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ABSTRACT 

An abstract of the thesis of Lijie Qi for the Master of Science in Electrical and 

Computer Engineering presented August 13, 1998. 

Title: Static Compaction of Test Sequences for Synchronous Sequential Circuits 

Today, VLSI df'sign has progressed to a stage where it needs to incorporate 

nwthods of testing circuits. The Automatic Test Pattern Generation (ATPG) is 

a very attractive method and feasible on almost any combinational and sequential 

circuit. 

Currently available automatic test pattern generators (ATPGs) generate test 

sets that may be excessively long. Because a cost of testing depends on the test 

length. compaction techniques have been used to reduce that length. The motiva­

tion for studying test compaction is twofold. Firstly, by reducing the test sequence 

length. the memory requirements during the test application and the test applica­

tion time are reduced. Secondly, the extent of test compaction possible for deter­

ministic test sequences indicates that test pattern generators spend a significant 

amount of time generating test vectors that are not necessary. The compacted test 

sequences provide a target for more efficient deterministic test generators. Two 

types of compaction techniques exist: dynamic and static. The dynamic test se­

quence compaction performs compaction concurrently with the test generation pro­

cess and often requires modification of the test generator. The static test sequence 

compaction is done in a post-processing step to the test generation and is indepen­

dent of the test generation algorithm and process. 

In the thesis, a new idea for static compaction of test sequences for synchronous 

sequential circuits has been proposed. Our new method - SUSEM (Set Up Sequence 

Elimination Method) uses the circuit state information to eliminate some setup se­

quences for the target faults and consequently reduce the test sequence length. The 

technique has been used for the test sequences generated by HITEC test generator. 
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ISCAS89 benchmark circuits were used in our experiments, for some circuits which 

have a large number of target faults and relatively small number of flip-flops, the 

very significant compactions have been obtained. The more important is that this 

method can be used to improve the test generation procedure unlike most static 

compaction methods which blindly or randomly remove parts of test vectors and 

cannot be used to improve the test generators. 
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CHAPTER 1 

Introduction 

Today the VLSI design has progressed to a stage where needs to incorporate 

met hods of testing circuits. The very attractive algorithmic testing method )\u­

tomatic Test Pattern Generation (ATPG) is feasible on almost any combinational 

circuit and sequential sequential circuit. 

ATPG can be used not only with Single-Stuck-Faults(SSFs) but also other fault 

models like bridge fault model etc. In this thesis we only consider ATPG for 

circuits with SSFs. Although ATPG can be used widely in combinational circuits 

and sequential circuits, because of the fixed memory size of testers, the application 

of a test set larger than the tester memory size requires reloading of the memory. 

which is an expensive process. Excessive test lengths have been reported to be 

a major problem for the sequential automatic test pattern generators (ATPGs) 

[l]. Shorter tests sets are desirable in reducing test application time, which is an 

important consideration, since it directly impacts the testing cost. If shorter test 

vectors for a given fault coverage can be used, more chips can be tested in a given 

time period, and fewer testers are needed. It is the primary reason that people do a 

lot of research on test set compaction [1, 2, 3, 4]. There are two kinds of compaction 

techniques. The first one is a static compaction which is a post-processing operation 

independent of test generation procedure. The second one is a dynamic compaction 

which is performed concurrently with the test generation process and often requires 

a modification of the test generator. 

In this thesis, we concentrate on the static compaction. This thesis presents 

a nP\\' static compaction method for the synchronous sequential test sequences. 

The method is called Sl:SEM (Setl1p Sequence Elimination l\'1ethod), and is based 
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on the following observation. Current ATPGs, such as HITEC [5], generate self­

initializing sequences for each target fault, the self-initializing test sequence is com­

posed of two parts: the setup or justification sequence and the fault excitation and 

propagation sequence. When a good circuit state at the fault detection time frame 

for currently detected target fault and a fault-excitation state for a fault circuit 

for one or more not yet detected faults are the same, we do not need to generate 

a setup sequence to detect such fault because the circuit is already in the fault­

excitation state. \Ve have only to use the propagation sequence and eliminate the 

setup sequence. Though we studied that this kind of compaction depends strongly 

on ho\\' many flip-flops and target faults are in the circuit. 

In this thesis. we used our method to compact the test sequences generated by 

HITEC test generator for a number of l\lCNC benchmark circuits. We modified 

the HOPE [6. 7. 8] fault simulator and used it for implementing the compaction 

algorithm. 

This thesis is divided into six chapters. Chapter 2 gives the background in­

formation on sequential circuit test generation and fault simulation. Chapter 3 

describes test sequence compaction methods. Our ne\v test sequence compaction 

method. Concatenation compaction. is presented in Chapter4. Chapter 5 covers 

the implementation aspects of the concatenation compaction. Chapter 6 gives the 

compaction results. Chapter 7 provides some concluding remarks. 



CHAPTER 2 

TEST GENERATION AND FAULT 

SIMULATION FOR SEQUENTIAL CIRCUITS 

2 .1 Basic Terminology 

l. Combi11alional circuit: 

3 

A digital circuit which has th€' property that at any point in time, the output of 

thP circuit is related directly to its input signals by some Boolean expression (her€' 

igllorillg the short propagatio11 delay of the composing gates) is called a combina­

tional circuit. '.\o int€'ntional connection b€'twe€'n outputs and inputs is pres€'nt. 

2. Sequential circuit: 

A digital circuit where the outputs are not only a function of the current input 

data. but also of th<' previous values of the input signals is called a sequential circuil. 

:3. Synchronous circuit: 

A circuit in which all changes in its flip-flop state are related to a change in a 

clock signal ( or a number of clock signals) is called a synchronous cirrnit. 

4. Targd faults and accidental ddected faults: 

An ATPG selects one fault at a time from the given fault list and attempts to 

generate a test for it, this fault is called a target fault. The test for a target fault may 

also detect some other non-targeted faults by performing a fault simulation after 

generating the test for the target fault, those non-target faults are called accidrntal 

dffectrd faults. 

:). Tu,t .stqurnn: 

:\ fu;t srqurnc( is a sPries of test vectors applied to a sequential circuit rn a 



spPcifk order to detect a target fault. 

6. hwd line: 

4 

\\'hen a signal line L is reachable from some fan-out point, that is, there exists 

a path from some fan-out point to L, we say that L is bound. A signal line which 

is not bound is said to be free. \Vhen a free line L is adjacent to some bound line, 

line L is called a hwd lint. 

2.2 Sequential Circuit Test Generation 

The test generation problem for combinational circuits belongs to the class of 

.\P complete problems [22]. In theory. test generation for sequential circuits also 

belongs to the class of KP-complete problems [22], but is more complex in practice 

because of the addition of the time frame dimension. 

2.2.1 Co111binational Circuits 

Test generation for combinational circuits is a subproblem of sequential circuit 

test generation. A sequential circuit test generator needs a very efficient combina­

tional test generator embedded into the program. If the test generator is inefficient 

011 combinational circuits, then the flaws in it will be magnified vvhen a sequential 

circuit is attempted. So understanding the test generation of combinational circuits 

is very helpful in studying the sequential circuit test generation. 

The first complete and deterministic automatic test generation algorithm for 

combinational circuits ·was the D-algorithm (DALG) [9], which is a branch-and­

bound algorithm on the values assigned to individual lines in the circuit. The D­

algorit hm has been shown to be inefficient on circuits with error correcting modules 

a1Jd circuits with a large number of XOR gates. 

The PODEl\1 [1 O] algorithm solved the problem faced by the D-algorithm for 

ciffuits with a large number of XOR gates. PODEM is an implicit enumeration. 

lmrnch-and-hound algorithm on th<" primary inputs. not 011 internal line values 

a-; the D-algorithm. By only searching the space of primary input assignnwnts. 
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PODE~I ,vas able to successfully generate tests for circuits with a large number of 

XOR gates. One other benefit of the PODEM algorithm is that it requires much 

less memory to store the decision stack than the D-algorithm. 

One extension to the PODEM algorithm was the Fan algorithm [11], which 

made use of dominators to determine mandatory assignments to internal lines of a 

circuit. These mandatory assignments narrowed the search space of PODEM and 

allowed earlier identification of conflict conditions in the search. The Fan algorithm 

also introduced the concept of a head line to make the circuit appear smaller to the 

test generator. The Tops algorithm [12] extended the definition of a head line to 

push tlw head lines further into the circuit, thus yielding a smaller search space. 

The Socrates algorithm [13] extended Fan by incorporating a learning strategy 

to determine a greater number of the mandatory assignments needed for a given 

objective. By increasing the number of mandatory assignments. conflict conditions 

were identified earlier. thus unnecessary decisions were avoided. 

Tlw major drawback to using combinational circuit test generation for sequential 

circuits is that it requires a sequential circuit to use a full-scan design methodology. 

Full-scan circuitry typically adds a 1,5-307c area overhead to a circuit. thus adding 

extra cost. One other drawback to full-scan techniques is that there is a performance 

degradation due to using a scan design. Lastly. a scan test cannot detect as many 

failur<'s in a circuit as a functional test given the same stuck-at fault coverage. 

because scan vectors are scanned in and the results scanned out, rather than applied 

at the primary inputs. Because functional vectors are applied at speed, they detect 

many more timing failures. 

2.2.2 Sequential Circuits 

As it is known. most sequential test generators conceptually transform a syn­

chronous sequential circuit into an equivalent iterative logic array model. Then 

methods of test generation for combinational circuits are modified to generate tests 

for S('(Jllential circuits using the iterative logic array (ILA) model. Figure 2.1 (a) 

sho\\'s the model for a seqtt<'ntial circuit. 
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Figure 2.1: Sequential circuit model and iterative array model 
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In this diagram the next state is fed back to the present state through flip-flops. 

Inputs to D-flip-flops are called pseudo primary outputs (PPO). Outputs from 

D-flip-flops are called pseudo primary inputs (PP!). Figure 2.1 (b) rolls out the 

sPquential circuit to form the iterative array model for the circuit. The flip-flops are 

replaced by straight wires and multiples copies of the circuit are used to represent 

tlw state of the circuit at the different points in time. The inputs P fl, P 12 ... 

form the sequence of vectors needed to detect a target fault. There are two main 

techniques to generate tests using the iterative array model. The first approach is to 

procred backwards through time for fault propagation and state justification. thus 
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using only reverse time processing [14], etc. The second approach is to use forward 

time processing for line justification and fault propagation followed by reverse time 

processing for state justification [15, 5], etc. 

Aside from deterministic test generation techniques for sequential circuits, a 

simulation based test generation [16] was explored as an alternative to the deter­

ministic test generation. Usually, simulation-based test generation methods use a 

cost function to determine the quality of randomly generated test vectors. By using 

only vectors that give the best quality measure, tests can be generated without ex­

pensive branch-and-bound techniques. Unfortunately, this algorithm cannot prove 

that a fault is untestable. therefore this techniques is not complete. 

2.3 Fault Simulation 

Fault simulation techniques are used extensively in the design of electronic cir­

cuits for both testing and fault diagnosis. Fault simulators are used to determine 

which faults are detected by a test sequence. This information not only grades the 

quality of the test sequence but also speeds up the test generation process. After a 

test sequence is generated for one target fault by a time-consuming test generator, 

a fault simulator is usually used for finding other faults that are also detected. In 

this manner, the number of faults which need to be targeted by a test generator 

can be dramatically reduced. 

Fault simulators are also used to find test vectors by guiding search methods. 

In addition, fault simulators are used for generating fault dictionaries for diagnosis 

and for computing aliases in signature analysis; in both cases all faults must be 

simulated for the entire test sequence. These two applications requires a very fast 

fault simulator with a very efficient memory. 

There are several fault simulation approaches like parallel, concurrent, and the 

differential fault simulation algorithm. PROOFS [17] combines all the above ap­

proaches. 

In fault simulation, each test pattern is run with the good machine as well as 
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with every faulty machine. The good machine is the fault-free circuit description 

and a faulty machine is the circuit with one line fixed at a logic 1 (a stuck-at 1 

fault) or at a logic O ( a stuck-at O fault) (here the single stuck-at fault model has 

been used). If the output responses of any one faulty machine differ from the good 

machine, the corresponding fault is said to have been detected. 
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CHAPTER 3 

TEST SEQUENCE COMPACTION 

3.1 Purpose of Compaction 

Compaction of the test sequences for synchronous sequential circuits has been 

attracting considerable attention [L 2, 3]. This is primarily because the test­

sequencP compaction can reduce the length of a test sequence, so that both the 

mPmory requirements during test application and the test application time can be 

rPduced. ~lore importantly, the compacted test sPquences can provide a target for 

clen:loping more efficient deterministic test generators. 

There are two types of compaction techniques: dynamic and static. Dynamic 

compaction is performed concurrently with the test generation process, and as a 

result. it often requires that the test generator be modified. Static compaction is 

done as a post-processing step and thus it is independent of the test generation 

algorithm and process. 

In this thesis, we are going to focus our attention on the static test compaction 

technique. 

3.2 Static Compaction Methods 

Three most well known static methods for the test-sequence compaction are 

briefly described here. 



3.2.1 Nier111an11 and Patel's Method 

Niermann and Patel [l] reduced the test sequences, which are compatible1 using 

simple alignment, skew, and stretch compaction methods. 

Compatibility with Simple Alignment 

Two tf'st vectors T1 and 12 are compatible ( or compactable) if the following two 

conditions are used: 

1. each primary input (PI) in the circuit is assigned to the same logic value (O 

or 1) in both T1 and T2. 

2. it is a don't care ( X) in at least one of T1 or 12. 
Let S'i and 82 be t'wo sequences with lengths L(Si) and L(S2 ), respectively, 

resulting in a total test length of L(S1 ) + L(S2 ) before compaction. Let us consider 

th<· sequences to be aligned from the top (see Figure 3.1) and the comparison to 

he performed between the i-th vector of the first sequence and the i-th vector of 

the second for i = 1. to the smaller length of two sequences. If the vectors are 

compatible for all i. then the two sequences are compatible and can be merged to 

Sf'(fllf'nce 53 with the test length L(S1 ), resulting in a reduction in the test length 

of L(S'2 ). 

Compatibility with Skew 

Although two sequences may not be completely compatible when the start of 

two sequences occurs at the same time, they may be compatible if the start of one 

of sequences is skewed from the start of the other sequence. Let Sb: EH' denote 

the difft>rence in the times of the starts of S1 and S2 and let L(Si) ~ L(S2 ). The 

ways that S 2 can be skewed from the start of S1 can be categorized into three 

groups. The first group is the case in which S'i starts first and ends last as shown 

in Figure 3.2. In this case, 52 is completely compatible with S1 and reduction in 

th<· test length is L(S2 ). In the next group, S2 starts before S1 with a negative 

ske,,· as shown in Figure 3.:3 (a). In this case, 82 is only partially compatible with 
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Sl S2 S3 

L(Sl) L(S1) 

Test length reduction - L{S2) 

Figure ~1.l: Compaction with a simple alignment 

S'i and the reduction in test length for compacted sequence 5 3 is L(52 ) + SA. EW. 

In the last group. 82 ends after S'i and has a positive value of Sh. EH greater 

than L( 5 1 ) - L( 5 2 ). as shown in Figure 3.3 (b ). In this case, 51 is on!:,· partially 

compatible with 5 1 and the reduction in test length for compacted sequence 5 3 is 

l(S'i) S'fl'EH'. 

Compatibility with Stretch 

Some circuits have multiple clocks that are directly and independently control­

lable, i.e., clock lines are not fed by a free-running oscillator as in the ISCAS89 

benchmark circuits [18] or they are not required to maintain an interrelated pre­

specified pattern, for example, a two-phase non-overlapping clock. In circuits with 

directly controllable clocks, the clock inputs are just like other primary inputs. so 

another type of compatibility is introduced. This compatibility is based on the 

observation that if a vector is repeated several times without changing the order 

of other vectors. detectability of the target fault remains unchanged. For example. 

given that the first input is clock. a sequence OXOl, lXOl, 01 lX can be replaced 

by OXOl. lXOl. lXOl. OllX (i.e.~ repeat the second pattern) without affecting the 
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Figure 3.2: Compaction with a complete skew method 
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S3 

detectability of the target fault. They call the operation stretching. since the effect 

of repeating a pattern is that of stretching the clock. Figure 3.4 illustrates the 

application of stretching for test compaction. The test sequences for faults OCTl 

s-a-0 and OCT2 s-a-0 are given below (Table 3.1 ): 

Table 3.1: T\".;o Incompatible Sequences 

Sl: Test for Ol1 Tl s-a-0 S2: Test for OUT2, s-a-0 

C'l 0 1 0 1 0 1 Cl X X X X X X X X 

C2 X X X X X X C2 0 1 0 1 0 1 0 1 

I:\' 0 0 1 1 0 0 IN 0 0 1 1 1 1 0 0 

These two sequences are incompatible according to aligned or skewed compati­

bility. However, if we stretch the fourth vector of the smaller sequence Sl for two 

more time frames, then the sequences become compatible, and can be compacted 

into the following sequence (Table 3.2): 



S1 

SKEW -1 

SKEW<O 

Reduction= L(S2) - SKEW 
(a) 

S2 

⇒ 1-------1 

S1 S2 

7fs. 

SKEW 

'/ 

SKEW> L(S 1 J-L(S2) 

Reduction - L(S l) - SKEW 
(b) 

Figure :3.3: Compaction with partial skew method 

Table 3.2: S12: Compacted Test for Ol"Tl s-a-0 and OCT s-a-0 

Cl 0 1 0 1 1 1 0 1 

C2 0 1 0 1 0 1 0 1 

II\ 0 0 1 1 1 1 0 0 

Comments 

13 

For compatibility with the simple alignment, the shorter sequence must be gen­

erated earlier than the longer sequence, otherwise it will be detected by the longer 

one. From this point of view, it may suggest to first target faults which are harder 

to df'tect. 

For compatibility with the complete skew, the shorter sequence also must be 

generated earlier than the longer sequence, otherwise it will be detected by the 

long<"r one. It may suggest the same conclusion as for the compaction method with 

the simple alignment. 

For their method, they cannot compact two test sequences if these two sequences 

are not cornpatih!P with the simple alignment nor skew nor stretch. 
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OUTl 
I '-----r------j 

Cl 

OUT2 

C2 

Figure 3.4: Compaction with a stretch method 

3.2.2 Pon1eranz and Reddy's Method 

Pomeranz and Reddy [2] used insertion, omission and selection operations to 

compact test sequences. 

In order to easier understand their method, we give their definitions and nota­

tions in APPE~DI.X A. 

Compaction Based On Insertion Operation 

Consider a fault f < FdEt with detection time udet(f). Let llj and llk be two 

time units such that Uj < llk :S lldff(J). and such that Sj/ sf = Sk/ st (i.e., SJ = sk 
and sf = S[). Since sj;sf = Sk/S{, T[uj,Uk-il only serves to take the fault­

free/faulty circuits back to their states at time Uj, and T detects f even if we 

omit T[ Uy, uk-il from T, to obtain the sequence T[u0 , Uj-il o T[11k, llL-il ( o stands 

for concatenation of subsequences). Under the proposed operation, they define a 

new test sequence where faultf is detected earlier, as follows. The subsequence 

T[uk. lldfl(f)] is duplicated and inserted at time Uj, As a result, the detection time 

of f is reduced from UdctU) to UdetU) - ( uk - Uj ). The remaining part of the 

sequence. T[11j, uL-iJ, is pushed to the right. The new test sequence is 
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They call this operation the insertion operation. The insertion operation in­

creases the total length of the test sequence, however, it allows to reduce its effective 

length by reducing the highest detection times. The shorter sequence T[uo, uL,ff-il 

is then used instead of T. 

The following is an example which they used to explain the insertion operation. 

The test sequence of ISCAS89 benchmark circuit s27 is shown in Table 3.3. 

Table ~1.3: A Test Sequence of s27 

I 0 1 2 3 4 5 6 7 8 9 

ti 0011 1101 0011 0011 1110 0011 1011 0001 0011 0110 

I 10 11 12 13 14 15 16 17 18 19 

ti 0011 1011 0010 0100 0111 1110 0101 1000 0000 0110 

The detected faults and their detection times are shown in Table 3.4. 

TablP 3.4: Detected Faults and Detection Times 

l f : lldetU) Hi 

1 2/0, 9/1, 14/1, 18/1, 20/0, 21/L 26/0 

;3 3/0. 4/0. 8/0. 9/0, 11/0, 12/0, 15/1, 21 /0, 25/1. 26/ 1 

4 8/1, 13/1 

5 .5/0, 25/0 

I 22/0 

9 14/0, 16/0, 17 /0, 24/0 

19 6/1, 24/1 

The whole test sequence can detect totally 28 faults. Simulating the fault 6/1. 

they found that the combined fault-free/faulty states are identical at time frames 

17 and 19. The fault is detected at time frame 19. The insertion operation inserts 

T[l9] (0110) at time frame 17, pushing T[l 7, 19] by one time unit to the right. 

Tlw resulting tPst sPquence is shown in Table 3.5. 
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Table 3.5: The Test Sequence After an Insertion Operation 

I 0 1 2 3 4 5 6 7 8 9 

ti 0011 1101 0011 0011 1110 0011 1011 0001 0011 0110 

I 10 11 12 13 14 15 16 17 18 19 20 

ti 0011 1011 0010 0100 0111 1110 0101 0110 1000 0000 0110 

This change affects faults 6/1 and 24/1, with detection time frame 19. The 

detection times for the modified sequence are shown in Table 3.6. 

Table 3.6: Detected Faults and Detection Times for the Modified Sequence 

I f : Udet(f) = U; 

l 2/0, 9/1, 14/1, 18/1, 20/0, 21/1. 26/0 

;3 3/0, 4/0, 8/0, 9/0, 11/0, 12/0, 1.5/1, 21/0, 25/1. 26/1 

4 8/1. 1:3/1 

5 5/0, 2.5/0 

I 22/0 

9 14/0. 16/0. 17 /0, 24/0 

17 6/1, 24/1 

18 19/1 

:\"ow faults 6/1 and 24/1 that previously had detection time frame 19 are de­

tected at time frame 17. In addition, fault 19/1 that not detected before is detected 

at time frame 18 after the insertion operation. The result of the insertion operation 

is thus to reduce the effective test length by one and to increase the number of 

detected faults by one. 

Compaction Based On Vector Omission 

The compaction method described in this section is based on omission of test 

Vf'Ctors from the given sequence. 

The omission of a vector t; affects the detection of the faults {J} for which 

u,1e 1(.f) ~ Hi· In addition, it may cause a fault, which is undetected \\'hen f; is 
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included in the test sequence, to be detected after ti is omitted. These effects are 

detected by a fault simulator, which is run after each omission step. 

They consider the test vectors for omission in the order in which they appear 

in the test sequence. For i = 0, 1, ... , L - 1. They omit ti and recompute the fault 

coverage by simulating only the faults with udetU) ~ Ui and the undetected faults. 

If the fault coverage after omission is not lower than the fault coverage before 

omission, they accept the change. Otherwise, they restore ti. They also observed 

that when the sequence to be compacted is long, there is a large number of input 

vectors at the beginning of the sequence that can be omitted without reducing 

the fault coverage. In addition, there are long subsequences of consecutive vectors 

starting at arbitrary time units in the test sequence that can be omitted. To 

take advantage of the existence of such subsequences and reduce the number of 

simulations performed, they use binary search. Binary search is initiated starting 

from a vector t; that can be omitted. Initially, the lower and upper bounds of the 

range to be omitted are set to LB= i and U B = L l, respectively. They first set 

MID (LB+l'B)/2, omit the test vectors from t; tof;~1ID, and fault simulate the 

test sequence. If the fault coverage is reduced, they set U B =MID 1; otherwise 

they set LB MID+ 1. The binary search terminates with the test vector t1 such 

that t,. fi+I• .... tj can be omitted. The advantage of binary search is that instead 

of performing j - i + I simulations to omit t;, t;+i, ... , tj, only [log2 (j - i + 1)] 

simulations are required. 

Compaction Based On Vector Selection 

For every fault from the given sequence the method first collects all the sub­

sequences that detect the fault if the circuit starts from the all-unspecified state 

at the beginning of the subsequence. A subsequence is represented by a pair (s,e), 

such that the subsequence T[us, ue] detects the fault if the circuit is started from 

the combined all-unspecified fault-free/faulty initial state at time u 5 • After collect­

ing all the subsequences that detect every fault, they use a covering procedure to 

select a minimal subset of subsequences to detect all faults. 
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Here, we use their example to explain the vector selection operation. First, 

consider the s27 under the test sequence shown in Table 3. 7 

Table 3.7: Test Sequence 2 of s27 

I 0 I 2 3 4 5 6 7 

ti 1101 lOll 0100 0111 0001 0100 ll00 1111 

I 8 9 10 11 12 13 14 

t 
' 

0101 0011 0011 0101 1101 1110 0100 

After considering every time unit as a starting point and finding detection times 

for all the faults. they obtained the subsequences shown in Table 3.8. 

Table 3.8: Subsequences from Test Sequence 2 of s27 

fault (cl) subsequences fault ( c2) subsequences 

2/0 ( 0,3 ),( 7,9),( 10,12) 15/0 ( 7,9) 

3/0 (0,4),(7,10) 1.5/1 ( 0,4 ),( 7 .10) 

4/0 (1.4),(7,10) 16/0 (3,,5) 

6/1 (0,:3),(7,9) 17/0 (3,5),(9,11) 

7/0 ( 7,9) 18/1 ( 0,3),( 7 ,9 ),( 11,12) 

8/0 (3.4),(8,10),(9,11) 20/0 (0,3),(5,6),(7,9),( 11 J 2) 

8/1 (3,6),(9,12) 21/0 (3,4),(9,10) 

9/0 (1.4),(7,10) 21/1 (0,0 U 6,6),(7, 7),( 12,12).( 13, 1 :3) 

9/1 (0.3).(7,9),( 11,12) 24/0 (3,.S ).(9,11) 

11/0 (1,4),(7,10) 24/1 (0,3),(7,9) 

12/0 (0,4),(7,10) 25/1 (3,4),(9,10) 

13/1 (3,6),(9,12) 26/0 (0,0),( 6,6),( 7, 7),( 12,12),( 13, 13) 

14/0 (3,-5),(9,11) 26/1 (3,4),(9,10) 

14/1 (0,3),(5,6),(7,9),(11,12) 

From Table 3.8, they selected a subset of subsequences to detect all faults. The 

snbsequence (7,9) is necessary to detect 7 /0 and 15/0. The subsequence (3.5) is 

ll('C<'ssary to detect fault 16/0. \iVhen those two subsequences are selected. they can 
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detect other faults including faults 2/0, 6/1, 8/0, 9/1, and so on. The subsequences 

for the remaining faults are shown in Table 3.9. 

Table 3.9: Test Subsequences for the Remaining Faults 

fault (cl) subsequences fault ( c2) subsequences 

3/0 (0,4),(7)0) 11/0 (1,4M7,10) 

4/0 (1,4),(7,10) 12/0 (0,4),(7,10) 

8/1 (3,6),(9,12) 13/1 (3,6),(9,12) 

9/0 ( 1.4).(7.10) 15/1 (OA ).(7,10) 

lu Table 3.9, they finally selected the subsequence (9.12), so the new sequence is 

T[u 3• u5 ] o T[u,, ui2] which detect all of the above faults, the test length is reduced 

from 15 to 9. 

Comments 

For the omission operation. they need to eliminate some test vectors, without 

considering why the test generator generates those test vectors. To reduce sim­

ulation time. a binary search method was used to choose vvhich subsequence of 

adjacent test vectors to delete, but it is still random or blind. From their results, 

it shows that the omission operation gave the best results. It also shows that there 

are a lot of subsequences which can be removed from the test sequence without 

reducing the fault coverage. Until now this method gives the best rnmpaction of 

test sequences. 

In order to maintain the fault coverage, their three methods all use multiple 

fault simulations which take a lot of CPU time. It is also hard to use those ideas 

to improve the deterministic test generators. 

3.2.3 Hsiao and Patel's Method 

Hsiao and Patel's method ['.3] used an inert subsequence removal and a recurrence 

suhs<'quence remoYal or a combination of these t1v\'O methods. 
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Their approach to test compaction is based on the observation that test se­

que11ces traverse through a small set of states, and some states are frequently re­

visited. Table 3.10 shows the number of vectors and states traversed by HITEC 

[5]. 

Table 3.10: Vectors and States Traversed by HITEC 

Columnl Column2 

Circuit Vee States Circuit Vee States 

s298 292 137 s~32 1136 24 

s344 127 113 s1196 43-5 294 

s382 2074 646 s1238 475 332 

s400 2214 690 s1423 150 150 

s444 2240 592 s1488 1170 47 

s-526 2258 62Fj s1494 1245 47 

s641 209 103 s5378 912 912 

s713 173 85 s359:32 496 381 

s820 1114 24 

It is clear that many subsequences that start and end on the same states exist 

within most test sets. As they reported, test sets generated by other test generators 

also exhibit similar phenomena. The subsequences that start and end on the same 

state may be removed from the test set if necessary and sufficient conditions are 

nwt. 

\\'e listed the several definitions they gave in the paper in APPENDIX B. 

Inert Subsequence Removal 

An inert subsequence may be removed if any one of the following four criteria 

are met. 

Criterion 1: For an inert subsequence Tinert['l'i, ... , Vj], if faulty state sr1 at the 

end of time frame i - 1 and faulty state S1 at the end of time frame j are identical 

for ewry undetected fault f \'vhich is activated at time frames i - 1 and j. T;11,,,·1 

ran lw remo,·ed. 
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Criterion 2: For an inert subsequence Tinert[v;, ... , Vj], if error vector E1 at the 

encl of time frame j covers Et 1 at the end of time frame i - 1 for every activated 

fault f, and the additional fault-effects propagated at time frame j do not lead to 

detection, Tinert can be removed. 

Criterion 3: For an inert subsequence Tinert[vi, ... , Vj], if error vector Et 1 at the 

end of time fram<" i - 1 covers E1 at the end of time frame j for every activated 

fault f, Tinfft can be removed if the additional fault-effects propagated at time 

frame i - l do not cause fault-masking in time frame j + 1. 

Criterion 4: For an inert subsequence Tinert[v;, ... , rJl. if neither error vectors 

Et 1 nor E1 covers the other, conditions imposed on activated faults in both criteria 

:2 and critPria 3 need to be satisfied in order for the inert subsequence 1imrt to be 

l'f'l110Vecl. 

Recurrence Subsequence Removal 

\!any state-recurrence subsequences exist within the test sets generated by both 

deterministic and simulation-based test generators. Deterministic test generators 

backtrack until all flip-flops have don't care (X) values for each target fault. Thus, 

tbf' initial vectors of each test sequence derived act as synchronizing sequences for 

tllf' circuit. Consequently, many of these synchronized states are visited repeatedly 

in tllf' test set. In simulation-based test generators, states are repeatedly visited as 

well. 

In terms of fault detection properties, typically an easy fault in the circuit is 

c!f,tectecl multiple times by the test set. This is because an easy fault requires only 

a few constraints on the primary inputs and flip-flop state in order for detection. 

This observation, together with the fact that many state recurrence subsequences 

residP within the test set, suggests the possibility of reducing the test set size even 

further by removing state-recurrence subsequences that only detect easy faults. In 

order to identify multiple detections by the test set, fault-simulation starting from 

the occurrence of t hf' first state-recurrence subsequence without fault dropping is 

nPcessary. 
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Table 3.11 gives an example of a test set that has state recurrence sequences 

Trec[t'3 ... v9] which takes state B back to Band Trec[v4 ••• v6] which takes state C back 

to C. Some faults are detected within each subsequence. 

Table 3.11: Test Sequence with State-Recurrence Subsequences 

Vector Next State Detected Faults 

V1 A fi,J6,h 

V2 B fg,!11 

V.3 C h 
l'4 D hJs 
V5 E J5 
V6 C 

t'7 F J4Js 
Vs G hJ5 
i~g B ls 

Removal of a state-recurrence subsequence is illustrated in Figure 3.5. 

111 part (a) of Figure 3 .. 5, all faults detected within the state-recurrence subse­

q1wnn' Tnc1, faults J1 , h, J9 , have additional detection subsequences that do not 

oYerlap with I~eel itself, so Trtcl can be safely removed from the test set if the 

fault masking criterion at the boundary of of Trec1 for Jg, described in the paper, is 

rnf't. After the removal of Trecl, all three faults J1 , h, J9 are still detected by the 

compacted test set shown in Figure 3.5 (b). 

Inert-subsequence removal followed by recurrence-subsequence removal 1s the 

combined approach performed for all the test sets. 

Comments 

This method is much better than Reddy's in saving the simulation time, because 

it does not use multiple simulations. However, in nature it is the same as the 

ornission opPration. 
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CHAPTER 4 

SUSEM TEST SEQUENCE COMPACTION 

METHOD 
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In this chapter. we first introduce some terminology, then explain the principle 

of our ne\\'ly dew,)oped compaction method called SUSE~I. 

4 .1 Terminology 

1. Sdup sfq11F11cc 

A fault is activated in one time frame (labeled 1) by an input sequence T1 and 

an initial state 50 . and the resulting error is propagated to a PO (primary output). 

State justification on 50 is performed, i.e .. a path from unkno\\'n or don't care state 

(X) or some state such as reset state to 50 is found consisting of another sequence 

of input \·ectors. T0 . T0 is called a sdup sequrna or a justification su1urncc 

2. Propagation stq1101cc 

Tlw input sequence T1 is called a fault propagation sequrna or simply a propa­

gation stqurna. 

3. Fault detection time frame: 

The resulting error is propagated to a PO (primary output) going for\\'ard 111 

time using r ~ 1 frames, the time framer is a fault detection tinu frame . 

.:J. Fault ucitation state 

We call the initial state 50 a fault ucitation state. 

5. Sdf-in it iali::ing sequence 

If sorne flip-flop values at time frame 1 are binary, these are justified gorng 



hackward in time using p time frames. This process succeeds when the flip-flop 

values in the first time frame (labeled -p+ 1) are all X. Such a test sequence is 

called a st!f-initializing sequence. 

6. Combined fault-free/faulty state at time frame i [2]: 

\Ye define the state of the fault free circuit at time frame i and the state of the 

faulty circuit at time frame i to form the combined fault-free/faulty state at time 

frame i. 

7. Singlt ei.:rnt fault: 

If the fault-fret> and faulty values of all the PPis (pseudo primary input) are 

idt>nt ical at a time frame. the fault is called a single event fault for the time frame. 

8. J/ultiph fl'rnf fault: 

If there exists at least one PPI whose fault-free and faulty values are different. 

the fault is railed a multiple tt•ent fault. 

9. Dominator: 

:\ gate is a dominator of a line if all paths from that line to any primary output 

pass through that gate. 

4.2 SUSEM Compaction Method 

The method we proposed is based on the observation that for self-initializing 

sequences (like sequences generated by HITEC [5]), the test sequence is composed 

of two parts (the setup sequence or justification sequence, and the fault excitation 

and propagation sequence) for each target fault. For self-initializing sequences. no 

test sequenre in the test set depends on the state at which the sequential circuit 

arrives due to the application of the previous sequences. Therefore, the set of 

test sequences may be applied in any order without affecting the fault rnverage 

of target faults. the fault coverage of other faults can however be affected. It 

also suggests that the generator which generates self-initializing sequences does not 

use any kind of information about which state a circuit reaches at the end of a 

single-target-fault test sequence. Such data can however be easily obtained from 
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fault simulations. When the single-target-fault test sequence is run through a fault 

simulator, the circuit will go from a don't care state through a fault excitation state 

to a fault detection state for the target fault. In the current sequential ATPGs, 

the information of the fault detection state for a good circuit and faulty states for 

undetected faults are ignored or not used efficiently. But there is a possibility that 

a good circuit state at the fault detection time frame for the currently detected 

target fault and a fault-excitation state for a faulty circuit for one or more not yet 

detected faults are the same. Therefore. to detect such a fault we do not have to 

generate a setup sequence as the circuit is already in the fault-excitation state. We 

can use the propagation sequence of the previous target fault and eliminate the 

set up sequel!ce of the current fault. 

To take advantage of this observation. we need to save a good circuit state and 

also all undetected faulty circuit states after simulating the test sequence for a given 

target fault. If the circuit state for the good/faulty circuit at the detection time 

frame is the same as the excitation state of that good/faulty circuit (actually, the 

com billed circuit state defined in [2] and given in 4.1 ), then we can compact the 

test sequence by ignoring the setup sequence part. \Ve call our method the SetlTp 

Sequence Elimination l\Iethod (SCSEl\1). To improve the test generator. we have to 

analyze hmv it would work for the whole test generation procedure. The principle 

oft llC' SliSEl\'I is explained in Figure 4.1. 

hi Figure 4.L we use the following notations: 

.r.r.a.r: represent the circuit state (i.e .. good circuit PPis). 

S1.S\.SJ,Sn: represent subsequences for detecting target faults #1, #i, #j and 

#n. 

L(S'i),L(Si),L(Sj),L(Sn): represent lengths of the subsequences #L#i,#j and 

#n. respectively. 

LE(S'i ), LE(Si), LE(S1 ), LE(Sn ): represent the setup subsequence lengths of 

the subsequences #1, #i, #j and #n, respectively. 

01111 in S'i: is the excitation state of S1 • 

10001 in 81 : is the final state or detection state of 81 for the fault #1. 
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SI Si Sj Sn 

0 0 0 0 

LE(Sl) 
0 

LE(Si) 
0 0 0 

0 0 LE(Sj) 
0 

LE(Sn) 
0 

0 0 0 0 

01111 0 0 0 0 11001 0 0 0 0 10001 0 0 0 0 00011 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

10001 00011 11001 00100 

L(Sl) L(Si) L(Sj) L(Sn) 

Figure 4.1: Principle of the SUS EM compaction in the PPI vector space 
n'J)l'<~sent at ion 

:\s shown in Figure 4.1, there are two parts in every test subsequence for de­

tecting every target fault. The upper part is the setup subsequence (from the first 

test vector to the vector before the excitation time frame) and the lower part is the 

propagation subsequence. Suppose the good circuit state at the last time frame for 

# 1 subsequence is the same as the good circuit state at the excitation time frame 

for #j subsequence. Then. we can remove the setup ( or excitation) subsequence of 

#j subsequence, concatenate the# 1 subsequence and the propagation subsequence 

of #j to form a subsequence ·which will still detect #1 and # j faults but reduce 

the test vector length by the length of #j setup subsequence. After compacting the 

#1 and #j test sequences, we find that at the end of time frame for subsequence 

#j. the good circuit state is the same as the good circuit state at the excitation 

time frame for #i subsequence. So we can now remove the setup subsequence of 

#i. concatenate the # 1 subsequence, with #j propagation sequence and #i propa­

gatiou sequence to form a subsequence which will still detect #1, #i and #j target 

faults. l'sing the same method, we can remove the setup subsequence of #n. so 

finally we get a sequence v;ith a length reduced by LE(S;) + LE(S1 ) + LE( ). but 
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it still can detect those four target faults. 

We show the principle of SUSEM also in Figure 4.2 for the same virtual circuit. 

This figure is expressed in the primary input (PI) vector space instead of the PPI 

vector space but with the same notations as those in Figure 4.1, except using Pis 

instead of PPis, like Pl 1000110 instead of PPI 10001 in the first test sequence S1• 

This virtual circuit has 7 Pis and 5 flip-flops (PPis). In order to have the sequence 

S1 and the propagation sequence of Sj concatenated, it requires their PPis to be 

the same while their Pis are not necessarily the same. From Figure 4.2, it is obvious 

that it reduces the original test sequence length by LE(Si)+LE(Sj)+LE(Sn) using 

our SUSEI'v1 compaction. In the next chapter, the actual test sequence compaction 

will be shown. 

SI Si Sj Sn 

11 ("~ 1010100 111110 

LE(Si) ~ 
0 0 

LE(S I) LE(Sj) 
0 

LE(Sn) 
0 

0 0 

0 0 

1000111 0 0 0 0 0110011 O 0 0 0 0000000 0 0 0 0 1000110 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1000110 0001111 1100100 0010011 

L(Sl) L(Si) L(Sj) L(Sn) 

Figure 4.2: Principle of the SUSEM compaction Ill the Pl vector space 
representation 
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CHAPTER 5 

IMPLEMENTATION OF SUSEM 

5.1 Introduction 

In this chapter, we explain the implementation of SUSEM using the flowchart 

shown in Figure 5.1. 

Our purpose is to compact test sequences generated by deterministic test gen­

erators. Although our static test compaction method is independent of the test 

generation procedure, it still needs some information about test sequences and tar­

get faults. The only deterministic test generator that is available to us is the HITEC 

package, but unfortunately we do not have access to the source code of HITEC nor 

to the source code of its fault simulator PROOFS. So we need to get as much 

information as possible from running HITEC, and we can use an alternative fault 

simulator HOPE, which is faster than PROOFS and gives the same fault simulation 

results. More importantly, we can gain access to its source code, and can modify 

it to obtain the circuit information we want. 

Therefore, in this chapter, we first introduce HITEC and explain how to get 

information we need. We then describe a preprocessor which we have developed to 

prepare files for running HOPE. Next, we explain our modification to HOPE. And 

finally, we present our compaction algorithm. 



Input file 

HITEC 

PREPROCESSOR 

Modified 

HOPE 

COMPACTION 

SUSEM 

Figure 5.1: Flowchart of compaction system 
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5.2 HITEC - the Test Sequence Generator 

5.2.1 Introduction to HITEC 

HITEC [5] is a sequential circuit test-generation package that is used to generate 

test patterns for sequential circuits. In doing so it does not assume the use of 

scan techniques or a reset state. It generates test sets with very high coverage, 

and identifies the undetectable faults which is the major difference between the 

deterministic test generator and the simulation-based test generator. 

HITEC consists of two phases: the forward time processing phase (FTP) and the 

justification phase (RTP). In the first phase the fault is activated and propagated 

to a primary output, this is followed by the second phase in which the initial 

state set in the first phase is justified. It uses a decision strategy based on the 

implicit enumeration of PODEM (Path-Oriented DEcision Making) [10], and uses 

dominators and mandatory assignments similar to those used in other generators 

(i.e., FAN [ll]. TOPS [12] and SOCRATES [13]). To ensure completeness of the 

algorithm, a nine valued logic system [19] is used in HITEC. 

5.2.2 T~rget F~ults ~nd Test Vectors 

The deterministic test generator HITEC in the first step chooses an undetected 

fault from the fault list. The HITEC uses FTP to activate a fault and propagate 

it to a PO and then uses RTP to do state justification. If the process is successful, 

HITEC generates test vectors to detect the target fault. After generating the test 

vectors, it uses fault simulator PROOFS to detect other faults, then remove those 

detected faults from the fault list, and continues to choose the next target fault, 

generates test vectors until all faults are detected or aborted. 

In our compaction procedure we use HITEC to generate test sequences for 

sequential circuits [18]. 

Procedures: 

( 1) Run HITEC and get test sequences for all target faults of the circuit under 
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test. The commands, using s27 circuit as an example, are given below and in Figure 

5.2: 

do_hitec s27 ( or any circuit is represented in the ISCAS89 benchmark format) 

level s27 

Jaultlist 

equiv 

dominators 

testgen 

These commands are explained in the following part. 

do_hitec: creates a TEST.run file. It includes the option set to run the test 

generator (which invokes the fault simulator PROOFS). 

level: its input file is also the benchmark circuit, like s27. This file given in 

Figure 5.3 is used as an example. 

The outputs of level are circuit.name and circuit.lev files, which we use to change 

the PROOFS format of faults to the HOPE format of faults. Circuit.name and 

circuit.lev files for benchmark circuit s27 are given in Figure 5.4 and Figure 5.5, 

respectively. 

In Figure 5.5, the number in the first line is the number of gates in the circuit 

plus one. The second number is obsolete. Each line starting with the third line 

represents one gate. The first number is the node identifier. The second number 

is the token for the gate type like INPUT, OUTPUT, XOR, AND etc. The third 

number is the level of the gate in the circuit (Level [20] is calculated by setting all 

primary inputs and flip-flops to level 0, and performing an event-driven calculation 

of the level of each gate in the circuit. Any gate with an unassigned level is in an 

asynchronous feedback loop or is a successor of an unconnected line). The fourth 

number is the number of inputs to the gate. Next is the list of input lines to the gate 

sorted in order of decreasing ( easier to control) values of controllability zero. Next 

is the list of input lines to the gate sorted in order of decreasing (easier to control) 

values of controllability one. Next is the number of successors of the gate, followed 

by the list of successor gates sorted in order of decreasing observability values ( easier 
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Figure 5.2: Flowchart of HITEC 
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#s27 

#4 inputs 

# I output 

# 3 D-type flipflops 

# 2 inverters 

# 8 gates (1 ANDs + I NANDs + 2 ORs + 4 NORs) 

INPUT(G0) 

INPUT(GI) 

INPUT(G2) 

INPUT(G3) 

OUTPUT(G 17) 

GS = DFF(G I 0) 

. G6 =DFF(Gl I) 

G7 = DFF(G 13) 

GI4 = NOT(G0) 

GI?= NOT(Gl 1) 

GB = AND(G 14, G6) 

Gl5 = OR(G12, G8) 

GI6 = OR(G3, G8) 

G9 = NAND(G16, Gl5) 

GIO = NOR(Gl4, Gl I) 

G 11 = NOR(G5, G9) 

Gl2 = NOR(GI, G7) 

Gl3 = NOR(G2, 012) 

Figure 5.3: Benchmark circuit s27 ( s27. bench) 
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to observe). The next number is the observability of the line. The next character 

is a semicolon or an 0. If there is an 0, then this line is a primary output. The 

last two numbers are the values of controllability zero and one, respectively. 

The testability measures are calculated using SCOAP [20] testability measure­

ment technique. The measurements are calculated through the flip-flops, and cal­

culation continues until there is convergence. 

faultlist: this command generates the uncollapsed fault list, the part of which 

for s27 is shown in Figure 5.6. 

equiv: the program equiv collapses any fault list and orders the faults in the 

depth-first order from the primary outputs. The equivalent fault file for s27 is 

shown in Figure 5. 7. Equivalent faults are listed in the same line, separated by 

colons. and the fault closest to the primary outputs is listed first. This fault is used 

by the test generator as the representative fault for the fault group. 

dominators: the command calculates the static dominators of each node in the 

circuit and determines all the mandatory assignments to propagate a D or lJ ( D 

and lJ are D-algorithm notations) on the input of a given gate. 

testgen: this procedure stores the test generation results in the file circuit.grs 

and circuit.atp which includes the resulting test vectors. Because we also need 

to know which test set detects which target fault, we have to perform additional 

operations. 

Since vve do not have access to the source code of the HITEC package, we have 

to run HITEC and extract the information we want. \Ve use UNIX script command 

to get the testgen results which are shown in screens. The edited result file is stored 

in a file circuit.genera. s27.genera as an example is shown in Figure 5.8. 

5.3 The Preprocessor 

In order to extract target faults and the corresponding test subsequences, we 

wrote the three preprocessing programs, i.e., pf2hf, tf and cformat, as shown in 

Figure 5.9. 



1 GO 
2 GI 

3 G2 

4 G3 

5 GS 
6 G6 
7 G7 

8 Gl4 
9 G12 
10 GS 

11 Gl3 
12 G15 

13 G16 

14 G9 

15 GI I 

16 G17 

17 GIO 

18 Gl7_$0UTPUT 

Figure 5.4: A net name to a net number translation for s27 (s27.name) 

36 



19 

10 
l l O O I 8 16 ; 0 0 

21001911;00 

310011113;00 
4 1 0 0 l 13 12;0 0 

5 5 0 l 17 17 1 15 7 ; 2 10 

6 5 0 l 15 15 1 10 10; 8 11 

7 5 0 l 11 111 910; 1 3 

8 10 5 1 1 1 2 10 17 16 ; 1 1 

9 9 5 2 7 2 7 2 2 12 11 9; 2 3 

10 6 10 2 6 8 6 8 2 12 13 8 ; 3 14 

11910293931710; 13 

12 8 15 2 10 9 10 9 1 14 5 ; 6 4 

13 8 15 2 10 4 10 4 1 14 8 ; 4 1 

14 7 20 2 12 13 12 13 1 15 3 ; 6 5 

15 9 25 2 14 5 5 14 3 6 17 16 0; 8 11 

16 10 30 1 15 15 1 18 0 ; 11 8 

17 9 30 2 15 8 15 8 1 5 7 ; 2 10 

18 2 35 1 16 16 0 0 0 0 11 8 

inputs in successors 
0rder of in order of 

gate number decreasing d . pri·mary 
Cl ecreasmg 
I obs.iValue 9utput? 0 _is prim~ry output 
, , ; 1s not pnmary output 

type of inputs 

+ ~~..i.....,.--~---'---.---~---'--..---.-......... ----, 

10 6 10 

t t 
node level 
identifier 

6 8 6 8 

t 
inputs in 

order of 

decreasing 

co 

2 

t 
number 

of 

successors 

3 14 

observability 

value 
controllability 
values 

CO and Cl 

Figure 5.5: Levelized circuit description for s27 (s27.lev) 
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1 0 0; 
1 0 1; 
2 0 0· 

' 
2 0 1; 
3 0 O· 

' 
3 0 0· 

' 
4 0 0· 

' 
4 0 1· 

' 
5 0 0; 
5 0 1 · 

' 
6 0 0; 
6 0 1; 
6 1 0; 
6 1 1 · 

' 

9 0 0; 
9 0 1; 
9 1 O; 
9 1 1 · 

' 
9 2 0· 

' 
9 2 1; 

fault on gate output 

+ 
1 s I O 1

1 j,,._s-a-1 

t 
node iderfier 

I 9 1
2 

I O l~s-a-0 

t 
fault on 2nd input 

Figure 5.6: Fault list for s27 (s27.fault) 
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12 1 0; 
18 0 0 18 1 0: 16 0 0 16 1 1 
15 0 1 
15 2 0 5 0 0 
5 1 0 17 0 0 17 2 1 17 1 1 
8 0 1 8 1 0: 1 0 0 
15 1 0 14 0 0 
14 2 1 13 0 1 13 2 1 4 0 1 13 1 1 
10 0 1 
10 2 1 

Figure 5.7: Equivalent fault file for s27 (s27.eqf) 

Program pf2hf 1,yritten in C-Language ( circuit.genera as an input file) is used to 

generate files circuit.test and circuit.fault. A file circuit.test stores test sequences 

for target faults. The file circuit.fault stores all injected faults which for some 

circuits cannot be detected or are redundant, therefore we still need to extract 

target faults. It is done by program tf After extracting target faults, they are 

saved in the circuit.targetfault. Next, we use program cformat to convert it to 

faults which HOPE can accept and store these target faults in circuit.faulth. 

Here we still use s27 as an example. The file s27.test, shown in Figure 5.10, is ac­

cepted by the modified HOPE. The file s27.fault is converted to the s27.targetfault. 

, .targetfault as an example is shown in Figure 5.11. Then we use program cfor­

mat to change the file s27.targetfault to a file s27.faulth. The file s27.faulth is 

shown in Figure ,5.12. The format of faults in the file s27.faulth can be accepted by 

HOPE. 



inject fault line 18 input 0 s-a-1 
read vector: 0010 

det faults 0 coverage 0.000000 
read vector: 0011 

det faults 4 coverage 0.125000 
DET4RED0 
inject fault line 17 input 2 s-a-0 

read vector: 1100 

det faults 10 coverage 0.312500 
read vector:0 1 10 

det faults 10 coverage 0.312500 

read vector:0001 

det faults 16 coverage 0.500000 

DET 16RED0 
inject fault line 17 input 1 s-a-0 
read vector: 0011 

det faults 30 coverage 0.937500 

DET30RED0 

inject fault line 9 input 1 s-a-0 

read vector: 0100 

det faults 30 coverage 0.937500 

read vector: 1001 

det fault 32 coverage 1.000000 

DET32RED0 

Figure 5.8: The result collected from running HIT EC for s27 ( s27 .genera) 
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Input file 
circuit.genera 

pf2hf 

circuit.test 
circuit.fault 

circuit.fault 

tf 

circuit.targetfault 

cformat 

Output file 
circuit.faulth 

Figure 5.9: Flowchart of the preprocessor 
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As can be seen in the file s27.genera of Figure 5.8, the first target fault is 18 

0 1 ( the second number is the input line number, if it is 0, it means the output), 

which means line 18 has a s-a-1 fault, and it needs two test vectors to detect it. 

The vectors are: 

1. 0010 

2. 0011 

It also accidentally detects three other faults (as indicated at the end of the 

subsequence, in the file s27.genera). 

The method for changing the format of faults is as follows ( we use s27 as an 
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example): 

1. Read every fault from the file circuit.targetfault, like s27.targetfault in Figure 

5.11. 

2. Check the file circuit.name, like s27.name in Figure 5.4. For each fault, find 

a net name written next to the net number. As 18 corresponds to Gl 7 in the file 

.name. 

3. The second number in a target fault description in Figure 5.11, identifies 

output (0) or inputs (1,2, ... ). The third number identifies type of the stuck-at 

fault, 0 or 1. For an example, fault 18 0 1, output stuck-at 1, is changed to G17 /1 

in HOPE format. 

4. ·when a fault is not an output stuck-at fault, i.e., the second number of a 

target fault is not 0, we need to check the file circuit.lev, like s27.lev in Figure .5.5. 

to decide the input net number from the second number of the target fault in the 

net number line. then use the file circuit.name again to find the net name of the 

fault input from the input net number. Here is an example, for the fault 15 2 0, do 

step 1 and 2, we find 15 corresponds to G11, then read the second number which 

is 2, and look at the file s27.lev, we find that at the net number 15 line, the second 

input is the net number 5. Finally using 5 and check the file s27.name, ,ve find that 

.5 corresponds to G5, so the fault 15 2 0 can be converted to G5 -+ G11 /0. 

The target faults in the format accepted by HOPE are stored in the file cir­

cuit.faulth. Now, we can use HOPE to get the circuit state information we need. 

5.4 Modification to HOPE 

5.4.1 Introduction to HOPE 

HOPE [6, 7, 8] is an efficient parallel fault simulator for synchronous sequential 

circuits that employs the parallel version of the single fault propagation technique. 

HOPE is based on an earlier fault simulator called PROOFS [17], which employs 

sf'veral heuristics to efficiently drop faults and to avoid simulation of many inactive 
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faults. In HOPE, three new techniques that substantially speed up parallel fault 

simulator are added: 

1. Reduction of faults simulated in parallel through mapping non-stem faults 

to stem faults [6]. 

2. A new fault injection method called functional fault injection. 

3. A combination of a static fault ordering method and a dynamic fault ordering 

method. 

HOPE fault simulator, which incorporates the above three techniques, is about 

1.6 times faster than PROOFS for benchmark circuits. 

For our compaction method, we need to know the circuit state information. 

therefore \\'e use the fault simulator to get flip-flop states for every time frame. \\'e 

had to make some minor changes to the simulator. 

The following changes were made: 

1. In HOPE, the states of all flip-flops are initially set to X ( don't care) at 

the beginning of the test sequence. We modified HOPE such that the states of all 

flip-flops are also set to X at the beginning of every subsequence for every single 

target fault. As a result, the order of the target faults does not matter, and the 

subsequences for the target faults can be moved around, so we may compact test 

sequences. It does not affect fault coverage for target faults although it may affect 

fault coverage for non target faults. 

2. \Vhen target faults are injected to parallel fault simulator, modified HOPE 

outputs not only good states of flip-flops, but also all faulty states of flip-flops. 

5.4.2 Circuit St~te Inform~tion 

In order to analyze every test sequence for every target fault and divide it into 

the setup sequence and propagation sequence, we need to find the excitation frame 

for every target fault. The input vectors starting with the excitation frame and 

ending with detection frame form the propagation sequence. \Ve can also obtain 

the combined fault-free and faulty state in the excitation frame. 
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To get the excitation states, the setup sequences and the propagation sequences, 

we need to consider the following several cases: 

1. If all the faulty and good circuit states are the same for the target fault, 

then the whole test sequence except the last vector of the test sequence is a setup 

sequence and the last vector is a propagation sequence. The excitation state is the 

state of flip-flops in the last time frame. 

2. If the target fault has not been injected to the parallel fault simulator, it 

is a single event fault, but it is detected at the end of the test sequence. In this 

case, we also pessimistically estimate that the whole test sequence is a propagation 

sequence. There is no setup sequence. The excitation state is X (don't care). 

3. If the faulty circuit state for target fault is different from the good circuit 

state starting from some test vector (labeled by el) in the test sequence, the part of 

the sequence from the vector before the vector (el) to the end of the test sequence 

forms the propagation sequence, the remaining part forms the setup sequence. The 

excitation state is the state of flip-flops in the time frame before the vector el. 

In order to compare the faulty circuit state and good circuit state, we use 

HOPE to simulate every sequence for every target fault to get the excitation state. 

Actually, In the excitation state, the good circuit state is the same as the faulty 

circuit state for the target fault. 

The above three cases for finding excitation states were implemented in the file 

excitation. 

The above method can be described as follows: 

Use HOPE to simulate test sequences for all target faults. To find the detection 

states, generate the combined fault free and faulty states for all target faults at the 

end of test sequences. 

For example, use HOPE to simulate the first test sequence (labeled as Sl) for 

a good circuit, and get the good circuit state (labeled as G 1S1) at the end of the 

test sequence, then simulate fault Fl, and get the faulty state for fault Fl using 

sequence Sl (we label it FlSl ). Get also the excitation state for fault Fl. Extract 

the same information for all target faults in a given circuit. If the GlSl is the 
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same as E2S2 (E2S2 is the excitation state for the good circuit using the second 

test sequence for the second target fault), then the sequence S1 will become the 

candidate for compaction with the test sequence S2. 

After extracting all information, we can do compaction using the compaction 

algorithm described in the next section. 

5.5 Implementation of the Compaction Algorithm 

5.5.1 Con1p~ction Algorithm 

\Ye choose the greedy algorithm to compact the test sequences. 

1. Collect the fault excitation states and detection states for all target faults. 

2. Begin with the first target fault F(i) where i=l, check whether its detection 

state GiSi is the same as the excitation states EjSj of any other target fault F(j). If 

we find a match (i.e., the detection state for one fault is the same as the excitation 

state for the other fault F(j), i.e., GiSi = EjSj where j =/:- i), we remove the 

setup sequence SU(j) of the fault F(j), and label both the first subsequence and 

#j subsequence as used. Now, fault F(j) becomes a current target fault. Continue 

with this fault F(j) detection state, and check whether there is a match between 

this fault detection state and the excitation of any other not used test sequences for 

their target faults. If there is a match, label that subsequence as used, if no match. 

we move on to search matches from the beginning subsequence which has not been 

used, until all test sequences have been placed in the compaction. 

This algorithm does not give optimized compaction results, but it can show us 

what the potential of SUSEM is . 

The pseudo code for our compaction algorithm is shown below: 

setup_subsequence_removal () 

From the first target fault to the last target fault 

Collect fault excitation states and detection states 

Begin from the first target fault to the last target fault 



search matches between fault detection states and excitation states 

label subsequences as used when matches found. 

remove setup sequences 

repeat until no more match 

5.5.2 In1ple1nent;:-:tion 
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In this part, we explain how to run the compaction package using s27 benchmark 

circuit as an example (given in Table 5.1). For the ISCAS89 benchmark circuit 

s2,, data collected from running HITEC, PREPROCESSOR and the compaction 

package is shown in Table 5.L 

In Table 5.1, we list all test vectors (#TVs) in column one, good circuit PPI 

(GPPI) (v,hich are the flip-flop outputs at the beginning of the time frame) in 

column two, good circuit PPO (GPPO) (which are the flip-flop inputs at the end of 

the time frame) in column three, faulty circuit states (FPPI) in column four. For 

faults which are injected in the parallel fault simulator, their faulty circuit states 

are shown in column four. If the faulty states of target faults are not listed, it means 

that the faulty circuit states are the same as the good circuit states. Excitation 

states (ES) (for every target fault) are listed in column five at the last time frame 

of that subsequence, and target faults (TF) ( a subsequence targets a fault, the fault 

is the target fault) are listed at the end of that subsequence. 

The data shown in Table 5.1 were obtained in the following way: 

1. Run HITEC and get the whole test sequence (Column 1) for the circuit under 

test, like s27. 

2. Use the preprocessing programs to convert the target faults to the format 

accepted by HOPE (Column 6), 

3. Run the modified HOPE and get three output files, one of these files shows 

which faults are injected in the parallel fault simulator. The faulty flip-flop states 

(i.e., FPPI in Column 4) are shown in the second file. The third file shows good 

circuit states for the beginning time frame and the end of the time frame in Column 

2 and 3, respectively. 
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4. Run the pre-compaction program and get excitation states for all target 

faults (Column 5). 

5. Run a program for the compaction algorithm and get the compacted test 

results. They include the compacted test sequence which can be used to check fault 

coverage and the total number of test vectors after the compaction. 

From Table 5.1, we can see some good circuit states (PPO) at the last time 

frame of the subsequence are the same as the excitation states for other target 

faults, like Gl Sl: 010 is the same as E3S3: 0x0. (here, we use GiSi to represent 

a good circuit state ( GPPO) for #i target fault at the last time frame of #i test 

sequence, EiSi to represent an excitation state (GPPI) for #i target fault), so we 

can eliminate the setup sequence of the subsequence #3 like: 

0010 

0011 from the first vector to this vector are subsequence #1 

0011 this is setup sequence for the subsequence #3. 

1001 

0001 from the third vector to this vector are subsequence #3 

Therefore, after the compaction, the test sequence for detecting #1 and #3 

target faults will become: 

0010 

0011 

1001 

0001 

\Ve have deleted the first vector ( the setup sequence of #3 subsequence) of the 

subsequence #3, and the above test sequence can still detect the target faults #1 

and #3 as verified by fault simulation. 



**** S27 

**** 4 

:0010 

:0011 

A 

:1100 

:0110 

:0001 

A 

:0011 

:1001 

:0001 

A 

:0111 

:0011 

:0110 

A 

: 1111 

:0000 

:1001 

A 

:1010 

:0001 

A 

:1110 
:0000 

:0111 

A 

:0100 

:1001 

Figure 5.10: The test file for the modified HOPE for s27 circuit 
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18 0 1 
17 2 0 
17 1 0 

13 1 0 
11 I 0 
15 2 0 
10 1 1 
9 1 0 

Figure 5.11: The target fault file for the PROOFS for s27 circuit 

G17 /1 
G14-> Gl0 /0 
Gll -> Gl0 /0 
G8 -> G16 /0 
Gl2 -> G13 /0 
GS-> Gll /0 
G6-> G8 /1 
G7 -> Gl2 /0 

Figure 5.12: The target fault file for the modified HOPE for s27 circuit 
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Table 5.1: s27 Benchmark Circuit State Information and Excitation States 

#TVs GPPI GPPO FPPI ES TF 

1:0010 XXX 0x0 xxx( #8),xxx( #4) ES 

2:0011 0x0 010 000( #4),xx0( #2) Gl 7/0 

3:1100 XXX 101 

4:0110 101 000 ES 

,5:0001 000 010 100( #2) Gl4 ➔ Gl0/0 

6:0011 XXX 0x0 xxx( #8) 

7:1001 0x0 010 xx0( #2) ES 

8:0001 010 010 011( #5),110( #3),xx0( #2) Gll ➔ Gl0/0 

9:0111 XXX 0x0 

10:0011 0x0 010 xx0( #2) 

11:0110 010 010 010( #4), xx0( #2) ES G8 ➔ G16/0 

12:1111 XXX 100 

13:0000 100 000 ES 

14:1001 000 010 001( #5),100( #2) Gl2-+ G13/0 

15:1010 XXX 100 xxx( #8) 

16:0001 100 000 100( #6) ES G5 ➔ Gll/0 

17:1110 XXX 100 

18:0000 100 000 

19:0111 000 000 000( #7),001( #5),100( #2) ES G6-+ G8/1 

20:0100 XXX 0xl xxx( #4) 

21:1001 0xl 101 0xl( #8),001( #4),100( #2) ES G7-+ G12 /0 
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CHAPTER 6 

COMPACTION RESULTS 

6.1 Compaction Results 

In this chapter we show the results of our method-SUSEM. We run HITEC on 

several ISCAS89 sequential benchmark circuits [18]. The attributes of benchmark 

circuits are given in Table 6.1. 

SUSEr.'1 needs to find matches between excitation states and excitation states. 

so if there is a very large number of flip-flops in a circuit, then the probability of 

finding matches is very small except in a case of a very large number of target 

faults. 

\Ve first check the number of target faults in circuits listed in Table 6.1. \Ve 

ran HITEC using Apollo workstation (its specifications are listed in Appendix C) 

with HITEC defaults as follows: backtrack default is 10000, state backtrack default 

is 10000 and time is 2 seconds. We used SPARC5 (Willow) to run HITEC with 

default values and the preprocessing programs to obtain the test results as given in 

Table 6.2. The specifications of Willow are listed in Appendix C. 

\Ve choose those circuits which have a smaller number of flip-flops. Circuits 

which have less than 10 flip-flops are: s27, s386, s510, s820, s832, sl488, sl494. 

Then we ran HITEC package to get target faults and the corresponding test 

subsequences for the above listed circuits. Next ran our compaction algorithm and 

the results are shown in Table 6.3. 

In Table 6.3, names of circuits from the ISCAS89 benchmark set are given in 

column one. # FFs represents the number of flip-flops. # DFs represents the 

number of detected faults. TVs are the total number of test vectors. RED(%) 
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Table 6.1: Benchmark Circuit Statistics 

Circuit Gates D Flip-flops Primary Inputs Primary outputs Faults 
s27 10 3 4 1 32 

s298 119 14 3 6 308 
s344 160 15 9 11 342 
s349 161 15 9 11 350 
s382 158 21 3 6 399 
s386 159 6 7 7 384 
s400 164 21 3 6 426 
s444 181 21 3 6 474 
s510 211 6 19 

,.., 
564 I 

s526 193 21 3 6 555 
s526n 194 21 3 6 553 
s641 379 19 35 24 467 
s71:3 393 19 35 23 581 
s820 289 5 18 19 850 
s832 287 5 18 19 870 

s953 395 29 16 23 1079 

s1196 529 18 14 14 1242 
s1238 508 18 14 14 1355 
s1423 657 74 17 5 1515 

s1488 653 6 8 19 1486 

s1494 647 6 8 19 1506 

s.5378 2779 179 35 49 4603 

s9234 5597 228 19 22 3934 

s35932 16065 1728 35 320 39094 
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Table 6.2: Benchmark Circuit Target Fault Statistics 

Circuit D Flip-flops Total Vectors Fault Coverage Target Faults 

s27 3 21 1.0000 8 

s298 14 220 0.8604 6 

s344 15 105 0.9357 13 

s349 15 102 0.9343 15 

s382 21 891 0.7268 34 

s386 6 273 0.8177 40 

s400 21 1451 0.7864 34 

s444 21 551 0.6730 8 

s.510 6 0 0 0 

s.526 21 34 0.0919 3 

s526n 21 37 0.0995 4 

s641 19 203 0.8651 52 

s713 19 196 0.8193 48 

s820 5 961 0.9553 84 

s832 5 993 0.9356 87 

s9.53 29 14 0.0825 5 

s1196 18 439 0.9976. 186 

s1238 18 472 0.9469 202 

s1423 74 89 0.3815 82 

s1488 6 1068 0.9610 71 

s1494 6 991 0.9608 68 

s5378 179 894 0.6835 64 

s9234 228 6 0.0046 3 

s35932 1728 300 0.8919 17 
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Table 6.3: SUSEM Compaction Results 

Circuits # FFs # DFs #TF TVs RED(%) FC(B)(%) FC(A.)(%) 

s27 3 32 8 21 23.8 100 100 

s386 6 314 40 273 2.93 81.77 81.77 

s.510 6 0 0 0 - -
s820 5 803 79 884 16.8 94.47 94.24 

s832 5 801 83 944 11.44 92.07 91.72 

s1488 6 919 19 96 11.45 61.84 61.84 

s1494 6 1376 766 58 13.45 91.36 91.04 

represents the reduction of test vectors after the compaction jn % ( the length of 

reduced test vectors / the length of the HITEC test vectors). FC(B) represents the 

fault coverage before the compaction in %. FC(A) represents the fault coverage 

after the compaction in %. 

From Table 6.3, we can see that for those circuits which have a relatively small 

number of flip-flops and a larger number of target faults, our compaction method 

can reach 23.8 % reduction, and the average is more than 10 % reduction. In the 

meanwhile, the fault coverage is almost the same as before compaction. 

In Table 6.5, we listed the compaction results for HITEC run on different work­

stations and with different HITEC limits. 

The following is a list of the meanings of each of columns in Table 6.5. 

C represents the different HITEC limits and different workstations for running 

s8:32 circuit. W is Willow workstation, J is Jetsam workstation, B is Banzai work­

station, E is Esmerald workstation, those workstation specifications are listed in 

Appendix C. For every workstation, there is a subscription. Subscription 1,2 rep­

resents different HITEC limits listed in Table 6.4. 

Table 6.4: Different HITEC Limits 

Conditions Backtrack limit State backtrack limit Time limit(s) 

1 10000 10000 2 

2 100000 100000 20 
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TF represents a number of target faults. ST(B)(s) represents the fault simula­

tion time in seconds using the modified HOPE. TVs is the number of test vectors 

generated by HITEC. CVs is the number of test vectors after using the SUSEM 

compaction. RE(%) is the reduction of test vectors after the compaction and is de­

fined by (TVs CVs)/TVs. FC(B) is the fault coverage before the compaction and 

is obtained by running HITEC. FC(A) is the fault coverage after the compaction 

and is obtained by running HOPE using compacted test vectors. ST(A)(s) is the 

fault Simulation time in seconds using the original HOPE. 

In Table 6.5, we present the compaction results for the same circuit s832 but 

generated on the different workstations. The difference in compaction reduction is 

very small. It suggests that our compaction method is stable. For the same circuit, 

s832, run by the different HITEC limits, the compaction reduction is increased for 

the increased HITEC limits. 

Table 6.,5: Compaction Results for s832 in the Different Conditions 

C TF ST(B)(s) TVs CVs RE(%) FC(B)(%) FC(A)(%) ST(A)(s) 

\Vl 83 4.05 944 836 11.44 92.07 91.72 3.73 

\V2 94 4.57 1084 929 14.30 93.91 93.68 4.02 

Jl 76 3.25 857 767 10.50 90.00 90.00 3.53 

.)2 95 4.17 1083 928 14.31 93.91 93.91 4.05 

Bl 82 4.25 923 805 12.78 92.18 91.38 3.53 

B2 93 4.95 1065 908 14.74 93.91 93.68 3.82 

El 87 0.65 993 829 16.52 93.56 93.45 0.60 

E2 90 0.70 1036 857 17.28 93.91 93.79 0.62 

In Table 6.6, ,,.,·e compare simulation times of the original HOPE for original 

test vectors and compacted test vectors for the target faults of some benchmark 

circuits. 

In Table 6.6, names of the ISCAS89 benchmark circuits are given in column one. 

TV ( B) is the total number of test vectors before the compaction. TV (A) is the total 

number of test vectors after the compaction. CPU(B)(s) is the simulation time in 
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Table 6.6: Comparison of Simulation Time Before and After Compaction 

Circuit TV(B) TV(A) CPU(B)(s) CPU(A)(s) 

s27 21 16 0.233 0.217 

s386 273 265 0.433 0.433 

s820 884 735 1.250 1.067 

s832 944 836 1.417 1.233 

s1488 96 85 0.617 0.617 

s1494 766 663 2.583 1.950 

seconds of the original HOPE before the compaction for target faults. CPU(A)(s) 

is the simulation time in seconds of the original HOPE after the compaction for 

target faults. 

From Table 6.6, we can see that the HOPE simulation time after compaction is 

slightly reduced for some circuits. 

6.1.1 Comp~rison with Other Three Methods 

Since different compaction methods obtained compaction results in different 

environments, such as test sequences generated by different ATPGs or different 

computer speed or different memory etc, we only can give some rough comparison 

between SUSEM and other three methods here. 

6.1.2 Comp~rison with Niern1~nn's Method 

In Table 6.7, TVO represents the total number of vectors used by SUSEM. 

TVN represents the total number of vectors used by Niermann's method. RD (%) 

represents the compaction reduction. FCR represents the ratio of the fault coverage 

after and before the compaction. In Table 6. 7, results for three circuits run by both 

SUSEM and Niermann's method are given. The average compaction reduction by 

SUSEM is 9.28 %, while by Niermann's method the reduction is 26.33 % for the 

alignment compaction and 30.33 % for the skew compaction, respectively. The 
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Niermann 's method gives more compaction than our method does for these three 

circuits. 

Table 6.7: The Comparison between SUSEM and Niermann's Method 

Circ TVO SUSEM TVN Aligned Skew Stretch 

RD FCR RD FCR RD FCR RD FCR 

s386 273 2.93 1 403 31 1.0053 34 1.0095 -
s1488 96 11.45 1 32 29 1.0045 32 1.0045 -

s1494 58 13.45 0.9965 32 19 0.9946 25 1.0000 - -

6.1.3 Co1np~rison with Pon1er~nz's Method 

Table 6.8 uses the same notations as Table 6.7. In Table 6.8, results for two 

circuits run by both SCSEI\1 and Pomeranz's method are given. SUSEM got the 

14.13 o/c average compaction reduction. Pomeranz's method got the 52.64 % average 

compaction reduction for the omission compaction, the 6.3 % average compaction 

reduction for the insertion compaction and the 20.25 % average compaction reduc­

tion for the selection operation. \Ve notice that Pomeranz's method used the longer 

test sequences than SUSEM did. As we know for longer test sequences, SUSEi\'1 

usually gets more compaction as shown in Table 6.5, because the longer sequences 

are easier to be compacted. 

Table 6.8: The Comparison between SUSEM and Pomeranz's Method 

Circ TVO SUSEM TVP Omission Insertion Selection 

RD FCR RD FCR RD FCR RD FCR 

s820 884 16.8 0.9976 968 56.2 1.0012 6.30 1.0012 20.25 1.0 

sS:32 944 11.44 0.9962 1192 49.08 1.000 - -
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6.1.4 Comp~rison with Hsi~o's Method 

Table 6.9 uses the same notations as Table 6. 7. In Table 6.9, results for four 

circuits run by both SUSEM and Hsiao's method are given. SUSEM got the 13.29 

% average compaction reduction. Hsiao's method got the 16.18 % for the inert 

subsequence removal compaction, the 41.68 % average compaction reduction for the 

recurrence subsequence removal compaction and the 27.33 % average compaction 

reduction for the combined inert / recurrence subsequence removal compaction. 

Table 6.9: The Comparison between SUSEM and Hsiao's Method 

Circ T\'O SUSEM TVH ISR RSR CSR 

RD FCR RD FCR RD FCH RD FCH 

I s820 884 16.8 0.9976 1114 24.4 0.9979 45.6 0.9979 45.9 0.9979 
! sS:32 944 11.44 0.9962 1136 23.7 1.0011 46.6 0.9962 46.8 0.9962 

sl-!88 96 11.45 1 1170 7.95 0.9979 34.0 0.9979 7.95 0.9979 

s1494 58 13.4,5 0.9965 1245 8.67 0.9979 40.5 0.9979 8.67 0.9979 

6.2 Some Comments for Three Comparisons 

It is easy to notice that we used the different circuits for comparison. The 

reason is that these are the only circuits for which results were available for those 

three methods \Ve compare our method with. For circuits with a larger number of 

flip-flops, our method can only give a very limited compaction. 

6.3 Possible Improvements 

As we mentioned in Chapter 5, if target faults are not injected to the parallel 

fault simulator, they are single event faults, and are detected at the end of test 

sequences. In this case, we pessimistically assume the whole test sequences are 

the propagation sequences. If we make our estimation optimistic and assume the 

i 
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excitation states are the last time frames instead of the first ones, then if target 

faults are still detected, we obtain more compaction. We show results generated 

using the optimistic approach in Table 6.10. 

Table 6.10: The Comparison of Compaction Results for sl488 

Case TVs CVs Reduction(%) FC(B)(%) FC(A)(%) 

1 96 85 11.45 61.84 61.84 

2 96 80 16.67 61.84 62.05 

In Table 6.10, Case 1 is for the pessimistic estimation and Case 2 is for the 

optimistic estimation. TVs is a total number of test vectors generated by HITEC. 

CV s is a total number of test vectors after the compaction. Reduction(%) is the 

reduction of test vectors after the compaction and is defined by (TVs- CVs)/TVs. 

The meanings of FC(B) and FC(A) are the same as in the previous table. 'We got 

more compaction and increased fault coverage for the optimistic estimation. 

For target faults not injected in the parallel fault simulator, we also can consider 

the case where they could be moved to the end of the whole test sequence, and 

detected by the test vectors that exists before them, as we see in the Niermann and 

Patel's alignment and skew compactions. In this way it may further compact test 

vectors. 

In order to improve the compaction, it is also possible for us to use more opti­

mized compaction algorithms not like our greedy search or not beginning with the 

first test subsequence etc. 
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CHAPTER 7 

CONCLUSIONS 

7 .1 Conclusions 

In the previous chapters, we have demonstrated that our method, which uses the 

circuit state information to compact test sequences, is very effective (the average 

reduction is 13.31 % for those six benchmark circuits listed in the last chapter) for 

circuits with the large number of target faults and with the relatively small number 

of flip-flops. However, ,,ve must point out that for the circuits with a larger number 

of flip-flops, we do not get the compaction results as good as for circuits with less 

flip-flops, it does not seem effective. Nevertheless, in many circuits, most of flip-flop 

states in the excitation state prior to the justification phase are don't care. Thus, 

using the state information may be a good way to improve test generation for highly 

compacted test sequences. 

In conclusion: 

1. Our SUSEIVI compaction method uses the circuit state information to com­

pact test sequences. For those circuits which have a large number of target faults 

and a relatively small number of flip-flops, the average reductions of test vectors 

can be over 10%. The fault coverage usually stays the same or in the same cases 

might decrease by less than 0.5% . 

2. Our SUSEJ\1 compaction method requires the only one simulation (if we 

want to check the fault coverage, we have to use the simulation the second time), 

which is much better than Pomeranz and Reddy's method [2] in which multiple 

simulations are necessary. It is also better than Hsiao and Patel's method [3]. 

In Hsiao and Patel's method, the fault coverage for every inert subsequences or 
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recurrence subsequences has to be checked, although two time simulations are used. 

3. Our SUSEM compaction method only needs to compare the final states with 

the excitation states to remove setup sequences, it is much faster than Niermann 

and Patel's method [l J which needs to compare every test vector to decide which 

should be removed. 

4. For the same circuit, the compaction is very stable, even if we use different 

computer speeds, memories, etc. 

5. For the same circuit, the test sequence compaction reduction often gets better 

when we use longer test sequences and more detected faults. 

6. To test some circuits, after using our SUSEM method to compact, we still can 

use three other methods to further compact the test vectors, it may save some sim­

ulation time for multiple simulation compaction method. The other three methods 

would be more difficult to use for the improvement of deterministic test generators 

than our method, because they do compaction randomly or blindly. 

i. More importantly, we may use this compaction method to improve deter­

ministic test generation procedure, so that the resulted test generator will generate 

highly compacted test sequences. In this way it can save us test generation time, 

compaction time and also test time. 

1.2 Future Research 

As we mentioned earlier, a major objective of static compaction of test sequences 

is to improve test generation procedures. 

A challenge that requires further studies is how to improve test generators. We 

don't want to save the excitation state for every fault, since that would demand 

too big memories. Probably we can use a dynamic fault order [21]. \Ve propose 

that after the first target fault is detected, we use a fault simulator to remove other 

accidentally detected faults from the fault list, then we choose the next target fault 

which has the excitation state compatible with the last detection state, and use this 

information to test this second target fault. However, it is still an open question as 
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hmv to search the excitation state. 
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APPENDIX A 

Pomeranz and Reddy's Definitions and Notations 

1. A test sequence T is represented as T = (t 0t 1 •.• tL-d, wl1f're t; is th<" inpnt 

vector applied at time unit u 1• 

2. The subsequence of T between time units Hj and Uk is denoted by T[vj, t11c], 

"·here T[uJ, uk] = (tJ .. ,tk), 

:3. The state of the fault free circuit at time 11 1 is denoted S;. The initial state 

5'0 is the all-ullspecified (all-x) state in their experiments. 

4. The output w•ctor of the fault free circuit at time unit u; is denoted ::;. 

:). The set of target faults (collapsed single stuck-at faults) is denoted by F. 

The set of faults detected by a given test sequence T is denoted by Fdet• 

6. For every fault f < F they denote by Sf and ::{ the state and output 

H'ctor of the faulty circuit at time u;. respectively. They also define the combined 

fault-free/faulty state S;/ Sf at time u;. 

,. The time unit where a fault f < Fdet is detected for the first time is denoted 

by lldc1(f). 

8. The effective test length Lrf f of T is the minimum length of a subsequence 

of T that starts at time O and includes the detection time of every detected fault, 

or 
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APPENDIX B 

Hsiao and Patel's Definitions and Notations 

Dcfinit ion 1: A propagation subsequence T/rop for a particular fault J is a 

subsequence T[v;, v;+ 1 , •.• , vj]such that the fault-effects of J, stored in the starting 

statP at vector v;, are propagated through all time-frames within the subsequence. 

Definition 2: A detection subsequence Tjtt for a particular fault f is a subse­

quencP T[i-;. l'i+I • .•. , u1_ 1, VJ] such that f is activated in time-frame i, [v;, t',+ 1 , ... , l'j-I, v1 ] 

is a propagation subsPquPncP for f. and the fault f is detected in time-frame j. 

Definition 3: A state-recurrence subsequence Tree is a subsequence of vectors 

T[i-i. 1·;+ 1 •.... 1·Jl such that the fault-free states reached at the end of vectors t\_ 1 

and 1·1 are identical. 

Definitiou 4: An inert recurrence subsequence, or simple inert subsequence, 

Tinert is a state-recurrence subsequence Tree[v;, v;+ 1 , ••• , v;] such that no additional 

faults are detected within the subsequence Tree . 

Definition .5: Given a fault-free state 5, the error vector E1 for a particular 

fault f is equal to S 8:; 51, where 51 is the corresponding faulty state for the same 

time-frame. 

Definition 6: Given two identical fault-free states S, the error vector E1 for a 

fault .f covers another error vector E~ for the same fault and state if E1 U £~ = E1, 
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APPENDIX C 

Workstation Specifications 

In this appeudix, \\e list the specification of tlic workstations which we use to 

nm HITE(', the modified HOPE and our compaction algorithm. 

1. Willow: 

SPACRstation ,5 Q:@ 8,5.0MHZ with real memory 1211\il. 

2. Jetsam: 

SP . .\RCstation 10 l\IP (4XRT625) :g (! 40.0 l\1HZ with real memory 89M. 

;3. Banzai: 

SPARCstation .5 ,g_g 70.0.\IHZ with real memory 121:M. 

4. Esmeralda: 

Sl~l\ Cltra 30 FPA/PCI (l'ltra SPARC 11296 MHZ)@@ 98.6 l\lHZ with real 

memory 120:\1. 

5. Apollo: 

Sr~ rltra .5/10 VPA/PCI (Ultra SPARC Iii 300 MHZ)@@ 99.9 MHZ ,vith 

real memory 371M. 
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