
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1998

Static Compaction of Test Sequences for Static Compaction of Test Sequences for

Synchronous Sequential Circuits Synchronous Sequential Circuits

Lijie Qi
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Qi, Lijie, "Static Compaction of Test Sequences for Synchronous Sequential Circuits" (1998). Dissertations
and Theses. Paper 6496.
https://doi.org/10.15760/etd.3632

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6496&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6496&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6496
https://doi.org/10.15760/etd.3632
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Lijie Qi for the Master of Science in Electrical and

Computer Engineering were presented August 13, 1998, and accepted by the thesis

committee and the department.

COMMITTEE APPROVALS:
ska-Jeske, Chair

D

Pavel Smejtek

DEPARTMENT APPROVAL:

R

Rolf Schaumann, Chair
Department of Electrical and Computer Engineering

ABSTRACT

An abstract of the thesis of Lijie Qi for the Master of Science in Electrical and

Computer Engineering presented August 13, 1998.

Title: Static Compaction of Test Sequences for Synchronous Sequential Circuits

Today, VLSI df'sign has progressed to a stage where it needs to incorporate

nwthods of testing circuits. The Automatic Test Pattern Generation (ATPG) is

a very attractive method and feasible on almost any combinational and sequential

circuit.

Currently available automatic test pattern generators (ATPGs) generate test

sets that may be excessively long. Because a cost of testing depends on the test

length. compaction techniques have been used to reduce that length. The motiva­

tion for studying test compaction is twofold. Firstly, by reducing the test sequence

length. the memory requirements during the test application and the test applica­

tion time are reduced. Secondly, the extent of test compaction possible for deter­

ministic test sequences indicates that test pattern generators spend a significant

amount of time generating test vectors that are not necessary. The compacted test

sequences provide a target for more efficient deterministic test generators. Two

types of compaction techniques exist: dynamic and static. The dynamic test se­

quence compaction performs compaction concurrently with the test generation pro­

cess and often requires modification of the test generator. The static test sequence

compaction is done in a post-processing step to the test generation and is indepen­

dent of the test generation algorithm and process.

In the thesis, a new idea for static compaction of test sequences for synchronous

sequential circuits has been proposed. Our new method - SUSEM (Set Up Sequence

Elimination Method) uses the circuit state information to eliminate some setup se­

quences for the target faults and consequently reduce the test sequence length. The

technique has been used for the test sequences generated by HITEC test generator.

2

ISCAS89 benchmark circuits were used in our experiments, for some circuits which

have a large number of target faults and relatively small number of flip-flops, the

very significant compactions have been obtained. The more important is that this

method can be used to improve the test generation procedure unlike most static

compaction methods which blindly or randomly remove parts of test vectors and

cannot be used to improve the test generators.

STATIC COJ\,1PACTION OF TEST SEQUENCES FOR SYNCHRONOUS
SEQUENTIAL CIRCUITS

by

LIJIE QI

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
lil

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1998

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Malgorzata Chrzanwska-Jeske, who pa­

tiently guided and encouraged me through this thesis. I also would like to thank Dr.

Douglas V. Hall and Dr. Pavel Smejtek for their valuable comments, suggestions

on my thesis and their willingness to be in my thesis committee. I am grateful for

the support provided by Laura Riddell and Shirley Clark throughout ·my studies at

Portland State University.

Finally, I would like to thank my husband, Yanzhen Cui, for his unfailing en­

couragement and support for my studies, and especially, for his helping proofread

my draft thesis.

LIST OF TABLES

LIST OF FIGURES

1 Introduction

CONTENTS

11

IV

V

1

2 TEST GENERATION AND FAULT SIMULATION FOR SEQUEN-
TIAL CIRCUITS 3
2.1 Basic Terminology 3
2.2 Sequential Circuit Test Generation 4

2.2.1 Combinational Circuits . 4
2.2.2 Sequential Circuits ,5

2.3 Fault Simulation ,

3 TEST SEQUENCE COMPACTION 9
3.1 Purpose of Compaction 9
3.2 Static Compaction Methods 9

3.2.1 Niermann and Patel's Method 10
3.2.2 Pomeranz and Reddy's Method 14
3.2.3 Hsiao and Patel's Method . . . 19

4 SUSEM TEST SEQUENCE COMPACTION METHOD 24
4.1 Terminology 24
4.2 SUSEM Compaction Method 25

5 IMPLEMENTATION OF SUSEM 29
5.1 Introduction 29
5.2 HITEC - the Test Sequence Generator 31

5.2.1 Introduction to HITEC 31
5.2.2 Target Faults and Test Vectors 31

5.3 The Preprocessor 35
5.4 :Modification to HOPE 42

5.4.1 Introduction to HOPE . . 42
5.4.2 Circuit State Information 43

.5.,5 Implementation of the Compaction Algorithm 45

5.5.1
5.5.2

Compaction Algorithm
Implementation ..

6 COMPACTION RESULTS
6.1 Compaction Results

6.1.1 Comparison with Other Three Methods .
6.1.2 Comparison with Niermann's Method
6.1.3 Comparison with Pomeranz's Method
6.1.4 Comparison with Hsiao's Method .

6.2 Some Comments for Three Comparisons
6.3 Possible Improvements

7 CONCLUSIONS
7 .1 Conclusions .
7.2 Future Research .

REFERENCES

APPENDICES

A Pomeranz and Reddy's Definitions and Notations

B Hsiao and Patel's Definitions and Notations

C Workstation Specifications

111

45
46

51
51
56
56
57
58
58
58

60
60
61

63

65

66

67

68

IV

LIST OF TABLES

3.1 Two Incompatible Sequences 12
3.2 Sl2: Compacted Test for OUTl s-a-0 and OUT s-a-0 13
3.3 A Test Sequence of s27 15
3.4 Detected Faults and Detection Times 15
3.5 The Test Sequence After an Insertion Operation . . . 16
3.6 Detected Faults and Detection Times for the Modified Sequence 16
3.7 Test Sequence 2 of s27 18
3.8 Test Subsequences from Test Sequence 2 of s27 . 18
3.9 Test Subsequences for the Remaining Faults . . 19
3.10 Vectors and States Traversed by HITEC 20
3.11 Test Sequence with State-Recurrence Subsequences 22

5.1 s27 Benchmark Circuit State Information and Excitation States 50

6.1 Benchmark Circuit Statistics 52
6.2 Benchmark Circuit Target Fault Statistics 53
6.3 SUSEl\1 Compaction Results 54
6.4 Different HITEC Limits 54
6.5 Compaction Results for s832 in the Different Conditions 55
6.6 Comparison of Simulation Time Before and After Compaction 56
6.7 The Comparison between SUSEM and Niermann's Method 57
6.8 The Comparison between SUSEM and Pomeranz's Method 57
6.9 The Comparison between SUSEM and Hsiao's Method 58
6.10 The Comparison of Compaction Results for s1488 59

LIST OF FIGURES

2.1 Sequential circuit model and iterative array model .

3.1 Compaction with a simple alignment ...
3.2 Compaction with a complete skew method
3.3 Compaction with partial skew method
3.4 Compaction with a stretch method
3.5 Recurrence subsequence removal

4.1 Principle of the SUSE:M compaction in the PPI vector space repre-

V

6

11
12
13
14
23

sentation . 27
4.2 Principle of the SUS EM compaction in the PI vector space represen-

tation 28

5.1 Flowchart of compaction system . . 30
5.2 Flowchart of HITEC 33
5.3 Benchmark circuit s27 (s27.bench) 34
5.4 A net name to a net number translation for s27 (s27.name) 36
5.,5 Levelized circuit description for s27 (s27.lev) 37
,5.6 Fault list for s27 (s27.fault) 38
,5.7 Equivalent fault file for s27 (s27.eqf) 39
,5.8 The result collected from running HITEC for s27 (s27.genera) 40
5.9 Flowchart of the preprocessor 41
5.10 The test file for the modified HOPE for s27 circuit. 48
5.11 The target fault file for the PROOFS for s27 circuit 49
5.12 The target fault file for the modified HOPE for s27 circuit 49

1

CHAPTER 1

Introduction

Today the VLSI design has progressed to a stage where needs to incorporate

met hods of testing circuits. The very attractive algorithmic testing method)\u­

tomatic Test Pattern Generation (ATPG) is feasible on almost any combinational

circuit and sequential sequential circuit.

ATPG can be used not only with Single-Stuck-Faults(SSFs) but also other fault

models like bridge fault model etc. In this thesis we only consider ATPG for

circuits with SSFs. Although ATPG can be used widely in combinational circuits

and sequential circuits, because of the fixed memory size of testers, the application

of a test set larger than the tester memory size requires reloading of the memory.

which is an expensive process. Excessive test lengths have been reported to be

a major problem for the sequential automatic test pattern generators (ATPGs)

[l]. Shorter tests sets are desirable in reducing test application time, which is an

important consideration, since it directly impacts the testing cost. If shorter test

vectors for a given fault coverage can be used, more chips can be tested in a given

time period, and fewer testers are needed. It is the primary reason that people do a

lot of research on test set compaction [1, 2, 3, 4]. There are two kinds of compaction

techniques. The first one is a static compaction which is a post-processing operation

independent of test generation procedure. The second one is a dynamic compaction

which is performed concurrently with the test generation process and often requires

a modification of the test generator.

In this thesis, we concentrate on the static compaction. This thesis presents

a nP\\' static compaction method for the synchronous sequential test sequences.

The method is called Sl:SEM (Setl1p Sequence Elimination l\'1ethod), and is based

2

on the following observation. Current ATPGs, such as HITEC [5], generate self­

initializing sequences for each target fault, the self-initializing test sequence is com­

posed of two parts: the setup or justification sequence and the fault excitation and

propagation sequence. When a good circuit state at the fault detection time frame

for currently detected target fault and a fault-excitation state for a fault circuit

for one or more not yet detected faults are the same, we do not need to generate

a setup sequence to detect such fault because the circuit is already in the fault­

excitation state. \Ve have only to use the propagation sequence and eliminate the

setup sequence. Though we studied that this kind of compaction depends strongly

on ho\\' many flip-flops and target faults are in the circuit.

In this thesis. we used our method to compact the test sequences generated by

HITEC test generator for a number of l\lCNC benchmark circuits. We modified

the HOPE [6. 7. 8] fault simulator and used it for implementing the compaction

algorithm.

This thesis is divided into six chapters. Chapter 2 gives the background in­

formation on sequential circuit test generation and fault simulation. Chapter 3

describes test sequence compaction methods. Our ne\v test sequence compaction

method. Concatenation compaction. is presented in Chapter4. Chapter 5 covers

the implementation aspects of the concatenation compaction. Chapter 6 gives the

compaction results. Chapter 7 provides some concluding remarks.

CHAPTER 2

TEST GENERATION AND FAULT

SIMULATION FOR SEQUENTIAL CIRCUITS

2 .1 Basic Terminology

l. Combi11alional circuit:

3

A digital circuit which has th€' property that at any point in time, the output of

thP circuit is related directly to its input signals by some Boolean expression (her€'

igllorillg the short propagatio11 delay of the composing gates) is called a combina­

tional circuit. '.\o int€'ntional connection b€'twe€'n outputs and inputs is pres€'nt.

2. Sequential circuit:

A digital circuit where the outputs are not only a function of the current input

data. but also of th<' previous values of the input signals is called a sequential circuil.

:3. Synchronous circuit:

A circuit in which all changes in its flip-flop state are related to a change in a

clock signal (or a number of clock signals) is called a synchronous cirrnit.

4. Targd faults and accidental ddected faults:

An ATPG selects one fault at a time from the given fault list and attempts to

generate a test for it, this fault is called a target fault. The test for a target fault may

also detect some other non-targeted faults by performing a fault simulation after

generating the test for the target fault, those non-target faults are called accidrntal

dffectrd faults.

:). Tu,t .stqurnn:

:\ fu;t srqurnc(is a sPries of test vectors applied to a sequential circuit rn a

spPcifk order to detect a target fault.

6. hwd line:

4

\\'hen a signal line L is reachable from some fan-out point, that is, there exists

a path from some fan-out point to L, we say that L is bound. A signal line which

is not bound is said to be free. \Vhen a free line L is adjacent to some bound line,

line L is called a hwd lint.

2.2 Sequential Circuit Test Generation

The test generation problem for combinational circuits belongs to the class of

.\P complete problems [22]. In theory. test generation for sequential circuits also

belongs to the class of KP-complete problems [22], but is more complex in practice

because of the addition of the time frame dimension.

2.2.1 Co111binational Circuits

Test generation for combinational circuits is a subproblem of sequential circuit

test generation. A sequential circuit test generator needs a very efficient combina­

tional test generator embedded into the program. If the test generator is inefficient

011 combinational circuits, then the flaws in it will be magnified vvhen a sequential

circuit is attempted. So understanding the test generation of combinational circuits

is very helpful in studying the sequential circuit test generation.

The first complete and deterministic automatic test generation algorithm for

combinational circuits ·was the D-algorithm (DALG) [9], which is a branch-and­

bound algorithm on the values assigned to individual lines in the circuit. The D­

algorit hm has been shown to be inefficient on circuits with error correcting modules

a1Jd circuits with a large number of XOR gates.

The PODEl\1 [1 O] algorithm solved the problem faced by the D-algorithm for

ciffuits with a large number of XOR gates. PODEM is an implicit enumeration.

lmrnch-and-hound algorithm on th<" primary inputs. not 011 internal line values

a-; the D-algorithm. By only searching the space of primary input assignnwnts.

5

PODE~I ,vas able to successfully generate tests for circuits with a large number of

XOR gates. One other benefit of the PODEM algorithm is that it requires much

less memory to store the decision stack than the D-algorithm.

One extension to the PODEM algorithm was the Fan algorithm [11], which

made use of dominators to determine mandatory assignments to internal lines of a

circuit. These mandatory assignments narrowed the search space of PODEM and

allowed earlier identification of conflict conditions in the search. The Fan algorithm

also introduced the concept of a head line to make the circuit appear smaller to the

test generator. The Tops algorithm [12] extended the definition of a head line to

push tlw head lines further into the circuit, thus yielding a smaller search space.

The Socrates algorithm [13] extended Fan by incorporating a learning strategy

to determine a greater number of the mandatory assignments needed for a given

objective. By increasing the number of mandatory assignments. conflict conditions

were identified earlier. thus unnecessary decisions were avoided.

Tlw major drawback to using combinational circuit test generation for sequential

circuits is that it requires a sequential circuit to use a full-scan design methodology.

Full-scan circuitry typically adds a 1,5-307c area overhead to a circuit. thus adding

extra cost. One other drawback to full-scan techniques is that there is a performance

degradation due to using a scan design. Lastly. a scan test cannot detect as many

failur<'s in a circuit as a functional test given the same stuck-at fault coverage.

because scan vectors are scanned in and the results scanned out, rather than applied

at the primary inputs. Because functional vectors are applied at speed, they detect

many more timing failures.

2.2.2 Sequential Circuits

As it is known. most sequential test generators conceptually transform a syn­

chronous sequential circuit into an equivalent iterative logic array model. Then

methods of test generation for combinational circuits are modified to generate tests

for S('(Jllential circuits using the iterative logic array (ILA) model. Figure 2.1 (a)

sho\\'s the model for a seqtt<'ntial circuit.

Pll

Sl

POI

mary'----Pri

In puts/

'--...
/

Combinational

Logic

Flip- /

Flops "-

(a) Sequential circuit model

Pl2

--.....::.

/0

Primary

utputs

Pin

T1
S2

T2
S3 ..----o O 0 Tn

P02 POn

(b) Iterative array model

Figure 2.1: Sequential circuit model and iterative array model

6

In this diagram the next state is fed back to the present state through flip-flops.

Inputs to D-flip-flops are called pseudo primary outputs (PPO). Outputs from

D-flip-flops are called pseudo primary inputs (PP!). Figure 2.1 (b) rolls out the

sPquential circuit to form the iterative array model for the circuit. The flip-flops are

replaced by straight wires and multiples copies of the circuit are used to represent

tlw state of the circuit at the different points in time. The inputs P fl, P 12 ...

form the sequence of vectors needed to detect a target fault. There are two main

techniques to generate tests using the iterative array model. The first approach is to

procred backwards through time for fault propagation and state justification. thus

7

using only reverse time processing [14], etc. The second approach is to use forward

time processing for line justification and fault propagation followed by reverse time

processing for state justification [15, 5], etc.

Aside from deterministic test generation techniques for sequential circuits, a

simulation based test generation [16] was explored as an alternative to the deter­

ministic test generation. Usually, simulation-based test generation methods use a

cost function to determine the quality of randomly generated test vectors. By using

only vectors that give the best quality measure, tests can be generated without ex­

pensive branch-and-bound techniques. Unfortunately, this algorithm cannot prove

that a fault is untestable. therefore this techniques is not complete.

2.3 Fault Simulation

Fault simulation techniques are used extensively in the design of electronic cir­

cuits for both testing and fault diagnosis. Fault simulators are used to determine

which faults are detected by a test sequence. This information not only grades the

quality of the test sequence but also speeds up the test generation process. After a

test sequence is generated for one target fault by a time-consuming test generator,

a fault simulator is usually used for finding other faults that are also detected. In

this manner, the number of faults which need to be targeted by a test generator

can be dramatically reduced.

Fault simulators are also used to find test vectors by guiding search methods.

In addition, fault simulators are used for generating fault dictionaries for diagnosis

and for computing aliases in signature analysis; in both cases all faults must be

simulated for the entire test sequence. These two applications requires a very fast

fault simulator with a very efficient memory.

There are several fault simulation approaches like parallel, concurrent, and the

differential fault simulation algorithm. PROOFS [17] combines all the above ap­

proaches.

In fault simulation, each test pattern is run with the good machine as well as

8

with every faulty machine. The good machine is the fault-free circuit description

and a faulty machine is the circuit with one line fixed at a logic 1 (a stuck-at 1

fault) or at a logic O (a stuck-at O fault) (here the single stuck-at fault model has

been used). If the output responses of any one faulty machine differ from the good

machine, the corresponding fault is said to have been detected.

9

CHAPTER 3

TEST SEQUENCE COMPACTION

3.1 Purpose of Compaction

Compaction of the test sequences for synchronous sequential circuits has been

attracting considerable attention [L 2, 3]. This is primarily because the test­

sequencP compaction can reduce the length of a test sequence, so that both the

mPmory requirements during test application and the test application time can be

rPduced. ~lore importantly, the compacted test sPquences can provide a target for

clen:loping more efficient deterministic test generators.

There are two types of compaction techniques: dynamic and static. Dynamic

compaction is performed concurrently with the test generation process, and as a

result. it often requires that the test generator be modified. Static compaction is

done as a post-processing step and thus it is independent of the test generation

algorithm and process.

In this thesis, we are going to focus our attention on the static test compaction

technique.

3.2 Static Compaction Methods

Three most well known static methods for the test-sequence compaction are

briefly described here.

3.2.1 Nier111an11 and Patel's Method

Niermann and Patel [l] reduced the test sequences, which are compatible1 using

simple alignment, skew, and stretch compaction methods.

Compatibility with Simple Alignment

Two tf'st vectors T1 and 12 are compatible (or compactable) if the following two

conditions are used:

1. each primary input (PI) in the circuit is assigned to the same logic value (O

or 1) in both T1 and T2.

2. it is a don't care (X) in at least one of T1 or 12.
Let S'i and 82 be t'wo sequences with lengths L(Si) and L(S2), respectively,

resulting in a total test length of L(S1) + L(S2) before compaction. Let us consider

th<· sequences to be aligned from the top (see Figure 3.1) and the comparison to

he performed between the i-th vector of the first sequence and the i-th vector of

the second for i = 1. to the smaller length of two sequences. If the vectors are

compatible for all i. then the two sequences are compatible and can be merged to

Sf'(fllf'nce 53 with the test length L(S1), resulting in a reduction in the test length

of L(S'2).

Compatibility with Skew

Although two sequences may not be completely compatible when the start of

two sequences occurs at the same time, they may be compatible if the start of one

of sequences is skewed from the start of the other sequence. Let Sb: EH' denote

the difft>rence in the times of the starts of S1 and S2 and let L(Si) ~ L(S2). The

ways that S 2 can be skewed from the start of S1 can be categorized into three

groups. The first group is the case in which S'i starts first and ends last as shown

in Figure 3.2. In this case, 52 is completely compatible with S1 and reduction in

th<· test length is L(S2). In the next group, S2 starts before S1 with a negative

ske,,· as shown in Figure 3.:3 (a). In this case, 82 is only partially compatible with

11

Sl S2 S3

L(Sl) L(S1)

Test length reduction - L{S2)

Figure ~1.l: Compaction with a simple alignment

S'i and the reduction in test length for compacted sequence 5 3 is L(52) + SA. EW.

In the last group. 82 ends after S'i and has a positive value of Sh. EH greater

than L(5 1) - L(5 2). as shown in Figure 3.3 (b). In this case, 51 is on!:,· partially

compatible with 5 1 and the reduction in test length for compacted sequence 5 3 is

l(S'i) S'fl'EH'.

Compatibility with Stretch

Some circuits have multiple clocks that are directly and independently control­

lable, i.e., clock lines are not fed by a free-running oscillator as in the ISCAS89

benchmark circuits [18] or they are not required to maintain an interrelated pre­

specified pattern, for example, a two-phase non-overlapping clock. In circuits with

directly controllable clocks, the clock inputs are just like other primary inputs. so

another type of compatibility is introduced. This compatibility is based on the

observation that if a vector is repeated several times without changing the order

of other vectors. detectability of the target fault remains unchanged. For example.

given that the first input is clock. a sequence OXOl, lXOl, 01 lX can be replaced

by OXOl. lXOl. lXOl. OllX (i.e.~ repeat the second pattern) without affecting the

L(Sl)

SI

I i\
\ V

S2
-

SKEW

SKEW =O 10 L(S I)-L(S2)

Reduction - L(S2)

L(Sl)

Figure 3.2: Compaction with a complete skew method

12

S3

detectability of the target fault. They call the operation stretching. since the effect

of repeating a pattern is that of stretching the clock. Figure 3.4 illustrates the

application of stretching for test compaction. The test sequences for faults OCTl

s-a-0 and OCT2 s-a-0 are given below (Table 3.1):

Table 3.1: T\".;o Incompatible Sequences

Sl: Test for Ol1 Tl s-a-0 S2: Test for OUT2, s-a-0

C'l 0 1 0 1 0 1 Cl X X X X X X X X

C2 X X X X X X C2 0 1 0 1 0 1 0 1

I:\' 0 0 1 1 0 0 IN 0 0 1 1 1 1 0 0

These two sequences are incompatible according to aligned or skewed compati­

bility. However, if we stretch the fourth vector of the smaller sequence Sl for two

more time frames, then the sequences become compatible, and can be compacted

into the following sequence (Table 3.2):

S1

SKEW -1

SKEW<O

Reduction= L(S2) - SKEW
(a)

S2

⇒ 1-------1

S1 S2

7fs.

SKEW

'/

SKEW> L(S 1 J-L(S2)

Reduction - L(S l) - SKEW
(b)

Figure :3.3: Compaction with partial skew method

Table 3.2: S12: Compacted Test for Ol"Tl s-a-0 and OCT s-a-0

Cl 0 1 0 1 1 1 0 1

C2 0 1 0 1 0 1 0 1

II\ 0 0 1 1 1 1 0 0

Comments

13

For compatibility with the simple alignment, the shorter sequence must be gen­

erated earlier than the longer sequence, otherwise it will be detected by the longer

one. From this point of view, it may suggest to first target faults which are harder

to df'tect.

For compatibility with the complete skew, the shorter sequence also must be

generated earlier than the longer sequence, otherwise it will be detected by the

long<"r one. It may suggest the same conclusion as for the compaction method with

the simple alignment.

For their method, they cannot compact two test sequences if these two sequences

are not cornpatih!P with the simple alignment nor skew nor stretch.

14

OUTl
I '-----r------j

Cl

OUT2

C2

Figure 3.4: Compaction with a stretch method

3.2.2 Pon1eranz and Reddy's Method

Pomeranz and Reddy [2] used insertion, omission and selection operations to

compact test sequences.

In order to easier understand their method, we give their definitions and nota­

tions in APPE~DI.X A.

Compaction Based On Insertion Operation

Consider a fault f < FdEt with detection time udet(f). Let llj and llk be two

time units such that Uj < llk :S lldff(J). and such that Sj/ sf = Sk/ st (i.e., SJ = sk
and sf = S[). Since sj;sf = Sk/S{, T[uj,Uk-il only serves to take the fault­

free/faulty circuits back to their states at time Uj, and T detects f even if we

omit T[Uy, uk-il from T, to obtain the sequence T[u0 , Uj-il o T[11k, llL-il (o stands

for concatenation of subsequences). Under the proposed operation, they define a

new test sequence where faultf is detected earlier, as follows. The subsequence

T[uk. lldfl(f)] is duplicated and inserted at time Uj, As a result, the detection time

of f is reduced from UdctU) to UdetU) - (uk - Uj). The remaining part of the

sequence. T[11j, uL-iJ, is pushed to the right. The new test sequence is

1.5

They call this operation the insertion operation. The insertion operation in­

creases the total length of the test sequence, however, it allows to reduce its effective

length by reducing the highest detection times. The shorter sequence T[uo, uL,ff-il

is then used instead of T.

The following is an example which they used to explain the insertion operation.

The test sequence of ISCAS89 benchmark circuit s27 is shown in Table 3.3.

Table ~1.3: A Test Sequence of s27

I 0 1 2 3 4 5 6 7 8 9

ti 0011 1101 0011 0011 1110 0011 1011 0001 0011 0110

I 10 11 12 13 14 15 16 17 18 19

ti 0011 1011 0010 0100 0111 1110 0101 1000 0000 0110

The detected faults and their detection times are shown in Table 3.4.

TablP 3.4: Detected Faults and Detection Times

l f : lldetU) Hi

1 2/0, 9/1, 14/1, 18/1, 20/0, 21/L 26/0

;3 3/0. 4/0. 8/0. 9/0, 11/0, 12/0, 15/1, 21 /0, 25/1. 26/ 1

4 8/1, 13/1

5 .5/0, 25/0

I 22/0

9 14/0, 16/0, 17 /0, 24/0

19 6/1, 24/1

The whole test sequence can detect totally 28 faults. Simulating the fault 6/1.

they found that the combined fault-free/faulty states are identical at time frames

17 and 19. The fault is detected at time frame 19. The insertion operation inserts

T[l9] (0110) at time frame 17, pushing T[l 7, 19] by one time unit to the right.

Tlw resulting tPst sPquence is shown in Table 3.5.

16

Table 3.5: The Test Sequence After an Insertion Operation

I 0 1 2 3 4 5 6 7 8 9

ti 0011 1101 0011 0011 1110 0011 1011 0001 0011 0110

I 10 11 12 13 14 15 16 17 18 19 20

ti 0011 1011 0010 0100 0111 1110 0101 0110 1000 0000 0110

This change affects faults 6/1 and 24/1, with detection time frame 19. The

detection times for the modified sequence are shown in Table 3.6.

Table 3.6: Detected Faults and Detection Times for the Modified Sequence

I f : Udet(f) = U;

l 2/0, 9/1, 14/1, 18/1, 20/0, 21/1. 26/0

;3 3/0, 4/0, 8/0, 9/0, 11/0, 12/0, 1.5/1, 21/0, 25/1. 26/1

4 8/1. 1:3/1

5 5/0, 2.5/0

I 22/0

9 14/0. 16/0. 17 /0, 24/0

17 6/1, 24/1

18 19/1

:\"ow faults 6/1 and 24/1 that previously had detection time frame 19 are de­

tected at time frame 17. In addition, fault 19/1 that not detected before is detected

at time frame 18 after the insertion operation. The result of the insertion operation

is thus to reduce the effective test length by one and to increase the number of

detected faults by one.

Compaction Based On Vector Omission

The compaction method described in this section is based on omission of test

Vf'Ctors from the given sequence.

The omission of a vector t; affects the detection of the faults {J} for which

u,1e 1(.f) ~ Hi· In addition, it may cause a fault, which is undetected \\'hen f; is

17

included in the test sequence, to be detected after ti is omitted. These effects are

detected by a fault simulator, which is run after each omission step.

They consider the test vectors for omission in the order in which they appear

in the test sequence. For i = 0, 1, ... , L - 1. They omit ti and recompute the fault

coverage by simulating only the faults with udetU) ~ Ui and the undetected faults.

If the fault coverage after omission is not lower than the fault coverage before

omission, they accept the change. Otherwise, they restore ti. They also observed

that when the sequence to be compacted is long, there is a large number of input

vectors at the beginning of the sequence that can be omitted without reducing

the fault coverage. In addition, there are long subsequences of consecutive vectors

starting at arbitrary time units in the test sequence that can be omitted. To

take advantage of the existence of such subsequences and reduce the number of

simulations performed, they use binary search. Binary search is initiated starting

from a vector t; that can be omitted. Initially, the lower and upper bounds of the

range to be omitted are set to LB= i and U B = L l, respectively. They first set

MID (LB+l'B)/2, omit the test vectors from t; tof;~1ID, and fault simulate the

test sequence. If the fault coverage is reduced, they set U B =MID 1; otherwise

they set LB MID+ 1. The binary search terminates with the test vector t1 such

that t,. fi+I• tj can be omitted. The advantage of binary search is that instead

of performing j - i + I simulations to omit t;, t;+i, ... , tj, only [log2 (j - i + 1)]

simulations are required.

Compaction Based On Vector Selection

For every fault from the given sequence the method first collects all the sub­

sequences that detect the fault if the circuit starts from the all-unspecified state

at the beginning of the subsequence. A subsequence is represented by a pair (s,e),

such that the subsequence T[us, ue] detects the fault if the circuit is started from

the combined all-unspecified fault-free/faulty initial state at time u 5 • After collect­

ing all the subsequences that detect every fault, they use a covering procedure to

select a minimal subset of subsequences to detect all faults.

18

Here, we use their example to explain the vector selection operation. First,

consider the s27 under the test sequence shown in Table 3. 7

Table 3.7: Test Sequence 2 of s27

I 0 I 2 3 4 5 6 7

ti 1101 lOll 0100 0111 0001 0100 ll00 1111

I 8 9 10 11 12 13 14

t
'

0101 0011 0011 0101 1101 1110 0100

After considering every time unit as a starting point and finding detection times

for all the faults. they obtained the subsequences shown in Table 3.8.

Table 3.8: Subsequences from Test Sequence 2 of s27

fault (cl) subsequences fault (c2) subsequences

2/0 (0,3),(7,9),(10,12) 15/0 (7,9)

3/0 (0,4),(7,10) 1.5/1 (0,4),(7 .10)

4/0 (1.4),(7,10) 16/0 (3,,5)

6/1 (0,:3),(7,9) 17/0 (3,5),(9,11)

7/0 (7,9) 18/1 (0,3),(7 ,9),(11,12)

8/0 (3.4),(8,10),(9,11) 20/0 (0,3),(5,6),(7,9),(11 J 2)

8/1 (3,6),(9,12) 21/0 (3,4),(9,10)

9/0 (1.4),(7,10) 21/1 (0,0 U 6,6),(7, 7),(12,12).(13, 1 :3)

9/1 (0.3).(7,9),(11,12) 24/0 (3,.S).(9,11)

11/0 (1,4),(7,10) 24/1 (0,3),(7,9)

12/0 (0,4),(7,10) 25/1 (3,4),(9,10)

13/1 (3,6),(9,12) 26/0 (0,0),(6,6),(7, 7),(12,12),(13, 13)

14/0 (3,-5),(9,11) 26/1 (3,4),(9,10)

14/1 (0,3),(5,6),(7,9),(11,12)

From Table 3.8, they selected a subset of subsequences to detect all faults. The

snbsequence (7,9) is necessary to detect 7 /0 and 15/0. The subsequence (3.5) is

ll('C<'ssary to detect fault 16/0. \iVhen those two subsequences are selected. they can

19

detect other faults including faults 2/0, 6/1, 8/0, 9/1, and so on. The subsequences

for the remaining faults are shown in Table 3.9.

Table 3.9: Test Subsequences for the Remaining Faults

fault (cl) subsequences fault (c2) subsequences

3/0 (0,4),(7)0) 11/0 (1,4M7,10)

4/0 (1,4),(7,10) 12/0 (0,4),(7,10)

8/1 (3,6),(9,12) 13/1 (3,6),(9,12)

9/0 (1.4).(7.10) 15/1 (OA).(7,10)

lu Table 3.9, they finally selected the subsequence (9.12), so the new sequence is

T[u 3• u5] o T[u,, ui2] which detect all of the above faults, the test length is reduced

from 15 to 9.

Comments

For the omission operation. they need to eliminate some test vectors, without

considering why the test generator generates those test vectors. To reduce sim­

ulation time. a binary search method was used to choose vvhich subsequence of

adjacent test vectors to delete, but it is still random or blind. From their results,

it shows that the omission operation gave the best results. It also shows that there

are a lot of subsequences which can be removed from the test sequence without

reducing the fault coverage. Until now this method gives the best rnmpaction of

test sequences.

In order to maintain the fault coverage, their three methods all use multiple

fault simulations which take a lot of CPU time. It is also hard to use those ideas

to improve the deterministic test generators.

3.2.3 Hsiao and Patel's Method

Hsiao and Patel's method ['.3] used an inert subsequence removal and a recurrence

suhs<'quence remoYal or a combination of these t1v\'O methods.

20

Their approach to test compaction is based on the observation that test se­

que11ces traverse through a small set of states, and some states are frequently re­

visited. Table 3.10 shows the number of vectors and states traversed by HITEC

[5].

Table 3.10: Vectors and States Traversed by HITEC

Columnl Column2

Circuit Vee States Circuit Vee States

s298 292 137 s~32 1136 24

s344 127 113 s1196 43-5 294

s382 2074 646 s1238 475 332

s400 2214 690 s1423 150 150

s444 2240 592 s1488 1170 47

s-526 2258 62Fj s1494 1245 47

s641 209 103 s5378 912 912

s713 173 85 s359:32 496 381

s820 1114 24

It is clear that many subsequences that start and end on the same states exist

within most test sets. As they reported, test sets generated by other test generators

also exhibit similar phenomena. The subsequences that start and end on the same

state may be removed from the test set if necessary and sufficient conditions are

nwt.

\\'e listed the several definitions they gave in the paper in APPENDIX B.

Inert Subsequence Removal

An inert subsequence may be removed if any one of the following four criteria

are met.

Criterion 1: For an inert subsequence Tinert['l'i, ... , Vj], if faulty state sr1 at the

end of time frame i - 1 and faulty state S1 at the end of time frame j are identical

for ewry undetected fault f \'vhich is activated at time frames i - 1 and j. T;11,,,·1

ran lw remo,·ed.

21

Criterion 2: For an inert subsequence Tinert[v;, ... , Vj], if error vector E1 at the

encl of time frame j covers Et 1 at the end of time frame i - 1 for every activated

fault f, and the additional fault-effects propagated at time frame j do not lead to

detection, Tinert can be removed.

Criterion 3: For an inert subsequence Tinert[vi, ... , Vj], if error vector Et 1 at the

end of time fram<" i - 1 covers E1 at the end of time frame j for every activated

fault f, Tinfft can be removed if the additional fault-effects propagated at time

frame i - l do not cause fault-masking in time frame j + 1.

Criterion 4: For an inert subsequence Tinert[v;, ... , rJl. if neither error vectors

Et 1 nor E1 covers the other, conditions imposed on activated faults in both criteria

:2 and critPria 3 need to be satisfied in order for the inert subsequence 1imrt to be

l'f'l110Vecl.

Recurrence Subsequence Removal

\!any state-recurrence subsequences exist within the test sets generated by both

deterministic and simulation-based test generators. Deterministic test generators

backtrack until all flip-flops have don't care (X) values for each target fault. Thus,

tbf' initial vectors of each test sequence derived act as synchronizing sequences for

tllf' circuit. Consequently, many of these synchronized states are visited repeatedly

in tllf' test set. In simulation-based test generators, states are repeatedly visited as

well.

In terms of fault detection properties, typically an easy fault in the circuit is

c!f,tectecl multiple times by the test set. This is because an easy fault requires only

a few constraints on the primary inputs and flip-flop state in order for detection.

This observation, together with the fact that many state recurrence subsequences

residP within the test set, suggests the possibility of reducing the test set size even

further by removing state-recurrence subsequences that only detect easy faults. In

order to identify multiple detections by the test set, fault-simulation starting from

the occurrence of t hf' first state-recurrence subsequence without fault dropping is

nPcessary.

22

Table 3.11 gives an example of a test set that has state recurrence sequences

Trec[t'3 ... v9] which takes state B back to Band Trec[v4 ••• v6] which takes state C back

to C. Some faults are detected within each subsequence.

Table 3.11: Test Sequence with State-Recurrence Subsequences

Vector Next State Detected Faults

V1 A fi,J6,h

V2 B fg,!11

V.3 C h
l'4 D hJs
V5 E J5
V6 C

t'7 F J4Js
Vs G hJ5
i~g B ls

Removal of a state-recurrence subsequence is illustrated in Figure 3.5.

111 part (a) of Figure 3 .. 5, all faults detected within the state-recurrence subse­

q1wnn' Tnc1, faults J1 , h, J9 , have additional detection subsequences that do not

oYerlap with I~eel itself, so Trtcl can be safely removed from the test set if the

fault masking criterion at the boundary of of Trec1 for Jg, described in the paper, is

rnf't. After the removal of Trecl, all three faults J1 , h, J9 are still detected by the

compacted test set shown in Figure 3.5 (b).

Inert-subsequence removal followed by recurrence-subsequence removal 1s the

combined approach performed for all the test sets.

Comments

This method is much better than Reddy's in saving the simulation time, because

it does not use multiple simulations. However, in nature it is the same as the

ornission opPration.

f7

fl -,
I I
K]J------C: I

I

Tree!

fl -
Test Set

o: -----.--
fl

I I

><l-------i><

Trec2

f3

(a) Sequence before removal of any state-recurrence subsequence

Compacted Test Set

o: f3
fl -1-----------------1 - -----.---

I I

, Note: , f7

fn
I I I

: is a detection subsequence ' ><l-------i><

' for fault n. Trec2
I

(b) Sequence after removal of first state-recurrence subsequence

Figure 3.5: Recurrence subsequence removal

23

f9

f9

CHAPTER 4

SUSEM TEST SEQUENCE COMPACTION

METHOD

24

In this chapter. we first introduce some terminology, then explain the principle

of our ne\\'ly dew,)oped compaction method called SUSE~I.

4 .1 Terminology

1. Sdup sfq11F11cc

A fault is activated in one time frame (labeled 1) by an input sequence T1 and

an initial state 50 . and the resulting error is propagated to a PO (primary output).

State justification on 50 is performed, i.e .. a path from unkno\\'n or don't care state

(X) or some state such as reset state to 50 is found consisting of another sequence

of input \·ectors. T0 . T0 is called a sdup sequrna or a justification su1urncc

2. Propagation stq1101cc

Tlw input sequence T1 is called a fault propagation sequrna or simply a propa­

gation stqurna.

3. Fault detection time frame:

The resulting error is propagated to a PO (primary output) going for\\'ard 111

time using r ~ 1 frames, the time framer is a fault detection tinu frame .

.:J. Fault ucitation state

We call the initial state 50 a fault ucitation state.

5. Sdf-in it iali::ing sequence

If sorne flip-flop values at time frame 1 are binary, these are justified gorng

hackward in time using p time frames. This process succeeds when the flip-flop

values in the first time frame (labeled -p+ 1) are all X. Such a test sequence is

called a st!f-initializing sequence.

6. Combined fault-free/faulty state at time frame i [2]:

\Ye define the state of the fault free circuit at time frame i and the state of the

faulty circuit at time frame i to form the combined fault-free/faulty state at time

frame i.

7. Singlt ei.:rnt fault:

If the fault-fret> and faulty values of all the PPis (pseudo primary input) are

idt>nt ical at a time frame. the fault is called a single event fault for the time frame.

8. J/ultiph fl'rnf fault:

If there exists at least one PPI whose fault-free and faulty values are different.

the fault is railed a multiple tt•ent fault.

9. Dominator:

:\ gate is a dominator of a line if all paths from that line to any primary output

pass through that gate.

4.2 SUSEM Compaction Method

The method we proposed is based on the observation that for self-initializing

sequences (like sequences generated by HITEC [5]), the test sequence is composed

of two parts (the setup sequence or justification sequence, and the fault excitation

and propagation sequence) for each target fault. For self-initializing sequences. no

test sequenre in the test set depends on the state at which the sequential circuit

arrives due to the application of the previous sequences. Therefore, the set of

test sequences may be applied in any order without affecting the fault rnverage

of target faults. the fault coverage of other faults can however be affected. It

also suggests that the generator which generates self-initializing sequences does not

use any kind of information about which state a circuit reaches at the end of a

single-target-fault test sequence. Such data can however be easily obtained from

26

fault simulations. When the single-target-fault test sequence is run through a fault

simulator, the circuit will go from a don't care state through a fault excitation state

to a fault detection state for the target fault. In the current sequential ATPGs,

the information of the fault detection state for a good circuit and faulty states for

undetected faults are ignored or not used efficiently. But there is a possibility that

a good circuit state at the fault detection time frame for the currently detected

target fault and a fault-excitation state for a faulty circuit for one or more not yet

detected faults are the same. Therefore. to detect such a fault we do not have to

generate a setup sequence as the circuit is already in the fault-excitation state. We

can use the propagation sequence of the previous target fault and eliminate the

set up sequel!ce of the current fault.

To take advantage of this observation. we need to save a good circuit state and

also all undetected faulty circuit states after simulating the test sequence for a given

target fault. If the circuit state for the good/faulty circuit at the detection time

frame is the same as the excitation state of that good/faulty circuit (actually, the

com billed circuit state defined in [2] and given in 4.1), then we can compact the

test sequence by ignoring the setup sequence part. \Ve call our method the SetlTp

Sequence Elimination l\Iethod (SCSEl\1). To improve the test generator. we have to

analyze hmv it would work for the whole test generation procedure. The principle

oft llC' SliSEl\'I is explained in Figure 4.1.

hi Figure 4.L we use the following notations:

.r.r.a.r: represent the circuit state (i.e .. good circuit PPis).

S1.S\.SJ,Sn: represent subsequences for detecting target faults #1, #i, #j and

#n.

L(S'i),L(Si),L(Sj),L(Sn): represent lengths of the subsequences #L#i,#j and

#n. respectively.

LE(S'i), LE(Si), LE(S1), LE(Sn): represent the setup subsequence lengths of

the subsequences #1, #i, #j and #n, respectively.

01111 in S'i: is the excitation state of S1 •

10001 in 81 : is the final state or detection state of 81 for the fault #1.

27

SI Si Sj Sn

0 0 0 0

LE(Sl)
0

LE(Si)
0 0 0

0 0 LE(Sj)
0

LE(Sn)
0

0 0 0 0

01111 0 0 0 0 11001 0 0 0 0 10001 0 0 0 0 00011

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

10001 00011 11001 00100

L(Sl) L(Si) L(Sj) L(Sn)

Figure 4.1: Principle of the SUS EM compaction in the PPI vector space
n'J)l'<~sent at ion

:\s shown in Figure 4.1, there are two parts in every test subsequence for de­

tecting every target fault. The upper part is the setup subsequence (from the first

test vector to the vector before the excitation time frame) and the lower part is the

propagation subsequence. Suppose the good circuit state at the last time frame for

1 subsequence is the same as the good circuit state at the excitation time frame

for #j subsequence. Then. we can remove the setup (or excitation) subsequence of

#j subsequence, concatenate the# 1 subsequence and the propagation subsequence

of #j to form a subsequence ·which will still detect #1 and # j faults but reduce

the test vector length by the length of #j setup subsequence. After compacting the

#1 and #j test sequences, we find that at the end of time frame for subsequence

#j. the good circuit state is the same as the good circuit state at the excitation

time frame for #i subsequence. So we can now remove the setup subsequence of

#i. concatenate the # 1 subsequence, with #j propagation sequence and #i propa­

gatiou sequence to form a subsequence which will still detect #1, #i and #j target

faults. l'sing the same method, we can remove the setup subsequence of #n. so

finally we get a sequence v;ith a length reduced by LE(S;) + LE(S1) + LE(). but

28

it still can detect those four target faults.

We show the principle of SUSEM also in Figure 4.2 for the same virtual circuit.

This figure is expressed in the primary input (PI) vector space instead of the PPI

vector space but with the same notations as those in Figure 4.1, except using Pis

instead of PPis, like Pl 1000110 instead of PPI 10001 in the first test sequence S1•

This virtual circuit has 7 Pis and 5 flip-flops (PPis). In order to have the sequence

S1 and the propagation sequence of Sj concatenated, it requires their PPis to be

the same while their Pis are not necessarily the same. From Figure 4.2, it is obvious

that it reduces the original test sequence length by LE(Si)+LE(Sj)+LE(Sn) using

our SUSEI'v1 compaction. In the next chapter, the actual test sequence compaction

will be shown.

SI Si Sj Sn

11 ("~ 1010100 111110

LE(Si) ~
0 0

LE(S I) LE(Sj)
0

LE(Sn)
0

0 0

0 0

1000111 0 0 0 0 0110011 O 0 0 0 0000000 0 0 0 0 1000110

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1000110 0001111 1100100 0010011

L(Sl) L(Si) L(Sj) L(Sn)

Figure 4.2: Principle of the SUSEM compaction Ill the Pl vector space
representation

29

CHAPTER 5

IMPLEMENTATION OF SUSEM

5.1 Introduction

In this chapter, we explain the implementation of SUSEM using the flowchart

shown in Figure 5.1.

Our purpose is to compact test sequences generated by deterministic test gen­

erators. Although our static test compaction method is independent of the test

generation procedure, it still needs some information about test sequences and tar­

get faults. The only deterministic test generator that is available to us is the HITEC

package, but unfortunately we do not have access to the source code of HITEC nor

to the source code of its fault simulator PROOFS. So we need to get as much

information as possible from running HITEC, and we can use an alternative fault

simulator HOPE, which is faster than PROOFS and gives the same fault simulation

results. More importantly, we can gain access to its source code, and can modify

it to obtain the circuit information we want.

Therefore, in this chapter, we first introduce HITEC and explain how to get

information we need. We then describe a preprocessor which we have developed to

prepare files for running HOPE. Next, we explain our modification to HOPE. And

finally, we present our compaction algorithm.

Input file

HITEC

PREPROCESSOR

Modified

HOPE

COMPACTION

SUSEM

Figure 5.1: Flowchart of compaction system

30

31

5.2 HITEC - the Test Sequence Generator

5.2.1 Introduction to HITEC

HITEC [5] is a sequential circuit test-generation package that is used to generate

test patterns for sequential circuits. In doing so it does not assume the use of

scan techniques or a reset state. It generates test sets with very high coverage,

and identifies the undetectable faults which is the major difference between the

deterministic test generator and the simulation-based test generator.

HITEC consists of two phases: the forward time processing phase (FTP) and the

justification phase (RTP). In the first phase the fault is activated and propagated

to a primary output, this is followed by the second phase in which the initial

state set in the first phase is justified. It uses a decision strategy based on the

implicit enumeration of PODEM (Path-Oriented DEcision Making) [10], and uses

dominators and mandatory assignments similar to those used in other generators

(i.e., FAN [ll]. TOPS [12] and SOCRATES [13]). To ensure completeness of the

algorithm, a nine valued logic system [19] is used in HITEC.

5.2.2 T~rget F~ults ~nd Test Vectors

The deterministic test generator HITEC in the first step chooses an undetected

fault from the fault list. The HITEC uses FTP to activate a fault and propagate

it to a PO and then uses RTP to do state justification. If the process is successful,

HITEC generates test vectors to detect the target fault. After generating the test

vectors, it uses fault simulator PROOFS to detect other faults, then remove those

detected faults from the fault list, and continues to choose the next target fault,

generates test vectors until all faults are detected or aborted.

In our compaction procedure we use HITEC to generate test sequences for

sequential circuits [18].

Procedures:

(1) Run HITEC and get test sequences for all target faults of the circuit under

32

test. The commands, using s27 circuit as an example, are given below and in Figure

5.2:

do_hitec s27 (or any circuit is represented in the ISCAS89 benchmark format)

level s27

Jaultlist

equiv

dominators

testgen

These commands are explained in the following part.

do_hitec: creates a TEST.run file. It includes the option set to run the test

generator (which invokes the fault simulator PROOFS).

level: its input file is also the benchmark circuit, like s27. This file given in

Figure 5.3 is used as an example.

The outputs of level are circuit.name and circuit.lev files, which we use to change

the PROOFS format of faults to the HOPE format of faults. Circuit.name and

circuit.lev files for benchmark circuit s27 are given in Figure 5.4 and Figure 5.5,

respectively.

In Figure 5.5, the number in the first line is the number of gates in the circuit

plus one. The second number is obsolete. Each line starting with the third line

represents one gate. The first number is the node identifier. The second number

is the token for the gate type like INPUT, OUTPUT, XOR, AND etc. The third

number is the level of the gate in the circuit (Level [20] is calculated by setting all

primary inputs and flip-flops to level 0, and performing an event-driven calculation

of the level of each gate in the circuit. Any gate with an unassigned level is in an

asynchronous feedback loop or is a successor of an unconnected line). The fourth

number is the number of inputs to the gate. Next is the list of input lines to the gate

sorted in order of decreasing (easier to control) values of controllability zero. Next

is the list of input lines to the gate sorted in order of decreasing (easier to control)

values of controllability one. Next is the number of successors of the gate, followed

by the list of successor gates sorted in order of decreasing observability values (easier

circuit.bench

Level

Faultlist

ircuit.fault

Equiv

circuit.eqf

I Faultsim

Figure 5.2: Flowchart of HITEC

Domina tors

ircuit.dom

ircuit.nam
circuit.lev
circuit.eqf
ircuit.dom

Testgen

circuit.grs
circuit.red
circuit.atp

33

#s27

#4 inputs

I output

3 D-type flipflops

2 inverters

8 gates (1 ANDs + I NANDs + 2 ORs + 4 NORs)

INPUT(G0)

INPUT(GI)

INPUT(G2)

INPUT(G3)

OUTPUT(G 17)

GS = DFF(G I 0)

. G6 =DFF(Gl I)

G7 = DFF(G 13)

GI4 = NOT(G0)

GI?= NOT(Gl 1)

GB = AND(G 14, G6)

Gl5 = OR(G12, G8)

GI6 = OR(G3, G8)

G9 = NAND(G16, Gl5)

GIO = NOR(Gl4, Gl I)

G 11 = NOR(G5, G9)

Gl2 = NOR(GI, G7)

Gl3 = NOR(G2, 012)

Figure 5.3: Benchmark circuit s27 (s27. bench)

34

35

to observe). The next number is the observability of the line. The next character

is a semicolon or an 0. If there is an 0, then this line is a primary output. The

last two numbers are the values of controllability zero and one, respectively.

The testability measures are calculated using SCOAP [20] testability measure­

ment technique. The measurements are calculated through the flip-flops, and cal­

culation continues until there is convergence.

faultlist: this command generates the uncollapsed fault list, the part of which

for s27 is shown in Figure 5.6.

equiv: the program equiv collapses any fault list and orders the faults in the

depth-first order from the primary outputs. The equivalent fault file for s27 is

shown in Figure 5. 7. Equivalent faults are listed in the same line, separated by

colons. and the fault closest to the primary outputs is listed first. This fault is used

by the test generator as the representative fault for the fault group.

dominators: the command calculates the static dominators of each node in the

circuit and determines all the mandatory assignments to propagate a D or lJ (D

and lJ are D-algorithm notations) on the input of a given gate.

testgen: this procedure stores the test generation results in the file circuit.grs

and circuit.atp which includes the resulting test vectors. Because we also need

to know which test set detects which target fault, we have to perform additional

operations.

Since vve do not have access to the source code of the HITEC package, we have

to run HITEC and extract the information we want. \Ve use UNIX script command

to get the testgen results which are shown in screens. The edited result file is stored

in a file circuit.genera. s27.genera as an example is shown in Figure 5.8.

5.3 The Preprocessor

In order to extract target faults and the corresponding test subsequences, we

wrote the three preprocessing programs, i.e., pf2hf, tf and cformat, as shown in

Figure 5.9.

1 GO
2 GI

3 G2

4 G3

5 GS
6 G6
7 G7

8 Gl4
9 G12
10 GS

11 Gl3
12 G15

13 G16

14 G9

15 GI I

16 G17

17 GIO

18 Gl7_$0UTPUT

Figure 5.4: A net name to a net number translation for s27 (s27.name)

36

19

10
l l O O I 8 16 ; 0 0

21001911;00

310011113;00
4 1 0 0 l 13 12;0 0

5 5 0 l 17 17 1 15 7 ; 2 10

6 5 0 l 15 15 1 10 10; 8 11

7 5 0 l 11 111 910; 1 3

8 10 5 1 1 1 2 10 17 16 ; 1 1

9 9 5 2 7 2 7 2 2 12 11 9; 2 3

10 6 10 2 6 8 6 8 2 12 13 8 ; 3 14

11910293931710; 13

12 8 15 2 10 9 10 9 1 14 5 ; 6 4

13 8 15 2 10 4 10 4 1 14 8 ; 4 1

14 7 20 2 12 13 12 13 1 15 3 ; 6 5

15 9 25 2 14 5 5 14 3 6 17 16 0; 8 11

16 10 30 1 15 15 1 18 0 ; 11 8

17 9 30 2 15 8 15 8 1 5 7 ; 2 10

18 2 35 1 16 16 0 0 0 0 11 8

inputs in successors
0rder of in order of

gate number decreasing d . pri·mary
Cl ecreasmg
I obs.iValue 9utput? 0 _is prim~ry output
, , ; 1s not pnmary output

type of inputs

+ ~~..i.....,.--~---'---.---~---'--..---.-......... ----,

10 6 10

t t
node level
identifier

6 8 6 8

t
inputs in

order of

decreasing

co

2

t
number

of

successors

3 14

observability

value
controllability
values

CO and Cl

Figure 5.5: Levelized circuit description for s27 (s27.lev)

37

1 0 0;
1 0 1;
2 0 0·

'
2 0 1;
3 0 O·

'
3 0 0·

'
4 0 0·

'
4 0 1·

'
5 0 0;
5 0 1 ·

'
6 0 0;
6 0 1;
6 1 0;
6 1 1 ·

'

9 0 0;
9 0 1;
9 1 O;
9 1 1 ·

'
9 2 0·

'
9 2 1;

fault on gate output

+
1 s I O 1

1 j,,._s-a-1

t
node iderfier

I 9 1
2

I O l~s-a-0

t
fault on 2nd input

Figure 5.6: Fault list for s27 (s27.fault)

38

39

12 1 0;
18 0 0 18 1 0: 16 0 0 16 1 1
15 0 1
15 2 0 5 0 0
5 1 0 17 0 0 17 2 1 17 1 1
8 0 1 8 1 0: 1 0 0
15 1 0 14 0 0
14 2 1 13 0 1 13 2 1 4 0 1 13 1 1
10 0 1
10 2 1

Figure 5.7: Equivalent fault file for s27 (s27.eqf)

Program pf2hf 1,yritten in C-Language (circuit.genera as an input file) is used to

generate files circuit.test and circuit.fault. A file circuit.test stores test sequences

for target faults. The file circuit.fault stores all injected faults which for some

circuits cannot be detected or are redundant, therefore we still need to extract

target faults. It is done by program tf After extracting target faults, they are

saved in the circuit.targetfault. Next, we use program cformat to convert it to

faults which HOPE can accept and store these target faults in circuit.faulth.

Here we still use s27 as an example. The file s27.test, shown in Figure 5.10, is ac­

cepted by the modified HOPE. The file s27.fault is converted to the s27.targetfault.

, .targetfault as an example is shown in Figure 5.11. Then we use program cfor­

mat to change the file s27.targetfault to a file s27.faulth. The file s27.faulth is

shown in Figure ,5.12. The format of faults in the file s27.faulth can be accepted by

HOPE.

inject fault line 18 input 0 s-a-1
read vector: 0010

det faults 0 coverage 0.000000
read vector: 0011

det faults 4 coverage 0.125000
DET4RED0
inject fault line 17 input 2 s-a-0

read vector: 1100

det faults 10 coverage 0.312500
read vector:0 1 10

det faults 10 coverage 0.312500

read vector:0001

det faults 16 coverage 0.500000

DET 16RED0
inject fault line 17 input 1 s-a-0
read vector: 0011

det faults 30 coverage 0.937500

DET30RED0

inject fault line 9 input 1 s-a-0

read vector: 0100

det faults 30 coverage 0.937500

read vector: 1001

det fault 32 coverage 1.000000

DET32RED0

Figure 5.8: The result collected from running HIT EC for s27 (s27 .genera)

40

Input file
circuit.genera

pf2hf

circuit.test
circuit.fault

circuit.fault

tf

circuit.targetfault

cformat

Output file
circuit.faulth

Figure 5.9: Flowchart of the preprocessor

41

As can be seen in the file s27.genera of Figure 5.8, the first target fault is 18

0 1 (the second number is the input line number, if it is 0, it means the output),

which means line 18 has a s-a-1 fault, and it needs two test vectors to detect it.

The vectors are:

1. 0010

2. 0011

It also accidentally detects three other faults (as indicated at the end of the

subsequence, in the file s27.genera).

The method for changing the format of faults is as follows (we use s27 as an

42

example):

1. Read every fault from the file circuit.targetfault, like s27.targetfault in Figure

5.11.

2. Check the file circuit.name, like s27.name in Figure 5.4. For each fault, find

a net name written next to the net number. As 18 corresponds to Gl 7 in the file

.name.

3. The second number in a target fault description in Figure 5.11, identifies

output (0) or inputs (1,2, ...). The third number identifies type of the stuck-at

fault, 0 or 1. For an example, fault 18 0 1, output stuck-at 1, is changed to G17 /1

in HOPE format.

4. ·when a fault is not an output stuck-at fault, i.e., the second number of a

target fault is not 0, we need to check the file circuit.lev, like s27.lev in Figure .5.5.

to decide the input net number from the second number of the target fault in the

net number line. then use the file circuit.name again to find the net name of the

fault input from the input net number. Here is an example, for the fault 15 2 0, do

step 1 and 2, we find 15 corresponds to G11, then read the second number which

is 2, and look at the file s27.lev, we find that at the net number 15 line, the second

input is the net number 5. Finally using 5 and check the file s27.name, ,ve find that

.5 corresponds to G5, so the fault 15 2 0 can be converted to G5 -+ G11 /0.

The target faults in the format accepted by HOPE are stored in the file cir­

cuit.faulth. Now, we can use HOPE to get the circuit state information we need.

5.4 Modification to HOPE

5.4.1 Introduction to HOPE

HOPE [6, 7, 8] is an efficient parallel fault simulator for synchronous sequential

circuits that employs the parallel version of the single fault propagation technique.

HOPE is based on an earlier fault simulator called PROOFS [17], which employs

sf'veral heuristics to efficiently drop faults and to avoid simulation of many inactive

43

faults. In HOPE, three new techniques that substantially speed up parallel fault

simulator are added:

1. Reduction of faults simulated in parallel through mapping non-stem faults

to stem faults [6].

2. A new fault injection method called functional fault injection.

3. A combination of a static fault ordering method and a dynamic fault ordering

method.

HOPE fault simulator, which incorporates the above three techniques, is about

1.6 times faster than PROOFS for benchmark circuits.

For our compaction method, we need to know the circuit state information.

therefore \\'e use the fault simulator to get flip-flop states for every time frame. \\'e

had to make some minor changes to the simulator.

The following changes were made:

1. In HOPE, the states of all flip-flops are initially set to X (don't care) at

the beginning of the test sequence. We modified HOPE such that the states of all

flip-flops are also set to X at the beginning of every subsequence for every single

target fault. As a result, the order of the target faults does not matter, and the

subsequences for the target faults can be moved around, so we may compact test

sequences. It does not affect fault coverage for target faults although it may affect

fault coverage for non target faults.

2. \Vhen target faults are injected to parallel fault simulator, modified HOPE

outputs not only good states of flip-flops, but also all faulty states of flip-flops.

5.4.2 Circuit St~te Inform~tion

In order to analyze every test sequence for every target fault and divide it into

the setup sequence and propagation sequence, we need to find the excitation frame

for every target fault. The input vectors starting with the excitation frame and

ending with detection frame form the propagation sequence. \Ve can also obtain

the combined fault-free and faulty state in the excitation frame.

44

To get the excitation states, the setup sequences and the propagation sequences,

we need to consider the following several cases:

1. If all the faulty and good circuit states are the same for the target fault,

then the whole test sequence except the last vector of the test sequence is a setup

sequence and the last vector is a propagation sequence. The excitation state is the

state of flip-flops in the last time frame.

2. If the target fault has not been injected to the parallel fault simulator, it

is a single event fault, but it is detected at the end of the test sequence. In this

case, we also pessimistically estimate that the whole test sequence is a propagation

sequence. There is no setup sequence. The excitation state is X (don't care).

3. If the faulty circuit state for target fault is different from the good circuit

state starting from some test vector (labeled by el) in the test sequence, the part of

the sequence from the vector before the vector (el) to the end of the test sequence

forms the propagation sequence, the remaining part forms the setup sequence. The

excitation state is the state of flip-flops in the time frame before the vector el.

In order to compare the faulty circuit state and good circuit state, we use

HOPE to simulate every sequence for every target fault to get the excitation state.

Actually, In the excitation state, the good circuit state is the same as the faulty

circuit state for the target fault.

The above three cases for finding excitation states were implemented in the file

excitation.

The above method can be described as follows:

Use HOPE to simulate test sequences for all target faults. To find the detection

states, generate the combined fault free and faulty states for all target faults at the

end of test sequences.

For example, use HOPE to simulate the first test sequence (labeled as Sl) for

a good circuit, and get the good circuit state (labeled as G 1S1) at the end of the

test sequence, then simulate fault Fl, and get the faulty state for fault Fl using

sequence Sl (we label it FlSl). Get also the excitation state for fault Fl. Extract

the same information for all target faults in a given circuit. If the GlSl is the

4,5

same as E2S2 (E2S2 is the excitation state for the good circuit using the second

test sequence for the second target fault), then the sequence S1 will become the

candidate for compaction with the test sequence S2.

After extracting all information, we can do compaction using the compaction

algorithm described in the next section.

5.5 Implementation of the Compaction Algorithm

5.5.1 Con1p~ction Algorithm

\Ye choose the greedy algorithm to compact the test sequences.

1. Collect the fault excitation states and detection states for all target faults.

2. Begin with the first target fault F(i) where i=l, check whether its detection

state GiSi is the same as the excitation states EjSj of any other target fault F(j). If

we find a match (i.e., the detection state for one fault is the same as the excitation

state for the other fault F(j), i.e., GiSi = EjSj where j =/:- i), we remove the

setup sequence SU(j) of the fault F(j), and label both the first subsequence and

#j subsequence as used. Now, fault F(j) becomes a current target fault. Continue

with this fault F(j) detection state, and check whether there is a match between

this fault detection state and the excitation of any other not used test sequences for

their target faults. If there is a match, label that subsequence as used, if no match.

we move on to search matches from the beginning subsequence which has not been

used, until all test sequences have been placed in the compaction.

This algorithm does not give optimized compaction results, but it can show us

what the potential of SUSEM is .

The pseudo code for our compaction algorithm is shown below:

setup_subsequence_removal ()

From the first target fault to the last target fault

Collect fault excitation states and detection states

Begin from the first target fault to the last target fault

search matches between fault detection states and excitation states

label subsequences as used when matches found.

remove setup sequences

repeat until no more match

5.5.2 In1ple1nent;:-:tion

46

In this part, we explain how to run the compaction package using s27 benchmark

circuit as an example (given in Table 5.1). For the ISCAS89 benchmark circuit

s2,, data collected from running HITEC, PREPROCESSOR and the compaction

package is shown in Table 5.L

In Table 5.1, we list all test vectors (#TVs) in column one, good circuit PPI

(GPPI) (v,hich are the flip-flop outputs at the beginning of the time frame) in

column two, good circuit PPO (GPPO) (which are the flip-flop inputs at the end of

the time frame) in column three, faulty circuit states (FPPI) in column four. For

faults which are injected in the parallel fault simulator, their faulty circuit states

are shown in column four. If the faulty states of target faults are not listed, it means

that the faulty circuit states are the same as the good circuit states. Excitation

states (ES) (for every target fault) are listed in column five at the last time frame

of that subsequence, and target faults (TF) (a subsequence targets a fault, the fault

is the target fault) are listed at the end of that subsequence.

The data shown in Table 5.1 were obtained in the following way:

1. Run HITEC and get the whole test sequence (Column 1) for the circuit under

test, like s27.

2. Use the preprocessing programs to convert the target faults to the format

accepted by HOPE (Column 6),

3. Run the modified HOPE and get three output files, one of these files shows

which faults are injected in the parallel fault simulator. The faulty flip-flop states

(i.e., FPPI in Column 4) are shown in the second file. The third file shows good

circuit states for the beginning time frame and the end of the time frame in Column

2 and 3, respectively.

47

4. Run the pre-compaction program and get excitation states for all target

faults (Column 5).

5. Run a program for the compaction algorithm and get the compacted test

results. They include the compacted test sequence which can be used to check fault

coverage and the total number of test vectors after the compaction.

From Table 5.1, we can see some good circuit states (PPO) at the last time

frame of the subsequence are the same as the excitation states for other target

faults, like Gl Sl: 010 is the same as E3S3: 0x0. (here, we use GiSi to represent

a good circuit state (GPPO) for #i target fault at the last time frame of #i test

sequence, EiSi to represent an excitation state (GPPI) for #i target fault), so we

can eliminate the setup sequence of the subsequence #3 like:

0010

0011 from the first vector to this vector are subsequence #1

0011 this is setup sequence for the subsequence #3.

1001

0001 from the third vector to this vector are subsequence #3

Therefore, after the compaction, the test sequence for detecting #1 and #3

target faults will become:

0010

0011

1001

0001

\Ve have deleted the first vector (the setup sequence of #3 subsequence) of the

subsequence #3, and the above test sequence can still detect the target faults #1

and #3 as verified by fault simulation.

**** S27

**** 4

:0010

:0011

A

:1100

:0110

:0001

A

:0011

:1001

:0001

A

:0111

:0011

:0110

A

: 1111

:0000

:1001

A

:1010

:0001

A

:1110
:0000

:0111

A

:0100

:1001

Figure 5.10: The test file for the modified HOPE for s27 circuit

48

18 0 1
17 2 0
17 1 0

13 1 0
11 I 0
15 2 0
10 1 1
9 1 0

Figure 5.11: The target fault file for the PROOFS for s27 circuit

G17 /1
G14-> Gl0 /0
Gll -> Gl0 /0
G8 -> G16 /0
Gl2 -> G13 /0
GS-> Gll /0
G6-> G8 /1
G7 -> Gl2 /0

Figure 5.12: The target fault file for the modified HOPE for s27 circuit

49

50

Table 5.1: s27 Benchmark Circuit State Information and Excitation States

#TVs GPPI GPPO FPPI ES TF

1:0010 XXX 0x0 xxx(#8),xxx(#4) ES

2:0011 0x0 010 000(#4),xx0(#2) Gl 7/0

3:1100 XXX 101

4:0110 101 000 ES

,5:0001 000 010 100(#2) Gl4 ➔ Gl0/0

6:0011 XXX 0x0 xxx(#8)

7:1001 0x0 010 xx0(#2) ES

8:0001 010 010 011(#5),110(#3),xx0(#2) Gll ➔ Gl0/0

9:0111 XXX 0x0

10:0011 0x0 010 xx0(#2)

11:0110 010 010 010(#4), xx0(#2) ES G8 ➔ G16/0

12:1111 XXX 100

13:0000 100 000 ES

14:1001 000 010 001(#5),100(#2) Gl2-+ G13/0

15:1010 XXX 100 xxx(#8)

16:0001 100 000 100(#6) ES G5 ➔ Gll/0

17:1110 XXX 100

18:0000 100 000

19:0111 000 000 000(#7),001(#5),100(#2) ES G6-+ G8/1

20:0100 XXX 0xl xxx(#4)

21:1001 0xl 101 0xl(#8),001(#4),100(#2) ES G7-+ G12 /0

51

CHAPTER 6

COMPACTION RESULTS

6.1 Compaction Results

In this chapter we show the results of our method-SUSEM. We run HITEC on

several ISCAS89 sequential benchmark circuits [18]. The attributes of benchmark

circuits are given in Table 6.1.

SUSEr.'1 needs to find matches between excitation states and excitation states.

so if there is a very large number of flip-flops in a circuit, then the probability of

finding matches is very small except in a case of a very large number of target

faults.

\Ve first check the number of target faults in circuits listed in Table 6.1. \Ve

ran HITEC using Apollo workstation (its specifications are listed in Appendix C)

with HITEC defaults as follows: backtrack default is 10000, state backtrack default

is 10000 and time is 2 seconds. We used SPARC5 (Willow) to run HITEC with

default values and the preprocessing programs to obtain the test results as given in

Table 6.2. The specifications of Willow are listed in Appendix C.

\Ve choose those circuits which have a smaller number of flip-flops. Circuits

which have less than 10 flip-flops are: s27, s386, s510, s820, s832, sl488, sl494.

Then we ran HITEC package to get target faults and the corresponding test

subsequences for the above listed circuits. Next ran our compaction algorithm and

the results are shown in Table 6.3.

In Table 6.3, names of circuits from the ISCAS89 benchmark set are given in

column one. # FFs represents the number of flip-flops. # DFs represents the

number of detected faults. TVs are the total number of test vectors. RED(%)

52

Table 6.1: Benchmark Circuit Statistics

Circuit Gates D Flip-flops Primary Inputs Primary outputs Faults
s27 10 3 4 1 32

s298 119 14 3 6 308
s344 160 15 9 11 342
s349 161 15 9 11 350
s382 158 21 3 6 399
s386 159 6 7 7 384
s400 164 21 3 6 426
s444 181 21 3 6 474
s510 211 6 19

,..,
564 I

s526 193 21 3 6 555
s526n 194 21 3 6 553
s641 379 19 35 24 467
s71:3 393 19 35 23 581
s820 289 5 18 19 850
s832 287 5 18 19 870

s953 395 29 16 23 1079

s1196 529 18 14 14 1242
s1238 508 18 14 14 1355
s1423 657 74 17 5 1515

s1488 653 6 8 19 1486

s1494 647 6 8 19 1506

s.5378 2779 179 35 49 4603

s9234 5597 228 19 22 3934

s35932 16065 1728 35 320 39094

53

Table 6.2: Benchmark Circuit Target Fault Statistics

Circuit D Flip-flops Total Vectors Fault Coverage Target Faults

s27 3 21 1.0000 8

s298 14 220 0.8604 6

s344 15 105 0.9357 13

s349 15 102 0.9343 15

s382 21 891 0.7268 34

s386 6 273 0.8177 40

s400 21 1451 0.7864 34

s444 21 551 0.6730 8

s.510 6 0 0 0

s.526 21 34 0.0919 3

s526n 21 37 0.0995 4

s641 19 203 0.8651 52

s713 19 196 0.8193 48

s820 5 961 0.9553 84

s832 5 993 0.9356 87

s9.53 29 14 0.0825 5

s1196 18 439 0.9976. 186

s1238 18 472 0.9469 202

s1423 74 89 0.3815 82

s1488 6 1068 0.9610 71

s1494 6 991 0.9608 68

s5378 179 894 0.6835 64

s9234 228 6 0.0046 3

s35932 1728 300 0.8919 17

54

Table 6.3: SUSEM Compaction Results

Circuits # FFs # DFs #TF TVs RED(%) FC(B)(%) FC(A.)(%)

s27 3 32 8 21 23.8 100 100

s386 6 314 40 273 2.93 81.77 81.77

s.510 6 0 0 0 - -
s820 5 803 79 884 16.8 94.47 94.24

s832 5 801 83 944 11.44 92.07 91.72

s1488 6 919 19 96 11.45 61.84 61.84

s1494 6 1376 766 58 13.45 91.36 91.04

represents the reduction of test vectors after the compaction jn % (the length of

reduced test vectors / the length of the HITEC test vectors). FC(B) represents the

fault coverage before the compaction in %. FC(A) represents the fault coverage

after the compaction in %.

From Table 6.3, we can see that for those circuits which have a relatively small

number of flip-flops and a larger number of target faults, our compaction method

can reach 23.8 % reduction, and the average is more than 10 % reduction. In the

meanwhile, the fault coverage is almost the same as before compaction.

In Table 6.5, we listed the compaction results for HITEC run on different work­

stations and with different HITEC limits.

The following is a list of the meanings of each of columns in Table 6.5.

C represents the different HITEC limits and different workstations for running

s8:32 circuit. W is Willow workstation, J is Jetsam workstation, B is Banzai work­

station, E is Esmerald workstation, those workstation specifications are listed in

Appendix C. For every workstation, there is a subscription. Subscription 1,2 rep­

resents different HITEC limits listed in Table 6.4.

Table 6.4: Different HITEC Limits

Conditions Backtrack limit State backtrack limit Time limit(s)

1 10000 10000 2

2 100000 100000 20

55

TF represents a number of target faults. ST(B)(s) represents the fault simula­

tion time in seconds using the modified HOPE. TVs is the number of test vectors

generated by HITEC. CVs is the number of test vectors after using the SUSEM

compaction. RE(%) is the reduction of test vectors after the compaction and is de­

fined by (TVs CVs)/TVs. FC(B) is the fault coverage before the compaction and

is obtained by running HITEC. FC(A) is the fault coverage after the compaction

and is obtained by running HOPE using compacted test vectors. ST(A)(s) is the

fault Simulation time in seconds using the original HOPE.

In Table 6.5, we present the compaction results for the same circuit s832 but

generated on the different workstations. The difference in compaction reduction is

very small. It suggests that our compaction method is stable. For the same circuit,

s832, run by the different HITEC limits, the compaction reduction is increased for

the increased HITEC limits.

Table 6.,5: Compaction Results for s832 in the Different Conditions

C TF ST(B)(s) TVs CVs RE(%) FC(B)(%) FC(A)(%) ST(A)(s)

\Vl 83 4.05 944 836 11.44 92.07 91.72 3.73

\V2 94 4.57 1084 929 14.30 93.91 93.68 4.02

Jl 76 3.25 857 767 10.50 90.00 90.00 3.53

.)2 95 4.17 1083 928 14.31 93.91 93.91 4.05

Bl 82 4.25 923 805 12.78 92.18 91.38 3.53

B2 93 4.95 1065 908 14.74 93.91 93.68 3.82

El 87 0.65 993 829 16.52 93.56 93.45 0.60

E2 90 0.70 1036 857 17.28 93.91 93.79 0.62

In Table 6.6, ,,.,·e compare simulation times of the original HOPE for original

test vectors and compacted test vectors for the target faults of some benchmark

circuits.

In Table 6.6, names of the ISCAS89 benchmark circuits are given in column one.

TV (B) is the total number of test vectors before the compaction. TV (A) is the total

number of test vectors after the compaction. CPU(B)(s) is the simulation time in

56

Table 6.6: Comparison of Simulation Time Before and After Compaction

Circuit TV(B) TV(A) CPU(B)(s) CPU(A)(s)

s27 21 16 0.233 0.217

s386 273 265 0.433 0.433

s820 884 735 1.250 1.067

s832 944 836 1.417 1.233

s1488 96 85 0.617 0.617

s1494 766 663 2.583 1.950

seconds of the original HOPE before the compaction for target faults. CPU(A)(s)

is the simulation time in seconds of the original HOPE after the compaction for

target faults.

From Table 6.6, we can see that the HOPE simulation time after compaction is

slightly reduced for some circuits.

6.1.1 Comp~rison with Other Three Methods

Since different compaction methods obtained compaction results in different

environments, such as test sequences generated by different ATPGs or different

computer speed or different memory etc, we only can give some rough comparison

between SUSEM and other three methods here.

6.1.2 Comp~rison with Niern1~nn's Method

In Table 6.7, TVO represents the total number of vectors used by SUSEM.

TVN represents the total number of vectors used by Niermann's method. RD (%)

represents the compaction reduction. FCR represents the ratio of the fault coverage

after and before the compaction. In Table 6. 7, results for three circuits run by both

SUSEM and Niermann's method are given. The average compaction reduction by

SUSEM is 9.28 %, while by Niermann's method the reduction is 26.33 % for the

alignment compaction and 30.33 % for the skew compaction, respectively. The

57

Niermann 's method gives more compaction than our method does for these three

circuits.

Table 6.7: The Comparison between SUSEM and Niermann's Method

Circ TVO SUSEM TVN Aligned Skew Stretch

RD FCR RD FCR RD FCR RD FCR

s386 273 2.93 1 403 31 1.0053 34 1.0095 -
s1488 96 11.45 1 32 29 1.0045 32 1.0045 -

s1494 58 13.45 0.9965 32 19 0.9946 25 1.0000 - -

6.1.3 Co1np~rison with Pon1er~nz's Method

Table 6.8 uses the same notations as Table 6.7. In Table 6.8, results for two

circuits run by both SCSEI\1 and Pomeranz's method are given. SUSEM got the

14.13 o/c average compaction reduction. Pomeranz's method got the 52.64 % average

compaction reduction for the omission compaction, the 6.3 % average compaction

reduction for the insertion compaction and the 20.25 % average compaction reduc­

tion for the selection operation. \Ve notice that Pomeranz's method used the longer

test sequences than SUSEM did. As we know for longer test sequences, SUSEi\'1

usually gets more compaction as shown in Table 6.5, because the longer sequences

are easier to be compacted.

Table 6.8: The Comparison between SUSEM and Pomeranz's Method

Circ TVO SUSEM TVP Omission Insertion Selection

RD FCR RD FCR RD FCR RD FCR

s820 884 16.8 0.9976 968 56.2 1.0012 6.30 1.0012 20.25 1.0

sS:32 944 11.44 0.9962 1192 49.08 1.000 - -

58

6.1.4 Comp~rison with Hsi~o's Method

Table 6.9 uses the same notations as Table 6. 7. In Table 6.9, results for four

circuits run by both SUSEM and Hsiao's method are given. SUSEM got the 13.29

% average compaction reduction. Hsiao's method got the 16.18 % for the inert

subsequence removal compaction, the 41.68 % average compaction reduction for the

recurrence subsequence removal compaction and the 27.33 % average compaction

reduction for the combined inert / recurrence subsequence removal compaction.

Table 6.9: The Comparison between SUSEM and Hsiao's Method

Circ T\'O SUSEM TVH ISR RSR CSR

RD FCR RD FCR RD FCH RD FCH

I s820 884 16.8 0.9976 1114 24.4 0.9979 45.6 0.9979 45.9 0.9979
! sS:32 944 11.44 0.9962 1136 23.7 1.0011 46.6 0.9962 46.8 0.9962

sl-!88 96 11.45 1 1170 7.95 0.9979 34.0 0.9979 7.95 0.9979

s1494 58 13.4,5 0.9965 1245 8.67 0.9979 40.5 0.9979 8.67 0.9979

6.2 Some Comments for Three Comparisons

It is easy to notice that we used the different circuits for comparison. The

reason is that these are the only circuits for which results were available for those

three methods \Ve compare our method with. For circuits with a larger number of

flip-flops, our method can only give a very limited compaction.

6.3 Possible Improvements

As we mentioned in Chapter 5, if target faults are not injected to the parallel

fault simulator, they are single event faults, and are detected at the end of test

sequences. In this case, we pessimistically assume the whole test sequences are

the propagation sequences. If we make our estimation optimistic and assume the

i

59

excitation states are the last time frames instead of the first ones, then if target

faults are still detected, we obtain more compaction. We show results generated

using the optimistic approach in Table 6.10.

Table 6.10: The Comparison of Compaction Results for sl488

Case TVs CVs Reduction(%) FC(B)(%) FC(A)(%)

1 96 85 11.45 61.84 61.84

2 96 80 16.67 61.84 62.05

In Table 6.10, Case 1 is for the pessimistic estimation and Case 2 is for the

optimistic estimation. TVs is a total number of test vectors generated by HITEC.

CV s is a total number of test vectors after the compaction. Reduction(%) is the

reduction of test vectors after the compaction and is defined by (TVs- CVs)/TVs.

The meanings of FC(B) and FC(A) are the same as in the previous table. 'We got

more compaction and increased fault coverage for the optimistic estimation.

For target faults not injected in the parallel fault simulator, we also can consider

the case where they could be moved to the end of the whole test sequence, and

detected by the test vectors that exists before them, as we see in the Niermann and

Patel's alignment and skew compactions. In this way it may further compact test

vectors.

In order to improve the compaction, it is also possible for us to use more opti­

mized compaction algorithms not like our greedy search or not beginning with the

first test subsequence etc.

60

CHAPTER 7

CONCLUSIONS

7 .1 Conclusions

In the previous chapters, we have demonstrated that our method, which uses the

circuit state information to compact test sequences, is very effective (the average

reduction is 13.31 % for those six benchmark circuits listed in the last chapter) for

circuits with the large number of target faults and with the relatively small number

of flip-flops. However, ,,ve must point out that for the circuits with a larger number

of flip-flops, we do not get the compaction results as good as for circuits with less

flip-flops, it does not seem effective. Nevertheless, in many circuits, most of flip-flop

states in the excitation state prior to the justification phase are don't care. Thus,

using the state information may be a good way to improve test generation for highly

compacted test sequences.

In conclusion:

1. Our SUSEIVI compaction method uses the circuit state information to com­

pact test sequences. For those circuits which have a large number of target faults

and a relatively small number of flip-flops, the average reductions of test vectors

can be over 10%. The fault coverage usually stays the same or in the same cases

might decrease by less than 0.5% .

2. Our SUSEJ\1 compaction method requires the only one simulation (if we

want to check the fault coverage, we have to use the simulation the second time),

which is much better than Pomeranz and Reddy's method [2] in which multiple

simulations are necessary. It is also better than Hsiao and Patel's method [3].

In Hsiao and Patel's method, the fault coverage for every inert subsequences or

61

recurrence subsequences has to be checked, although two time simulations are used.

3. Our SUSEM compaction method only needs to compare the final states with

the excitation states to remove setup sequences, it is much faster than Niermann

and Patel's method [l J which needs to compare every test vector to decide which

should be removed.

4. For the same circuit, the compaction is very stable, even if we use different

computer speeds, memories, etc.

5. For the same circuit, the test sequence compaction reduction often gets better

when we use longer test sequences and more detected faults.

6. To test some circuits, after using our SUSEM method to compact, we still can

use three other methods to further compact the test vectors, it may save some sim­

ulation time for multiple simulation compaction method. The other three methods

would be more difficult to use for the improvement of deterministic test generators

than our method, because they do compaction randomly or blindly.

i. More importantly, we may use this compaction method to improve deter­

ministic test generation procedure, so that the resulted test generator will generate

highly compacted test sequences. In this way it can save us test generation time,

compaction time and also test time.

1.2 Future Research

As we mentioned earlier, a major objective of static compaction of test sequences

is to improve test generation procedures.

A challenge that requires further studies is how to improve test generators. We

don't want to save the excitation state for every fault, since that would demand

too big memories. Probably we can use a dynamic fault order [21]. \Ve propose

that after the first target fault is detected, we use a fault simulator to remove other

accidentally detected faults from the fault list, then we choose the next target fault

which has the excitation state compatible with the last detection state, and use this

information to test this second target fault. However, it is still an open question as

62

hmv to search the excitation state.

63

REFERENCES

[l] T.l\1. I\iermann. R.K. Roy, J.H. Patel and J.A. Abraham, Test compaction for

Sfqurntial Circuits, IEEE Transactions on Computer-Aided Design, Vol.I I,

No.2, pp.260-267, 1992.

[2] I. Pomeranz and S. M. Reddy, On Static Compaction of Test Seq11cnces for

Synchronous Stquential Circuits, Proc. Design Automatic Conf., pp.21.5-219,

1996.

[:3] l\L Hsiao. E.:\l. Rudnick and J.H. Patel, Fast Algorithms for Static Compaction

of Sequential Circuit Test Vectors, IEEE VLSI Test Symposium 1997, pp.188-

195. 1997.

HJ E.'.\l. Rudnick and J.H. Patel. Simulation-Based Techniques for Dynamic Ttsf

Scqllrna Compaction. Inter. Conf. on Computer-Aided Design, pp.67-73, 1996.

[5] T. Niermann and J.H. PateL HITEC: A Test Generation Package for Sequrn­

tial Circuits, Proc. European Conf. Design Automation, pp.214-218, 1991.

[6] H.K. Lee and D.S. Ha, HOPE: An Efficient Parallel Fault Simulator for Syn­

chronous Sequrntial Circuits, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, Vol.15, No.9, pp.1048-1058, September

1996.

[7] H.K. Lee and D.S. Ha, New Methods of Improving Parallel Fault Simulation in

Synchronous Sequrntial Circuits, Proc. International Conference on Computer­

Aided Design. pp.IO-I 7, Oct. 1993.

[8] 11.K. Lee and D.S. Ha, HOPE: An Efficient Para/fol Fault Simulator for

Synrhronous Srqurntial Circuih,, Proc. 29th Design Automation C'onferc•nce.

pp.3:JG-~{40, J unc 1992.

64

[9] J.P. Roth. \V.G. Bouricius, and P.R. Schneider, Programmed Algorithms to

C'ompute Tests to Detect and Distinguish Between Failures in Logic Circuit,

IEEE Trans. Electron. Comput., Vol.EC-16, pp.567-580, Oct. 1967.

[10] P.Goel, An Implicit Enumeration Algorithm to Generate Tests for Combina­

tional Circuits, IEEE Trans. Comput., Vol.C-30, pp.215-222, March 1981.

[11] H. Fujiwara and T. Shimono, On the Acceleration of Test Generation Algo­

rithms, IEEE Trans. Comput., \'ol.C-32, pp.1137-1144, Dec. 1983.

[12] T. h:irkland and M.R. Mercer, A Topological Search Algorithm for ATPG.

Proc. 24th Design Automat. Conf., pp.,502-508, June 1987.

[L3] .\1.H. Schulz. E. Trischler and T.M. Sarfert. SOCRATES: A Highly Efficirnt

Automatic Tfst Patt Em Grnuation Systun. IEEE Trans. Computer-Aided De­

sigll. Vol.7, ~o.1, pp.126-137. Jan. 1988.

[l I] \\".T. Cheng. Tin Back Algorithm for Sequudial TEst Grneration, Proc. 1988

IEEE Int. C'onf. on Computer Design, pp.66-69, Oct. 1988.

[l:'5] II.I\. Tony ~la. S. Devadas, A.R. l\et\\'on and A. Sangiovanni-Vi11centelli,

Ttst Grnuation for SEqurntial Circuits, IEEE Trans. Computer-Aided Design,

pp.1081-1093, Oct.1988.

[16] E..\I. Rudnick, J.G. Holm, D.G. Saab and J.H. Patel, Application of Simple

Grnetic Algorithms to Sequential Circuit Test Generation, Proc. of the Euro­

pean Design and Test Conf.. pp.40-45, Feb. 1994.

[17] T.:M. Niermann, W.T. Cheng and J.H. Patel, PROOFS: A Fast, Memory­

E.fjicient SEquential Circuit Fault Simulator, IEEE Trans. on Computer-Aided

Design, Vol.11, No.2, pp.198-207, Feb. 1992.

[I 8] F. Brglez. D. Bryan and K. l\ozminski, Combinational Profiles of Sfqurntial

Brnchmarl.· Circuits, Proc. 1989 Int. Symp. Circuits Syst., pp.1929-19:3°1. ~lay

1989.

65

[I 9] P. Muth, A Nine- Values C'ircuit Afodel for Test Generation, IEEE Trans. Com­

puter, pp.630-636, June 1988.

[20] L.H. Goldstein and E.L. Thigpen, SCOAP: Sandia Controllabil-

ity/Observability Analysis Program, Proc. 17th Design Auto. Conf.,

pp.190-196, June 1980.

[21] C.R. Graham, E.:M. Rudnick and J.H. Patel, Dynamic Fault Grouping for

PROOFS: A Win for Large Sequential Circuits. Proc. Intern. Conf. on VLSI

Design, pp.475-481, January 1997.

[22] T.~1. '.\iermann. Techniques for Sequential Circuit Automatic Ttsl Grncration.

r1u·-E"\G-9 I-2214. March 1991.

66

APPENDIX A

Pomeranz and Reddy's Definitions and Notations

1. A test sequence T is represented as T = (t 0t 1 •.• tL-d, wl1f're t; is th<" inpnt

vector applied at time unit u 1•

2. The subsequence of T between time units Hj and Uk is denoted by T[vj, t11c],

"·here T[uJ, uk] = (tJ .. ,tk),

:3. The state of the fault free circuit at time 11 1 is denoted S;. The initial state

5'0 is the all-ullspecified (all-x) state in their experiments.

4. The output w•ctor of the fault free circuit at time unit u; is denoted ::;.

:). The set of target faults (collapsed single stuck-at faults) is denoted by F.

The set of faults detected by a given test sequence T is denoted by Fdet•

6. For every fault f < F they denote by Sf and ::{ the state and output

H'ctor of the faulty circuit at time u;. respectively. They also define the combined

fault-free/faulty state S;/ Sf at time u;.

,. The time unit where a fault f < Fdet is detected for the first time is denoted

by lldc1(f).

8. The effective test length Lrf f of T is the minimum length of a subsequence

of T that starts at time O and includes the detection time of every detected fault,

or

67

APPENDIX B

Hsiao and Patel's Definitions and Notations

Dcfinit ion 1: A propagation subsequence T/rop for a particular fault J is a

subsequence T[v;, v;+ 1 , •.• , vj]such that the fault-effects of J, stored in the starting

statP at vector v;, are propagated through all time-frames within the subsequence.

Definition 2: A detection subsequence Tjtt for a particular fault f is a subse­

quencP T[i-;. l'i+I • .•. , u1_ 1, VJ] such that f is activated in time-frame i, [v;, t',+ 1 , ... , l'j-I, v1]

is a propagation subsPquPncP for f. and the fault f is detected in time-frame j.

Definition 3: A state-recurrence subsequence Tree is a subsequence of vectors

T[i-i. 1·;+ 1 •.... 1·Jl such that the fault-free states reached at the end of vectors t_ 1

and 1·1 are identical.

Definitiou 4: An inert recurrence subsequence, or simple inert subsequence,

Tinert is a state-recurrence subsequence Tree[v;, v;+ 1 , ••• , v;] such that no additional

faults are detected within the subsequence Tree .

Definition .5: Given a fault-free state 5, the error vector E1 for a particular

fault f is equal to S 8:; 51, where 51 is the corresponding faulty state for the same

time-frame.

Definition 6: Given two identical fault-free states S, the error vector E1 for a

fault .f covers another error vector E~ for the same fault and state if E1 U £~ = E1,

68

APPENDIX C

Workstation Specifications

In this appeudix, \\e list the specification of tlic workstations which we use to

nm HITE(', the modified HOPE and our compaction algorithm.

1. Willow:

SPACRstation ,5 Q:@ 8,5.0MHZ with real memory 1211\il.

2. Jetsam:

SP . .\RCstation 10 l\IP (4XRT625) :g (! 40.0 l\1HZ with real memory 89M.

;3. Banzai:

SPARCstation .5 ,g_g 70.0.\IHZ with real memory 121:M.

4. Esmeralda:

Sl~l\ Cltra 30 FPA/PCI (l'ltra SPARC 11296 MHZ)@@ 98.6 l\lHZ with real

memory 120:\1.

5. Apollo:

Sr~ rltra .5/10 VPA/PCI (Ultra SPARC Iii 300 MHZ)@@ 99.9 MHZ ,vith

real memory 371M.

	Static Compaction of Test Sequences for Synchronous Sequential Circuits
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1694028879.pdf.bL7rr

