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ABSTRACT

An abstract of the thesis of Andrew Greenberg for the Master of Science in Elec-

trical and Computer Engineering presented May 6, 2005.

Title: Open Source Software for Commercial Off-the-Shelf GPS Receivers

Inexpensive and commercially available Global Positioning System (GPS) re-

ceivers can be used in novel applications, such as nanosatellites and unmanned

aerial vehicles (UAVs), by modifying the receiver’s software. Unfortunately, typi-

cal GPS software development systems cost tens of thousands of dollars and have

restrictive license agreements, such as non-disclosure agreements, for both their

hardware and software. This thesis describes the design and construction of an

open source GPS receiver development system that addresses these unnecessary

restrictions. For the first time, any developer with a PC, a commercially available

GPS receiver, and this development system can quickly and easily develop software

for extended GPS applications. The software is licensed as open source under the

GNU General Public License (GPL) version 2 and is called GPL-GPS.

GPL-GPS currently supports Zarlink’s GP4020 baseband processor, a 12 chan-

nel GPS correlator with an integrated 32bit ARM7TDMI microprocessor. Any

GP4020-based receiver with 256 kB or more of RAM and flash memory is able

to run GPL-GPS. When coupled with a commercially-available GP4020-based

receiver and an open hardware development board, GPL-GPS provides a full-

featured GPS experimentation and application development kit for less than US $200.



Dedicated to

my lovely and talented wife

Jennifer.



Acknowledgements

Like many cross-discipline studies, this thesis could never have been completed

without the help of people who know far more than the author.

In particular, I’d like to acknowledge four groups of people: Tim Brandon and

Jamey Sharp for their enormous contributions to this thesis and my development

as an engineer and programmer, Clifford Kelley and Takuji Ebinuma for their

ground-breaking work on the OpenSource GPS software, and Gary Thomas for

his authorship of and contributions to the eCos real time operating system. Fi-

nally, I would be remiss not to acknowledge the teeming hordes of open source

programmers who have built a nice set of shoulders for the rest of us to stand on.

I am indebted to Professor James McNames, a great adviser with a long term

vision. Professor Bart Massey encouraged me to get this done once and for all

and helped me with LATEX, and Morgan Odland was kind enough to translate my

rough hand sketches into skillfully formatted figures.

Finally, thanks to the ‘fam’ for bearing with me for seven long years.

Thank you all.



Table of Contents

List of Tables v

List of Figures vi

1 Introduction to GPS 1

1.1 The Global Positioning System . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Types of GPS Receivers . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Radio Frequency Trilateration . . . . . . . . . . . . . . . . . 2

1.1.3 Satellites: The Space Segment . . . . . . . . . . . . . . . . . 4

1.1.4 GPS Signal Description . . . . . . . . . . . . . . . . . . . . 5

1.2 GPS Receivers: the User Segment . . . . . . . . . . . . . . . . . . . 6

1.2.1 Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Prefilter and LNA . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 RF Front End (Down-converter and ADC) . . . . . . . . . . 7

1.2.4 GPS Correlator . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.5 Extracting the Navigation Message . . . . . . . . . . . . . . 12

1.2.6 Taking Measurements . . . . . . . . . . . . . . . . . . . . . 13

1.2.7 Calculating Pseudoranges . . . . . . . . . . . . . . . . . . . 15

1.2.8 Calculating Position and Time . . . . . . . . . . . . . . . . . 15

1.2.9 Carrier Phase Velocity and Position . . . . . . . . . . . . . . 16

1.2.10 Filtering Position Output . . . . . . . . . . . . . . . . . . . 17



1.2.11 GPS Receiver Software . . . . . . . . . . . . . . . . . . . . . 17

1.2.12 GPS Receiver Performance . . . . . . . . . . . . . . . . . . . 18

1.3 GPS Receivers: Applications . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Standard GPS Applications . . . . . . . . . . . . . . . . . . 19

1.3.2 Specialized GPS Applications . . . . . . . . . . . . . . . . . 20

1.3.3 Extended GPS Applications . . . . . . . . . . . . . . . . . . 21

2 Motivation and Principles behind GPL-GPS 23

2.1 Motivations for an Open GPS Development System . . . . . . . . . 23

2.1.1 The Embedded System Development Model . . . . . . . . . 23

2.1.2 Debugging Critical Flight Hardware . . . . . . . . . . . . . . 25

2.2 Moving Towards Open Source Solutions . . . . . . . . . . . . . . . . 26

2.3 GPL-GPS Design Principles . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Immediate Applications for GPL-GPS . . . . . . . . . . . . . . . . 29

3 Selecting a Receiver Chipset and Board 31

3.1 Choosing a GPS Receiver Chipset . . . . . . . . . . . . . . . . . . . 31

3.1.1 GPL-GPS Chipset Requirements . . . . . . . . . . . . . . . 32

3.1.2 Applicable GPS chipsets . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Choosing a Chipset . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Choosing a GP4020-based GPS Receiver . . . . . . . . . . . . . . . 38

3.2.1 GP4020-based GPS Receiver Requirements . . . . . . . . . . 38

3.2.2 Available GP4020-based GPS Receivers . . . . . . . . . . . . 38

3.2.3 Choosing a Receiver . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Creating a GPL-GPS Development Board . . . . . . . . . . 40

ii



4 Selecting and Porting a RTOS 42

4.1 ‘Soft’ vs. ‘Hard’ Real Time . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 RTOS Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Applicable Real Time Operating Systems . . . . . . . . . . . . . . . 44

4.4 Choosing a RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 eCos Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Porting eCos to the GP4020 . . . . . . . . . . . . . . . . . . . . . . 49

4.7 GPL-GPS Software Infrastructure . . . . . . . . . . . . . . . . . . . 50

4.8 Getting eCos Running on the GP4020 . . . . . . . . . . . . . . . . 51

5 Porting OpenSource GPS 53

5.1 Introduction to OpenSource GPS . . . . . . . . . . . . . . . . . . . 53

5.2 ARMGPS: Porting OSGPS to the GP4020 . . . . . . . . . . . . . . 55

5.3 Transforming ARMGPS to GPL-GPS . . . . . . . . . . . . . . . . . 56

5.3.1 GPL-GPS Computing Environment . . . . . . . . . . . . . . 56

5.3.2 Optimizing for GPL-GPS . . . . . . . . . . . . . . . . . . . 57

5.3.3 Improving on OSGPS Algorithms . . . . . . . . . . . . . . . 59

5.4 GPL-GPS Current Status . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 GPL-GPS Current Performance . . . . . . . . . . . . . . . . . . . . 61

6 Future Work and Conclusion 63

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.2 Reimplement Atmospheric Correction . . . . . . . . . . . . . 63

6.1.3 Reimplement Almanac Processing . . . . . . . . . . . . . . . 64

6.1.4 Reimplement Carrier Phase Tracking . . . . . . . . . . . . . 64

iii



6.1.5 Faster Cold Acquisition . . . . . . . . . . . . . . . . . . . . 64

6.1.6 Move Tracking Loops to Internal SRAM . . . . . . . . . . . 65

6.1.7 Code Refactoring and Contribution back to OSGPS . . . . . 65

6.1.8 Better Phase Locked Loop Algorithm . . . . . . . . . . . . . 66

6.1.9 Network API (Flight Computer Model) . . . . . . . . . . . . 66

6.1.10 Lock Aiding . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.11 DGPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.12 Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.13 Moving towards Open Hardware . . . . . . . . . . . . . . . . 67

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

Appendix A Initial Results 72

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 SigTec OEM Software Positioning Results . . . . . . . . . . . . . . 73

A.3 GPL-GPS Software Positioning Results . . . . . . . . . . . . . . . . 74

A.4 Receiver Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.5 Comparison Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix B The GPL-GPS Development Board 81

iv



List of Tables

1.1 GPS error budget (from [15]). . . . . . . . . . . . . . . . . . . . . . 19

3.1 Comparison of GPS chipsets. . . . . . . . . . . . . . . . . . . . . . 35

3.2 Commercially available GP4020-based GPS receivers. . . . . . . . . 39

4.1 Comparison of real time operating systems. . . . . . . . . . . . . . . 45



List of Figures

1.1 The GPS constellation (reproduced from [18]). . . . . . . . . . . . . 5

1.2 Block diagram of the Zarlink GP2015 GPS front end (reproduced

from [24]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 One dimensional (code phase only) Gold code correlation. . . . . . 9

1.4 Two dimensional (code phase and carrier frequency) Gold code cor-

relation: contour map. . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Two dimensional (code phase and carrier frequency) Gold code cor-

relation: 3D plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Block diagram of a channel in the Zarlink GP4020 (reproduced from

[25]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Tracking loops for a generic software receiver (reproduced from [21]). 12

1.8 Zarlink GP4020 correlator peripheral block diagram. . . . . . . . . 14

1.9 Generic GPS receiver tasks. . . . . . . . . . . . . . . . . . . . . . . 18

2.1 PSAS Launch Vehicle No. 1b (LV1b) GPS flight data from October

2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Generic GP4020-based GPS receiver block diagram (reproduced from

[25]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 The eCos configtool program configuring the gps-4020 template. 48



4.2 GPL-GPS software architecture: GPL-GPS, eCos, RedBoot and

host system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 The original OSGPS ISA PC card (reproduced from [9]). . . . . . . 53

5.2 OpenSource GPS software flowchart (reproduced from [9]). . . . . . 54

5.3 GPL-GPS software flowchart. . . . . . . . . . . . . . . . . . . . . . 59

5.4 GPL-GPS timing: tracking loops and measurement thread. . . . . . 61

5.5 GPL-GPS timing: tracking loops, measurement thread, and posi-

tion thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.1 Comparison testing setup: roof-mounted antenna, antenna splitter

and two MG5001 receivers on development boards . . . . . . . . . . 73

A.2 Initial ECEF positions of the SigTec OEM software . . . . . . . . . 74

A.3 54,747 ECEF positions at 1 Hz from the SigTec OEM software . . . 75

A.4 Histogram of range to the sample mean for the SigTec OEM software 75

A.5 GPL-GPS data bounded by a 1 km bounding box (98.8% of points) 76

A.6 GPL-GPS data bounced by a 100 m bounding box (90.5% of points) 77

A.7 Histogram of range to the sample mean for GPL-GPS (1 km bounded

data set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.8 Time series graph from the SigTec OEM Software . . . . . . . . . . 78

A.9 Time series graph from GPL-GPS . . . . . . . . . . . . . . . . . . . 79

A.10 Zoomed-in time series from GPL-GPS . . . . . . . . . . . . . . . . 80

B.1 Schematic of the GPL-GPS carrier board for the SigTec MG5001

receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



Chapter 1

Introduction to GPS

No matter where you go, there you are.

— Buckaroo Banzai

This chapter introduces the Global Positioning System (GPS) and the technical

operation and applications of GPS receivers.

1.1 The Global Positioning System

The Global Positioning System, or GPS, is the world’s first Global Navigation

Satellite System (GNSS). A constellation of more than 24 satellites in medium

earth orbit continuously broadcasts radio frequency signals which allow GPS re-

ceivers to determine their position, velocity, and time.

GPS receivers are becoming ubiquitous. Although best known as navigational

aides for drivers and recreational hikers, GPS receivers are quickly becoming em-

bedded in consumer technology such as cell phones, small electronic hand-held

organizers, and, recently, wrist watches. As the integrated circuits for GPS re-

ceivers shrink in size and require fewer external components, we can expect GPS

receivers to become increasingly embedded in our everyday experience.



1.1.1 Types of GPS Receivers

The term “GPS receiver” covers a wide range of hardware and software forms:

Consumer receivers are inexpensive (typically under US $200) GPS receivers

that include a display screen, input device (e.g., a keyboard), and an inte-

grated microwave patch antenna.

GPS receiver boards are original equipment manufacturer (OEM) boards that

are intended for applications requiring positioning or time data but not a

direct user interface. Consumer receivers include GPS board functionality as

well as user interface hardware.

Software receivers (often known as “software defined radios”) minimize hard-

ware by using software to do the majority of signal processing.

In this thesis, the term “GPS receiver” will refer to a printed circuit board with

all the electronic components necessary to receive and decode GPS signals but no

user interface or extraneous hardware. GPS receivers have only a GPS chipset,

a general purpose processor, memory (ROM and RAM), and the radio frequency

components necessary to operate the receiver. These receivers are also known as

“OEM receivers”, “GPS sensors”, and even “GPS engines”.

1.1.2 Radio Frequency Trilateration

Triangulation is the most common form of beacon-based position determina-

tion. Measuring the angles between a receiver and three beacons at known positions

allows a receiver to determine its location. How accurately the receiver’s location
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can be determined depends on how accurately the receiver can measure the angles

involved.

GPS works by trilateration; knowing the distance to three beacons at known

locations allows the receiver to determine its position. The accuracy of trilatera-

tion depends upon how accurately the receiver can determine the distance to the

beacon. In the case of GPS, each satellite carries an atomic clock to synchro-

nize the broadcast of a microwave signal. When the signal is received, the arrival

time is recorded and compared to the time of transmission. The time between the

transmission and reception of the broadcast is the “time of flight”: multiplying the

time of flight by the propagation speed (in this case, the speed of light) provides

the receiver with the distance to the beacon. Consequently, for a time-of-flight,

trilateration-based positioning system, accuracy is limited by how accurately the

receiver can measure time.

Measuring the time of flight requires that the receiver’s and the beacon’s clocks

are precisely synchronized. Since radio frequency signals propagate at roughly the

speed of light (about 0.3 m per nanosecond), meter-level positioning accuracy re-

quires timing with nanosecond accuracy. GPS satellites and their ground-based

control centers solve this problem with redundant atomic clocks. Unfortunately

it’s not feasible to have atomic clocks in GPS receivers due to their expense and

size. However, a GPS receiver’s inexpensive, temperature-dependent, frequency-

drifting, and noisy crystal-based clock can be quickly and continuously synchro-

nized with the navigation system’s time by adding time as a fourth unknown to the

navigation problem. Solving this four dimensional (X, Y, Z, t) problem requires

at least four independent measurements. With one measurement per satellite, a

stand-alone GPS receiver must receive signals from four satellites, not three, to

3



synchronize its clock and acquire position.

If the receiver is given more information, fewer satellites are necessary to solve

the position equation. For example, GPS receivers with altimeters can navigate

with only three satellites since their position is now three dimensional (X,Y,t).

And GPS receivers with very stable clocks can navigate with only three satellites

until their clock drift gives unacceptable errors.

1.1.3 Satellites: The Space Segment

The core of GPS is a constellation of 24 satellites in medium earth orbit. De-

veloped and deployed by the United States government, these GPS satellites are

the “Space Segment” of the Global Positioning System.

The 24 satellites (or more, including in-orbit spares) are equally distributed in

six longitudinally distributed orbital planes, each inclined 55 degrees to the equator

at an altitude of 20,335 km (Figure 1.1). Depending on latitude, an average of 5 to

7 satellites are visible 5 degrees above the horizon at any given time [15]. Because

the beamwidth of the GPS signal extends about 7.4 degrees past the limb of the

earth, and because of unavoidable back propagation of the satellites’ antennas,

GPS can also be used in low and medium earth orbit [2].

Each GPS satellite carries redundant Cesium and Rubidium atomic frequency

standards (AFS) which steer a precision 10.23 MHz oscillator. The AFS, along

with adjustments from the GPS ground controllers, keep the 10.23 MHz time base

to within 6 ns of the GPS system time. This accuracy is required to keep systemic

timing errors below 1.2 m. The satellites also use this precision time base to

control the frequency of their broadcast signals: the GPS uses the L1 frequency of

1.57542 GHz, which is 154 times the 10.23 MHz timebase.
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Figure 1.1: The GPS constellation (reproduced from [18]).

1.1.4 GPS Signal Description

GPS satellites use code division multiple access (CDMA) to share the L1 fre-

quency between multiple satellites. Specifically, GPS uses Gold codes, a class of

nearly orthogonal codes which can be used for CDMA transmissions due to their

low cross-correlation. Each orbital satellite is assigned a pseudorandom index num-

ber (PRN) which denotes its Gold code and uniquely identifies the satellite. GPS

satellites also have satellite vehicle designations, but are most often referred to by

their PRN [15].

The Gold code sequence is periodic therefore each symbol conveys a negligible

amount of information. This is why the Gold code symbols are called “chips”,

rather than bits. Each chip of the 1,023 chip GPS Gold code sequence is binary

phase shift keyed (BPSK) onto the L1 carrier at a chip rate of 1.023 MHz making

the sequence repeat once each millisecond. Modulated on top of this 1.023 MHz

signal is a 50 bit-per-second message that is also binary phase shift keyed onto

the carrier. This 50 bps signal contains a 1,500 bit navigation message which

includes the satellite’s health, clock corrections, a detailed description of its orbit

5



(ephemeris data), and a general orbital description of the entire GPS constellation

(almanac data). Using the ephemeris data, the receiver can calculate where the

satellite was (to < 0.5 m) at the time of transmission. Using the almanac data

and the receiver’s current position, the receiver can predict which satellites may

be currently visible.

The satellite signals are broadcast at 50 W, but are attenuated by distance and

the atmosphere to a guaranteed minimum level of a few microvolts (-130 dBm) at

the Earth’s surface. Since this is below the typical noise floor of roughly -90 dB,

GPS signals are “under the noise floor” and can only be recovered by using noise

rejecting techniques. For conventional GPS receivers, a local copy of the Gold code

sequence is correlated with the received signal to recover the original signal while

rejecting un-correlated noise [15].

1.2 GPS Receivers: the User Segment

A conventional GPS receiver, part of the GPS “user segment”, requires five

components: an antenna, a radio frequency front end (RF front end), an analog

to digital converter (ADC), a correlator with at least four channels (although in

some cases this can be done in software), and a general purpose processor.

1.2.1 Antenna

Antennas for GPS receivers must acquire the right-hand circularly polarized

signals from the satellites while minimizing multipath signals. Multipath signals

are those signals which have been ‘bounced’ off of local features, increasing their

propagation path length and thus changing their phase. These multipath signals
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‘smear’ the phase of GPS signals, making precise phase tracking difficult and thus

adding noise to the receiver’s position measurements.

1.2.2 Prefilter and LNA

The 1.57542 GHz signal from the antenna is typically prefiltered and amplified

using a low noise amplifier (LNA) on the receiver board.

1.2.3 RF Front End (Down-converter and ADC)

Typically, GPS receivers have a “radio frequency front end” chip that down-

converts and digitizes the 1.57542 GHz carrier into a signal a few megahertz

wide. For example, the Zarlink GP2015 RF front end (Figure 1.2) uses a 10 MHz

temperature-controlled crystal oscillator (TCXO) as the local oscillator for a three-

stage down-converter. After down-conversion, the resulting 4.3 MHz signal is over-

sampled by a two bit flash analog to digital converter at a sample rate of 5.7 MHz.

This aliases the digitized signal, resulting in a final output frequency centered

around 1.4 MHz. The 5.7 MHz digitized stream is sent to a correlator chip to be

further processed.

1.2.4 GPS Correlator

Conventional GPS receivers are usually able to track 6–12 satellites. Each

tracked satellite requires a ‘channel’, which is a set of correlation hardware that

includes a Gold code generator, binary multipliers, and two digitally controlled

oscillators (DCO)s, one for the carrier frequency generator and one for the Gold

code generator.
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Figure 1.2: Block diagram of the Zarlink GP2015 GPS front end (reproduced from
[24]).

The purpose of each channel is to replicate a satellite’s Gold code sequence

and multiply it with the incoming signal. The summation of this product (or cor-

relation) is very low if the code phase and frequency of the local replica doesn’t

match the received signal’s phase and frequency. However, if the signals are syn-

chronized, the correlation value spikes and the signal is detected. An example of a

one-dimensional correlation in code phase only is shown in Figure 1.3, where the

X axis is the relative phase of the two Gold code sequences.

The search for GPS signals — ‘acquiring’ the satellite signal — is a two dimen-

sional search problem. First, the variable distance to the transmitting satellite

causes an unknown phase shift in the incoming signal’s Gold code. Second, the

satellite vehicle’s motion relative to the user causes an unknown Doppler shift in

the carrier frequency. There are also second and third order effects on the code

frequency due to dispersion of the signal in the ionosphere, but these smaller ef-
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Figure 1.3: One dimensional (code phase only) Gold code correlation.
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Figure 1.4: Two dimensional (code phase and carrier frequency) Gold code corre-
lation: contour map.

Figure 1.5: Two dimensional (code phase and carrier frequency) Gold code corre-
lation: 3D plot.
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fects can safely be ignored during acquisition. Figures 1.4 and 1.5 show full two

dimensional correlation in code phase and carrier frequency.

For a practical example, a channel in the Zarlink GP4020 baseband correlator

(Figure 1.6) uses a carrier frequency DCO to match the incoming carrier frequency

and a code generator (run by a separate code frequency DCO) to match the in-

coming code phase and frequency. Each correlator channel has four accumulators,

which are registers meant to hold the correlation’s sum of products. Two of the

registers accumulate the in-phase component (I) of the incoming signal, and two

registers accumulate the quadrature component (Q) of the incoming signal. These

accumulators are further divided into “prompt” and “tracking” sets. The prompt

accumulators (Iprompt and Qprompt) follow the incoming signal as closely as possible.

The tracking accumulators (Itracking and Qtracking), generate a signed error signal

by subtracting an ‘early’ version of the code phase from a ‘late’ version of the code

phase.

GPS receivers usually require a general purpose processor to control the chan-

nel’s DCOs. This control loop is the processor’s most time-intensive task, requir-

ing typically 20% to 50% of the processor’s bandwidth [21]. After every full Gold

code cycle (every 1 ms), the processor must check the accumulators. If searching

for satellites, the processor analyzes the values in the accumulators and decides

whether to continue scanning code phase and carrier frequency for satellites, or to

try and “pull in” a possible candidate signal. Once a satellite signal is found, the

processor must run two control loops:

1. Monitor the error signal of the tracking accumulators every code cycle in

order to control the code frequency DCO.
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Figure 1.6: Block diagram of a channel in the Zarlink GP4020 (reproduced from
[25]).

2. Maximize the value of the in-phase (I) prompt accumulator and minimize

the quadrature phase (Q) prompt accumulator over some integration period

in order to adjust the carrier frequency DCO.

Figure 1.7 shows a generic software tracking loop: toward the top of the figure,

the code generator generates two Gold code sequences, one a half-chip early and

one a half-chip late in phase. Subtracting the sum of products from these two

phase-shifted codes produces an error signal which is averaged, summed and used

to control the code generator. The resulting prompt, or in-phase code is multi-

plied against the input signal to remove the Gold code from the input to the the

carrier tracking loop. The carrier loop generates a phase-locked carrier signal by

maximizing the in-phase (I) component and minimizing the quadrature (Q) phase

of the signal. This carrier signal is then used to remove the carrier from the code

11



for the code loop.

Figure 1.7: Tracking loops for a generic software receiver (reproduced from [21]).

The control of the DCOs can be done with a frequency-locked loop (FLL)

during pull-in of a signal and a phase-locked loop (PLL) during lock. The FLL

allows a wider capture range for acquiring the signal, but does not track the phase

closely enough for the precision phase alignment necessary for accurate time-of-

flight measurements. Switching to the PLL after pull-in allows the correlators to

directly match the signal’s phase.

1.2.5 Extracting the Navigation Message

Every 20 ms (50 Hz) the satellite binary phase shift keys another satellite

navigation message bit onto the GPS signal. If the navigation message bit changes,

12



there is a subsequent sign change in the output of the correlator’s accumulators.

The receiver’s processor looks for these sign flips, synchronizes to a likely bit edge,

and decodes them into a 1,500 bit satellite navigation message. The navigation

message is broken into words of 30 bits (0.6 s long), subframes of 10 words (6 s

long), and frames of 5 subframes (30 s long). The full satellite almanac data is

distributed over multiple frames, called a superframe, which repeats every 12.5

minutes. The processor must check the words for errors using a Hamming block

code (32 total bits with 26 information bits), assemble them into subframes, and

extract the message data from a packed bit field.

Once subframes one through three have been assembled, the complete ephemeris

is available to the receiver. With only a rough idea of the system time (down to

a few milliseconds), the ephemeris enables the receiver to calculate the satellites

position and, if the receiver’s approximate position is known, the azimuth and el-

evation from the receiver to the satellite. The azimuth and elevation can then be

used to correct the satellite’s signal propagation time using generic ionospheric and

tropospheric models. This model can be further refined with increasingly precise

coefficients that are uploaded by the control segment and inserted into subframe

four.

1.2.6 Taking Measurements

A bank of channels is usually referred to as a GPS correlator (Figure 1.8).

The correlator takes an instantaneous sample of each channel’s code phase, code

DCO phase, and the carrier phase. This instantaneous sample, sometimes called

a ‘snapshot’, contains the timing information to make a precise measurement of

how far away each satellite under observation was at the moment of measurement.
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Figure 1.8: Zarlink GP4020 correlator peripheral block diagram.

Since all the satellites transmit the navigation messages at precisely the same

time, the variation in the received message’s total phase is a measure of the sig-

nal propagation time. This phase is directly measured as the bit number of the

message, the chip number of the Gold code generator, and the phase of the Gold

code generator. For example, with the Zarlink GP4020 the satellite vehicle time

is calculated as:

ttx = (B × 0.2 s) + (G × 1 ms) + (C × 488.758 ns) + (φc × 477.3 ps), (1.1)

where ttx is the time of transmission from the satellite, B is the number of 20 ms

long bits since the the start of the GPS week (weeks are the largest time epoch

in the GPS and begin every Sunday morning at 00:00), G is the number of 1 ms

Gold code cycles since the last data bit transition, C is the number of Gold code

chips since the last cycle (counted in half chips), and φc is the phase of the code

frequency DCO which has 1,024 counts per half chip.

14



1.2.7 Calculating Pseudoranges

The local clock of the GPS receiver is set to within roughly 100 ms of the system

time after receiving any valid navigation message subframe, since all subframes are

timestamped from the beginning of the GPS week. Given this rough synchroniza-

tion, the receiver can now calculate the “pseudorange” to the satellite, which is

the apparent time-of-flight of the signal measured without a precisely synchronized

clock:

ρi = tR − (tT + δti) ∗ c − b, (1.2)

where ρi is the pseudorange from the satellite to the receiver measured in meters,

tR is the time of the measurement, tT is the time of transmission based on equa-

tion (1.1), δti is the satellite clock correction factor (including terms for satellite

clock drift correction, atmospheric modeling, and relativistic corrections for the

satellite’s motion), c is the speed of light in a vacuum, and b is the unknown clock

bias expressed in units of distance.

With four pseudoranges known, the receiver can solve for the three position

coordinates as well as the clock bias term. The clock bias term is applied to the

receiver’s local clock, precisely synchronizing it with GPS time.

1.2.8 Calculating Position and Time

In order to use the four pseudoranges for positioning, the location of each

satellite must be known. This can be calculated to sub-meter accuracy using the

precise ephemeris data obtained from the navigation messages and a standard

orbital model.
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When four pseudoranges and four satellite positions are available from a given

correlator measurement, a position-time solution can be found using a least squares

method. The fundamental positioning equation is a simple statement of Euclidean

geometry:

ρi =
√

~xi − ~xr + b, (1.3)

where ρi is the pseudorange from the receiver location ~xr to the location of the ith

satellite ~xi. Like equation (1.2), the unknown clock bias b has been included.

Although straightforward in principle, this equation has several problems in

application. The first is the need to invert it and solve for ~xr. The resulting non-

linear vector equation is usually linearized around an estimated solution, and then

iterated until the error drops below a tolerable accuracy.

1.2.9 Carrier Phase Velocity and Position

Because the carrier frequency DCO is locked in phase with the incoming signal,

a very accurate measurement can be made of the change in phase of the GPS car-

rier. This change in phase is the number of 19 cm wavelengths of the 1.57542 GHz

L1 carrier passing per unit time, and is an independent measurement of the relative

velocity between satellite and receiver. Tracking carrier phase, or “accumulated

delta range”, is a very accurate method of determining receiver velocity [15].

If the integer number of carrier cycles between the satellite and the receiver can

be determined, then carrier phase can be used for precise positioning. Also known

as the integer ambiguity problem, solving the integer carrier phase cycles usually

requires position aiding such as differential GPS (discussed below in Section 1.3.2)

for single frequency receivers.
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1.2.10 Filtering Position Output

Covering the gamut from simple double differenced values through Kalman

filtering, position filtering allows the receiver to reduce sample-to-sample errors

in position. Filtering is an entire extended GPS topic in itself, and will not be

covered in this thesis.

1.2.11 GPS Receiver Software

To further understand the operation of a GPS receiver, it is helpful to break

down the previous receiver description into a series of generic tasks that the pro-

cessor must perform independent of the underlying hardware (see also Figure 1.9):

Tracking task — a high repetition rate, (< 1 ms) high priority task that reads the

accumulators and adjusts the DCOs to acquire and track the satellite signals

for each channel. This task also demodulates bits from satellite navigation

messages.

Satellite navigation message task — a medium frequency, medium priority

task which assembles the bits from the satellite navigation message found

by the tracking task. The message is checked for errors, assembled into

subframes, and the ephemeris and almanac data extracted.

Positioning task — a low frequency, preemptible task that uses measurements

and ephemerides to calculate position and time.

Housekeeping task — a very low frequency, low priority task which takes care

of miscellaneous chores, such as allocating satellites to correlator channels,

managing external communication channels, etc.
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Figure 1.9: Generic GPS receiver tasks.

1.2.12 GPS Receiver Performance

Current GPS receivers have horizontal position accuracy of around 10 m (1 σ)

[15]. The spherical error probable (the 3D sphere in which 50% of the position

estimates falls within), or SEP, is also 10 m. The system “user range error” (URE)

error budget is shown in Table 1.1.

Ionospheric refraction and multipath errors are the main error sources in a mod-

ern GPS receiver. Antenna design and correlator timing can help with multipath

signals, and models of the ionosphere can help subtract some of the ionospheric de-

lay errors. To completely take into account these effects, however, requires external

aiding (see Section 1.3.2).

1.3 GPS Receivers: Applications

Commercially available GPS receivers fall into general categories, based on the

application’s demands.
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Error Sources 1σ User Range Error (URE) [m]

Space Segment
Clock Stability 3.0
L-Band phase uncertainty 1.5
SV parameter predictability 1.0
Other 0.5

Control Segment
Ephemeris prediction and model 4.2
Other 0.9

User Segment
Ionospheric delay 2.3
Tropospheric delay 2.0
Receiver noise/resolution 1.5
Multipath 1.2
Other 0.5

TOTAL (RSS) URE 6.6

Table 1.1: GPS error budget (from [15]).

1.3.1 Standard GPS Applications

Commercial GPS receivers are usually intended to provide position, velocity

and time (PVT) updates once a second in an ASCII encoded message. Other data,

such as satellite ephemeris and pseudoranges, are difficult, or impossible, to obtain

from standard commercial receivers, and if available, are usually formatted in a

propriety binary protocol. The ASCII encoded message, usually a National Marine

Electronics Association (NMEA) standard, is either stored for future processing or

is used by an external processor. These standard 1 Hz PVT messages are applicable

for low dynamic conditions such as handheld receivers, in-vehicle navigation aides,

and most commercial aircraft receivers.
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1.3.2 Specialized GPS Applications

Non-standard applications require specialized code and, often, specialized re-

ceiver hardware. There are many off-the-shelf commercial receivers that are de-

signed for specialized applications:

Timing Specialized GPS receivers exist which are intended only to synchronize

a local precision clock with GPS time. Such time transfer systems can be

within a few tens of nanoseconds of GPS time, which is kept within a mi-

crosecond of Coordinated Universal Time (UTC), plus or minus an integer

number of leap seconds.

High Dynamics Most GPS receivers have an internal model of their dynamics;

e.g., they have filtered position and velocity estimates which assume bounded

dynamic movement (acceleration and velocity) and smoothness assumptions.

These assumptions may cause the receiver to lose lock in high dynamic en-

vironments. High dynamic receivers, meant for military aircraft or launch

vehicles, cost upwards of thousands of dollars and often need to be finely

tuned for the end vehicle’s dynamics.

DGPS A stationary receiver at a surveyed location can derive propagation-time

corrections for each visible satellite to compensate for ionospheric and tropo-

spheric delays. These correction signals, called “differential GPS corrections”

(DGPS) can then be broadcast to local (within 100 km) roving receivers.

These pseudorange corrections can give standard GPS receivers sub-meter

accuracy.

RTK DGPS coupled with carrier phase positioning (carrier phase tracking with
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the integer ambiguity solved) is often called “real time kinematic” positioning

and is used for centimeter-level accurate land surveying.

E911 Cellular phones with embedded GPS receivers enable position-based emer-

gency services (as well as covert surveillance) with extremely low satellite

signal strengths (e.g., -160 dBm), which enables these services to be used in-

side buildings. The GPS time and ephemeris are transmitted to the chipset

from the cellular base station, allowing the correlators to be directly set with-

out having to search for signals. The provided ephemeris data also means the

correlators do not have to decode the satellite navigation messages, letting

them instead concentrate on tracking the weak signals.

1.3.3 Extended GPS Applications

Many specialized GPS applications require custom modifications to the receiver

software. Although some off the shelf products may work in these applications,

they are usually extremely expensive, forcing most non-governmental users to cre-

ate their own solutions. Some of these applications are:

Attitude Determination Multiple GPS receivers with multiple antennas on a

vehicle can be coordinated to produce an estimate of the heading (attitude) of

the vehicle. This requires coordinated carrier phase tracking, where multiple

receivers track the change in carrier phase caused by satellite and receiver

motion.

Integrated Navigation Systems Integrating inertial, magnetic and other posi-

tion and attitude sensors via data fusion (e.g., Kalman filtering) can greatly

enhance the receiver’s ability to track and improve positioning accuracy. This

21



integration is almost always a custom solution that cannot be purchased off

the shelf, with the exception of military systems which cost hundreds of thou-

sands of dollars. Small unmanned aerial vehicles (UAVs) can greatly benefit

from these kind of integrated navigation systems.

Terrestrial Physics A tremendous amount of information about the troposphere

and ionosphere can be gleaned by observing how the GPS signals propaga-

tion through the atmosphere. This can be done by running the system “in

reverse” — a stationary receiver in a known position with precision satellite

ephemerides calculates the signal delay in the atmosphere, which is a func-

tion of the total electron content in the atmosphere along with second order

effects such as water content.

Academic Applications Academic research often requires stand-alone receivers

running custom software. A programmable receiver board makes an excel-

lent teaching tool, and is necessary for in-situ prototyping and testing of

algorithms.

While there is little need for a GPS development system for standard GPS

applications, there is no current solution that reduces the barriers to entry for

extended applications. It is these extended GPS applications — and those yet

to be developed — which will most benefit from an inexpensive and open GPS

development system.
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Chapter 2

Motivation and Principles behind

GPL-GPS

This chapter describes the motivations and general design principles behind

GPL-GPS.

2.1 Motivations for an Open GPS Development

System

2.1.1 The Embedded System Development Model

A software developer starting a development project on a new embedded pro-

cessor generally does the following:

1. Orders a hardware development board, costing a few hundred dollars.

2. Downloads the specifications of the chipset and the development board, which

is usually published on the Internet.

3. Chooses a software development system, most likely one they already own



and use. Often example code is freely downloaded from the chip manufac-

turer’s site, or increasingly often, from independent sites on the Internet

devoted to sharing technical information.

4. Develops software for which there are no intellectual property restrictions.

They may share their code as they wish.

Unfortunately, developing for GPS chipsets is not as seamless. A software

developer starting a development project on a commercial GPS chipset — in this

example, one of the more popular chipsets — does the following:

1. Orders a hardware/software development kit for more than US $20,000.

2. Requests specifications on the chipset and development board, forcing them

to sign a non-disclosure agreement prohibiting them from sharing their work

on the chipset with others — even coworkers — who have not signed the

NDA.

3. Requests development tools, which are usually expensive, proprietary tools

with libraries or code bases that only have an application programming in-

terface (API) to a binary program, rather than source code. Obtaining the

source code is another expense and license agreement.

4. Develops code for the new GPS chipset, which they may not share with

others given their NDA. Thus, the developer is forced into “reinventing the

wheel” for their application since no software is available except some generic

binary interface provided by the chipset manufacturer.

Why this is standard for an industry trying to sell chipsets — not development

systems — baffles the GPS developer community. Developers assume that the
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chipset manufacturer is there to help, not hinder their use of a chipset. These

restrictions also mean that the academic community has been all but barred from

developing a teaching infrastructure because of the intellectual property restric-

tions on the development software. Clearly, a more streamlined and open GPS de-

velopment environment, in line with the embedded development model, is needed.

2.1.2 Debugging Critical Flight Hardware

Background: PSAS

In October 2000, I directed a team of students that designed, constructed

and launched an advanced sounding rocket avionics system for the Portland State

Aerospace Society [16]. The vehicle, dubbed launch vehicle number 1b, or LV1b,

flew to 3.6 km with a custom RISC microcontroller-based flight computer, a custom

micro-electro-mechanical (MEMs) strap down inertial measurement unit, telemetry

and uplink radio links, and a commercial GPS receiver board. The data from the

sensors (including the GPS) was sent down a 900 MHz 19.2 kbps telemetry system

and also stored in battery-backed up SRAM.

PSAS LV1b GPS Flight Data

The commercial GPS receiver’s standard 1 Hz position data from the October

2000 flight is shown in Figure 2.1. The receiver was locked and positioning correctly

until the vehicle reached apogee and the recovery parachute was deployed. It was

extremely disheartening to realize that after the recovery system deployment shock,

the receiver gave grossly incorrect position data while asserting “position locked

and valid” flags. Multiple calls to the manufacturer went unheeded, and there
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was no access to the receiver’s software to discover what had happened. Later

discussions with other GPS developers led to the hypothesis that the errors were

due to a software bug in the receiver’s Kalman filter. The need to fix this bug,

along with the desire to create an integrated navigation system (GPS and inertial

sensors), led us to realize that we needed to develop our own GPS software.
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Figure 2.1: PSAS Launch Vehicle No. 1b (LV1b) GPS flight data from October
2000

2.2 Moving Towards Open Source Solutions

This began my investigation into GPS software development. It became abun-

dantly clear that no commercially available receiver was suitable for our project,
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and that no existing development system fit our needs due to budget and license

restrictions.

We discovered, and became inspired by, Dr. Clifford Kelley’s work on the

OpenSource GPS (OSGPS) project. Kelley took an inexpensive commercial GPS

receiver, “hacked” off the processor, and connected the correlator chip directly to a

486 PC using an ISA prototyping board. Kelley’s work, published in 2002 [9], was

the first open source GPS receiver software written. Although his receiver system

couldn’t easily be used in a power, space, and weight constrained environment like

a launch vehicle, it did provide a code base from which to start an open source

“non-hacked” receiver project.

In 2002, I proposed creating an open source GPS receiver project designed

for OEM GPS boards. To my knowledge no one had yet proposed this. I began

part time work on the idea starting in early 2003. I widely published the idea

on the web and through the open source GPS mailing list which I formed in mid

2004. In July of 2004, Takuji Ebinuma started a parallel project by taking Kelley’s

OSGPS code and porting it to a commercial receiver. Although there were several

problems with the project, his work became the world’s first open source stand-

alone GPS receiver board. Work began in earnest on GPL-GPS in late 2004, and

the GPL-GPS’s first position fix was on May 2nd, 2005.

Over the years, GPL-GPS was transformed from just open source software for

GPS receivers into a complete GPS receiver development system. By encompassing

open source methodologies, tool suites, operating systems, and open hardware

designs, the GPL-GPS development system promises to provide an affordable and

open GPS development environment available to all.
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2.3 GPL-GPS Design Principles

GPL-GPS is based on the “open source” design philosophy: the more open a

system is, the more dynamic and vibrant it becomes as it is adopted by multiple

end users with different needs. Linux is a prime example of such an open system;

thousands of people around the world have embraced and extended Linux from a

small educational project to a modern, full featured desktop and enterprise-level

operating system. GPL-GPS has five design principles:

Open Source: All software used in this project must be open source. This in-

cludes the application code, any operating system, and the software devel-

opment tools. Using proprietary code or tools would be expensive, overly

restrict end users, and require tedious and potentially litigious management

of intellectual property.

Open Hardware: The required hardware (the GPS chipset and receiver board)

must have open and available documentation to avoid having to “reverse

engineer” and/or “hack” hardware.

Portable: The software design should be as modular and portable as possible;

improvements to GPL-GPS code should be transferable to future GPL-GPS

ports, as well as back to the OSGPS project. The development system should

run on as many platforms (Linux, Windows, Macintosh) as possible.

Inexpensive The hardware cost of the system must be as low as possible (a few

hundred dollars, with a US $300 upward limit) and be widely available.

Available All software and documentation must be made available on the in-

ternet. Any developer with a bit of experience who is willing to read the
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documentation should be able to quickly and easily start development.

The GNU General Public License (GPL) was chosen as the software license

because of its general acceptance as an open source license. Some industry lob-

byists claim that the GPL itself is a restrictive license agreement since any source

changes must be distributed along with the binary form of the software, making it

impossible to have proprietary source code based on the original open source code.

The free software community claims that this restriction isn’t a restriction, but

rather a requirement for participation. People who benefit from an open system

should expect that their modifications should be open as well, if they choose to

distribute them.

Note that licensing under the GPL does not require that independently de-

veloped code be distributed openly. Also, code that simply interacts with GPL-

licensed code does not fall under the GPL [8].

2.4 Immediate Applications for GPL-GPS

GPL-GPS is primarily aimed at small academic and/or commercial projects

which require extended GPS applications. For example:

UAVs Small unmanned aerial vehicles (UAVs) requiring integrated navigation

systems such as the PSAS’ next generation launch vehicle, LV2.

Robotics Autonomous robotic navigation includes both autonomous agricultural

equipment and autonomous vehicles such as those entered in the Defense

Advanced Research Project’s Grand Challenge competition.
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Nanosatellites GPS receivers on satellites make satellite navigation and attitude

control smaller and less expensive compared to larger, more costly star sen-

sors. Several academic nanosatellite projects have already expressed interest

in using GPL-GPS.

GPS coursework GPL-GPS should make a dramatically inexpensive and avail-

able educational development system.
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Chapter 3

Selecting a Receiver Chipset and

Board

3.1 Choosing a GPS Receiver Chipset

A GPS “chipset” is the active electronics necessary to decode GPS signals.

Most GPS receivers require one to three silicon integrated circuits (ICs, or ‘chips’):

a radio frequency (RF) front end, a baseband correlator, and some kind of general

purpose processor. In practice, commercial GPS chipsets come in four configura-

tions:

Correlator only A single chip that only does GPS correlation. It requires a

separate RF front end and processor.

Combined correlator/processor A single chip that contains both the correla-

tor and the processor. It only requires a RF front end.

Single chip receiver A single chip receiver that combines a RF front end, a

correlator, and a processor.



Analog to Digital Converter (ADC) Software-defined radio (SDR) receivers

replace the RF front end and correlator chips with a single ADC and signal

processing software running on a fast processor.

Current trends seem to be bifurcating the GPS chipset market: the system-

on-chip (SoC) trend is pushing receiver chipsets towards highly-integrated single

chip receivers while, at the same time, trends in software defined radio (SDR) are

pushing the correlator features into small “correlator peripheral” chipsets that use

the processing power of a host processor for much of the signal processing besides

tracking. The latter is most evident in deeply embedded receivers, such as those

in GPS-enabled cellular phones.

3.1.1 GPL-GPS Chipset Requirements

The GPS chipset used in the GPL-GPS receiver will determine how the initial

code infrastructure is defined, and deeply influences how project resources are

spent. Does the chip need to be reverse engineered? Is that even possible? Are

there operating systems already ported to the processor of the chipset? Choosing

a chipset sets the tone and direction for the rest of this project, thus considerable

research was invested in existing chipsets.

It can be argued that an open source GPS receiver should move away from a

hardware-dependent GPS chipset towards a SDR system. This would increase the

flexibility of the receiver’s functionality while reducing the the cost and complexity

of the receiver hardware. Unfortunately, moving from a GPS correlator chipset to

a general purpose processor or field programmable gate array (FPGA) currently

incurs unacceptable power and size penalties for many embedded applications:
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chipset-based receivers generally require 6 in2 and consume less than 1 W, while

general purpose processors and FPGAs require at least 16 in2 and consume 10–

100 W of power. Thus to serve power, weight and size restricted applications,

GPL-GPS must use a chipset-based receiver rather than a SDR general purpose

platform. As a stand-alone receiver, the chipset for GPL-GPS requires:

1. Open and accessible chipset documentation (it cannot require a non-disclosure

agreement)

2. Support of the processor architecture (if there is one) by open and available

tools.

3. Available in a commercial, off-the-shelf (COTS) receiver board.

Important but not required features of that chipset are that it:

1. Has at least eight correlator channels.

2. Is intended to be used as a general purpose receiver and is not as an ultra-

miniaturized SoC cell-phone chip or a timing-only chip.

3. Has a convenient and usable hardware architecture (i.e., does not require an

extraordinary amount of effort in either software or hardware development).

4. Has an existing open code base

3.1.2 Applicable GPS chipsets

There are currently about a dozen commercial GPS chipsets on the market. Of

these, most were not user-modifiable or programmable as a stand-alone receiver

and thus were discarded. Discarded chipsets included:
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• Older chipsets with significantly less processing power or less than 8 correla-

tor channels.

• “Position peripheral” chipsets, meant for deeply embedded consumer appli-

cations such as cellular phones. In such applications, a receiver chip provides

a standard interface over a parallel or serial link to the host processor. The

positioning peripheral chip — despite the fact that it may contain a general

purpose processor and may even require the host to send it a firmware —

must be considered to be non-programmable since only its application inter-

face is described. Data sheets on the internal workings of the chipsets do not

seem to be available.

• Intellectual property-only (“IP-based”) receiver designs, consisting mostly

of hardware description language files for Field Programmable Gate Arrays

(FPGAs), were not considered for GPL-GPS. As mentioned earlier, FPGA

boards are larger and consume more power than conventional GPS chipsets,

and further, as of fall 2004, there were no commercial FPGA-based GPS

receiver boards available.

Table 3.1 compares available chipsets that fit the stand-alone receiver model.

The chipsets have been divided into two groups: the first has integrated processor

and correlator chipsets, and the second group has separate process and correlator

chipsets.

Unlike the rest of the semiconductor industry, finding an “open” GPS chipset

— one which had open and available documentation and did not require a restric-

tive licensing agreement to use — was a major challenge. Exhaustive research

uncovered only two open chipsets. This seems like extreme short-sightedness on

34



Mfg. and model. Arch. Open Rec Sane OSS

Atmel ATR0620 ARM7TDMI N Y ? N
NemeriX NJ1030 [14] SPARC V8 Y N Y N
SiRF SiRFStar II [17] ARM v? N Y Y N
Thales Baldur [19] ARM7 N Y ? N
u-Nav uN8031B [22] V-DSP? N Y N N
Zarlink GP4020 [25] ARM7TDMI Y Y Y Y

Processor with integrated correlator peripheral chipsets.

Mfg. and model. Open Rec Sane OSS

Navman Zodiac [13] N Y Y N
Trimble FirstGPS [20] N Y ? N
Zarlink GP2021 [23] Y N Y Y

Correlator only chipsets.

Key: Arch Architecture of processor if known
Open Open documentation available without NDA or other excessive

licensing agreement
Rec Inexpensive, commercial GPS receiver boards exist for this chipset
Sane Receiver architecture is not overcomplicated
OSS Open source software exists for this chipset

Table 3.1: Comparison of GPS chipsets.
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behalf of the GPS chipset manufacturers who are operating on an older model

of intellectual property retention than the more open, fluid — and successful —

general semiconductor industry.

I spent some time trying to convince chipset manufacturers to open up their

chipset designs, if only for nonprofit projects. All refused, and when queried,

answered that they were protecting their intellectual property from competition. In

light of the openness and success of the general semiconductor industry, this seemed

to be poor business strategy. The only explanation offered by other frustrated GPS

developers is that the military origins of the Global Positioning System have left

a corporate culture still steeped in secrecy and closed intellectual property rights.

3.1.3 Choosing a Chipset

The NemeriX NJ1030 [14] is an open GPS chipset featuring a 16 channel cor-

relator, an open source “LEON” (SPARC V8) processor, a large onboard SRAM

cache, and very low power consumption ( < 8 mA at 3.3 V). Unfortunately, this

promising new chipset was too recently released to have any commercially-available

receivers as of spring of 2005. Future versions of GPL-GPS will undoubtedly be

ported to the NemeriX chipset as NJ1030-based receivers begin to appear on the

market.

The only open and available chipset at the start of the GPL-GPS project was

the Zarlink GP4020 Baseband Processor [25]. All architectural and application

notes are available on Zarlink’s web site, including reference designs for receiver

boards. A major feature of choosing the GP4020 is that its correlator peripheral

is the same architecture as the stand-alone Zarlink GP2021 correlator chip used in

Kelley’s OpenSource GPS receiver project. This provided a rich pre-existing soft-
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ware base for any GP4020 design. Another plus of the GP4020 is that its general

purpose processor is an ARM7TDMI, a widely used 32 bit RISC architecture with

available open source tools.

The GP4020 has a variety of peripherals, including two timers, two asyn-

chronous serial ports (UARTs), a high speed synchronous serial port (SPI), a

watchdog timer, and a sophisticated memory peripheral controller (MPC) to in-

terface the GP4020 to external RAM, ROM and peripheral devices. A typical

GP4020-based receiver is shown in Figure 3.1. Note the antenna, TCXO, and fil-

ters on the GP2015 RF front end, and the 2 bit ADC output (sign, magnitude)

from the RF front end to the GP4020 correlator block. The 16 bit RAM and ROM

(usually flash) is shown in the upper right.
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Figure 3.1: Generic GP4020-based GPS receiver block diagram (reproduced from
[25]).
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3.2 Choosing a GP4020-based GPS Receiver

3.2.1 GP4020-based GPS Receiver Requirements

The GPL-GPS receiver requires a receiver board that:

1. Uses the Zarlink GP4020 Baseband Processor chip.

2. Has enough RAM and ROM (> 128 kB).

3. Does not need to be modified in any way to be used as a GPL-GPS receiver.

This last requirement is important because many developers do not have the

skills necessary to precisely modify a four or more layer printed circuit board.

Relying on “hacking” a receiver board severely diminishes the number of software-

only developers willing to work on a project. Other important considerations for

the receiver are:

1. Access to GP4020 pins, in particular the MULTI FNIO pin for easy use of

the GP4020’s built-in boot loader and the GPIO pins for LED debugging.

2. Compact size and on-board power management.

3. Standard RF connector (e.g., MCX, SMA, SMB)

4. Widely available.

5. Relatively inexpensive (less than US $150).

3.2.2 Available GP4020-based GPS Receivers

See Table 3.2 for a comparison of the three commercially available boards based

on the GP4020.
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Manufacturer SigTec SigTec Novatel
Model MG5001 MG5003 SuperStar II

RF Front End GP2015 GP2015 GP2015
External SRAM 256 kB 512 kB 128 kB
Flash 256 kB 256 kB (serial) 256 kB
Cost (Qty. 1) US $250 US $225 US $125
Notes 51 pin connector Small form factor 32 kB EEPROM

Table 3.2: Commercially available GP4020-based GPS receivers.

3.2.3 Choosing a Receiver

The SigTec MG5001 is the clear choice as a development receiver for a number of

reasons:

• Larger RAM size

• The high density 51 pin connector allows the MG5001 to be mounted as

a daughter board on a development board, providing direct access to the

GP4020’s serial ports (UARTs), JTAG debugging pins, MULTI FNIO serial

boot pin, GPIO pins, data lines and a small subset of address lines.

• The MG5001 has a RF section that is separated from the digital section in

a way that facilitates using separate metal ground shields, a useful option

when operating in high noise applications.

The MG5003 has the advantage that it has an extremely small form factor and

has a large amount of SRAM. But the lack of connectors make it necessary to hack

the board to get access to the GPIO, and the serial flash make it impossible to

run the software infrastructure directly from flash, making the larger SRAM not

as advantageous.
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The Novatel SuperStar II is half the cost of the MG5001, but the added ex-

pense of the MG5001 seems worth the added development flexibility of the 51 pin

connector and the larger memory. Not surprisingly, however, the SigTec MG5001

and the Novatel SuperStar II are very similar to each other, and there are almost

no differences between them from a software development point of view. With the

exception of RAM size, code developed on the MG5001 should work exactly the

same on the SuperStar II. Projects with budget constraints should still be able

to use the SuperStar II for GPL-GPS development. In-situ GPL-GPS installa-

tions should also consider using the SuperStar II due to the lower cost, since only

development activities require a large SRAM size.

An important possible difference between the boards is the sensitivity of their

RF front ends. While they employ the same RF front end chip (the Zarlink

GP2015), they have very different component values and board layouts. Future

side-by-side testing using a single antenna with a 2-to-1 splitter will enable a direct

comparison of the two receiver boards.

3.2.4 Creating a GPL-GPS Development Board

It’s almost always necessary to have some kind of a development board that

aids embedded development work. To have something similar for GPL-GPS, I

designed a 4.5 x 3.5 inch carrier board for the MG5001. It includes:

• Two DB-9 connectors with a 5 V to RS-232C signal level converter chip,

allowing a PC to connect to both serial channels.

• Three switches connected to the GP4020’s reset, MULTI FNIO (serial boot-

loader), and JTAG debugging pins.
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• Five separate 0.1 inch headers for the address, data, JTAG, GPIO and serial

pins.

• Eight LEDs connected to the GPIO.

• Linear 5 V and 3.3V power supplies.

• A small prototyping area.

The schematic and board layout was created in EAGLE CAD, a freely available

(but not open source) PCB CAD development tool. The design is posted on

the GPL-GPS web site (http://gps.psas.pdx.edu) for others to download and

manufacture. A commercial circuit board manufacturing run costs roughly US $75

for two carrier boards, and there is approximately US $25 worth of components on

the board. See Appendix B for a detailed schematic.
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Chapter 4

Selecting and Porting a RTOS

While it was possible to write a custom operating system, or even use a sim-

ple C language run-time environment for GPL-GPS, neither allows the developer

the flexibility to focus on the application, rather than the underlying code infras-

tructure. The open systems approach of GPL-GPS also suggests using an already

existing standards-based, open software system like an operating system. Thus,

I chose to use a standard real time operating system as the base of GPL-GPS’

software infrastructure, rather than the seemingly more typical GPS development

option of creating a custom solution.

4.1 ‘Soft’ vs. ‘Hard’ Real Time

Operating systems are grouped into three general time-constrained categories:

non-real time, ‘soft’ real time, and ‘hard’ real time operating systems. A standard,

or non-real time, operating system has no bounds on system response and can not

run applications with time constraints. Soft real time systems have low latencies,

but still have no bounds on system response time. In many respects, ‘soft real

time’ is a misnomer — if a system can miss deadlines without a failure, then it’s



not a real time system. Hard real time systems will fail if their time constraints

are not always met. For these systems, being late is similar to a logical error.

Real time systems have exacting time constraints that must be met. These

constraints may be measured in microseconds, hours, or even days, but they must

be met.

GPS receivers are an example of a real time system with critical timing con-

straints on the order of 100’s of microseconds: losing the 1 ms correlator accumu-

lator interrupts will eventually cause the channel to lose lock on a satellite.

4.2 RTOS Requirements

The GPL-GPS project has very strict requirements for a RTOS because of the

performance and memory constraints. The requirements for the RTOS are:

Hard real time performance Interrupt latencies must be on the order of 10 µs

in order to handle the 1 ms accumulator interrupts, and context switches

must be on the same order of magnitude to enable the use of threads.

Small memory footprint With only 256 kB of flash memory, the RTOS may

take up no more than 128 kB (based on the OSGPS v1.17 current code size

of 180 kB for the x86 processor).

Open source As outlined in the GPL-GPS design philosophy, the RTOS must

be open source with no licensing restrictions.

Existing port to ARM7 processors Porting a RTOS to a new processor ar-

chitecture is a thesis unto itself, so the RTOS must be already ported to

ARM7TDMI processors.
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Integrated debugging tools Built-in debugging features are one of the most

overlooked aspects of an operating system. In order to make cross-platform

embedded development tolerable, the RTOS must support remote loading

and debugging of applications on the target system.

Some important considerations for choosing an RTOS include:

Rich operating system primitives A benefit of using an operating system is

not only the ubiquitous support of threads, but also that it provides rich timer

and interprocess communication (IPC) primitives (e.g., mutexes, semaphores,

etc).

Simple to compile and configure The more complicated the setup and instal-

lation of an OS, the harder it is to have others adopt it and the more time

wasted on the code infrastructure rather than the application code.

Supports multiple architectures An RTOS which is ported to many other pro-

cessor architectures is an important consideration for future GPL-GPS ports.

Good documentation Poor technical documentation on the complicated inner

details of an operating system can be frustrating and waste time. Books,

online manuals, and manuals all help clarify the details of using a RTOS.

4.3 Applicable Real Time Operating Systems

Several months were spent research existing real time operating systems. The

comparison of the applicable operating systems are in Table 4.1.

µClinux was discarded since it is not a real time operating system. Nucleus

turned to out to be thousands of dollars per application, and not open source, which
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RTOS ISOS [11] µC/OS-II [12] eCos [7] µClinux [5] Nucleus [1] Custom
Hard real time Y Y Y N Y Y
< 128 kB footprint Y Y Y N Y Y
Open source Y N (published) Y Y N Y
Supports ARM7TDMI Y Y Y Y Y Y
Built-in debugging N N Y Y Y N
Rich IPC features N Y Y Y Y N
Simple configuration Y Y Y Y Y N
Supports most proc. N Y Y Y Y N
Existing documentation N Y Y Y Y N

Table 4.1: Comparison of real time operating systems.
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is unfortunate since it’s a truly full featured, configurable and light weight RTOS.

ISOS was small and simple, but wasn’t feature rich and had no debug facilities. As

mentioned earlier, a custom-written RTOS was considered, but rejected because of

the amount of work necessary. Further, a custom RTOS solution would not provide

the feature-rich, standards-based functionality that an existing RTOS provides.

This left only µC/OS-II and eCos. µC/OS-II turns out to be a well written RTOS

with FAA DO-178B certification and a nice thick companion textbook explaining

operating system fundamentals using µC/OS-II as an example. It was the clear

choice, until it became evident that it provided no debugging facilities, and that

the license agreement doesn’t allow redistribution.

4.4 Choosing a RTOS

eCos turned out to be the only choice worth considering. Fortunately, it exactly

fits the RTOS requirements and important considerations. eCos is:

• A hard real time operating system with low interrupt latencies (approxi-

mately 8 µs for an ARM7TDMI at 20 MHz),

• Ported to several existing ARM7TDMI processors,

• Bundled with RedBoot, a tiny but powerful boot manager that includes GDB

stubs, an open source remote debugging tool,

• Tiny enough to fit in under 50 kB of flash (although 80 kB is a more reason-

able size),

• Free and open source (under the GNU GPL v2),
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• Ported to more than 10 different processor architectures (including the LEON

SPARC v8 processor used in the NemeriX NJ1030 GPS baseband processor)

• Well documented via an online reference manual and a published book.

Other than Nucleus, eCos has the richest feature set of the surveyed operating

systems: a POSIX compatibility layer, several flavors of debug monitors, sophisti-

cated handling of interrupt service routines, and, importantly, a very sophisticated

debug and instrumentation environment. eCos has the added benefit that its re-

quired toolset is free and open source. It requires the GNU software development

system that includes tools such as the GCC compiler and the GDB debugger [7].

eCos’s main drawback is that it is a extremely complicated RTOS with the most

sophisticated configuration tool of any comparable operating system. Indeed, it is

the only configuration tool to have its own language.

4.5 eCos Architecture

eCos is not a standard real time operating system that runs independently on

the target system and provides an environment to run applications. It is a “runtime

system”, a static pre-compiled library that the application links against during

compile time. The library provides all of the functions of a standard operating

system: startup, RTOS kernel, scheduler, etc.

eCos is called the “embedded Configurable operating system” because it uses

a wxWindows-based graphical configuration tool to control the features compiled

into the library. Like many configuration systems, it must carefully orchestrate

dependencies amongst the packages. The Atmel 29LV200BB flash memory drivers

required for the MG5001 board, for example, require the generic flash support
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package, which requires a series of file-system-like extensions. This web of depen-

dencies is handled by a TCL-based language written specifically for eCos called the

“configuration description language” (CDL). Users run the graphical configtool

to select eCos packages (Figure 4.1), and then choose components inside those

packages. On a source level, the configuration tool includes source packages in the

eCos library and #defines component options.

Figure 4.1: The eCos configtool program configuring the gps-4020 template.

The configuration system allows eCos to be well “tuned” to the target system;

full featured systems can be only 50 kB, while including larger packages, like eth-

ernet drivers, POSIX compatibility, and the GoAhead web server can push eCos
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to several megabytes.

eCos uses a hardware abstraction layer (HAL) to keep its kernel independent of

the underlying system architecture. Calls that involve hardware — turning off the

interrupts, for example — are #defined by the architecture template into direct

hardware calls. This means that the kernel can be almost completely independent

of the hardware. This gets more complex the closer one gets to hardware, but it

maintains a reusable code base independent of the underlying hardware [10].

4.6 Porting eCos to the GP4020

eCos ports have three levels: architectures, variants, and platforms. Architec-

ture ports are ports to new processor architectures (e.g., x86 vs ARM), variant

ports are different versions of an architecture (e.g., ARM7TDMI vs XScale), and

platforms are differently configured development boards (e.g., the MG5001 vs the

SuperStar II receiver which have different memory sizes). Thus porting eCos to the

Zarlink GP4020 baseband processor required a variant port for the ARM7TDMI-

based GP4020 and a platform port for the SigTec MG5001 receiver.

The rich feature set and its custom description language makes even eCos

platform ports nontrivial. After early attempts at creating a variant port from a

more generic ARM7TDMI processor met with failure, Gary Thomas, one of the

original authors of eCos and the original author of the ARM architecture port for

eCos, completed the variant and platform port. The numerous technical details

of the port will not be presented here: for more information, please see the GPL-

GPS project web site at http://gps.psas.pdx.edu/. The GP4020 variant and

platform ports includes:
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• A program to allow minicom, an open source serial terminal application, to

use the GP4020 serial port bootloader.

• Memory definitions and code for the GP4020’s memory peripheral controller

(MPC).

• Device drivers for the GP4020 serial ports, timers, and interrupt controller.

• CDL files to describe the gps4020 eCos package.

• CDL files to describe RedBoot boot loader RAM and ROM (flash) images.

• CDL files to describe gps4020 eCos images, including RAM and ROM (flash)

images.

4.7 GPL-GPS Software Infrastructure

Figure 4.2 shows the multi-layered GPL-GPS software infrastructure on a

GP4020-based receiver. eCos is first compiled as a stripped-down standalone ap-

plication, called RedBoot, and installed into the flash memory of the receiver.

RedBoot acts as a boot loader, a small program which helps load applications into

RAM. RedBoot is used in many commercial development boards, and includes

such services as a simple command line interface, serial and ethernet communi-

cation with up and download protocols, flash drivers, and debugging executives

like GDB stubs, a debug executive for the GDB debugger. The host development

PC communicates with RedBoot over a standard serial port to load and debug

application programs in the receiver’s RAM.
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Once RedBoot has been installed in flash memory, the receiver is ready for

GPL-GPS application development. The host PC compiles and links the GPL-

GPS application with the eCos library, and downloads it using GDB stubs running

in the RedBoot flash image. The host PC can now run and debug the program,

using the GP4020’s second serial port as a serial terminal to display application

information.

Correlators Serial Port #2 Serial Port #1ARM7TDMI

SRAM Flash

Serial Terminal
(Host PC)

GPL-GPS

code base
GDB stubs

eCos HAL

RedBoot
eCos kernel

eCos HAL

Development Host PC

arm-elf-gcc

arm-elf-gdb

Configtool

program debug

program

load

d
is

p
la

y

program debug

program

load

Figure 4.2: GPL-GPS software architecture: GPL-GPS, eCos, RedBoot and host
system.

4.8 Getting eCos Running on the GP4020

Detailed instruction on installing RedBoot and the GPL-GPS development

system can be found on the GPL-GPS website, http://gps.psas.pdx.edu/. In

summary:

1. Compile three eCos libraries: a RedBoot executive for RAM, a RedBoot

executive for ROM, and an eCos library for the GPL-GPS application.
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2. Using the GP4020 bootloader and the Minicom terminal program on a host

PC, load the RedBoot executive for RAM into the receiver’s RAM.

3. Using the RedBoot image now running in RAM, load the RedBoot executive

for ROM and and write it into the receiver’s flash memory.

Now the receiver has RedBoot stored in flash. At this point, the receiver is

ready for application development. To use the GPL-GPS application, the user

must:

1. Compile GPL-GPS sources, linking with the eCos library compiled in the

previous steps.

2. Run GDB (arm-elf-gdb in this case) on the host PC and using GDB stubs

in the RedBoot image, load the application into the receiver’s RAM.

3. Run and debug the program using the remote GDB protocol over the serial

port.

52



Chapter 5

Porting OpenSource GPS

5.1 Introduction to OpenSource GPS

With only a modified GPS receiver mounted on an ISA prototyping card (Fig-

ure 5.1), a 486-based PC, and the Borland C compiler, Dr. Clifford Kelley launched

the open source GPS movement by publishing his results in 2002 [9] and then re-

leasing his code under the GPL. Since then several projects (including GPL-GPS)

have begun from his original “OpenSource GPS” (OSGPS) project.

Figure 5.1: The original OSGPS ISA PC card (reproduced from [9]).

OSGPS uses a foreground/background (interrupt/mainline) architecture. The



foreground task is driven by a 500 µs timer interrupt on the host PC. All time

dependent functions — accumulator dump processing, satellite navigation mes-

sage decoding, and measurement processing — are called directly from a single

interrupt. Navigation algorithms and display code run as the mainline task with

communication between tasks accomplished using global variables (Figure 5.2).
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Generator
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Flags

Input

Files

Output

Files
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delay

Disable PC

Clock

Interrupt

Generator

Figure 5.2: OpenSource GPS software flowchart (reproduced from [9]).

OSGPS is a ground breaking project, and as such, has several important issues:

• OSGPS is not divided into modules by GPS task, making it difficult to follow

its control and data flow (e.g., compare Figure 5.2 with Figure 1.9).

• The mainline code could be better prioritized and scheduled if it were broken

into threads.

• OSGPS has very few comments to explain the algorithms used, making it

very hard to understand why algorithms and control flow was implemented

in certain ways.

• While the algorithms used in OSGPS are time honored, they are not neces-

sarily the most efficient or the best for any particular application. Some way
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to break out the algorithms into modules for easy swapping of algorithms

would be useful.

• OSGPS relies on the legacy and closed source DOS operating system, and

the no longer supported Borland 4.5 C/C++ compiler.

5.2 ARMGPS: Porting OSGPS to the GP4020

In 2004, inspired by GPL-GPS, Takuji Ebinuma started his own project, ARM-

GPS [6]. In a few months, he ported a stripped down version of OSGPS v1.15 to

the SigTec MG5001 receiver using JaysOS [3], a very simple operating system for

ARM7TDMI processors. Ebinuma stripped out all carrier phase, almanac, and file

handling features in the process and kept the same foreground/background task

model. He attempted to break the background task into threads, but the imple-

mentation was no more effective than OSGPS’ mainline task because the threads

were called by timer delay rather then being event driven.

While ARMGPS does work, it is unstable, prone to dropping accumulator inter-

rupts and to bouts of unpredictable behavior. Ebinuma attributes the instability

of ARMGPS to the simple nature of JaysOS which forced a primitive thread archi-

tecture with no interprocess communication (IPC). ARMGPS also does not fully

implement the changes needed to switch from the OSGPS hardware (486 PC with

a GP2021 correlator) to the GP4020-based receiver. Finally, JaysOS lacks any rea-

sonable debugging features, so tuning and debugging ARMGPS is very difficult.

After struggling with the code for a few months, Ebinuma gave up on ARMGPS

and officially closed the project.
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5.3 Transforming ARMGPS to GPL-GPS

In late 2004, I revived the GPL-GPS project and began fine tuning the GP4020

eCos port. In early 2005 I took Ebinuma’s ARMGPS code, and using Kelley’s most

recent OSGPS code (v1.17) as a reference, ported it to eCos. GPL-GPS attained

“first fix” on May 2nd, 2005, and is now publicly available on the project’s web

site (http://gps.psas.pdx.edu/). Although never truly finished because of its

development system nature, GPL-GPS now exists as a code-complete develop-

ment environment for creating extended GPS applications with commercial GPS

receivers.

Roughly counted by lines, OSGPS is 6,300 lines of code, ARMGPS is 5,000

lines of code, and GPL-GPS is currently at 6,000 lines. Of these 6,000 lines,

an estimated more than 80 % have been restructured, refactored or replaced in

the transition from ARMGPS and OSGPS to GPL-GPS. This section does not

attempt to describe all the detailed code changes that have occurred. Instead, I

will attempt to list the broad categories of improvements made to the legacy code

base.

5.3.1 GPL-GPS Computing Environment

The changes made from OSGPS/ARMGPS to GPL-GPS must be understood

within the context of the GP4020 computing environment. Typical GP4020-based

receiver boards have:

• A 32 bit integer-only ARM7TDMI running at 20 MHz

• 8 kB of fast 32 bit wide internal SRAM
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• 128–512 kB of 16 bit external zero-wait-state SRAM

• 128–512 kB of 16 bit external one-to-three wait state flash

• 0–512 kB of serial EEPROM

Typical throughput for these boards is roughly 5 MIPS from flash memory,

10 MIPS from external SRAM, and 20 MIPS from internal SRAM. The ARM7-

TDMI has a single cycle 32 x 32-bit integer multiply, very sophisticated relative

addressing schemes, and a very useful branch-per-instruction capability. Note the

ARM7TDMI has a 32-bit wide RISC instruction set and a 16-bit wide alternate

instruction set called “thumb” mode. Although thumb mode seems optimal for

the 16-bit external memory (both SRAM and flash), it is not well supported by

eCos. If future versions of eCos support Thumb mode, then it is likely GPL-GPS

will begin using it.

5.3.2 Optimizing for GPL-GPS

The GPL-GPS code base attempts to implement the following performance

improvements:

GPS task-based threads Possibly the most important optimization has been

repartitioning the OSGPS/ARMGPS code to reflect the various GPS receiver

tasks (see Figure 1.9). Each task has been modularized into its own code

and header file, to clarify and prioritize the tasks. Each task usually has

one thread and one data structure associated with it, making it a more

modular interface for task additions and/or inserting external communication

links (e.g., an external flight computer on a UAV). See Figure 5.3 for the

repartitioned task and data flow.
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Event driven processing Instead of timer delays, GPL-GPS uses event-driven

threads and IPC, including flags, semaphores and mutexes. This mode of

operation decreases both response time and the amount of code scheduled to

run at any one time.

Streamlined critical tasks Tasks that didn’t need to be in higher priority, higher

rate threads (or interrupts) have been moved to lower priority, lower rate

threads. For example, channel allocation and navigation message processing

were moved from the tracking loops to their own low priority threads.

Prioritized threads Instead of giving all the tasks the same priority, the threads

are partitioned and carefully prioritized in order to let time critical tasks

execute before lower priority tasks.

GP4020-friendly variable types Since the correlator uses 16 bit integers, much

of the integer processing can be moved from 32 bit to 16 bit words to speed

up access to the external 16 bit SRAM and to save space in the small but

fast internal 32 bit SRAM. Because of the ARM7TDMI’s single-cycle 32, 16

and 8 bit memory access abilities this should not slow down processing.

Fixed point arithmetic GPL-GPS is slowly moving from double precision float-

ing point to 32 bit fixed point integers in critical code (e.g., the tracking

loops). Note that in threads which run in as a low priority, infrequent task

(e.g., the position code), floating point may be left in place for coding ease

and clarity.
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Figure 5.3: GPL-GPS software flowchart.

5.3.3 Improving on OSGPS Algorithms

GPL-GPS tries to refactor OSGPS algorithms to take a more efficient approach

while improving code clarity and readability. Unfortunately these are sometimes

mutually exclusive. So far the improvements include:

• Streamlined navigation data decoding, and refactored the message finding

algorithm to operate on subframes rather than frames. This allows data to

be grabbed every subframe period (6 s) rather than once each frame (30 s).

The shorter message chunk also improves performance in noisy environments.

• Navigation message parity check now uses an improved and clearer algorithm.

• Changed hardware register access from a function-based peek-poke interface

to memory-mapped structures.

• The position calculation has been re-worked to reduce the computational

load and to clarify the computation that is being done.
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• Timing and data flow have been improved by eliminating redundant variables

and redundant code, and instituting a more consistent naming convention

and coding style.

• Added an optimal cold start algorithm based on satellite orbital slot occu-

pancy.

• Removed many mysterious constants and replaced them with well defined

and documented physical or hardware defined constants. The mysterious

constants are still there, but now are computed at compile time with explicit

algorithms.

• Rewrote from scratch numerous helper routines improving efficiency, correct-

ness and clarity.

• Commented and lightly refactored the tracking code.

5.4 GPL-GPS Current Status

GPL-GPS became an operational GPS development environment on May 2nd,

2005 with its first successful position fix (see Appendix A for initial positioning

results). While the positioning code is currently crude — there is no atmospheric

correction, carrier phase positioning, or position filtering — rapid progress can be

made now that the software and development infrastructure have been completed.
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5.5 GPL-GPS Current Performance

Figure 5.4 shows the timing characteristics of two time-critical GPL-GPS tasks:

the tracking loops, which run every 505 µs after an accumulator interrupt, and the

measurement thread, which runs every 99.9999 ms after a measurement interrupt.

The mean time spent in the tracking loops is 355 µs, or about 70% of the proces-

sor’s time. This underscores the need to optimize the tracking loops by moving

them into the GP4020’s fast internal SRAM and move to fixed point math. The

measurement thread takes 380 µs, but note that it is interrupted and suspended

while the tracking loop runs.

Figure 5.4: GPL-GPS timing: tracking loops and measurement thread.

Figure 5.5 shows the tracking loops, measurement thread, and the position
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thread. In this figure, the position thread is only processing 3 satellites and thus

is taking only 70 ms. The position thread takes between 0.3 s (for four satellites)

and 0.6 s (for seven satellites) when calculating position.

Figure 5.5: GPL-GPS timing: tracking loops, measurement thread, and position
thread.
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Chapter 6

Future Work and Conclusion

6.1 Future Work

6.1.1 Introduction

The potential of GPL-GPS exists in the extended applications end users can

implement because of their complete access to the software and hardware of the

GPL-GPS development system. Before attempting extended applications, how-

ever, several issues need to be resolved. The following “laundry list” is a prioritized

list of features I, and the other contributing members of the GPL-GPS community,

hope to accomplish:

6.1.2 Reimplement Atmospheric Correction

Atmospheric models of ionosphere and troposphere propagation delays were

removed from OSGPS to simplify porting. This should be reimplemented, along

with some refactoring of the satellite position calculation.



6.1.3 Reimplement Almanac Processing

Almanac processing was removed from OSGPS to simplify porting. This should

be reimplemented, along with more sophisticated satellite-to-channel allocation

algorithms based on the almanac and a driver for the GP4020 real time clock

(RTC).

6.1.4 Reimplement Carrier Phase Tracking

Carrier phase tracking was removed from OSGPS to simplify porting. This

should be reimplemented, along with hooks for future carrier phase-based posi-

tioning.

6.1.5 Faster Cold Acquisition

Cold acquisition time — the time from turn on to position output with no

knowledge of position or time — can be significantly decreased. Once a satellite

is acquired and identified, then its orbital slot indicates which other satellites in

its orbit might possibly be in view, and which are beyond the horizon and can be

ignored.

Another way to enhance cold acquisition time is to skip search bins, counting

on the pull-in algorithm to pick up smaller changes in the correlator values than a

direct match; this requires careful coordination with the tracking algorithm.

Finally, the obvious acquisition speed enhancement is to include the flash

drivers in eCos and storing the almanac data in flash on every successful almanac

acquisition. This is more difficult than it sounds because the flash must be erased

in sectors, and it’s likely that a full sector might not be available. Thus flash will
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need to be copied to SRAM, and then written back along with the almanac. Note

that the almanac is only useful if the real time clock on the GP4020 is backed up

by battery (MG5001) or super-capacitor (SuperStar II).

6.1.6 Move Tracking Loops to Internal SRAM

To provide more memory and faster operation, all interrupt and tracking loop

code should be moved to the zero wait-state 32-bit internal SRAM in the GP4020.

This involves changing linker commands for RedBoot and eCos, as well as special

compiler directives.

6.1.7 Code Refactoring and Contribution back to OSGPS

The OSGPS code base needs refactoring to make it more efficient and more

clear. This is a long process of stepping through the code and applying comments,

code style, and algorithmic refactoring as necessary. Once these changes are imple-

mented and tested in GPL-GPS, these changes will be contributed back to OSGPS.

There is even some possibility that OSGPS might move to using POSIX compliant

threads, meaning that in many instances the exact same code could be operating

on both GPL-GPS and OSGPS.

Some refactoring includes moving to equivalent but clearer algorithms. For

example, moving from dithered correlators to tracking (early-late) correlators for

the pull-in and tracking functions. While this will not fundamentally change the

tracking algorithm, it is the standard way of explaining tracking in the literature

and, thus, is easier to understand. similarly, having the tracking loops maximize

the in-phase (I) component versus the quadrature (Q) component is more of a
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standard standard signal processing algorithm than maximizing Q.

6.1.8 Better Phase Locked Loop Algorithm

Research and implement a quasi-coherent PLL to replace the hybrid PLL cur-

rently used by OSGPS [15].

6.1.9 Network API (Flight Computer Model)

Create a network Application Programming Interface (API) to get correlator,

high-rate (≥ 10 Hz) pseudorange, and/or navigation data to an offboard PC or

“flight computer” and get aiding and initial position, velocity and time information

back. It’s not clear how easily this can be implemented; the only options so far are

a high speed serial bus (a 5 Mbps SPI synchronous serial port) or a direct 16 bit

parallel interface which may not be possible with the MG5001 receiver board’s

limited 51 pin connector.

6.1.10 Lock Aiding

Allow external sensor data to aid correlator tracking of satellites. For example,

altimeter data can be used to allow fixes on only three satellites, and inertial data

can be used to aid tracking of the satellite signals under high dynamic conditions.

6.1.11 DGPS

Implement a module to make GPL-GPS into a DGPS base station: placing the

receiver at a known position allows the receiver to calculate atmospheric biases to
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each satellite. Transmitting this bias to a roving receiver allows that receiver to

subtract the propagation errors and obtain sub-meter positioning accuracy.

6.1.12 Attitude

Implement communication amongst GPL-GPS receivers, each doing carrier

phase tracking and solving the integer ambiguity problem. With lock and car-

rier tracking confirmation from each receiver, the parallel system should be able

to turn carrier phase into a full attitude.

6.1.13 Moving towards Open Hardware

An exciting, if not distracting, future project is to build an open hardware

GPS receiver based on Zarlink’s Orion reference design for the GP2015, GP2021,

and ARM60 processor. There are real advantages to having open hardware: easy

access to the parallel 16 bit bus means enhanced interfaces to peripherals and other

processors, and external memory can be sized appropriately. Also, dividing the

board into a RF and digital sections (with connectors) may allow for using the

board as a front end for software receivers as well.

6.2 Conclusion

By porting open source software to commercial, off-the-shelf GPS receivers,

GPL-GPS provides an accessible GPS receiver development environment that is

otherwise unavailable. Its inexpensive and open nature lowers the barriers of en-

try to GPS development, which opens a rich variety of new and interesting GPS

applications. Although just in its infancy, GPL-GPS is already being slated for
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projects such as nanosatellites, UAVs, and small scale launch vehicles. The hope

is that these GPL-GPS applications will then contribute their code changes back

to the project, enabling GPL-GPS to quickly grow in maturity and features. Fur-

thermore, GPL-GPS may enable academic research and hands-on coursework that

was not previously possible. Now even a modest research grant can provide dozens

of GPS development kits.

The vision for GPL-GPS is to lower the barrier to GPS development and enable

a rich and vibrant community of GPS developers. I look forward to leading GPL-

GPS through its first steps toward this vision.
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Appendix A

Initial Results

A.1 Introduction

As of May 2nd, 2005, GPL-GPS successfully calculates position and clock bias if

four or more satellites have valid pseudoranges and ephemerides. However, without

atmospheric corrections, a more robust locking algorithm, carrier phase position-

ing, and position filtering, the output position is very rough. Range errors are on

order 100’s of meters with infrequent excursions to 1,000’s of meters.

To put the GPL-GPS results in context, 15 hours worth of data were recorded

from a SigTec MG5001 receiver running with its commercial software. Later, 10

hours worth of data were taken on a MG5001 running GPL-GPS (May 13, 2005

CVS image).

A Connexant (now Navman) “Jupiter” GPS receiver board [13] was run using

the same antenna. The positions from the Jupiter board were averaged to choose

an independent measurement of the antenna position. The reference antenna po-

sition, within a few meters, is 45.47030◦ latitude, -122.62490◦ longitude, and 30 m

altitude. In Earth Centered, Earth Fixed (ECEF) coordinates, that position is

(-2,415,600 m, -3,773,550 m, 4,524,190 m). ECEF is a non-inertial right-handed



reference frame with the origin at the center of the earth, the Z axis through the

geodetic north pole, and the X axis through the zero meridian on the equator.

Unfortunately, the testing environment is far from ideal: Figure A.1 shows the

large trees blocking off a large fraction of the southern sky and most likely causing

severe multipath interference. Future tests should be run at a site with a clearer

view of the sky and less possibility of multipath interference.

Figure A.1: Comparison testing setup: roof-mounted antenna, antenna splitter
and two MG5001 receivers on development boards

A.2 SigTec OEM Software Positioning Results

The $GPGPQ,XYZ,1 command was sent to the MG5001 running the SigTec OEM

software to produce 1 Hz ECEF coordinate messages. Surprisingly, the initial 500

points (approximately) of the ECEF position were an average of 26.6 km off of the

antenna reference position (Figure A.2).

After the first 500 points, the SigTec software settled down and produce a more

sane output (Figure A.3). The mean of the SigTec data set, minus the first 500

points, was (-2,415,601 m, -3,773,553 m, 4,524,189 m) which is 3.4 m away from

the antenna reference position. The maximum deviation from the sample mean

73



-2.4159·106

-2.4160·106

-2.4156·106

-3.7738·106

-3.7736·106
-3.7734·106

-3.7732·106

4.524·106

4.5242·106

4.5244·106

4.5246·106

-2.4156·106

-3.7738·106

-3.7736·106
-3.7734·106

-3.7732·106

Figure A.2: Initial ECEF positions of the SigTec OEM software

was 94.3 m and the sample standard deviation was 7.9 m.

A histogram of the distance from each position to the data set average is shown

in Figure A.4. One would think that the position set would be grouped near or on

the mean, but the SigTec output seems to actively avoid the mean with a 12.8 m

bias. A hypothesis to explain this behavior is that the output of the receiver tends

to “clump”; an average of clumps might not necessarily fall in a clump, which

would explain why there are almost no data points at the mean.

A.3 GPL-GPS Software Positioning Results

GPL-GPS was run for 10.1 hr to collect 14,225 points. Removing the farthest

outliers, similar to the commercial software test, produced a data set of 14,049

points which represents a loss of 176 points (1.2% of the total sample). Since there
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Figure A.4: Histogram of range to the sample mean for the SigTec OEM software
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is no position filtering and the solution validity is not checked, some outliers are

to be expected.
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Figure A.5: GPL-GPS data bounded by a 1 km bounding box (98.8% of points)

The average of the data set was (-9.1521 m, 1.91896 m, 5.08915 m), which is

10.7 m from the reference position. The mean of the data set from the average

position is 41.7 m and the standard deviation is 80.3 m. Figure A.5 shows the

data points with a 1 km bounding box. Note the trends (“offshoots”) in the data,

most likely related to satellite geometry. Figure A.6 shows 90.5% of the data

points falling in a 100 m bounding box. The 100 m box shows that the points are

clustered in a sphere-like fashion around the mean, as expected.

Figure A.7 shows a histogram of the 1 km GPL-GPS dataset. Note the data

centered around the 10 m range error.
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Figure A.6: GPL-GPS data bounced by a 100 m bounding box (90.5% of points)
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Figure A.7: Histogram of range to the sample mean for GPL-GPS (1 km bounded
data set)
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A.4 Receiver Time Series

Figure A.8 shows a time series of the distance to the sample mean from the

SigTec software. Clearly, some kind of filtering is taking places since the adjacent

points are highly correlated.
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Figure A.8: Time series graph from the SigTec OEM Software

Conversely, the GPL-GPS time series of the distance to the sample mean (Fig-

ure A.9) shows no filtering. Note the large gap in points (the horizontal lines)

indicate a time with less than four satellites in lock.

Figure A.10 shows a zoom in of the GPL-GPS time series.

A.5 Comparison Conclusion

While it is clear that the GPL-GPS positioning code needs further refinement,

initial results are promising. Further improvements will be made with the addi-

tion of convergence checking, atmospheric modeling, carrier phase tracking, and
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Figure A.9: Time series graph from GPL-GPS

position filtering.
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Figure A.10: Zoomed-in time series from GPL-GPS
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Appendix B

The GPL-GPS Development

Board

For complete printed circuit board design files, including bill of materials and

PCB layout files, please see the GPL-GPS homepage at http://gps.psas.pdx.

edu/. The schematic and PCB layouts were done in CadSoft’s EAGLE CAD

v4.1 [4], a freely available (but not open source) PCB CAD program for Linux,

Macintosh and Windows.



Figure B.1: Schematic of the GPL-GPS carrier board for the SigTec MG5001
receiver.
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