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ABSTRACT 

An abstract of the thesis of Austin R. Fisher for the Master of Science in Civil 

Engineering presented July 6, 2000. 

Title: Improved Regression-Based Streamflow Forecasting Considering Large-Scale 

Climate Variability 

The Natural Resources Conservation Service (NRCS) produces water supply 

forecasts for most of the streams in the western United States. The NRCS produces 

forecasts starting in January, when snow course measurements of snow water 

equivalent were available. Although the seasonal streamflow volume forecasts made 

by the NRCS are useful, many water supply managers need information at the 

beginning of the water year in October and would like to see forecasts in the form of a 

monthly hydrograph. 

An investigation into the effect of decadal scale variability, as reflected by the 

Pacific Decadal Oscillation (PDO), show important relationships that may be useful in 

forecasting. Data from three basins, the Sandy, Skykomish, and Rogue Rivers were 

split based on the warm and cool phases of the PDQ and correlated to the Southern 

Oscillation Index (SOI) as a measure of the inter-annual climate phenomenon El Nino­

Southern Oscillation (ENSO). All three basins have similar annual hydrographs with a 

peak in the winter around November due to direct winter runoff and a peak in the 

spring or summer due to snow runoff. The results show that in cool phases of the 



PDO, seasonal streamflow is above average and is significantly correlated with the 

SOI. However, in warm phases of the PDO, streamflow is lower than normal and not 

as influenced by the SOI as measured by the correlation coefficient. Further, the PDO 

influences the distribution of flow within the year. 

As a result, a new seasonal streamflow volume forecasting method is proposed. 

The new method fits regression equations for both phases of the PDO and mixes the 

two forecasts by the probability of the current state of the PDO. The model was 

verified by comparison to a control model that was fit to all of the data, and by a water 

year 2000 forecast. The results show that the mixed seasonal streamflow volume 

forecasts better estimate the historical mean. Further, the disaggregated mixed volume 

forecasts resulted in better estimates of the historical monthly mean and reduced the 

overall variability of the forecasts. 



IMPROVED REGRESSION-BASED 

STREAMFLOW FORECASTING CONSIDERING 

LARGE-SCALE CLIMATE VARIABILITY 

by 

AUSTIN R. FISHER 

A thesis submitted in partia1 fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE 
in 

CIVIL ENGINEERING 

Portland State University 
2000 



ACKNOWLEDGMENTS 

I would like to thank Dr. William Fish and Dr. Andrew Fraser for 

participating in my committee and providing the input that I needed to complete 

this document. I would also like to thank Dr. David Garen of the Natural 

Resources Conservation Service for his patience and time in helping me to gather 

most of the data used in this study. In addition, Dr. Garen helped me to understand 

how the NRCS model was intended to be used, and provided invaluable advice. 

I would like to thank the United State Geological Survey for funding my 

research for the past 2 years. None of this would have been completed without 

there help and support. 

I would also like to acknowledge the time, patience, and instruction given to 

me over the past 2 years by my advisor and committee chair, Dr. Roy Koch. I am 

thankful to him for giving me the opportunity to work on the project that has 

resulted in this thesis. I am also grateful for the time he devoted to this research 

and to my education. 

Finally, I would like to thank my wife, Brandie, for her patience over the 

last 2 years. With her love and support I am able to dedicate the success of this 

thesis to her. 



Table of Contents 

Section Page 

List of Tables ................................................................................ v 

List of Figures ............................................................... ............... vi 

Chapter 

1. Introduction ...................................................................... l 

1.1 Motivation ............................................................. 1 

1.2 Current Practices ..................................................... 1 

1.3 Out1ine .................................................................. 3 

2. Background ..................................................................... 4 

2.1 Physically Based Hydrologic Forecasting ........................ 5 

2.2 Statistical Hydrologic Forecasting ................................. 6 

2.3 Large Scale Climate Variability .................................... 9 

2.3.l El Nino Southern Osci11ation and the SOI.. ......... 10 

2.3.2 The Pacific Decadal Oscillation and Index ......... 11 

2.4 Use of Large-Scale Climate Features in Streamflow 

Forecasting ........................................................... 13 

2.5 Observations in the Pacific Northwest.. ......................... 15 

2.5.1 The Influence of the ENSO and the PDO on Pacific 

Northwest Streamflow .................................. 15 

2.5.2 Intra-annual Variation in Reponse to the ENSO and 

the PDO ................................................... 20 

ii 



Table of Contents 
(Continued) 

2.5.3 Discussion of Pacific Northwest Observations ....... 25 

3. Seasonal Streamflow Volume Forecast Model.. ........................... 26 

3.1 Outline of Forecast Methodology .................................. 27 

3.2 Forecasting the Sandy River nr. Marmot. ......................... 28 

3.2.1 Model Selection .......................................... 29 

3.3 Forecast Volume Results ............................................. 32 

3.3.1 Estimating the Future Phase of the PDO .............. 36 

3.3.2 Estimating a and P ............... : .................... 37 

3.3.3 Cross Validation Results ................................ 39 

3.3.4 Forecast Mean and Evaluation of Bias ............... .40 

4. Disaggregation of Volume Forecasts ....................................... .43 

4.1 Disaggregation Modeling ........................................... .43 

4.2 Disaggregating Volume Forecasts ................................. 48 

4.2.1 Methods ................................................... 48 

4.2.2 Results from the Sandy River nr Marmot. .......... .49 

4.2.3 Variability of Monthly Forecasts ...................... 56 

5. Forecasting Process and a Y2K Forecast. ................................... 63 

5.1 Methods ................................................................ 63 

5.2 Results .................................................................. 64 

6. Summary and Conclusions .................................................... 66 

iii 



References ........................................................................... 69 

Appendix: Forecast Equations .................................................... 73 

iv 



List of Tables 

Table Page 

I. Summary of data used in the study ................................................... 16 

2. p values for rank-sum tests on the fraction of flow occurring in each month for 
low and high PDO conditions. Values in bold are significantly different at the 
5% level and values in italic at 10% ................................................. .24 

3. Data used as dependent and predictor variables to fit the 3 sets of equations 
with Reg.exe .............................................................................. 31 

4. Results of the 3 models fit to the Sandy River nr. Marmot data over the entire 
period of record (all data), high, and low PDO periods ........................... .33 

5. Results of the F-tests perlormed on the standard errors ........................... .34 

6. Contingency values predicting the phase of the PDO given the previous 1 to 4 
year average of the PDO index. Oct- I ( +) indicates 1 previous year average 
from October to September, etc ...................................................... .37 

7. Contingency tables showing the average results of the cross validation of the all 
data, above, and below equations respectively ..................................... .39 

V 



List of Figures 

Figures Page 

1. Relationship between predictors and streamflow volumes used in statistical 
regression equations ...................................................................... 8 

2. Map of the relationship of the SOI and October to March precipitation over the 
western U.S ................................................................................ 9 

3. Southern Oscillation Index (SOI) from 1901 to 1999 .............................. 11 

4. The PDQ index over the last century. Persistent positive (negative) deviations 
are related to the warm (cool) phase of the PDO .................................... 13 

5. Hydrographs for the three study basins in the Pacific Northwest. (a) the 
Skykomish River, (b) the Sandy River, and (c) the Rogue River ................. 17 

6. Correlation of 3-month average SOI starting with the April - June average that 
precedes the November to June Skykomish streamflow volume .................. 19 

7. Correlation of 3-month average SOI starting with the April June average that 
precedes the November to June Sandy streamflow volume ........................ 19 

8. Correlation of 3-month average SOI starting with the April - June average that 
precedes the November to June Rogue streamflow volume ....................... 20 

9. Composite monthly hydrographs for the Sandy River nr Marmot. The data 
were composited by PDQ and again by the SOL La Nina is represented by 
values of the SOI greater than 0.5 and El Nino is represented by values of the 
SOI less than -0.5 ....................................................................... 22 

10. Sandy River nr Marmot fraction of annual sum composites by high and low 
PDO periods .............................................................................. 23 

11. Sandy River nr Marmot fraction of annual sum composites for the high PDO 
period by SOI .............................................. · .............................. 23 

12. Sandy River nr Marmot fraction of annual sum composites for the low PDO 
period by SOI. ........................................................................... 24 

VI 



List of Figures 
( continued) 

Figures Page 

13. Jackknife standard error for the high and low PDO equations and the re-
computed JSE in the high and low PDO periods of the all data equations ...... 35 

14. Standard error for the high and low PDO equations and the re-computed JSE in 
the high and low PDO periods of the all data equations ........................... 35 

15. Alpha and Beta probabilities as estimated by the average of the PDO index over 
1 to 4 previous years from October to September ................................... 38 

16. Comparison of the mean forecast during cool PDO phase. Split data are the 
warm and cool phase equations that have been mixed by the PDO .............. .41 

17. Comparison of the mean forecast during warm PDO phase. Split data are the 
warm and cool phase equations that have been mixed by the PDO .............. .4 l 

18. Schematic illustration of the disaggregation terminology and the relationship of 
the volume forecast to the disaggregated volumes ................................. .45 

19. Disaggregated mean monthly flow from October to September in acre-feet 
during the Cool Phase of the PDO (low PDO index) ............................... 50 

20. Disaggregated mean monthly flow from October to September in acre-feet 
during the Warm Phase of the PDO (high PDO index) .......................... 51 

21. Average Disaggregated mean monthly flow from October to September in acre-
feet. ........................................................................................ 51 

22. Disaggregated mean monthly flow from November to September in acre-feet 
during the Cool Phase of the PDO (low PDO index) .............................. 52 

23. Disaggregated mean monthly flow from November to September in acre-feet 
during the Warm Phase of the PDO (high PDO index) ............................ 52 

24. Average Disaggregated mean monthly flow from November to September in 
acre-feet. .................................................................................. 53 

25. Disaggregated mean monthly flow from December to September in acre-feet 
during the Cool Phase of the PDO (low PDO index) .............................. 53 

Vll 



List of Figures 
( continued) 

Figures Page 

26. Disaggregated mean monthly flow from December to September in acre-feet 
during the Warm Phase of the PDO (high PDO index) ............................ 54 

27. Average Desegregated mean monthly flow from December to September in 
acre-feet. ................................................................................ 54 

28. Desegregated mean monthly flow from January to September in acre-feet 
during the Cool Phase of the PDO (low PDO index) ............................... 55 

29. Desegregated mean monthly flow from January to September in acre-feet 
during the Warm Phase of the PDO (high PDO index) ............................ 55 

30. Average Desegregated mean monthly flow from January to September in acre-
feet. ................................................................................ 56 

31. Variability by month for the October to September volume during the cool 
phase of the PDO (low PDO index) ................................................... 58 

32. Variability by month for the October to September volume during the warm 
phase of the PDO (high PDO index) .................................................. 58 

33. Variability by month for the November to September volume during the cool 
phase of the PDO (low PDO index) .................................................. .59 

34. Variability by month for the November to September volume during the warm 
phase of the PDO (high PDO index) ................................................. 59 

35. Variability by month for the December to September volume during the cool 
phase of the PDO (low PDO index) ................................................... 60 

36. Variability by month for the December to September volume during the warm 
phase of the PDO (high PDO index) ................................................. 60 

37. Variability by month for the January to September volume during the cool 
phase of the PDO (low PDO index) .................................................. 61 

viii 



List of Figures 
( continued) 

Figures Page 

38. Variability by month for the January to September volume during the warm 
phase of the PDO (high PDO index) ................................................. 6 I 

39. Year 2000 Forecast made by mixing warm and cool PDO disaggregated 
seasonal streamflow volume forecasts ............................................... 65 

Al Variables used in the 10 control forecast equations. Dependent variables are in 
the far left column and the location of the variables is located in the column 
headings ................................................................................... 73 

A2 Variables used in the 10 warm PDO forecast equations. Dependent variables 
are in the far left column and the location of the variables is located in the 
column headings ......................................................................... 73 

A3 Variables used in the 10 cool PDO forecast equations. Dependent variables are 
in the far left column and the location of the variables is located in the column 
headings .................................................................................. 74 

ix 



1.1 Motivation 

Chapter 1 

Introduction 

Public agencies and the private power industry use seasonal streamflow 

volume forecasts to manage much of our nation's surface water supply. For 

instance, many private corporations in the power industry manage and utilize river 

basins in the Pacific Northwest and elsewhere in the western U.S. to generate 

hydropower. Hydropower producers operate with many socio-political constraints 

as well as under climatological uncertainty that results in a variable water supply. 

A common risk-based decision faced by these companies is how much water to 

release to prevent floods during the wet season while maximizing the storage in the 

reservoirs for power production during low flow times of the year. Forecasts based 

mostly on statistical regression techniques using variables such as precipitation, 

temperature and snow water equivalent are employed to predict seasonal volumes 

of flow. The use of statistical techniques allows for the quantification of the risk 

associated with the forecasts and thus the risk of forecast based decisions. 

1.2 Current Practices 

Currently the National Weather Service Climate Prediction Center (NWS­

CPC) produces long-lead climate outlooks, and the Natural Resources 

Conservation Service National Water and Climate Center (NRCS-NWCC) in 

cooperation with the National Weather Service River Forecast Centers produce 
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streamflow forecasts over much of the western United States. The NWS-CPC 

long-lead climate outlooks and NRCS seasonal streamflow volume forecasts make 

use of a relationship between the large-scale climate feature, the El Nino Southern 

Oscillation (ENSO), and climate in the western U.S. The Southern Oscillation 

Index (SOI) is an index of ENSO and has already been integrated into climate and 

streamflow forecasting where possible. 

Recently, there have been efforts by Garen (1998) and Modini (2000) to 

integrate the NWS-CPC long-lead climate outlooks and statistical seasonal 

streamflow forecasting. Further, researchers at the University of Washington have 

successfully integrated two large-scale climate features, the ENSO and the Pacific 

Decadal Oscillation (PDO), into physical streamflow forecasting procedures 

(Hamlett and Lettenmaier 1999). 

While Hamlet and Lettenmaier (1999) were able to successfully integrate 

current information from large-scale climate features into steamflow forecasting, 

the physical scale of the model is coarse, typically at a resolution of 1 ° latitude and 

longitude. The spatial limitations of forcing physical hydrologic forecasting 

models with coarse climate models limits their use for now and suggests that 

statistical forecast models will continue to provide the most reliable information for 

the time being. In this study, current forecasting methods will be expanded to 

make use of the ENSO as measured by the SOI and the PDO as measured by the 

PDO index. 
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The NRCS-NWCC in Portland, Oregon uses regression on principal 

components to fit forecast equations for streams in the western U.S. The current 

methods used by the NRCS-NWCC will be extended to fit forecast equations that 

account for the influence of the ENSO and the PDQ on streamflow. Further, the 

volume forecasts produced by the NRCS-NWCC forecast equations will be 

disaggregated into sub-seasonal volumes of one month. 

Water supply managers operate reservoirs and rivers in real-time, therefore 

the usefulness of seasonal volume forecasts limits planning. The use of a 

disaggregation model to distribute the seasonal volume throughout its monthly 

constituents will enable water supply managers to make better risk-based decisions. 

1.3 Outline 

The following chapter briefly describes the history of water supply 

forecasting, current practices, and concludes with some recent observations of 

climate and streamflow in the Pacific Northwest. After that, Chapter 3 describes a 

new seasonal streamflow forecasting method and compares the performance of the 

new approach to that of current statistical modeling practices used by the NRCS. 

Chapter 4 details the disaggregation models and again compares the disaggregation 

of the new forecast model volumes of flow with the volumes produced using 

current methods. Finally, the process for applying the new forecast methodology is 

discussed, and a number of conclusions are.drawn based on those results. 
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Chapter 2 

Background 

The Soil Conservation Service (SCS, now known as the NRCS) was the 

first agency chartered to collect data on snow and provide forecasts of future water 

supplies (CRWMG 1993). In the 1950' s the U.S. Army Corps of Engineers 

developed some of the first computer system models for streamflow forecasting by 

improving the field of snow hydrology as we know it today (CRWMG 1993). 

Streamflow forecasting can now be separated into two approaches based on the 

type of models: physical and statistical. 

Physical-based models such as SSARR (Streamflow Synthesis and 

Reservoir Regulation) developed by the Corps of Engineers mathematically 

represent the hydrologic processes and attempt to "simulate" the movement of 

water through a system. The Extended Streamflow Prediction (ESP) method 

developed by the National Weather Service uses the combination of a conceptual 

watershed model and statistical properties of historical climate time series to 

produce a forecast. Sequences of historic climate data are then used to develop an 

ensemble of outflow hydrographs. 

Statistical models, such as regression, have also been widely used to 

provide volume forecasts of streamflow by expressing future streamflow as a 

conditioned response to prior hydrologic events such as snow accumulation. 

4 



Thereby correlation between hydrologic variables such as antecedent flow, snow 

pack, and precipitation are used to predict future volumes of streamflow. 

2.1 Physically Based Hydrologic Forecasting 

Physically based hydrologic models make use of mathematical 

representations of the hydrologic system that compute streamflow as the output 

given precipitation as the input. The Sacramento Soil Moisture Accounting Model 

(SAC-SMA) for instance uses a two-layer representation of the soil-water system to 

distribute water between the surface and subsurface and a unit hydro graph to 

convert surface runoff into streamflow. The upper layer of the SAC-SMA model 

represents surface and interception storage, while the second layer represents soil 

storage or groundwater. The inputs to the model are mean areal precipitation 

(MAP) and potential evapotranspiration (PET). Models such as the SAC-SMA can 

be used for hydrologic forecasting if calibrated successfully to a particular 

watershed and reasonable estimates of MAP are made. Therein lies one limitation 

of physical hydrologic modeling. The estimates of MAP used to calibrate physical 

models are often estimated from point measurements made by the many rain gages 

across the U.S. The interpolation methods used to estimate MAP from point 

measurements can often generalize the natural variability of MAP over a watershed 

due to land cover and orographic variation. However, there have been 

improvements in estimating MAP (Garen et al. 1994 ). 

Another limitation of physical hydrologic forecasting models is 

downscaling. General circulation models (GCM's) have been used to predict 
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climate and to force regional scale hydrologic models (Liang et al. 1994 ). The 

typical spatial resolution of GCM' sis on the order of 1 ° latitude and longitude, 

which generalizes the natural spatial variability of climate and therefore the outflow 

hydro graph. 

2.2 Statistical Hydrologic Forecasting 

Statistical hydrologic forecasting makes use of significant statistical 

relationships between seasonal streamflow volumes and measured hydrologic 

variables such as snow water equivalent (SWE), winter precipitation, and 

antecedent streamflow to fit regression equations that can then be used to forecast 

future volumes of flow. Statistical modeling includes a representation of 

uncertainty, and therefore it is possible to quantify the risk of the forecasts. 

The NRCS-NWCC uses winter precipitation, SWE, and antecedent flow to 

predict various seasonal streamflow volumes starting in January. The NRCS 

produces these forecasts using regression equations fit to different seasonal 

volumes for the many streams in the U.S. SWE is the primary predictor used in 

regression equations employed by the NRCS. Prior to the use of the SNOTEL 

system, SWE measurements used to be available the 1st January when snow courses 

were measured and is subsequently the reason for forecasts being made at that time. 

The NRCS currently uses regression on principal components described by 

Garen (1992) and others (Haan and Allen 1972, Haan 1977, McCuen 1985). In 

addition, Garen (1992) showed that a near optimal set of predictors should be used 

when fitting the regression equations such that the equations represent the 
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maximum accuracy that can be obtained by statistical methods. Principal 

component analysis is a statistical method that inherently assures that the variables 

used in the regression equations are independent. Inter-correlation of predictor 

variables is common in statistical hydrologic models because most of the predictors 

are spatially correlated at any given time. 

Redmond and Koch ( 1991) showed that large-scale climate indices such as 

the Southern Oscillation Index (SOI) could be used as predictors in some areas of 

the Western U.S. Further, Garen (1992) and Koch and Buller (1993) have shown 

that the use of SOI can significantly improve forecasting skill and extend the lead­

time when forecasts are produced by as much as 3 months or as early as October. 

However, the NRCS still produces forecasts starting 1 January for volumes 

of seasonal streamflow. For instance, a common forecast made by the NRCS on I 

March would be for the April-September volume. The April-September forecast 

equation would typically include the average July to September or July to October 

SOI, antecedent streamflow, SWE, and in some instances, winter precipitation. In 

general, the predictors used in a seasonal streamflow volume forecast are observed 

prior to the forecast date. Therefore, only the late summer to fall SOI, winter 

precipitation through December, antecedent streamflow, and the January 1st SWE 

are available for a forecast made on January 1st (see Figure 1). 
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Figure 1: Relationship between predictors and streamflow volumes used in 
statistical regression equations. 

The inclusion of large-scale climate features such as the El Nino Southern 

Oscillation into streamflow forecasting has increased the lead-time of forecasts 

because prior to its use there was little information available before the January 1st 

SWE measurement. 

Much of the success in forecasting with statistical regression equations has 

been limited to seasonal volume forecasting over several months. Time resolutions 

as fine as one month, however, can be obtained from the combination of a seasonal 

streamflow volume forecast model and a disaggregation model. The seasonal 

streamflow volume forecasting model can be used to generate several volume 

forecasts that can be disaggregated into monthly values. The disaggregation model 

preserves the historical statistical properties between the volume or key series and 

the monthly or sub-key series (Valencia and Schaake 1972, Mejia and Rousselle 

1976, Lane 1982, and Pei et al. 1987). To date, disaggregation has been primarily 

used in synthetic streamflow data generation, but it can also be used for forecasting 

purposes (Salas et al. 1980). 
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2.3 Large Scale Climate Variability 

The use of the SOI in streamflow forecasting is the first direct use of large­

scale climate features in producing volume forecasts. Redmond and Koch (1991) 

demonstrated that precipitation in the western U.S. is significantly related to large­

scale climate features in the tropics such as the El Nino Southern Oscillation 

(ENSO) as shown by Figure 2. Since then several studies have been published that 

relate ENSO to western U.S. climate and streamflow (Cheiw et al. 1998, Kahya et 

al. 1993, Koch et al. 1991, and Piechota 1997). 

Correlation: 
Jun-Nov SOI vs. Oct-Mar Precip 

- r > 0, p :=< 0.001 

- r > 0, p =< 0.01 

- r > 0, p =< 0.05 

[!] r > 0, p > 0.05 

[!] r < 0, p > 0.05 

□ r < o. p =< o.o5 

- r< 0, p=< 0.01 

- r< 0, p=< 0.001 

Updated from Redmond and Koch (1991). Winlers of 1933/34- 1994195. 
Reddish: El Nino associated with wet winters, La Nina with dry winters. 
Bluish/greenish: El Nino associated with dry winters, La Nina with wet winters. 

Redmond, K.T., and R.W. Koch, 1991. Surface climate and streamflow 
variabiftty in the western United States and their relationship to larg&-scale 
circulation indices. Water Resources Research, 27(9), 2381-2399. 

Figure 2: Map of the relationship of the SOI and October to March 
precipitation over the western U.S. 
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2.3.1 El Nino Southern Oscillation and the SOI 

The El Nino Southern Oscillation (ENSO) is characterized by a change in 

the Sea Surface Temperatures (SST) and Sea Level Pressure (SLP) over time in the 

equatorial waters of the Pacific Ocean. First discovered by Sir Gilbert Walker, the 

ENSO is recognized as a periodic weakening (El Nino) and intensification (La 

Nina) of the "normal" SLP difference between Tahiti and Darwin, Australia. 

During "normal" conditions the SST's in the eastern end of the Pacific off the coast 

of South America are cool and gradually warm toward the western end of the 

Pacific off the coast of Australia. Further, during "normal" and La Nina conditions 

the climate pattern termed the "Walker Cell" is fully developed with convective 

rising of air in the western end of the Pacific near Australia and is the source of the 

dominant wind pattern called the Westerlies (Rasmusson 1985, Trenberth 1997). 

The exact opposite occurs during El Nino conditions: the SST' s warm to the east 

towards the coast of South America and weaken the Walker Cell and the 

Westerlies, leading to major Equatorial weather pattern changes at both ends of the 

Pacific. 

A measure of the ENSO is the Southern Oscillation Index (SOI), which is a 

standardized index of the SLP difference between Tahiti and Darwin, Australia. 

The SOI is negative during El Nino and positive during La Nina. The July to 

September average SOI time series since 1901 is shown in Figure 3. The SOI is one 

of the common indexes used as a measurement of the state of the ENSO and is also 

a common variable in long lead climate and streamflow forecasting. 

IO 



July - September Average SOI 
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Figure 3: Southern Oscillation Index (SOI) from 1901 to 1999. 

2.3.2 The Pacific Decadal Osci1Iation and Index 

Recently another large-scale climate pattern has been observed and labeled 

the Pacific Decadal Oscillation (PDO). It is quantitatively represented by the PDO 

index (Mantua et al. 1997). The PDO pattern has been described as a low 

frequency oscillation in the SST's measured over the past century in the Pacific 

Ocean north of 20°N latitude. Unlike the inter-annual oscillation of the SOI, the 

PDO oscillates over two or more decades between warm and cool Alaskan SST's. 

Decades of warmer than normal waters off the coast of Alaska are "warm" PDO 

conditions and are represented by positive values of the PDO index, whereas 

decades of cooler than normal SST's off the coast of Alaska are termed the "coo]" 
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PDO conditions and are represented by negative va]ues of the PDO index (Figure 

4). For the remainder of this document, high PDO refers to the relatively high 

values of the PDO index and will be synonymous with the warm phase of the PDO 

and vice versa. 

The PDO has been a persistent decadal pattern of North Pacific SST's over 

the past century marked by shifts from below average conditions to above average 

conditions in 1925 and 1977 and vice versa in 1947 (Mantua et al. 1997). Mantua 

et al. (1997) specified the shifts in the PDO by an intervention analysis performed 

on the PDO index. Subsequently, the PDO index has been shown to be 

significantly related to Pacific Northwest climate and streamflow (Mantua et al. 

1997, Koch and Fisher 2000). 

Other research has looked at the relationship of the PDO and ENSO and 

how the two patterns may simultaneously influence climate. Particularly, it has 

been found that divisional precipitation and flood frequency are influenced more by 

ENSO during cool phases of the PDO or below average periods of the PDO index 

(McCabe and Dettinger 1998). 
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Figure 4: The PDO index over the last century. Persistent positive (negative) 
deviations are related to the warm (cool) phase of the PDO. 

2.4 Use of Large-Scale Climate features in Streamflow Forecasting 

Customarily, the NRCS issues seasonal streamflow volume forecasts for 

many western U.S. streams beginning in January. Lead-time and temporal 

resolution are the two factors that limit the use of statistical streamflow forecasts in 

water supply management. Although average SOI can provide sufficient lead-time, 

in many basins such as the Willamette in Oregon, the relationship to streamflow is 

not significant. 

Modini (2000) followed the work of Garen ( 1998) in integrating the 

National Weather Service Climate Prediction Center's (NWS-CPC) long lead 

climate outlooks into statistical streamflow forecasting in an effort to extend the 

lead time of his forecasts of the Blue River in the Willamette basin, Oregon. 

Modini (2000) concluded that the use of the CPC outlooks significantly reduced the 

standard error of forecasts of the Blue River, particularly early on in the forecast 
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season. Modini (2000) and Garen (1998) have both shown that, at least indirectly, 

information from large-scale dimate features such as the SOI can be integrated into 

streamflow forecasting on a regional basis. 

There has been further progress towards including predictive information 

from large-scale climate features like the ENSO and the PDO in physical 

hydrologic modeling (Croley 1996, Hamlet and Lettenmaier 1999). Hamlet and 

Lettenmaier ( 1999) used the NWS-ESP method in conjunction with the 2-layer 

VIC model. Their study made use of the PDO and ENSO in assembling forecast 

ensembles produced from the historic record as the resulting streamflow from 

various groups of climate states. In this instance, there were 6 ensembles that 

corresponded to the warm, neutral, and cold states of ENSO (high, moderate, and 

low SOI respectively), and the warm and cool phases of the PDO respectively. The 

results of the Hamlet and Lettenmaier ( 1999) study show that the PDO could be 

successfully integrated into existing physical streamflow modeling schemes and 

used in streamflow forecasting. 

The fine temporal resolution of physical models will continue to support its 

development. Hamlet and Lettenmaier ( 1999) have shown that large-scale climate 

features can be integrated into the ESP modeling approach by conditioning the 

forecast ensembles on states of the PDO and ENSO. The discrepancies in the 

spatial resolution of the climate models used to force physical hydro logic models 

such as VIC or SAC-SMA, however, still remain. 
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2.5 Observations in the Pacific Northwest 

Koch and Fisher (2000) showed that the relationship between ENSO as 

measured by the SOI and streamflow is not consistent over time. Rather, the 

relationship between the SOI and seasonal streamflow in three basins in the Pacific 

Northwest as measured by the correlation coefficient is much higher during the 

cool phase of the PDO (prior to 1925, and 1947 - 1976) than during warm PDO 

phases (1925 - 1946 and 1977 -Present). The results support those found by 

McCabe and Dettinger (1998) and are summarized below. 

2.5.1 The influence of the ENSO and the PDO on Pacific Northwest streamflow 

Data from three rivers in the western slopes of the Cascade Mountains in 

Washington and Oregon were gathered to determine if the observations found by 

McCabe and Dettinger (1998) for precipitation are consistent with streamflow in 

the Pacific Northwest. The Skykomish River (Washington Cascade Mountains) 

and the Sandy and Rogue Rivers (Oregon Cascade Mountains) have relatively high 

flow in both the winter and in the spring. The records date back to 1912, 1924, and 

1925 for the Sandy, Rogue, and Skykomish respectively allowing for decadal 

trends to be analyzed over much of the past century. These three basins were 

selected because of the length of record and lack of upstream diversions. Figure 5 

shows the average monthly hydro graphs for the study basins, and Table 1 presents 

information about the period of record and the watershed characteristics of the 

basins. 
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Table 1: Summary of data used in the study 

USGS Gage Average 
Station/Data Station Period of Drainage Area Missing Elevation Annual Flow 

Number Record (km2
) data (m) (m·1/s) 

Skykomish 12134500 1929-98 1386 none 232 112 
Sandy 14137000 1912-98 681 1916, 1919 223 38 
Rogue 14328000 1924-98 808 none 799 23 
S011 1882-98 

PDO-< 1900-98 

Available at http://www.cpc.ncep.noaa.gov 
2 Available at ftp://ftp.atmos.washington.edu/mantua/pnw impacts/lNDICES/PDO.latest 

The November to June streamflow volume for the three basins was selected 

for the analysis because that period encompasses the bulk of the annual flow and 

includes both the precipitation driven winter runoff and the snow driven spring 

runoff (Figure 6). In addition, forecasting streamflow in November and December 

has previously been difficult in basins in the Pacific Northwest because 

precipitation is fairly unpredictable, and appreciable amounts of snow data are not 

usually available until January, at which point the November and December flows 

have already been observed. 
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Figure S: Hydrographs for the three study basins in the Pacific Northwest. (a) 
the Skykomish River, (b) the Sandy River, and (c) the Rogue River. 
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Recent research by McCabe and Dettinger ( 1998) showed that the 

correlation of SOI and divisional precipitation in the Pacific Northwest is not 

consistent over time. During predominantly cool phases of the PDQ the correlation 

to precipitation is much higher than during the warm phases of the PDO. 

Therefore, the data were split into two groups: one for the warm phase of the PDQ 

and one for the cool phase of the PDQ. The data were then correlated with moving 

3-month averages of the SOI starting with the April - June average preceding the 

streamflow volume, and the results are shown in Figures 6 - 8. Strikingly, the 

correlation between the SOI and the various seasonal volumes is much stronger 

during the cool phase of the PDQ than it is during the warm phase of the PDQ. 

These observations are consistent with those of McCabe and Dettinger ( 1998) for 

precipitation. 

The teleconnection between the ENSO process as described by the SOI 

appears to be much stronger during the the cool phase of the PDQ than during the 

warm phase of the PDQ. The effect of conditioning by the PDQ is the most 

dramatic in the Rogue basin, where the moving correlation coefficients between the 

SOI and the November to June volume is statistically insignificant when computed 

for all the data and for the warm phase of the PDQ. The relationship is quite 

strong, however, in the cool phase of the PDQ with correlation coefficients as high 

as 0.6. Furthermore, in all of the basins shown here (Figures 6 - 8), the correlation 

coefficients for the cool phase of the PDQ is much higher than that for the warm 

phase of the PDQ and for all years taken together. 
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Figure 6: Correlation of 3-month average SOI starting with the April - June 
average that precedes the November to June Skykomish streamflow volume. 
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Figure 7: Correlation of 3-month average SOI starting with the April - June 
average that precedes the November to June Sandy streamflow volume. 
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Figure 8: Correlation of 3~month average SOI starting with the April - June 
average that precedes the November to June Rogue streamflow volume. 

Figures 6 - 8 show that the SOI is not a significant predictor of streamflow 

in the Sandy, Rogue, and Skykomish basins when the PDQ is in the warm phase. 

However, they also show that the SOI is a significant predictor during the cool 

phase of the PDQ. Previously the SOI would not have been considered a 

significant predictor of streamflow in either the Skykomish or Rogue basins. The 

influence of ENSO on western U.S. climate may indeed be more comprehensive 

than once thought. 

2.5.2 Intra-annual variation in response to the ENSO and the PDQ 

Another aspect of streamflow variability analyzed by Koch and Fisher 

(2000) was the intra-annual (within year) variation on a monthly time scale. Most 

would agree that seasonal volumes of flow are only useful for long-term planning, 
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while monthly forecasts, if available, would significantly reduce the planning 

horizon. Therefore, disaggregation models will be used to distribute the predicted 

volumes of streamflow over their respective series of months. Koch and Fisher 

(2000) found that the distribution of flow within the year varies with the PDO. 

As an example, Figure 9 is a composite hydrograph for the Sandy River. 

What is clear from Figure 9 is that the flow is highest during La Nina's that occur 

in the cool PDO phase, however what is not clear is how different the intra-annual 

variation in these periods are. Therefore, the data from each basin were 

manipulated such that each monthly observation was converted to the fraction it 

represented of the annual sum. The data were then split by the PDO to ascertain 

how, on average the distribution of flow varied throughout the year in the two PDO 

phases. The results are plotted in Figure 10. 

The distribution was found to be different, particularly in October, January, 

March, and April. In addition, the peaks occur in December and April during high 

PDO periods versus peaks in January and May during low PDO periods. Although 

the plots are not shown, the results of the Mann-Whitney test on the monthly 

fractions from the Skykomish and Rogue rivers also indicate significant differences 

in the inter-annual distribution of flow given the state of the PDO. The results of 

these tables are presented in Table 2. 

Figures 11 and 12 are similar to Figure 10, however, the conditioning is by 

high and low SOI within warm and cool PDO periods. Based on these analyses, 

ENSO does not provide any additional information regarding the disaggregation of 
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the volume forecasts. No statistically significant differences were found in the 

fractions in Figures 11 and 12. 
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Figure 9: Composite monthly hydrographs for the Sandy River nr Marmot. 
The data were composited by PDO and again by the SOI. La Nina is 
represented by values of the SOI greater than 0.5 and El Nino is represented 
by values of the SOI less than -0.5. 
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Figure 10: Sandy River nr Marmot fraction of annual sum composites by high 
and low PDO periods. 
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Figure 11: Sandy River nr Marmot fraction of annual sum composites for the 
high PDO period by SOI. 
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Figure 12: Sandy River nr Marmot fraction of annual sum composites for the 
low PDQ period by SOI. 

Month Skykomish Sandy Rogue 

Oct 0.08 0.03 0.26 
Nov 0.80 0.75 0.20 
Dec 0.83 0.19 0.70 
Jan 0.99 o.os 0.97 
Feb 0.74 0.61 0.97 
Mar 0.00 0.01 0.01 
Apr 0.00 0.04 0.04 
May 0.53 0.59 0.43 
Jun 0.01 0.72 0.28 
Jul 0.00 0.28 0.87 

Aug 0.00 0.93 0.07 
Sep 0.21 1.00 0.50 

Table 2. p values for rank-sum tests on the fraction of flow occurring in each 
month for low and high PDQ conditions. Values in bold are significantly 
different at the 5 % level. 
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2.5.3 Discussion of Pacific Northwest Observations 

The Hamlet and Lettenmaier ( 1999) study suggested that the PDO and the 

ENSO are important indicators of streamflow in the Pacific Northwest: in this case 

the Columbia River Basin. The results from McCabe and Dettinger ( 1998) and 

Koch and Fisher (2000) establish a statistical conditioning of the influence of the 

ENSO on seasonal streamflow in the Pacific Northwest by the PDO. Therefore, a 

new seasonal streamflow volume forecasting method is needed to include this new 

climate information. 

A new method is proposed in the following chapter that suggests 

conditioning forecasts on both the warm and cool phases of the PDO, and then 

mixing those forecasts based on an estimate of the probability of the current phase 

of the PDO the forecast is made in. In addition, Koch and Fisher (2000) suggest 

that the forecasted volumes should be disaggregated consistently with the phase of 

the PDO. In other words, a disaggregation model should be fit for both the warm 

and cool phases of the PDO and be used to disaggregate its respective volume of 

flow. 
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Chapter 3 

Seasonal Streamflow Volume Forecast Model 

As a result of the observations discussed in Chapter 2 a new seasonal 

streamflow volume forecast model methodology is developed and presented below. 

The NRCS forecast model, REG, will be used to fit the forecast equations and will 

simply be referred to as the NRCS model for the remainder of the document. The 

new methodology will incorporate both the PDQ and the ENSO into existing 

regression-based statistical streamflow forecasting model development techniques. 

The forecast methodology will be to use existing statistical methods to fit 

two near optimal forecast equations, one for each phase of the PDO. Prior to fitting 

the models the data are split based on the phase of the PDQ ( 1900 - 1924 & 1947 -

1976 (Cool Phase) and 1925 1946 & 1977 - 1998 (Warm Phase)). Models are 

then developed to predict volumes of flow for each PDQ phase. Validation of the 

observations outlined above is possible if a model is developed from all the data 

and compared to the models developed for the two phases of the PDQ. 

There are three advantages in developing a new forecasting method 

consistent with the observations outlined above. 

1. The new method will better represent the data because of the 

discrepancy found in using SOI as a predictor of streamflow at all times. 

This should result in a better estimate of the uncertainty of all seasonal 

streamflow volume forecasts. 
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2. The new method will produce forecasts that include the winter (early) 

runoff, previously not available due to the unpredictability of winter 

precipitation. Further, the new method will make use of the SOI as a 

long lead indicator in basins where it was previously not used. 

3. Seasonal volumes can be disaggregated to produce forecasts of monthly 

flows. These will be used in a decision support system to help make 

optimal water resource decisions. 

The results produce three equations at each forecast date: one for all the 

data, and two for each phase of the PDO. The variability of the equations is 

represented by the standard error (SE). The SE of the all data equation will be re­

computed for those years corresponding to the warm and cool phases of the PDO 

for comparison to the SE of the equations fit for the warm and cool phases 

respectively. In addition, the forecast results from the warm and cool PDO 

equations will be mixed by an estimate of the current phase of the PDO to form a 

new volume forecast at each forecast date, which will be compared to the all data 

results. 

3.1 Outline of Forecast Methodology 

Generally a forecast model is V1 ::; f (SOI, Precipitation, SWE, etc.) Where 

Vis the forecast volume at time t {month forecast is made). For example, if the 

operational year is from October to September, then a forecast would be made on 

October 1st for the volume of flow between October and September. At t ::; 2 the 

forecast volume would be reduced by one month and therefore be for the 
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November to September volume. The new methodology produces equations for 

both phases of the PDO. 

The forecast process is as follows: 

1. Specify the operational year (e.g. October to September). 

2. Estimate the regression parameters for both the warm and cool phases of the 

PDO for the seasonal volume at time t. 

3. Produce a volume forecast. 

4. Disaggregate the forecasted seasonal volume into its respective monthly values 

with a disaggregation model(s). 

5. Estimate the probability that the PDO is in the warm or cool phase given its 

current state. 

6. Mix the disaggregated monthly sequences based on the probability calculated in 

(5). 

3.2 Forecasting the Sandy River nr Marmot 

The NRCS uses regression on principal components described in Garen 

(1992). The methodology is first to perform a correlation analysis on the predictor 

variables for each seasonal volume and keep only those predictors that are 

significant as measured by the correlation coefficient. The NRCS model uses a 

search algorithm to find an optimal set of independent variables. The algorithm 

starts with all the one variable equations and adds variables in a systematic process 

that ends when additional variables do not improve the standard error. For each 

equation tested, principal component(s) of the candidate variables are computed 
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and regression is then performed on the components. The regression coefficients 

are later transformed back into terms of the original variables. The NRCS model 

lists the top 20 equations ranked by the jackknife standard error. 

The jackknife standard error is the standard error of the jacknife residuals. 

Jackknife results are obtained by an iterative process of removing the first year of 

the data prior to fitting the regression equation and making a prediction. Each 

subsequent year is removed so that the jackknife predictions are made without the 

benefit of the historical observation. The result is a more robust estimate of the 

standard error of the forecast model and thus a more robust estimate of the model's 

forecasting skill. 

3.2.1 Model Selection 

Selecting an equation from the top 20 equations produced by the NRCS 

model is the most subjective piece of the forecasting process. Historically, the 

hydrologists at the NRCS-NWCC pay particular attention to the variables included 

in the each of the forecast equations. There are two simple guidelines that are used 

when making the selection. 

l. Similar variables should persist from one forecast equation to the next to 

maintain month to month stability in the otherwise independent forecasts. 

2. Some similarity of variables should exist between the all data and two PDO 

models, however variation is to be expected since the underlying relationships 

differ somewhat, given the observations noted in Chapter 2. 
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The first guideline is particularly important because each forecast is produced 

independent of the others. Therefore, persistent variable selection from one 

forecast to the next will increase the stability of the volume forecasts from one 

month to the next. The second guideline accounts for the fact that if stability is to 

be expected within a set of forecasts, should that same stability be expected 

between the warm and cool PDQ equations? The observations made in Chapter 2 

indicate that during cool PDQ phases the flow is higher than during warm PDQ 

phases and that the relationship of the flow to the SOI differs. Therefore, variables 

were selected for the warm and cool PDQ equations based more on consistency 

within a set of equations rather than between. 

Ten dependent variables were used to fit the NRCS model to Sandy River 

streamflow. The variables used as predictors are shown in Table 3. The top 20 

equations for each of the 10 dependent variables were analyzed for consistency 

within a common set of forecast equations. In other words, equations were selected 

from the top 20 for each dependent variable based on those variables that were 

persistent or hydrologically important such as l st of month SWE. The variables 

selected in each equation are presented in Tables Al A3. The differences 

between the 3 sets of equations are a slightly higher occurrence of Government 

Camp precipitation in the low PDO equations versus the high PDQ or all data 

equations. Another difference, one that would be expected, is the inclusion of SOI 

in the October to February and October to March forecasts for the cool PDO and 

the all data equations, respectively, and not in the warm PDO equations. SOI was 
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selected at times by the warm PDQ equations, however, SOI is not significantly 

related to any of the dependent variables in the warm PDO data set and is therefore 

not an optimal predictor. 

Variables Period Station Record 

;: Oct• Seo 14137000, Sandy nr Marmot 1912-1999 
0 Nov• Sep 14137000, Sandy nr Marmot 1912-1999 
E Dec - Sep 14137000, Sandy nr Marmot 1912-1999 
co 

Jan• Sep 14137000, Sandy nr Marmot 1912-1999 !!! UJ 
.... (I) 

Feb - Sep 14137000, Sandy nr Marmot oo E 1912-1999 
C .2 Mar- Sep 14137000, Sandy nr Marmot 1912-1999 
(I) 0 ,:, > Apr - Sep 14137000, Sandy nr Marmot 1912-1999 
C 

May- Sep (I) 14137000, Sandy ru Marmot 1912-1999 a. 
(I) Jun• Sep 14137000, Sandy nr Marmot 1912-1999 0 

Jul - Sep 14137000, Sandy nr Marmot 1912-1999 

E 
ian 21D12S, Clear Lake Snotel 1958-1999 

(I) feb 21D12S, Clear Lake Snotel 1941, 1943, 1953-1999 
"iij feb 21D04S, Red Hill Snotel 1948-1999 > ·5 mar 21 D135, Clackamas Lake Snotel 1938-1941, 1943-1944, 1946, 1948-1999 c::r 
w mar 21D12S, Clear Lake Snotel 1931, 1941, 1944-1999 ... 
(I) mar 21D04S, Red Hill Snotel 1948-1999 iii s: apr 21D13S, Clackamas Lake Snotel 1938-1943, 1946, 1948-1999 
;: apr 210125, Clear Lake Snotel 1932-1999 
0 
C apr 21004S, Red Hill Snotel 1948-1999 Cl) 

may 2JD12S, Clear Lake Snotel 1950-1953, 1955-1999 
Oct OR3770, Headworks, Portland OR 1932-1999 
Nov OR3770, Headworks, Portland OR 1932-1999 
Dec OR3770, Headworks, Portland OR 1932-1999 

C Jan OR3770, Headworks, Portland OR 1932-1999 0 

~ Feb OR3770, Headworks, Portland OR 1932-1999 
·5. Mar OR3770, Headworks, Portland OR 1932-1999 ·o 
!!! Apr OR3770, Headworks, Portland OR 1932-1999 
0.. Mav OR3770, Headworks, Portland OR 1932-1999 
0 Jun OR3770, Headworks, Portland OR 1932-1999 UJ 
(I) Oct OR3402, Government Camp, OR 1954-1999 E 
::, Nov OR3402, Government Camp, OR 1954-1999 0 
> Dec OR3402, Government Camp, OR 1954-1999 
>, 

Jan OR3402, Government Camp, OR 1954-1999 :E 
E Feb OR3402, Government Camp, OR 1954-1999 
0 
:ii: Mar OR3402, Government Camp, OR 1954-1999 

Apr OR3402, Government Camp, OR 1954-1999 
May OR3402, Government Camp, OR 1954-1999 
Jun OR3402, Government Camp, OR 1954-1999 

SOI jun-sep Southern Oscillation Index 1911-1998 

Table 3: Data used as dependent and predictor variables to fit the 3 sets of 
equations with Reg.exe. 
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3.3 Forecast Volume Results 

The two methods, fitting models to the split data based on the PDO vs. the 

entire data set, are evaluated based on standard error, bias, and cross validation. 

Throughout the remainder of this document the model fit to all of the data will be 

referred to as the control or all data equations, and the two models fit to the data 

based on the phase of the PDO will be referred to as the split data model. 

The jackknife and regression standard errors of the all data equations were 

compared to those of the warm and cool PDO equations. The comparison is not 

straightforward. The jackknife standard errors (JSE) and regression standard errors 

(SE) had to be recalculated from the results of the all data equations specific to the 

warm and cool PDO years. The SE and JSE from the warm and cool PDO 

equations can then be compared to the re-calculated SE and JSE of the all data 

equations in the warm and cool PDO years respectively. Some improvement is 

expected by the warm and cool PDO equations because the models are specifically 

fit to the warm and cool PDO years and are optimal. There are no significant 

predictors of the October - September volume during the warm phase. Therefore, 

the historical standard deviation is substituted in Table 4 and the JR values are not 

applicable (NA). 

Also, the correlation of the jackknife predictions and the historical data 

were recalculated for the warm and cool PDO years of the all data results. The 

Jackknife R (JR) and JSE and SE values are shown in Table 4. 
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Warm PDQ All Data Results Cool PDQ 
Results Warm Warm Warm Cool Cool Cool Results 

Volume JSE* SE* JR JSE* SE* JR JSE* SE* JR JSE* SE* JR 
Oct• Sep 200 200 NA 212 207 NA 141 137 0.59 141 133 0.56 
Nov-Seo 196 188 0.28 188 183 0.39 164 158 0.43 137 130 0.57 
Dec - Sep 157 150 0.35 158 153 0.37 125 122 0.57 126 116 0.66 
Jan - Seo 145 132 0.1 145 138 0.23 120 112 0.61 116 103 0.65 
Feb- Sep 109 100 0.22 113 108 0.22 106 102 0.46 112 102 0.44 
Mar• Sep 78 74 0.52 78 75 0.53 92 89 0.51 89 85 0.55 
Aor • Seo 59 55 0.59 62 59 0.47 59 54 0.77 57 53 0.78 
May- Sep 45 42 0.47 50 48 0.36 43 40 0.86 38 35 0.89 
Jun - Sep 32 30 0.29 35 33 0.22 35 32 0.75 31 28 0.81 
Jul• Sep 12 11 0.59 15 15 0.22 17 16 0.57 16 15 0.65 

*Thousand Acre-Feet <KAFl 

Table 4: Results of the 3 models fit to the Sandy River nr. Marmot data over 
the entire period of record (all data), warm, and cool PDO periods. 

The JSE and SE of the high and low PDQ equations are only modestly 

lower and sometimes higher when compared with the recalculated SE and JSE in 

the cool and warm PDQ periods of the all data equations. The only exception is 

that of the cool PDQ phase for the November to September volume. 

The SE of both the warm and cool PDQ equations were tested against the 

re-computed SE's in the warm and cool PDQ years of the all data equations 

respectively. Only the difference of 28 KAF for the November to September cool 

PDQ phase equation is statistica11y significant at a P value of 0.03 (Table 5). 
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F-Test on SE Results 
Warm Cool 

Volume P Values P Values 
Oct- Sep NA 0.42 
Nov - Sep 0.03 0.43 
Dec - Sep 0.36 0.45 
Jan - Sep 0.36 0.42 
Feb-Sep 0.5 0.36 
Mar- Sep 0.43 0.47 
Apr - Sep 0.45 0.38 
May- Sep 0.28 0.27 
Jun - Sep 0.24 0.31 
Jul - Sep 0.32 0.1 

Table 5: Results of the F-tests performed on the standard errors. 

The comparison of the SE and JSE is presented in Figures 13 and 14 for 

each forecast date. There are two particular observations shown by Figure 13 and 

14 that are important. Clearly the largest differences between the JSE and SE of 

the high and low PDO equations and the re-computed JSE and SE of the all data 

equations is during the early forecasts, particularly in the cool PDO equation in 

November. The other important observation is that the JSE and SE are much lower 

overall in the cool PDO phase versus the warm PDO phase for the October­

September through the January September forecast. The differences between the 

overall warm and cool PDO equations are significant at levels much less than an 

alpha of 0.05 through the January - September forecast and are insignificant from 

the February September forecast on. 

34 



Sandy River nr Marmot forecast equations 
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Figure 13: Jackknife standard error for the high and low PDQ equations and 
the re-computed JSE in the high and low PDQ periods of the all data 
equations. 
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Figure 14: Standard error for the high and low PDQ equations and the re­
computed JSE in the high and low PDQ periods of the all data equations. 
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The forecast model reproduces the observations discussed in Chapter 2. 

Early in the year, the uncertainty of streamflow predictions is much lower during 

the cool PDQ phase than during the warm PDQ phase. Furthermore, the overall 

reduction in the JSE and SE for all three equations during the cool PDQ phase 

suggests that prior to the February to September volume forecast, the variability of 

volume forecasting during warm phases of the PDQ is relatively high. 

3.3.1 Estimating the Future Phase of the PDQ 

Given a perfect forecast of the phase of the PDQ, forecasts could be made 

directly with the warm and cool PDQ equations. However, the reality is that the 

PDQ index is not perfectly related to the phase of the PDQ. In other words, the 

PDQ index has, at times, been positive during cool phases and vice versa. 

Therefore, the forecasts will have to be made with both the warm and cool PDQ 

equations and the results will have to be mixed consistent with the probability that 

the PDQ is going to be in one phase versus the other. The mixing is accomplished 

by mixing generated forecast values in proportion to an estimate of the phase of the 

PDQ. 

3.3.2 Estimating a and f}:. 

The PDQ index is used as the indicator of the current state of the PDQ. 

Consequently, values of the PDQ index averaged over periods prior to the forecast 

date need to be related to the phases of the PDQ. Therefore, an analysis was done, 

where the PDQ index was averaged between October and September for increasing 

number of years prior to a forecast date. The three year average was selected 
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because the results shown in Table 6 and Figure 15 show an 89% probability that 

the PDQ will be in the warm phase given that the average PDQ index over the past 

three years is positive, and a 93% probability that the PDQ will be in the cool phase 

given that the previous three years of the PDQ index have on average been 

negative. 

Warm Phase Cool Phase 
Oct-1 (+) 0.80 0.20 
Oct-1 (-) 0.13 0.87 
Oct-2 (+) 0.80 0.20 
Oct-2 (-) 0.10 0.90 
Oct-3 (+) 0.89 0.11 
Oct-3 (-) 0.07 0.93 
Oct-4 (+) 0.89 0.11 
Oct-4 {-) 0.07 0.93 

Table 6: Contingency values predicting the phase of the PDQ given the 
previous 1 to 4 year average of the PDQ index. Oct-1 ( +) indicates that 1 
previous year_ from October to September was on average positive, etc. 

Therefore, a and /J are constants that merely depend on the average 

over the past three water years be computed. If the PDQ is expected to be in the 

warm phase during the forecast then equation 1 will be used, and if the PDQ is 

expected to be in the cool phase equation 2 will be used: 

V, = a(V,,PDo>o) + (1-a)(V,,PDo<o) (l) 

(2) 
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Where V, is the volume of flow at time t. 
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Figure 15: Alpha and Beta probabilities as estimated by the average of the 
PDO index over 1 to 4 previous years from October to September. 

Mixed forecasts were produced over the same period of record as the all 

data equation results for each forecast date. Both the warm and cool forecast 

equations were used to generate 100 forecasts for each year. The previous three 

years of the PDO index were then averaged and if the result was positive then 89 

warm forecasts were mixed with 11 cool. On the other hand, if the previous three 

years of the PDO index were on average negative, 93 cool forecasts were mixed 

with 7 warm. 
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3.3.3 Cross Validation Results 

Cross validation is also useful in evaluating forecast models. Cross 

validation as applied here is the ability of the model to predict in the appropriate 

tercile of the data. The historical observations are split into equal thirds labeled as 

below, normal, and above for the lower, middle, and upper terciles of the data 

respectively. The mixed forecasts and the all data forecasts are compared to the 

historic data. The results are presented in Table 7. 

Oct-Sec Nov-Seo 

Case 
Q Estimatied w\ All Data Case a Estimatied w\ All Data 

Below Normal Above Below Normal Above 
Below 30% 63% 7% Below 48% 52% 0% 

Observed Q Normal 7% 86% 7% ObservedQ Normal 14% 79% 7% 
Above 4% 63% 33% Above 0% 89% 11% 

Case 
Q Est. w\ Sclit Data Case 

a Est. w\ Solit Data 
Below Normal Above Below Normal Above 

Below 33% 52% 15% Below 41% 59% 0% 
ObservedQ Normal 18% 64% 18% Observed Q Normal 11% 86% 4% 

Above 26% 26% 48% Above 0% 81% 19% 

Dec-Sec Jan• Sec 

Case 
a Estimatied w\ All Data Case a Estimatied w\ All Data 

Below Normal Above Below Normal Above 
Below 33% 53% 13% Below 50% 36% 14% 

Observed a Normal 31% 69% 0% ObservedQ Normal 36% 43% 21% 
Above 0% 53% 47% Above 7%, 64% 29% 

Case Q Est. w\ Sclit Data Case 
Q Est. w\ Sclit Data 

Below Normal Above Below Normal Above 
Below 40% 60% 0% Below 43% 50% 7% 

ObservedQ Normal 50% 44% 6% Observed Q Normal 21% 64% 14% 
Above 13% 33% 53% Above 21% 36% 43% 

Table 7: Contingency tables showing the average results of the cross validation 
of the all data, above, and below equations respectively. 

The results are quite variable over the 4 forecast periods shown in Table 7. 

Overall both methods produce forecasts that tend toward normal. The mixed split 

forecasts better predict upper tercile events overall, but only show better results of 

lower tercile predictions during the October and December forecasts. The only 
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clear pattern of improvement shown by the cross validation results is the 

improvement in forecasting the upper terciles of the historical data. 

3.3.4 Forecast Mean and Evaluation of Bias 

Finally, it is important to evaluate not only the variability of the forecasts 

and their ability to forecast in relatively high and low PDO years, but also that the 

mean forecast is similar to the observed data. The split data forecast, which 1s the 

integrated warm and cool phase volume forecast after consideration of the PDO, 

predicts the mean better than the all-data in both the warm and cool phases. Figure 

16 shows that the all-data forecasts are biased low in October, November, and 

December during the cool PDO phase, whereas the split data are not as biased. 

Figure 17 shows that during the warm phase, the split data are unbiased through the 

January forecast, while the all data equations are biased high. 

Seasonal streamflow volume forecasting without consideration of the PDO 

has been shown to produce forecasts that are biased high during warm phases of the 

PDO and biased low during cool phases of the PDO resulting in a tendency to 

under-predict potential drought and flood years respectively. Although the bias is 

not completely removed by splitting the data as was shown here, there is a 

significant improvement particularly during the early forecasts produced from 

October to December. 
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Forecast Model Comparison (Cool PDO Phase) 

1200 
-+-Split Data Mean Forecast (Cool PDO Phase) 

1000 --All Data Mean Forecast (Cool PDO Phase) 

-ljE-Historical Mean (Cool PDO Phase) 

iL" 800 
<( 

~ 
:I: ..e 600 e 
I'll 
! -(/) 400 

200 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul 
Forecast Month 

Figure 16: Comparison of the mean forecast during cool PDO phase. Split 
data are the warm and cool phase equations that have been mixed by the PDO. 

Forecast Model Comparison (Warm PDO Phase) 
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Figure 17: Comparison of the mean forecast during warm PDO phase. Split 
data are the warm and cool phase equations that have been mixed by the PDO. 
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Even though the split forecast equations for the October through January volumes 

was shown still to tend to normal conditions in the cross validation results, the 

discrepancy in bias shown in Figures 16 and 17 suggest that the split forecast 

equations better estimate seasonal streamflow in the Sandy River. It is unfortunate 

that the split-forecast results did not show significant improvements in cross­

validation during both phases of the PDQ. However, the new method produces 

unbiased forecasts that take into consideration the change in overall variability 

given the state of the PDO. 

The next step is to develop disaggregation models consistent with the 

findings of Koch and Fisher (2000) that will be used to distribute generated 

volumes of flow throughout the forecasted operational year. 
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Chapter4 

Disaggregation of Volume Forecasts 

In addition to a better estimate of seasonal streamflow volume, water 

resource managers also need a forecast product that is more suitable for the decisions 

they are required to make. While a seasonal volume prediction and estimate of 

uncertainty is helpful to operators of reservoir systems, seasonal volumes are limited 

to long term seasonal planning, whereas much of the operation of reservoirs is on 

finer time scales. Even though statistical forecasting is limited in its refinement in 

time, disaggregation models can be used to resolve a seasonal volume into time 

increments as small as one month. Based on conversations with several reservoir 

operators, monthly estimates of flow are more useful than seasonal volumes. 

Therefore, a disaggregation model will be used here to disaggregate the seasonal 

volumes into sequences of monthly flows. 

4.1 Disaggregation Modeling 

Disaggregation models are designed to produce a sub - aggregate series from 

an aggregate series by preserving the historical statistical relationships that exist 

between the two series. For instance a forecast model may produce a seasonal 

forecast volume for the months April to September. The disaggregation model 

would be used to estimate the flows for each month of the season, i.e. April, May, 

June, July, August, and September. 
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Some common terms and symbols will be used to represent the statistical 

moments as well as the temporal scale of a time series. The term "key" series refers 

to the temporal scale of the aggregate series (independent variable) and the term 

"sub" -series refers to the temporal scale of the disaggregated series. An example 

would be an annual series disaggregated into its monthly constituents, where the 

annual series is the "key" series and the monthly series is the sub - series. The 

forecast model will forecast the key series (seasonal volumes), which will 

subsequently be disaggregated into the sub series (monthly volumes) by the 

disaggregation model. 

The disaggregation model preserves certain statistical relationships that exist 

between the key and sub series. Those statistical relationships are used to estimate 

the parameters of the models by the method of moments (MOM). A lag zero 

covariance matrix between the independent key series X and dependent sub- series 

Y is represented by Sxy· The lag one covariance matrix between the same two 

series is denoted Sxy(l), where the Y series is lagged by one time unit to the X series. 

Having selected a time interval for disaggregation, the disaggregated 

streamflow is represented as: 

Q
1 
(j) for j = 1,2 .... ... K 

where Q, (j) is the disaggregated volume of streamflow, 

(3) 

t is the time the forecast is produced, j is the time period 

corresponding to the disaggregated flow, and K is the total number of 

time periods into which the volume forecast is disaggregated. 
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The relationship between the volume forecast and the disaggregated volumes 

are shown schematically in Figure 18. 

Figure 18: 

Qi(l) Q,(K) 

Schematic illustration of the disaggregation terminology and the 
relationship of the volume forecast to the disaggregated volumes 

"Disaggregation modeling is a process by which time series are generated 

dependent on a time series already available" (Salas et al. 1980). The utility of 

disaggregation modeling is that most synthetic forecasting models are more accurate 

at an annual or seasonal level, but the operation of water resource systems require a 

more refined volume such as monthly forecasts. Valencia and Schaake (1973) 

introduced a disaggregation model of the form shown below in equation (4). 

Y=AX+Bs 

Where Y is a vector of correlated random variables, X is a vector of correlated 

random variables, A and B are coefficient matrices, and £ is a vector of random 

(4) 

normal variables independent of X (Valencia and Schaake 1973). Equation 4 

assumes that all random variables are normal and have mean 0. Using the Method of 

Moments (MoM), the historical statistical relationships between the key (X) and sub­

series (Y) are preserved. 
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Parameter Estimation: Valencia & Schaake (1973) 

Given (4): 

Post multiplying by XT gives, E[YXT] = AE[XXT], from which the parameter matrix 

A is solved for in (5). 

A s s -I 
YX XX 

Next, post multiplying by yT gives, E[YYT] AE[XXT]A T + BBT, and the BBT 

matrix is given by (6). 

The BBT matrix is proven to be positive semi-definite in Valencia and 

Schaake (1973), pp.582 - 583. The solution of BB T for the parameter matrix B is 

described by equations 3.43-3.45 on page 87 of Salas et al. (1980) or Lane (1982) 

page 510. 

(5) 

(6) 

Mejia and Rousselle (1976), and Lane (1982) have since offered 

improvements on the form of the Valencia and Schaake (1973) model. The Valencia 

and Schaake (1973) model is limiting in that it does not preserve the over-year serial 

correlation of the dependent (sub- key) series. In (4) there are no provisions for 

what occurred prior to the first month of the Y series. Mejia and Rousselle (1976) 
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proposed an additional component of the model that would better preserve the 

historical serial correlation in the dependent series. 

Y1 = AX1 +Be+CY1-1 (7) 

The only addition to (4) is the CY1_1 component, which preserves the Jag t = 1. .. k 

over-year serial correlation in the dependent series Y1• Lane ( 1982) further 

improved the Mejia and Rousselle ( 1976) model, which was shown to have an 

inconsistency in its parameter estimation scheme. In following the method of 

moments to solve for A, B, and C in (7) the lag one covariance between the X and 

Y1_1 series (Sxy(l)) appears. Lane (1982) showed that an adjustment can be found for 

the Sxy( I) and Syy( 1) moments to correct for the inconsistency if the key series is 

modeled as first order auto-regressive. Equation 8 and 9 show the Lane correction to 

the Sxy(l) and Syy(l) moments, which will preserve the moments and preserve 

additivity in the dependent series. The five equations to estimate the parameters as 

proposed by Lane ( 1982) are: 

S~v (1) = Sxx (l)S ;~Sxv 

S~v (1) = S vv (1) + SvxS ~~ [S~v (1)- Sxv (1)] 

A= [Svx -S~ (l)S;;,Siv (l)][Sxx -S~v (l)S;;.s~;, (l)r1 

C = [S~v(l)-AS~v(l)]S;;. 

BBT =Svv -ASxv -CS~;,(1) 

47 

(8) 

(9) 

(10) 

(1 1) 

(12) 



4.2 Disaggregating Volume Forecasts 

Volume forecasting was discussed in Chapter 3, and the result was the 

demonstration that seasonal streamflow volume forecasting can be improved by 

mixing forecasts from two models that predict flow based on the state of the PDQ. 

An additional improvement in seasonal streamflow volume forecasting is the 

disaggregation of those forecasts into finer time resolutions, which are much more 

practical to use in water supply management. The following section will discuss and 

evaluate the disaggregation of seasonal streamflow volume forecasts produced by the 

equations fit in Chapter 3 for the Sandy River. Again the results of disaggregating 

forecasts fit to all the data will be compared to splitting the data and disaggregating 

the forecasts produced by the warm and cool PDQ forecast equations. 

4.2. l Methods 

Data from each of the 10 dependent variables (seasonal volumes) in Table 3 

are disaggregated by the control method, which uses all the data to fit both the 

forecast and disaggregation equations, and the split method, which splits the data 

based on the PDQ and uses forecasts and disaggregation equations fit specifically to 

streamflow data during the warm and cool PDQ states. The split data disaggregation 

sequences wilJ then be mixed by the probability of the state of the PDQ given by 

Table 6. 

The process is to generate 100 forecasts for each year over a common period 

of record for all 3 equations. The control scenario is simply to disaggregate the I 00 

generated forecasts in each year and average them to produce the final results. The 
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split scenario is more complicated. In the split scenario 100 forecasts are produced 

by both the warm and cool PDO forecast equations. A disaggregation model specific 

to the state of the PDO (i.e. warm and cool phase disaggregation models) then 

disaggregates each of the 100 forecasts in every year. Finally, the disaggregated 

forecasts are mixed based on the state of the PDO with equation 13 if the previous 3 

years of the PDO index are on average positive and with equation 14 is the PDO 

index is on average negative: 

Qt,PDO>O(j) = a(Qt,PDO>O(j))+ (1 a)(Ql,PDO<O(j) 

Qt,PDO<O(j) = P(Qt,PDO<O(j)) + (1 P)(Qt,PDO>O(j) 

(13) 

(14) 

Experience in disaggregating the volume forecasts produced by all three sets 

of forecast equations has proven the Lane model to be difficult to use. Particularly, 

the BB T matrix was found at times to be negative semi-definite, which is in clear 

violation of the principles within which the model was developed. Therefore, the 

Valencia and Schaake model, (4), was used for disaggregating the forecasts produced 

by the Sandy River forecast equations discussed in Chapter 3. While the Lane 

(1982) model is theoretically superior to the Valencia and Schaake (1973) model, the 

intent here is not to produce the best possible forecasts but rather to objectively 

compare the two methods. 

4.2.2 Results from the Sandy River nr Marmot 

Figures 19 and 20 show the mean monthly results of disaggregating the 

October to September forecasts for water years 1913 to 1999 in cool and warm 

phases of the PDO, respectively. Figure 21 is the average results for the period of 
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record. The split disaggregation scheme better estimates the mean monthly flow 

during cool and warm PDQ phases (low and high PDQ index respectively). Further, 

the control (all data) results are biased low on average, whereas the split results are 

not. The results are the same for the November-September (Figures 22 - 24) and 

December-September (Figures 25 27) volumes, however the control begins to 

estimate the mean monthly flow better during the warm phase beginning in the 

January-September (Figures 28 - 30) volume. Generally, the split results are 

noticeably better during the cool PDQ phases when the control (all data) is typically 

biased low. 

Sandy River nr Marmot (Oct• Sep Volume), Cool PDO Phase 
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Figure 19: Disaggregated mean monthly flow from October to September in 
acre-feet during the cool phase of the PDO (low PDO index). 
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Sandy River nr Marmot (Oct - Sep Volume), Warm PDO Phase 
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Figure 20: Disaggregated mean monthly flow from October to September in 
acre-feet during the warm phase of the PDO (high PDO index). 

Sandy River nr Marmot (Oct - Sep Volume), Average Results 
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Figure 21: Average disaggregated mean monthly flow from October to 
September in acre-feet. 
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Sandy River nr Marmot (Nov - Sep Volume), Cool PDQ Phase 
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Figure 22: Disaggregated mean monthly flow from November to September in 
acre-feet during the cool phase of the PDO (low PDO index). 

Sandy River nr Marmot (Nov - Sep Volume), Warm PDO Phase 
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Figure 23: Disaggregated mean monthly flow from November to September in 
acre-feet during the warm phase of the PDO (high PDO index). 
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Sandy River nr Marmot {Nov• Sep Volume), Average Results 
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Figure 24: Average disaggregated mean monthly flow from November to 
September in acre-feet. 
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Figure 25: Disaggregated mean monthly flow from December to September in 
acre-feet during the cool phase of the PDO (low PDO index). 
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Sandy River nr Marmot (Dec - Sep Volume), Warm PDO Phase 
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Figure 26: Disaggregated mean monthly flow from December to September in 
acre.feet during the warm phase of the PDO (high PDO index). 
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Figure 27: Average disaggregated mean monthly flow from December to 
September in acre•f eet. 
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Sandy River nr Marmot (Jan - Sep Volume), Cool PDO Phase 
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Figure 28: Disaggregated mean monthly flow from January to September in 
acre.feet during the cool phase of the PDQ (low PDQ index). 
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Figure 29: Disaggregated mean monthly flow from January to September in 
acre-feet during the warm phase of the PDQ (high PDQ index). 
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Sandy River nr Marmot (Jan - Sep Volume), Average Results 
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Figure 30: Average disaggregated mean monthly flow from January to 
September in acre-feet. 

4.2.3 Variability of Monthly Forecasts 

Sep 

The variability of the monthly forecasts is also important. The mixed 

forecasts should follow the normal distribution prior to mixing by the PDO. 

However the mixed forecasts would not be expected to follow a normal distribution. 

Therefore, a non-parametric measure of the variability of the forecasts was used to 

ascertain the relative variability of the control and split results. The results shown 

below are all measurements of the 90% range, which is a measurement of the 

variability that does not assume a normal distribution. 

The upper and lower ranks are computed for any probability ¢ and for any 

number of years of data, n, by 15 and 16 respectively (Helsel and Hirsch 1992). 
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Ru =(1-¢)(n+l) 

R1 ¢(n+ 1) 

(15) 

(16) 

The 90% range is the difference between the flow that corresponds to the upper 95% 

rank and the lower 5% rank. 

It is apparent from Figures 31 - 38 that the split results are far less variable 

than the historical data and the control. The results from the October-September 

volume are the only exception and are likely the result of the historical mean and 

standard deviation being used to generate the forecasts for the warm PDO phase. 

The historical mean and standard deviation had to be used in this case because there 

were not any statistically significant predictors of the October-September volume 

during warm PDO phases. 
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Figure 31: Variability by month for the October-September volume during the 
cool phase of the PDO (low PDO index). 
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Figure 32: Variability by month for the October-September volume during the 
warm phase of the PDO (high PDO index). 
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Sandy River nr Marmot (Nov - Sep Volume), Cool PDQ Phase 
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Figure 33: Variability by month for the November-September volume during 
the cool phase of the PDO (low PDO index). 
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Figure 34: Variability by month for the November-September volume during 
the warm phase of the PDO (high PDO index). 
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Sandy River nr Marmot {Dec - Sep Volume), Cool PDO Phase 

200000 
-+- All Data Low PDO I 

180000 +-~=--=.<!\--------------- --split Data Low PDO 1 
~ Historical Data Low PDO 

160000 

140000 
LL 
~ 120000 
GI r 100000 
a: 
~ 80000 
i 

60000 

40000 

20000 

0 
Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Figure 35: Variability by month for the December-September volume during 
the cool phase of the PDO (low PDO index). 

200000 

180000 

160000 

140000 
LL 
~ 120000 
GI 
Cl 
C 100000 Ill 
a: 
-£. 

~ 
80000 

60000 

40000 

20000 

0 

Sandy River nr Marmot {Dec• Sep Volume), Warm PDO Phase 

-+-All Data High PDO 
+--Ac----~~----------- Split Data High PDO 

~ Hlstorical Data High PDO 

Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Figure 36: Variability by month for the December-September volume during 
the warm phase of the PDO (high PDO index). 
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Figure 37: Variability by month for the January-September volume during the 
cool phase of the PDO (low PDO index). 
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Figure 38: Variability by month for the January-September volume during the 
warm phase of the PDO (high PDO index). 
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The consistency of the results from the November volume on suggests that the split 

disaggregation scheme generate less variable results as compared to history or the 

control (all data). All ten sets of equations show results similar to those shown 

above. 

In general, the results displayed in Figures 20 - 39 show that disaggregating 

the seasonal volume forecasts produced for both the warm and cool phases of the 

PDO and mixing them results in better average estimates of monthly flow and less 

overall variability than the disaggregated seasonal volumes produced by the all data 

forecasts. 
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Chapter 5 

Forecasting Process and a Y2K Forecast 

To this point, the volume forecast and disaggregated forecasts have been 

compared based on their performance over the historical record. The ultimate 

verification of mixing forecasts based on the PDQ is to produce a forecast for the 

water year of 2000 (October '99 to September '00) with parameters fit to the data 

preceding the forecast or prior to October 1999. 

5.1 Methods 

The process of actually producing a real-time forecast is slightly different 

than verifying one method versus others. The steps required to produce a forecast 

are as follows: 

l. Fit parameters of the warm and cool PDQ equations from the historical data (as 

described in Chapters 3 and 4). 

2. Fit the parameters of the warm and cool PDQ disaggregation equations from 

the historical volume and monthly streamflow data. 

3. Generate 100 warm and cool PDQ forecasts with the equations fit in (1) and the 

appropriate predictors. 

4. Disaggregate the 100 warm and cool PDQ forecasts with their respective 

disaggregation models fit in (3). 

5. Mix the disaggregated sequences in proportion to the probability of the PDO. 
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In general, the first two steps are only required when initially fitting the models 

or when the models are updated with additional data. Steps 3 through 5 are 

carried out each time a forecast is produced. 

5.2 Results 

The forecasts are mixed in step (5) using the PDQ index to predict the state 

of the PDQ as was done in Chapters 3 and 4. Since the previous three years (1997-

1999) of the PDQ index were on average positive, 89 of the warm sequences were 

mixed with 11 of the cool sequences to produce the mixed forecast shown in Figure 

39. The mixed forecast shown in Figure 39 is the mixed disaggregated October to 

September seasonal volume produced with data prior to October 1999. 

The forecast is very near the median value in October, January, and March 

through May. The most variable months are historically November, December, 

and January. Of those the November and December values were close to within the 

50% range of median, and the January value was nearly perfect. Overall, the 

forecast is good with all the values falling within 90% confidence bounds and most 

of the values falling within the 50% confidence bounds. 
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Year 2000 split model forecast for the Oct- Sep volume, Sandy River nr Marmot 

350,000 ~-----------------------------~ 

300,000 

250,000 

-+-Y2k Median Forecast (Split Model) 

· · · , · · 90% Below 

······75%8elow 

······25%8elow 

······10%8elow 

• Observed Values 

';' 200,000 
0 
:;:: 
E 
C1J 150,000 g 

(/) 

100,000 

50,000 

0 +----r---r----.----.----,---,---~--r---...----,----.-----; 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Figure 39: Year 2000 Forecast made by mixing warm and cool PDO 
disaggregated seasonal streamflow volume forecasts. 
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Chapter 6 

Summary and Conclusions 

I 

The split sample analysis performed on the Sandy, Rogue, and Skykomish 

rivers revealed that the phase of the PDO as defined by Mantua et al. ( 1997) 

conditions the response of these rivers to the ENSO as measured by the SOI, which 

is important in long lead seasonal streamflow volume forecasting in the western 

U.S. The analysis found that in cool phases of the PDO, the correlation of the SOI 

and streamflow in the Sandy, Rogue, and Skykomish rivers is much higher than the 

same correlation during the corresponding warm phase of the PDO. In fact, the 

correlation of the SOI and streamflow in the Rogue and Skykomish was not 

significantly different from zero at the 5% level, when all the data were used and in 

the years when the PDO is in the warm phase. However, during the years when the 

PDO is in the cool phase the relationship is quite significant. The consistency of 

the findings across the study basins suggests a consistent relationship in at least the 

Washington and Oregon Cascades watersheds. 

A new seasonal streamflow volume forecasting approach using existing 

statistical methods was proposed to make use of this new information. The purpose 

is to generate sequences of monthly data for use in water resource management and 

as input to a decision support system for river/reservoir operation. The new model 

was verified by cross validation and by a forecast model developed on all the data 

without consideration of the PDO. The mixing of the split seasonal volume 
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forecasts resulted in more accurate mean forecasts with more consistent estimates 

of variability. Further, the mixing of the split forecasts better estimated the flows 

in the upper terciles, however improvements in lower tercile estimates are 

inconclusive. The control or all data equations underestimated the high flows 

during the cool PDQ phase and overestimated the flows during the warm PDO 

phase. While the mixed split forecasts were still slightly biased, the new model 

produced results that were significantly better than the control. 

The importance of the mixed split forecasts is evident even more so from 

the results in Chapter 4. Here it was shown that the split forecasts produced 

consistent mean monthly forecasts with less variability in each of the early 

forecasts with the exception of the October-September forecast, which made use of 

the historical mean and standard deviation as a substitute for the warm PDO phase 

forecast. The results suggest that not only can seasonal streamflow volume 

forecasts be extended reliably back to the October-September volume, but further 

that the disaggregation of those forecasts into monthly values can be accomplished 

to provide additional information to water supply management. 

The method was applied to forecast monthly streamflow for the Sandy 

River for water year 2000 as a verification of the split forecast method. Only the 

November volume is outside the 50% confidence limits. Further, many of the 

volumes are very near the median forecast. The June through September 2000 

volumes have not yet been observed at the completion of this thesis. 
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Although it has been shown that mixing disaggregated volume forecasts 

based on the PDO improves the skill of seasonal streamflow forecasting, the 

process of splitting the historical data by the phases of the PDO and fitting forecast 

equations for both phases is data intensive. Many forecast sites will not have data 

over a long enough period of record to adequately fit forecast equations for both 

phases of the PDO. Even though some forecast sites will not support the new 

forecast methods described here, integration of the PDO and disaggregation into 

statistical streamflow forecasting will benefit water supply management in the 

future. 
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Appendix 

Forecast Equations 

Variable Period Descrintion Oct- Sen Nov• Sen Dec- Sen Jan -Sen Feb- Sen Mar• Ser Tn,.s= Mav. Sen Jun- Sen Jul. Sen 
ian Clarl..akeSnot«I 9966 

i 
feb Clear Lake Snou-1 

feb Red HlllSnot.el 2455 
.!! mar Clacbmas l.al,;.r SI\Ote1 6607 
~ w mar Ck!arl...ikeSnotel 

I mar RedHiUSnohll 

aor ClailimD Lake Snot:t:l 4515 2162 1177 451 

J aor Clear L,,J,;e Snotd 

apr RedJ-liU Snotel 

mav Clt!ar Lab: Sn:okl 2985 1625 622 
Oct Headw(!tb, Portland: OR 17098 
Nov Headworb, Portland OR 9956 
Dec Headwor)(!, Portland OR 

Jan Hmdwc,rb, Portland OR 
C Feb Headworks, Pordand OR 1 Mar Headworks, Portland Oil 

1 Aor Headworks, Portland OR 

Mav Headworb Portland OR 
15 Jun Headworb, Portland OR : Oct Government Camr., OR E 
_;; Nov (",o~mment Came,, OR 
~ Dec Government Camv, OR ,.. .. Jan Covemment Camn, OR 
§ 

:I! Feb Govemrnmt CamD, OR 

Mar eo-mmt>nt Carnn, OR 7104 4877 2654 1017 
Aor Govemm~I Camn, OR 

Mav Gonmrrwnt Camr>. OR 

Jun Govemmmt Camo, OR 

SOI liun-s..-c SOI 81247 69781 57763 51588 40133 19339 
lnt$1'CWJl: 994023 833218 744079 662007 524387 386834 247526 164092 104922 68854 

Table Al: Variables used in the 10 control forecast equations. Dependent 
variables are in the far left column and the location of the variables is located 
in the column headings. 

Variable Period Descliotion Oct• Seo Nov· Seo Dec- Seo Jan· Seo Feb- Seo Mar- Sen Anr- Se" Mav- Seo Jun• Seo Jul• Seo 
jan Clear Lake Snow! 5413 
feb Clear L.lke Snotel 2907 

I feb Red HiUSnotel 985 • i m" C!.,.:k.tmas Lan Sr.r,tel 6839 
Ul mar C~ar L..ke Sooh:11 
I mar Red Hill &,otel 

I ,p, Clackama• l..ab Snotel 5056 3005 1532 492 

~ ,o, Oear Ukti Sootd 
<I) apr Red HiUSnotd 

m,v Clear Lake Snotel 
Oci Headworb, Portland OR 21211 12595 1136 
Nov Headworb, Portland OR 7454 4247 
Dee Headworb. Portland OR 

Jan Headworks, Pordand O.R 3226 

t 
Feb Headworb, Portland OR 

Mar H...;work,, Porll.,-,d OR 

Anr Headworks, ,Pm,tt..nd OR 

May H1tadworb, Portland OR 

15 Jun HffdwQl'b, Portland OR 2206 • 0d Ccwmment C:amo, OR 4919 § 
Nov Ccvemment Cunp, OR 

~ Dee Government Caron, OR 

f Jan ~vertUMnt Camp, OX 2462 
:I! Feb Covemment Camo, OR 

Mar Government Camn, 08 

All< Govcmmmt Camp, OR 

Mav Government Came, OR 

J1>1 GoV'-'rnmatlCamp, OR 

SOI iun-sep SOI 

lnterceot 748702 626931 556145 438009 358023 285871 203709 128212 59233 

Table A2: Variables used in the 10 warm PDO forecast equations. Dependent 
variables are in the far left column and the location of the variables is located 
in the column headings. 
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Variable Period Descnotion Oct- Seo Nov - Seo Dec- Seo Jan- Seo Feb-Seo Mar- Seo Aor- Seo Mav-Seo Jun• Seo Jul• Seo 
ian Clear Lake Snotel 6851 

I 
feb QQrl,abSnotd 

fe!, RedHmSnolitl 1603 
mar aactama, LIU Snotel 3174 

w ma, Clear Lake Snotd 

! ma. &.dl--fillSN>tvl 1281 
apr Oacbmu lakeSnotel 

~ . .,, Out'LaM'Snohd 

"' apr JwdHiUSnot..-1 1964 
may Cleat Lake Snotel 5275 3193 780 
Oct Headwotks, Portland OR 

Nov Headworb, Poriiand OR 

Doe Hadwotb, P~ OR 

Jan Headwotb, Por&»d OR 

i Feb Hc,adworb, Pvrtland OR 3179 
'Ma, Headworb, Portland OR 

! ADJ He&dworks, Portland OR 

Mav Headwmb Portland OR 
0 Jun Hffdwoth Portfarid OR 
I Oct ~Camn,OR 

I Nov GoY<tmnm'\t Camp, OR 13712 10877 7183 
> Doc Go\·emment C'.111mo, OR 

f JM Covemnwnt Camn, OR 

Feb Government Ufflp, OR 

Mar G.wmunent Camr>, OR 10132 9562 5787 1869 - G.wemmmt Camo. OR 

Mav Ccr.,emment Cami'.!, OR 

Jun Government Camp, OR 

SOI iun--seo SOI 100132 98334 75221 52249 33077 ,,.._ 1055376 1008045 750961 588995 485528 363359 208556 132376 75646 55424 

Table A3: Variables used in the 10 cool PDO forecast equations. Dependent 
variables are in the far left column and the location of the variables is located 
in the column headings. 
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