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Abstract 

Forest fire occurrence in the western US has increased rapidly since the 1980s, and most western 

US fires occur in the seasonal snow zone. Burned forests influence snow accumulation and melt 

patterns for years following fire, and understanding drivers of variability in snow cover across a 

burned landscape at the basin-scale is necessary for accurate hazard prediction and water 

resource forecasting. Basin-scale surveys of snowpack are possible with remote sensing, but 

accurate sensing methods such as Light Detection and Ranging (LiDAR) are often cost-

prohibitive. In the last decade, structure-from-motion (SfM), an optical remote sensing 

technique, has emerged as an affordable alternative to LiDAR for high resolution snow depth 

mapping. While SfM technique has been used to survey snow in unforested regions, this method 

is not suitable in forested regions due to the inability of RGB cameras to penetrate the forest 

canopy. Yet the reduced canopy cover of burned forests may offer a unique opportunity to 

employ this method in regions otherwise not suitable for SfM surveys prior to burn occurrence. 

To understand the potential and limitations of SfM-derived snow depth and extent maps in 

burned forests, we collected aerial stereopair imagery over a 27 km2 region of the burned 

Breitenbush Watershed in the Oregon Cascades in September of 2022 and February of 2023. 

We surveyed a smaller region that overlaps the initial survey region in April of 2023. With SfM 

techniques, we created digital elevation models (DEMs) for each survey. The September DEM 

was subtracted from February and April DEMs to isolate February and April snowpack. 
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Coincident with the April survey, 200 depth measurements were taken across five 0.8 km 

transects along a burn severity gradient. We compared modeled snow depth to measured snow 

depth at point locations through simple regression to understand how variability in modeled 

snow was driven by actual snow, and this regression was used to adjust SfM snow depth 

estimates. We used multilinear regressions to assess how variability in adjusted modeled snow 

was driven by burn severity, pre-fire vegetation, and topography. We then compared binary 

snow extent maps to Landsat fSCA through confusion matrices to assess how well SfM snow 

maps predicted snow extent. Lastly, we limited snow depth maps to an ideal region -high or 

moderate severity burned forest and snow-covered- and assessed how variability in modeled 

snow constrained by these conditions was driven by burn severity, topography, and vegetation. 

Multilinear regression showed that in the sampling region, variability in modeled snow was 

driven by only burn severity.  We observed striking differences in the way terrain was modeled 

in low severity burn versus moderate and high severity burn. SfM modeled snow in low severity 

burn was significantly different from modeled snow in moderate and high severity burn. 

Modeled snow variability was far greater in low severity burn than in high and moderate severity 

burn, and modeled snow was greater in moderate and high severity burn. Our work indicates 

that SfM snow modeling in high and moderate severity burn regions is distinct from and likely 

more reliable than snow modeling in low severity burn regions where canopy cover obscures 

snow from the sensor.  
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 Introduction 

1.1 Snow 

1.1.1 Importance of Snow 

 Snow is an essential component of global hydrology, energy, and nutrient cycling. New 

snow reflects 90% of incoming solar radiation where snow-free vegetation reflects only 15%. As 

snow may cover up to 50% of the Northern Hemisphere seasonally, the cooling capacity of snow 

is critical to climate regulation (DeWalle and Rango 2008; Sturm et al. 2017).  Forest 

productivity is driven by both the volume and timing of meltwater, and up to 40% of forests 

globally exist in seasonal snow zones (Winchell et al. 2016; Barnhart et al. 2016). As forests are 

critical carbon sink, snow is essential to carbon sequestration (Winchell et al. 2016). 

Over one-sixth of the global population relies on run-off generated from the melt from 

glaciers and seasonal snow, leading some to draw comparisons between mountain snowpack and 

water towers (Barnett et al. 2005; Viviroli et al. 2007; Li et al. 2017). With storage capacity 

greater than that of man-made reservoirs, snow-water storage is essential for water resources and 

ecosystem health in the western US. Snow holds water in cold months and slowly releases water 

as temperatures warm, bridging a gap between the arrival and demand of precipitation.  Thirty-

seven percent of precipitation in the western US falls as snow, while fifty percent of total runoff 

https://paperpile.com/c/gIZvlA/UdC4+9dPq
https://paperpile.com/c/gIZvlA/ZniW+E4zS
https://paperpile.com/c/oYxxBu/wBLFS
https://paperpile.com/c/gIZvlA/Cjgs+QG3L+MD1p
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originates from snow (Li et al. 2017). Of the three largest reservoirs in the western US- Lake 

Mead, Lake Powell, and Fort Peck Lake- 70% of stored water comes from snow (Li et al. 2017). 

1.1.2 Snow and Climate Change in the Western US 

Snow water equivalent (SWE) is the amount of liquid water held in snowpack. Peak 

SWE, the maximum SWE in the snow season and a metric used to assess seasonal snowpack 

volume, is both decreasing and occurring earlier in the year in response to warming temperatures 

(Clow 2010; Mote et al. 2005; Musselman et al. 2021; Mote et al. 2018). Since 1950, peak SWE 

has declined 33% in the western US and ~12% in western North America (Mote et al. 2018; 

Musselman et al. 2021). April 1 has historically marked the transition from accumulation to 

ablation (melt) in the snow season, yet 34 - 42% of Snow Telemetry (SNOTEL) stations indicate 

a rise in accumulation-season melt, blurring the distinction between accumulation and melt 

seasons (Musselman et al. 2021). Knowles et al. (2006) observed the ratio of snowy days to all 

days with precipitation decrease at 87% of sites observed in the western US. While less snow 

accumulates and snowpack disappears faster, warmer temperatures are driving shifts from snow 

to rain. 

 Snowmelt onset and snow disappearance are similarly advancing across the West 

(Harpold et al. 2014; Clow 2010). Over a 30-year period beginning in the late 1970s, Clow 

(2010) observed snow melt onset across Colorado SNOTEL stations advance 1.9 - 7.5 days per 

decade while the day of the centroid of snowpack advanced 1.1 - 5.6 days per decade. Earlier 

https://paperpile.com/c/gIZvlA/MD1p
https://paperpile.com/c/gIZvlA/MD1p
https://paperpile.com/c/gIZvlA/Z1H1+yOT0+BoZK+5c9Z
https://paperpile.com/c/gIZvlA/5c9Z+BoZK
https://paperpile.com/c/gIZvlA/5c9Z+BoZK
https://paperpile.com/c/gIZvlA/BoZK
https://paperpile.com/c/gIZvlA/MBxI+Z1H1
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melt onset may advance days of melt into winter when solar radiative forcing is minimal 

compared to melt days in spring or summer (Musselman et al. 2017). Musselman et al. (2017) 

suggest that in a warming climate scenario, 64% of snow cover that would otherwise exhibit high 

to moderate melt rates will exhibit slow melt rates. High melt rates limit the amount of time that 

meltwater is partitioned between streamflow and evapotranspiration. In this way, rapid melt 

brings soil to field capacity, a necessary condition for groundwater recharge and overland flow 

(Barnhart et al. 2016). Conversely, slower snowmelt promotes the loss of meltwater to the 

atmosphere and suppresses groundwater recharge. Warmer temperatures also increase 

atmospheric demand for moisture, compounding effects of warming on the partitioning of melt 

between streamflow and evapotranspiration (Knowles et al. 2018).  

As streamflow generation is driven by snowmelt, earlier snowmelt results in earlier 

streamflow generation in snow-dominated basins (Stewart et al. 2004). Of 279 snow-dominated 

rivers in the western US observed from 1948 - 2000 by Stewart et al. (2004), the center of mass 

flow shifted 10-30 days for most observed streams. Earlier snowmelt precedes solar radiation 

optimal for vegetation growth, negatively impacting forest productivity and peak biomass 

(Steltzer et al. 2009). Early season depletion of the snowpack unsurprisingly diminishes late 

season forest productivity, leading to late season drought (Knowles et al. 2018; Trujillo et al. 

2012).  

1.1.3 Snow and Climate Change in the Pacific Northwest 

https://paperpile.com/c/gIZvlA/tDpE
https://paperpile.com/c/gIZvlA/E4zS
https://paperpile.com/c/gIZvlA/J80Q
https://paperpile.com/c/gIZvlA/Ivws
https://paperpile.com/c/oYxxBu/sjamk+REpmO
https://paperpile.com/c/oYxxBu/sjamk+REpmO
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Increases in temperature over the latter half of the 20 th century drove declines in peak 

SWE of up to 40% in the Cascade Range of the Pacific Northwest, which are the greatest declines 

in SWE in the entire western US (Mote et al. 2018). Snow in the PNW is characterized as 

maritime, meaning that peak SWE is high, the accumulation season is short, and that snow melts 

early and quickly compared to continental snowpack (Trujillo and Molotch 2014). PNW snow 

accumulates at near-freezing temperatures and low altitudes compared to continental 

snowpack, such that less warming is required to melt snow and for precipitation to fall as rain,  

leading some to describe PNW snow as “at risk” (Nolin & Daly 2006; Mote 2003). As mean 

annual temperatures are higher and elevations lower in the PNW than the Intermountain West, 

impacts of climate change on snowpack are exacerbated in the PNW (Mote 2003; Trujillo and 

Molotch 2014; Mote et al. 2018; Nolin and Daly 2006).  

Rain-on-snow (ROS) events, a phenomenon that increases downstream flood risk, 

rapidly depletes snowpack, and is expected to increase in response to warming temperatures in 

high elevation snowpack, are frequent in the PNW compared to other regions (Musselman et 

al. 2018; McCabe et al. 2007). With a pseudo-global warming climate simulation, Musselman 

et al. (2018) estimate basin runoff volumes due to ROS events to increase more than 100% in 

the Cascade range. Similarly, shifts in days of snowfall to rainfall and advances timing of 

streamflow generation are most pronounced in the Pacific Northwest (Knowles et al. 2006; 

Stewart et al. 2004).   

https://paperpile.com/c/gIZvlA/5c9Z
https://paperpile.com/c/gIZvlA/E5Ww
https://paperpile.com/c/oYxxBu/ZRpc3
https://paperpile.com/c/gIZvlA/4JxF+E5Ww+5c9Z+gMBf
https://paperpile.com/c/gIZvlA/4JxF+E5Ww+5c9Z+gMBf
https://paperpile.com/c/gIZvlA/JQWF+8vVw
https://paperpile.com/c/gIZvlA/JQWF+8vVw
https://paperpile.com/c/gIZvlA/mi6C+J80Q
https://paperpile.com/c/gIZvlA/mi6C+J80Q
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1.1.4 Snow and Fire in the Western US 

Forest fire occurrence and extent in the western US increased abruptly in the 1980s, 

when forest fire frequency increased four times that of previous decades and burned area 

increased 650%  (Westerling et al. 2006). Within the same period, the fire season (time between 

first fire reposted and last fire controlled) increased by 78 days (Westerling et al. 2006). The 

occurrence of large forest fires is highly inversely correlated with early snow disappearance, with 

56% of fires and 72% of burned areas occurring in early snowmelt years (Westerling et al. 2006). 

From 2000-2012, more than 80% of fires in the western US burned in the seasonal snow zone 

and these fires were 4.4 times larger than those outside of the snow zone (Gleason et al. 2013). 

In the western US, burn area and forest fire frequency is increasing most rapidly in the Pacific 

Northwest  (Westerling et al. 2006). 

Early snowmelt is strongly associated with spring temperature and earlier snow 

disappearance, both of which drive forest fire occurrence (Westerling et al. 2006). Warm 

temperatures and earlier snow disappearance cause the growing season to begin earlier in the 

year, resulting in increased drought likelihood and greater fire risk as snowmelt contributions to 

ground and surface water are depleted earlier in the summer (Gleason et al. 2019). Diminished 

post-fire forest canopy may reduce interception of snow, potentially promoting greater snow 

accumulation, while simultaneously promoting increased total solar radiation. Burned forests 

shed black carbon and burned woody debris (BWD) onto snow, decreasing snow albedo and 

increasing radiative forcing on snow (Gleason et al. 2013). Forest fire may impact snow albedo 

https://paperpile.com/c/oYxxBu/rEYAk
https://paperpile.com/c/gIZvlA/T9mk
https://paperpile.com/c/gIZvlA/T9mk
https://paperpile.com/c/oYxxBu/fijT0
https://paperpile.com/c/oYxxBu/rEYAk
https://paperpile.com/c/gIZvlA/T9mk
https://paperpile.com/c/oYxxBu/4KUEp
https://paperpile.com/c/oYxxBu/fijT0
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for up to 15 years following fire (Gleason et al. 2019). In 2013, Gleason et al. found that despite 

greater snow accumulation in a forest the year following fire, snow albedo decreased by 40% in 

the ablation season. This same study found that snow disappeared 23 days earlier and melted 

twice as fast as snow in nearby unburned forest (Gleason et al. 2013). Given the importance of 

snow for downstream water resources, understanding the impact of fire on snow at the 

watershed is important for water forecasting.    

1.1.5 Structure-from-Motion Remote Sensing to Detect Snow  

Given changes in snow accumulation and ablation patterns and increased ROS risk 

beneath a changing climate, estimating snowpack metrics to quantify snowpack volume and 

patterns of accumulation and melt are of interest to water managers and scientists. Remote 

sensing allows researchers to go beyond interpolation of point-data measurements of snow and 

is necessary to understand spatiotemporal trends in snow accumulation and melt. Remote 

sensing also allows researchers to survey regions otherwise inaccessible or hazardous for in situ 

measurements, typical characteristics of mountainous, snowy regions.  

The most accurate methods for collecting data with high spatiotemporal resolution and 

minimal uncertainty, such as drone-based LiDAR (Light Detection and Ranging), are cost 

prohibitive and the equipment cumbersome (Westoby et al. 2012; Bühler et al. 2015). The 

spatial range of drone-based LiDAR is constrained such that basin-scale surveys are not possible 

in a single survey. While optical remote sensing of snow is widespread (eg. Landsat fSCA, 

https://paperpile.com/c/oYxxBu/4KUEp
https://paperpile.com/c/oYxxBu/fijT0
https://paperpile.com/c/gIZvlA/MC1A+zk1c
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MODIS snow-cover products), products detail either snow extent or SWE at spatial resolutions 

too coarse to capture variability in snowpack across a basin  (Bühler et al. 2015).  

In recent years, structure-from-motion photogrammetry (SfM) has emerged as a low-

cost system for topographic reconstruction. SfM derives 3D models from 2D imagery through 

matching identifiable features across overlapping, offset images (explained in greater detail 

below). While photogrammetry was experimentally applied to snowpack modeling as early as 

the 1960s, advances in photogrammetric software, consumer grade cameras, GPS devices, and 

computer processing capabilities have situated photogrammetry at the forefront of snowpack 

remote sensing only in the last decade (Nolan et al. 2015; Westoby et al. 2012).   

The proliferation of studies that have used SfM to map snow depth in the last decade is 

illustrated in Table 1 (all papers listed examine the success of SfM methodology with various 

equipment across diverse land types and scales). SfM has been used to map snow with centimeter 

accuracy at sub-kilometer scales and decimeter accuracy at kilometer scales using both 

unmanned aerial systems (UAS) and airplanes, the two primary methods of image capture for 

SfM workflows. While UAVs allow for lower flying altitude and higher resolution maps, SfM 

sensors mounted on airplanes are capable of surveys at watershed scales (Meyer et al. 2022). 

Worldview and Pléiades satellites have also been used for stereo-photogrammetry 

reconstruction of snow, but this imagery is most effective over flat, homogeneous terrain.  

Successful SfM surveys have typically been executed in non-forested regions or with vegetated 

areas masked. 

https://paperpile.com/c/gIZvlA/zk1c
https://paperpile.com/c/gIZvlA/HCUj+6f1z
https://paperpile.com/c/gIZvlA/8MEO
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Table 1. Current work using SfM to map snow depth across various spatial scales.  

Author Aircraft, 
flying altitude 

Survey 
Area 

Resoluti
on 

Accuracy  Topography 
and vegetation 

Georeference 
of snow-on 

Adams et 
al. 2018 

Fixed-wing 
UAS, 400 m 
above ground 
level 

.12 km2 .5 m 4 - 33 cm Mixed, boulders 
<5 meters, 
clustered trees 1-
3 meters, mean 
slope 6 °. 
Vegetated areas 
set to 0 in snow 
map. 

GNSS/IMU 
and 7 GCPs, 
co-registration 
of snow-free 
region 

Bühler et 
al. 2015) 

Airplane, 1500 
m above 
ground 

26.25km2 , 
119 km2 

2 m 30 cm Mountainous, 
all vegetation 
above 1.5 
meters is 
masked 

GNSS/IMU 
and 11-33 
GCPs 

Bühler et 
al. 2016 

Fixed-wing 
UAS 

.057 - .363 
km2 

10 cm 7 - 30 cm Valley (1) with 
mixed 
vegetation, 
mountain top 
(mean 30° slope, 
max 90°) (2) 

GNSS/IMU. 
Natural, snow-
free reference 
points used 

Meyer and 
Skiles 
2019 

Airplane, 1555 
m AGL 

3.2 km2 1 m 14 cm Senator Beck 
Basin, 
vegetation 
masked 

GNSS/IMU. 
Snow-free 
areas used to 
co-register with 
LiDAR. 

Meyer et 
al. 2022 

Airplane, above 
ground altitude 
not provided 

300 km2 3 m 
(DTM) & 
50 m 
(SWE)  

NMAD of 
0.19 m 

mountainous 
(1,420 m relief). 
Grassland, 
mixed conifer, 
alpine meadow.  

GNSS/IMU. 
Snow-free 
areas used to 
co-register with 
LiDAR. 

Nolan et 
al. 2015 

Airplane, above 
ground altitude 
not provided 

5- 35 km2  

(3 study 
areas) 

6 - 10 cm Centimeter 
- decimeter  

Airport (1), 
mixed tundra 
with sparse 
vegetation (2), 
river valley  (3) 

Multi-
frequency GPS 
(10cm 
accuracy), 
GCPs only 
used for co-
registration 

Walker et fixed-wing 0.75 to 1 m 15 cm Shrub-tundra GNSS/IMU, 

https://paperpile.com/c/gIZvlA/zk1c
https://paperpile.com/c/gIZvlA/zk1c
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al. 2021 UAS, 100 m 2.35 (total 
9.6) km2  

(1-2 m shrubs),  50 GCPs 

1.1.6 Structure-from-Motion to Detect Snow in Burned Forests 

 As with all optical remote sensing of snow, SfM is limited in forested regions as forest 

canopy obscures the snow below. While this effect may be more navigable with LiDAR data as 

the return of ground signal may be filtered from canopy returns, SfM is a passive technique that 

utilizes only the visible spectrum. As such, many researchers elect to survey a non-forested area 

(eg. above tree line), mask forests from SfM surveys of snow, or set forested areas to 0 in digital 

elevation models (DEM) of difference (Bühler et al. 2015; Meyer and Skiles 2019; Adams 2016). 

Meyer et al. (2022) evaluated variability in SfM accuracy and mapped a 300 km2 watershed with 

coincident LiDAR and SfM (Table 1). The greatest negative error values produced by SfM were 

found in vegetation-classified pixels (-4 m to -28 m).  Similarly, Nolan et al. (2015) found that 

even with  image resolution of 15 centimeters, the influence of trees on DEMs could not be fully 

resolved and resulted in the greatest snow depth estimation error (though map overall accuracy 

was still 10 cm).  

While it is known that SfM is not effective when ground is obscured by vegetation, the 

degree to which SfM may be useful (albeit less accurate) in sparsely forested regions is not well 

understood. Howland et al. (2022) make the case for employing SfM in sparsely vegetated 

regions to bypass the cost of LiDAR data collection. By classifying and interpolating between 

ground points, Howland et al. (2022) estimate a digital terrain model with SfM in a forested 

https://paperpile.com/c/gIZvlA/zk1c+FqNJ+B0kf


10 

region. It is possible that this technique could be used to map snow in forests, provided gaps in 

trees allow a view of the snow.   

1.2 Structure-from-Motion Workflow 

1.2.1 Key Point Detection, Correspondence, and Filtering 

The first step in the SfM workflow is to detect points visible across multiple images that 

can be used for image matching. These points, called ‘key points’, are invariant to changes in 

scale and rotation and partially invariant to orientation and illumination (Westoby et al. 2012). 

Key points are distinct because of the intensity of their pixels compared to surrounding pixels. 

The Scale Invariant Feature Transform (SIFT) object recognition system is commonly used to 

identify key points. Images are incrementally blurred with a Gaussian Blur and subtracted from 

one another. Differenced images are stacked and extrema identifiable across all magnitudes of 

blur are selected as key points. Comparing points across varying magnitudes of Gaussian Blur 

ensures that key points are effective across camera viewpoints and resolution. 

After key points are identified, a ‘descriptor’ is assigned to each point. A descriptor is a 

series of vectors that describe intensity image gradients originating from key points and acts as a 

key point signature. As key point identification relies on intensity gradients, high resolution 

gradients with high contrast produce the most key points (Westoby et al. 2012). Following key-

point identification, descriptors are compared across images. Descriptors are matched across 

images using nearest-neighbor algorithms, and tracks are drawn between key points (Figure 2). 

https://paperpile.com/c/gIZvlA/6f1z
https://paperpile.com/c/gIZvlA/6f1z
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Key points that were stationary on the camera lens were discarded, as this indicated an object on 

the sensor (ie., a scratch, dirt, or a part of the plane visible to the sensor).  

 
Figure 1. Examples of tracks used to match key points between images. The left photos show a snow-on 
flight, the right photos show images from the bare-earth flight. Blue lines indicate accepted tracks; red 
lines indicate discarded tracks.  

1.2.2 Structure-from-Motion with Bundle Adjustment 

 SfM is defined by the process of simultaneously estimating 3D structure, camera 

location and orientation, and camera calibration parameters (camera focal length, coordinates 

of the image principal point), and lens distortion coefficients from key points (Agisoft 

Metashape User Manual; Carrivick et al. 2016). This process is widely referred to as Bundle 

Adjustment. According to Carrivick et al. (2016), “bundle adjustment produces jointly optimal 

3D structure and viewing parameter”, where “jointly optimal” refers to model estimates that 

limit error in both camera position and environment structure. Bundle adjustment works on a 

https://paperpile.com/c/gIZvlA/xLuP
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pair of images with the greatest number of successful tracks and incrementally introduces images 

of fewer tracks to the model. The aim of the model is to minimize reprojection error, which is 

the difference between the estimated 3D position of a point and the points’ position on an 

image. Once a model with minimal reprojection error has been determined, triangulation 

between key points is used to create a sparse cloud of estimated 3D structure. Where a ‘key point’ 

is a feature easily identifiable in multiple images (2D) that may be used to estimate image 

positionality and overlap, a ‘tie point’ is a 3-dimensional point estimated from key point 

triangulation.  

 Multi-view stereo (MVS) techniques are applied to SfM sparse clouds to create a dense 

cloud that can be used for DEM generation and difference detection, leading many to call 3D 

scene construction from overlapping imagery SfM-MVS. MVS point cloud density is greater 

than that of the sparse cloud by at least two orders of magnitude (Carrivick et al. 2016). MVS 

builds upon image matches determined in bundle adjustment. Image matches are grouped via 

Clustering MVS (CMVS) algorithms and Patch-Based MVS algorithms (PMVS) are used to 

construct 3D data from image clusters.   

1.2.3 Georeferencing with Ground Control Points  

An SFM-MVS model is created in imaginary space with an arbitrary coordinate system. 

To georeference the model, either highly accurate camera coordinates derived from real-time 

kinematic GPS and an inertial measurement unit or integration of ground control points (GCP) 

https://paperpile.com/c/gIZvlA/xLuP
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is necessary (Carrivick et al. 2016).  GCPs are natural or installed features on the ground that are 

visible in imagery and have precisely surveyed latitude, longitude, and elevation. GCPs are 

identified in photos after bundle adjustment but before dense cloud creation. Surveyed GCP 

coordinates are paired with arbitrary coordinates and a model transformation applied. The most 

beneficial GCPs are positioned on flat ground to minimize lateral distortions in imagery and 

contrast strongly with their surroundings. According to Carrivick et al. (2016), a minimum of 

3 GCPs are required to georeference and scale a point cloud. In this study, we use camera 

coordinates to provide approximate camera locations and GCPs to increase model accuracy. 

1.3 Study Objectives and Research Question 

 In the Oregon Cascades, all but the high peaks are forested, and remote sensing of snow 

is difficult under the best circumstances. Yet difficult data collection coincides with the greatest 

increases in fire, losses of SWE due to climate warming, and increases in ROS hazards in the 

West, making monitoring snowpack in the Oregon Cascades paramount. With the proliferation 

of forest fire in the seasonal snow zone of Oregon and the accessibility and spatiotemporal 

capacity of airborne SfM, we assess the accuracy at which SfM can detect snow in burned forests 

of the Oregon Cascades at the basin scale, a scale useful for water resource managers.  

Ultimately, we address the following questions: (1) how is variability in basin-scale SfM 

derived snow maps driven by forest density, topography, and burn severity, and (2) can 

SfM detect trends in snow depth in stand-replacing fire where canopy is eliminated? 

https://paperpile.com/c/gIZvlA/xLuP
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We address these questions by comparing in situ snow depth measurements to modeled snow 

depth derived from coincident aerial SfM surveys conducted several times throughout the 2022-

2023 snow season. To understand what drives variability in SfM models, SfM snow depth was 

modeled by forest density, burn severity, and topography. Modeled variables and variable 

sources are depicted in a conceptual model (Figure 1). We expect to find that (1) variability will 

be greatest in unburned forests, and (2) variability will be smallest in the high severity burned 

forests with low vegetation density.  

 
Figure 2. Conceptual model of study. Variables used to explain variability in SfM snow models included.  
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 Methods 

2.1  Study area 

This analysis was focused on the Brietenbush basin in the Oregon Cascades (Figure 3). 

The North Fork and South Fork Breitenbush rivers converge into the Breitenbush River, which 

drains into the Santiam River and supplies water for the city of Salem. In August 2020, 77% of 

the Brietenbush basin burned in the Lionshead Fire. The Lionshead fire was part of a massive 

fire complex known as the Labor Day Fires that ultimately burned 1 million acres across the 

Oregon Cascades, exceeding the area burned in the region over preceding 36 years (Abatzoglou 

et al. 2021). The Lionshead Fire burned 200,000 acres on the flanks of Mt. Jefferson in the 

Deschutes and Willamette watersheds. The burned region is heavily forested and burned 

heterogeneously.  

https://paperpile.com/c/gIZvlA/WzED
https://paperpile.com/c/gIZvlA/WzED
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Figure 3. The study region lies within the Breitenbush Basin, 77% of which was burned in Lionshead Fire. Inset 
shows where the burn scar is located in relation to major cities.  

2.2 Survey Region and Flight Paths 

2.2.1 2021-2022 

While surveys were scheduled for the 2021-2022 snow season, the sensor used in this 

study was temporarily grounded by the US Air Force in March of 2022 (surveys are conducted 

by an auxiliary Air Force fleet, the Civil Air Patrol, see section 3.2 for details). A bare-earth flight 

and single snow-on flight were conducted for this period, but photos were ultimately discarded 

due to issues with image overlap at high elevations. Between the 2021-2022 and 2022-2023 

survey seasons, the survey region was shifted slightly within the drainage to an area with less 
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complex topography (Figure 4). Data collection used in this study was collected throughout the 

2022-2023 snow season.  

2.2.2 2023-2023  

During the 2022-2023 snow season, a bare-earth flight was conducted in September of 

2022, and snow-on surveys were scheduled for the first of each month from February until snow 

disappearance. While flights were scheduled for the first of each month, weather frequently 

delayed deployment, often for multiple weeks. Flights ultimately occurred on February 25 th and 

April 28th. While a flight was scheduled for early June, snow melted rapidly in the survey region, 

so we elected to cancel the final flight.   

 The survey region was refined, and flight lines were adjusted after the bare-earth and 

February 25 survey. The initial 27 km2 survey region was constrained to 16.8 km2 at the highest 

elevations of the initial polygon (Figure 4).  The densely forested lower elevation regions of the 

initial polygon were eliminated and the coverage of burned, upper elevation regions (where the 

most ground is visible,and we expect the model to perform the best) improved. All surveys up 

to and including the February 25 survey were executed with only parallel flight paths. As the 

constrained polygon took less time to survey, perpendicular flight lines were added to the survey 

and the region was imaged twice as much (Figure 5). The survey area contains logged regions, 

high and mixed severity burn, and forested regions, allowing and model effectiveness to be 
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compared across land class and for burned regions to be compared to open regions (logged 

regions).  

 

Figure 4. The survey region was adjusted 
throughout the period of study. A bare-earth 
flight and single snow-on flight were flown in 
the 2021-2022 survey region, after which the 
WaldoAir was grounded for the remainder of 
the season. The bare-earth flight for the 2022-
2023 season was flown in the 2022-2023 A 
polygon, as was the February 25 flight.  The 
April 2022-2023 flight was flown in the 
reduced polygon, polygon 2022-2023 B.  

 

The bare-earth and February 

flights consisted of seven 8-km east-west flight lines with 75% front and side overlap. The April 

flight included seven 6-km east-west flight lines and five 2.6-km north-south flight lines with 

75% front and side. While roll, pitch, and yaw are not corrected for post-processing, abundant 

overlap corrects for potential distortions (Ritchie, Jonathan 1st Lt, personal communication).  

Figure 5. Survey polygon dimensions and 
interior flight lines for polygon - 2022-2023 B. 
All other flights (2021-2022 polygon and 
2022-2023 A) were flown with only E-W 
flight lines.    
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Table 2. Survey region and imagery collection specifications for each survey.  

 September 2022 February 25 2023 April 28 2023 

Flight Region Area 27 km2 27 km2 16.8 km2 

Flight Pattern Parallel Parallel  Parallel and 
perpendicular 

Flight Orientation E-W E-W E-W; N-S 

Flight altitude (AGL) 1 km 1 km 1 km 

Validation LiDAR 10 depth measurements  200 depth measurements 

GSD 10-cm at highest 
elevation 

10-cm at highest elevation 10-cm at highest 
elevation 

2.3  Image Acquisition  

Stereopair imagery was collected using a WaldoAir XCAM Ultra50 RGB Sensor 

mounted on a manned airplane. The WaldoAir pod is equipped with two 50 mm Canon EOS 

5DS R lenses. The plane and sensor used for imagery collection are owned and operated by the 

Civil Air Patrol, a civilian auxiliary fleet of the US Air Force (Figure 6). The pod is equipped 

with an internal micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) 

and a Novatel OEMStar GPS to directly georeference photos. The WaldoAir sensor has two 

cameras offset 20° from each other (10° from nadir) with 40° image angle, allowing for overlap 

between camera images and 60° viewing angle total. Image dimensions of each camera are 8,688 

x 5792 pixels (100 Mp combined). The Waldo Flight Control software is used to plan flightlines 

over a target polygon with a target overlap percentage. Photo metadata include the latitude, 
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longitude, and altitude of the sensor at the time of image capture. Shutter speed was set to 

1/2000 seconds.  

Figure 6. (A) CAP plane, (B) WaldoAir mounted on the plane wing, (C) image of sensor from 
below showing the two cameras. 

2.4  Ground Control Points 

Six GCPs were distributed in corners and the center of the study area for the bare-earth 

survey while GCPs were placed along an elevation gradient for snow-on surveys (Figure 7). 

GCPs for the snow-off survey were more dispersed than for the snow-on surveys given the 

greater accessibility of forest roads in summer. Bare-earth GCPs consisted of six 4x4 planks of 

wood spray painted with a black ‘X’ (the center of which was surveyed) and secured to the 

ground with a rebar. In order to easily transport GCPs on skis for snow-on surveys, tarps rather 

than planks were secured to surveyed t-posts. With the support of University of Oregon 

colleagues (J. Ryan and D. Rutherford), GCPs were surveyed at 20 cm accuracy with an Emlid 

Reach GNSS Receiver.  
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Weather windows suitable for flights in early spring 2023 were infrequent and fleeting. 

If GCPs were left in the field for only a few days, they could be covered by snow and no longer 

visible in imagery. Flights were sometimes scheduled less than 12 hours beforehand, 

necessitating prompt fieldwork deployment for GCP installation and ground truthing. Given 

these constraints, spring GCPs were typically installed on the morning of scheduled flights. As 

returning to the field the day after surveys was not reasonable, tarps were left in the field where 

they were either buried with snow or remained on the snow surface. Snow depth was recorded 

at the center of GCPs unless preferential melt occurred around tarps from previous surveys, in 

which case depth measurements were taken at each side of the tarp beyond the visible influence 

of preferential melt and averaged. 

Figure 7. (Left) GCP locations for bare-earth and snow-on flights. After the survey region was reduced, two GCPs 
were added at high elevations. The additional GCPs were present for the April 28 flight but not for the February  
flight. (Top-right) Snow-on GCPs were tarps so that they could be easily transported on skis and (bottom-right) 
bare-earth GCPs were wooden planks. The planks required no additional securements but were transported by car.  
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Table 3. GCP locations and survey error for snow-on GCPs. GCP 7 and 8 were only included in the April 28 
survey.  
 

GCP Longitude Latitude Ellipsoidal Height 
(m) 

Elevation RMS 
(cm) 

Lateral RMS (cm) 

1 -121.9538918 44.78118108 -121.9538918 2.575 0.986 

2 -121.9538907 44.78118365 -121.9538907 0.763 0.326 

3 -121.9188702 44.77409934 -121.9188702 0.601 0.308 

4 -121.8986131 44.78110844 -121.8986131 0.008 0.008 

5 -121.8873915 44.78354542 -121.8873915 0.081 0.044 

6 -121.8824076 44.78352913 -121.8824076 0.023 0.028 

7 -121.8886576 44.78447253 -121.8886576 0.008 0.012 

8 -121.8801462 44.7831656 1466.839 0.015 0.014 

2.5 Model Snow Depth Validation with Snow Depth Measurements 

In order to validate and characterize error of modeled snow depth, 200 georeferenced 

snow depth measurements were taken on April 28th (Figure 8). Due to shorter days and more 

snow (and therefore longer travel time on skis and more arduous GCP deployment), such robust 

coincident ground-truthing was not completed for the earlier February 25th survey. Ten snow 

depth measurements coincident with the February 25th survey served only as validation. 
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Figure 8. Points of ground-truth measurements and (inset) location of ground-truthing within the survey region.  

 April 28th snow depth measurements were taken with a Magnaprobe GPS Snow Depth 

Probe (hereafter GPS probe; SnowHydro 2013). The probe measures snow up to 120 cm depth, 

which was shallower than some of the snowpack at the time of surveying. When depth 

measurements exceeded 120 cm, the GPS probe recorded the maximum value- 120 cm- while 

the correct depth was measured with a 3-meter depth probe. As each GPS probe record has an 

index in addition to a coordinate and depth measurement, depth measurements could be 

corrected post-survey by index.  

2.6 Processing of SfM Imagery 

Stereopair photos from all surveys were processed in Agisoft Metashape. Metashape 

processing workflow was primarily adapted from Over et al. (2021). A digital elevation model 
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of the bare-earth flight was subtracted from a co-registered snow-on DEM to construct 

snowpack across the study region. The processing workflow for constructing digital terrain 

models in Metashape is detailed in the following sections. 

2.6.1 Photo Alignment Through Bundle Adjustment  

Photos from the bare-earth and snow-on flight are added to Metashape, which 

automatically separates images into separate groups by camera (either of the two WaldoAir 

cameras), information which is sourced from image metadata. Once all images are added to the 

project, images are aligned at high accuracy, meaning that photos are not downscaled for bundle 

adjustment. The accuracy settings determine the quality at which camera positions are estimated 

at the expense of processing time. The default key point limit of 60,000 and tie point default 

limit of 0 were used, where 0 indicates infinite tie points or ‘no limit’. The default error of 10 

meters was assigned to each image location as the image coordinate error was not known. At this 

point, images were aligned and a sparse cloud estimated. Images that failed to align (typically 0-

5 total) were removed from further processing. After image alignment, ground control points 

(GCPs) were added to the project. Lateral and vertical accuracy of each GCP was incorporated 

into the model.   

2.6.2 Optimization and Tie-Point Reduction Through Gradual Selection 

Prior to dense cloud production, tie points are filtered by estimated error in three steps: 

reconstruction uncertainty, projection accuracy, and reprojection error. Reconstruction 
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accuracy concerns uncertainty due to camera geometry, projection accuracy is uncertainty 

related to key points, and reprojection accuracy is uncertainty between where a point is located 

on an image and the 3D location it is projected to (Over et al., 2021). As recommended by Over 

et al. (2021), points are filtered sequentially by reconstruction accuracy, projection accuracy, 

and lastly reprojection accuracy.  

Every time points are deleted, the model is “optimized”, meaning that camera 

parameters and point positions are re-estimated from the reduced sparse cloud. The goal of 

point reduction is to minimize reconstruction accuracy root mean squared error (RMSE) to less 

than or equal to 0.3 pixels (Over et al., 2021). Therefore, points are deleted until reconstruction 

accuracy RMSE is no longer minimized by point reduction. As optimal RMSE may be achieved 

through filtering by any of the three parameters, this is the most subjective step in 

photogrammetric processing. It was observed that the parameter that RMSE was most 

responsive to (reconstruction uncertainty, projection accuracy, or reprojection error) varied by 

model. Ten percent of points are selected and deleted until RMSE is not depreciated through 

point selection, deletion, and model optimization by a particular parameter.  

2.6.3 Dense Cloud Construction, Point Classification, and DEM Construction 

Once points were filtered, they were used to create a dense cloud. Dense cloud ‘quality’ 

setting may be set to low, medium, or high, with quality achieved at the expense of processing 

time. The ‘depth filtering’ setting ranges from mild to aggressive, with aggressive the 

https://paperpile.com/c/oYxxBu/Xow3S
https://paperpile.com/c/oYxxBu/Xow3S


26 

recommended setting for aerial imagery. High quality and aggressive filtering parameters were 

used to create dense clouds unless aggressive filtering resulted in large gaps in the dense cloud, in 

which case filtering intensity was iteratively decreased from medium to mild until there were no 

gaps.  

Once the dense cloud was created, ground points were classified. This step is critical 

when attempting to create a digital terrain model (DTM) in a forested region as high vegetation 

is classified and removed (if vegetation was included, the map would be a digital surface model). 

The Metashape tool “Classify Ground Points'' was used rather than the “Classify Points'' tool 

as the former provides greater parameterization of ground-point selection. With this tool, points 

are classified as binary “ground” or “not ground”, and only ground points are used to create the 

DTM. When classifying ground points, the Metashape user establishes the maximum angle 

possible between potential ground points, the maximum distance between potential ground 

points, and the cell size that the dense cloud is divided into prior to ground point sampling. For 

this study, we set the maximum angle to 30°, maximum distance between points to 10 meters,  

and the cell size to 50 meters. A DTM is a type of DEM, and maps used in this analysis are  

referred to as DEMs.  

2.6.4 DEM Co-registration, Post-Processing, and DEMs of Difference 

Co-registration, which refers to an applied vertical or horizontal shift of a DEM so that 

it precisely overlaps with a reference DEM, is essential to difference detection even after 
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georeferencing. Bare-earth imagery was processed with snow-on imagery, automatically co-

registering flights at the expense of processing time. Photos from snow-on and bare-earth flights 

were processed simultaneously in Bundle Adjustment (3.5.1) and gradual selection and 

optimization steps described above (3.5.2), after which images from each flight were separated 

into different “chunks” within the Metashape project. To use the above 4D workflow for 

difference detection requires that large regions of the DEMs are unchanged to allow key-point 

matching across photo sets  (Over et al., 2021). This method was used despite the majority 

change of ground cover between bare-earth and snow-on surveys due to the presence of large 

regions of no snow in the snow-on imagery, the incorporation of GCPs into the project, and the 

likelihood of stationary trees to be used as key points. DEMs were exported from Metashape at 

0.3-meter resolution.  

2.7  Statistical Modeling of SfM Modeled Snow 

2.7.1  Independent Variables 

 At all measured snow depth locations, modeled snow depth and variables expected to 

drive variability in the modeled snow were extracted. All driving variables and their sources and 

collection year are included in Table 3.  

 

 

https://paperpile.com/c/oYxxBu/Xow3S
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 Table 4. Variable sources, variables, and year of product acquisition.  

Source Variables Year 

LANDFIRE Vegetation cover (%) , height (m), and 
class (herb, shrub, tree) 

2016 (pre-fire)  

Monitoring Trends in 
Burn Severity (MTBS) 

Relative difference Normalized Burn 
Ratio (RdNBR) and classified burn 
severity 

Pre-Fire Image Date: 
August 10, 2020 (S2B) 
Post-Fire Image Date: 
August 10, 2021 (S2A) 

Forest Service (LiDAR) Digital Elevation Model. Derived 
variables include elevation, aspect, and 
slope 

2020 

 

Burn Metrics: RdNBR and Burn Severity  

Variables that quantify forest burn were sourced from Monitoring Trends in Burn 

Severity (MTBS), a USDA and USGS program. MTBS offers three products that quantify burn 

at 30-m spatial resolution: delta normalized burn ratio (dNBR), relative dNBR (RdNBR), and 

thematic burn severity (a classified burn severity product). dNBR is calculated by differencing 

pre - and post-fire NBR:  

NBR = (NIR - SWIR) / (NIR + SWIR) 

Where near infrared (NIR) detects chlorophyll and middle infrared (or short-wave infrared,  

SWIR) detects moisture in soil and vegetation. A pre-fire image is selected as close to the start of 

fire as possible while a post-fire image is selected as close to the anniversary of the pre-fire image 

as possible to control for phenology and solar angle variance. As dNBR quantifies changes in 

total biomass, dNBR indicates greater burn in densely vegetated areas. This may be problematic  

if the purpose of using a burn metric is to quantify net changes to a landscape rather than 
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biomass loss. To account for this, dNBR may be relativized by pre-fire vegetation through the 

RdNBR equation: 

RdNBR = dNBR / SquareRoot(ABS(NBR pre-fire / 1000)) 

While vegetation is an important driver of error in SfM and snow depth variability, vegetation 

variability is captured by LANDFIRE variables (discussed below). To avoid redundancy,  

RdNBR was used for modeling rather than dNBR. An example of how dNBR and RdNBR 

values may correspond to on-the-ground burn severity may be seen in Table 5.  

In addition to continuous dNBR and rdNBR products, MTBS produces a classified 

burn severity map. Classes include (1) unburned to low, (2) low, (3) moderate, (4) high, and (5) 

increased vegetation. While classes are consistent across all fires processed by MTBS, dNBR and 

thresholds used to distinguish classes are determined for each fire. While continuous RdNBR 

values exclude the subjectivity introduced through classification, classified burn severity is 

necessary for pairwise assessment of error by burn. Therefore, both RdNBR and classified burn 

severity are used in this analysis.  

Table 5. Example classification parameters for dNBR and RdNBR as determined by Miller and Thode (2007).  
Parameters are subjective to individual fires and based on thresholds determined by the analyst.  

Class dNBR RdNBR 

Unchanged < 41 < 69 

Low 41- 176 69 - 315 

Moderate 177- 366 316 - 640 

High >=367 >=641 

 

https://paperpile.com/c/gIZvlA/C5h7
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Vegetation Variables: Height, Percent Coverage, and Class 

Vegetation maps were sourced from Landscape Fire and Resource Management 

Planning Tools (LANDFIRE), a USDA and USDOI program. This study uses two 

LANDFIRE products that characterize vegetation at 30-m spatial resolution: Existing 

Vegetation Cover (EVC) and Existing Vegetation Height (EVH). Pixels are classified as either 

tree, shrub, or herb (this is consistent between EVC and EVH), and EVC characterizes each 

pixel by percent coverage of each class while EVH characterizes each pixel by height of each class 

(eg., pixel EVH may be “Shrub = 0.8 m” and EVC may be “Shrub = 30%”). In this way, EVH 

and EVC are categorical variables. To achieve a continuous metric of vegetation cover and 

height, the pixel class was removed from EVC and EVH metrics and three metrics were created: 

class, height, and percent cover.  As herb and shrub cover were assumed to not affect imagery 

(as herbs and shrubs were covered by snow), percent cover for herb and shrub pixels was set to 

0. A final metric to describe land cover from LANDFIRE was derived by classifying tree pixels 

as “forested” and shrubs and herbs as “unforested”.  

Much of the region where ground-truthing occurred was classified as “shrub” or “herb” 

in the 2022 LANDFIRE dataset, likely due to the diminished canopy cover of burned forest. 

While these designations accurately indicate that little to no canopy cover in burned forests, trees 

in these regions are unaccounted for in the EVC dataset yet expected to impact SfM point 

estimation. The impact of burn on LANDFIRE designation was such that these variables were 

a better indicator of burn severity rather than forest density. As burn severity is accounted for 
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in modeling with MTBS variables and as forest density in tandem with burn severity is expected 

to affect SfM accuracy, a clear metric of forest density unaffected by burn severity is necessary.  

To achieve this, LANDFIRE variables for 2016 (the most recent pre-fire product) were 

incorporated into regression models to account for antecedent pre-fire conditions. Another 

motive for using 2016 LANDFIRE data was that these data captured far greater variability than 

2022 classifications (2016 EVC contained 39 unique values where 2022 EVC contained 5; 2016 

EVC contained 26 unique values where 2022 EVC contained 5). 

Topographic Variables: Elevation, Aspect, and Slope  

 Topographic variables include elevation, slope, and aspect. A 1-meter resolution 

LiDAR-derived DEM of the study region was provided by a USGS colleague (B. Overstreet).  

This was used to produce slope and aspect maps. Aspect was converted from degrees to 

categorical directions (N, NE, E, SE, S, SW, W, NW).  

2.7.2  SfM Snow Depth Modeling with Multilinear Regression 

 SfM modeled snow depth was found by subtracting the bare-earth DEM from snow-

on DEMs to isolate snow. After extracting April SfM modeled snow depth values at in-situ 

measurement coordinates, we found that SfM snow depth values were up to an order of 

magnitude greater than measured snow depth values. Therefore, a simple linear model with 

measured snow depth as the driving variable and modeled snow depth as the response was used 

to correct snow depth maps. Once the April SfM map was corrected, 100 points were randomly 
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generated within the in-situ measurement domain. April SfM modeled snow and driving 

variables were extracted at all points. Snow depth was then regressed by burn severity, 

topography, and vegetation variables (Section 3.7.1). As robust coincident ground truthing was 

only completed for the April survey, this analysis was completed with April data.  

Variables that did not correlate significantly with SfM modeled snow (p-value ≦ 0.05) 

were removed to create a minimally adequate model with lowest Akaike information criterion 

(AIC). The deviance of the full and reduced model was compared through an ANOVA test. If 

deviance of models was not significantly different, it was assumed that the reduced model was 

as effective in accounting for the variability as the full model.    

The resolution of DEMs output from Metashape was 0.3-meters. To understand if 

variability in the April 0.3-meter resolution SfM snow map impacted results, this map was 

sampled to 30-meters and the process repeated. After resampling the 0.3-meter DEM to 30-

meters, multiple ground-truthed snow depth measurements fell in the same pixel. To avoid 

over-reporting these snow depth estimates, all duplicated modeled snow depth values were 

removed from further analysis. The relationship between measured snow and 30-meter 

resolution modeled snow at measurement locations was similarly established through simple 

regression, which was then used to correct randomly sampled snow depth values. Once 

significant drivers of variability in SfM modeled snow were identified, the relationship between 

drivers and modeled snow were further investigated through univariate analysis.  
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2.7.3 Snow Extent and Snow Depth Mapping 

 To assess the accuracy of modeled snow extent, a binary snow extent map was derived 

from each survey and compared to a Landsat Fractional Snow-Covered Area (fSCA) image 

captured as close to the survey date as possible. To create a snow extent map, all SfM snow map 

pixels that were greater than 0 (meters) were classified as 1 and all pixels less than or equal to 0 

were classified as 0. The classified snow maps were resampled to 30-meters, the resolution of 

Landsat imagery. Landsat fSCA bundles contain two fSCA products: Fractional Snow-Covered 

Area and Canopy Adjusted Fractional Snow-Covered Area. In this instance, we used Canopy 

Adjusted fSCA as this map better accounts for the influence of forest canopy on snow coverage 

estimations.  

Pixels in Landsat fSCA maps are assigned a value between 0 and 100, where 100 

indicates the entire pixel is snow covered and 0 indicates none of the pixel is snow covered. After 

visually comparing fSCA to survey orthomosaics, we decided to set a threshold for “snow-

covered” as fSCA ≥ 75. One thousand points were randomly generated where Landsat fSCA 

and modeled snow extent maps overlapped. Binary pixel values were extracted from classified 

rasters at each random point. These values were used to create a confusion matrix with Landsat 

fSCA as the reference dataset and modeled snow extent as the prediction dataset.  

Finally, we created snow depth maps for February and April. February and April snow 

depth maps were adjusted by regressions between measured and modeled snow discussed in 
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section 2.7.2. A mask was applied that constrained snow maps to high and moderate severity 

burn regions. Snow maps were further constrained to snow-covered regions, as determined by 

Landsat fSCA (fSCA ≥ 75 was considered snow-covered). In this way, we created our most 

‘ideal’ snow depth maps. One thousand points were randomly sampled over snow depth map 

domains, and SfM snow depth and driving variables were extracted at point coordinates. 

Modeled snow depth was regressed by vegetation, burn severity, and topography to investigate 

drivers of variability in SfM snow maps at the basin scale. 
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 Results  

3.1 Linear Modeling of Modeled Snow 

3.1.1 Modeling of Measured and Modeled Snow 

Measured and modeled snow depth were significantly related at 0.3- and 30-meter 

resolutions (0.3-meter modeled snow depth = 3.2453 (measured depth) + 3.0497; p-value = 

1.083 x 10–10, adjusted R-squared = 0.1844; 30-meter resolution modeled snow = 3.0258 

(measured depth) + 3.5621; p-value = 2.582 x x10-8, adjusted R-squared = 0.1396) (Figure 9). 

Yet modeled snow depth values were up to an order of magnitude greater than measured snow 

depth values. Therefore, the above regressions were used to adjust modeled snow depth. Based 

on these relationships between measured and modeled snow, the following equations were used 

to adjust SfM modeled snow depth maps: 

1. 0.3-meter adjusted snow depth = 0.059875(0.3-meter modeled snow) + 0.772229 

2. 30-meter adjusted snow depth = 0.05866(30-meter modeled snow) + 0.78194 
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Figure 9. 0.3-meter (left) and 30-meter (right) estimated snow depth (y-axis) plotted against measured depth (x-
axis). The relationship between measured and modeled snow was used to correct SfM modeled snow depth valued 
within the measurement domain. 

3.1.2 Drivers of Variability in 0.3-Meter Modeled Snow  

 An initial regression between 0.3-meter modeled snow and driving variables accounted 

for 40.55% of variability in modeled snow (adjusted R-squared = 0.4055, p-value =2.766 x 108).  

Of driving variables in the initial model, RdNBR (p-value = 6.01 x 10-5) was the only significant 

driver of variability. The minimally adequate model therefore incorporated only RdNBR (0.3-

meter modeled snow = 7.7 x 10-4 (RdNBR) - + 0.5; adjusted R-squared = 0.4108; p-value = 

4.126 x 10-13) and performed as well as the complete model (ANOVA F-statistic p-value = 

0.5248). Burn severity was positively related to modeled snow, which is expected as high severity 

burn forests exhibit greater snow accumulation. While we expected burn severity to influence 

modeled snow, we also hypothesized that vegetation would influence model variability in 
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tandem with burn severity. Neither vegetation cover nor height were significant predictors of 

variability.  

3.1.3 Drivers of Variability in 30-Meter Modeled Snow  

The initial regression between 30-meter resolution modeled snow and driving variables 

predicted 40% of variability in modeled snow, with RdNBR (p-value = 0.000128), and elevation 

(p-value = 0.039328) significant driers of variability (adjusted R-squared = 0.4039, p-value = 

3.062 x 10-8). The minimally adequate model also predicted 40% of variability in 30-meter 

modeled snow, with RdNBR the only significant driver of variability and elevation falling out 

of the model (30-meter modeled snow = 6.906 x 10 -4 (RdNBR) + 0.58; adjusted R-squared = 

0.4037, p-value = 7.468 x 10-13).  An ANOVA test was used to determine that the reduced model 

performed as well as the initial model (ANOVA F-statistic p-value = 0.4508). R-squared values 

for the 0.3-meter and 30-meter resolution maps were both roughly 0.4, and in both instances 

the minimally adequate model only included RdNBR as a driving variable. In this way, 

resolution did not impact the strength of the relationship between SfM modeled snow and 

driving variables.  

3.1.4 Analysis of Variance: Classified Burn Severity  

Given that burn severity was the only significant driver of variability in SfM snow maps,  

we assessed how SfM modeled snow varied by classified burn severity. While the MTBS 

classified burn severity product has 5 classes (see section 3.7.1), randomly sampled points fell in 
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pixels classified as low, medium, or high severity with 10, 17, and 73 occurrences, respectively.  

The following ANOVA tests were completed for the full dataset and for subsampled data, 

where n sample = n smallest class.  As there were 10 occurrences of sampling in low severity 

burn, 10 moderate and high severity burn samples were randomly sampled from the full dataset.  

The following analyses were completed for SfM maps at 0.3-meter resolution.  

3.1.5 Classified Burn Severity: SfM Modeled and Measured Snow Depth 

 Prior to assessing SfM modeled snow variability by burn severity class, we characterized 

modeled snow depth by burn severity class for the full dataset (high severity mean = 1.2 (meters),  

standard deviation = 0.1; moderate severity mean = 1.1, standard deviation = 0.2; low severity 

mean = 0.35, standard deviation = 0.6) and the sampled dataset (high severity mean = 1.3 

(meters), standard deviation = 0.1; moderate severity mean = 1.1, standard deviation = 0.2; low 

severity mean = 0.35, standard deviation = 0.6). When assessing the means and medians of burn 

severity groups, high and moderate severity burns exhibit the greatest (modeled) snow depth  

(Figure 10).    

An ANOVA of the full dataset indicated that 0.3-meter resolution SfM modeled snow 

varied by burn severity (ANOVA F-statistic p-value < 2 x 10-16). We used a post-hoc Tukey HSD 

test to determine that modeled snow in low and high severity groups (p-value = 0.00) and 

moderate and low severity groups (p-value =0.00) were statistically different while modeled 

snow in moderate and high severity groups were similar (Figure 10). An ANOVA test of the 



39 

sampled dataset similarly showed that modeled snow varied by burn severity (ANOVA F-

statistic p-value = 9.68 x 10-6). Also similar to the full data set, SfM modeled snow in low and 

high severity burn (p-value = 0.00) and low and moderate burn (p-value = 0.00) were 

significantly different while modeled snow in moderate and high severity burn was similar 

(Figure 10).  

  

Full Dataset Sampled Data 
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Figure 10. (Top left) distribution of SfM modeled snow for the whole dataset and (top right) the sampled dataset.  
Group means are indicated by red diamonds. (Bottom left) a Tukey plot of the full dataset and (bottom right) and 
sampled dataset show the same patterns: modeled snow in low and high severity burn are similar while both 
moderate and high severity burn are significantly different from low severity burn.  
 
  Measured snow depth was compared across classes to see if patterns between measured 

and modeled snow and burn severity were similar (Figure 10, 11). Like modeled snow depth, 

measured snow (by mean and median) was lowest in low severity burn, followed by moderate 

and high severity burn. Also reflected by modeled snow, actual depth in low and high severity 

burn (adjusted p-value = 0.003) and low and moderate severity burn (p-value = 0.033) was 

significantly different while snow depth in moderate and high severity burn were not different.  
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Figure 11. (Left) boxplots showing the distribution of measured snow depth by burn severity class and (right) a 
Tukey plot that shows measured snow depth is significantly different between low and high severity burn and 
moderate and low severity burn.  

 

3.2 Snow Covered Area 

A confusion matrix comparing February SfM-derived snow extent to coincident 

Landsat fSCA indicated that 653 modeled snow pixels were correctly classified by the SfM 

model while 347 pixels were incorrectly classified, such that modeled snow extent was accurate 

65% of the time with an error rate of 45% (Table 6, Figure 12). The February SCA model 

accurately predicted 50% of snow-covered pixels and 81% of snow-free pixels. With a Mcnemar's 

Test significant p-value (p-value < 10 x 2-16), we disproved the Mcnemar’s Test null hypothesis 

that the reference and predicted datasets are the same.   

A confusion matrix comparing April SfM modeled snow to Landsat fSCA performed 

more poorly, with 506 modeled snow extent pixels classified correctly while 494 pixels were 

incorrectly classified, such that modeled snow extent for April was 50% accurate with a 50% 
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error rate. The April model accurately predicted 38% of snow-free pixels and 76% of snow- 

covered pixels. A Mcnemar's Test (p-value = 10 x 5-14) indicated that the April SfM SCA map 

and Landsat SCA were not equal. 

Table 6. Confusion matrices for February (left) and April (right) SfM snow extent and Landsat fSCA, where 
‘predicted’ values are modeled snow extent and ‘reference’ values are derived from Landsat fSCA. The February  
snow extent map accurately predicted 65% of all pixels, with 50 and 81% of snow-covered and snow-free pixels 
correctly predicted, respectively. The April snow extent map accurately predicted 50% of all pixels, with 76 and 
38% of snow-covered and snow-free pixels correctly predicted, respectively.  

 
February   April 
 Reference   Reference 
 
Predicted 

 0 1   
Predicted 

 0 1 
0 430 244  0 252 79 
1 103 223  1 415 254 

 

 

 

 
 
 
 
 
 

Figure 12. SfM modeled snow extent (left) and LandsatfSCA (right) maps for February (top) and April (bottom). 
Blue indicates snow-covered pixels and brown indicates snow free pixels. Snow-covered pixels are where canopy 
adjusted fSCA ≥ 75 and where modeled SCA is greater than 0. All other pixels are snow free.  
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  3.3 Snow Depth Maps 

 We expected SfM methods to perform best in high severity burn forest. Given that SfM 

modeled snow in high and moderate severity forests was not statistically different, we 

constrained snow maps to high and moderate severity burn regions. After constraining February 

and April snow maps by Landsat fSCA and burn severity and adjusting snow maps by the 

regression between measured and 0.3-meter resolution modeled snow (found in section 3.1.1), 

1000 points were randomly sampled from the constrained domain (April snow depth mean = 

1.5 meters, standard deviation = 0.5 meters; February snow depth mean = 2.0 meters, standard 

deviation = 1.2 meters). 

The regression of February modeled snow and driving variables showed RdNBR (p-

value =0.002470), elevation (p-value < 2.2 x 10-16), slope (p-value < 2.2 x 10-16), and aspect (p-

value varied by aspect) all related significantly to modeled snow depth (February snow depth = 

-9.8 + 0.00 (RdNBR) + 0.01 (elevation) – 0.33 (slope), adjusted R-squared = 0.53, p-value < 2.2 

x 10-16). The same was true for April, where RdNBR (p-value = 0.00), elevation (p-value < 2.2 x 

10-16), slope (p-value < 2.2 x 10-16), and aspect (p-value varied by aspect) all related significantly 

to modeled snow depth (April  snow depth = -4.5 + 2.3 x 10-4(RdNBR) + 4.03 x 10-3 (elevation) 

– 1.2 x10-2 (slope), adjusted R-squared = 0.58, p-value < 2.2 x 10-16). Aspect was a significant 

driver of snow and varied positively with snow depth across all directions (aspect p-values varied 

by direction and were therefore not included in the above model equations).  
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Similarly to initial regressions, snow depth trended positively with burn severity in 

February and April. Unlike initial regressions, elevation, slope, and aspect drove variability in 

ideal snow maps. Snow depth typically increases with elevation due to decreased temperatures 

and orographic lifting, so the positive relationship between SfM modeled snow and elevation is 

expected. Snow depth decreases with increased vegetation cover due to canopy interception and 

long-wave radiative forcing. While we did not expect to see this relationship in the model as 

vegetation density drives error in SfM modeling, we expected to see correlations between 

vegetation and modeled snow depth estimates. However, vegetation variables were not 

significantly related to modeled snow depth. 

Snow depth maps constrained to snow-covered, high and moderate severity burn 

regions showed huge increased in snow depth in the southeast quadrant (Figure 13). It is 

difficult to determine if this is a snow signal or elevation signal, especially as snow increases with 

elevation. As snow depth appears to increase with distance from GCPs, this may also be 

influencing depth maps. A final possibility is that error increases towards the edge of the survey 

region.  
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Figure 13. Snow depth maps constrained to high and moderate severity burn, snow covered regions for 
February (top) and April (bottom). Ground control points deployed in each survey are included.  
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3.4 A Qualitative Assessment of Point-Cloud Confidence  

 When estimating locations of points in a dense cloud, Metashape produces a confidence 

value for every point, where confidence is based upon the number of depth maps used to 

construct a scene. Depth maps are 2-D images that convey the distance from a pixel to a camera.  

As can be seen in Figure 14 (where red indicates low point confidence and blue indicates high 

point confidence), open regions have high point confidence. Three logged regions near the 

center of the map exhibit the greatest density of high confidence (blue) points of the entire point 

cloud. By contrast, forested regions north of the logged regions and in the SW corner of the 

dense clouds appear to have the lowest confidence values. High severity burn regions, visible to 

the immediate NW and SE of the logged regions, have point confidence values that lie between 

forest and open region point confidence.  
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True Color Confidence 

February   

April  

Figure 14. True color point clouds (left) and confidence-colored (right) point clouds from each survey, where blue 
indicates high confidence and red indicates low confidence. Areas of low vegetation correlate with high point 
confidence (blue) where densely forested and shaded regions correlate with low point cloud confidence (red).  
Interestingly, high severity burned regions, such as the southeast quadrant, appear to indicate improved point cloud  
confidence compared to forested regions. This is most apparent in the April point cloud.  
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 Discussion 

 Structure-from-motion is a valuable remote sensing technique that enables snow 

hydrologists to survey snow at a low cost and with minimal equipment compared to LiDAR 

(Westoby et al. 2012; Bühler et al. 2015). In recent years, SfM has been used to survey snowy 

regions up to 300 km2 with centimeter accuracy and meter resolution (Buhler et al. 2016, Meyer 

and Skiles 2019). Trees in these surveys were either masked or else low enough in height or 

density as to minimally affect snow-mapping.  

 Knowing that SfM is an optical sensing method and is therefore typically employed in 

non-forested environments where the ground is clearly visible, we investigated the potential of 

this method to survey snow in burned forests where canopy cover is greatly reduced. With the 

proliferation of fire in the West and the influence of burned forest on snow processes, 

downstream water resources, and hazards risk, a rapidly deployable and financially accessible 

method of surveying snow is particularly valuable in burned regions.  While trees inevitably 

impact the quality of snow maps, we asked: can we detect a snow signal in burned forests at the 

basin scale with airborne SfM, and if so, what is the strength of that signal? To answer these 

questions, we must disentangle a snow signal from the trees. This is a challenging task as factors 

that drive error, broadly vegetation, burn severity, and topography, also influence error in SfM 

mapping.   
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4.1 Modeled and Measured Snow Regressions 

We saw that at 0.3-meter resolution, there was an 18% correlation between measured 

snow depth and SfM modeled depth. Though this correlation is weak, it indicated that we may 

be sensing snow depth through the trees. This correlation decreased to 13% when modeled snow 

depth was smoothed to 30-meters. While this could be random, it may also indicate that a high-

resolution was critical to sensing gaps between trees, while DEM smoothing aggregated ‘noise’ 

from trees. In both 0.3- and 30-meter resolution regressions, the adjusted R-squared indicated 

significant relationships between measured and modeled snow. Because of this, we used the 

relationship between measured and modeled snow to adjust sampled SfM snow depth values 

and maps.  

4.2 Variability in Modeled Snow by Classified and Continuous Burn Severity   

 It is clear we were not able to detect absolute snow depth in these surveys. Still, we can 

assert that SfM models estimated snow in high and moderate severity burn forests in a way that 

was distinct from low severity burned forests. This result is clearly represented by our ANOVA 

comparing modeled snow by burn severity classifications (i.e., figure 11). Here, even when 

controlling for disparate sample size, we see much greater variability in modeled snow in low 

severity burn than in high and moderate severity burn.  

Some snow depth values in low severity burn regions were negative. When Meyers and 

Skiles (2019) surveyed a 300 km2 region, vegetation-classified pixels produced negative values 
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ranging from -4 to -28 m.  This may be caused by slight lateral offsets between differenced 

models that feature large spikes in ‘elevation’ where trees were not resolved by point cloud 

classification, or this could be caused by limitations of Metashape to resolve terrain elevation in 

forests altogether. Interestingly, in both measured and modeled snow depth, the mean and 

median were greatest in high severity burn, followed by moderate and lastly low severity burn. 

While we cannot assert with our data if this is due to SfM snow depth maps accurately capturing 

variability in the depth of imaged snow, this result is compelling and warrants further 

investigation.  

4.3 Snow Covered Area and Snow Depth Maps 

 We found that SfM snow maps were not statistically related to Landsat fSCA snow 

extent maps. February SfM modeled snow extent correctly predicted pixels 65% of the time 

where April SfM modeled snow extent accurately predicated only 50% of pixels.  However, a 

visual assessment of SfM snow cover maps indicated that the most disagreement with Landsat 

fSCA maps occurred in low and unburned forest where snow cover is least visible. These 

findings warrant repeating this analysis in high and moderate burn severity regions only.  

 We saw modeled snow in the ideal modeling region “behave” in expected ways. 

Primarily, snow depth increased with elevation and burn severity. We expected modeled snow 

to correlate with vegetation density as vegetation drives error in SfM models, but vegetation was 

not a significant driver of variability in SfM snow maps in February or April.  
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Drivers of variability in snow-depth maps were different between initial regressions and 

regressions in ideal mapping regions. There are several explanations for this. After constraining 

the study region to high severity burn and snow-covered regions, the influence of topographic  

variables on SfM-derived snow depth map become statistically significant and/or drivers of 

variability may change depending on the sampling area. Sampling for snow depth modeling was 

derived from a 6 km2 region whereas ground-truthed points used for error modeling were 

sampled from a 0.32 km2 region. It is possible that topographic relief is amplified at higher 

elevations where there is greater surface detail. The final possibility is that distortions in the bare 

earth DEM influenced results of basin-scale (snow extent and ideal snow map) analyses.  

 4.4 Distortions in the Bare-Earth Map 

Snow depth maps constrained to snow-covered, high and moderate severity burn 

regions showed huge increases in estimated depth in the SE corner of the map. We delved further 

into this observation by subtracting a LiDAR-derived DEM from our bare-earth map (the same 

LiDAR DEM from which elevation, slope, and aspect data was derived) (Figure 15). It is 

important to note that LiDAR can be used to create terrain models (maps without surface 

features like trees) in densely vegetated regions much more effectively than SfM is able to. This 

is why highly vegetated regions in Figure 15 (purple regions that are 7+ meters) are clearly visible 

in the DEM of difference. It should also be noted that there is likely an offset between the 

LiDAR DEM and the SfM bare-earth DEM. As we were concerned with only variability in the 
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DEM of difference, we did not calculate an offset (though from randomly sampling points 

along roads, regions we expect to see no change, there appears to be an offset of about 25 meters).   

Figure 15 indeed shows that the difference between the SfM bare-earth map is greatest 

in the southeast corner, where the SfM map is greater than LiDAR. The magnitude of the 

difference between LiDAR and the SfM map in this region indicates that there is likely 

distortion in the bare-earth model. Given that GCPs were roughly colinear, it is possible that 

there is a rotation in the bare-earth DEM around the axis of the GCPs. This distortion likely 

impacted snow extent maps and ideal snow depth maps, as these analyses were completed at the 

basin scale. Regressions between measured and modeled snow, initial multilinear regressions,  

and ANOVAs of modeled snow across burn severity were completed with point data in the 

ground-measurement survey region. This survey region was small (0.3 km2) and in-line with 

ground control. Because of this, we expect these results to be unaffected by DEM rotation 

around the axis of GCPs. Distortion in the bare-earth DEM must be corrected and basin-scale 

analyses repeated to achieve reliable results.  



53 

 

Figure 15. LiDAR data subtracted from a DEM derived from the bare-earth flight. An offset between LiDAR and 
the BE flight has not been applied (we expect this offset to be about 23 meters). As expected, the SfM BE map 
indicates greater elevation in forested regions. The southeast corner of the map shows the greatest difference 
between LiDAR and the SfM map. This is likely due to distortions in the SfM BE map.   

4.4. Lessons Learned and Study Recommendations  

 We flew an airplane over a 27 and 15 km2, densely forested burn scar. These surveys were 

highly experimental and novel, and produced interesting results that suggest high severity 

burned forest may be a more suitable location for SfM at the basin scale than unburned forests.  

Throughout the course of this study, we learned that more thorough georeferencing could 

majorly improve point cloud location estimates. More thorough georeferencing could look like 

a higher accuracy GPS with flight orientation parameters included or more dispersed and a 

greater quantity of GCPs. Greater dispersal of GCPs would likely resolve the rotation issues we 
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encountered in basin-scale maps. Given the remote location and size of our study region, 

improving GPS accuracy is more ideal than introducing more GCPs. We also learned that other 

point cloud classification software is often used in tandem with Metashape to produce a final 

point cloud. Based off these lessons, we offer these recommendations: 

(1) Post-processing the navigation file output from the Waldo Flight Control Software 

that contains high-resolution flight location and orientation data could majorly 

improve image position estimates. The GPS in the WaldoAir (the OEMStar from 

NovAtel, a single-frequency multi-constellation GNSS receiver) has 1.5-meter 

accuracy without post-processing, which is the accuracy of the coordinates 

embedded in photo EXIF files. Additionally, the GPS was placed on the dashboard 

of the plane during flights, and no offset was calculated between the sensor and the 

GPS (this offset was roughly 1 meter).  Increasing image geotag accuracy through 

incorporating flight orientation parameters and post-processing while securing the 

GPS to a position with a known distance from the WaldoAir sensors may improve 

model outputs without the need for additional GCPs. Nolan et al. (2015) used 

GCPs only to test SfM model performance (rather than for georeferencing) and 

were able to survey snow with centimeter to decimeter accuracy, but they employed 

a multi-frequency GPS with 10 cm accuracy and a calculated and consistent offset 

from the sensor.  
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(2) More rigorous point cloud classification and filtering. For simplicity’s sake, we 

classified our point cloud in Metashape. While Metashape classification was 

essential for digital terrain models, it was clear through a visual inspection of the 

point cloud that some of trees, particularly in high severity burned regions, were not 

correctly classified. This was apparent as no points were classified as high vegetation 

in regions of stand-replacing fire. As noted by Meyer and Skiles (2019), Point Cloud 

Library, LAStools, and Point Data Abstraction Library are popular point-cloud 

processing software. Adequately filtering a point cloud in high severity burn is 

essential to creating a digital terrain model representative of the snow surface.  
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 Conclusion    

We expected that variability would be greatest in unburned forests and smallest in high 

severity burned forests with low vegetation density. Initial regressions showed us that variability 

in SfM-derived snow depth was driven by burn severity (RdNBR) at 0.3- and 30-meter 

resolutions. Modeled snow increased with burn severity, a relationship we expect to see in snow 

in burned forests. While we cannot validate that this pattern was due to a snow signal in our 

snow depth models, the differences in variability and magnitude of modeled snow in low versus 

moderate and high severity burn was striking, and we can assert that SfM modeling in low 

severity burn regions was much more variable than in moderate and high severity burn regions. 

In this way, our results suggest SfM surveying may be useful in moderate and high severity burn 

regions.  

Despite issues with the bare-earth map, our findings still suggest that SfM-derived snow 

depth mapping at the basin scale may be more accurate in burned forests than unburned forests, 

but more work is needed. We observed variability in high severity burned forest to be distinct 

and more predictable than error in low and moderate severity burn. Given the influence that 

burned forests exerts on snow, downstream water resource, and hazards risk, and the 

affordability of SfM when surveying snow at large spatial scales compared techniques like 

LiDAR, this work indicates that research into SfM surveys of burned basins stands to benefit 

watershed managers and snow hydrologists alike.   
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Appendix A: Agisoft Metashape Mapping Specifications and Camera Calibration 

Parameters 

Table 7. Summary information of snow-on and bare-earth products following bundle adjustment. As the bare-
earth flight was re-processed with each snow-on flight, the unique bare-earth raster for each snow-on flight is 
denoted “BE snow-on survey date”.  

 
Flight 

 
Images 

 
Tie Points 

 
Projections 

 
Ground Res.  

Reprojection 
Error 

Export 
Res. 
(m/pix) 

BE April 28 1,154 1,096,694 2,522,988 13.2 cm/pix 0.284 pix 0.3  

April 28 1,017 1,461,913 3,467,547 11.5 cm/pix 0.269 pix 0.3  

BE Feb. 25 1,154 1,685,268 3,570,701 13.2 cm/pix 0.262 pix 0.3  

February 25 1,146 2,272,591 5,294,181 11.6 cm/pix 0.273 0.3  

       

Table 8. Camera specifications including camera model, resolution, focal length, pixel size, and calibration. These 
parameters were the same for both cameras so are only detailed once. These parameters were the same for all 
flights.  

Camera Model Resolution Focal Length Pixel Size Precalibrated  
Canon EOS 5DS R 8688 x 7592 50 mm 4.24 x 4.24 μm No 

 
Table 9. Camera (image) Error Estimates.  

Flight X error (m) Y error (m) Z error (m) XY error (m) Total Error 
(m) 

BE February 25 NA NA NA NA NA 
February 25 68.9 10.7 7.4 69.7 70.1 
BE April 28 52.7 9.8 8.0 53.6 54.2 
April 28 65.4 33.4 7.2 73.4 73.7 

 
Table 10. Ground Control Point Error Estimates. 

Flight X error (m) Y error (m) Z error (m) XY error (m) Total Error 
(m) 

BE February 25 NA NA NA NA NA 
February 25 1.0 1.1 0.8 1.5 1.7 
BE April 28 1.0 0.5 0.3 1.1 1.2 
April 28 0.4 0.5 1,1 0.6 1.3 
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 Appendix B: Survey Digital Elevation Models and Orthomosaics  

A. Bare-Earth Flight 
 

 
Figure 16. A DEM of the bare-earth flight.  

 
Figure 17. An orthomosaic of the bare-earth flight.  
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B. February Flight 

 
Figure 18. A DEM of the February 25th flight.  
 

 
Figure 19. An orthomosaic of the February 25th flight.  
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C. April Flight 

 
Figure 20. A DEM of the April 28th flight.  
 

 

 

 
Figure 21. An orthomosaic of the April 28th flight.  
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