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Abstract

From the day a new structure is made available for use, to the day that the structure is

no longer able to fulfill an intended purpose, structural safety is a vital interest. Managing

a portfolio of structures can be a difficult undertaking for an asset manager, particularly

if different types of structures are being maintained. The goal is to manage assets in the

most efficient manner which can be influenced by, at a minimum, safety and financial

concerns.

A potential tool for an asset manager or owner is the use of Bayesian Networks (BNs).

When a BN is used to model the structural capacity of individual components and the

external loads applied to those components, then an important piece of information

becomes available. Through the BN, an asset manager can have an estimate of the

component Probability of Failure (%5 ). These component values for %5 can be compared

directly, or combined to develop estimates of system probabilities of failure. For a bridge

portfolio, the asset manager can compare the %5 values of individual girders on a given

bridge, or the %5 values of bridges considered as systems of individual components.

From these values, the owner can decide how maintenance and replacement activities

can be scheduled, where the elements/systems with the higher %5 would be given priority.

The objective of this research is to develop tools that show the viability of using

Bayesian Networks to model bridge structures so that an objective estimate of %5 is

provided for individual components. To do this, models are created that directly calcu-

late the component capacity (R) taking into account statistical uncertainty of primary

variables such as steel yield strength ( 5H) and concrete compressive strength ( 5 ′2), in

addition to the effects of concrete deterioration. The structural capacity (') is compared

directly to modeled load effects (&), resulting in a limit state node (' −&), from which

the %5 and reliability index, V, are directly determined.
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Bridge load ratings are used to indicate how much capacity is present in excess of

that needed to support dead loads, or how much live load can still be supported without

failure. A load rating can be calculated to reflect a target structural reliability. For

example, the AASHTO Load and Resistance Rating (LRFR) load rating process strives

for a reliability index of V = 3.5 for an Inventory rating, and a reliability index of V = 2.5

for an Operating rating. A very handy advantage of using BNs to determine the structural

%5 and reliability is that the live load can be easily scaled to result in a target reliability,

resulting in the direct determination of the load rating factor of the component.

Multiple BNs are described in this dissertation, where bridges using three types of

materials are modeled: steel, reinforced concrete, and prestressed concrete. A common

thread through each of the examples is to illustrate how the capacities are modeled for

each bridge type, how the %5 values are determined, and then how the Rating Factor

(RF) values are determined.

An additional strength of using BNs is the ability of the network to be extended.

For example, only concrete deterioration is currently considered, but other modes of

deterioration could be added to the models to include cross section loss of steel due to

corrosion in steel girders or steel reinforcement in concrete members.

This dissertation uses the multi-paper format in accordance with PSU Graduate

School guidelines. Therefore, Chapter 1 serves as an introduction, Chapters 2-4 are

journal papers that have been published or are under review at the time of dissertation

submission, and Chapter 5 is the final chapter with a summary and discussion about

future work.
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1 Chapter One: Introduction

1.1 Background

From the 2022 National Bridge Inventory (NBI) data, there are over 620,000 bridges

with spans greater than 6.10 meters (20 ft) in use in the United States (FHWA 2022).

There are various types of materials used with the bridges in the current inventory, but

the most common type currently in-service is reinforced concrete, at almost 42%. This

includes both simply supported and continuous spans. The next most common materials

used are steel and prestressed concrete, at 27.8% and 27.2%, respectively. Timber

bridges are still present in the bridge inventory at about 2.5%. Since bridge deterioration

is an ongoing concern, bridge owners are required to perform periodic inspections per the

Code of Federal Regulations (23 CFR 650 Subpart C). Because the inspection process

has some subjective facets, the findings can vary greatly between individuals, teams, and

even when a given team inspects a bridge multiple times (Campbell et al. 2019, Moore

et al. 2001).

This research uses Bayesian Networks (BNs) to determine the structural reliability,

and the Probability of Failure (%5 ), of structural components designed using either

concrete (reinforced or prestressed) or steel. Extensions of the BNs were developed

which allow the structural reliability and %5 to be updated as a result of inspection

findings (defects). This is facilitated by linking deterioration mechanisms and findings

through expert elicitation (Groeneveld et al. 2021, Roberts et al. 2023) resulting in a

reduced concrete compressive strength and reduced flexural and shear capacity, and then

ultimately to an increased %5 . Only concrete deterioration is currently considered, but

other modes of deterioration could be added to the models to include cross section loss

of steel due to corrosion in steel girders or steel reinforcement in concrete members.
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Various example structures of the three material types are used to illustrate using

BNs to determine the structural reliability and %5 of the structures. The live loads

applied to the components are also scaled in order to directly determine rating factors

that correspond to target reliability indexes.

The following sections provide an overall view of the modeling methodology with

many more details provided in the later chapters.

1.2 Bridge Inspections

Bridge owners are required to perform periodic inspections where the bridge inspec-

tion process typically involves, at a minimum, visually assessing the condition of the

primary components of a bridge including the deck, railing, superstructure, bearings,

and substructure. Each of these components can be broken down further into elements.

For example, the superstructure of a girder bridge can be thought of as a collection of

girders/beams, stringers and floorbeams. Similarly, the superstructure of a truss bridge

can be broken down into truss and gusset plate elements. Each of the individual elements

are inspected and assigned condition states, defined in Table 1.1.

Examples of concrete elements in CS3-4 are shown in Fig 1.1. Then, using the

condition states of individual elements as a guide, NBI ratings of the bridge components

are determined, as defined in Table 1.2. For the purposes of this dissertation, the

condition states of the elements are used to account for material deterioration and

reduced element/component capacity.

1.3 Bayesian Networks

The structural capacity of each of the components considered was modeled using

basic structural mechanics. Fundamental material properties (e.g. reinforcement yield
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(a) Delamination (CS4) (b) Efflorescence (CS3)

(c) Cracking (CS3) (d) Exposed reinforcement (CS4)

Figure 1.1: Example reinforced concrete defects with condition states (CS) (from USACE

2019).
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Table 1.1: Element condition state descriptions (from USACE 2019).

Condition
State Description

1 Any deficiency is minor and has no impact on the performance of the

element

2 The deficiency has advanced but with no impact on the performance of the

element

3 The deficiency has advanced further and any additional deterioration will

impact the strength and/or serviceability of the element

4 The deficiency has advanced to the point where the strength or serviceability

of the element may be affected and a structural review is necessary to

determine the effect on strength or serviceability of the element or the

bridge

strength and concrete compressive strength) are modeled in the BNs as individual parent

nodes with appropriate statistical parameters being used (nominal values, coefficient of

variation (COV) and bias). These parent nodes are then connected to nodes that represent

the capacity of the component. These nodes, that use information from the parent nodes,

are known as child nodes. The final child node in the model is the limit state node (gM)

that directly provides the %5 of the component. Chapters 2-4 provide more detailed

information into the theory and uses of BNs.

1.4 Reliability

The concept of structural reliability is an integral part of this research. As shown in

Fig. 1.2, both the resistance (') and load effect (&) distributions are used to determine

the limit state function (6 = ' − &). The tail that is located to the left of the 6 = 0

line is where failure occurs, and the %5 value is equivalent to the area under this tail.

The reliability index, V, is used to measure how reliable the system/component is by

measuring the "distance" the mean (`6) of the limit state function is from the onset of
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Table 1.2: NBI bridge condition rating descriptions (from USACE 2019 and adapted

from FHWA 1995).

NBI
Rating Description

9 Good EXCELLENT CONDITION

8 VERY GOOD CONDITION - no problems noted

7 GOOD CONDITION - some minor problems

6 Fair SATISFACTORY CONDITION - structural elements show some mi-

nor deterioration

5 FAIR CONDITION - all primary structural elements are sound but

may have minor section loss, cracking, spalling, or scour

4 Poor POOR CONDITION - advanced section loss, deterioration, spalling,

or scour

3 SERIOUS CONDITION - loss of section, deterioration, spalling, or

scour have seriously affected primary structural components. Local

failures are possible. Fatigue cracks in steel or shear cracks in concrete

may be present.

2 Severe CRITICAL CONDITION - advanced deterioration of primary struc-

tural structural elements. Fatigue cracks in steel or shear cracks in

concrete may be present or scour may have removed substructure sup-

port. Unless closely monitored it may be necessary to close the bridge

until corrective action is taken.

1 "IMMINENT" FAILURE CONDITION - major deterioration or sec-

tion loss present in critical structural components, or obvious vertical

or horizontal movement affecting structure stability. Bridge is closed

to traffic but corrective action may put bridge back in light service.

0 FAILED CONDITION - out of service - beyond corrective action
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Figure 1.2: Limit state function.

failure (6 = 0). The reliability index can also be described to be the number of standard

deviations the mean is from failure. The larger the reliability index, the more reliable

the component/system is said to be. The current AASHTO LRFD design code strives

for a reliability index of V = 3.5 for new structures.

1.5 Load Ratings

Bridge load ratings are used to give a measure of the remaining capacity available

from the structure at a specific point in time. Once the dead load is accounted for, the

remaining excess capacity available to vehicular design live loads is indicated by the

rating factor (RF). If '� > 1.0, then the structure is capable of supporting live loads in

excess of the minimum design loads. The conventional LRFR equation used to calculate

rating factors can be simplified as shown:

'� =
q�q( (q'=) − factored dead loads

factored live loads
(1.1)
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where q� is the component condition resistance factor, q( is the system resistance factor,

and q'= is the factored capacity of the component. The load factors and design live loads

are prescribed by AASHTO. The most obvious questions from this equation are regarding

how the system and condition factors are determined. The Manual for Bridge Evaluation

(AASHTO 2018) provides broad guidance for these values, but the application is very

subjective, and can result in a reduction of up to 15% in component capacity.

As part of the required bridge inspections, load ratings are required to be updated to

reflect the current condition of the bridge structure. As the bridge ages, the component

capacity is likely to decrease, resulting in a reduced rating factor. When sufficient

rehabilitation is performed, the rating factor may increase because of improved capacity.

1.6 Material Deterioration

As a result of scheduled bridge inspections, defects of various degrees of severity

can be identified. Using current inspection guidelines (AASHTO 2013), the severity of

defects are identified as condition states (CS), and vary from least (CS1), to most severe

(CS4). The examples shown in Fig. 1.1 illustrate CS3 and CS4 defects. An inspector

will determine the presence/absence and severity of defects and determine the overall

condition of the elements, components, and bridge. This is part of the subjective nature

of the inspection process since bridge components will ultimately be described as being,

for example, in a "fair" or "good" state.

Information useful for implementation within BNs could also be provided from in-

situ non-destructive testing (NDT) methods including the use of ground penetrating radar

(GPR) combined with eddy current testing to estimate the location and diameter of steel

reinforcing bars and prestressing tendons, ultrasonic testing to estimate the thickness

of structural elements and detect internal voids, and electro-chemical measurements to
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estimate the corrosion potential of the reinforcement (ACI 2013).

Recent examples of work that successfully employed NDT information for improved

conventional bridge ratings include Bertola et al. 2022 and Küttenbaum et al. 2021.

Bertola et al. 2022, in addition to using NDT, used structural health monitoring (SHM)

to measure in-service strains for fatigue evaluation. NDT and SHM tools are extremely

useful when as-built drawings are incomplete or missing Karshenas and Naghavi 2020.

1.7 Identified Needs

Discussion has been provided that outlines the process of inspecting a bridge struc-

ture, and determining rating factors. Common management practices rely on the subjec-

tive interpretation of inspection findings to make maintenance and replacement decisions.

Load ratings can be used to help with decision making, but determining a rating factor

has subjective elements, such as determining the condition factors of the components

being evaluated.

The current LRFR rating process uses resistance factors to account for condition and

lack of redundancy in the structural system. This is a very broad-stroke method and

can reduce capacity by as much as 15%. A system was implemented using the BNs

described in this dissertation that accounts for concrete deterioration modes and various

defects that may be detected during a bridge inspection. Also, using the concept of

parallel and series components and %5 values for individual components, the %5 for a

bridge system was estimated allowing for a better estimate of the system reliability index

to be calculated.

Since the structural condition has been represented within the BN, and the BN

provides directly the reliability index and %5 , the RF can be estimated directly by scaling

the modeled live load such that the target reliability index is the result.
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1.8 Outline of Dissertation

This dissertation evaluates the use of BNs when determining the condition of ex-

isting structures, and examples are provided using in-service bridges. This dissertation

follows the multi-paper format in accordance with PSU Graduate School guidelines and

is organized as follows:

Chapter One: Introduction.

Chapter Two: Use of Bayesian Networks for Inferences on Bridge Safety. Abstract:

As bridges deteriorate, uncertainty regarding their safety arises. Common management

practices rely on the subjective interpretation of inspection findings to make inferences

on bridge safety. A potential solution to this could be the use of Bayesian Networks

(BNs) to establish a framework that would incorporate inspection findings with limit

state functions to objectively estimate a probability of failure (%5 ) with the purpose of

inferring bridge safety. This paper focuses on presenting the potential feasibility of this

type of approach by comparing the %5 estimated from BN models to a traditional method

of estimating structural reliability, First Order Second Moment (FOSM) method. This

is performed by approximating a reliability index (V) for the BN by using the estimated

%5 . Comparisons were conducted for three bridge types: reinforced concrete girder,

prestressed concrete girder and steel composite girder. Results showed that the estimates

of %5 from the BN models yielded similar reliability indices (V�# ) to those calculated

using the FOSM method (V�$("). In addition to this, V�# were calculated for load

effects at inventory and operating levels in order to compare to their corresponding target

reliabilities (i.e., V of 3.5 and 2.5 respectively) with results showing that BN models

yielded reasonable approximations.



10

From the 98th Annual Meeting of the Transportation Research Board (presentation no.

19-04278).

Chapter Three: Estimating Reinforced Concrete Bridge Reliability With Inspec-

tion Defects Included Using Bayesian Networks. Abstract: As part of the bridge

inspection process, inspectors identify defects in the main components of the structural

system and assign condition ratings. These condition ratings are somewhat subjective

since they are influenced by the experience of the inspector. In the current work, pro-

cedures were developed for making inferences on the reliability of reinforced concrete

(RC) girders with defects at both the cross section, girder, and bridge system levels. The

Bayesian network (BN) tools constructed in this study use simple structural mechanics

to model the capacity of girders. By using expert elicitation, defects that can be observed

during inspections are associated with underlying deterioration mechanisms. By linking

these deterioration mechanisms with changes in mechanical properties, inferences on the

reliability of a bridge can be made based on visual observation of defects. Also, the BN

can be used to directly determine the rating factor (RF) of individual structural elements.

Examples are provided using BNs to evaluate both an existing older RC bridge and a

new RC design that is based on contemporary AASHTO LRFD specifications.

This paper was submitted to the Journal of Bridge Engineering on 27 April 2023 and is

under review.

Chapter Four: Estimating Prestressed Concrete Bridge Reliability and Rating Fac-

tors Using Bayesian Networks with an Application to a Bridge Made Continuous for

Live Load. Abstract: The bridge inspection process has multiple steps. One obvious

element is for inspectors to identify defects in the main components of the structural

system and assign condition ratings. These condition ratings are somewhat subjective
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since they are influenced by the experience of the inspector. In the current work, pro-

cesses were developed for making inferences on the reliability of prestressed concrete

(PC) girders with defects at the girder component level. The Bayesian network (BN)

tools constructed in this study use simple structural mechanics to model the capacity of

girders. Expert opinion is used to link defects that can be observed during inspections to

underlying deterioration mechanisms. By linking these deterioration mechanisms with

changes in mechanical properties, inferences on the reliability of a bridge can be made

based on visual observation of defects. The BN can then be used to directly determine

the rating factor (RF) of individual structural elements. Examples are provided using

BNs to evaluate an existing older PC bridge currently behaving as two simply supported

spans. The bridge is modeled using two scenarios with the spans acting as simply sup-

ported, and then also with the link block (continuity joint) repaired so that the spans

are continuous for live load. The spans are considered simply supported for all dead load.

This paper was submitted to the Practice Periodical on Structural Design and Construc-

tion on 28 June 2023 and is under review.

Chapter Five: Summary and Future Work.
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2 Chapter Two: Use of Bayesian Networks for Inferences on Bridge Safety

Jeffery M. Roberts, Edgardo Ruiz, Andrew B. Groeneveld,

and Ricardo Pérez-Gracia

2.1 Abstract

As bridges deteriorate, uncertainty regarding their safety arises. Common man-

agement practices rely on the subjective interpretation of inspection findings to make

inferences on bridge safety. A potential solution to this could be the use of Bayesian

Networks (BNs) to establish a framework that would incorporate inspection findings with

limit state functions to objectively estimate a probability of failure (%5 ) with the purpose

of inferring bridge safety. This paper focuses on presenting the potential feasibility of this

type of approach by comparing the %5 estimated from BN models to a traditional method

of estimating structural reliability, First Order Second Moment (FOSM) method. This

is performed by approximating a reliability index (V) for the BN by using the estimated

%5 . Comparisons were conducted for three bridge types: reinforced concrete girder,

prestressed concrete girder and steel composite girder. Results showed that the estimates

of %5 from the BN models yielded similar reliability indices (V�# ) to those calculated

using the FOSM method (V�$("). In addition to this, V�# were calculated for load

effects at inventory and operating levels in order to compare to their corresponding target

reliabilities (i.e., V of 3.5 and 2.5 respectively) with results showing that BN models

yielded reasonable approximations.
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2.2 Keywords

Reliability, Bayesian Network, Probabilistic, Uncertainty, Bridges, Failure

2.3 Introduction

By the end of the 2016 calendar year, there were over 614,000 highway bridges in

use in the United States (FHWA 2016). The structure types vary widely, from common

multi-girder structures with 41% of the inventory, to girder/floorbeam systems and

trusses at less than 2% each. Reinforced concrete is the most common material type at

about 41% of bridges, and the remaining bridges are predominately built using steel and

prestressed concrete at about 29% and 24%, respectively. All of these building materials

are susceptible to various deterioration and damage mechanisms and thus require the

structures to be periodically inspected.

While conducting bridge inspections, condition ratings are determined for the three

primary components of a typical bridge (i.e., deck, superstructure, and substructure).

When determining component ratings, the inspection team leader is expected to consider

the magnitude of deficiencies and the amount that these reduce component performance.

These considerations are influenced greatly by the subjective judgment of the inspection

team.

There is a level of uncertainty to the condition assessment that leads to an inabil-

ity to objectively estimate the probability of failure (%5 ) of a structure by considering

inspection findings. This suggests improvement is needed to the current bridge man-

agement approach used by most bridge owners of subjectively interpreting inspection

findings by developing an objective framework that incorporates the uncertainty of these

inspection findings. A possible approach to achieve this is through the use of Bayesian
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Networks (BNs), which are probabilistic graphical models that could facilitate the incor-

poration of inspection findings to the estimation of probability of failure by accounting

for uncertainty in all associated variables.

This paper discusses a probabilistic methodology using BNs to objectively estimate

the %5 of a structure. Multiple examples are presented from which the resulting %5 are

used to compare to estimates of reliability using the First Order Second Moment method.

This methodology, although being discussed in the context of bridges, could be applied

to any structure where the concept of failure can be described in terms of capacity and

demand.

2.4 Bayesian Networks

BNs are a tool that take into account a grouping of variables, how these variables are

related, and the probabilities of interactions (Heckerman and Wellman 1995) and can be

used to represent knowledge with the accompanying uncertainty (Pradhan et al. 1996). A

key mathematical principle underlying BNs is Bayes’ rule, attributed to Thomas Bayes

(c. 1701-1761), a British theologian and mathematician (Stone 2013). The general

idea is to start with the probabilities associated with a given variable, at a given time.

Then, when new data, G, is presented, for example, by observation or measurement, the

previous information (or prior probability) can be updated with this new data in mind.

Mathematically, this can be presented as:

?(\ |G) =
?(G |\)?(\)

?(G)
(2.1)

where:

• ?(\) is the probability of the hypothesis, \, before the new data is observed, called
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the prior probability,

• ?(\ |G) is usually the unknown quantity, or the probability of the hypothesis, \,

given the new data, G, is known, called the posterior probability,

• ?(G |\) is the probability of the data given the hypothesis is true; called the likeli-

hood,

• ?(G) is the probability of the data being true under any hypothesis, and can be

considered a normalizing or scaling factor.

Bayes’ rule can be used to build upon prior experience, expressed as the prior

probability, and combine it with observed data, expressed as the likelihood, to result in

the posterior probability. This concept is referred to as Bayesian inference. Since these

are probabilistic concepts, Bayesian inference will not guarantee the correct conclusion.

However, the inferences will provide the probabilities of possible outcomes, and from

these the most probable outcome can become known.

A general example of a simple BN is shown in Fig. 2.1. The nodes, shown in circles,

are the variables in the network. The arrows depict the causal relation between the nodes

and are referred to as links or edges. In this example, nodes A, B, and C are parents

to the child node, D. The location and number of links represents dependencies that are

captured by a conditional probability table (CPT) with all possible combinations. The

BN allows for inferences on any variable to be made based on information on all other

variables by using Bayes’ rule (i.e., equation 2.1).

Wright 1921 applied Bayesian statistics to animal husbandry and crop failure prob-

lems as the first modern use of BN concepts. In subsequent years, other researchers

solved different types of problems using similar ideas such as causal networks (Cooper

1984), belief networks (Cooper 1990), and influence diagrams (Howard and Matheson
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2005). All of these uses overlap in that a graphical model is used to represent probabilistic

relationships between variables of interest.

Figure 2.1: Example Bayesian Network.

BNs have been used in various ways ranging from artificial intelligence to mechanical

design (Heckerman et al. 1995). More recently, these types of networks have been used

to model the various aspects of structures. (Enright and Frangopol 1999) used BNs to

predict the deterioration of concrete bridges. Straub and Der Kiureghian 2010a, Straub

and Der Kiureghian 2010b,Straub and Papaioannou 2014 have extended the use of BNs

to include structural reliability methods. Bateni et al. 2007 have used BNs with a neural

network technique to predict scour depth around a bridge pier in addition to the time

variation of the depth of scour. BNs have also been used to explore the impact of

uncertainty on bridge load rating calculations for a prestressed concrete bridge girder

(LeBeau and Wadia-Fascetti 2007,LeBeau 2008,LeBeau and Wadia-Fascetti 2010).

2.5 Structural Reliability

Because of the many components that make up typical structures, an inherently large

amount of uncertainty is associated with the related design and construction (Nowak

and Collins 2012). Two major categories of uncertainty should be considered: natural
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and human. Examples of natural causes include earthquake, wind, snow and ice loads.

Human causes encompass all parts of the human condition such as mistakes during the

design process, approximations, omissions, or lack of expertise. Since all of the variables

associated with a structure, such as individual element dimensions, dead loads and live

loads are not exactly, or deterministically, known they should be considered random

variables. From an intuitive point of view, we can conclude that with uncertainty, there

will always be a probability for the structure to fail since we cannot guarantee that the

capacity will always exceed demand. In order to account for uncertainty, codes have

evolved to include an acceptable probability of failure, or stated differently, an acceptable

reliability.

To be able to determine the reliability of a structure, we must first define what failure

means. A simple concept of failure is when the structure fails to perform its designed

function. If we can determine, or estimate, the load effect (&) and the resistance ('),

then failure could be defined to be when the resistance is exceeded by the load effect.

When ' < &, or '–& < 0, then failure occurs. A performance function, or limit state

function, 6(',&), can then be defined as:

6(',&) = ' −& (2.2)

When 6 ≥ 0, then the structure is performing its designed function. When g < 0,

then the structure has failed. From this, the probability of failure, %5 , can be expressed

as:

%5 = %(' −& < 0) = %(6 < 0) (2.3)

If these variables are assumed to be continuous and random, then P, Q, and g have

probability density functions (PDFs) as shown in Fig. 2.2. The area of the limit state
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Figure 2.2: PDFs of load, resistance, and limit state function.

curve that is shaded represents the probability of failure, %5 . In contrast, the reliability

is the complement of %5 (i.e. 1 − %5 ) or the probability of not failing.

Assuming that 6 is normally distributed, the reliability index, V, is the ratio of `6/f6

which represents the number of standard deviations that the mean, `6, of the limit state

function is from a zero value, or the onset of structural failure. If the probability of

failure decreases, then the reliability index increases, thus the safety level of the structure

increases. Using the equation for V, two possible methods to increase structural reliability

would be to increase the mean (`6) of the limit state function while maintaining the level

of uncertainty (f6), or maintain the mean while decreasing the level of uncertainty.

There are numerous methods to find approximations for the reliability index (Nowak

and Collins 2012). For example, the First Order Second Moment (FOSM) method

provides a closed-form solution assuming a linear limit state function and all variables

are uncorrelated. If the variables are also normally distributed, then:

%5 = Φ(−V) (2.4)
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where Φ() is the standard normal distribution function (zero mean and unit variance)

tabulated and found in statistics textbooks. The FOSM method can also be used to

obtain an approximate reliability index with non-linear limit state functions by using a

Taylor series expansion and only using the linear terms. However, the FOSM method

has several shortcomings, one of which is invariance, in that different reliability indices

may be found depending on the limit state function chosen. To overcome this, Hasofer

and Lind 1974 developed a technique that evaluates the limit state function at a design

point instead of using the mean values of the design variables. If the limit state function

is nonlinear, then an iterative process is required in order to determine the reliability

index.

All of these methods require information on each random variable such as the means

and standard deviations, but they do not require information on distribution type. Yet

another method was developed by Rackwitz and Flessler 1978 that does require knowl-

edge of the probability distribution type, but can accommodate any type of continuous

limit state function and any load distribution type. If desired, a better approximation

can be calculated by using the Second Order Reliability Method (SORM). Consistent

with the name, the SORM method uses the second order Taylor series expansion as

an approximation of the limit state function. However, all of these methods require a

well-defined limit state function and can become unwieldy when used with complicated

structures. For the work described herein, the FOSM method was used since it was

considered to be sufficient for comparison purposes.

2.6 Comparing Bayesian Networks to FOSM Reliability Calculations

Once BNs of a practical size start being used where there are multiple arcs connecting

a variety of nodes, the computational complexity increases. This leads to the conclusion
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that the only practical way to solve these types of problems is to use numerical software

that will account for all of the possible relationships presented in the network to arrive

at an approximate solution. For the work presented, Netica version 6.04 (Norsys 2017)

was used to develop networks for three different bridge types (i.e., reinforced concrete

girder, prestressed concrete girder, and steel girder). Using equation 2.2, the flexural

load effect and capacity for each primary load bearing member was defined with the

final result being a probability mass function (PMF) for the limit state function. This is

then approximated to a PDF as shown in Fig. 2.2. It was assumed that the limit state

function was normally distributed. By using equation 2.3, the probability of failure was

then determined by calculating the area under the curve where 6 < 0.

In each network, the modeled load effect was based upon the HL-93 live load as

defined by the LRFD methodology. It is important to understand that the reliability

index that results from a BN (i.e. V�# ) is with respect to the live load effect considered.

This is in contrast to the LRFR methodology where a load is determined with respect

to a target reliability. However, given the parameters used during the development of

the BN models are based on those used to calibrate the LRFD factors, if a BN model

is built using the same live load effects from which a load rating would result (e.g.

'�8=E4=C>AH · !!), then it would be expected that the resulting V�# would approximate the

target reliability. For this reason, three load effects were considered for each bridge type

in order to estimate the reliability index for each case. The first case assumed that the

load effect was based solely upon the HL-93 load. The second and third cases were based

upon the HL-93 live loads being scaled by the inventory and operating rating factors

obtained from load rating calculations. The LRFR load rating calculation (AASHTO

2011), in its simplest form, is:
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'� =
(q� − W�!�!)

W!!!!
(2.5)

where C is the capacity of the member in question, q is an aggregation of resistance

factors, W�! and W!! are the appropriate load factors for the dead and live loads respec-

tively, and DL and LL represent the dead load and live loads with impact, respectively.

This calculation represents the surplus of capacity of a structural member available for

the live load once the dead load is accounted for. When the load factors are ignored (i.e.,

assumed to be unity) such as during modeling within the BN, then the rating factor is a

scale that can be applied to the live load. Using these scaled live loads, the corresponding

reliability indices can then be determined and compared to the target reliability indices

from the LRFD code. The current code assumes that an inventory rating factor corre-

sponds to a target reliability index of 3.5, whereas the operating rating factor corresponds

to a reduced target reliability index of 2.5.

2.7 Reinforced Concrete Girder Bridge

A simply supported, 2-girder, 11-span reinforced concrete bridge with maximum

span length of 53.5 ft (16.3 m) carrying a county highway located in Oklahoma is used

to illustrate the concept of using an FOSM approximation and BN to model structural

reliability. The nominal (design) dimensions are shown in Fig. 2.3. The moment carrying

capacity of the girder is calculated using:

"= = � 5H

(
3 −

0

2

)
= � 5H

(
3 − 0.59

� 5H

5 ′21

)
= � 5H3 − 0.59

(� 5H)
2

5 ′21
(2.6)

where A is the cross sectional area of the reinforcing steel, 5H is the yield strength of the

steel, 5 ′2 is the compressive strength of the concrete, b is the effective width of the girder,
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a is the depth of the Whitney rectangular stress distribution, and d is the effective depth

of the section.

Figure 2.3: Cross section of reinforced concrete girder.

In this analysis, the effective depth and width of the girder are considered deter-

ministic constants. This moment value provides the resistance function, ', required in

equation 2.2. The limit state function would then be written as:

6 = � 5H3 − 0.59
(� 5H)

2

5 ′21
− "& (2.7)

where "& is the moment load effect from all dead loads and HL-93 live loads. The

random variables used in the modeling are "& , 5H, 5 ′2 , and � with the distribution and

design parameters provided in Table 2.1.

An estimate of the limit state function for this simple girder can be done using a

Taylor series approximation (Nowak and Collins 2012) evaluated at mean values:

6 (-1, -2, . . . , -=) ≈ 6
(
`-1

, `-2
, . . . , `-=

)
+

=∑

8=1

(
-8 − `-8

) m6

m-8

(2.8)

Using this, a general expression for the first-order, second-moment (FOSM) reliability

index can then be developed:
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Table 2.1: Parameters of random variables.

Material Parameter Var. Units Nominal Bias COV

Reinforced

Concrete

Effective width b in 152.0 - -

Effective depth d in 77.31 - -

Concrete comp. strength 5 ′2 ksi 3.5 1.1 0.18

Steel yield strength 5H ksi 33 1.13 0.12

Area of reinforcing steel A in2 26.92 1.0 0.015

Total load effect "& kips·in 40,200 1.1 0.18

Prestressed

Concrete

Width for stress block b in 102.0 1.0 0.004

Effective depth 3? in 59.75 1.0 0.011

Area of prestressing steel �?B in2 4.896 1.012 0.013

Strand ultimate strength 5?D ksi 270.0 1.04 0.02

Concrete comp. strength 5 ′2 ksi 4.0 1.10 0.18

Dead load: cast-in-place "�� kips·in 20,640 1.05 0.10

Dead load: wearing surface "�, kips·in 1,944 1.05 0.10

Live load with impact factor "!! kips·in 17,856 1.20 0.18

Steel

Flange thickness C5 in 0.855 1.04 0.025

Web thickness CF in 0.580 1.04 0.025

Flange width 15 in 11.51 0.999 0.002

Beam height ℎ in 33.0 0.999 0.002

Concrete comp. strength 5 ′2 ksi 3.0 1.403 0.10

Concrete specific weight F2 kcf 0.150 1.0 0.03

Steel modulus of elasticity �B ksi 29,000 1.0 0.06

Steel yield strength 5H ksi 36.0 1.125 0.10

Live load with impact factor "!! kips·in 11,431 1.10 0.18
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where 08 = m6/m-8 evaluated at the mean values. For our particular problem (with

partial derivatives evaluated at mean values), the reliability index is:
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Using the values in Table 2.1 to compute the mean (bias·nominal) and standard

deviation (COV·mean) and using these with equation 2.10, the FOSM reliability index

for the simple reinforced concrete girder can then be estimated to be V = 2.67.

Next, the same reinforced concrete girder was modeled using Netica with the statis-

tical parameters in Table 2.1. For the BN, all parent nodes were assumed to be normal

random variables, with 20 bins being used for all nodes. The network was modified

slightly by scaling only the live load using the inventory and operating rating factors.

The results for the three cases are provided in Table 2.2. As mentioned earlier, for this

work it is assumed that the limit state function is normally distributed. The reliabil-

ity index from the BN is based on the probability of failure, %5 , which is defined as

%5 = %(6 < 0). The probability of failure is determined from the output of the BN. The

reliability index is then V�# = −Φ−1(% 5 �# ), where Φ−1 is the inverse of the PDF for the

standard normal distribution.

By assuming that the limit state function is normally distributed, the reliability index

value, V�# , is calculated. The second reliability index value, V�$(" , represents the

reliability index estimate from using the FOSM approximation. The % 5 �# value is the

probability of failure found by summing the area under the limit state function in the BN

where 6 < 0.
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Table 2.2: Reliability indices result summary.

Material Case Applied

RF

% 5 �# V�# V�$(" Difference

Reinforced

Concrete

HL-93 1.00 3.32x10-3 2.71 2.67 1.5%

Inv. RF scaling 0.79 8.10x10-4 3.15 3.09 1.9%

Opr. RF scaling 1.02 3.59x10-3 2.69 2.63 2.3%

Prestressed

Concrete

HL-93 1.00 6.72x10-11 6.42 6.88 -6.7%

Inv. RF scaling 1.48 1.87x10-4 3.56 3.65 -2.5%

Opr. RF scaling 1.92 3.62x10-2 1.80 1.78 1.1%

Steel

HL-93 1.00 1.00x10-3 3.09 3.47 -11.0%

Inv. RF scaling 0.94 6.41x10-4 3.22 3.73 -13.7%

Opr. RF scaling 1.22 7.76x10-3 2.42 2.57 -5.8%

2.8 Prestressed Concrete Girder

For the prestressed concrete girder example an interior girder in flexure was used.

The example bridge is a simply-supported span carrying 2 lanes of traffic. The deck

is 8.5 in. (216 mm) thick and is supported by 4 Type IV girders spaced at 8.5 ft (2.60

m). Prestressing steel consists of 0.5 in. (12.7 mm) diameter, 270 ksi (1,860 MPa),

low-relaxation strands with a total of 32 strands. Full details on the example structure

can be found in AASHTO 2011. To keep the model at a reasonable level of complexity,

only the prestressing steel is taken into account for the capacity calculation. The flexural

capacity, "=, can be computed as follows:

V1 =




0.85, 5 ′2 ≤ 4 ksi

0.85 − 0.05( 5 ′2 − 4 ksi), 4 ksi < 5 ′2 ≤ 8 ksi

0.65, 5 ′2 > 8 ksi

(2.11)
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where 5 ′2 is the 28-day compressive strength of the concrete in the compression zone

(deck), �?B is the area of prestressing steel, 5?D is the ultimate tensile strength of the

prestressing steel, 1 is the effective flange width, : is a constant (equal to 0.28 for Grade

270 low-relaxation strands), and 3? is the effective depth. Nominal values, bias factors,

and coefficients of variation for these variables are given in Table 2.1. The nominal

moment due to live load and impact, "!! was 1,488 kip-ft (2,017 kN-m), and a bias

factor of 1.2 was selected. The nominal moment due to component dead load, "�� ,

was 1,720 kip-ft (2,332 kN-m), and that due to wearing surface dead load, "�, , was

162 kip-ft (220 kN-m). A bias factor of 1.05 (cast-in-place) was used for the entire

component dead load.

A BN for the flexural capacity limit state was created with the configuration of nodes

and edges as shown in Figure 2.4. Netica supports both discrete and continuous variables,

the latter of which are discretized into user-specified bins for computation. CPTs may

be defined directly; however, it is more convenient to first define the variable with an

equation and then use Netica’s random sampling to convert the equation into a CPT.

The nodes identified as intermediate variables in Figure 2.4 are defined with equa-



30

Figure 2.4: Layout of Bayesian network for prestressed concrete girder flexural reliability.

tions 2.11-2.15, and the limit state definition is given by equation 2.2. Input variables

were assumed to be normally distributed based on the values found in Table 2.1. It

should be noted that BNs are not limited to normally distributed variables. In this work,

however, normality was assumed based on a lack of information to support more complex

distributions.

The solution of the BN is influenced by the number of bins, =1, used to discretize

each variable and the number of random samples,=B, taken per cell when generating the

CPTs. A brief investigation of convergence was made. The results, shown in Figure 2.5,

indicate that there is little change with increasing =B above 1,000. However, =1 has a

strong influence on the results and computation time. The size of the CPTs is driven

by the node with the greatest number of parents, in this case c, with 6 parents as seen

in Figure 2.4. The size of the CPT for c is O(=7

1
) if all nodes have the same number of

bins. Thus, doubling the number of bins entails a 128-fold increase in the size of the
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Figure 2.5: Convergence of results with discretization fineness.

CPT for 2. Increasing beyond =1 = 12 was not feasible with all nodes having the same

number of bins. A non-uniform refinement of the discretization could also be used, but

this was beyond the scope of the current investigation.

Reliability indices from the BN are given in Table 2.2. As discussed earlier, it is

important to consider what load is used to determine the reliability index. If the HL-93

load effects are used, the BN yields a reliability index of 6.42 (probability of failure of

6.72×10–11). The reason for this is that the bridge was designed with excess capacity.

A girder with a rating factor of exactly 1 would have exactly the capacity necessary to

support the design loads while maintaining the target reliability index. The example
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girder has a rating factor of 1.48 (inventory) and 1.92 (operating). Thus, multiplying the

load effect by the rating factor should result in approximately the target reliability index.

The qualifier approximately is used because the target reliability index is just that—a

target. It is approximately satisfied over a range of span lengths, but will not necessarily

match for any given individual bridge.

2.9 Steel Girder

The steel example is for a hot-rolled steel girder bridge constructed in 1964. The

bridge has a simply-supported span configuration with a maximum span length of 65 ft

(19.82 m). Four W33 x 130 beam sections spaced at 7.33 ft (2.23 m) support a concrete

deck. The height of a W33 x 130 section is 33.1 in. (84.07 cm), the flange width is 11.51

in. (29.23 cm), the flange thickness is 0.855 in. (2.17 cm) and the web thickness is 0.58

in. (1.47 cm). Lateral stability is provided by C18 x 42.7 channel sections. The girder is

a composite section with a concrete deck with a thickness of 7.25 in. (18.41 cm) and a

concrete compressive strength of 3 ksi (20.68 MPa). The parameters shown in Table 2.1

were used to compute the mean and standard deviations used in the BN model.

For the computation of the plastic moment capacity, the lateral flexure and buckling

failure modes triggered by flexure were not considered since the top flange is continuously

restrained by the deck and the plastic neutral axis (PNA) lies within the concrete deck.

Therefore the nominal flexure capacity for this example is captured by equation 2.16.

"= =

(

%F3F + % 5 C3 5 C + % 5 23 5 2 +
%B.

2
?

2CB

) [
1.07 − 0.7

.?

ℎ + CB

]
(2.16)

This expression is based on AASHTO 2017 and is a function of web force (%F), web

force distance (3F), tension flange force (% 5 C), tension flange distance (3 5 C), compression

flange force (% 5 2), compression flange distance (3 5 2), concrete deck force (%B), distance
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from the top of the concrete deck to the PNA (.?), concrete deck thickness (CB), and beam

height (ℎ). All force distances, with the exception of .?, are with respect to the PNA.

The load effects for this example included the effect of the HL-93 live load and the

dead load for the beam self weight. Notice that in Table 2.1 only parameters for "!!

are included. The reason for this is that the "�! was computed within the BN model

through the use of the probabilistic distributions already included in the model. The

resulting %5 and reliability indices for the steel girder composite section are shown in

Table 2.2.

2.10 Summary of results

All of the results are summarized in Table 2.2. The table contains the probability

of failure (% 5 �# ) obtained from the BN models, the reliability index (V�# ) that was

approximated from % 5 �# and the reliability index (V�$(") computed using the FOSM

method. To verify if the BN models would yield reasonable estimates of probability of

failure, the V�# was compared to V�$(" . This was done by computing the percentage

difference of V�# with respect to V�$(" . For the most part the differences between these

were relatively small (less than 7%). A departure from this was for the steel example

where differences were slightly larger (up to 13.7%).

In addition to determining whether the BN model would yield reasonable estimates

of probability of failure, they were also gauged against the LRFR target reliability

indices by using the live load effects for both inventory and operating levels (3.5 and 2.5,

respectively). All V�# cases resulted in values that approximated the target reliabilities.
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2.11 Conclusions

A study of the feasibility of BNs for estimating probability of failure was presented

in this paper. This was done by comparing estimates of the reliability index of the BN

to another more traditional method (i.e., FOSM). The results showed that the BNs yield

reasonable estimates of probability of failure since the V�# compared well with V�$("

given the low difference percentages calculated. These difference are suspected to be

due to the linearization of a nonlinear function in order to compute the V�$(" . Although

the reinforced and prestressed concrete girder examples resulted in very low differences,

further investigation should be conducted to determine why there were larger differences

in the steel example. The values of V�# estimated also compared well to the target

reliability indices to which the load rating factors are calibrated. These results show that

the use of BN models would yield comparable results to more traditional methods.

Given the flexibility that BNs have to incorporate uncertainty over traditional meth-

ods, these could present an alternative to the subjective nature of inferring the level of

safety of a bridge. BNs also have the flexibility to incorporate new variables, such as

inspection findings, that would introduce additional layers of uncertainty into an existing

model. Although not anticipated to be an easy task, incorporating inspection findings

into BN models could result in an objective approach to quantify the level of safety of a

bridge by estimating a probability of failure.

BN models do require a computer to perform the required computations. Computa-

tional resources are highly dependent on model size (e.g., number of nodes, edges, bins)

and therefore must be taken into consideration when developing this type of model. This

is especially true for the initial compiling of the model when the CPTs are dependent on

the simulations (i.e., relating variables through equations). However these limitations

could be overcome by smart modeling or better hardware.
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3 Chapter Three: Estimating Reinforced Concrete Bridge Reliability With

Inspection Defects Included Using Bayesian Networks

Jeffery M. Roberts, Thomas Schumacher, Andrew B. Groeneveld,

Stephanie G. Wood, and Edgardo Ruiz

3.1 Abstract

As part of the bridge inspection process, inspectors identify defects in the main

components of the structural system and assign condition ratings. These condition

ratings are somewhat subjective since they are influenced by the experience of the

inspector. In the current work, procedures were developed for making inferences on

the reliability of reinforced concrete (RC) girders with defects at both the cross section,

girder, and bridge system levels. The Bayesian network (BN) tools constructed in

this study use simple structural mechanics to model the capacity of girders. By using

expert elicitation, defects that can be observed during inspections are associated with

underlying deterioration mechanisms. By linking these deterioration mechanisms with

changes in mechanical properties, inferences on the reliability of a bridge can be made

based on visual observation of defects. Also, the BN can be used to directly determine

the rating factor (RF) of individual structural elements. Examples are provided using

BNs to evaluate both an existing older RC bridge and a new RC design that is based on

contemporary AASHTO LRFD specifications.
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3.2 Introduction

By the end of the 2020 calendar year, there were over 618,000 highway bridges in

use in the United States (FHWA 2020). The bridge structure types vary widely, from

common multi-girder structures to girder/floorbeam systems and trusses. Reinforced

concrete is the most common material type at about 41% of bridges, with steel and

prestressed concrete being less common, at about 28% and 26%, respectively. One

thing in common among all of these material types is that all of the materials are

susceptible to various deterioration and damage mechanisms, possibly leading to bridge

component defects. In an attempt to identify relatively small defects prior to developing

into significant structural issues, and to improve the long-term performance of bridges,

periodic inspections are required by the National Bridge Inspection Standards (NBIS), as

found in the Code of Federal Regulations (23 CFR 650 Subpart C). In the current work,

defects being considered are as defined in the Manual for Bridge Element Inspection

(MBEI) (AASHTO 2013).

Integral to a bridge inspection is the identification of defects and the determination

of condition ratings for the three primary components of the typical bridge: deck,

superstructure, and substructure. Condition ratings are developed by the inspection team

leader by considering the magnitude of deficiencies and the extent that these deficiencies

reduce component and system performance. All of these considerations are influenced

by the subjective judgement of the inspection team. Therefore, ratings have an element of

subjectivity, and ratings for the same structure, even for the same individual components,

can vary between different inspection teams and between inspection intervals using the

same teams (Campbell et al. 2019,Moore et al. 2001).

There exists a need to quantitatively evaluate inspection findings and to determine

the impact on component and system structural reliability. This study develops and
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expands the use of Bayesian Networks (BNs) in making inferences on bridge reliability.

These inferences are influenced by bridge materials and geometry, but also by observed

defects. The illustrated BNs use simple structural mechanics to model the capacity of

reinforced concrete girders and expert knowledge is used to link observable defects to

deterioration mechanisms that subsequently impact material properties. The end result

is that conclusions can be made on structural reliability based upon observable defects.

A load rating analysis was completed in 2016 on a circa 1949 bridge located at

a U.S. Army Corps of Engineers (USACE) dam project. Since there has been no

observable change in bridge condition, the rating can still be considered valid. The

analysis was performed in accordance with then-current design (AASHTO 2014) and

rating (AASHTO 2011) guidance. This bridge is used as an example structure to develop

several example BNs and to illustrate how the BNs can be used to directly determine

rating factors. Additionally, since the BNs can directly provide the probabilities of failure

(% 5 ) of each bridge component, the overall bridge system % 5 can then be estimated.

3.3 Bayesian Networks

A BN is a probabilistic graphical model that represents and takes into account a

set of variables and how these variable are related and the probability of interaction

(Heckerman and Wellman 1995,Pradhan et al. 1996). The BN has the form of a directed

acyclic graph (DAG) where nodes represent variables, and edges (links) connect the

nodes and represent causal relationships between the variables. A key feature of a DAG

is that there are no closed loops within the graph, leading to the acyclic label. The graph

is directed because the links represent causality, with links directing the relationship from

one or more parent nodes to a child node. The probabilistic nature of the parent/child

relationship is captured in conditional probability tables (CPTs). These tables provide the



42

probability of a child node’s state given the state of all parent nodes. A simple network

example that is representative of a reinforced concrete beam is shown in Fig. 3.1.

Figure 3.1: Example bayesian network

There are four parent nodes for the moment capacity node (M), and two parent nodes

for the total load node (MQ). These two nodes (M and MQ) then act as parent nodes

for the limit state node (gM). As will be shown in later sections, the gM node is simply

the difference (6" = " − "&) between the parent nodes so that capacity is directly

compared to total loads.

3.4 Reliability Analysis

Typical structures are made up of components with inherently a significant amount

of uncertainty related to design and construction (Nowak and Collins 2012). While

there are multiple categories, two dominant sources of uncertainty to be considered

are natural and human. Natural sources can include earthquakes, wind, snow, and ice

loads. Human sources can include a wide range of activities such as design mistakes,

approximations, omissions, or lack of expertise. Since all the variables associated with

physical elements of a structure, such as dimensions and loads, are not exactly known,

they can be considered random variables. However, if the variation is relatively small,

then some variables can be considered deterministic, from a practical point of view.
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With uncertainty, we can always assume that there will be a probability of failure of

a component or structure, since we cannot guarantee that capacity will always exceed

demand. Some codes have evolved to state a target reliability of the structure, or stated

differently, an acceptable probability of failure.

The reliability of a structure is tied closely to the probability of failure of that

structure. If the probability of failure is designated as % 5 , then we can define reliability

to be 1 − % 5 . This means that in order to discuss reliability, then a definition of failure

is required. A simple definition of failure could be the structure or component ceases

to perform its intended function. Note that this doesn’t necessarily require a complete

collapse of a structure for failure to occur. Using capacity vs demand, failure can also

be defined to mean that demand has exceeded the provided capacity. This can be written

in terms of a limit function 6(',&) defined in terms of two distributions:

6(',&) = ' −& (3.1)

where R represents the structural resistance (capacity) and Q represents the demand

(load effect) on the structure. If 6 > 0, then the structural capacity exceeds the demand,

and if 6 = 0, then the resistance is exactly equal to the demand. However, when 6 < 0,

the resistance is insufficient to support the demand and failure will occur. Graphically,

the % 5 is the area of the left tail of the limit state function beyond 6 = 0. In terms of the

limit state, the probability of failure, % 5 , is:

% 5 = %(6 < 0) (3.2)

If the Q and R distributions are assumed to be normal, then the limit state function

will also be normal, with its own mean and standard deviation. For a limit state function,

the reliability index, V, is defined as `6/f6, where `6 and f6 are the mean and standard
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deviation, respectively, of 6(',&). A useful interpretation of the reliability index is that

it represents the number of standard deviations that separate the mean value, `6, from

the initiation of failure (6 = 0). There are numerous ways to find approximations for the

reliability index (Nowak and Collins 2012). The first order, second moment (FOSM)

method uses a linear Taylor series expansion of the limit state function, 6(G1, G2, ..., G=),

about the mean values of its arguments. Assuming the arguments are uncorrelated, the

reliability index can be approximated by:

V�$(" =
6(`G1

, `G2
, ..., `G=)√∑=

8=1
(fG8

m6

mG8
|G=`)2

(3.3)

where the notation
m6

mG8
|G=` is used to indicate the evaluation of the partial derivatives at

the mean values of each variable.

Another helpful relationship is available if normal distributions are assumed: % 5 =

Φ(−V), where Φ is the standard normal cumulative distribution function. The inverse

is also helpful if the probability is known, and the reliability index is needed: V =

−Φ−1(% 5 ), where Φ
−1 is the inverse of the standard normal cumulative distribution

function.

3.5 Load Rating

The example bridge being used is a two-girder, simply supported, eight-span bridge

which carries two lanes of traffic. The superstructure is made of a reinforced concrete

deck supported by two reinforced concrete girders where the deck and girders can be

considered monolithic. Section and girder elevation drawings are shown in Fig. 3.2. The

Load and Resistance Factor Rating (LRFR) methodology (AASHTO 2011) includes

both inventory and operating rating factors (RFs). The inventory rating corresponds to
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Figure 3.2: Example bridge section and main girder elevation views (reprinted with

permission from USACE). Simply supported girders (span of 16.3 m (53.5 ft) c-c bearings

and girder spacing of 5.3 m (17.3 ft) c-c bearings).

the magnitude of live load which can safely be supported by a structure for an indefinite

amount of time. The LRFD strength limit states (AASHTO 2014) are calibrated to result

in an inventory target reliability index of 3.5. The operating RF is comparable to the

maximum live loading that may safely be applied to a structure. Allowing an unlimited

number of vehicles to use the bridge at this level of loading may decrease the bridge

lifespan. The LRFD strength limit states are calibrated to result in an operating target

reliability index of 2.5.

For a given component, the LRFR load rating calculation, in its simplest form, is:

'� =
q�q( (q'=) − W�!�!

W!!!!
(3.4)
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where q� is the component condition resistance factor, q( is the system resistance factor,

q'= is the factored capacity of the component, W�! and W!! represent the appropriate

load factors for the dead and live loads, respectively, and DL and LL represent the

dead load and live loads. The live load is also calculated using impact and distribution

factors. The condition and system resistance factors attempt to reduce the component

capacity due to redundancy and condition concerns. In effect, the RF represents the

surplus capacity of a structural member available for the live load once the dead load is

accounted for. The load (W!! and W�!) and resistance (q, q� , and q() factors are not

used with BNs since the uncertainties associated with node variables are accounted for

directly by using bias and COV values shown in Table 3.1. The bias factor, _, and COV

are defined to be `/nominal and f/`, respectively. The rating factor then acts as a live

load scaling factor that can be chosen so that a desired reliability index is the result.

During the most recent load rating performed for the example bridge shown in

Fig. 3.2, the design rating factors were determined to be '�8=E = 0.84 and '�>?4A = 1.09.

This rating used HL-93 live loads, and excluded concurrent live loads possible from the

under-bridge maintenance catwalk. The girders, from the most recent inspection, were

noted to have cracks midspan with efflorescence and spalling. The rating resistance

factors were taken to be q2 = 0.95 and qB = 0.90. The flexure condition factor is specified

to account for the fair overall superstructure condition and the lowered flexure system

factor was used to account for the lack of system redundancy. The product of these two

factors is limited (AASHTO 2011) to be no less than 0.85, thus arbitrarily limiting the

degree of capacity reduction based on structural condition and lack of redundancy.

LRFR load ratings have a primary advantage in that the calculations are relatively

simple, similar to designing using LRFD. However, limitations of LRFR include using the

specified, and conservative, HS-20 truck and lack of direct consideration of component

redundancy and failure mode correlation Estes and Frangopol 2005. While the current
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work makes similar simplifications by using the HS-20 truck, BNs do not preclude

the use of different live loads (e.g. through traffic studies accounting for the passage

frequency of certain types of trucks), as needed.

3.6 Structural Bayesian Networks

When using the BN to model structural reliability, the limit state function, 6(',&),

is a natural extension of the network. The live and dead load effects are provided directly

as inputs with assumed bias and coefficient of variation (COV) values. Likewise, the

component capacity is determined using the geometric values and material properties,

again with their assumed bias and COV values. The nominal values used in the example

BNs, in addition to their statistical attributes, are provided in Table 3.1. Additionally,

the same impact and distribution factors used with the conventional load rating was used

with the BN.

Using all of the provided values, the BN model can then estimate discretized distri-

butions for the load effects, and also the component moment and shear capacities. All

BN development and evaluation were performed using Netica Norsys 2019.

3.6.1 Moment Networks

Roberts et al. 2019 describes the methodology used in this study where structural

reliability is modeled using a BN. The example BN presented in Fig. 3.1 represents the

network used. For the flexural model (using three layers of longitudinal reinforcement
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as shown in Fig. 3.2), the nominal moment capacity is determined using:

"= = 5H�("

(

ℎ −

∑
3

8=1
�8H8

�("

−
1

2
·

5H�("

0.85 5 ′21eff

)

= 5H�("

(
3 −

0

2

)
(3.5)

where 5H is the reinforcing steel yield strength, 5 ′2 is the compressive strength of the

concrete, �(" is the total area of flexural reinforcing steel and �8H8 provides the area and

vertical location of reinforcement for the 8Cℎ layer, 3 = ℎ − (
∑

3

8=1
�8H8)/�(" represents

the distance from the extreme compression fiber to the reinforcing steel centroid with h

being the height of the girder, and 0 = ( 5H�(" )/(0.85 5 ′21eff) represents the depth of the

equivalent compression block with 1eff being the effective flange width of the girder.

Initial BN models for a simple RC beam used nodes for each individual layer of

reinforcing steel Roberts et al. 2019. This allowed the model to account for each layer

explicitly but unfortunately resulted in relatively large conditional probability tables

(CPTs). One approach to minimize the computational impact of having larger CPTs is

to use the idea of variable reduction Groeneveld et al. 2021. This approach removes the

need to individually account for each reinforcement layer by utilizing a single interme-

diate node that uses a normal distribution approximation for the product �8H8. Generally

speaking, the product (XY) of two uncorrelated normal distributions, - ∼ # (`- , f
2

-
)

and . ∼ # (`. , f
2

.
), is the sum of two j2 random variables, and approaches the distri-

bution # (`-`. , `
2

-
f2

.
+ `2

.
f2

-
) as the inverse coefficient of variations (X- = `- /f- and

X. = `. /f. ) increase in magnitude Seĳas-Macías and Oliveira 2012. For our purposes,

we will assume that inverse coefficients X > 1 are sufficient. All presented BNs will use

this intermediate node which has units of mm3 (in3). The attributes used for area, �8, and

location, H8, will be �8 ∼ # (`�8
, f2

�8
) and H8 ∼ # (`H8 , f

2
H8
), respectively. Since adding

normal distributions results in a new normal distribution, the summation of normally
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approximated �8H8 products can also be approximated as normal.

Most of the remaining BN nodes are constructed assuming normal distributions and

using the nominal, bias, and COV values provided in Table 3.1. Mean values are cal-

culated using the bias (` = bias·nominal), and standard deviations are determined using

the COV (f = COV·`). The flexural steel area, yield strength, concrete compressive

strength, and live and dead load effect nodes are all constructed assuming normal dis-

tributions, and discretized into 20 bins with a total width of eight standard deviations

(`±4f). The higher number of bins is necessary to provide a reasonable approximation

for the normal distribution and was determined by increasing the degree of discretization

until an asymptote was observed for the probability of failure.

The limit state node is the remaining node not yet discussed for the BN. As described

previously, the limit state function is defined as 6(',&) = ' − &, with R and Q being

the capacity and load, respectively. The limit state node uses this relationship and

simply subtracts the total load effect distribution from the moment capacity distribution.

All the nodes that make up a simple moment BN are shown in Fig. 3.3. Each node

shows the discretization of the distribution with values and probabilities (represented as

percentages) associated with each bin. Each node also provides the mean and standard

deviation, shown at the bottom of each node. For example, the moment limit state

node shows a mean and standard deviation of `6=3,434.7 kN·m (30,400 kip·in) and

f6=1,062.1 kN·m (9,400 kip·in), respectively. The unique information found from the

limit state node is the probability of failure of the component represented by the BN. The

portion of the limit state function where 6 < 0 (i.e., demand exceeds capacity) provides

the probability of failure of the component. In this example, % 5 = 5.57x10-4.

The reliability index, V, can also be estimated using two approaches. If we use the

definition of reliability index, the value can be directly found: V = `6/f6 = 3,434.7

kN·m / 1,062.1 kN·m = 30,400 kip·in / 9,400 kip·in = 3.23, using the values directly
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Table 3.1: Parameters of variables used in bayesian networks of two-girder example

bridge

Definition of Notation Nominal value Bias COV Referencesa

random variables
( `

nominal

) (
f
`

)
for bias/cov

Conc. comp. strength 5 ′2 24.13 MPa (3.5 ksi) 1.10 0.18 LE08

Steel yield strength (<1970s) 5H 227.53 MPa (33.0 ksi) 1.13 0.10 EGMC80

Steel yield strength (>1970s) 5H 413.69 MPa (60.0 ksi) 1.13 0.02 NRS12

Total flexural area of steel �("
17,367 mm2 (26.92 in2) - - -

Top layer �3 7,045 mm2 (10.92 in2) 1.00 0.015b NYT94

Middle layer �2 7,045 mm2 (10.92 in2) 1.00 0.015b NYT94

Bottom layer �1 3,277 mm2 (5.08 in2) 1.00 0.015b NYT94

Centroid total flexural steelc H2.6. From layer distributions - - -

Top layer H3 260.35 mm (10.25 in) 1.00 SDd NYT94

Middle layer H2 165.1 mm (6.50 in) 1.00 SDd NYT94

Bottom layer H1 69.85 mm (2.75 in) 1.00 SDd NYT94

Total shear area of steel �(+ 396 mm2 (0.614 in2) 1.00 0.015 NYT94

Moment load effect - Livee "&!!
1,714.32 kN·m 1.40 0.18 NS00 &

(15,173.0 kip·in) NC12

Moment load effect - Dead "&�!
2,699.30 kN·m 1.05 0.10 NO95

(23,890.8 kip·in) -

Shear load effect - Livee +&!!
254.88 kN (57.3 kip) 1.40 0.18 NS00 &

NC12

Shear load effect - Dead +&�!
198.84 kN (44.7 kip) 1.05 0.10 NO95

Shear constantsf V2, \ 1.52, 32.85° - - -

Effective flange widthg 1eff 4,572.0 mm (180 in) - - -

Girder heightg ℎ 2,133.6 mm (84 in) - - -

a LE08:LeBeau 2008; EGMC80:Ellingwood et al. 1980; NRS12:Nowak et al. 2012; NYT94:Nowak

et al. 1994; NS00:Nowak and Szerszen 2000; NC12:Nowak and Collins 2012; NO95:Nowak 1995.
b Total area is calculated assuming the sum of normal distributions will also be normal. The bias and

COV are used for each layer.
c Vertical distances to reinforcement centroids are referenced to bottom girder edge.
d The error in positioning layer reinforcement does not change based on the depth of the member.

Therefore, the variability of the vertical positioning, H8 , of the flexural reinforcement is given in terms

of the standard deviation (SD) rather than COV. The bias and a standard deviation of 17.78 mm

(0.7 in) are used for each layer.
e Live load includes an impact factor of 1.33 and distribution factor of 1.106.
f Shear constants were previously determined in accordance with AASHTO 2014 and are considered

deterministic.
g The effective width and height of the girder are considered deterministic.
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Figure 3.3: Girder moment bayesian network with discretized distributions. Area of

moment limit state function where 6(',&) < 0 provides probability of failure, % 5 =

5.57x10-4. Moment limit state mean and standard deviation are `6 = 3,434.7 kN·m

(30,400 kip·in) and f6 = 1,062.1 kN·m (9,400 kip·in), respectively. V20;2 = `6/f6 =

3.23. V% 5
= −Φ−1(5.57G10

−4) = 3.26.

from the limit state node. The second method is to assume the distribution is normal,

and use the inverse of the standard normal cumulative distribution function, Φ−1. In this

case, V = −Φ−1(0.000557) = 3.26. Since all the distributions being used are normal,

the expectation is that the reliability indexes found using the two methods should be very
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similar. If we revisit the idea of rating factors in the context of structural reliability,

these results are consistent with an operating factor exceeding 1.0 since the goal of the

operating factor is to provide a reliability index of 2.5. A contrasting viewpoint could be

that the reliability index represents an inventory rating factor less than 1.0, since V < 3.5.

3.6.2 Shear Networks

To assemble the shear BN model, the nominal shear capacity is determined using

conventional methods prescribed by AASHTO 2014. The current load rating calculation

for the example bridge (Fig. 3.2) uses angled longitudinal bars which can be used to add

shear capacity. The current study only addresses shear capacity at the location that was

previously determined to be the governing location for shear, which is 5.7 m (18.75

ft) from the bearing centerline. This is somewhat surprising being so distant from the

bearings, but the stirrup spacing is relatively large at 1.22 m (4.0 ft) on centers. This

wide stirrup spacing, with the HL-93 live load, leads to the governing shear being closer

to the girder center. The relations used to determine shear capacity are:

+2 = 0.0316 V2
√
5 ′2 1E 3E (3.6)

+B =
�(+ 5H 3E cot \

B
(3.7)

+= = +2 ++B (3.8)

where \ is the inclination angle of the diagonal compressive stresses in the web, V2 is a

factor for tensile stresses in the cracked concrete, 5 ′2 is the concrete compressive strength,

1E and 3E are the girder width and effective depth, respectively, �(+ is the total area

of the shear reinforcement, 5H is the yield strength of the reinforcement, and s is the

spacing of the shear reinforcement. The total nominal shear capacity, +=, is the sum of
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the capacity due to the concrete itself, +2, and the contribution from steel reinforcement,

+B. The V2 and \ values, as provided in the LRFD design code, are dependent upon the

factored moment ("*) and shear (+*) load effects at each location along the length of

the girder. For simplification, the current BN will use previously determined V2 and \

values for the location where the minimum shear rating factor occurs, and assume these

parameters are deterministic. Angled longitudinal reinforcement can be used to increase

shear capacity, if present. However, the assumed location of the governing shear occurs

where the longitudinal reinforcement is not angled, therefore Eqns. 3.6 - 3.8 describe

the total available shear capacity. The parameters used in the shear BN are provided in

Table 3.1.

The shear limit state node uses the limit state function 6(',&) = ' − &, with R

and Q being the capacity and load, respectively. All the nodes that make up a simple

shear BN are shown in Fig. 3.4. The shear limit state node shows a mean and standard

deviation of `6 = 578.3 kN (130 kip) and f6 = 120.1 kN (27 kip), respectively. The

portion of the limit state function where 6 < 0 (i.e., demand exceeds capacity) provides

the probability of failure of the component. For the shear BN, % 5 = 9.01x10-6. Although

this value is not apparent in the network shown in the figure, the value is available through

the Application Programming Interface (API) used in this investigation. The reliability

index, V, calculated from the BN is V = `6/f6 = 578.3 kN / 120.1 kN = 130 kip / 27

= 4.81 by using the values directly from the limit state node. Using the second method,

by assuming a normal distribution, yields V = −Φ−1(9.01G10
−6) = 4.29. These results

are consistent with an inventory rating factor well exceeding 1.0 since the goal of the

inventory factor is to provide a reliability index of 3.5.
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Figure 3.4: Girder shear bayesian network with discretized distributions. Area of shear

limit state function where 6(',&) < 0 provides probability of failure, % 5 = 9.01x10-6.

Shear limit state mean and standard deviation are `6 = 578.3 kN·m (130 kip) and f6 =

120.1 kN (27 kip), respectively. V20;2 = `6/f6 = 4.81. V% 5
= −Φ−1(9.01G10

−6) = 4.29.
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3.7 Material Deterioration

Typical defects found in concrete structures can be caused by either damage to the

structure or by deterioration. Sources of damage to a bridge can range from impact

or overloading, all possibly due to vehicles such as large ships or trucks. Common

deterioration modes for concrete include corrosion of reinforcement, effect of freeze-

thaw (FT) cycles, and the alkali-silica reaction (ASR). The current BNs will only include

specific effects of several types of deterioration. The types of defects being considered,

associated with likely deterioration modes, are shown in Table 3.2. A detailed description

of these deterioration modes can be found in Groeneveld et al. 2021.

Table 3.2: Common defects correlated with deterioration modes

Defect Deterioration mode

Cracking Corrosion, FT Effect, ASR

Spalling Corrosion, FT Effect, ASR

Delamination Corrosion, FT Effect

Efflorescence FT Effect, ASR

Rust staining Corrosion

Exposed reinforcement Corrosion

Pattern cracking ASR

Beyond considering defects, additional information useful for implementation within

BNs could be provided from in-situ non-destructive testing (NDT) methods. Examples

include using ground penetrating radar (GPR) combined with eddy current testing to

estimate the location and diameter of steel reinforcing bars and prestressing tendons,

ultrasonic testing to estimate the thickness of structural elements and detect internal

voids, and electro-chemical measurements to estimate the corrosion potential of the

reinforcement ACI 2013. Basic material properties, such as the concrete modulus of

elasticity and compressive strength, can be determined by either testing cores extracted
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from existing structures or in-place also using NDT techniques ACI 2019. As noted in

Lequesne and Collins 2020, NDT is still not frequently used due to some of the errors and

uncertainties associated with the measurements, which could be accommodated within

a BN framework. Some recent examples of work that successfully employed NDT

information for improved bridge ratings include Bertola et al. 2022 and Küttenbaum

et al. 2021. Bertola et al. 2022, in addition to using NDT, employed structural health

monitoring (SHM) to measure in-service strains for fatigue evaluation. NDT and SHM

tools become of critical importance when as-built drawings are incomplete or missing

Karshenas and Naghavi 2020.

The defects described above, and listed in Table 3.2, are presented as nodes in the

BNs so that findings can be reported to the network. For example, inspection findings

are shown in Fig. 3.5 at a condition state CS1 level. The severity of each defect is

defined consistent with the MBEI AASHTO 2013, and as such, defects range from CS1

(good) to CS4 (severe). All of the nodes have choices available from CS1 to CS4,

with the exception of pattern cracking which simply has a yes/no choice to indicate

presence/absence of the defect.

In order to connect the defects in Table 3.2 to each mode of deterioration, conditional

probability tables (CPTs) were constructed. The CPT provides the probability of a given

defect being caused by a specific deterioration mode at varying levels of severity. The

values in the CPTs were selected by expert elicitation and should not be considered as

precise, but as an estimate of the relative impact of defects on concrete compressive

strength. This illustrates the advantage of using BNs to ultimately estimate structural

reliability, in that experience and research can improve, over time, the CPTs used in

the networks. The CPTs are how our "best estimate" at a given point in time can be

expressed. Examples of research linking freeze-thaw cycles with mechanical properties

of concrete are provided in Ji et al. 2008, Shang et al. 2014 and Hanjari et al. 2008. BNs
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Figure 3.5: Example network with defects assumed at condition state CS1. Defects

include: exposed reinforcement, rust staining, delamination, spalling, cracking, pattern

cracking, and efflorescence. Initial concrete compressive strength has mean and standard

deviation of 26.54 MPa (3.85 ksi) and 4.84 MPa (0.702 ksi), respectively. The Reduced 5 ′2
node provides final concrete compressive strength after CS1 defect findings are entered,

and has mean and standard deviation of 25.23 MPa (3.66 ksi) and 4.70 MPa (0.681 ksi),

respectively.

in the current work include the effects of deterioration on the compressive strength of

concrete Groeneveld et al. 2021 where future work will include the effects of section

loss of reinforcement due to corrosion.

An example of a CPT for concrete cracking is given in Table 3.3. The provided

table shows that cracking is influenced by ASR, FT, and Corrosion. Note also that the

provided CPT table is incomplete since only a Low ASR severity is given, whereas

Low, Moderate, and Severe levels are shown for the other defects. A full CPT that
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Table 3.3: Partial conditional probability table (CPT) for concrete cracking condition

states (CS1-4). Only Low levels of severity are shown for ASR.

Cracking CS

ASR FT Corrosion 1 2 3 4

Low Low Low 90 5 4 1

Low Low Moderate 10 37 38 15

Low Low Severe 5 10 15 70

Low Moderate Low 15 35 30 20

Low Moderate Moderate 8 15 27 50

Low Moderate Severe 2 10 13 75

Low Severe Low 5 15 30 50

Low Severe Moderate 2 8 37 53

Low Severe Severe 2 6 32 60

includes the Moderate and Severe levels for ASR would therefore have a total of 27

rows. A complete set of CPTs can be found in Groeneveld et al. 2021. This sample table

illustrates the probability of observing a defect given the severity of deterioration. From

Fig. 3.6, arrows are directed from ASR to the spalling, cracking, pattern cracking, and

efflorescence nodes. This means that ASR can be the cause of these defects. Using Table

3.3, this relationship is quantified. From the first row, when ASR, FT, and Corrosion

have low severities, there are 90%, 5%, 4%, and 1% probabilities of cracking being at

CS1, CS2, CS3, and CS4 states, respectively. Note that each row must sum to 100%

to completely account for all possibilities. The inverse problem can also be addressed,

which is probably the most intuitive use of this type of tool. This allows the user to

predict possible root causes of observable defects using Bayesian inference. For example,

if results from an inspection (refer to Fig. 3.6) are provided to the tool (e.g. spalling at

CS3, cracking at CS3, and efflorescence at CS1) then there is a 70.6% probability of the

presence of ASR at a low level of severity. However, there is also a 29% probability of

ASR at a moderate level and a very low probability (0.39%) of severe ASR.
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3.8 Example Bayesian Networks with Inspection Findings

Several case examples of BNs will be used where various defects and defect locations

are illustrated. Detailed explanations for each case are provided in the Appendix.

Table 3.4 outlines all of the case examples. Cases 1-4 focus on an individual girder, with

varying defects. These defects are specified to be either uniform along the entire length

of the girder member, concentrated at girder midspan, or of differing severity along the

girder with the girder being defined into separate segments. The methodology used to

separate a girder into segments is described in the Appendix. Case 5 includes a girder

pair, as in the example bridge. The CS3 defects will be assumed to be centered midspan

with CS1 conditions elsewhere along the girder. Case 6 will also include a girder pair,

but with multiple defects of varying severity along one girder. The overall intent of these

cases is to demonstrate the relative ease that different bridge and component conditions

can be accommodated when using BNs.

These six cases illustrate how varying bridge conditions can be modeled using BNs.

The sample bridge is most closely represented by Case 5 with the individual girder % 5 =

1.64x10-3 and V = 2.94 and bridge system % 5 = 3.29x10-3 and V = 2.72. As expected, the

series system reliability is less than for the individual girder. Referring to the accepted

design load ratings ('�8=E = 0.84 and '�>?4A = 1.09) for this bridge, several general

comparisons are possible. If looking at the individual girder level, since the reliability

index was found to be above 2.5 and less than 3.5, then the inventory rating factor would

be expected to be less than 1.0, and the operating rating would likewise be expected to be

greater than 1.0. Similar comments can be made for the system level since the reliability

index similarly lies between 2.5 and 3.5. The following section will describe a direct

method used to determine rating factors with BNs.
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Table 3.4: BN Case examples

Case

no.

Structurea

type

Defectb

location

Defect

CS

Girder

% 5

Girder

V20;2

Girderc

V% 5

Bridged

% 5

Bridgec,d

V% 5

1 girder g1: member CS1 5.60x10-4 3.25 3.26 – –

2 girder g1: member CS3 5.98x10-4 3.24 3.24 – –

3 girder g1: segment CS1,2,3 1.34x10-3 – 3.00 – –

4 girder g1: midspan CS3 1.64x10-3 – 2.94 – –

5 bridge g1: midspan

g2: midspan

CS3

CS3

1.64x10-3

1.64x10-3

–

–

2.94

2.94

3.29x10-3

–

2.72

–

6 bridge g1: segment

g2: member

CS1,2,3

CS3

1.34x10-3

5.98x10-4

–

3.24

3.00

3.24

1.94x10-3

–

2.89

–

a Structure type - girder considers one individual girder; Structure type - bridge uses a series system

of girder pair supporting deck with assumed % 5342: = 3.40x10-6 and V342: = 4.50.
b Defect location is indicated as either member (defect is located along entire length), midspan

(defect is centered at midspan; all other areas are assumed CS1) or segment (CS1,2,3 defects are

distributed along the girder).
c Girder and bridge reliability indexes estimated using V = −Φ−1 (% 5 ).
d Girder and bridge % 5 and V shown are the most conservative values in the calculated intervals for

series system.

3.9 Estimating Element and System Rating Factors

Rating factors are used to provide reliability information for a given structural ele-

ment. Inventory and operating rating factors are used to convey two levels of structural

reliability. The Inventory RF gives the user an idea of how close the element is to having

a reliability index of 3.5. If '�8=E = 1.0, then the intent is for the element to provide

a reliability index of 3.5. If the factor increases, then the structure is considered more

reliable and if the factor decreases, then the structure is considered to be less reliable.

The similar description can be given for the Operating RF in that if '�>?4A = 1.0, then

the intent is for the element to provide a reliability index of 2.5.

The BN can directly provide a measure of the reliability of the element by giving

the user a value of % 5 and V directly. The previous BNs have used an HL-93 design

live load. If the live load is scaled, then this effectively becomes a rating factor for the
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element being modeled. If the live load is scaled such that the reliability index is 3.5,

then that scaling factor is effectively the inventory rating factor, '�8=E. Similarly, if the

live load is scaled so that the resultant reliability index is 2.5, then the scaling factor

is the operating rating factor, '�>?4A . Scaling factors were applied to networks with

baseline CS1 and example CS3 defects such that reliability indexes of 2.5 and 3.5 were

determined. The rating factors for Cases 1,2 and 5 are shown in Table 3.5.

There are several ways to interpret these results. The first is to use the reliability

indexes derived from the probability of failure values to estimate the member rating

factors. For example, from column 1 of Table 3.5, '�
�(1,% 5

8=E
= 0.89 and '�

�(1,% 5

>?4A =

1.29 since the V% 5
reliability indexes, for CS1 defects, are at or near the target values,

which are found in column 3. The primary disadvantage of this approach is that the

limit state distribution is assumed to be normal. In our examples, all of the distributions

are normal, so using the relation V = −Φ−1(% 5 ) is not a burden. However, if any of

the nodes are defined using other distributions, such as lognormal, then our ability to

directly determine the reliability index from the network becomes an advantage.

That leads to the second interpretation which is to calculate the reliability index

directly using the definition of reliability index: V = `6/f6 where `6 and f6 are the

mean and standard deviation, respectively, of the limit state function, 6(',&). When

the definition is used, then '�
�(1,20;2
8=E

= 0.91 and '�
�(1,20;2
>?4A = 1.27. Similar reliability

indexes are provided in the table from the network with example CS3 defects: '�
�(3,% 5

8=E

= 0.88, '�
�(3,% 5

>?4A = 1.29, '�
�(3,20;2
8=E

= 0.91 and '�
�(3,20;2
>?4A = 1.27.

This process can be extended to the system level assuming series elements. More

details regarding this can be found in the Appendix. Combining series elements can

yield a bounding interval for both the system % 5 and V so that a range of rating factors

will be the result. The series system is defined to be 2 girders and the deck (Case 5).

The conservative approach would then be to take the lower value for both inventory and
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operating rating factors which are '�
�(3,% 5

8=E,BHB
= 0.77 and '�

�(3,% 5

>?4A,BHB = 1.16. This once

again exhibits the expected behavior where the series system reliability is less than that

of the individual girder and would therefore have a lower capacity (for a given reliability

index) and lower rating factor.

During the most recent load rating performed for the example bridge, the design

rating factors were determined to be '�8=E = 0.84 and '�>?4A = 1.09. These values

assume reduced capacity due to redundancy and condition issues per the MBE. If Case 5

(Table 3.5) conditions are representative of the actual bridge conditions and the assumed

deck conditions are appropriate, then the BN results indicate that the bridge, as a

system, has less inventory capacity than indicated by conventional inventory rating

factor calculations ('�8=E = 0.77 vs 0.84). This may be due to the current AASHTO

code assuming distributions with differing attributes. For example, steel reinforcement

prior to the 1970s was assumed to have a relatively high coefficient of variation. But, since

that period, the variation has decreased due to recycled steel providing more uniform

properties Nowak et al. 2012. The results presented so far in this paper have used steel

reinforcement properties representative of the era in which the example bridge was built

(prior to the 1970s). Refer to Table 3.1 for the material properties used to model the

example bridge. Also, the bridge, as a system, has slightly more operating capacity than

indicated by conventional operating factor calculations ('�8=E = 1.16 vs 1.09). The 1949

example bridge was probably designed using the 1944 American Association of State

Highway Officials (AASHTO) Bridge Design Specification (4th edition). The resultant

reliability indexes of previous specifications can range from as low as 2.0 to as high as

4.5 with some additional variability due to span length. Shorter span bridges may have

been designed with inherent reliability indexes of 1.5, but generally aren’t found to be

unsafe.
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Table 3.5: Reliability index results for networks with girder example defects and

scaled live loads. Bold indicates values near target reliability indexes of 2.5 and 3.5

representative of operating and inventory rating factors. Using standard practice from

the MBE provides inventory and operating rating factors of 0.84 and 1.09, respectively.

CS1 Defects (Case 1) CS3 Defects (Case 2) CS3 Defects (Case 5)

Scale (RF) V20;2 V% 5
% 5 V20;2 V% 5

% 5 V% 5
% 5

0.77 3.93 3.77 8.16x10-5 3.92 3.75 8.79x10-5 3.50 2.36x10-4

0.88 3.60 3.52 2.16x10-4 3.59 3.50 2.32x10-4 3.22 6.35x10-4

0.89 3.57 3.50 2.36x10-4 3.56 3.48 2.53x10-4 3.20 6.90x10-4

0.91 3.51 3.45 2.77x10-4 3.50 3.43 2.97x10-4 3.15 8.08x10-4

1.16 2.80 2.85 2.16x10-3 2.79 2.84 2.29x10-3 2.50 6.29x10-3

1.27 2.51 2.56 5.23x10-3 2.49 2.54 5.53x10-3 2.16 1.53x10-3

1.29 2.45 2.51 6.12x10-3 2.44 2.49 6.47x10-3 2.10 1.79x10-3

3.10 Comparison of Current LRFD Girder Design and Bayesian Network

A final example will be presented that considers a contemporary RC girder bridge

designed using the current LRFD code AASHTO 2020. The new bridge uses the

same girder cross section dimensions as the existing example two-girder bridge, but uses

modern reinforcement steel with a higher nominal yield strength and lower yield strength

COV as shown in Table 3.1. Reinforcement is placed in the same vertical locations as the

example bridge, with 3,871.0 mm2 (6 in2) in the bottom layer, and 3,225.8 mm2 (5 in2)

in the next layer. Additionally, the new bridge is configured with 4 girders using 1.75 m

(5.75 ft) c-c spacing. This results in a more structurally redundant bridge system when

compared to the example bridge. The bridge was designed using unity load modifiers

except for operational importance ([� = 1.05), HL-93 live design loads, 5 ′2 = 4 ksi, and

5H = 60 ksi. Parameters used related to LRFR rating included q2 = 1.0, qB = 1.0 to

reflect a new, redundant bridge. The bridge girder was designed with a factored nominal

capacity of q"= = 5,172.4 kN·m (3,815 kip·ft). Total factored loads used in the design
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were "D = 4,929.7 kN·m (3,636 kip·ft). The calculated rating factors using Eq. 3.4 were

determined to be '�8=E = 1.12 and '�>?4A = 1.45.

Using the methods already presented, the BN for the 4-girder RC bridge was as-

sembled, and the girder and bridge system probability of failure, reliability indexes, and

rating factors were determined. For this bridge system, the four girders are considered to

be parallel elements, and as such, the rating factors and intervals for both % 5 and V were

determined. Refer to the Appendix for more information regarding a parallel system of

elements.

For the inventory factor: '�8=E%5
= 1.77, 2.63x10-15 < % 5BHB< 2.26x10-4, and 3.51 <

V% 5BHB
< 7.82. For the operating factor: '�>?4A%5

= 2.15, 1.60x10-9 < % 5BHB< 6.32x10-3,

and 2.49 < V% 5BHB
< 5.92. Since the girders would be constructed using the same materials

and techniques, the capacities could be assumed to be highly dependent (correlated). The

would lead us to the higher bound of the % 5 interval, so that V8=EBHB = 3.51 and V>?4ABHB

= 2.49. In spite of using the higher limit of the interval, all of this results in relatively

higher rating factors for the bridge structure when compared to conventional methods

('�8=E = 1.77 vs 1.12 and '�>?4A = 2.15 vs 1.45) suggesting that current design practice

may be overly conservative for this type of simple RC structure.

This type of analysis using BNs can be very sensitive to the live and dead load

distributions being used. To illustrate this, another LL distribution can be substituted

where the live load bias factor _ = 1.60 is used (vs 1.40) with a BN to determine

the resulting rating factors. This bias factor can be justified by using data from more

recent research Nowak and Iatsko 2017 using a larger weigh-in-motion database. When

accounting for daily truck traffic, the bias factor ranges from 1.42–1.60 for a 15.2 m (50

ft) bridge, for maximum 75-year moments. When using the higher bias factor, and still

using COV = 0.18, the following results were found for the rating factors: '�8=E%5
=

1.50 and '�>?4A%5
= 1.83. With the increase of bias factor the structural reliability is
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reduced, but the rating factors are still greater than those found using LRFR.

3.11 Conclusions

Although load ratings can be viewed to be a deterministic method to estimate allow-

able loads on a bridge, this is not entirely the case since the LRFR/LRFD processes use

load and resistance factors which are based on probabilistic methods. However, using

the LRFD design methodology is extremely helpful during the design process in that

design iterations can be performed relatively quickly and easily. Nonetheless, once the

design process is finished, and the bridge structure is constructed and is in service, then a

different evaluation process may be appropriate. In this study, BNs were used to directly

account for a limited set of defects and to produce rating factors that represent a desired

structural reliability. BNs can also be used to inform a more general asset management

tool since estimates of the probability of failure for all managed assets can be compared

objectively when prioritizing maintenance and replacement efforts. The LRFR method

uses a broad stroke approach to account for lack of redundancy and component condi-

tion. BNs provide a method to directly account for these concerns without arbitrarily

accommodating them. The results presented show that when using conventional LRFR

rating, the inventory rating for an existing, simple two-girder RC bridge may be slightly

overstated, and the operating rating may be slightly understated. However, the reliability

of a new four-girder RC bridge is more significantly understated. The differences may

be due to the approximation methods used when determining the load and resistance

factors used with LRFD design. This type of modeling using BNs could be extended by

including different types of building materials, including steel and prestressed concrete.

Additionally, understanding the impact of material deterioration on steel section loss

would be a natural improvement to the models.



66

The advantages of using BNs for reliability analysis include the direct inclusion of

defects found during bridge inspections, flexibility of the types of live loads being used,

and the direct determination of rating factors. Also, additional information from NDT

measurements can directly be incorporated into BNs, with their errors and uncertainties

appropriately captured. The disadvantages of this methodology include significant de-

pendence on determining appropriate statistical parameters, discretizing the distributions

in the networks requiring mindful management so as not to improperly skew results, and

the significant effort needed to understand the impact of defects through expert opinion.
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3.12 Appendix - Details of Bayesian Network Examples

3.12.1 Case 1 - Individual Girder with CS1 Defects

To account for various types of defects, the BN must be modified. As previously

stated, BNs in the current work include the effects of defects by reducing the compressive

strength of concrete. The implementation of this is shown in Fig. 3.5. This example

shows all defects to be at the CS1 level, with the initial concrete average strength to be

26.54 MPa (3.85 ksi). After using the provided defects and CPTs, the network provides

a reduced concrete compressive strength of 25.23 MPa (3.66 ksi). This new Reduced

5 ′2 node is then used in the moment BN which ultimately yields the girder probability

of failure. The CS1 state is assumed to be uniformly present along the girder and

the moment present at midspan is used. As shown in Table 3.4, % 5 = 5.60x10-4 with

V = −Φ−1(5.60G10
−4) = 3.26. Compare this to the model with no defects being modeled

(Fig. 3.3) with % 5 = 5.57x10-4 with V = −Φ−1(5.57G10
−4) = 3.26. There is very little

difference between the BNs, but a slight increase in % 5 is expected since, even with

CS1 defects, there is a slight impact on 5 ′2 , resulting in a slight decrease in structural

reliability.

3.12.2 Case 2 - Individual Girder with CS3 Defects

Contrast the previous example to another situation where the inspector has found CS3

defects along the girder length. Using the BN, after the defects are entered as CS3, the

reduced compressive strength is found to have a mean and standard deviation of 19.58

MPa (2.84 ksi) and 4.34 MPa (0.63 ksi), respectively, as shown in Fig. 3.6.

As already shown, a primary benefit of using BNs is that new information can be

entered into the network in the form of inspection findings. Using the BN as previously
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Figure 3.6: Example network with reduced concrete compressive strength due to defects

with spalling and cracking assumed at condition state CS3. Initial concrete compressive

strength has mean and standard deviation of 26.54 MPa (3.85 ksi) and 4.84 MPa (0.702

ksi), respectively. The Reduced 5 ′2 node provides final concrete compressive strength

after CS3 defect findings are entered, and has mean and standard deviation of 19.58 MPa

(2.84 ksi) and 4.34 MPa (0.630 ksi), respectively.
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described, the deterioration modes can also be predicted. From Fig. 3.6, once the CS3

defects are entered, the network is also telling us that there is a 29% probability that

the concrete has Moderate ASR. Also, there is a 62% probability that the concrete has

Moderate levels of FT. This provides the inspector additional information as to what

recommendations could be provided to the bridge owner. In this case, water drainage

might be a problem at this specific location, or possibly the existing cracking has not

been suitably repaired allowing ongoing damage to occur.

The results from the BN with CS3 defects are provided in Table 3.4, where % 5 =

5.98x10-4, with V20;2 = `6 / f6 = 3.24, and V% 5
= −Φ(5.98x10-4) = 3.24. Although the

defects caused only a small decrease in structural reliability as compared to Case 1, the

network is reacting as expected due to the reduced concrete strength. The reduction is

most likely minimized due to the relatively large effective flange width being used.

3.12.3 Case 3 - Individual Girder with Multiple Defects

Examples provided so far have only illustrated defects that are considered uniform

along the member of interest. To support the presence of multiple defects, the member

can be thought of as a series of individual segments Groeneveld et al. 2021. The segments

are selected so that the defect types and severity are constant along the length of a defined

segment. If the member is prismatic, and reinforcing steel does not vary along the length

of the member, then the moment capacity is also constant in the segment. However,

the live load is mobile resulting in the moment load effect not being constant along the

segment. A load marching algorithm is used to determine the maximum total moment

caused by the dead load and moving truck load for each segment. The process used to

segment a member is illustrated in Fig. 3.7. An example would be to refer to defects

1 and 3 which are present in Segment 3. Although both defects are present outside of
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Segment 3, the BN representing Segment 3 will only be concerned with defects 1 and 3

between points -7 and -2. After the maximum moment is determined, the defects are

applied resulting in the final BN with the final limit state node. This process is repeated

for all previously defined segments, so the end result is a set of vectors representing % 58 ,

`68 , and f68 which are the probability of failure, limit state mean, and limit state standard

deviation for each individual segment, (8.

Segment Pf from network

Pf1 Pf2 Pf3 Pf4 Pf5 Pf6 Pf7 Pf8

Segment maximum moments

M1 M2 M3 M4 M5 M6 M7 M8

Girder segments

S1 S2 S3 S4 S5 S6 S7 S8

Findings for defect 3 X7 X8

Findings for defect 2 X5 X6

Findings for defect 1 X1 X2 X3 X4

Figure 3.7: Illustration of defect segmentation of girder with example defects affecting

moment capacity

The individual segments are then considered a series system, or a weakest-link

system, because if the weakest segment fails, then the entire member would fail. In our

structural system, the weakest-link would be the segment with the highest probability of
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failure, or the lowest reliability index. But, we have the question of whether the individual

segments, and capacities, are to be considered dependent or independent of each other.

If there exists positive correlation between some or all of the segments, then determining

the structural reliability of the system can be quite difficult. To bound the problem

Nowak and Collins 2012,Ayyub and McCuen 2003, the segments can be viewed as fully

correlated (dependent) resulting in a lower bound, and as fully uncorrelated (independent)

resulting in an upper bound. This can be expressed as:

max
1≤8≤=

% 58 < % 5BHB < 1 −

=∏

8=1

(
1 − % 58

)
(3.9)

A similar expression can also be used if the elements are parallel. As before, to bound

the problem, the segments can be viewed as fully uncorrelated (independent) resulting

in a lower bound, and as fully correlated (dependent) resulting in an upper bound. This

can be expressed as:

=∏

8=1

% 58 < % 5BHB < min
1≤8≤=

% 58 (3.10)

Both of these equations will be used when combining series and parallel elements of a

bridge system.

3.12.4 Example Girder Segmentation

Fig. 3.7 can be used as an example of the segmentation process. The assumed

defect types, severity, and locations are provided in Table 3.6. Three defects are being

considered. Defect 1 is the presence of pattern cracking and is being placed at two

separate areas (0.2S to 0.4S and 0.75S to 0.82S). Defect 2 is spalling located at one area

(0.6S to 0.7S), and defect 3 is efflorescence located along 0.3S to 0.6S. In this usage, S
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Table 3.6: Girder segmentation example parameters

Location (% Span)

Segment no. Begin End Defect no. Defect state Defect type % 5

1 0.0S 0.2S - CS1 All 2.36x10-8

2 0.2S 0.3S 1 present Pattern Cracking 4.00x10-5

3 0.3S 0.4S
1 present Pattern Cracking

3.52x10-4

3 CS2 Efflorescence

4 0.4S 0.6S 3 CS2 Efflorescence 5.56x10-4

5 0.6S 0.7S 2 CS3 Spalling 3.53x10-4

6 0.7S 0.75S - CS1 All 4.03x10-5

7 0.75S 0.82S 1 present Pattern Cracking 2.63x10-6

8 0.82S 1.0S - CS1 All 9.90x10-10

is taken to be the span of the girder between bearing centers. Table 3.6 provides all the

segmentation data, but also the final probabilities of failure for each individual segments.

The girder is always assumed to be at a base CS1 state for all defects which means the

defect is considered benign or could not even be found. However, since the moment load

effects will be different for each segment, all portions of the girder which are considered

at a CS1 state are not required to share the same probability of failure. This can be seen

for segments 1, 6, and 8.

Once this information is in hand for each segment, then an interval representing the

girder probability of failure can be determined. Using Eq. 3.9, the girder % 5 can be

estimated to be within the interval of 5.56x10-4 < % 5 < 1.34x10-3. If the assumption

that all distributions are normal is used again where V = −Φ−1(% 5 ), then the estimated

reliability index will be bounded by the interval of 3.00 < V% 5
< 3.26. To be conservative,

the lower reliability index could be chosen as the representative index.
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3.12.5 Case 4 - Individual Girder with CS3 Midspan Defects

Case 4 is similar to the conditions found at the example bridge (Fig. 3.2). Assume that

a spall was found and determined to be 178 mm (7 in) in diameter, and nearby cracking

was measured to be around 2.54 mm (0.1 in) wide. According to the MBEI AASHTO

2013, both of these defects should be classified as CS3. The defects are centered around

the girder midspan and the affected area is 1.63 m (5.35 ft) in length. Using the method

described in Case 3, the girder can be thought of as 3 segments with segments 1 & 3

having base CS1 defects, and the middle segment with the discovered CS3 defects.

Once this information is available for the 3 segments, then an interval representing

the girder probability of failure can be determined. Using Eq. 3.9, the girder % 5 can be

estimated to be within the interval of 6.00x10-4 < % 5 < 1.64x10-3. If the assumption

that all distributions are normal is used again where V = −Φ−1(% 5 ), then the estimated

reliability index will be bounded by the interval of 2.94 < V% 5
< 3.24. To be conservative,

the lower reliability index could be chosen as the representative index. Although both

Cases 3 & 4 have CS1 and CS3 defects, Case 4 has a more severe defect midspan (with the

highest moment load), resulting in a slightly higher % 5 and reduced structural reliability.

3.12.6 Case 5 - Girder Pair with CS1 Defects and Deck

A bridge system probability of failure can then be estimated if we use a pair of the

individual girders discussed in Case 4. To include the deck, having the probability of

failure of the deck would be ideal. But, since this is not readily available, an estimate of

% 5 = 3.40x10-6 can be used which corresponds to a reliability index V = 4.50. Typical

bridge load ratings exclude the bridge deck, so to illustrate the ability to include the deck,

an arbitrary, relatively high value for the deck reliability was chosen. As in Case 4, the
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girders will be considered as 3 segments and the girders and deck will all be considered

elements in series because a failure of either girder, or the deck, would result in the

failure, or loss of functionality, of the bridge. Again using Eq. 3.9 to find an interval

yields: 1.64x10-3 < % 5BHB< 3.29x10-3 with the estimated interval for the reliability index:

2.72 < V% 5
< 2.94. When compared to Case 4 with individual girders having CS1/CS3

defects, the two-girder series system has a reduced structural reliability.

3.12.7 Case 6 - Girder Pair with CS1,2,3 Defects and Deck

The last example is another general case where a pair of girders are modeled, but the

defect condition states are different. The girders described in Cases 2 & 3 are used, in

addition to the hypothetical deck. The approach is identical as described in Case 5, but

different girder conditions are used. Using Eq. 3.9 to find an interval yields: 1.34x10-3 <

% 5BHB< 1.94x10-3 with the estimated interval for the reliability index: 2.89 < V% 5
< 3.00.
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4 Chapter Four: Estimating Prestressed Concrete Bridge Reliability and Rating

Factors Using Bayesian Networks with an Application to a Bridge Made

Continuous for Live Load

Jeffery M. Roberts, Thomas Schumacher, Andrew B. Groeneveld,

Stephanie G. Wood, and Edgardo Ruiz

4.1 Abstract

The bridge inspection process has multiple steps. One obvious element is for in-

spectors to identify defects in the main components of the structural system and assign

condition ratings. These condition ratings are somewhat subjective since they are influ-

enced by the experience of the inspector. In the current work, processes were developed

for making inferences on the reliability of prestressed concrete (PC) girders with defects

at the girder component level. The Bayesian network (BN) tools constructed in this

study use simple structural mechanics to model the capacity of girders. Expert opinion

is used to link defects that can be observed during inspections to underlying deterioration

mechanisms. By linking these deterioration mechanisms with changes in mechanical

properties, inferences on the reliability of a bridge can be made based on visual ob-

servation of defects. The BN can then be used to directly determine the rating factor

(RF) of individual structural elements. Examples are provided using BNs to evaluate an

existing older PC bridge currently behaving as two simply supported spans. The bridge

is modeled using two scenarios with the spans acting as simply supported, and then also

with the link block (continuity joint) repaired so that the spans are continuous for live

load. The spans are considered simply supported for all dead load.
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4.2 Introduction

According to 2022 National Bridge Inventory (NBI) data, there are over 620,000

bridges in use in the United States FHWA 2022. The most common material type

currently being used is reinforced concrete (RC), at almost 42%, which includes both

simply supported and continuous spans. The next most common material types are steel

and prestressed concrete (PC), at 27.8% and 27.2%, respectively, of all U.S. bridges.

There are also still some timber bridges being used that are included in the 2022 inventory,

at 2.6%. Since all of these material types can deteriorate over time, bridge owners inspect

each structure in order to find defects early and to improve the long-term performance of

their bridges. Defects are as defined in the Manual for Bridge Element Inspection (MBEI)

AASHTO 2013. However, the inspection process can be influenced by the subjective

judgment of the team leader and each member of the inspection team. Inspection findings

can vary between inspection teams and can also vary as a structure is inspected multiple

times Campbell et al. 2019,Moore et al. 2001.

This paper illustrates the use of Bayesian Networks (BNs) to determine the structural

reliability of PC members and to update the reliability as a result of inspection findings.

The networks use simple structural mechanics and current design codes to model the

capacity of prestressed girders. Expert elicitation Groeneveld et al. 2021,Roberts et al.

2023 is used to relate observable defects to deterioration mechanisms that impact the

modeled compressive strength of concrete.

An example bridge designed and constructed with prestressed girders is used to

illustrate the use of BNs and how they can be used to determine rating factors. The

circa 1982 bridge located at a U.S. Army Corps of Engineers (USACE) dam project was

last inspected in 2018 and has a 2019 load rating report. The load rating analysis was

performed in accordance with then-current design AASHTO 2017 and rating AASHTO
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2018 guidance. The rating factors, determined using both conventional methods and

BNs, are compared. The example bridge, although originally intended to behave contin-

uous with live load, is considered to currently have two simply supported spans because

of damage to the link block (continuity joint). The bridge is examined using two scenar-

ios with the spans acting as simply supported, and also with the link block repaired at the

mid-support so that the spans are continuous for live load. The spans are still considered

simply supported for all dead load.

4.3 Bayesian Networks

A Bayesian Network (BN) is a graphical representation of a set of variables that

highlights the parent/child relationship and provides the probability of interaction be-

tween nodes through the use of conditional probability tables (CPTs). A BN is a directed

acyclic graph (DAG) where nodes (variables) can be connected using unidirectional arcs

(edges). There are no closed loops within a DAG. A BN example illustrating a model

of a prestressed girder is shown in Fig. 4.1 where the network nodes have analogous

variables in Eqs. 4.2-4.5. There are four parent nodes for the moment capacity (M), and

two parent nodes for the total load node (MQ). These two nodes (M and MQ) are then

parent nodes for the limit state node (gM). A more complete description for some of the

nodes shown in Fig. 4.1 will be given throughout the paper. Also, the gM node is simply

the difference between the parent nodes (" −"&) so that the girder capacity is directly

compared to the internal moments due to external live ("&_!!) and dead ("&_�!)

loads. More information regarding BNs and concrete bridge structures can be found in

Roberts et al. 2019, Groeneveld et al. 2021, and Roberts et al. 2023.
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Figure 4.1: Example moment BN for PC girder. Live load effect (MQ_LL) values are

changed to reflect continuous vs. simple spans. The same dead load effect (MQ_DL)

values are used for both continuous and simple spans.

4.4 Reliability Analysis

All real structures are composed of elements with some unavoidable uncertainties

related to design or construction Nowak and Collins 2012. With these innate uncer-

tainties, there will always be a probability of failure (%5 ) of at least one element of a

structure since there is not a guarantee that the capacity always exceeds demand. A

complement to the concept of probability of failure is the idea of a structure’s reliability,

where reliability can be defined to be 1 − %5 . Therefore, to determine structural relia-

bility, a definition of failure is needed. One simple way to view failure is to require that

demand has exceeded capacity, or in terms of a limit function 6(',&) = ' −& where R

represents the structural resistance (capacity) and Q represents the demand (load effect)

on the structure. There are three outcomes. First, if 6 > 0, then the structural capacity

exceeds the demand and failure is not occurring. Second, if 6 = 0, then demand is equal

to the structural capacity and failure is forthcoming, whereas in the third outcome, 6 < 0,

the demand exceeds capacity and failure is occurring. Therefore, in terms of the limit

state, the probability of failure can be written as %5 = %(6 < 0). A concept useful when

dealing with structural reliability is to quantitatively describe how far away the mean of
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the limit state function is from the point of failure (6 = 0) using the reliability index.

For a limit state function, the reliability index, V, is defined to be `6/f6 where `6 and

f6 are the mean and standard deviation, respectively, of 6(',&). This represents the

number of standard deviations that separate the mean and initiation of failure.

If normal distributions are used, then the probability of failure is related to the

reliability index using the standard normal cumulative distribution function Φ: %5 =

Φ(−V). The inverse is also helpful to determine the reliability index: V = −Φ−1(%5 )

where Φ−1 is the inverse of the standard normal cumulative distribution function.

4.5 Load Rating

The example bridge being used is a four-girder, two-span bridge that carries two lanes

of traffic. The superstructure is made of a RC deck supported by four PC girders. The

original construction in the early 1980s provided for a link block between longitudinally

adjacent girders to make the arrangement structurally continuous for live load. Through

the years, this link block has deteriorated and cracked to the point where the two spans

are currently considered simply supported. Section and girder elevation drawings are

shown in Figs. 4.2-4.3 in addition to a photo showing the bridge elevation in Fig. 4.4.

The Load and Resistance Factor Rating (LRFR) methodology AASHTO 2018 pro-

vides for both inventory and operating rating factors (RFs). The inventory RF uses LRFD

strength limit states AASHTO 2020 that are calibrated to result in a target reliability of

3.5. Likewise, the operating RF results in a reduced target reliability of 2.5

For a given component, the LRFR load rating calculation, in its simplest form, is:

'� =
q�q( (q'=) − W�!�!

W!!!!
(4.1)

where q� is the component condition resistance factor, q( is the system resistance factor,
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Figure 4.2: Example PC bridge section and main girder elevation views (reprinted with

permission from USACE). Girders with bearing spacing of 23.8 m (78.04 ft) and girder

spacing of 3.05 m (10.0 ft).

Figure 4.3: Example PC bridge girder sections (reprinted with permission from USACE).

Extended prestressing strands at end of beam shown.
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Figure 4.4: Photo of example bridge elevation showing link block (continuity joint)

between spans (reprinted with permission from USACE). Insert photo shows closeup of

link block deterioration.

q'= is the factored capacity of the component, W�! and W!! represent the appropriate

load factors for the dead and live loads, respectively, and DL and LL represent the dead

load and live load effects, respectively. The live load is also calculated using impact and

distribution factors. The rating factor resistance factors (q� and q() are used to decrease

the component capacity because of the assumed effects of degraded condition and lack

of redundancy. The product q�q( is not allowed to be less than 0.85. The RF represents

the surplus capacity of a structural component after the dead load effect is accounted for.

Since BNs directly integrate the uncertainties associated with node variables by using

the bias factor, _, and COV (defined in Table 4.1), these LRFR and LRFD resistance and

load factors are not used when constructing a BN. The RF then acts as a live load scaling

factor than can be selected so that a desired reliability is the result.

For the example bridge illustrated in Fig. 4.2, the most recent design rating factors

were determined to be '�8=E = 1.18 and '�>?4A = 2.14. The inventory RF is governed

by the girder tension stress, and the operating RF is governed by the positive girder

moment. The inventory RF for positive girder moment is 1.68, but does not govern.

However, to simplify the implementation of the BN for the example girder, only moment
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load effects are considered during this evaluation. Therefore, the rating factors being

considered are '�8=E = 1.68 and '�>?4A = 2.14. This rating used standard HL-93 design

live loads. From the most recent inspection report, the superstructure was described to

be in fair condition with the girders exhibiting some spalling and cracking but none

resulting in a reduction of individual girder capacity. The link blocks between girders

show exposed prestressing strands which would lead to a loss of structural continuity

between the two spans. The rating resistance factors were taken to be q2 = 1.0 and

qB = 1.0. The flexure condition factor is used to account for the overall superstructure

condition, but since the individual girders show no significant deterioration resulting in

a reduced capacity, the condition factor was specified to be q2 = 1.0 for girders which

are assumed to be simply supported. This discounts any assumption of the girders acting

in unison. The flexure system factor reflects the fact that there are multiple longitudinal

girders providing redundancy. For more information regarding RC bridge load ratings,

refer to Roberts et al. 2023.

4.6 Bridges Made Continuous for Live Load

One step during the bridge design process is to determine if spans are to be simply

supported or continuous if multiple spans are involved. Simply supported design is

common for bridges using precast, PC girders. To minimize the number of expansion

joints, another option is to use simply supported girders made continuous for live load

by using individual continuity joints connecting adjacent girders. A disadvantage of this

approach, however, is that creep, shrinkage, and thermal effects can create large positive

moments Looney et al. 2021,Freyermuth 1969 in the continuity joint resulting in severe

cracking and eventually the loss of moment transfer between spans. An example of this

type of damage is shown on the example bridge in Fig. 4.4.
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There is current research investigating how to improve the positive moment capacity

Looney et al. 2021, Casey 2019 of these multiple span bridges by using Ultra High

Performance Concrete (UHPC) in replacement continuity joints. If this repair method

was applied to the example bridge and the original design intent of continuous span for

live load was restored, then the next step would be to determine the new rating factor

for the repaired structure. Creating a BN for this two-span bridge (both continuous and

simply supported) would allow a comparison of rating factors representative of before vs.

after repairs. The continuous behavior that is assumed in the continuous BNs is based

upon load test results described in Looney et al. 2021. The spans were loaded at midspan

using dump trucks with crushed stone. Since the tested spans were relatively short and

produced small measured deflections, the results for all tested girders are not conclusive

showing continuity after joint replacement. However, measured deflections were within

1 mm (0.04 in) of calculated deflections when assuming simple and continuous behavior.

The conclusion can then be made that the joint replacement improved structural capacity

by causing the spans to behave in a continuous manner.

One advantage of a continuous girder over multiple spans is to increase available

capacity when compared to simply supported spans. However, in the case of the example

bridge, all of the dead load including girder self-weight and deck dead load are supported

by the existing simply supported spans. Only the live load would be supported by the

bridge made continuous. The simply supported span (Fig. 4.5a) produces the highest

positive moment for the girder, shown in Fig. 4.5d. The partial continuous bridge

(Fig. 4.5b, with reduced stiffness for the link) has a lower positive moment, also shown

in Fig. 4.5d. Assuming a consistent stiffness for the link (Fig. 4.5c), a slightly reduced

positive moment is produced and is shown in Fig. 4.5d. This is only conceptual, but

illustrates the possibility of not attaining a fully continuous girder. However, as shown in

the figure, only around a 10% reduction in positive moment due to all loads is possible
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since all dead load is supported by the original simply supported girders.

A further discussion of the idea of making bridges continuous for live load can

also include historical design methodologies. A previous version (TxDOT 2001) of the

Texas Department of Transportation (TxDOT) Bridge Design Manual (BDM) states that

"the disadvantages outweigh the advantages of designing continuous for live load." The

TxDOT BDM also states that "longer spans could more economically be achieved using

slightly higher concrete strengths and 2 to 4 more prestressing strands."

(a) Simply supported two-span bridge.

(b) Two-span bridge with link block between spans providing partial continuous beam behavior

for live load.

(c) Two-span bridge with link block between spans providing continuous beam behavior for live

load.

��
(b)

��(c)

��
(a)

(+) Moment (+) Moment

(-) Moment

(d) Moment diagrams.

Figure 4.5: Qualitative moment diagrams showing the effect of AASHTO HL-93 design

loads (lane loads not shown for simplicity; trucks not shown to scale). The simply

supported span (a) experiences the most positive moment and the continuous girder for

live load (c) experiences the least with a 14% difference between the two. Dead loads

are supported by simply supported girders in all cases since girder self-weight and deck

dead loads are present before the retrofit making the bridge continuous for live load.
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Therefore, the primary advantage of eliminating the expansion joints with simply

supported girders is not for strength purposes, but to simplify design and construction,

and to eliminate issues resulting from water, deicing salts, and other debris passing

through the expansion joint onto the supporting substructure. Making the deck slab

continuous is a much simpler design strategy to reduce the number of expansion joints

for new structures.

For existing bridge structures, although using the UHPC link may not produce large

capacity gains, smaller gains may significantly extend the life of the bridge by marginally

improving capacity and rating factors and reducing maintenance efforts at the expansion

joints. A current example of the effort to reduce maintenance costs at expansion joints

using UHPC is the Wilmington Viaduct Bridge Rehabilitation Project (Nizamoff 2023).

When constructing BNs and determining RFs for the example bridge made contin-

uous for live load, the dead loads are assumed to be supported by the simply supported

spans, and the live load effects are determined assuming a continuous two-span structure.

4.7 Structural Bayesian Networks

When using a BN to model structural reliability, the limit state function, 6(',&),

is a natural extension of the network allowing direct determination of the structural

probability of failure. The component capacity is calculated using the geometric values

and material properties with their associated bias and COV values. Similarly, the live

and dead load effects are provided directly as input variables with assumed bias and

coefficient of variation (COV) values accounting for variable uncertainty. The nominal

values used in the example BNs, in addition to their statistical attributes, are provided in

Table 4.1. Using all of these provided values, the BN model can then estimate discretized

distributions for the load effects, and also the component capacities. All BN development
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and evaluation were performed using Netica (Norsys 2019).

4.7.1 Moment Networks

Roberts et al. 2019, Groeneveld et al. 2021, and Roberts et al. 2023 describe the

methodology used in this study where structural reliability is modeled using a BN. The

example BN shown in Fig. 4.1 represents the network used for a prestressed girder. For

the flexural model (using the design as shown in Figs. 4.2-4.3 and assuming rectangular

beam behavior), the nominal moment capacity AASHTO 2020 is determined using:

"= = 5?B�?B

(
3 −

0

2

)

= 5?B�?B

(

ℎ −

∑
4

8=1
�8H8

�?B

−
0

2

)
(4.2)

0 = 0.85

(
�?B 5?D

0.7225 5 ′21eff + :�?B 5?D/3

)
(4.3)

5?B = 5?D

(
1 − :

2

3

)
(4.4)

: = 2

(
1.04 −

5?H

5?D

)
(4.5)

where 5?B is the average stress in prestressing steel, 5 ′2 is the compressive strength of the

concrete, �?B is the total area of prestressing steel, �8H8 provides the area and vertical

location of prestressing strands for the 8Cℎ layer, 3 = ℎ − (
∑

4

8=1
�8H8)/�?B represents

the distance from the extreme compression fiber to the prestressing steel centroid with

h being the height of the girder, 0 represents the depth of the equivalent compression

block, 5?D is the tensile strength of the prestressing steel, 5?H = 0.85 5?D is the yield

strength of the prestressing steel, 1eff is the effective flange width of the girder, and : is

the tendon value. Rectangular beam behavior is considered a valid approximation since
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the depth of the equivalent compression block is within the deck when three standard

deviations of the block depth are considered.

This representation of the girder moment capacity uses the
∑

4

8=1
�8H8/�?B calculation

to include one additional intermediate node (As_yprod) to provide the sum of the products

∑
4

8=1
�8H8. It can be shown that if the distributions for the area (�8) and elevations

(H8) are assumed to be normal, then the sum of the products can be estimated as

a normal distribution Groeneveld et al. 2021, Seĳas-Macías and Oliveira 2012 under

certain conditions. The primary advantage of this approach is to reduce the size of the

required conditional probability tables (CPTs).

Most of the remaining BN nodes are constructed assuming normal distributions

and using the nominal, bias, and COV values provided in Table 4.1. Mean values are

estimated using the bias (` = bias ·nominal), and standard deviations are calculated using

the COV (f = COV · `). The prestressing steel area, concrete compressive strength, and

live and dead load effect nodes are all constructed assuming normal distributions, and

discretized into 20 bins with a total width of eight standard deviations (` ± 4f). The

higher number of bins is needed to have a relatively fine approximation for the normal

distribution.

The final node in the BN is the limit state node. The limit state function is defined as

6(',&) = '−&, with R and Q being the capacity and load, respectively. The limit state

node uses this relationship and simply subtracts the total load effect distribution from

the moment capacity distribution.

4.8 Material Deterioration

A bridge structure, through a lifetime of use, can experience decreased capacity

caused by actual structural damage or deterioration. Structural damage can range from
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Table 4.1: Parameters of variables used in bayesian networks of four-girder example

bridge

Definition of Notation Nominal value Bias COV Referencesa

variables
( `

nominal

) (
f
`

)
for bias/cov

Concrete compressive strength 5 ′2 20.68 MPa (3.0 ksi) 1.10 0.18 LE08

Strand tensile strengthb 5?D 1861.58 MPa (270.0 ksi) 1.04 0.02 LE08

Total strand areac �?B 3,356.12 mm2 (5.202 in2) - -

Top layer �4 197.42 mm2 (0.306 in2) 1.011 0.013 LE08

Top middle layer �3 789.68 mm2 (1.224 in2) 1.011 0.013 LE08

Bottom middle layer �2 1,184.51 mm2 (1.836 in2) 1.011 0.013 LE08

Bottom layer �1 1,184.51 mm2 (1.836 in2) 1.011 0.013 LE08

Centroid total strand steeld H2.6. From layer distributions - -

Top layer H4 203.2 mm (8.0 in) 1.00 SDe NYT94

Top middle layer H3 152.4 mm (6.0 in) 1.00 SDe NYT94

Bottom middle layer H2 101.6 mm (4.0 in) 1.00 SDe NTY94

Bottom layer H1 50.8 mm (2.0 in) 1.00 SDe NYT94

Simply Supported - Live Loadf "&!!
2,008.64 kN·m 1.40 0.18 NS00 &

(17,778.0 kip·in) - - NC12

Simply Supported - Dead Loadg "&�!
2,225.24 kN·m 1.05 0.10 NO95

(19,695.0 kip·in) - - -

Continuous - Live Loadf "&!!
1,590.01 kN·m 1.40 0.18 NS00 &

(14,072.81 kip·in) - - NC12

Continuous - Dead Loadg "&�!
2,225.24 kN·m 1.05 0.10 NO95

(19,695.0 kip·in) - - -

Effective flange widthh 1eff 3,048.0 mm (120 in) - - -

Girder heighth,i ℎ 1,587.5 mm (62.5 in) - - -

a LE08:LeBeau 2008; NYT94:Nowak et al. 1994; NS00:Nowak and Szerszen 2000; NC12:Nowak and

Collins 2012; NO95:Nowak 1995. b Stress relieved strands with 12.7 mm (0.5 in) diameter.
c Total strand area is a normal distribution resulting from the sum of normal distributions for each individual

strand. The bias and COV are used for each strand. At the center of the girder, the top, top middle, bottom

middle, and bottom layers have 2, 8, 12, and 12 strands, respectively. The girder has 34 total strands.
d Vertical distances to strand centroids are referenced to bottom girder edge. e The error in positioning

layer reinforcement does not change based on the depth of the member. Therefore, the variability of the ver-

tical positioning, H8 , of the prestressing strands is given in terms of the standard deviation rather than COV.

A standard deviation of f�.�.=17.78 mm (0.7 in) is used for each layer. f Live load includes an impact

factor of 1.33 and distribution factor of 0.74 for an interior girder. g Dead load is the same for both sim-

ple/continuous cases since simply supported girders support DL in all cases. h Effective width and height

of the girder are considered deterministic. i Girder height includes 215.9 mm (8.5 in) for deck thickness.
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impacts to overloading caused by large trucks. Although there are many causes, common

deterioration modes for concrete include corrosion of reinforcement, freeze/thaw (FT)

cycling, and the alkali-silica reaction (ASR). The BNs being considered will only include

specific defects caused by these deterioration modes as shown in Table 4.2. A detailed

description of these deterioration modes can be found in Groeneveld et al. 2021. BNs

can also be used to include information gained using existing non-destructive evaluation

(NDE) methods. Determination of structural component deterioration, location of rein-

forcement, and determining dimensions of structural components are examples of how

NDE can be used ACI 2013,Bertola et al. 2022. Additionally, basic material properties,

such as concrete compressive strength can be found by sampling sections of existing

structures, or using in-place techniques ACI 2019.

Table 4.2: Common defects correlated with deterioration modes

Defect Deterioration mode

Cracking Corrosion, FT Effect, ASR

Spalling Corrosion, FT Effect, ASR

Delamination Corrosion, FT Effect

Efflorescence FT Effect, ASR

Rust staining Corrosion

Exposed reinforcement Corrosion

Pattern cracking ASR

The defects described above, and listed as Table 4.2, are presented as nodes in the

BNs so that findings can be reported to the network. For example, inspection findings

are shown in Fig. 4.6 at a condition state CS1 level. The severity of each defect is defined

consistent with the MBEI AASHTO 2013, which means the defects range from CS1

(good) to CS4 (severe). All of the nodes have choices available from CS1 to CS4, except

for pattern cracking which has a yes/no choice consistent with the presence/absence of the

defect. Using the provided defects, the network provides a reduced concrete compressive
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strength shown as the Reduced 5 ′2 node. More discussion about the reduction of concrete

compressive strength is provided in Groeneveld et al. 2021 and Roberts et al. 2023.

Figure 4.6: Example BN with defects assumed at condition state CS1. Defects include:

exposed reinforcement, rust staining, delamination, spalling, cracking, pattern cracking,

and efflorescence. Initial concrete compressive strength has mean and standard deviation

of 22.75 MPa (3.3 ksi) and 4.14 MPa (0.60 ksi), respectively. The Reduced 5 ′2 node

provides final concrete compressive strength after CS1 defect findings are entered, and

has mean and standard deviation of 21.58 MPa (3.13 ksi) and 4.00 MPa (0.58 ksi),

respectively.

Conditional probability tables (CPTs) were constructed to link the considered defects

shown in Table 4.2 to deterioration modes. The CPTs, resulting from expert elicitation,

are used as an estimate of the relative impact of defects on concrete compressive strength.

More information regarding the development and use of the CPTs can be found in
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Groeneveld et al. 2021 and Roberts et al. 2023.

4.9 Bayesian Networks of Example Bridge

As previously described, the example bridge was originally constructed with both

spans being connected using link blocks as shown in Fig. 4.4. During bridge inspections,

deterioration and cracking of the link blocks were identified. Because of this, the bridge

is considered to be structurally simply supported. Two BNs were constructed. The first

was made using the assumption that the two spans act independently and are incapable

of transferring internal forces between spans. The second BN was constructed assuming

that the continuity joint was sufficiently repaired and the original design intent of a

continuous span for live load was restored. Both BNs used the same girder positive

moment capacity. However, the continuous span was exposed to a reduced positive

moment load effect because of the indeterminate nature of the continuous span. In both

cases, trucks were marched across the spans to determine the governing load effects

AASHTO 2020.

4.9.1 BN with Spans Continuous for Live Load

With the spans acting as if they are continuous, the structure will have a increased

RF for positive moment near midspan when compared to a simply supported span. This

is because the positive moment load effect will be decreased for a continuous span.

As previously described, when using conventional methods AASHTO 2014, AASHTO

2011 to determine the RF, the tension stress limit state governs and the following values

were found for the flexure limit state: '�8=E = 1.68 and '�>?4A = 2.14. For simplicity,

only flexure limit states are being illustrated in this example using BNs.

The first BN was constructed to represent the moment capacity and loading of the
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continuous prestressed girder, shown in Fig. 4.7. The live load node, MQ_LL is scaled

using RF = 1.67. This BN represents the conditions that result in a %5 = 2.196 × 10
-4

which provides a reliability index of V%5
= −Φ−1(2.196 × 10

−4) = 3.52. The reliability

index can also be determined directly from the definition: V20;2 = `6/f6 = 3.58. Since

normal distributions are being used in the BN, the values for the reliability indexes are

expected to be very similar, regardless of which method is used. If a scaling factor of RF

= 1.95 is used, then %5 = 6.420 × 10
-3 resulting in V%5

= −Φ−1(6.420 × 10
−3) = 2.49

and V20;2 = `6/f6 = 2.46. These scaling factors are the inventory and operating rating

factors: '�2>=C_8=E = 1.67 and '�2>=C_>?4A = 1.95. Rating factor results are included in

Table 4.3.

Table 4.3: Girder moment rating factor results. LRFR results use q� = 1.0 to represent

lack of defects resulting in no capacity reduction. BN results use CS1 defects to represent

minor defects with slight capacity reduction. Target reliability indexes for inventory and

operating rating factors are 3.5 and 2.5, respectively. To approach target reliabilities,

modified LRFR factors (qconc, W!!) are provided.

Method Resistance Inventory Operating

qconc RF (W!! , W�!) RF (W!! , W�!)

Current LRFR - simple 1.0 1.68 (1.75, 1.25) 2.14 (1.35, 1.25)

BN - simple - 1.37 - 1.58 -

Current LRFR - continuous LL 1.0 2.10 (1.75, 1.25) 2.72 (1.35, 1.25)

BN - continuous LL - 1.67 - 1.95 -

Modified LRFR - simple 0.9 1.34 (1.85, 1.25) 1.55 (1.60, 1.25)

Modified LRFR - simple 0.85 1.30 (1.75, 1.25) 1.51 (1.50, 1.25)

Modified LRFR - continuous LL 0.9 1.69 (1.85, 1.25) 1.95 (1.60, 1.25)

Modified LRFR - continuous LL 0.85 1.64 (1.75, 1.25) 1.91 (1.50, 1.25)



99

Figure 4.7: PC girder moment BN with discretized distributions for bridge continuous

for live load. Live load node (MQ_LL) scaled using RF=1.67. Area of moment limit

state function where 6(',&) < 0 provides probability of failure, %5 = 2.196 × 10
−4.

Moment limit state mean and standard deviation are `6 = 2,802.02 kN·m (24,800 kip·in)

and f6 = 779.60 kN·m (6,900 kip·in), respectively. V20;2 = `6/f6 = 3.58. V%5
=

−Φ−1(2.196 × 10
−4) = 3.52.

4.9.2 BN with Simply Supported Spans

With the spans acting as if they are simply supported, the structure will have a

reduced RF for positive moment at span midspan, when compared to a continuous span.

This is because the positive moment load effect will be increased for a simple span. As

previously described, when using conventional methods AASHTO 2014,AASHTO 2011
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to determine the RF, the following values were found: '�8=E = 1.68 and '�>?4A = 2.14.

The second BN was constructed to represent the moment capacity and loading of

the simply supported prestressed girder. An image showing this BN is not included,

but would be very similar to that shown in Fig. 4.7 for a continuous span. The live

load node, MQ_LL was scaled with two values to result in reliability indexes of 3.5

and 2.5, to represent the inventory and operating conditions: '�B8<?;4_8=E = 1.37 and

'�B8<?;4_>?4A = 1.58. Rating factor results are included in Table 4.3.

4.10 Conclusions

A primary advantage of using a BN to model the loading and capacity of structures

is that the %5 is a direct result from the network. If a link has been developed between

defects found during inspections and reduced component capacity, then an updated %5

can be determined, leading to an updated reliability index. Very easily the user can have

a sense of the magnitude of loss of structural reliability. An asset manager can then use

these values to determine priorities when allocating time and funding for maintenance

efforts and, when necessary, structural replacement.

Bridge asset managers use load ratings to measure the ability of a bridge to support

a specific live load. The current LRFR AASHTO 2018 methodology is related to LRFD

AASHTO 2020 techniques, but has an added nuance in the form of the system factor,

q(, and condition factor, q� . These factors are used to reduce the component capacity,

when required, to account for lack of redundancy, and defects that are detected during

the bridge inspection process. The condition factor is tied to the rating determined by the

bridge inspection, and is a rudimentary method to account for defects. For example, the

MBE AASHTO 2018 states that a component rated Poor should be assigned a condition

factor of 0.85, Fair should be assigned a value of q� = 0.95, and Good or Satisfactory
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would be assigned a value of q� = 1.0. As previously mentioned, the product q�q( is

not allowed to have a value less then 0.85. This requires the factored capacity, q"=, to

be reduced by 15%, due to the condition factor only, with no additional analysis required.

A more direct, and rational, approach would be to use BNs to determine the %5 ,

reliability index, and rating factors for bridge components. However, the examples

provided illustrate differences when comparing rating factors when using BNs and

the conventional methods provided by AASHTO. Note that all cases being considered

assumed that the defect level is such that no reduction of moment capacity is assumed

when calculating the RF using conventional methods.

As shown in Table 4.3, the rating factors for the simply supported condition vary,

where the BN provides lower values for both inventory (1.37 vs. 1.68) and operating

(1.58 vs. 2.14) rating factors. Additionally, the rating factors for the continuous span

vary also, where the BN provides lower values for both inventory (1.67 vs. 2.10)

and operating (1.95 vs. 2.72) rating factors. These differences may be due to the

approximation techniques and assumptions used when determining the LRFD/LRFR

load and resistance factors. Modified LRFD/LRFR factors that produce RFs found using

BNs are provided in Table 4.3. The conclusion from these comparisons is necessarily

limited since multiple variables may impact results, such as length of span. The example

bridge has a span of around 23.8 meters (78 ft). Results from a parametric analysis

may show that longer spans, in addition to other attributes, will have differing results

regarding reliability and rating factors. An additional extension of the current research

is to extend the concrete deterioration model to include the reduction of cross-sectional

area of prestressing strands due to corrosion.
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5 Chapter Five: Summary and Future Work

5.1 Summary

The purpose of this research was to develop a methodology for modeling existing

bridge structures so that estimates of the probability of failure, %5 , and by extension

a measure of reliability, V, could be determined. This results in an improved ability

to objectively determine which structures should be maintained or replaced. This is

particularly useful when budgets are limited and maintenance and replacement priorities

can be objectively determined. BNs were developed for both flexure and shear limit

states illustrating the idea that BNs can be developed using simple structural mechanics.

BN models were developed and presented for several bridges using three primary

material types: reinforced concrete, prestressed (pretensioned) concrete, and steel. Since

all relevant information for determining bridge load ratings are present within the BN,

rating factors were also determined for all considered bridges by scaling live loads to

achieve specific target reliability indexes.

The LRFR rating process uses resistance factors to account for condition and lack

of redundancy in the structural system. Combined, these two factors are allowed to

reduce member capacity by as much as 15%. The current work shows how BNs can

be used to directly account for material deterioration modes. The required conditional

probability tables (CPTs) required to link modes and defects found during inspections

can be considered the current state of the art and can be updated as more expertise

is gained. This decreases the impact of a key subjective component of the inspection

process. Additionally, using system reliability to account for series and parallel systems

of individual components, a %5 estimate can be determined for individual components,

bridge spans, or an entire bridge.
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There are various methods of performing a sensitivity analysis, but a fully formed

BN can also provide guidance to which elements of a structure has the most impact on

structural reliability. But, the overall benefit of this system of using BNs to represent a

bridge (or other structural systems) is to have an ongoing tally of the reliability of the

structure as the structure ages. This is a rational approach linking capacity, deterioration

modes, detectable defects, and the required decisions related to whether the structure is

fulfilling it’s intended purpose.

5.2 Future Work

Possible avenues for future work include the following:

• The current work uses expert elicitation to link several deterioration modes and

varying levels of defect severity. Additional research and testing would be ap-

propriate to strengthen and better understand this link and to include additional

deterioration modes leading to more confidence in the CPTs. This could include

lab tests of specially fabricated specimens and also field tests of existing structures,

using both destructive and NDT methods.

• Extend the concrete models to include the influence of corrosion on bond properties

between concrete and reinforcement. Although the decrease in bond is expected

to have more impact, the reduction of cross-sectional area of reinforcing steel due

to corrosion should also be included. Current BN models account for specific

deterioration modes by reducing the compressive strength of concrete. Including

loss of bond and steel area reduction would extend the ability of the BNs to more

completely model flexural and shear capacity.

• The current BNs depend on the nominal values of design parameters, such as
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structure dimensions and steel and concrete properties. Using the potential of the

BN approach includes using actual statistical values of these properties, including

both in-service structures and structures scheduled for demolition. For in-service

structures, NDT methods could be used to determine the statistical distributions

of element dimensions (e.g. width, depth) and actual locations of reinforcement.

As previously mentioned, the modulus of elasticity and compressive strength can

also be determined using cores or NDT techniques. Regarding old structures that

are slated for demolition, all of these techniques can be used to develop in-kind

information of similar structures that are still in-service.

• Extend the structural steel model to include section loss through corrosion. This

would be applicable to bridges using both rolled steel and built-up sections.

• To develop the %5 of a system (e.g., multiple segmented girders with various

defects plus deck), a range of %5 values was developed, leading to a range of

reliability indexes for the system. The %5 lower bound applies when the failures of

the components are completely dependent and the Pf upper bound applies when

the failures are considered completely independent. For simplicity and to be

conservative, the highest %5 (and lowest reliability index) was chosen. However, a

better understanding of how to model the independent vs. dependent nature of the

structural components would be beneficial.

• All of the BNs used a discretized distribution to model material properties. When

these properties are used to define a child node, the new distributions can become

skewed. A method to manage the child discretized distributions would be necessary

in order to minimize artificial skewing and automate the creation and use of BNs.

• An extension of this research would be to couple an existing open source load
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rating software package with the use of BNs. An example of this is software

named PGSuper from the Washington State DOT which is used specifically for

prestressed girders and is a fully capable example of bridge load rating and design

software. Similarly, the current research uses proprietary software to model BNs.

An alternative would be to develop BNs in R or Python allowing a fully open

source solution to using BNs to load rate bridges using prestressed girders.

• The current research focused on relatively simple bridge structures with the lon-

gitudinal girder being the primary member. Extending the research to more

complicated structures would be a logical, but not trivial, next step. The Corps

designs, builds, and maintains water gates of various types. Examples of these

include miter gates used as part of the locking chamber used to pass vessels past

a dam structure. Being able to model these types of structures would be advanta-

geous from an asset management point of view. Since these types of gates have

3-D behavior, effort would be needed to simplify the more complicated behavior

to 1-D or 2-D approximations. An alternative would be combining finite element

software directly with the BN software.

• Understand data and methods used to develop current LRFD/LRFR load and

resistance factors to explain differences between reliability indexes and RFs found

using LRFR and BNs.

• Each node of a BN is impacted by other nodes in the network. Knowledge of the

sensitivity to a change in the mean and standard deviation of other nodes can have a

practical use to the user of a BN so that certain structural elements can be favored.

For example, if the yield strength of reinforcement is found to impact the reliability

of the structure (i.e. the %5 is sensitive to 5H), then effort would be justified to

better understand the statistical parameters of that node. Better understanding the
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sensitivity of nodes used in the structural BNs would give direction to further

testing of component material properties.
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