level;
-- s0 Tnust prep for s stack push
call_datain0.lo <= lohandle;
call_datainQ.hi <= hihandle;
«call_datainO.nextbdd <= entry;
call_datain0.gc <= returnhigh;
call_cmd <= stackpushZ;
cutreni_main <= WARMUP;

-« tecur on llow{(r)

- Lhigh(r)

-- for the high edge recursion put the

-~ arguments high(l),r in the second stack enry

else
-- recur on Llow(r)
- Lhigh(r)
Johandle <= lohandle;
hihandle <= hinode lo;
-~ for the high edge recursion put the
-- arguments high{l),r in the second stack entry
call_dataini lo <= lohandle;
call_datainl.hi <= hinode.hi;
--call_darainl.nextbdd <= hihandle;
-- store the var level for the mknode call
call_datainl Jevel <= hinode.level;
-- 50 must prep for s stack push
call_datain(.lo <= Johandle;
call_datain0.hi <= hihandle;
~call_datainQ.nextbdd <= eniry;
call_datain0.gc <= returnhigh;
call_cmd <= stackpush2;
current_main <= WARMUP,

end if;

when CAMFIND =>
case visual_TOP_TOP_CAMFIND_CAMFINDI _current is
when CAMFINDI =>

if (cam_ack ="1"and cam_resultvalid = '1"and cam_found = 1}
then
- set result handle
localresult <= cam_result;
cam_request <= 0%
appcambhit = appcambhit + 1;
current_main <= RETURNCTL;

elsif ((cam_ack = '1") and (cam_resultvalid = 1" and cam_found

0Y) then
if (rst= U then
current_main <= IDLE;
else
cam_request <= 0%
app iss = appt iss +1;
visual_TOP_TOP_CAMFIND_CAMFINDI_current <=
TOP_TOP_CAMFIND_camdone;
end if;
elstf (rst = 0') then
current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND_CAMFIND]_current <=

CAMFINDI;

end if;

https://call_datain0.gc
https://call_datain0.hi
https://call_datainO.lo
https://hinode.hi
https://call_datainl.hi
https://hinode.lo
https://call_datain0.gc
https://call_datainO.hi
https://call_datain0.lo
https://lonode.hi
https://lonode.lo
https://call_datainO.gc
https://call_datainO.hi
https://call_datainO.Jo
https://hinode.hi
https://call_dataiol.hi
https://lonode.hi
https://call_datainl.lo
https://hinode.lo
https://lonode.lo
https://call_datainO.gc
https://call_datainO.hi
https://call_datainO.lo
https://hinode.lo
https://nodemem_.rw

when TOP_TOP_CAMFIND_camdone =>
if (rst = 0) then
current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND_CAMFINDI current <=
TOP_TOP_CAMFIND_camdone;
end if;

when others =>

cumrent_main <= IDLE;
end case;
case visual_TOP_TOP_CAMFIND _findnode_current is
-~ this state will lookup the nodehandle (found in the
-- unique table) in node memory

when findnode =>
if (rst = 0" then
current_main <= IDLE;
elsif ((nodemem_ack = 17 and (nodemem_datavalid = 1)) then
nodemem_request <= 0’}
lonode <= nodemem_dataout;
-- set up a read request to node memory
nodemem_handle <= hihandle;
nodemem_request <= 1"
nodemem_rw <= 1" - read
nodemem_datain <= bdd_t_zero;
visual TOP_TOP_CAMFIND_findnode_current <=
findnodeZ;
else
visual_TOP_TOP_CAMFIND_findnode_current <= findnode:
end if;

when findnode2 =>
if (nodemem_ack = "1’ and nodemem_datavalid = "1"and cam-
done =
17 then
nodermem_request <= 0%
hinode <= nodemem_dataout;
current_main <= updatelo;
elsif ((nodemem_ack = 17 and (nodemem_datavalid = 1) then
if (rst = U7 then
current_main <= IDLE;
else
nodemem_request <= 0,
hinode <= nodemem_dataout;
visnal_TOP_TOP_CAMFIND_findnode_current <= waitcam-
result;
end if;
elsif {15t = V) then
current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND _findnode_current <=
findnode;
endif;

when waitcamresult =>

if (camdone = "1’} then
current_main <= updatelo;

else
if (rst = 0") then

current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND_findnode_cusrent <= waitcam-
result;

end if;

end if;

when others =>
current_main <= IDLE;

end case;
when others =>

98

current_main <= IDLE;
end case;
case corrent_writecam is
when writecamidle =>
if (mknode_resultvalid = "1’ and current_main = mknode) then
-- setup a write/insert to cam
cam_request <="1%
cam_rw <= 0", - write(insent);
cam_field! <= lohandle;
cam_field2 <= hihandle;
cam_field3 <= natural{booleanop'pos(operaton));
cam_resultin <= mknode_result;
current_writecam <= writecam,
else
current_writecam <= writecamidle;
end if;

when writecam =>
if (cam_ack =1} then
-- turn off write request
cam_request <= 0
cam_rw <= 1%
appcamwrite ;= appcamwrite + 1;
current_writecam <= writecamidle;
else
current_writecam <= writecam;
end if;

when others =>

current_writecam <= writecamidle;
end case;
end if;
end process;

-- Combinational process
apply_TOP_comb:
process {current_main,
visual _TOP_TOP_CAMFIND _CAMFIND] current,
visual_TOP _TOP_CAMFIND_findnode_current, current_writecamn)
begin -- Combinational process
camdone <= 1%

case curreni_main is
when CAMFIND =>
case visual TOP_TOP_CAMFIND_CAMFINDI current is
when TOP_TOP_CAMFIND_camdong =>
camdone <= 1"}

when others =>
nll;
end case;
when others =>
null;
end case;
end process;

resulthandle <= localresult;
retumeode <= call_dataout0.gc;

process(lohandle hihandle)

variable terminaltest : std_logic_vector(3 downto 0);
begin

-- do some defaults so we dont get latches

operror <= U’

terminalcase <= 0%

terminaltest = "0000";

-~ set up the terminal test values so that the terminal test

-- case staternent can work effectively

-~ terminal value 00 means handie = ¢

-- termanl value 11 means handle = |

-- terminal value 01 means handle is neither of the two constants

https://call_dataoutO.gc

if(lohandie = bddhandle_one) then
terminaltest(1 downto 0) := "11";
elsif(lohandle = bddhandle_zero) then
terminaltest(l downto 0) ;= "00";

else

terminaltest{l downto 0) :== "01";

end if;

if(hihandle = bddhandle_one) then
terminaltest(3 downto 2) := "117%;
elsif(hibandle = bddhandle_zero) then
terminaliest{3 downto 2) ;= "00";
else

terminaltest(3 downto 2) 1= "017;

end if;

case operator is

when booleanop_and =>

-~ tests for the and operator
if{lohandle = hihandle) then
tmpresult <= lohandle;
terminalcase <= '1%

else

case terminaltest is

when "0000") "0001" 1 "00117 1 "1100" D100 =>
tmipresult <= bddhandle_zero;
terminalcase <= 1"

when "1111" =>

tmpresult <= bddhandle_one;
terminalcase <= 1%

when "1101" =>

tropresult <= lohandle;
terminalease <= 1%

when "0111" =>

trapresult <= hihandle;
terminalcase <= 1%

when others =>

- do not assign a true value to terminalcase because

-- this is the case where you are not in a teminal case and muse

-~ recursivly evaluate the bdd

-- neither edge is constant, not a terminal case
trapresult <= bddbandle_zero;

terminalcase <= 0%

end case;

end if;

-~ end tests for the and operator

- OT operator
when booleanop_or =>

if(lohandle = hihandle) then
mnpresult <= lohandle;
terminaicase <= 1%

else

case terminaliest is

when "11117 1 11007 10011 £ 711017 1 011 =
tmpresult <= bddhandle_one;
terminalcase <= 1%

when "0100” =>

tmpresult <= hihandle;
terminalcase <= 1%

when "0001” =>

tmpresult <= lohandle;
terminalcase <= 1%

when "0000" =>

rmpresult <= bddhandle_zero,
terminaicase <= 1%

when others =>

-~ neither edge is constant, not a terminal case
tpresult <= bddhandle_zero;
terminalcase <= 0%

end case;

end if;

-- end test for the or operator

when booleanop_xor =>

if(lohandle = hihandle} then
tmpresult <= bddhandle_zero;
terminalcase <= 1%

else

case terminaltest is

when "0100" 1 "1100" =>
tmpresult <= hihandle;
terminalcase <= 17

when "001 1" 1700017 =>
tmpresult <= lohandle;
wrmnalcase <= 17

when “0000" 1"1111" =>
tmpresult <= bddhandle_zero;
terminalcase <= 17

when others =>

-- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= 0%

end case;

end if;

-- end test for the xor operator

-- nand operator
when booleanop_pand =>
case terminaltest is

when "0000" 1 “11007 1 "0011" { "0100™ | "0001" =>
-- gither input is 0

tmpresult <= bddhandle_one;

terminalease <= 17

when "} 111" =>

-- both inputs are one

tmpresult <= bddhandle_ zero;

terminalcase <= "1

when others =>

-- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero,

terminalcase <= 07

end case;

-- end test for the nand operator
when booleanop_nor =>

case terminaltest is

when "1111" 1"1100" 10011" | "11017 i "0111"=>
-~ either input is 1

tmpresult <= bddhandle_zero;

terminalcase <= 1%

when 0000 =>

tmpresult <= bddhandle_one;

terminalease <= 17

when others =>

-- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;

terminalcase <= 0%

end case;

-- end test for the or operator

when booleanop_imp =>

case terminaltest is

when "1100” 170100 10000" | "1101"1"1111" =>
- low edge is zero or high edge is one

tmpresult <= bddhandle_one;

terminalcase <= 1",

when "0011" 1701117 =>

- Joedge is one

99

tmpresult <= hihandle;
terminalcase <= '17%

when others =>

-- neither edge is constant, not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= 0%

end case;

if(lohandle = bddhandle_one} then
tmpresult <= hihandle;
terminalcase «= "1

end if;

when booleanop_biimp =>

case terminaltest is

when "0000° 171111" =>

~--Tow edge is zero or high edge is one
rmpresult <= bddhandle_one;
terminalcase <= 't

when "0011" 1"1100" =>

-~ lo edge is one high edge is zero
tmpresult <= bddhandle_zero;
terminalcase <=1

when others =>

~- neither edge is constant , not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= ¥

end case;

-- end test for the implication operator

-- difference (greater than)

when booleanop_greater =>

case terminaltest is

when "0000” 1 "1111" 17} 100" =>
tmpresult <= bddbandle_zero;
terminalcase <= 17

when "0011” =>

-~ Yo edge is one high edge is zero
tmpresult <:= bddbandle_one;
terminalcase <=1,

when others =>

- neither edge is constant , not a terminal case
tmpresult <= bddhandle_zero;
terminalcase <= 0

end case;

-- end test for the difference operator

- less

when booleanop_less =>

case terminaltest is

when "0000" 1 111171 "001)" =>
rmpresult <= bddhandle_zero;
terminalcase <=1’

when “1100" =>

-~ hi edge is one low edge is zero
tmpresult <= bddhandle_one;
terminalcase <=1

when others =>

- neither edge is constant , not 2 terminal case
tmpresult <= bddhandle_zere;
terminalcase <= 0,

end case;

~- end terminal test for Jess operator

- others
when others =>

-~ some kind of operator error, make it terminal and retumn zero

operror <= "1%
terminalcase <= 1%
tmpresult <= bddhandle_zero;
end case;
end process;
end apply;

library ieee;
use iece. STD_LOGIC_1164.all;

library bddlib;

use bddlib kernel all;

library SYNOPSYS:

use SYNOPSYS ATTRIBUTES.ALL;

entity APPLY_NOT is
port {

clk :in std_logic;
st sin std_logic;
bddin : in bddhandle;
resulthandle : out bddhandle;
resultvalid 1 out std_logic;
nodemem_dataout : inbdd_t;
nodemem_busy cin std_logic;
nodemem_datavalid : in std_Jogic;
nodemem_ack : instd_logic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_g;

nodemem_rw < out std_logic;
nodemem _request : out std_logic;
cam_ack : in std_logic;
cam_busy zin std_logic;
cam_result :in camfield;
cam_resultvalid :in std_Jogic;
cam_found . in sid_logic;
cam_request : out std_logic;
cam_rw :out std_logic;
cam_field! : out camifield:
cam_field2 : out camfield;
cam_field3 : out camfield;
cam_resultin : out camfield,;
call_datain couthdd t;
call_dataout cinbdd_t;
call_full < in std_logic;
call_empty : in s1d_logic;
call_cmd < out stackemd;

result_datain : out bddbandle;
result_dataout : in bddhandle;

result_full < inostd_logie;
result_empty : in std_logic;
resuli_cmd - out stackemd;
start : in sid_logic;

mknode_start :out std_logic;

mknode_result : in bddhandle;
mknode_resultvalid : in std_logic;
mknode_level : out bddvar;

mknode_lo : out bddhandle;
mknode_hi . out bddhandie
)

end APPLY_NOT;

architecture APPLY _NOT of APPLY_NOT is

constant operator : booleanop := booleanop_not;

signal lecalhandle : bddhandle;
signal camdone : std_logic;
signal returncode : gc_t;
signal localnode : bdd_1;
signal localresult : bddhandle;

type visual_current_top_states is (TOP),

constant current_top : visual_current_top_states := TOP;

100

type visual_current_main,_states is (IDLE, RETURNCTL, WARMUP,

mknode, updatehi,
updatelo, CAMFIND),

signal current_main ; visual_current_main_states;

type visual_TGOP_TOP_CAMFIND_CAMFINDI _states is

(CAMFINDI,

TOP_TOP_CAMFIND_camdone);

signal visual TOP_TOP_CAMFIND_CAMFINDI _current :
visual_TOP_TOP_CAMFIND_CAMFINDI states;

type visual_TOP_TOP_CAMFIND_findnode_states is (findnode, wait-
camresult);

signal visual_ TOP_TOP_CAMFIND_findnode_current :
visual_TOP_TOP_CAMFIND _findnode_states;

type visual_current_writecam_states is (writeyniqueidle, writecam);

signal current_writecam : visual_gcurrent_writecam_states;

begin

- Synchronous process
APPLY_NOT_TOP:
process (clk)

variable appnotcamhit : NATURAL =0

variable appnotcamwrite : NATURAL =

variable appnotcammiss : NATURAL =0;
begin

if (clk’event and clk = ’}’) then
resultyalid <= 07
cail_cmd <= stacknop;
result_cmd <= stacknop;
mknode_start <= 0,
case current_main is
when IDLE =>
if {rst = 07 then
current_main <= JDLE;
elsif (start = "1 then
locathandle <= bddin;
cufrent, main <= WARMUP;
else
current_main <= IDLE;
end if;

when RETURRCTL =»

if {rst = 0 then
current_ain <= [DLE;

elsif (returncode = returndone) then
-~ since this is the only place
- teh cam is accessed and we know it
~-- will not be busy at this point, then
-~ cam_ack will come back right away,
-~ 50 there is no reason to wait.
-«for cam_ack ="1"
~-also since we know single cycle access
--is in place we can just turn off the request.
--This will have to change if it is not single
--cycle access.
cam_request <= 0
resultvalid <= 1%
current_main <= IDLE;

elsif (returncode = returnmknode) then
-~ since this is the only place
-~ teh cam is accessed and we know it
- will not be busy at this point, then
-~ cam_ack will come back right away,
-~ so there is no reason to wait.
--for cam_ack = '1'
--also since we know single cycle access
--is in place we can just turn off the request.
--This will have to change if it is not single
~-tycle access.
cam_request <= 0%
-~ pop call stack into local regs
call_cmd <= stackpop;
localnode <= call_dataout;

101

localhandle <= call_dataout.nextbdd;
-~ start mknode
mknode_start <= 17
mknode_leve] <= call_dataout.Jevel;
mknode_lo <= resuli_dataout;
-~ the current result {(from second recursive cally
-- can be applied 1o the mknode hi branch.
mknode_hi <= localresulr;
-- pop the result stack
resuli_cmd <= stackpop;
cumrent_main <= mknode;
elsif (returncode = returnbigh) then
~- since this is the only place
- teh cam is accessed and we know it
- will not be busy at this point, then
-- garn_ack will come back right away,
-- 50 there is no reason to wait.
--for cam_ack =1’
—-also since we know single cycle access
--is in place we can just turn off the request.
--This will have to change if it is not single
--cycle access.
cam_request <= 1}
-- pop call stack imto Jocal regs
call_cmd <= stackpop;
localnode <= call_datacut;
Jocalhandle <= call_dataout.nextbdd;
-- push localresult onto result stack
result_cmd <= stackpush;
result_datain <= localresult;
current_main <= updatehi;
else
current_main <= RETURNCTL,;
end if;

when WARMUP =>

if {rst = 0) then
current_main <= IDLE,

elsif (localhandle = bddhandle_zero) then
Jocalresult <= bddhandle_one;
current_main <= RETURNCTL;

elsif (Jocathandle = bddhandle_one) then
localresult <= bddhandle_zero;
current_main <= RETURNCTL,;

else
-- setup cam find
cam_request <= 1",
cam_rw <=1 -~ read {find);
cam_field) <= locathandle;
cam_field2 <= camfield_zero,
cam_field3 <= natural(booleanop pos{operator));
visual_TOP_TOP_CAMFIND_CAMFIND_current <=

CAMFINDI;

- set up a read request to node memory
nodemem_handle <= locathandle;
nodemem_request <=1’}
nodemem_rw <= "1", -- read
nodemem_datain <= bdd_t_zero;
visual_TOP_TOP_CAMFIND_findnode_current <= findnode;
current_main <= CAMFIND;
end if;

when mknode =>

if (rst = 0" then
current_main <= IDLE;

elsif (mknode_resultvalid = '1") then
Jocalresult <= mknode_result;
current_main <= RETURNCTL;

else
current_main <= mknode;

end if;

when updatehi =>
if {rst = 0 then
current_main <= IDLE;

else
«- push local regs onto the call stack
call_datain.level <= localnode.level;
call_datain.lo <= localnode.lo;
call_datain.hi <= localnode.hi;
call_datain.nextbdd <= localhandle;
= store the return code in the ge bits
call_datain.gc <= returnmknode;
call_cmd <= stackpush;
-~ set the arg for the hi-edge recursion.
localhandle <= localnede.hi;
current_main <= WARMUP;

end if;

when updawlo =>

if (rst = 1) then
current_main <= IDLE;

else
-- push local regs onto the call stack
call_datain <= localnode;
call_datain.nextbdd <= locathandle;
- store the return code in the gc bits
call_datain.gc <= returnhigh,
call_cmd <= stackpush;
-~ set the are for the lo-edge recursion
locathandle <= localnode lo;
current_main <= WARMUP;

end if;

when CAMFIND =>
case visual TOP_TOP_CAMFIND_CAMFIND1 current is
when CAMFIND] =>
if (cam_ack = '1” and cam_resultvalid = '} and cam_found = 1)
then

-- set result handle
localresult <= cam_result;
cam_request <= 07
-~ camn hit
appnotcambhit ;= appnotcambit + I;
curent_main <= RETURNCTL;

elsif ((cam_ack = 1’ and cam_resultvalid = ’1) and (cam_found

) then
if (rst = 0') then
current_main <= IDLE;
else
cam_request <= 0%
appnotcanuniss ;= appnotcamimiss + 1;
visual_TOP_TOP_CAMFIND _CAMFIND1_current <=
TOP_TOP_CAMFIND _camdone;
end if;
elsif {rst = V") then
current,_main <= [DLE;
else
visual TOP_TOP_CAMFIND_CAMFINDI current <=
CAMFIND!;
end if;

when TOP_TOP_CAMFIND_camdone =>
if (rst = 0) then
current_main <= [DLE;
else
visual TOP_TOP_CAMFIND_CAMFIND1 _current <=
TOP_TOP_CAMFIND_camdone;
end if;
when others =>
current_main <= IDLE;
end case;
case visual_TOP_TOP_CAMFIND_findnode_current is

-- this state will lookup the nodehandle (found in the
~~ unique table} in node memory

when findnode =>

102

if (nodemem_ack = '1” and nodemem_datavalid = ’I” and cam-
done =
1% then
nodemem_request <= 07,
locainode <= nodememn _datacut;
current_rnain <= updatelo;
elsif (nodemerm_ack = "I"and nodemem_datavalid = 1) then
if (rst = ©) then
current_main <= 1DLE;
else
nodemem_request <= 07
localnode <= nodemem_dataout;
visual_TOP_TOP_CAMFIND_findnode_current <= waitcam-
result;
end if;
elsif (rst = 0} then
current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND_findnode_current <= findnode;
end if;

when waitcamresult =>

if (camdone = "1" then
current_main <= updatelo;

else
if (rst= D) then

current_main <= IDLE;
else
visual_TOP_TOP_CAMFIND_findnode_cument <= waitcam-
result;

end if,

end if;

when others =>

current_main <= IDLE;
end case;
when others =>

current_main <= IDLE;
end case;
case current_writecam is
when writeuniqueidle =>
if (mknode_resultvalid = 1" and current_main = mknode) then
- SEtUp a Write/insert to cam
- setup cam find
cam_request <="1"
cam_rw <= Y, -- write(insert);
camn_field]l <= localhandle;
cam_field2 <= canfield_zero;
cam_field3 <= natural(booleanoppos{operator));
cam_resultin <= mknode_result;
current_writecam <= writecam;
else
current_writecam <= writeuniqueidle;
end if;

when writecam =>
if (cam_ack = 1) then
-« turn off write request
cam_request <= 0
cam_rw <= 1%
apphotcamwrite ;= appnotcamwrite + 15
current_writecam <= writeuniqueidle;
else
current_writecam <= writecam;
end if;

when others =>
current_writecam <= writeuniqueidle;
end case;
end if;
end process;

https://localnode.lo
https://call_datain.gc
https://localnode.hi
https://call_datain.gc
https://localnode.hi
https://call_datain.hi
https://localnode.lo
https://call_datain.lo

-- Combinational process
APPLY_NOT_TOP_comb:
process (current_main,

visual_TOP_TOP_CAMFIND_CAMFINDI _current,
visual_TOP_TOP_CAMFIND_findnode_current, current_writecam)

begin - Combinational process

camdone <= 0%

case current_main is
when CAMFIND =>
case visual_TOP_TOP_CAMFIND_CAMFIND)_current is

when TOP_TOP_CAMFIND_camdone =>
camdone <='1%

when others =>
null;
end case,
when others =>
aull;

end case;

end process;

resulthandle <= localresult;
returncode <= call_dataout.gc;
end APPLY_NOT:

Mux the two apply routines together.
these two apply functionscould be
combined, but would add complexity
to the FSMs so they are muxed at this
level instead.

library ieee;

use ieee. STD_LOGIC_1164.alk:
library work:

use work kernelall;

library SYNOPSYS;

use SYNOPSYS.ATTRIBUTES ALL;

entity APPLYBLK is
port(

applyerror < out std_logic;
startQ : out std_logic;
level0 : out bddvar;
low(: out bddhandie;
highQ : out bddhandle;
applyop : in booleanop;
bddinl : in bddhandle;
bddin2 : in bddhandle;

call_dataout0 :inbdd_t;
call_dataout] :inbdd_t;
call_dataout2 :inbdd. t
call_full : in std_logic;
call_empty s in std_logic;
call_datain0 :out bdd_t;
call_datain] soutbdd_t;
call_datain2 :outbdd_t;

call_cmd : out stackemd;
cam_request : out std_logic;
cam_rw : out std_logic;

cam_field? : out camfield,;
cam_feld2 < out camfield;
cam_field3 : out camfield;

cam_resultin : out camfield;
cam_ack 1 in std_logic;
cam_busy :in std_logic;
cam_resalt : in camfield;
cam_resultvalid :in std_logic;
cam_found < in std_logic;
clk rin std_Jogic;
enableand :in sid_Jogic;
enablenot :in std_Jogic;

mknode_result : in bddhandle;

mknode_resultvalid : in std_logic;
node_port3_ack :in std_logic;
node_pon2_ack :in std_logic;
node_portl_ack :instd_logic;
node_datavalid : in std_Jogic;
node_dataout sinbdd_t:
node_busy < in std_logic;
port3_datain :outbdd t;
port3_handle : out bddhandle;
port3_request : out std_logic;
port3_rw : out std_logic:

At : out bddhand|

¥

result_datain0 : out bddhandle;
result_datainl : out bddhandle;
result_datain2 : out bddhandle;
result_cmd . out stackemd;
result_dataout0 : in bddhandle;
result_dataout! : in bddhandle;
result_dataout2 :in bddhandle;

result_full :in std_logic,
result_empty tinstd_logic;
resultvalid : out std_logic;
rst : in std_logic;
startapply : in std_logic;
startnot - in std_logic
%

end APPLYBLK;

library bddlib;

architecture APPLYBLK of APPLYBLK is

signal appand_call_cmd « stackemd;
signal appand_call_datain0 : bdd_t;
signal appand_call_datainl : bdd_t;
signal appand_call_datain2 : bdd_t;
signal appand_cam_fieldl : camfield;
signal appand_cam_field2 : camfield;
signal appand_cam_field3 : camfield;
signal appand_cam_request : std_logic;
signal appand_cam_resultin : camfield;

signal appand_cam_rw : std_logic;
signal appand_high(: bddhandle;
signal appand_level0 : bddvar,

signal appand_low(: bddhandle;

signal appand_port3_datain : bdd_t;
signal appand_port3_handle :bddhandle;
signal appand_port3_request : std_logic;
signal appand_port3_rw : std_logic;
signal appand_result_cmd : stackemd;
signal appand_result_datain0 : bddhandle;
signal appand_result_datainl : bddhandle;
signal appand_result_datain2 : bddhandle;
signal appand_resulthandle : bddhandle;
signal appand_resultvalid : std_logic;
signal appand_starnt0 : std_logic;
signal appnot_call_cmd : stackemd;
signal appnot_call_datain0 :bdd_y
signal appnot_call_datainl : bdd_t;
signal appnot_call_datain2 :bdd 1;
signal appnot_cam_feldl : camfield;
signal appnot_cam_field2 : camfield;
signal appnot_cam_field3 : camfield;
signal appnot_cam_request : std_logic;
signal appnot_cam_resuitin : camfield;

signal appnot_cam_rw : std_logic;
signal appnot_highQ : bddhandle;
signal appnot_level0 : bddvar;

signal appnot_low0 : bddhandle;

signal appnot_port3_datain : bdd_t;
signal appnot_port3_handle : bddhandle;
signal appnot_port3_request : std_logic;
signal appnot_port3_rw < std_logic;

103

https://call_dataout.gc

signal appnot_result_cmd : stackemd;
signal appnot_result_datainQ : bddhandle
signal appnot_resuit_datainl : bddhandle;
signal appnot_result_datain2 : bddhandle;
signal appnot_resulthandle : bddhandle;
signal appnot_resultvalid : std_logic;

signal appnot_startQ
signal enableand_d
signal enablenot_d
signal visual_C1_Q
signal visual_C2_Q

: std_logic;

: std_logic;

. std_logic;

: std_logic;
: std_logic;

component APPLY_NOT

>

cam_resultvalid : in std_logic;

cam_found < in std_logic;
cam_request : out std_Jogic;
cam_rw 1 out std_logic;
cam_fieldl : out camfield;
cam_field2 : out camfield;
cam_fietd3 : out camfield;
cam_resuitin : out camfield;

call_dawind :outrbdd_t;
call_datainl cout bdd_t;
call_dataout0 :inbdd_t;
call_dataocut] :inbdd_ b,
call_full :in std_logic;
call_empty

: in std_logic;

port {
clk in std_logic;
st tin std_logic;
bddin . in bddhandle;
resalthandl out bddhandle:
resultvalid : out std_logic;

nodemem_dataout :inbdd_t;
nodemem_busy :in std_logic;
nodemem_datavalid : in std_logic;
nodemem_ack : i std_Jogic;

nodemem_handle : out bddhandle;

nodemem_datain :out bdd
nodemem_rw < out std_logic;

call_cmd : out stackemid;

result_datain : out bddhandle;

result_dataout : in bddhandle;

resulr_full . in std_logic;
result_empty :instd_logic;
result_cmd : out stackemd;
start tin sed_logic;

mknode_start : out sid_logic;
mknode_result : in bddbandle;
mknode_resultvalid : in std_logic;

mknode_level : out bddvar;

nodemem_request : out std_logic; mknode_lo : out bddhandle;
cam_ack :in std_logic; mknode_hi : out bddhandle;
cam_busy 1 in std_logic; operator : in booleanop;
cam_result +in camfield; operror < out std_logic
cam_resultvalid : in std_logic; %

cam_found :in std_Jogic; end component;

cam_request : out std, logic;

cam_rw : out std_logic; ~ Start Configuration Specification
cam_field] : out camfield; for alt : APPLY _NOT use entity bddlib APPLY_MOT(APPLY_NOT),
cam_field2 : out camfield; for all : apply use entity bddlib.apply(apply):
cam_field3 : out camfield; -- End Configuration Specification
cam_resultin ; out camfield;

call_datain cout bdd_t; begin

call_datout :inbdd_t;

call_full »in std_logic; inst, APPLY_NOT: APPLY_NOT
cali_empty : in std_logic; port map {

call_cmd out stackemd; clk => clk,

result_datain . out bddhandle; st => 1st,

result_datacut : in bddhandle; bddin => bddinl,

result_full :in std_logic; resulthandle => appnot_resulthandle,
result_empty :in std_logic; resultvalid => appnot_resultvalid,

resuli_cmd : out stackemd;
start < in std_logic;
mknode_start < out std_logic;
mknode_result : in bddhandle;
mknode_resultvalid : in std_logic;
mknode_level : out biddvar;
mknode_lo : out bddhandle;
mknode_hi : out bddhandle
%

end component;

component apply

port {

clk < in std_logic:
st +in std_logic;
lobddin : in bddhandle;
hibddin : in bddhandle;
resulthandle : out bddhandle;

resultvalid : out std_logic;
nodemem_dataout : in bdd_t;

nodemem_busy

1 in std_logic;

nodemem_datavalid : in std_logic;

nodemem_ack
A, 4+

A1,

< in std_logic;

- out bddhandle:

nodemem:da!ain : out bdd_g;

nodemem,_rw : out std_logic;
nodemern_request : out std_logic;
cam_ ack in std_legic;

cam_busy
cam_result

. in std_logic;
: in camfield;

nodemem,_dataout => node_dataout,
nodermem_busy => node_busy,

nodemem_datavalid => node_datavalid,

nodemem_ack => node_port3_ack,

nodemem_handle => appnot_port3_handle,
nodemem_datain => appnot_port3_datain,

nodemem_rw => appnot_port3_rw,

nodemem_request => apphot_port3_request,

cam_ack => cam_ack,

cam_busy =» cam_busy,

cam_resuit => cam_result,
cam_resultvalid => cam_resultvalid,
cam_found => cam_found,
cam_request => appnot_cam_request,
Cam_fw => appnot_cam_rw,
cam_field] => appnot_cam_fieldl,
cam_field2 => appnot_cam_field2,
cam_{field3 => appnot_cam_field3,
cam_resultin => appnot_cam_gesultin,
call_datain => appnot_call_datainG,
call_dataout => call_dataous0,
call_full => cail_full,

call_empty => call_empty,

call_cmd = appnot_call_cmd,

result_datain => appnot_result_datain0,

result_dataout => result,_dataout0,
result_full => result_full,
result_empty => result_empty,
result_cmd => appnot_result_emd,

start => starfinot,

mknode_start => appnot_stan0,
mknode_result => mknode_result,
mknode_resultvalid => mknode_resultvalid,
mknode._level => appnot_level,
mknode_lo => appnot_low0,

mknode_hi =» appnot_highO);

inst_apply: apply
portmap (
clk => clk,
13t => £,
lobddin => bddinl,
hibddin => bddin2,
resulthandle => appand_resulthandle,
resultvalid => appand,_resultvalid,
nodemem_dataout => node_dataout,
nodemem_busy => node_busy,
nodemem_datavalid => node_datavalid,
nodemem_ack => node_port3_ack,
nodemem_handle => appand_port3_handie,
d _datain => appand_port3_datain,
nodemem_rw => appand_port3_tw,
nodemem_request => appand_port3_request,
cam_ack => cam_ack,
cam_busy => cam_busy,
cam_result => cam_result,
cam_resultvalid => cam_resultvalid,
cam_found => cam_found,
cam_request => appand_cam_request,
cam_rw => appand_cam_rw,
cam_field] => appand_cam_field],
cam_field2 => appand_cam_field2,
cam_field3 => appand_cam_{field3,
cam_resultin => appand_cam_resultin,
call_datain0 => appand_call_datain®,
call_datainl => appand_call_datain],
call_dataoutQ => call_dataout0,
call_dataoutl => call_dataoutl,
call_full => call_full,
call_empty => call_empty,
call_cmd => appand_call_cmd,
result_datain => appand_result_datain0,
result_dataout => result_datacutQ,
result_full => result_full,
result_empty => result_empty,
result_cmd => appand_result_cmd,
start => startapply,
mknode_start => appand_start0,
mknode_result => mknode_result,
mknode_resultvalid => mknode_resultvalid,
mknade_level => appand_levelQ,
mknode_lo => appand_low0,
mknode_hi => appand_high0,
operator => applyop,
operror => applyerror);

™

process{enablenot_d.enableand_d,
appnot_resulthandle,
appnot_resultvalid,
-- result signals
appand_resulthandle,
appand_resultvalid)
begin
if(enablenot_d = '1") then
resulthandle <= appnot_resulthandle;
resultvalid <= appand,_resultvalid OR appnot_resultvalid,
else
resulthandle <= appand_resulthandle;
resultvalid <= appand_resultvalid OR appnot_resultvalid;
end if;

end process;

process(enablenot,enableand,

appnot_resulthandle,
appnot_resultvalid,
-- cam signals
appnot_cam_field1,
appnot_cam_field2,
appnot_cam_field3,
appnot_cam_fesuitin,
appnol_cam_request,
appnot_cam_rw,
-- node memory signals
appnot_port3_datain,
appnot_port3_handle,
appnot,_port3_request,
appnot_port3_rw,
-- call register/stack frame
appnot_call_datain0,
appnot_call_datainl,
appnot_call_datain2,
appnot_call_cmd,
- result stack frame
appnot_result_datain0,
appnot_result_dataini,
appnot_result_datain2,
appnot_result_cmd,
--mknode signals
appnot_start0,
appnot_level0,
appnot_jow0,
appnot_highO,
-- apply and signals

- result signals
appand_resulthandle,
appand_resuitvalid,
« cam signals
appand_cam_fieldl,
appand_cam_field2,
appand_cam_field3,
appand_cam_resultin,
appand_cam_request,
appand_cam_rw,
-- node memory signals
appand_port3_datain,
appand_port3_handle,
appand_port3_request,
appand_port3_rw,
- call register/stack frame
appand_call_datainQ,
appand_cali_datainl,
appand_call_datain2,
appand_call_cmd,
-~ result stack frame
appand_result_datain0,
appand_result_dataini,
appand_result_datain2,
appand_result_cmd,
~-mknode signals
appand_start0,
appand_level0,
appand_low0,
appand_high0}

105

subtype visual BIT_VECTOR_0_1_Cis BIT_VECTOR (Oto]);

begin

--case visual_BIT_VECTOR_0_1_0"(To_bitvector
(std_ulogic_vector(startnot & startand), 07) is

- APPLY_NOT

--when "01" =>

if(enablenot = 1) then

-- result signals are bandles in different process
-~ cam signals

--cam_datain <= appnot_cam_datain;
cam_fieldl <= appnot_cam_fieldl;
cam_field2 <= appnot_cam_field2;
cam_field3 <= appnot_cam_field3;
cam_resultin <= appnot_cam_resultin;
cam_request <= appnol_cam_request;
CAM_IW < aPpRot_cam_fw;

-- node memory signals

port3_datain <= appnot_porn3_datain;
port3_handle <= appnot_port3_handle;
port3_request <= appnot_pon3_reqguest;
port3_rw <= appuot_port3_rw;

-- call register/stack frame

call_datain0 <= appnot_call_datain0;
call_datainl <= appnot_call_datain1;
call_datain2 <= appnot_call_datain2;
cali_cmd <= appnot_call_cmd;

-- result stack frame

result_datain() <= appnot_result_datain0O,
result_datainl <= appnot_tesult_dataini;
result_datain2 <= appnot_result_datain2;
result_cmd <= appnot_result_cmd;
--mknode signals

stant(<= appnot_startQ;

Jevel <= appuot_level;

lowl <= appnot_low();

highO <= appnot_high{;

elstf{enableand = ’1") then

- APPLY_AND
-~when "10" |
--when others =>

-- result signals are handled in different processs
-- cam signals
~-cam_datain <= appand_cam_datain;
cam_fieldl <= appand_cam_field];
cam_field2 <= appand_cam_field2;
cam_field3 <= appand_cam_field3;
cam_resultin <= appand_cam_resultin;
cam_request <= appand_cam_request;
cam_rw <= appand_cam_rw;
-- node memory signals
port3_datain <= appand_port3_datain;
port3_handle <= appand_port3_handle;
port3_request <= appand_port3_request;
port3_rw <= appand_port3_rw;
-- call register/stack frame
call_datain0 <= appand_call_datain0;
call_datainl <= appand_call_datain};
call_datain2 <= appand_call_datain2;
call_cmd <= appand_call_cmd;
- result stack frame
result_datainQ <= appand_result_datain0;
result_datainl <= appand_result_datain?;
result_datain2 <= appand_result_datain2;
result_cmd <= appand_result_cmd;
«-mknode signals
start0 <= appand_start0;
level0 <= appand_levelQ;
low0 <= appand_low0,;
highO <= appand_high};

end if;

~-end case;

end process;

enablenot_d <= (visual_C1_Q);
process (clk , rst)

begin
if {rst = 0" then

visual C1_Q «= 0%
elsif (clk’event and ¢Ik = "1 then
visual _C1_Q <= {enablenot);

end if}
end process;

enableand_d <= {visual_C2_Q);

process {cIk , rst)
begin
if (rst = 0 then
visual_C2_Q«= 0"
elsif {clk'event and clk = 1" then
visual _C2_Q <= (enableand);

end if;
end process;

end APPLYBLK;

library ieee;

vse ieee. STD_LOGIC_1164.a11;
library bddlib;

use bddiib.kernel.all;

library work;

use work.bdddebug.all;

library SYNOPSYS;

use SYNOPSYS ATTRIBUTES ALL;

entity memctr is

generic (
readdelay : NATURAL S
writedelay : NATURAL =

memsize : NATURAL := bddmemsize

port {
port3_request ; in std_logic;
port3_ack :out std_logic;
port3_handle : in bddhandle;
port3_datain :inbdd 1
port3_rw :in std_logic;
pornt2_request : in std_logic;
port2_ack : out std_logic;
port2_handle : in bddhandle;
port2_datain :inbdd_t;
portZ_rw :in std_logic;
portl_request : in std_logic;
portl_ack : out std_logic,
port]_handle : in bddhandle;
port] _datain :inbdd_t
portl_rw [in std_logic;
datavalid : out std_logic;
dataout :outbdd_t;

busy : out std_logic;
clk < in std_logic;
rs! : in std_logic
)

end memctrl;

architecture memctri of memctrl is

constant maxdelay : NATURAL
should be maxdelay which is max(readdelay, writedelay)

signal delaycnt : NATURAL range 0 to maxdelay;

signal delaytrnp : NATURAL range 0 to maxdelay;

signal address : bddhandle;

signal datain :bdd_t;

= readdelay; —

106

this

107

signal read write : std_logic;
signal enable :std_logic;

if (delayent = 0) then
-- set the controls to memory

signal tp_writetable : BOOLEAN = false; enable <="1"after 5 ns, O after 9 ns;
signal port_ack : std_logic_vector(l1to3); datavalid <= read_write;
signal ibusy : std_logic; portd_ack <= port_ack(1};

port2_ack <= port_ack(2);
port3_ack <= port_ack(3);
visual_IDLE next <= IDLE;

else
visual_delaycnt_next <= delaycnt - 1;
visual_ibusy_next <= 1%
visual_IDLE_next <= delay;

end if;

signal startaccess : std_logic:
type visual IDLE_states is (IDLE, delay);

signal visual_IDLE_current, visual_IDLE_next : visual_IDLE_states;
attribute STATE_VECTOR of memcur] ¢
architecture is "visual _IDLE_curremt”;

type visual_GOT3_states is (GOT3, GOTI, GOT2): when others =>»

signal visual _GOT3_cumrent, visual _GOT3_next: visual_IDLE_next <= IDLE;
visual_GOT3_states; end case;

end process;

signal visual_delaycnt_next : NATURAL range 0 1o maxdelay;

signal visual_ibusy_next : stid_logic; memctr!_IDLE:
process (clk)
begin begin

if (clk'event and clk = "1) then
if {rst = 0’) then
-- Combinational process ibusy <= 0
memctr]_IDLE_comb: visual_IDLE_current <= IDLE;
process (delaycnt, startaccess, read_write, port_ack, else
visual_IDLE_current) delaycmt <= visual_delaycnt_next;
begin ibusy <= visual_ibusy_next;
port3_ack <= 0’ visual_IDLE _cutrent <= visual_IDLE_next;

port2_ack <= 0% end if;
porti_ack <= 0% end if;
enable <= 0 end process;

visual_ibusy_next <= 0,
visual_delaycnt_next <= delaycnt;

-- Combinational process
memctrl GOT3_comb:
case visual_IDLE_current is process (ibusy, port1_request, porti_handle, portl_datain, portl_rw,
when IDLE => port2_request, port2_handle, port2_datain, port2_rw,
if ((startaccess = 1) and ((read_write = "1"and readdelay = 0y or (port3_request,
read_write = U’ and writedelay = 03)) then port3_handle, port3_datain, port3_rw, visual_GOT3_current)
-~ set the controls to memory begin

enable <= "1’ after 5 ns, UV after 9 ns;
datavalid <= read_write;
portl_ack <= port_ack(1);
port2_ack <= port_ack(2);
port3_ack <= port_ack(3}
visual_IDLE_next <= IDLE;

elsif ((startaccess = '1") and (read_write = 17) then
visual_delaycnt_pext <=readdelay - 1;
visual_ibusy_next <= 1%
visual _IDLE_next <= delay;

elsif ((startaccess = 17 and (read_write = 07) then
visual_delaycnt_next <= writedelay - 1;
visual_ibusy_next «= 17
visual_IDLE_next <= delay;

else
busy <= 07
datavalid <= U’ after 1 ns;
portl_ack <= 0%

port2_ack <= 0’

port3_ack «= 07

visual_delaycnt_next <= 0;

visual_IDLE_next <= IDLE;
end if,

when delay =>
busy <= 1%
-~ ibusy <= 1%,
- port]_ack <=0,
-- port2_ack <= 0%
-~ pont3_ack <= 0%

case visual_GOT3_current is.
when GOT3 =>

if ((ibusy = 0 and (portl_request = '1°)) then
startaceess <= '1"
-- set values for the external signals
port_ack <= "100";
-~ set the controls to memory
address <= port]_handle;
datain <= portl_datain;
read_write <= port}_rw;
visual_GOT3_pext <= GOTI;

elsif ((ibusy = 0) and {port2_request = 1) then
startaccess <= 1%
-+ set values for the external signals
port_ack <= "(10";
-~ set the controls to memory
address <= port2_handle;
datain <= port2_datain;
read_write <= portZ_rw;
visual_GOT3_pext <= GOT2;

elsif ((ibusy =) and {port3_request = '17)) then
startaccess <=1
-- set values for the external signals
port_ack <= "001";
-~ set the controls to memory
address <= port3_handle;
datain <= port3_datain;

read_write <= port3_rw;

visual_GOT3_next <= GOT3;
else

startaccess <= 0’

visual_GOT3_next <= GOT3,
end if;

when GOT1 =>

if {{ibusy = 0% and (pon2_request = "1%) then
startaccess <=1
-- set values for the external signals
port_ack <= "0107;
-~ set the controls to memory
address <= port2_handle;
datain <= port2_datain;
read, write <= port2_rw;
visual _{GOT3_next <= GOT2,

elsif ((ibusy = D) and (port3_request = 1)) then
startaccess <="1%
-~ set values for the external signals
port_ack <= "001";
-- s¢t the controls to memory
address <= port3_handle;
datain <= pont3_datain;
read_write <= port3_rw;
visual_GOT3_next <= GOT3;

elsif ({ibusy = 0 and (port]_request = '17) then
startaccess <= 17
- set values for the external signals
port_ack «="100",
-- set the controls to memory
address <= portl_handle;
datain <= port]_datain;
read_write <= portl_rw;
visual_GOT3 next <= GOTL;

else
startaccess <= 0
visual_GOT3_nest <= GOTL;

end if;

when GOT2 =>

i {(ibusy = 0% and (port3_request = "1) then
startaccess <=0, 'V after | ns;
-~ set values for the external signals
port_ack <= "001";
-~ set the controls to memory
address <= port3_handle;
datain <= port3_datain;
read_write <= port3_rw;
visual_GOT3_next <= GOT3;

elsif ((ibusy = 0) and (port]_request = "17) then
startaccess <= 0', 'l"after | ns;
-« set values for the external signals
port_ack <= "100";
-- set the controls to memory
address <= porti_handle;
datain <= portl_datain;
read_write <= portl_rw;
visual_GOT3_pext <= GOT];

elsif ((ibusy = 0 and (port2_request = '17) then
startaccess <= 0, '1" after 1 ns;
-« 52t values for the external signals
port_ack <= "010";
-~ set the controls to memory
address <= port2_handle;
datain <= port2_datain;
read_write <= port2_rw;
visual_GOT3_next <= GOT2;

else
startaccess <= 0%
visual_GOT3_next <= GOTZ;

end if;

when others =>

visual_GOT3_next <= GOT3,
end case:
end process;

memetrl_GOT3:
process {elk}
begin

if {clk'event and cik = ‘17 then
if {zst = 1) then
visual_GOT3_current <= GOT3;
else
visual_GOT3_current <= visual_GOT3_next;
end if;
end if,
end process;

process {enable, read_write, address, datain, 1p_writetable)

variable mem : bdd_vec_t(0 1o memsize - 1);
begin - process
if enable =1 "then
if read_write = 0" then

<-write
mem{address) ;= datain;
else
-- read
dataout <= mem(address);
end if;
end if:

- this is for test purposes only

- set the value of 1p_writetable during
-- debug to dump the table to a file
if(tp_writetable) then
writenodetable(mem);

end if;

end process;
end memetrl;

-- When a request is recieved, the ack signal will go

- high indicating that the data is ready.

-- This is a single cycle memory with no delay.

- on a read, Ack indicates the data is valid at the output,
- or the write has been completed.

Al inputs must be beld for a complete clock cycle.

H

library ieee;

use ieee. STD_LOGIC _1164.all;
library bddlib;

use bddlib.kernel.all;

use ieee NUMERIC_STD.all;

library SYNOPSYS;

use SYNOPSYS ATTRIBUTES ALL;

entity uniquemen is

genenc (
readdelay : NATURAL =0,
writedelay : NATURAL =0
uniquesize : NATURAL := bdduniquetablesize
)i
port

portl_ack - out std_logic;
portl _busy : out std_logic;
portl_dataready : out std_logic;
portl _dataout : out bdghandle;
portl_handle :in bddhandle;
portl_datain : in bddhandle;
port_rw < in std_logic;
portl_request : instd_logic;
¢lk *in std_logic;

st < in std_logic

)

108

end uniquemern;

architecture uniq of uniq is

constant maxdelay : NATURAL
be maxdelay which is max(readdelay,writedelay)
signal delaycnt : NATURAL range O to maxdelay;
signal address : hashkey:

signal datain : bddhandle;

signal dataout bddhandle;

signal read_write : std_logic;

signal enable :std_logic;

type visual_IDLE _states is (IDLE);

signal visual_IDLE_current, visval_IDLE_next : visual _IDLE_states;

attribute STATE_VECTOR of uniquemem :
architecture is "visual_IDLE_curremt™;

begin

-- Combinational process
uniquemem_IDLE_comb:

process (rst, port]_request, port]_handle, port1_datain, portl_rw,

read_write,
visual_IDLE_current)
begin

portl_ack <= 0"

porti_busy «= 07

portl_dataready <= 0",

address <= hashkey_zero;

datain <= bddhandle_zero;

read_write <= 17

enable <= 0’}

if (x5t = 0" then

-- reset all drivers to memory

read_write <="1"%

enable «= 0%

address <= 0;

datain <=0,

visual _IDLE_pext <= 1DLE;
else

case visua}_IDLE_curremt is
when IDLE =>
if ((port] _request = 17} and (port1_rw = "17) then

portl_busy <="1%
portl_ack <="T"
-- set up the memory inputs
enable <= "1"after Ins;
address <= port] _handle;
datain <= ponti_datain;
read_write <= 1%
portl_dataready <= read_write;
visual_1DLE_next <= IDLE;

elsif ((portl_request = 1"} and (port1_rw = 07) then

port]_busy <="1"

portl_ack <="1%

«+ set up the memory inputs

enable <= 1" after Ins;

address <= port]_bandle;

datain <= portl_datain;

read_write <= 0

port]_dataready <= read_write;

visual YDLE_next <= [DLE;
else

-- reset all drivers to memory

read_write <= 1%

:= readdelay; - this should

enable <= 0

address <= 0;

datain <= 0;

visual_IDLE_next <= IDLE;
end if;

when others =>

visual_IDLE_next «= IDLE;
end case;
end if,
end process;

uniquemem_IDLE:
process (¢lk)
begin

if {clk'event and clk = ‘1" then
if (rst= 0" then
visual_IDLE_current <= IDLE;
ehse
visual_IDLE_current <= visual _IDLE_next;
end if;
end if,
end process;

-~ this will eventually {before synthesis
- have to be moved outside of this unit
-~ 5@ that it can represent an external memory
uniquemem:
process (enable, read_write, address, datain)
variable mem : bddhandle_vec_t(0 to uniquesize - t };
begin
--dataout <= bddhandle_zero;
if enable = '1" then
i read_write = U then
--write
memiaddress) := datain;
else
--read
dataout <= mem(address);
end if;
end if;
end process,

portl_dataout <= dataout;
end uniquemen;

-- this is the make_node function.

-- it controls all creation and access

-- to thenode table.

-« garbage collection will also need

- to manipulate the node table so

~ addtional controls will need to be

- added Iater.

-- because VIsual on Linux is crashing when trying to
-- have concurrent machines in a sub level and

109

~-- controls set to async outputs, this machine has some work arounds

- using additional conditions in instate assignments

library ieee;

use ieee STD_LOGIC_1164.all;
library work;

use work.kernelall;

library SYNOPSYS;

use SYNOPSYS ATTRIBUTES ALL;

entity mknodefsm is
generic {
uniquesize : NATURAL
)
port {
clk * in std_logic;

= bdduniquelablesize

rst : in std_logic;
start :in std_logic;
level : in bddvar;
low : in bddhandle;

freehandle - in bddhandle;
freehandle_valid : in std_logic;

high : in bddhandle;
I hhandle < out bddhandle:
resultnode :out bdd_t;

tookfreehandle : out std_logic;
resubt_valid :out std_Jogic;
unique_handle : out bddhandle;
unique_datain : out bddhandle;
unique_rw ; out std_logic;
unique_request : out std_logic;
unique_dataready : in std_logic;
unique_ack : in std_logic;
unique_busy : in std_logic;
unique_dataout :in bddhandle;
nodemem_dataout : in bdd_t;

nodemem_busy : in std_logic;
nodemem_dataready : in std_logic;
nodemem_ack :instd_logic;

nodemern_handle : cut bddhandle;
nodemem_datain :outbdd_t;

nodemem_rw :out std_logic;
nodemem_request : out std_logic
)

end mknodefsm;

architecture mknodefsm of mknodefsm is

signal hashval < hashkey;

signal firsthandie : bddhandle;
signal nod 1_handle_i : bddhandie;
signal build_busy : std_logic;
signal start_build : std_logic;

type visual_wka_states is (wka);
constant visual_wka_current : visual_wka_states 1= wka;

type visual_wka_wka_IDLE_states is (IDLE, FINDNODE, FINDUN-
IQUE, WAITFORBUILD,
hash);

signal visual_wka_wka_IDLE_current :
visval_ wka_wka_]DLE_states;

type visual_wka_wka_writenodeidle_states is (writenodeidle, writeno-
demem,
writenodewait);

signal visual_wka_wka_writenodeidle_current :
visual_wka_wka_writenodeidle_states;

type visuélqwka_wka_wri!euniqucidlc_sta(es is (writeuniqueidle,
writeuniquemem
, writeuniquewait);

signal visual_wka_wka_writeuniqueidle_current :
visual_wka_wka_writeuniqueidle_states;

«« The three machines on this page are concurrent.

- The writenodedle and writeuniqueidle machines

- will be triggered when start_build is set toa 1.

-~ The default value should be 0.

- They will run concurrently until completion.

- when both are complete build_busy shouid be 0;
-- when either is active build_busy should be active |
begin

-~ Synchronous process
mknodefsm_wka:
process (cik)
variable uniqueaccess : NATURAL
variable uniguehit : NATURAL
variable uniquemniss : NATURAL =
variable uniquechain : NATURAL = 0
begin

if (clk'event and ¢lk = 1) then
tookfrechandie <= 0",
resolt_valid <= 07,
case visual_wka_wka_IDLE_current is
when IDLE =>
-- reset all of the outputs

if (rst = 0" then
resulthandle <= bddhandle_zero;
result_valid <= 07
tookfrechandle <= 07
- -~ turn off the memory interfaces

-~ unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero:
unique_rw <= 1" .- read
unique_request <= 0%
- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= '1"; -- read
nodemerm_request <= 07
visual_wka_wka_IDLE_cwrent <= IDLE;
elsif (start = 1"y then

result_valid <= 0%
if (low = high) then

resulthandle <= low;

resuit_valid <= "17;

-- - turn off the memory interfaces

-- unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <= "1 -- read
unique_request <= 07,
-- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero,
nodemem_rw <= "1’ -- read
nodemem_request <= 0
visual_wka_wka_IDLE_cwrrent <= IDLE;
else
hashval <= bdd_hash((level low high,0.0),uniquesize);
visual_wka_wka_IDLE_current <= hash;
end if;
else
visual_wka_wka_IDLE_current <= IDLE;
end if;

when FINDNODE &>
-~ reset all of the cutputs

if (rst = D) then
lthandle <= bddhandle_zero;
result_valid <= 0
tookfreehandle <= 0,
«= - turn off the memory interfaces

- URiqUe METs DUtpULs
unique_handle <= bddhandle_zero;
unique,_datain <= bddhandle_zero;
unique_rw <= 1% -- read
unique_request <= 07

-- nodemem outputs

110

nodemem _handle_i <= bddhandle _zero;
nodemem_datain <= bdd_t_zero,
nodemem_rw <= 17 -- read
nodemem_request <= 0%
visual_wka_wka_IDLE_current <= IDLE;
elsif (nodemem_ack = 1" and nodemem_dataready = ’1’) then
nodemem_request <= 07
if {(nodemem_dataout.Jo = Jow) and (nodemem_dataout.hi =

high) and (

nodemem_dataout.Jevel = level)) then
resulthandle <= nodemem_handle_i;
result_valid <= 1%
uniquehit := uniquehit + 1;
-- -- turn off the memery interfaces

-- unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero:
unique_rw <= T -~ read
unique_request <= 05
-- nodemem outputs
nodemem_handle_j <= bddhandle_zero;
nodemem_datain <= bdd_1_zero;
nodemem_rw <= ‘1% -- read
nodemem_request <= 0
visual_wka_wka_IDLE_curmrent <= IDLE;
elsif (nodemem_dataout.nextbdd = bddhandle_zero) then
if (build_busy = 1) then
visual_wka_wka_IDLE_current <= WAITFORBUILD;
else
if (frechandle_valid = '1’) then
~-start_build <= "1
resulthandle <= freehandle;
result_valid <= 1%
-~ -~ turn off the memory interfaces

-+ unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <=1 - read
unique_request <= 07
-- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 1" -- read
nodemem_request <= 0%
visual_wka_wka_IDLE_current <= IDLE;
else
visual_wka_wka_IDLE_current <= WAITFORBUILD;
end if;
end if;
else
rodemem_handle_i <= nodemem_dataout. nextbdd;
uniquechain = uniquechain + 1;
-- set up a read request to node memory
nodemem_request <= 1%
nodemem_rw <= 1" -- read
nodemem_datain <= bdd_t_zero;
visuat_wka_wka_IDLE_current <= FINDNODE;
end if;
else
visual_wka_wka_IDLE_current <= FINDNODE;
end if;

— wait until the unique memory access is complete

when FINDUNIQUE =>

-- reset all of the outputs

if (rst = V) then
Ithandle <= bddhandle_zero:
result_valid <= 0%
tookfrechandle <= 07
« - turn off the memory interfaces

111

-- unique mem outputs
unique_handle <= bddhandie_zero:
unique_datain <= bddhandle_zero;
unique_rw <="I"; -- read
unique_request <= 0%
- nodemem outputs
nodemem_handle_i <= bddhandie_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 1% -~ read
nodemem_request <= 0
visual_wka_wka_IDLE_current <= IDLE;
elsif (unique_ack = '1" and unique_dataready = "1") then
unique_request <= 0’
UMQUEACCEss = UMgqueaccess + 1;
if (unique_dataout = bddhandle_zero) then
if (build_busy = '1) then
visual_wka_wka_IDLE_current <= WAITFORBUILD;
else
if (freehandle_valid = 'T°) then
--start_build <='1"%
resulthandle <= freehandle;
result_valid <= '17
-~ turn off the memory interfaces

-~ Unigue mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <= 1" -- read
ubique,_ request <= 0
- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 1" -- read
nodemem_request <= 0%
visual_wka_wka_IDLE_current <= IDLE;
else
visual_wka_wka_IDLE_current «= WATTFORBUILD;
end if;
end if;
- - start sgtting up a node memeory read
-- - must read from the handle (address) just
-- -- found from the unique table
-- -~ first handle is needed when building a new node to
-- -- put at beginning of chain

else
nodemem_handle_i <= unique_dataout;
firsthandle <= unique_dataocut;
-- set up a read request to node memory
nodemem_request <="1"
nodemem_rw <= 1" -- read
nodemem_datain <= bdd_t_zero;
visual_wka_wka_IDLE_current <= FINDNODE;
end if;
else
visual_wka_wka_IDLE_curvent <= FINDUNIQUE;
end if;

when WAITFORBUILD =>
-~ reset all of the outputs

if {rst = ¥") then
resulthandle <= bddhandle_zero;
resuit_valid <= 0%
tookfrechandle <= 0
- - turn off the memory interfaces

-- unique Tmem outputs

unique_handle <= bddhandle_zero;
unique_datain <= bddhandle_zero;
unique_rw <="}’; -- read
unique_request <= 0%

-- podemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;

https://nodemem_dataout.hi
https://nodemem_dataout.lo

nodemem_rw <= 1" - read
nodemem_request <= 0,
visual_wka_wka_IDLE_current <= IDLE;
elsif (build_busy = 07 then
if {freehandle_valid = 1") then
~~-start_build <= 1%
resulthandle <= freehandle;
result_valid <= 1%
~= == turn off the memory interfaces

-~ unique mem outputs
unique_handle <= bddhandle_zero;
unique_datain <= bddhandie_zero;
unique_rw <= 1% -- read
unique_request <= T,
-- nodemem outputs
nodemem_handle_i <= bddhandle_zero;
nodemem_datain <= bdd_t_zero;
nodemem_rw <= 'l - read
nodemem_request <= 0
visual_wka_wka_IDLE_current <= IDLE;
else
visual_wka_wka_IDLE_current <= WAITFORBUILD;
end if;
else
visual_wka_wka_IDLE_current <= WAITFORBUILD;
end if;

when hash =>
-~ reset all of the outputs

if (rst = V") then
resulthandle <= bddhandle_zero;
result_valid <= 0%
taokfreehandle <= 0",
-- -« turn off the memory interfaces

« unique mem outputs

unique_handle <= bddhandle_zero;

unique_datain <= bddhandle_zero;

unique_rw «= "1 -~ read

unique_request <= 0

-~ nodermem outputs

nodemem_handle_i <= bddhandle_zero;

nodemem_datain <= bdd_t_zero,

nodemem_rw <= 1"; - read

nodemem_request <= 0,

visual_wka_wka_IDLE_current <= IDLE;
else

- start a read from the unique table memory

unique_request <= 1"

unique_rw <= 1" -- read

unique_datain <= bddhandle_zero;

unique_handle <= hashval;

firsthandle <= bddhandle_zero;

visual_wka_wka_IDLE_current <= FINDUNIQUE;
end if;

when others =>

visual_wka_wka_IDLE_cumrent <= IDLE;
end case;
case visual_wka_wka_writenodeidle_current is

when writenodeidle =>
if (start_build = 1) then
if (freehandle_valid = '1’) then

d y write req
nodemern_handle_i <= freehandle;
nodemem_request <= 1"
nodemem_rw <= 0% -- write
nodemem_datain <= (level,low high firsthandle,gc_zero);

i

tookfreehandle <=1";
viswal _wka_wka_writenodeidle_current <= writenodemem;
else

112

visual_wka_wka_writenodeidle_current <= writenodewait;
end if;
else
visual_wka_wka_writenodeidle_current <= writenodeidle;
end if;

-- write the node to node memory

when writenodemem =>
if (nodemem_ack = 1) then
resulthandle <= freehandle;
-- turn of write request
nodemem_request <= 07
nodemem_rw <= 1"
-~ tookfrechandle is urned off each
- glock by default
visual_wka_wka_writenodeidle_current <= writenodeidle;
else
visual_wka_wka_writenodeidle_current <= writenodemem;
end if;

when writenodewait =>
if (frechandle_valid = '1") then
--nod ¥ write req
nodemem _handle_1 <= freehandle;
nodemem_request <="1"
nodemem_rw <= 0 -- write
nodemem_datain <= (Jevel,low,high,firsthandle,gc_zero);

tookfreehandle <= '1";

visnal_wka_wka_writenodeidle_current <= writenodemem;
else

visual_wka_wka_wnitenodeidle_current <= writenodewait;
end if;

when others =>

visual_wka_wka_writenodeidle_current <= writenodeidle;
end case;
case visval_wka_wka_writeuniqueidle_current is
when writeuniqueidle =>
if {start_build = "1’y then
if (frechandle_valid = 1" then
--upique memory write request
unique_request <= '’}
unique_rw <= 0, - write
unigue_datain <= freehandle;
unique_handle <= hashval;
uniquemiss ;= uniquemiss + I;
visual_wka_wka_writeuniqueidle_cwrent <= writeuniquememn;
else
visual_wka_wka_writeuniqueidle_current <= writeuniquewait;
end if;
else
visual_wka_wka_writeuniqueidle_current <= writeuniqueidle;
end if;

-~ write the handle to unique memory

when writeuniquemem =>

if {unique_ack = 1 then

-- turn off write request

unique_request <= 07,

unique_rw <='1%

visual_wka_wka_writeuniqueidle_current <= writeuniqueidle;
else

visual_wka_wka_writeuniqueidle_current <= writeuniquemem;
end if;

when writeuniquewait =>
if (freehandle_valid = ’17) then
~unique memory write request
unique_request <=1’}
unique_rw <= 0% - write
unique_datain <= freehandle;

unique_handle <= hashval;

uniquemiss := uniquermiss + 1;

visual_wka_wka_writeuniqueidle_current <= writeuniquemem;
else

visual_wka_wka_writeuniqueidle_cutrent <= writeuniguewait;
end if;

when others =>

visual_wka_wka_writeuniqueidle_current <= writeuniqueidle;
end case;
end if;
end process;

-~ Combinational process
mknodefsm_wka_comb:
process (nodemem_ack, nodemem_dataready, nodemem_dataout, low,
high, level,
build_busy, frechandle_valid, unique_ack, unique_dataready,
unique_dataout, visual_wka_wka_IDLE_current,
visual_wka_wka_writenodeidle_current,
visual_wka_wka_writeuniqueidle_current)
begin -- Combinational process
build_busy <= 0"
start_build <= 0%

case visual_wka_wka_IDLE_current is
when FINDNODE =>

if{{nodemem_ack = 1) AND

(nodemem_dataready = 1) AND

NOT{{nodemem_dataocut.lo = low) AND
{nodemem_dataout.hi = high) AND
(nodemem_dataout.level = level))

AND

(nodemem_dataout.nextbdd = bddhandle_zero)

AND

(build_busy = 0) AND

(frechandle_valid = 17)

then

start_build <= 1",

end if;

-- wait until the unique memory access is complete

when FINDUNIQUE =>
if((unique_ack =17 AND
(unique_dataready =17 AND
{unique_dataout = bddhandle_zero) AND
(build_busy = 09 AND
(freehandle_valid = "1) Jthen
start_build <="1%
end if;

when WATTFORBUILD =>
if ((build_busy = 0 AND
(freehandle_valid = 17} then
start_build <="1%
end if;

when others =>
aull;
end case;
case visual_wka_wka_writenodeidle_curmrent is
-- write the node to node memory

when writenodemem =>
build_busy <= T

when writenodewait =>
build_busy <= 17

when others =>
null;
end case;
case visual wka_wka_writeuniqueidle_current is

113

-- write the handle to unique memory

when writeuniquemem =>
build_busy <="1%

when writeuniquewait =>
build_busy <= 1%

when others =>
null;
end case;
end process;

nodemem_handle <= nodemem_handle_i;
end mknodefsm;

— this diagram contains the main funcuonal units

-~ for the BDD processor.

- It connects the functional units with the memory

- models.

- Generics can be passed in from the above level to set
-- the memory sizes

library ieee;

use ieee. STD_LOGIC_1164.all;
library work;

use work.kernel.all;

library SYNOPSYS;

use SYNOPSYS. ATTRIBUTES.ALL;

entity mknodeblk is
generic (
nodememsize : NATURAL = hddmemsize;
camsize : NATURAL = bddcamsize;
uniquesize : NATURAL := bdduniquetablesize
%
port (
applyop : in booleanop,;
bddin} : in bddhandle;
bddin2 :in bddhandle;
clk T instd_logic;
enableand 1 in std_logic;
enablenot : in std_logic;
freehandle_valid_o : out std_logic;
init < in std_Jogic;
LOWONRNNODES > out std_Jogic;

tp_mknode_result : out bddhandle;
tp_mknode,_resultvalid : out std_logic;

mkselect < in std_logic;
startl s in std_logic;
levell +in bddvar;
low! : in bddhandle;
highl : in bddhandle;
QUTOFNODES < out std_logic;
resulthandle : out bddhandle;
resultvalid : out std_Jogic;
rst < in std_logic;
startapply : in std_logic;
startnot rinstd_logic
%
end mknodeblk;
library bddlib;
architecture mknodeblk of mknodeblk is
signal call_cmd : stackemd;
signal call_datainQ 1bdd_t;
signal call_datainl sbdd_t;
signal call_datain2 1 bdd_t;
signal call_dataoutD :bdd_t;

https://nodemem_daraout.hi
https://NOT((nodemem_dataout.lo

signal call_dataout] tbdd_t;
signal call_dataout2 cbdd_t;

signal call_empty : std_logic;
signal call_full : std_logic;
signal cam_ack o std_logic;
signal cami_busy :std_logic;
signal cam_busy_cnt : NATURAL
signal cam_field} : camfield;
signal cam_field2 : camfield;
signal cam_field3 : camfield;
signal cam_found : sid_logic;
signal cam_request s std_logic;
signal cam_result : camfield;
signal cam_resultin : camfteld;

signal cam_resultvalid : std_logic;
signal cam_rw : std_logic;
signal frechandle : bddhandle;
signal freehandle_valid : std_logic;

signal high : bddhandle;
signal highO : bddhandle;
signal level : bddvar;
signal leveld : bddvar;
signal low : bddhandle;
signal low(: bddhandle;

signal mknode_result : bddhandie;
signal mknode_resultvalid : std_logic;

signal node_busy : std_logic;

signal node_busy_cnt : NATURAL

signal node_dataout s bdd_t;
signal node_datavalid : std_logic;
signal node_port! _ack : std_logic;
signal node_port2_ack : std_logic,
signal node_port3_ack std_logic;
signal portl_datain s bdd_t;
signal portl_handle : bddhandle;
signal port]_request : sid_Jogic;
signal portl_rw : std_Jogic;
signal port2_datain tbdd_t;
signal port2_handle : bddhandle;
signal port2_request : std_logic;
signal portZ_rw : std_logic;
signal port3_datain ;bdd_t;
signal port3_handle : bddhandle;
signal port3_request : std_logic;
signal port3_rw : std_logic;

signal post_init_clk_cnt : NATURAL

signal result_cmd : stackemd;

signal result_datain0 : bddhandle;
signal result_datainl : bddhandle;
signal result_datain2 : bddhandle;
signal result_dataoutd) : bddhandle;
signal result_dataoutl : bddbandle;
signal resuit_dataour2 : bddhandle;

signal result_empty : std_logic;
signal result_full < std_Jogic;
signal start : std_logic;
signal start0 < std_logic;
signal start_cnt :NATURAL

signal tookfrechandlel : std_logic;
signal unique_ack < std_logic;
signal unique_busy : std_logic;

signal unique_busy_cnt : NATURAL

signal unique_datain : bddhandle;
signal unique_dataout : bddhandle;
signal unique_dataready : std_logic;

signal unique_handle : bddhandle;
signal unique_request : std_logic;
signal unique_rw < std_logic;

component mknodefsm
generic {
uniquesize : NATURAL
port
clk < in std_logic;
5t s in std_logic;

= 0;

= bdduniquetablesize

start : in std_jogic;

level : in bddvar;

low : in bddhandle;

ft h 41, . in ',- Ak ‘“PA
frechandle_valid : in std_logic;
high : in bddhandle;
resulthandle : out bddhandle;
resultnode cout bdd_t;
tookfreehandle : out sid_logic;
result_valid : out std_logic;

unique_handle : out bddhandle;
unique_datain : out bddhandle;
unique_rw :out std_logic;
unique_request © out std_logic;
unique_dataready : in std_logic;
unique_ack s in std_logic;
unique_busy cin std_logic;
unique_dataout : in bddhandle;
nodemem_dataout :in bdd_t;
nodemem_busy :instd_logic:
nodemem_dataready : i std_logic;
nodemem_ack :in std_legic;
nodemem_handle : out bddhandle;
nodemem_datain : out bdd_t;
nodemem_rw + out std_logic;
nodemem_request : out std_logic

%
end component;
component uniquemert
generic
readdelay : NATURAL =0
writedelay : NATURAL =0;
uniquesize : NATURAL := bdduniquetablesize
¥
port {
portl_ack < out std_logic;
portl_busy : out std_logic;
port]_dataready : out std_logic;
portl_datacut : out bddhandle;
portl_handle :in bddhandie;
porti_datain : in bddhandle;
portl_rw < in std_logic;
portl_request :in std_logic;
clk ; in std_logic;
st < in std_logic
Y
end component;
component memetr]
generic (
readdelay : NATURAL =0
writedelay : NATURAL =0,
memsize : NATURAL = bddmemsize
)%
port {

port3_request : in std_logic;
port3_ack : out std_logic;
port3_handle : in bddhandle;
portd_datain :in bdd_t;
port3_rw :instd_logic;
port2_request : in std_logic;
port2_ack : out std_logic:
port2_handle : in bddhandle;
port2_datain : in bdd_t;
port2_rw :in std_fogic;
portl_request : in std_logic;
portl_ack : out std_logic;
portl_handle : in bddhandle;
portl_datain :in bdd_t;
portl_rw :jnstd_logic;
datavalid : out std_logic;
dataout s out bdd_t;

busy : out std_logic;
clk +in std_logic;
st :in std_logic

)

114

115

end component; OUTOFNODES : out std_logic;
compenent APPLYBLK nodemem_busy :in std_logic;
port (nodemem_ack : in std_logic;
applyerror : out std_logic; nodemem_dataready : in std_logic;
startQ) : out std_logic, nodemem_dataout : in bdd_t;
level0 : put bddvar; nodemem_request out std_logic;
low0 : put bddhandle; nodemem_handle : out bddhandle;
high® : out bddhandle; nodemem_datain : out bdd_t;
applyop : in booleanop; nodemem_fw : out std_logic
bddinl : in bddhandle; X
bddin2 1 in bddhandle; end component:
cali_dataoutd :inbdd_t; component handlestack
call_dataoutl :inbdd_t; generic {
call_dataout2 :inbdd_t; size : NATURAL =6
call_full s in sid_logic;)
call_empty < in std_logic; port (
call_datain0 :outbdd_t; clk :instd_logic;
call_datain} : out bdd_t; rst :instd_logic;
call_datain2 :outbdd_t; cmd :instackemd;
call_cmd < out stackemd; datain® : in bddhandle;
cam_request : out std_logic; datainl : in bddhandle;
cam_rw : out std_logic; datain? : in bddhandle;
cam_field} : out camfield; head0 : out bddhandle;
cam_field2 : out camiield; headl :put bddhandle;
cam_field3 : out camfreld; head2 :out bddhandle;
cam,_resultin : out camfield; full : out std_logic;
cam_ack s in std_logic; empty : out std_logic
cam_busy < in std_logic; ¥
cam_result 1 in camfield; end component;
cam_resultvalid :in sid_logic, component bddstack
cam_found < in std_logic; generic (
clk < in std_logic; size : NATURAL = 6
enableand »in std_logic; %
enablenot sin std_logic; port ¢
mknode_result - in bddhandle; ek :insud_logic;
mknode_resultvalid : in std_logic; st o std_logic;
node_port3_ack :in std_logic; cmd :in stackemd;
node_port2_ack : in std_logic; datain0 1 in bdd_t;
node_portl_ack :in std_logic; datain] @ in bdd_t;
node_datavalid : in std_logic; datain? : in bdd_t;
node_dataout cinbdd head0 :outbdd x;
node_busy : in std_logic; head! :owtbdd_ g
port3_datain :outbdd_t; head2 :outbdd_t;
port3_handle :out bddhandle; full - out std_logic;
port3_request : out sid_logic; empty : out std_logic
port3_rw : out std_Jogic; ;
resulthandle : out bddhandle; end component;
result_datain0 : out bddhandle; component cam
result_datainl : out bddhandle; generic {
result_datainZ : out bddhandle; memsize : NATURAL = bddcamsize;
result_cmd : out stackemd; readdelay : NATURAL;
resuit_dataout0 : in bddhandle; writedelay : NATURAL
result_dataoutl : in bddhandle;)3
result_dataout2 : in bddhandle; port {
result_full *in std_logic; clk : in std_logic;
result_empty T in std_logic; st < in std_logic;
resultvalid < out std_Jogic; cam_reqguest in std_logic;
st < in std_logic; cam_rw »in std_logic;
startapply :in std_logic; cam_ack : out std_logic;
startnot :in sid_Jogic cam_busy : out std_logic;
% cam_result : out camfield;
end component; cam_resultvalid : out std_logic;
component freencdecnt] cam_found : outuid_logic:
generic { cam_fieldl :in camfield;
minhandle : bddhandle = bdd_minhandle; cam_field2 :in camfield;
maxhandle : bddhandle := bdd_maxhandie cam_field3 . in camfield;
% cam_respltin : in camfield
port ()
clk < in std_logic; end component;
rst :in std_logic;
init s in sid_logic; -- Start Configuration Specification
tookfreehandiel : in sid_logic; for all : mknodefsm use entity bddlib.mknodefsm(mknodefsm);
freehandle : out bddhandle; for all - uniquemem use entity bddlib.uniquemenduniq);
freehandle_valid : out std_logic; for all : memetrl use emity bddlib.memctrl{memctrl);

LOWONNODES : out std_logic; for all : APPLYBLK use entity bddlib. APPLYBLK(APPLYBLK);

for all : freenodecntl use entity bddlib.freenodecntl{freenodecntl);
for all : handlestack use entity bddlib handlestack(handlestack);

for all : bddstack use entity bddlib bddstack{bddstack);
for all : cam use entity bddlib.cam(camy;
-- End Configuration Specification

begin
freehandle_valid_o <= frechandle_valid;
tp.mknode_result <= mknode_result;
tp_mknode_resultvalid <= mknode_resultvalid;

mknodects] mknodefsm

generic map (uniquesize)}

port map (
clk => clk,
st => rst,
start => start,
fevel => level,
low => low,
freehandle => freehandle,
freehandle_valid => freehandle_valid,
high => high,
resulthandle => mknode_result,
resultnode => open,
tookfrechandle => tookfreehandlel,
result_valid => mknode_resultvalid,
unique_handle => unique_handle,
unique_datain => unique_datain,
unique_rw => unique_rw,
unique,_request => unique_request,
unique_dataready => unique_dataready,
unique_ack => unique_ack,
unique_busy => unique_busy,
unique_datacut => unique_dataout,
nodemem_dataout => node_dataout,
nodemem_busy => node_busy,
nodemem_dataready => node_datavalid,
nodemem_ack => node_port}_ack,
nodemem_handle => port]_handle,
nodemem_datain => portl_datin,
nodemem_rw => portl_rw,
nodemem_request => port]_request);

inst_uniquemem: uniquemenm
generic map (0,
uniquesize)

port map (
portl_ack => unique_ack,
portl_busy => unique_busy,
portl_dataready => unique_dataready,
portl _dataout => unique_dataout,
portl_handle => unique_handle,
portl_datain => unique_datain,
portl_rw => unique_rw,
portl_request => unique,_request,
clk => clk,
st => r15t);

nodememory: memctrl
generic map (0,

nodememsize)

port map {
port3_request => port3_request,
port3_ack => node_port3_ack,
port3_handle => port3_handle,
port3_datain => port3_datain,
port3_rw => port3_rw,
port2_request => port2_request,
pont2_ack => node_port2_ack,
port2_handle => pont2_handle,
port2_datain => port2_datain,
port2_rw => port2_rw,
portl_request => portl_request,

portl_ack => node_portl_ack,
portl_handle => port]_handle,
portl_datain => port]_datain,
port]_rw => portl_rw,
datavalid => node_datavalid,
dataout => node_dataout,
busy => node_busy,

clk => ¢lk,

st => rst);

APPLY_BLK: APPLYBLK
port map (

applyerror => open,
startQ => stanQ,
Jeveld => level0,
low0 => low0,
highQ => high0,
applyop => applyop,
bddinl => bddinl,
bddin2 => bddin2,
call_datacutQ => call_dataout0,
cali_dataout] => call_dataoutl,
call_dataout2 => call_dataout2,
call_full => call_full,
call_empty => call_empty,
call_datain0 => call_datain0,
call_datainl => cail_dataini,
call_datain2 => call_datain2,
call_cmd => call_¢md,
cam_request => cam_request,
CAIN_IW => cam_Iw,
cam_field1 => cam_field},
cam_field2 => cam_field2,
cam_field3 => cam_field3,
cam_resultin => cam_resultin,
cam_ack => cam_ack,
cam_busy => cam_busy,
cam_result => cam_result,
cam_resultvalid => cam_resultvalid,
carmn_found =» cam_found,
clk =»> clk,
enableand => enableand,
enablenot => enablenot,
mknode_result => mknode_result,
mknede_resultvalid => mknode_resultvalid,
node_port3_ack => node_pon3_ack,
node_port2_ack =» node_port2_ack,
node_portl_ack =» node_portl_ack,
node_datavalid => node_datavalid,
node_dataowt => node_dataocut,
node_busy => node_busy,
port3_darain => port3_datain,
port3_handle => port3_handle,
port3_request => port3_request,
port3_rw => port3_rw,
resulthandle => resulthandle,
result_datain0 => result_datain0,
result,_datainl => result_datainl,
resuli_datain2 => result_datain2,
result_cmdd => result_cmd,
result_dataout0 => result_dataout0,
result_dataout! => result_dataoutl,
result_dataout? => result_dataout2,
result_full => result_full,
result_empty => result_empty,
resuitvalid => resultvalid,
TSt => rsl,
startapply => startapply,
startnot => startnot};

freenodecnirl: freenodecntl
generic map (bdd_minbandle,
nodememsize - 1)
port map (
clk =» clk,

116

https://port2.JW
https://portl.JW
https://nodemem.JW

st => rst,

init => init,

tookfreehandlel => tookfreehandlel,
frechandle => freehandle,
freehandle_valid => freehandle_valid,
LOWONNODES => LOWONNODES,
OUTOFNODES => OUTOFNODES,
nodemem_busy => node_busy,
nodemem,_ack => node,_pori2_ack,
nodemem_dataready => node_datavalid,
nodemem,_dataout => node_dataout,
nodemem,_request => port2_request,
nodemem_handle => port2_handle,
nodemem_datain => por2_datain,
nodemem_rw => pori2_rwl;

resulistack: handlestack

generic map (1024)

port map {
clk =» clk,
st => 181,
cmd => result_cmd,
datainQ => result_datain0,
datain] => result_datainl,
datain2 => result_datain2,
head0 => resuli_dataout(,
headl => result_dataoutl,
head2 => result_dataout2,
full => result_ful),
empty => result_empty);

calistack: bddsrack

generic map (1024}

port map (
clk =>clk,
rst=> rst,
cmd => call_cmd,
datainQ => call_datain0,
datain] => call_datainl,
datain2 => call_datain2,
head(=> call_datacut0,
head] => call_dataouti,
head2 => call_dataout2,
full => call_full,
empty => call_empty);

inst_cam: cam
generic map {camsize,
0)

port map (
clk => clk,
st => rst,
cam_request => cam_request,
cam_rw => Cam_tw,
cam_ack => cam_ack,
cam_busy => cam_busy,
cam_result => cam_result,
cam_resultvalid => cam_resultvalid,
cam_found => cam_found,
cam_field] => cam_fieldl,
cam_field2 => cam_field2,
cam_field3 => cam_field3,
cam_resultin => cam_resultin};

process{mkselect, start0,levelQ, low0 highQ, start1 levell low1 highl)
begin

if(mkselect = 07) then

start <= start0;

level <= level0;

low <= low();

high <= highO;

else

slart <= startl;

fevel <= levell;

fow <= lowl;
high <= highl;
end if,

end process;

~-$ynopsys translate off
process{clk, rst)

variable flag : boolean = FALSE;
begin

if{rst = 0 then

node_busy_cnt <= 0;
cam_busy_cnt<=0;
unique_busy _cnt<=0;
elsti{clk’event and clk = 17 then

if{freehandle_valid = ’1') then

flag = true;

end if;

if(flag) then

post_init_clk_cnt <= post_init_clk_cnt + 1;
if(node_busy =1’} then

node_busy_cnt <= node_busy_cnt+1;
end if;

iffcam_busy = 1) then

cam_busy_cnt <= cam_busy_cnt+};

end i

Hf{unique_busy = 1"y then
unique_busy_cnt <= unique_busy_cnt+1;
end if;

end if:

~- since all of the three start sigs are mutually

-~ exclusive just inc when any | is trae

if{{startapply = "1} OR (startnot =1} OR (start] = "1))then
srart_cnt <= start_cnt + 15

end if;

end if,
end process;

--3ynopsys translate on
end mknodeblk;

- Datg : Wed May 10 14:35:34 2000

-~ Author : Bob Han

- Company : Portland State University

-~ Description :

library icee; use ieee. STDY_LOGIC_t164.a));

library bddlib; use bddlib kernel.all;

entity mknodeblktestbench is
generic {N : natural 1= 4);

port (cik : out std_logic ;
high : out bddhandle ;
init : out std_logic ;
level : out bddvar ;
fow : out bddhandle ;
rst - out std_Jogic ;
startnot : out std_logic ;
mhkselect : out std_logic ;
bddin] : out bddhandle ;
bddin2 : out bddhandle ;
enablenot : out std_logic |
enableand : out std_logic ;
start_mknede : out std_logic ;

117

https://init=>in.it

startapply : out std_logic ;
applyop : out booleanop ;
LOWONNODES : in std_logic ;
OUTOFNODES : in sid_logic ;
mknode_resuli : in bddhandle ;
mknode_resultvalid : in std_logic ;
frechandle_valid_o : in std_logic ;
applyresult_valid : in std_logic ;
applyresult : in bddhandle ;
testdone : out boolean);

end,

-~ Date : Wed May 10 14:35:34 2000
-- Author : Bob Hatt

-~ Company : Portland State University

- Deseription :

architecture Nqueen of mknodeblktestbench is
constant clkperiod | time = 10 ns;

constant cikperiodplusone : time := clkperiod + Ins;
signal clki,rsti : std_logic;

signal queensig: bddhandle;

begin

- clock with 50% duty 10 us period
process

begin

clki <= 0’

wait for 5 ns;

while(TRUE) loop

clki <= NOT clki;

wait for 5 os;

end Joop;

end process;
clk <= ckki;

--make reset active from 0-40
st <= 0, "1 after clkperiod *4;
st <= rsti;

-- make init active from 60-80
init <= 1, "1’ after clkperiod * 6, U" after clkperiod * 8;

-~ must wait for memsize*(memdelay+1) clocks until init of node mem
is done
-- for memsize = 256 memdelay =0, 256 clocks

process
procedure mknodedirect(Ivl,Johi : in bddbandle) is
begin

- wait until ¢iki = 1"}

mkselect <= 1"

start_mknode <= 1",
level <= vl;

high <= hi;

Tow <= lo;

. 118

wait for clkperiodplusone + 1uns;
start_tnknode <= 07

wait until mknode_resultvalid = 17
end mknodedirect;

procedure ithvar(result: out bddhandle;i : in bddvar) is
begin
minodedirect(i,bddhandle_zero.bddhandle_oney;
result = mknoode_result;

end ithvar;

procedure nithvar{result: out bddhandle;i : in bddvar) is
begin
mknodedirect(i,bddhandle_one,bddh
result := mknode_result;

end nithvar,;

dle_zeroy,

-- function hardbdd_ithvar(i : in bddvar) return bddhandle is
-- begin

-~ mkaodedirect(, bddhandle_zero,bddhandie_one);

-- return{mknode_result);

«- end hardbdd_ithvar;

-- function hardbdd_nithvar(i : in bddvar) return bddhandle is
-- begin

-- mkrodedireci(i,bddhandle_one,bddhandle_zero);

-- return{mknode_result);

«- end hardbdd_nithvar;

procedure apply_not(result: out bddhandle;handle : in bddhandle) is
begin

mkselect <= O

enablenot <="1%

startnot <= 1"

applyop <= booleanop_not;
bddin) <= handle;

bddin2 <= bddhandle_zero;

wiit for clkperiodplusone;
startnot <= 07,

wait until applyresult_valid = 1%
result := applyresult;

enablenot <= 0"

end apply, not;

-- function hardbdd_apply_not(handle : in bddhandle) return bddhandle
is

-- begin

-- applynotdirect(handle);

- return{applyresulty;

-- end hardbdd_apply_not;

procedure apply(result: out bddhandle;handle 1 handle2 : in bddhandle;
op : in booleanop) is

begin

mkselect <= 0

enableand <= 1%

startapply <="1"

bddinl <= handlel;

bddin2 <= handle2;

applyop <= op;

wait for clkperiodplusone;

' startapply <= 07

wait unti] applyresult_valid =17
result := applyresult;

enableand <= U’;

end apply;

-- function hardbdd_apply(handie} handle2: in bddhandle; op :inbool-
eanop) return bddhandle is

-- begin

- applydirect(handle], handle2,0p);

-- return(applyresuit);

-~ end hardbdd_apply;

procedure init is
begin

start_mknode <= 0%
startnot <= 0%
enablenot <= 0’
startapply <= 0"
enableand <= O}
wait unti} rsti =%
wait until frechandle_vahd_o = 1
wait for clkperiod/2;
end init;

-- local variables for this algorithm

constant boardsize : positive ;= N;

type bddhandle2d is array(natural range <>, natural range <>} of
bddhandle;

variable X : bddhandle2d(1 to boardsize, | to boardsize);
variable queen,imp1,tmp2: bddhandle;

procedure build(i,} : integer) is

variable ab,c.d :bddhandle = bddhandle_one;
variable trpl.tmp2 : bddhandle;
variable int1 : integer;

begin

-- no one in same columin

forkin I to boardsize

loop

if(k /= j) then

apply._not{tmpl X(1.k));
apply(tmp2,X(i.j).tmpl booleanop_imp);
apply(a,a,ump2 booleanop_andy;

endif;

end loop;

-- 10 one in same row

fork in I to boardsize

loop

ifik I=1) then

apply_not(tmpl, X(k i)}

apply (tmpZ,X(1.)),tmp1,bovieanop_imp);
apply(b,b.tmp2,booleancp_and};

end if;

end loop;

- 110 One in up right diagonal

for kin I to boardsize

loop

intl = k-i+};

if((int1 >= 1) AND (intl <= boardsize)) then
if(k /= 1) then
apply_not(tmp1,X(k,intl));

apply(tmp2, X(1,)).tmp! booleanop_imp);
apply(c,c,tmp2,booleanop_and);

end if;

end if;

end loop;

-~ Ao one in down right diagonal

forkin 1 to boardsize

Ioop

int] = i+j-k;

if{{int1 >= 1) AND {int] <= boardsize}) then
iftk /=1) then

apply_notimpl X(k.int])y;
apply(tmp2,X(i,§),tmpl booleanop_imp);
apply(d,d,tmp2,booleanop_and);

end if;

end if;

end loop;

apply(tmp1,a,b,booleanop_and);
apply(tmp],tmpl,.c,booleanop_and);
apply(tmp!,tmpl.d booleanop, and);

apply{queen.queen,tmpl booleancp_and);

end;
begin
init;

queen := bddhandle_one;

- initialize the board variables
foriin ! to boardsize

loop

for j in 1 to boardsize

loop

ithvar(X(3,)),(i-1*boardsize +(j- 1));
nithvar(tmpl (i-1)*boardsize +(j-1));
end loop;

end loop;

- put a queen in each row

for i in I to boardsize

loop

tmp! := bddhandle_zero;

for j in 1 to boardsize

loop

apply(tmpi,tmp1,X(,j) booteanop_or);
end loop;

apply(queen,queen,tmp1 booleanop_and);
end loop;

- 119

ASSERT false report "queen now has in each row at each position”

severity note;
queensig <= queen;

- build the constraints for each position
foriin 1 to boardsize

foop

for j in 1 to boardsize

Toop

buildi,j).

assert false report "building contraints for i,j" severity note;

queensig <= queen;
end loop;
end loop;

mn end Of PIORTAM »ewmeexmmeemmommie mcmn o

queensig <= queen;
testdone <= true;

end process;
end;

library icee;

use ieee. STD_LOGIC_1164.al;
library bddlib;

use bddlib.kemel.all;

library SYNOPSYS;

use SYNOPSYS. ATTRIBUTES.ALL;
entity testmknodeblk is
end testmknodeblk;
library bddlibs;
architecture testmknodeblk of testmknodeblk is
constant clkperiod : TIME = 10 ns;
constant nodememdelay : NATURAL := 0;
constant N ¢ NATURAL := 4,
signal applyop ! booleanop;
signal applyresult : bddhandle;
signal applyresult_valid : std_logic;
signal bddinl : bddhandle;
signal bddin2 : bddhandle,
signal clk : std_logic,
signal enableand : sid_logic;
signal enablenot : std_logic;
signal freechandle_valid_o : std_logic;
signal high ; bddhandle;
signal init 2 std_logic:
signal level : bddvar;
signal low : bddhandle;
signal LOWONNODES - std_logic;
signal mknode_result : bddhandle;
signal mknode_resultvalid : std_logic;
signal mkselect : std_logic;
signal OUTOFNODES : std_logic;
signal st : std_Jogic;
signal start_mknode : std_jogic;
signal startapply : std_logic;
signal startnot : std_logic;
signal testdone : BOOLEAN;
component mknodeblktestbench
generic (
N: NATURAL =4
%
port
clk : out std_logic;
high : out bddhandle;
init : out std_Jogic;
level : out bddvar,
low : out bddhandle;
st : out std_logic;
startnot . out std_logic;
mkselect : out std_logic;
bddinl : out bddhandle;
bddin2 ; out bddhandle;
enablenot < out skd_logic;
enableand : out std_logic;
start_mknode : out std_logic;
startapply T out std_Jogic;
applyop : out booleanop,
LOWONNODES : in std_logic;
OUTOFNODES :in std_logic;
mknode_result : in bddhandle;

mknode_resultvalid : in std_logic;
freehandle_valid_o : in std_logic;
applyresult_valid : in std_logic;

applyresult : in bddhandle;
testdone : out BOOLEAN
3
end component;
component mknodeblk
generic {
nodememsize : NATURAL = bddmemsize;
camsize : NATURAL := bddcamsize;
uniquesize : NATURAL := bdduniquetablesize
%
port

applyop : in booleanop;

bddinl < in bddhandle;
bddin2 : in bddhandle;

clk : in std_logic;

enableand : in std_logic;
enablenot : in std_logic;
freehandle_valid_o : out std_logic;
init : in std_logic;
LOWONNODES : out std_logic;

tp_mknode_result : out bddhandle;
tp_mknode_resuitvalid : out std_logic;

mkselect < in std_logic;
start] : in std_logic;
levell : in bddvar;
lowl : in bddhandle;
highl ; in bddhandle;
OUTOFNODES : out std_logic;
resulthandle : out bddhandle;
resultvalid : out std_logic;
rst : in sid_logic;
startapply +in std_Jogic;
startnot + in std_logic
)

end component;

-- Start Configuration Specification

for all : mknodeblktestbench use entity bddlib. mknodeblkeest-
bench(Nqueen);

for all : mknodeblk use entity bddlib.mknodeblk{mknodeblk).

-- End Configuration Specification

begin

inst_mknodeblktestbench: mknodeblkiestbench

generic map (N)

port map (
clk => clk,
high => high,
init => init,
level => level,
low => low,
rst = 1st,
startnot => startnot,
mkselect => mkselect,
bddinl = bddinl,
bddin2 => bddin2,
enablenot => enablenot,
enableand => enableand,
start_mknode => start_mknode,
startapply => startapply,
applyop => applyop,
LOWONNODES => LOWONNODES,
OUTOFNODES => OUTOFNODES,
mknode_result => mknode_result,
mknode_resultvalid => mknode_resultvalid,
freehandle_valid_o => freehandle_valid_o,
applyresult_valid => applyresult,_valid,
applyresult => applyresult,
testdone => testdone);

C1; mknodeblk
generic map (220000,
220000,
219983
port map (
applyop => applyop,
bddinl => bddint,
bddin2 => bddin2,
clk =>clk,
enableand =» enableand,
enablenot => enablenot,
freehandle_valid_o => freehandle_valid_o,
init => init,
LOWONNQODES => LOWONNODES,
tp_mknode_result => mknode_result,

120

121

tp_mknode_resultvalid => mknode_resultvalid,
mkselect => mkselect,
startl => start_mknode,
levell => level,
fowl => low,
high!l => high,
QUTOFNODES => OUTOFNODES,
resulthandle => applyresult,
resultvalid => applyresult_valid,
15t => Ist,
startapply => startapply,
startnot => startnot);
end testmknodeblk;

	Design and Evaluation of a Specialized Computer Architecture for Manipulating Binary Decision Diagrams
	Let us know how access to this document benefits you.
	Recommended Citation

