
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

11-28-2023

Energy Auction with Non-Relational Persistence Energy Auction with Non-Relational Persistence

Michael Ramez Howard
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Howard, Michael Ramez, "Energy Auction with Non-Relational Persistence" (2023). Dissertations and
Theses. Paper 6559.
https://doi.org/10.15760/etd.3691

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6559
https://doi.org/10.15760/etd.3691
mailto:pdxscholar@pdx.edu

Energy Auction with Non-Relational Persistence

by

Michael Ramez Howard

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Computer Science

Thesis Committee:
Wu-chang Feng, Chair

R. Bruce Irvin
David Maier

Portland State University
2023

© 2023 Michael Ramez Howard

i

Abstract

As the current landscape for electric vehicles changes, options for remote charg-

ing are expanding to keep up. In the United States alone, sales of electric vehi-

cles grew 85% from 2020 until hitting 450,000 units by the end of 2021. While

these growing sales are encouraging, commercial charging stations have a long

way to go before they are as ubiquitous as gasoline stations are today. The peer-

to-peer energy auction helps fill the gap in underserved areas by allowing pri-

vate homeowners to share their charging facilities with other electric vehicle

drivers. The auction framework wraps existing charging outlets with a Cloud-

connected microcontroller. These Edge devices communicate with a Cloud mes-

sage broker for both reporting and session control purposes. Users, both buyer

and seller, may interact with the framework through a web-based user inter-

face. The design of this framework provides many challenges, including how

to handle persistent storage. The technology used for data storage is key in de-

termining the performance of the auction application and the smoothness of the

user experience.

The two technologies considered are a SQL, server-based, structured and a

NoSQL, serverless, unstructured database. NoSQL has gained momentum in

the last 20 years triggered by the needs of Web 2.0 companies requiring user-

generated content, ease of use and interoperability revolving around big data

and real-time access. The natural division of management and storage layers

allows for a robust serverless implementation: the Cloud service listens for re-

quests and processes using shared and abstracted compute resources. Serverless

allows a payment model where each transaction, beyond the free tier of 20,000

writes/50,000 reads per day, is billed rather than paying continuously for a de-

ployed compute instance.

In this study, we investigate Google’s Firestore and Cloud SQL MySQL so-

lutions. We pit the newer serverless, non-relational, NoSQL, document-model

database against the traditional SQL, table-based, relational server. Both so-

lutions are evaluated for query performance, cost, flexibility and scalability.

Through benchmarking, analysis and a deep-dive of system architecture, we an-

swer whether Firestore can support the energy auction persistent storage needs

despite the superior query capabilities of MySQL’s SQL engine.

iii

I would like to dedicate this thesis to my wife Dianna and two daughters,
Yasmine and Myriam. They were patient with me and put up with the long

hours spent in research. It was never easy to sacrifice spending time with them
and their understanding and support allowed me to move forward.

iv

Acknowledgements

I would like to acknowledge and thank Dr. Wu-chang Feng for advising

me throughout this thesis and helping make it possible. His courses on Cloud

technology and security were extremely informative and helped guide my path

throughout my research.

I would also like to thank the contributions of Dr. R. Bruce Irvin and Dr.

David Maier. Both of whom served on my advisory committee and provided

motivation and assistance to the research topic.

Finally, a huge thanks to my wife Dianna and daughters Yasmine and Myr-

iam. They were patient with me throughout my long hours of research. It was

with their support that I was able to reach the end goal.

v

Contents

Abstract i

Acknowledgements iv

List of Abbreviations xi

1 Introduction 1
1.1 Motivations . 1
1.2 Research Question . 4
1.3 Context of the Study . 5
1.4 Objectives and Contributions . 6
1.5 Overview of the Thesis . 6

2 Background 7
2.1 EV Charging . 7
2.2 Related Work . 12

2.2.1 Performance Evaluation of IoT Data Management 13
2.2.2 Benchmarking with YCSB 14
2.2.3 Google Firestore . 14
2.2.4 Oracle MySQL . 15
2.2.5 Sharding a Relational Database 15
2.2.6 Google Spanner . 18

3 System Architecture 19
3.1 Firestore . 19
3.2 MySQL . 23

4 Experiments 26
4.1 Non-Relational, NoSQL Database 26

4.1.1 Reads . 28
4.1.2 Writes . 33
4.1.3 Reads with Conditions . 36

4.2 Relational, SQL Database . 40
4.2.1 Reads and Writes . 41

4.2.2 Reads with Conditions . 43

5 Discussion and Future Work 45
5.1 Latency . 45

5.1.1 Firestore Analysis . 46
5.1.2 MySQL Analysis . 48

5.2 Cost . 49
5.2.1 Firestore . 49
5.2.2 MySQL . 50

5.3 Flexibility and Scalability . 51
5.4 Discussion . 52
5.5 Future Work . 55

5.5.1 GraphQL . 55

6 Conclusion 57

References 63

vii

List of Figures

1.1 The energy auction supporting: 1. Device registration, 2. Data
storage, 3. Device search and reserve, 4. Session management,
and 5. Session details. 2

2.1 Top 10 fast-charging companies sorted by number of locations
[6]. The data was sourced from the US Department of Energy as
of Dec 31, 2021 [30]. 8

2.2 A Cloud framework to implement the energy auction. A seller
registers their IoT device allowing buyers to search and reserve.
Cloud Functions publish commands to start and stop the charg-
ing sessions on behalf of the buyer. Sellers subscribe to the charg-
ing session summary. 10

3.1 Simplified diagram of the Firestore stack [25]. 20
3.2 Query processing through the Real-time Cache [25]. 22
3.3 Detailed heterogeneous conceptual MySQL architecture from Ban-

non et al. [24]. 25

4.1 A single read operation performed against each of the 6 collec-
tions. Time to complete the operation is shown in milliseconds
(ms). 29

4.2 An iterative read operation performed against five Firestore col-
lections using a secondary index. Each unique id field is succes-
sively queried. Time to complete all the operations is shown in
milliseconds (ms) on a logarithmic scale. 30

4.3 A read all operation performed against each of the 6 collections.
All documents are read in a single operation. Time to complete
all the operations is shown in milliseconds (ms) on a logarithmic
scale. 31

4.4 A single update operation performed against each of the 6 collec-
tions. Time to complete the operation is shown in milliseconds
(ms). 34

4.5 An iterative create operation performed against each of the 6 col-
lections. All n documents are created in sequence. Time to com-
plete all the operations is shown in milliseconds (ms) on a loga-
rithmic scale. 35

4.6 A read all performed against each of the 6 collections. All docu-
ments are read in a single operation, then reduced locally to those
matching the query conditions. Time to complete all the opera-
tions is shown in milliseconds (ms) on a logarithmic scale. 37

4.7 Query the latitude range in each of the 6 collections. All latitude-
matching documents are read in a single operation, then reduced
locally to those matching the non-latitude query conditions. Time
to complete all the operations is shown in milliseconds (ms) on a
logarithmic scale. 38

4.8 Query the latitude-type composite index in each of the 6 collec-
tions. All documents are read in a single operation, then reduced
locally to those matching longitude and name. Time to complete
all the operations is shown in milliseconds (ms) on a logarithmic
scale. 39

4.9 Query with name=Howard, type=level2, 47.5 ≤ latitude ≤ 48.0,
-122.5 ≤ longitude ≤ -122.1. Time to complete all the operations
shown in milliseconds (ms) across all 6 tables. 44

ix

List of Tables

4.1 A summary of all read metrics. The first column represents the
number of documents in the collection. The second is the time
taken for a single read operation with a known key. The third
is the operations performed per second while iteratively reading
all documents via a secondary key. The fourth column represents
data rate during a read-all operation. 33

4.2 A summary of all write metrics. The first column represents the
number of documents in the collection. The second is the time
taken for a single update operation with a known key. The third
is the operations performed per second while iteratively creating
all documents. 36

4.3 A summary of querying all documents, latitude only and the latitude-
type composite index. In each case, a data reduction is performed
at the client side to match the latitude, longitude, name and type. . . 40

4.4 A summary of time per operation, operations per second and
data rate in kilobytes for each of the 6 table sizes. The first column
is the number of records per table. The second column is the av-
erage time to complete the iterative reads across all records. The
third column represents how many read operations per second
were performed during the iterative reads. The fourth column
shows the data rate during a bulk read of all records. 42

4.5 A summary of time per operation and operations per second for
each of the 6 table sizes. The first column is the number of records
per table. The second column is the average time to complete the
iterative writes across all records. The third column represents
how many write operations per second were performed during
the iterative writes. 43

5.1 Firestore latency for read operations utilizing latitude range con-
dition from Figure 4.7. Both n and r are predictor variables and l
is in milliseconds. 47

5.2 MySQL read operation latency while querying latitude, longitude
range and name, type equality condition from Figure 4.9. Both n
and r are predictor variables and l is in milliseconds. 48

5.3 Firestore cost estimate to create, store and read 106 documents
(233 MB) in one month. 50

5.4 MySQL cost estimate to create, store and read 106 documents (233
MB) for one month. 51

xi

List of Abbreviations

ACID Atomicity Consistency Isolation Durability
API Application Programming Interface
AWS Amazon Web Services
CAP Consistency Availability Partition Tolerance
CRUD Create Read Update Delete
DBMS DataBase Management System
DHT Distributed Hash Table
EC2 Elastic Compute Cloud
EV Electric Vehicle
GCE Google Compute Engine
GCP Google Cloud Platform
GQL Graph Query Language
IaaS Infrastructure as a Service
IaC Infrastructure as Code
IoT Internet of Things
ML Machine Learning
NN Neural Network
NoSQL Not Only Structured Query Language
PaaS Platform as a Service
RDBMS Relational DataBase Management System
RPC Remote Procedure Calls
SDK Software Development Kit
SQL Structured Query Language
VM Virtual Machine
YCSB Yahoo! Cloud Serving Benchmark

1

Chapter 1

Introduction

The era of internal combustion vehicles is winding to a close. Electric vehi-

cles (EV) sales are on a steady upward trajectory. EV-Volumes [14] reports that

in 2022, sales increased by 55% over the previous year while the entire auto

industry declined by -0.5% over that same period. A large barrier to EV own-

ership is range anxiety. Commercial charging facilities are not yet as ubiqui-

tous as gasoline stations, opening up a market for private individuals to as-

sist by sharing their personal charging facilities. In this thesis, we detail how

the Cloud framework for a peer-to-peer energy auction might work to provide

users a means to both share and rent their private charging outlets. Compo-

nents of the framework include the Edge microcontrollers, web server, API,

Cloud Functions, Publication-Subscription service and a message broker. We

then dig deeply into the database component which the main research question

is formed around.

1.1 Motivations

A critical step in the energy auction is to persistently store data objects repre-

senting the charger Edge devices. Users, charging session history, billing de-

tails, ratings and reviews, amenities and tourist information are additionally

Chapter 1. Introduction 2

persisted. Workflows for the auction users include registering a new charger

device, searching for available devices and managing a charging session as seen

in Figure 1.1.

FIGURE 1.1: The energy auction supporting: 1. Device registra-
tion, 2. Data storage, 3. Device search and reserve, 4. Session

management, and 5. Session details.

Requirements for the persistent data include low read and write latency, the

Chapter 1. Introduction 3

ability to scale horizontally as data grows, cost, and the ease of evolving the

data shape. Administration operations such as create, update and delete oper-

ations on a registered device will only be performed by a single user and will

not be adversely affected by concurrency locks or extra latency. However, mul-

tiple users may query the persistent storage asking for data objects that contain

multiple fields within a given range. The read operation latency will be criti-

cal in this scenario. The user must be able to request a charger within a given

latitude and longitude radius and may need to include maximum distance to

a restroom, minimum user rating, type of charger, etc. The query engine must

be able to process these patterns of field conditionals. If it can only process a

subset, the resulting data reduction must be efficient enough such that the user

response is not noticeably delayed.

Another motivation in researching the database technology is flexibility and

scalability. The energy auction will grow in iterations, adding features requiring

additional persistence. A fixed schema or data shape has to deal with migration

when the schema changes. A flexible schema provides the developer with the

option to handle the migration in code as the auction framework and feature

set evolve. Since the number of users participating in the auction is also evolv-

ing, the persistent storage must be able to horizontally scale to accommodate

these. For example, an early auction pilot may have 50 users within a single

geographical zone. An individual Cloud node with failover and redundancy

can safely store all required persistent data and support all incoming query re-

quests within the zone. However, as users spread out geographically, storage

nodes will need to scale into these new zones. Also, as data and user request

Chapter 1. Introduction 4

volume exceed what can be processed by a single node, the storage must parti-

tion and scale across a node cluster.

The high-level goals for the persistent storage for the auction are as follows:

1. Low storage cost.

2. Low compute cost.

3. Multi-user query support.

4. Low query latency.

5. Ease of scaling.

6. Ease of schema evolution.

Cost is a huge motivation, driving a design goal of the framework to avoid

perpetual, unmanaged compute. The deployment of compute services that are

always in operation results in a significant billing increase, since the compute re-

sources are dedicated and always available. Additionally, the type of compute

and operating system patches must be managed by the developer. A server-

less persistent storage provides a pricing model where the billing only reflects

what is used. Thus, queries and storage contribute directly to billing, but idle

time does not. However, the serverless model is potentially more expensive,

compared to on-demand, if subjected to continuous load.

1.2 Research Question

The aforementioned requirements for persistent storage raise the question of

what will work best to support the energy auction. A deep-dive investiga-

tion is beneficial prior to developing the auction framework and leads us to

Chapter 1. Introduction 5

the research question addressed in this thesis: Will a serverless, NoSQL, non-

relational, document-model database (i.e. Google Firestore [8]) support the

query, cost and flexibility needs for persistent storage in a peer-to-peer energy

auction? We will endeavor to answer this question through benchmarking la-

tency, estimating costs and analyzing the architecture. To provide a comparison

to a well-established solution, benchmarking and analysis is compared side-by-

side with MySQL: a relational, SQL, perpetual server provided through Google

Cloud SQL [10].

1.3 Context of the Study

Multiple related studies utilized a third-party benchmarking tool such as Ya-

hoo! Cloud Serving Benchmark (YCSB) [32] to establish latency under varying

load [22, 2, 13, 25]. In this study, we will focus on a more customized means to

measure the database response time.

For both the relational and non-relational databases, we develop client appli-

cations that emulate portions of the energy auction data flow. Queries run from

these clients perform read and write operations that characterize the latency

performance under specific load scenarios. This experimental setup allows the

persistent storage component of the auction to be developed and tested in iso-

lation. The solution representing the best trade-offs around cost, latency and

flexibility will continue to live on in the auction framework and support the

investigation of future research problems.

Chapter 1. Introduction 6

1.4 Objectives and Contributions

The objectives of this thesis are as follows:

1. Characterize query latency for both relational and non-relational databases.

2. Evaluate cost of both solutions.

3. Explore ease of evolving the stored data structure.

4. Explore ease of horizontal scaling.

Achieving these objectives provides a characterization of the strengths and

weaknesses of Firestore’s persistent storage solution, both standalone and com-

paratively against the more established SQL solution. This insight into Fire-

store’s performance and capabilities contributes a known data storage platform

to support the future energy auction framework.

1.5 Overview of the Thesis

After initially introducing the topic, the background of electric vehicle (EV)

charging and related research is covered in Section 2. Next, we discuss the

system architecture of both Firestore and MySQL storage solutions in Section

3. The experiments performed against both solutions are presented in Section

4 along with their corresponding experimental data. The discussion of the ex-

perimental results, regression model and future work are detailed in Section 5.

Finally, we wrap up the thesis with the conclusion in Section 6.

7

Chapter 2

Background

2.1 EV Charging

Electric Vehicle (EV) ownership has increased significantly in the United States.

The combined sales of EVs and plug-in hybrids nearly doubled from 308,000

in 2020 to 608,000 in 2021 [19]. The EV sales alone grew 85% during that time

period while the overall market for light-duty vehicles sales only grew by 3%.

Thus, electric vehicles are increasingly taking market share for personal trans-

portation vehicles.

The accelerating EV sales require an acceleration in charging infrastructure

deployment. What if, by 2030, a peer-to-peer auctioning system existed such

that consumers can turn into producers and sell units of energy? The rising

popularity of solar panels [26] allows for the generation of energy as well as

reselling energy purchased via a utility grid. Peer-to-peer sales will help meet

the increasing demand of EV charging and offers customers alternatives as a

part of the evolving sharing economy. Airbnb [1] provides a peer-to-peer service

as an alternative to traditional hotels while Uber [29] is a popular alternative to

conventional taxi services. The popularity of these services reveals a willingness

by the public to use peer-to-peer alternatives and this proposal will focus on the

development of a distributed energy auctioning system.

Chapter 2. Background 8

While the majority of charging may be done in the home to facilitate lo-

cal commutes, a publicly available network of chargers is still necessary for

intercity commutes and to accommodate those who do not have charging fa-

cilities in their home. As a result of this demand, EV charging companies have

rapidly formed and deployed networks of chargers in the United States. Figure

2.1 shows the top companies at the end of 2021 ranked by total number of DC

fast chargers.

FIGURE 2.1: Top 10 fast-charging companies sorted by number of
locations [6]. The data was sourced from the US Department of

Energy as of Dec 31, 2021 [30].

Since the charging networks as shown in Figure 2.1 are still far from be-

ing as ubiquitous as gasoline stations, we propose supplementing them with

private property owners who wish to rent their charging facilities through a

peer-to-peer energy auction. Figure 2.2 shows the architecture to implement the

Chapter 2. Background 9

auction. A seller will register their 240-volt level-2 charging outlet via an Inter-

net of Things (IoT) microcontroller. The IoT device communicates with a Mes-

sage Broker within the Cloud framework, which is registered with a dedicated

“Publication- Subscription” (PubSub) service. PubSub may send device data

through publication requests and return device data through subscriptions. The

auction is a simple marketplace that sells power along with a time slot. There is

potential to expand to eventually allow customer bidding for these resources.

Chapter 2. Background 10

FIGURE 2.2: A Cloud framework to implement the energy auction.
A seller registers their IoT device allowing buyers to search and
reserve. Cloud Functions publish commands to start and stop the
charging sessions on behalf of the buyer. Sellers subscribe to the

charging session summary.

Both the buyers and sellers interact with the auction through a web client.

Once a seller registers an IoT device, the web API creates a corresponding database

object. All requests are processed through Cloud Functions. A buyer will search

Chapter 2. Background 11

for all devices within a given latitude-longitude radius. Within the search re-

sults, the buyer chooses the desired device, reserves it (potentially with a bid

sequence) and navigates to its location to start the charging session. The Mes-

sage Broker passes on control messages from the device which are forwarded,

via a subscription, to Cloud Functions to modify the device database object.

Once the session is completed, a detailed log is sent by the device, which is

stored in the database. Additionally, Cloud Functions trigger payment process-

ing via an external payment gateway (e.g. Stripe [27]).

A significant question in this design is what are the persistent storage needs

for this auction? Our focus in this thesis is the data flow caused by the afore-

mentioned workflow and performance of the database. We do not know all

data storage requirements initially. For example, when this framework is ini-

tially rolled out, only charger details such as:

name
address
latitude
longitude
type
charging history: date , duration and energy consumed

will be persistently stored. As the development progresses, we will potentially

add:

billing information
user ratings and comments
ammenities
nearby tourism information
user profile

Chapter 2. Background 12

Given that the data fields and shape will be evolving; a strict, schematized

database will cause additional complexity since existing data must be migrated

every time there is a new change, or new tables must be added without dupli-

cating information such as tourism facilities.

Another concern is the scalability. If the auction has 10 sellers and 10 buyers,

scaling is not an issue. If this number were to grow to 1,000,000 sellers, the

database must be able to horizontally scale device objects across multiple nodes

with physical locations across multiple zones and regions. A NoSQL database

with a document model allows this scaling with little administration.

Query latency and performance is also a concern. Create, update and delete

operations are single participant and can tolerate eventual consistency. How-

ever, a read operation needs to query multiple fields, some within a range. If a

buyer searches for charger type of level 2 along with a latitude, longitude and

user rating range; a SQL query engine can easily handle this and return only

matching records. However, a NoSQL database such as Firestore will only be

able to query a single field range at a time, requiring additional data reduction

at the client or the interfacing Cloud Function.

2.2 Related Work

The related work surveyed in this section provides architecture and experimen-

tal evaluation background to the research topic of this thesis. We start with

research on evaluating persistent storage for IoT device management. The ex-

perimental setup, evaluation and technologies used is valuable to guiding our

Chapter 2. Background 13

experiments and evaluation. Our topic and experiments use the surveyed re-

search as a starting point without duplicating it. Next, other research papers

evaluating NoSQL databases against each other or against SQL are surveyed.

These provide a methodology and benchmarking toolkit that is considered in

the design of our experiments.

The next group of papers focuses on the specific technology used in our ex-

periments. Firestore, MySQL and Spanner papers are surveyed and establish

how performance is evaluated and the ability of each to scale. Spanner provides

a physical storage layer for the Firestore service and is thus included. Finally,

papers discussing approaches to augmenting MySQL such that it can scale are

included. These provide background to the challenges faced with horizontally

scaling a SQL database.

2.2.1 Performance Evaluation of IoT Data Management

Eyada et al. [17] is a paper focused evaluating database latency and size as

they are applied to large volumes of IoT sensor data. Both MySQL and Mon-

goDB (NoSQL, document-model) databases were evaluated while being hosted

in AWS EC2 instances. The experiments varied the workload, compute re-

sources and number of sensors. The resulting latency values fed in to a pre-

dictive model equation developed with both linear and non-linear regression

methods. The results favored MongoDB for latency while MySQL latency did

not grow as dramatically with increased sensor data.

Chapter 2. Background 14

2.2.2 Benchmarking with YCSB

Pandey [22] provides a comparison of relational and non-relational database

platforms through comparing MySQL and MongoDB. The benchmark suite Ya-

hoo! Cloud Serving Benchmark (YCSB) varies workloads on each database and

captures latency and throughput measurements. All the measurements favored

the MongoDB solution. However, the authors acknowledge and discuss the lack

of strict atomicity, consistency, isolation and durability (ACID) properties with

non-relational as well as the missing join operations for queries. The authors

further conclude that MongoDB outperforms MySQL in sharding, security, per-

formance and availability.

Another paper discussing the NoSQL platforms is Khazaei et al. [13]. The

authors explore some popular NoSQL databases and describe the characteris-

tics of this solution. The discussion includes the loosening of consistency, avail-

ability, partition tolerance (CAP) theorem and the resulting basically available,

soft-state, eventually consistent (BASE) systems. The authors further compare

multiple benchmarking suites including YCSB, PixMix, GRIDMix, CALDA, etc.

and conclude with choosing YCSB for its flexibility.

2.2.3 Google Firestore

The first paper written on Firestore is Kesavan et al. [25] and is developed by

a group of researchers within Google. This paper digs in to the architecture

of Google’s Firestore service, specifically addressing how it scales across many

nodes, provides real-time notification capability, is easy to use and provides

a pay-as-you-go billing model. The authors present benchmarking data that

Chapter 2. Background 15

shows little increase in query latency given large numbers of stored documents

and increased document size and data shape. They conclude Firestore provides

a convenient ecosystem with low barrier of entry for developers to rapidly pro-

totype, deploy, iterate and maintain applications.

2.2.4 Oracle MySQL

MySQL is widely used by the majority of small and medium-sized applications

[5]. It was initially released in 1995 and is developed by Oracle Corporation. In

Bannon et al. [24], the authors dig into the MySQL server architecture and dis-

cuss the relational database management system (RDBMS) in generic terms that

can apply to other SQL systems. The RDMBS is subdivided into application,

logical and physical layer software that runs directly on the node containing

physical storage. SQL requests are processed locally through a pre-compiler to

extract the SQL statement, a query parser to convert to a parse tree structure

with stored indices used where possible.

2.2.5 Sharding a Relational Database

Create, read, update and delete (CRUD) operations are all supported through a

Structured Query Language (SQL) interface. These operations must adhere to a

pre-defined schema that defines each column of the target table. Schematization

provides a sanity check to ensure that incoming row insertions are conforming

to the desired data shape and column types. Note that under certain circum-

stances, the forced structure may be considered a restriction. Any changes to a

table’s schema requires the entire table to be migrated to the new shape. Such

Chapter 2. Background 16

a restriction may provide development hurdles as an application is rolled out

iteratively and persistent data requirements evolve.

The support for SQL query processing is a benefit. The language has been

in existence since the early 1970s [3] leading to a large user support group, ex-

tensive documentation and teaching materials [28]. A huge advantage of the

language is the ability to combine multiple inequality predicates within a sin-

gle query. For instance, a select statement may contain multiple columns with

inequality conditions. The statement is executed within a single operation and

allows a response set to be minimized to only the desired matching records. We

will see later how querying multiple conditions is significant to the energy auc-

tion. SQL also supports join. Queries to different tables are combined within

a single operation. The join allows data referenced through a relation to be ac-

cessed from their respective tables. However, this feature does cause additional

latency for read operations since the RDBMS must assemble the response from

multiple tables.

Although the Applications and Interfaces layer in Figure 3.3 may exist on

an external client, the remaining server architecture is largely monolith and de-

signed to run alongside the physical storage within a single node. As table sizes

and concurrent requests grow, the owning organization will typically upgrade

the hosting hardware: i.e. faster processors, more memory and extra disk stor-

age [5]. These upgrades do have limitations though, and at some point the orga-

nization must consider partitioning the large tables into shards and redistribut-

ing to other nodes. The redistribution requires complex design and administra-

tion. Relations need to be updated, application code may have to change, and

Chapter 2. Background 17

ACID transaction properties become more difficult to guarantee. Additionally,

downtime from the user is frequently required to facilitate the sharding.

Dong and Li [5] start their research by identifying the issue that many organi-

zations have built persistent storage around a relational database management

system (RDBMS) such as MySQL. As information volume has seen an explosive

increase, these systems prove difficult to expand. To address this, most organi-

zations upgrade the database server hardware, migrate to a NoSQL or perform

sharding such that the smaller partitions may be distributed.

The authors implement a novel middleware application that allows mul-

tiple MySQL databases to interact as a single, distributed entity. A MySQL

interface is exported to external clients. Incoming queries are parsed and ex-

ecuted locally, then sent to the appropriate node across the distributed cluster

of MySQL servers. A sharding algorithm is also run within the middleware al-

lowing slices of data to be sent to the appropriate data nodes. The algorithm

is defined through a set of rules within the middleware configuration files. Di-

rect and semi-direct table-join strategies are implemented in the master node to

support queries across the distributed nodes. After performing some functional

tests, the authors conclude that their distributed database has slower response

time than a single database being queried for the same data. However, the ad-

vantage of their system is evident with massive datasets that cannot fit within a

single MySQL server.

Yadav and Rahut [31] describes how Meta redesigned their MySQL datastore

replication protocol to use a modified version of Raft [21] instead of the tradi-

tional semi-synchronous replication. Raft is a consensus algorithm utilizing an

Chapter 2. Background 18

elected leader. It imposes restrictions that only servers with the most up-to-date

data can become leaders. Data is sharded into many MySQL databases utiliz-

ing a primary and many replicas. Raft enables the control-plane and data-plane

operations to be part of the same replicated log. Membership and leadership

is moved inside the MySQL server, resulting in provable correctness during

promotions and membership changes. This paradigm does not make sharding

any easier, but rather optimizes the replication across multiple existing MySQL

replicated databases.

2.2.6 Google Spanner

Although Spanner is not used directly for the experiments in this thesis, it is

relevant since it provides the storage engine to Firestore. Corbett et al. [15]

is a collaboration of 23 authors within Google to discuss the mechanism and

benefits of Spanner’s distributed database service. The authors describe the ar-

chitecture with a focus on the distributed storage and timestamp management.

They claim the database is “semi-relational” with schematized tables, yet still

supports an SQL query interface. Below this layer, data is physically stored

as key-value associated pairs across a large distributed network defined by a

universe master, multiple zone masters and span servers. The paper presents

benchmark results for commit time of 1 to 200 participants (ranging from 14.6

to 122.5 milliseconds). They conclude with a plug for the TrueTime timestamp

API that is the “linchpin” of Spanner’s advanced feature set.

19

Chapter 3

System Architecture

3.1 Firestore

The first set of experiments is centered on a NoSQL, non-relational database.

Firestore was chosen for its flexible billing structure and serverless architecture.

Firestore utilizes a document model [20] within its DBMS. The first benefit of

the document model is being schema-free. Documents may be inserted with un-

structured data allowing changes in data shape (i.e. different fields and types)

without requiring a migration of the whole database. This is especially helpful

when an application such as the energy auction is first ramping up and the per-

sistent data requirements may not be fully understood initially. Thus, a schema-

free paradigm allows incremental changes to what is persisted as the applica-

tion matures. Schema-free contributes to backwards compatibility and database

performance since it does not need to be taken offline to perform migrations.

Another benefit of the document model is horizontal scaling. Since docu-

ments exist independently of each other, it is possible to distribute a collection

across multiple physical compute nodes. As document number and access traf-

fic increase, this architecture allows for easy scaling with additional nodes. The

scaling is nearly linear and utilizes distributed hash tables (DHT) that organize

Chapter 3. System Architecture 20

[key, value] pairs into storage buckets [23]. These buckets may span unlimited

server nodes.

Figure 3.1 shows a high level overview of Firestore’s stack. Client access is

provided through software development kit (SDK) libraries that come in two

flavors. The “Server” SDK is trusted, and used in applications running within

a Google Cloud service such as a Compute VM or Cloud Function. It requires a

privileged environment, foregoes authentication and provides automatic retries

with backoff.

FIGURE 3.1: Simplified diagram of the Firestore stack [25].

Chapter 3. System Architecture 21

The second SDK is the “Mobile and Web”, which is intended for untrusted

third-party devices. Both flavors of the SDK abstract connection to the Firestore

API. They support blind writes and transactional writes based on optimistic

concurrency control while connected. Queries are multiplexed over the same

long-lived connection to the Frontend task. The Frontend tasks live in the same

region as the database. This region co-location means that client SDK requests

arrive at the closest-to-the-user Google point of presence, then get routed to the

Frontend task after the database location is fetched from the Firestore metadata.

After a Frontend task receives the SDK request, it sends a remote procedure

call (RPC) to a Query Matcher. Figure 3.2 expands on the Real-time Cache block

from Figure 3.1 and shows the flow from multiple client users. The checking of

timestamps in the In-memory ChangeLog ensures consistency with only valid

commits being forwarded to the Backend task.

Chapter 3. System Architecture 22

FIGURE 3.2: Query processing through the Real-time Cache [25].

Firestore executes all queries using secondary indices. Each field in a docu-

ment automatically generates an ascending and descending ordered index, all

on a per-collection basis. The automatic indexing may be excluded on a specific

field if configured. Write operations are slightly more expensive latency-wise

than read operations due to the need for updating multiple indices.

Chapter 3. System Architecture 23

Firestore’s database storage engine is Google Cloud Spanner [15]. Each Fire-

store database maps to a directory within some number of pre-initialized Span-

ner databases in the corresponding region. Each directory has two tables, Enti-

ties and IndexEntries containing the Firestore database data. Firestore documents

are stored in the Entities table. The table contains one document per row, with

the contents (up to 1 Megabyte) in a single column and the document key as the

primary ID for the row. Each index is stored within a single row of IndexEntries.

To handle distribution, load balancing and scaling, Spanner performs automatic

splitting and merging of rows into tablets. This sharding [2] process, similar to

those performed by other relational database management systems (RDBMS),

allows for flexible horizontal scaling across an unlimited cluster of nodes.

3.2 MySQL

MySQL is a relational database since tables are structured as mathematical re-

lations. The tables also support linking stored data objects between them (also

called relations), i.e. a data column in one table may point to a record in another

table. These relations support the normalization of data: a data item exists only

in one table yet may be referenced repeatedly from other tables in a one-to-

many relationship. Data normalization provides two main benefits, the first is

the database may take less physical storage, since data duplication is avoided,

and second, write operations may require less latency, since new data is only

written to a single table and then referenced elsewhere if needed.

Another benefit of the RDBMS model is the strict adherence to the ACID

Chapter 3. System Architecture 24

properties of a transaction. These are atomicity, consistency, isolation and dura-

bility. The MySQL Transaction Management layer allows data manipulation

operations that ensure the database does not have the results of a partial op-

eration [22]. Figure 3.3 graphically illustrates Transaction Management sitting

between the Query Processor and Storage Management.

Chapter 3. System Architecture 25

FIGURE 3.3: Detailed heterogeneous conceptual MySQL architec-
ture from Bannon et al. [24].

26

Chapter 4

Experiments

The experiments provide a comparative benchmark of read and write perfor-

mance between relational and non-relational database engines. In all cases, n

represents the number of documents in a non-relational collection or the records

in a relational table. The set of documents or records in the response is repre-

sented by r. Rather than using a third-party benchmarking tool, these experi-

ments utilize a custom client performing read and write operations that mimic

workflows in the energy auction. Registering a new IoT device, reading its per-

sisted data and querying for specific combinations of fields are shown in Figure

1.1 and are covered in these experiments. In addition to performing operations

to mimic the auction workflow, we also hit the databases with high-volume op-

erations to determine the limits of the read data rate and the read and write

operation rate. The aim for the experiments is to show the relationship be-

tween query latency and the number of database objects as well as the effect

of multiple-condition queries.

4.1 Non-Relational, NoSQL Database

The Cloud Firestore database is divided into 6 collections spanning 101 to 106

documents. These documents represent mock data for the energy auction and

Chapter 4. Experiments 27

the different collection sizes are used to observe the effect of size on latency.

Each document is a sample registration of a charger device with name, id num-

ber, latitude, longitude, address and charger type. All have a unique key string.

Each mock data set is generated with a random generator algorithm that cy-

cles each field between a range of accepted values. Write performance is tested

through a single write of a mock charger registration to each collection (i.e. reg-

istering a new charger) followed by rapid sequential writes of all documents.

These experiments measure both the time to execute a single write and how

many write operations per second are supported by the database. The read

performance is measured through a single document read of each collection fol-

lowed by a rapid sequential read of all documents. Time to execute a single

read operation is measured followed by the attainable read operations per sec-

ond. Next, the client performs a bulk read of all documents in each collection.

The time to execute provides the data rate which can be read.

Pattern querying is addressed next after measuring the combinations of read-

ing and writing documents. A specific query pattern is defined with equality

conditions for the name and type fields and inequality ranges for both latitude

and longitude. Three queries are executed against each collection:

1. Read all documents and search for matches.

2. Read documents matching a single field range query (latitude) and search
the subset for remaining matches.

3. Read documents matching a composite field query (with latitude and type)
and search the subset for remaining matches.

Chapter 4. Experiments 28

4.1.1 Reads

For the first experiment, a single document was read from each collection using

the document key. Firebase stores every document with a unique key identi-

fier. Note the key is a primary index, separate from all other fields which are

secondary indices. The 6 collection sizes (n) are:

1. n = 10 documents

2. n = 100 documents

3. n = 1000 documents

4. n = 10000 documents

5. n = 100000 documents

6. n = 1000000 documents

For each, the document key 1_11899NW118thAve was used to perform a sin-

gle read operation. Figure 4.1 shows the time to complete each read operation

is reasonably consistent across the collection size range. This behavior is ex-

pected given the distributed hash table (DHT) lookup of the primary key. The

number of nodes the collection spans over is handled transparently by Firestore.

The read and write experiments were performed three times (minimum) with

the first dataset being used provided there were not large discrepancies (greater

than 10% difference in latency) between datasets. Once the data is retrieved by

the client, it is viewed and then discarded. Persistently storing the retrieved

data on the client is not included in the latency calculation.

Chapter 4. Experiments 29

FIGURE 4.1: A single read operation performed against each of the
6 collections. Time to complete the operation is shown in millisec-

onds (ms).

The next experiment involves iteratively reading every document in each

collection. The id field, a secondary index, is used to perform a simple read

operation. The id field is a sequential integer assigned to each document. It has

no direct meaning to the charger represented in the document but allows for an

easy sequential query of all documents in the collection. Note that this field is

automatically indexed by the Firestore service to increase performance of their

query engine.

Chapter 4. Experiments 30

FIGURE 4.2: An iterative read operation performed against five
Firestore collections using a secondary index. Each unique id field
is successively queried. Time to complete all the operations is

shown in milliseconds (ms) on a logarithmic scale.

Figure 4.2 shows the time taken to iteratively read all documents. Sequential

reads like these do not directly represent a user workflow in the auction, but do

allow us to characterize the read operation rate of the database (shown in Table

4.1). Time complexity consists of the query time for each id field across the n

documents in the collection. Thus, the total time is

TC(n) = O(n · OD(n)) (4.1)

where

D: A single read operation via an id query.

C: Iteration over the entire collection.

Since the query of each document utilizes a pre-generated, secondary index,

Chapter 4. Experiments 31

the query engine performs a binary search to quickly match the id value in the

index. This binary search has worst case time complexity of O(n) = log n. Sub-

stituting this into Equation 4.1, we can simplify to:

T(n) = O(n · log n) (4.2)

Or approximately linear time. Note that r = 1∀n since every iteration returns

exactly 1 document.

The final read experiment involves a read of all documents in each collection.

The operation does not use a primary or secondary index. Figure 4.3 shows the

time taken to read all documents by collection. In this scenario, r = n∀n since

all documents in the collection are always returned.

FIGURE 4.3: A read all operation performed against each of the
6 collections. All documents are read in a single operation. Time
to complete all the operations is shown in milliseconds (ms) on a

logarithmic scale.

The time to read all documents is directly proportional to the number of

Chapter 4. Experiments 32

documents returned. A bulk query such as this is not in any user workflow

but does allow the characterization of the data rate as seen in Table 4.1. Time

complexity for this operation is linear and represented by Equation 4.3.

T(n) = O(n) (4.3)

We finish the read analysis with the performance metrics shown in Table 4.1.

The time in milliseconds to perform a single read operation with a known key

(primary index) is taken straight from Figure 4.1. The operations per second are

calculated by dividing the number of iterative operations in Figure 4.2 by the

time to complete. The kilobytes per second data rate uses an average document

size of 233 bytes, multiplies by the number of documents and divides by the

time taken to complete a read all operation as shown in Figure 4.3.

Chapter 4. Experiments 33

TABLE 4.1: A summary of all read metrics. The first column repre-
sents the number of documents in the collection. The second is the
time taken for a single read operation with a known key. The third
is the operations performed per second while iteratively reading
all documents via a secondary key. The fourth column represents

data rate during a read-all operation.

n ms/oper ops/s kB/s

10 188 10.9 9.7

100 182 20.6 109.4

1,000 179 19.2 340.6

10,000 168 19.3 503.9

100,000 188 24.8 644.3

1,000,000 236 554.7

Mean 190.2 19.0 360.4

4.1.2 Writes

For the next set of experiments, we will focus on characterizing the write op-

erations, both create and update. These largely mirror Section 4.1.1 and much

of the background explanation applies. The first experiment performs a single

update operation on each collection. The update changes all fields in an existing

document. A known key, 1_11899NW118thAve, is used in every case. Note that

for all create operations, a previously generated and randomized set of mock

data is used to represent each charger device.

Chapter 4. Experiments 34

FIGURE 4.4: A single update operation performed against each
of the 6 collections. Time to complete the operation is shown in

milliseconds (ms).

Figure 4.4 shows the time in milliseconds for the operations to complete.

As with the reads, the single writes complete in consistent time regardless of

the collection size. Next, iteratively writing all documents in the collections

are shown in Figure 4.5. As with reads, this scenario does not represent a user

workflow, but allows us to characterize the write operation rate as shown in

Table 4.2. A high write operation rate is not critical for the energy auction but

is a useful metric when comparing the NoSQL vs SQL. Time complexity for all

n operations to complete follow that of the read scenario where T(n) = O(n ·

log n). It is approximately linear time. Note that a write-all operation is not

possible through this client interface and is not tested here.

Chapter 4. Experiments 35

FIGURE 4.5: An iterative create operation performed against each
of the 6 collections. All n documents are created in sequence. Time
to complete all the operations is shown in milliseconds (ms) on a

logarithmic scale.

Chapter 4. Experiments 36

TABLE 4.2: A summary of all write metrics. The first column rep-
resents the number of documents in the collection. The second is
the time taken for a single update operation with a known key.
The third is the operations performed per second while iteratively

creating all documents.

n ms/oper ops/s

10 175 13.8

100 155 27.2

1,000 169 31.6

10,000 155 33.8

100,000 172 16.5

1,000,000 136 29.4

Mean 160.3 25.4

Table 4.2 summarizes the milliseconds per write operation as shown in Fig-

ure 4.4 and the write operations per second that are possible as shown in Figure

4.5. Although write results largely mirrored the read, we (surprisingly) see a

slight performance improvement.

4.1.3 Reads with Conditions

The set of experiments that most mirrors real-world scenarios are the querying

of complex field patterns. Firestore does not permit multiple range (inequal-

ity condition) queries of secondary indices. Therefore, to read the documents

that match all the query conditions, some combination of querying the database

Chapter 4. Experiments 37

and data reduction at the client must be performed. For these experiments, the

following query conditions are used:

name: Howard

latitude: min 47.5 and max 48.0

longitude: min -122.5 and max -122.1

type: level2

The first of the query experiments reads all documents without a query. A

client-side data reduction narrows down the documents in each collection that

match the given query parameters. This full data reduction is the most brute-

force method and is shown here for comparison. Since we are always getting

every document, r = n in each case.

FIGURE 4.6: A read all performed against each of the 6 collections.
All documents are read in a single operation, then reduced locally
to those matching the query conditions. Time to complete all the

operations is shown in milliseconds (ms) on a logarithmic scale.

Chapter 4. Experiments 38

Figure 4.6 shows the time to read all documents and reduce matched very

closely with the time to read all from Figure 4.3. The reduction time on the

test machine (M1 processor) is negligible. Thus, the response set size r is the

defining factor for time complexity which is linear time or T(n) = O(n).

The next experiment performs a conditional query using the latitude field.

It defines a range between the minimum and maximum values. The Firestore

query engine can only handle a single field range, thus we query only with

latitude. Firestore performs a binary search on the pre-generated latitude index

and returns a set of documents (r) that must be searched locally on the client to

match name, type and longitude. Figure 4.7 shows the time spent on the query

and subsequent data reduction.

FIGURE 4.7: Query the latitude range in each of the 6 collections.
All latitude-matching documents are read in a single operation,
then reduced locally to those matching the non-latitude query con-
ditions. Time to complete all the operations is shown in millisec-

onds (ms) on a logarithmic scale.

Chapter 4. Experiments 39

The final query experiment involves a composite index. Since each field

has a corresponding index which is automatically generated, Firestore allows

queries to combine multiple fields provided that they are equality (i.e. “==”)

conditions. Inequality (i.e. “<=”) conditions, also known as range queries, can-

not be combined. This type of multi-field range query is very relevant to the

energy auction. A typical user workflow would have, at minimum, a latitude,

longitude range and charger type as conditions of the query. Time to complete

each query and reduction is shown in Figure 4.8.

FIGURE 4.8: Query the latitude-type composite index in each of the
6 collections. All documents are read in a single operation, then re-
duced locally to those matching longitude and name. Time to com-
plete all the operations is shown in milliseconds (ms) on a logarith-

mic scale.

To summarize the query possibilities, Figure 4.6 queries all documents in

each collection and does a full data reduction (latitude, longitude, name and type)

at the client. Figure 4.7 queries the latitude range and does a data reduction

Chapter 4. Experiments 40

for longitude, name and type. Finally, Figure 4.8 shows the query of a compos-

ite index (latitude and type) with a data reduction of longitude and name. Table

4.3 summarizes the latency times across these three query possibilities for all

collections. Note that the latitude query provides the lowest latency up until a

collection size of 10,000. Beyond that, querying the composite index latitude-type

completes with the lowest latency.

TABLE 4.3: A summary of querying all documents, latitude only
and the latitude-type composite index. In each case, a data reduc-
tion is performed at the client side to match the latitude, longitude,

name and type.

n Query All Query Latitude Query Latitude-Type

10 300 171 210

100 273 182 207

1,000 508 234 264

10,000 3213 855 995

100,000 31425 7718 4330

1,000,000 469787 66763 44726

4.2 Relational, SQL Database

The next set of experiments focuses on the SQL database and how performance

differs from the NoSQL. The terminology we use to describe the experiments

changes slightly from the NoSQL scenario in Section 4.1. “Collections” and

“documents” are now replaced with “tables” and “records (or rows)”. “Fields”

Chapter 4. Experiments 41

are replaced with “columns”. The same mock data from our NoSQL experi-

ments is inserted into 6 tables that span 101 to 106 records. The largest difference

in the experimental procedure is queries always return exactly the matching re-

sults. There is no need for the scenario described in Section 4.1.3 where a larger

than needed result set r is returned and further reduced client-side to the match-

ing records.

4.2.1 Reads and Writes

The single and sequential read/write operations show similar results to Fire-

store in Section 4.1. A summary of the read metrics, Table 4.4, shows that the

milliseconds per operation and the operations per second remain fairly con-

stant with the increasing n. However, data rate increases proportionally to the

increasing n due to the almost constant read time.

Chapter 4. Experiments 42

TABLE 4.4: A summary of time per operation, operations per sec-
ond and data rate in kilobytes for each of the 6 table sizes. The
first column is the number of records per table. The second col-
umn is the average time to complete the iterative reads across all
records. The third column represents how many read operations
per second were performed during the iterative reads. The fourth

column shows the data rate during a bulk read of all records.

n ms/oper ops/s kB/s

10 84 39 26

100 82 55 274

1,000 105 56 1,879

10,000 86 63 12,944

100,000 90 63 48,240

1,000,000 106 49 624,665

Mean 92 54 114,672

Chapter 4. Experiments 43

TABLE 4.5: A summary of time per operation and operations per
second for each of the 6 table sizes. The first column is the number
of records per table. The second column is the average time to
complete the iterative writes across all records. The third column
represents how many write operations per second were performed

during the iterative writes.

n ms/oper ops/s

10 101 26

100 80 52

1,000 88 49

10,000 95 53

100,000 96 54

1,000,000 91 39

Mean 92 46

We complete the summary of write metrics through Table 4.5. The average

was approximately 46 operations per second regardless of the table size n. With

both the time per operation and the operations per second approximately con-

stant, we conclude writes to a SQL, relational database may be performed in

constant time or T(n) = O(1).

4.2.2 Reads with Conditions

The final set of benchmarks are querying with the same conditions as listed in

Section 4.1.3. These results are the most significant since they show the scenario

where the SQL database outperforms the NoSQL. This experiment represents

Chapter 4. Experiments 44

the auction scenario where a user is querying a latitude, longitude range along

with charger type and customer name as conditions. Figure 4.9 shows a very

slight increase in time to completion as the table size n increases. The increase

in time can be attributed to the larger response set r. Note that, unlike with the

non-relational multi-field range queries, only the matching records are returned.

The query itself performs in constant time, T(n) = O(1), which is a performance

improvement over the non-relational. As the response set grows larger (i.e. n =

106), the execution time does increase slightly. The increase is proportional to

r (r grows linearly with n) but is kept minimal since only records matching the

query conditions are returned.

FIGURE 4.9: Query with name=Howard, type=level2, 47.5 ≤ lati-
tude ≤ 48.0, -122.5 ≤ longitude ≤ -122.1. Time to complete all the

operations shown in milliseconds (ms) across all 6 tables.

45

Chapter 5

Discussion and Future Work

In Section 1, we state that the evaluation of the persistent storage solution would

be based on:

1. Latency performance.

2. Cost.

3. Flexibility and scalability.

These criteria are now discussed for both the Firebase and MySQL solutions in

the following sections.

5.1 Latency

In this section, we show an analysis to estimate latency based on dataset size

n, and response set size r. The analysis is performed on experimental latency

results from both Firestore and MySQL databases, with the aim of providing a

predictive model for each. The models estimate latency in milliseconds.

The evaluation needs to find a relationship between three variables: l (la-

tency), n (data size) and r (response size). Throughput is not considered in this

relationship. The dependent variable l is related to the independent n and r. A

Multiple Linear Regression takes a general form of:

Chapter 5. Discussion and Future Work 46

Y = β0 + β1X1 + β2X2 (5.1)

Y is the output or dependent variable. The X terms represent the corre-

sponding input or independent variables. Each predictor (input) has a corre-

sponding slope coefficient β. The first β (β0) represents the intercept constant.

In our case, we can restate this equation more specifically as:

l = β0 + β1n + β2r (5.2)

The determiner method [17, 4, 16] is used to solve Equation 5.2.

∣∣∣∣∣∣∣∣∣∣∣∣∣

l n r 1

∑n
i=1 l ∑n

i=1 n ∑n
i=1 r n

∑n
i=1 nl ∑n

i=1 n2 ∑n
i=1 nr ∑n

i=1 l

∑n
i=1 rl ∑n

i=1 nr ∑n
i=1 r2 ∑n

i=1 r

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5.3)

Rather than solve Equation 5.3 by hand, we use a data analysis tool [18] to

calculate the β coefficients on the following data.

5.1.1 Firestore Analysis

We will only focus on the read operation utilizing a latitude range condition

shown in Table 5.1. The other fields such as longitude, name and type must be

filtered at the client side and are included in the latency values. This is the most

applicable scenario in the energy auction. Create, update and delete operations

are not as relevant to the auction performance and user experience.

Chapter 5. Discussion and Future Work 47

TABLE 5.1: Firestore latency for read operations utilizing latitude
range condition from Figure 4.7. Both n and r are predictor vari-

ables and l is in milliseconds.

Latency (l) Documents (n) Results (r)

171 10 1

182 100 3

234 1000 18

855 10000 183

7718 100000 2020

66763 1000000 7745

Multiple Linear Regression analysis on Table 5.1 yields β0 = 154.924, β1 =

0.061 and β2 = 0.722. Thus, our predictive model is:

l = 154.924 + 0.061n + 0.722r (5.4)

The standard error for these coefficients are: SEβ0 = 14.461, SEβ1 = 0.0002 and

SEβ2 = 0.025. To relate Equation 5.4 back to predicting a query’s latency perfor-

mance, note that the number of documents in a collection n only contributes

a coefficient of 0.061. The number of documents in the query response r con-

tributes 0.722. The factor of response to collection documents is r
n = 0.722

0.061 =

11.836. Thus, we conclude that the response size is approximately 12× more

significant in impacting latency performance than the size of the original col-

lection. Our optimization efforts should therefore be focused on reducing the

Chapter 5. Discussion and Future Work 48

response set to reflect the matched documents as much as possible.

5.1.2 MySQL Analysis

Now we do the same for the MySQL read operations querying a specific combi-

nation of conditions. In this scenario, all four conditions are added to the query

such that only matching records are returned. The four-condition MySQL query

contrasts with the Firestore results from Section 5.1.1 above where the query en-

gine could only support a single field range condition.

TABLE 5.2: MySQL read operation latency while querying latitude,
longitude range and name, type equality condition from Figure 4.9.

Both n and r are predictor variables and l is in milliseconds.

Latency (l) Records (n) Results (r)

101 10 1

80 100 0

84 1000 2

122 10000 32

156 100000 403

905 1000000 3874

Performing the same analysis on Table 5.2 results in β0 = 92.467, β1 = 0.006

and β2 = -1.332. Our predictive model is

l = 92.467 + 0.006n − 1.332r (5.5)

Chapter 5. Discussion and Future Work 49

Equation 5.5 shows us that the number of records in the table has a small

effect on latency. There is a slight (0.006 factor) increase in latency given an

increase in n. However, this small latency increase does need to be qualified

with the fact that the table can only grow to a finite size. Beyond that, either

hardware resources must increase or sharding must partition the table across

other nodes. Note the negative value of the r coefficient, indicating its impact is

even less than the total records in the table n.

5.2 Cost

To objectively compare the cost of both solutions, we focus on the worst-case

scenario storing 106 charger data objects over one month. We calculate the cost

to create, store and read the entire dataset. Each charger object create and read

is performed in an individual operation. The average object size is 233 bytes,

giving a stored data size of 233 MB. Here is the breakdown:

5.2.1 Firestore

Firestore only bills per use, i.e. per CRUD operation and per unit of storage [9].

Note that the experiment is performed in a single day, yet the service remains

up for one month.

Chapter 5. Discussion and Future Work 50

TABLE 5.3: Firestore cost estimate to create, store and read 106 doc-
uments (233 MB) in one month.

Free quota per day Price per unit after Unit Total

Document writes 20,000 $0.09 per 100,000 $0.882

Document reads 50,000 $0.03 per 100,000 $0.285

Document storage 1 GB $0.15 GB/month $0

Total $1.167

As shown in Table 5.3, the total cost for a one-month experiment is $1.17.

Note this cost is only incurred during use. CRUD operations are only billed

after the free daily quota is exceeded. Data storage costs start incurring after the

free quota, however, our 233 MB in this scenario is well below that for the initial

charger registration. As the number of charging sessions increase, the storage

requirements will also grow. Thus, we will likely see document storage charges

that are beyond the free tier.

5.2.2 MySQL

Cloud SQL MySQL follows a different billing model. Costs are incurred for the

dedicated compute along with the corresponding storage [11]. In our experi-

ments, the service is provisioned with 1 vCPU, 614.4 MB memory and 10 GB

SSD storage for one month.

Chapter 5. Discussion and Future Work 51

TABLE 5.4: MySQL cost estimate to create, store and read 106 doc-
uments (233 MB) for one month.

Price per unit Units Total

vCPU $30.149 1 $30.149

Memory $5.11/GB 0.614 $3.14

Storage $0.17/GB 10 $1.70

Internet Ingress free

Internet Egress $0.19/GB 0.23 GB $0.04

Total $35.03

Table 5.4 shows our costs to run this service for one month is $35.03. As we

are provisioning a perpetual server (not serverless), costs are incurred regard-

less if the service is used or not. Note: as usage increases, Firestore’s pay-per-use

model will eventually surpass MySQL in cost. For example, writing the same

233 byte documents in Firestore at a rate of 500,000 per day and 1,000,000 reads

will result in a $35.48 monthly cost.

5.3 Flexibility and Scalability

Analyzing flexibility and scalability is a more subjective discussion (without

empirical data) based on the system architecture as detailed in Chapter 3. To

recap, the NoSQL, non-relational, document-model implemented by Firestore

brings the following benefits:

Chapter 5. Discussion and Future Work 52

1. Stored documents are schemaless, allowing new fields and a changing
data shape as development of the auction progresses.

2. Data is stored as a document object, referenced by a unique key. Stored
document cannot have relations to each other. Thus, horizontal scaling
can be easily performed by distributing documents across multiple nodes,
zones and regions. The horizontal scaling can be done as the database and
client demands grow without requiring any service outage.

3. Separating the management layer (DBMS) from the storage engine allows
for easy implementation of a serverless offering. A dedicated, perpetual
server is not needed. Firestore listens for client requests on a behind-the-
scenes shared compute cluster and only charges per transaction.

In contrast, Cloud SQL MySQL deploys a perpetual (non-serverless) instance

that is always consuming compute resources along with associated billing. Ta-

bles must define a schema, and any updates to this schema require a migration

of the entire table. The migration will typically involve service downtime as

well as developer effort. The migration can be avoided if new tables are added

after a schema change. Finally, as the table grows in data size and number of

records, distribution across multiple nodes requires a complex sharding process

involving splitting the table into child objects and recreating all affected rela-

tions. This sharding will also typically involve downtime for the users.

5.4 Discussion

In this section, we summarize the significant results and compare. In Sections

4.1 and 4.2, we deliberately chose to ignore delete operations and focused on cre-

ate, update and read. The reads were divided into single operations querying

via a primary key and complex queries involving latitude, longitude, name and

type conditions. In the Firestore case, only one of these conditions may be an

Chapter 5. Discussion and Future Work 53

inequality (range). MySQL is able to process queries containing multiple range

conditions. This restriction means that Firestore is forced to return a larger re-

sponse set than needed and perform further data reduction on the client. Both

database architectures have atomic guarantees providing concurrency control

for charger reservations.

The create, update and delete operation performance is not as relevant to the

energy auction. With only one participant performing any of these operations

at a time, it is unlikely that a small increase in latency would affect the user

experience. However, the read performance is very relevant. Querying small

datasets n with small response sets r is fast regardless of the database used. In

the larger datasets, we begin to see the differences between the NoSQL and SQL

solutions.

To illustrate, take the use case of 1,000,000 chargers. The Firestore solution

stores each as a document while MySQL is a record within a table. MySQL

is able to query these 1 million records for our specific combination of condi-

tions (two are inequality and the other two equality) and return a matched 3874

records in ≤ 1 second (see Table 5.2). Firestore queried the same data distributed

as 1 million documents in a collection using only the latitude condition. It took

66 seconds to respond with 7745 documents then further reduce to match the

longitude, name and type conditions to get the desired 3874 hits. MySQL, with its

more sophisticated SQL query engine, clearly has an advantage here. However,

as stated in Section 5.1.1, the number of documents in the Firestore response set

is 12 times more impactful to the latency of the operation than the number of

Chapter 5. Discussion and Future Work 54

documents in the database collection. Optimizing collections to allow single-

field queries responses to more closely match all desired conditions will have a

significant impact on read performance.

Table 4.1 shows, in our experimental setup, Firestore read operations were

able to average 19 operations per second while transferring 360 kilobytes per

second. Table 4.4 shows MySQL achieving 54 operations per second with 114,672

kilobytes per second respectively. Clearly, MySQL holds the advantage in read

performance while averaged across all dataset sizes. Comparing write oper-

ations (create or update) from Table 4.2 and 4.5, we see that Firestore is able

to sustain an average of 25 operations per second while MySQL can do 45 op-

erations per second. Again, the advantage to MySQL. However, a significant

factor to consider with MySQL is table relationships. Our experimental setup

has records independent of each other with no relationships. Normalizing data

fields such that they exist only in a single table with relationships to it can im-

pact read performance as these relationships must be resolved and joined in

the SQL query engine. Additionally, table size consumes server resources and

has a finite limit. Very large tables may translate into degraded performance at

the upper limit requiring hardware upgrades or sharding to other nodes. Even

with the raw latency advantage demonstrated by MySQL in our experiments,

Firestore is preferable for expanding the auction long-term as it is the more con-

sistent solution without any known upper limit.

Cost is a huge factor as described in Section 5.2. Our month-long scenario

creating, storing and reading 1 million data objects resulted in a Firestore esti-

mated cost of $1.17 while MySQL costs $35.03. The NoSQL document-model

Chapter 5. Discussion and Future Work 55

database lending itself to serverless operation shows a significant advantage in

providing a pay-as-you-use service. In the limited usage scenario of this study,

Firestore has the cost advantage.

5.5 Future Work

In Section 5.4, we discussed how Firestore has an advantage with cost, schema-

less flexibility, horizontal scaling and more consistent latency as collections scale

up. The two disadvantages are higher latency, especially with complex multi-

range queries, and data safety from a missing fixed schema. Technology poten-

tially mitigating these disadvantages within the energy auction is the focus for

future work.

5.5.1 GraphQL

GraphQL (or GQL) provides a query language and runtime [12] that can wrap

the backend data storage and exposes an API that can be called from the client

application. The query language provides a more sophisticated engine that can

return all desired data within a single GraphQL operation. The data aggregation

is done through the definition of a query type. Querying this provides only what

the client needs and implements a strong typing on data contained within each

field.

The strong typing of both data shape and fields compensates for the data

safety risk of using a schemaless database. With GraphQL queries, CRUD oper-

ations must match the type specified, thus avoiding the scenario where a docu-

ment field is overwritten with an incorrect data type. Even with GraphQL as an

Chapter 5. Discussion and Future Work 56

intermediate to Firestore, the same queries must eventually be made to the Fire-

store collection. GraphQL is only wrapping, resulting in the same latency times

we encountered querying Firestore directly. However, GraphQL can act as an

aggregator: pulling data from multiple Firestore collections simultaneously or

implementing a hybrid model with Firestore and MySQL. Such a strategy pro-

vides a framework to distributing the energy auction data in such a manner that

querying a single collection may no longer be a bottleneck. Brito et al. [7] dis-

cuss migration strategies. A potential research topic is to implement a GraphQL

solution with the aim of reorganizing data reads and writes in such a way as to

reduce the latency times.

57

Chapter 6

Conclusion

The peer-to-peer energy auction for EV charging is a hybrid of Edge devices

and Cloud services. Within these services, persistent storage of charger regis-

tration and reservation data is critical. Details of each charger device must be

stored along with user details, session history, billing information, user ratings,

amenities and tourism information. A Cloud-hosted database is the top choice

to persistently store the data, support performant queries and provide atomic-

ity, consistency, isolation and durability (ACID) guarantees. The nature of the

auction workflow causes the create, read, update and delete (CRUD) operations

to not have equal requirements. For example: create and update operations

for registrations and reservations are performed by a single user at a time, thus

resulting in eventual consistency being acceptable. Per the consistency, avail-

ability and partition tolerance (CAP) theorem trade-off, the auction prioritizes

availability and partition tolerance. However, read operation performance is

critical as it involves multiple users querying the same dataset within a mobile

setting. Additionally, these read operations must be able to support querying

multiple range (i.e. inequality condition) fields simultaneously.

This study focuses on two popular database services provided by Google to

solve the research problem of persistent storage for the energy auction. Firestore

Chapter 6. Conclusion 58

is a NoSQL, document-model, non-relational and serverless database service

while Cloud SQL MySQL is a perpetual server, table-based, relational and SQL.

Each has its own features and characteristics which we evaluate based on the

following criteria:

1. Latency performance.

2. Cost.

3. Flexibility and scalability.

The SQL database is the established solution but does have shortcomings

in terms of cost and scalability. The cost and scalability concern leads to our

research question of can the Firestore solution be used to support the energy

auction framework? We dig into Firestore’s architecture and identify these ben-

efits:

1. Schemaless data storage provides the flexibility to change document con-
tent (data shape) without requiring the complexity and outage to migrate
the entire table. This does raise data safety concerns since a schema is
not enforced on incoming data, leading to possible data errors or security
vulnerabilities.

2. Each document is stored as a data object, independent of the rest. This
granularity without relationships means the physical storage can easily be
spread out across multiple nodes, zones and regions. Horizontal scaling
can take place without outage although it may require duplicating data
(i.e. all users that charge at a single charger object).

3. The document-model allows for easy separation of the database manage-
ment system (DBMS) and the storage engine (based on a relational database).
The separation enables a serverless offering using shared compute and
pay-per-transaction pricing.

The more established MySQL architecture exists as a monolithic set of pro-

cesses that must exist on a single node. Any distribution requires a complex

Chapter 6. Conclusion 59

sharding of the table(s) and an update of the relations. However, MySQL pro-

vides the following benefits:

1. The SQL query engine is powerful and can support multiple column range

conditions within a single query. The response records are an exact match

preventing the need to perform data reduction at the client.

2. Data can be normalized such that only a single instance exists in the database

with multiple relations pointing to it. The relationships allow faster writes

since data does not need to be written in multiple places as well as reduc-

ing physical storage size.

Experiments were conducted to benchmark the latency performance under

different load scenarios. The experiments mimic the energy auction workflow

from an Edge client. CRUD tests were run against 6 datasets increasing from 101

to 106 individual data structures, each representing a charger device. Write op-

erations using the primary key averaged 160 ms on Firestore but only 92 ms on

MySQL. The read operations with primary key averaged 190 and 92 ms respec-

tively. Firestore was only capable of an averaged 19 operations/s while MySQL

could achieve 54 operations/s. An additional read scenario ignored the primary

key and instead queried with two inequality conditions (latitude, longitude) and

two equality (name, type). This combination represents a typical workflow in the

auction. For up to 10,000 chargers, both databases returned the matched results

in less than 1 second. However, as the dataset size n grew beyond, Firestore

Chapter 6. Conclusion 60

was hampered by the limitation that its query engine could only support a sin-

gle inequality at a time. Thus, we must query for latitude, return a much larger-

than-necessary response set r and do a client-side data reduction. Since charger

queries are typically location-based, the latitude field makes the most sense as

the query starting point (instead of name or type). The worst case dataset size of

1,000,000 took an incredible 66,763 ms seconds with Firestore while MySQL re-

quired only 905 ms. In this query scenario, a multiple linear regression analysis

shows Firestore’s latency was 12x more affected by a rise in r than n.

MySQL is the clear winner in raw latency performance, especially once com-

plex combinations of conditions are used while querying. Yet, for a one-month

billing cycle involving writing, storing and reading 1,000,000 charger structures,

Firestore costs were $1.17 while MySQL was $35.03. The MySQL server was

perpetually deployed and incurring costs regardless of whether there was any

user traffic. With the energy auction in its early development stages, the cost

difference is a deciding factor. Also, the flexibility of the schemaless document-

model allows features to be deployed in stages with the persisted data adapting

to match. Finally, as the auction grows (we hope!), the serverless document-

model seamlessly scales horizontally without limit to accommodate both ca-

pacity increase and geographical diversity although it may eventually cost more

with very high transaction volumes. In conclusion, the NoSQL, non-relational,

serverless database is the best choice. SQL may be the premium solution of the

past but NoSQL and Firestore are the way of the future.

61

References

[1] Airbnb, 2022. URL https://www.airbnb.com. Accessed: 2022-08-13.

[2] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39(4):12–27,
May 2011. ISSN 0163-5808. doi: 10.1145/1978915.1978919. URL https:
//doi.org/10.1145/1978915.1978919.

[3] D. D. Chamberlin. Early history of SQL. IEEE Annals of the History of Com-
puting, 34(4):78–82, 2012. doi: 10.1109/MAHC.2012.61.

[4] D. Hand et al. Statistical challenges of administrative and transaction data.
Journal of the Royal Statistical Society. Series A (Statistics in Society), 181(3):pp.
555–605, 2018. ISSN 09641998, 1467985X. URL https://www.jstor.org/
stable/48547504.

[5] X. Dong and X. Li. A novel distributed database solution based on MySQL.
In 2015 7th International Conference on Information Technology in Medicine and
Education (ITME), pages 329–333, 2015. doi: 10.1109/ITME.2015.48.

[6] EVAdoption. US charging network rankings, 2022. URL
https://evadoption.com/ev-charging-stations-statistics/
us-charging-network-rankings.

[7] G. Brito et al. Migrating to GraphQL: A practical assessment. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 140–150, 2019. doi: 10.1109/SANER.2019.8667986.

[8] Google. Firestore, 2023. URL https://cloud.google.com/sql/firestore.
Accessed: 2023-06-19.

[9] Google. Pricing: Firestore, 2023. URL https://cloud.google.com/
firestore/pricing. Accessed: 2023-06-22.

[10] Google. Cloud SQL for MySQL, 2023. URL https://cloud.google.com/
sql/mysql. Accessed: 2023-06-19.

[11] Google. Pricing: Cloud SQL MySQL, 2023. URL https://cloud.google.
com/sql/pricing#mysql-pg-pricing. Accessed: 2023-06-22.

https://www.airbnb.com
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1978915.1978919
https://www.jstor.org/stable/48547504
https://www.jstor.org/stable/48547504
https://evadoption.com/ev-charging-stations-statistics/us-charging-network-rankings
https://evadoption.com/ev-charging-stations-statistics/us-charging-network-rankings
https://cloud.google.com/sql/firestore
https://cloud.google.com/firestore/pricing
https://cloud.google.com/firestore/pricing
https://cloud.google.com/sql/mysql
https://cloud.google.com/sql/mysql
https://cloud.google.com/sql/pricing#mysql-pg-pricing
https://cloud.google.com/sql/pricing#mysql-pg-pricing

REFERENCES 62

[12] GraphQL Foundation. A query language for your API, 2023. URL https:
//graphql.org. Accessed: 2023-06-23.

[13] H. Khazaei et al. How do i choose the right NoSQL solution? a comprehen-
sive theoretical and experimental survey. Big Data and Information Analytics,
1(2):185–216, 2016.

[14] R. Irle. The electric vehicle world sales database, 2023. URL https://www.
ev-volumes.com. Accessed: 2023-06-16.

[15] J. Corbett et al. Spanner: Google’s globally distributed database. ACM
Trans. Comput. Syst., 31(3), Aug 2013. ISSN 0734-2071. doi: 10.1145/
2491245. URL https://doi.org/10.1145/2491245.

[16] J. Moon et al. A heterogeneous IoT data analysis framework with collab-
oration of edge-cloud computing: Focusing on indoor pm10 and pm2. 5
status prediction. Sensors, 19(14):3038, 2019.

[17] M. Eyada et al. Performance evaluation of IoT data management using
MongoDB versus MySQL databases in different cloud environments. IEEE
Access, 8:110656–110668, 2020. doi: 10.1109/ACCESS.2020.3002164.

[18] Microsoft. Analyze data in Excel, 2023. URL
https://support.microsoft.com/en-us/office/
analyze-data-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4.
Accessed: 2023-06-21.

[19] S. Minos. New plug-in electric vehicle sales in the United States nearly
doubled from 2020 to 2021. Technical report, US Department of Energy,
March 2022. URL https://www.energy.gov/energysaver/articles/
new-plug-electric-vehicle-sales-united-states-nearly-doubled-2020-2021.

[20] N. Jatana et al. A survey and comparison of relational and non-relational
database. International Journal of Engineering Research & Technology, 1(6):1–5,
2012.

[21] D. Ongaro and J. Ousterhout. The Raft consensus algorithm, 2023. URL
https://raft.github.io/. Accessed: 2023-07-04.

[22] R. Pandey. Performance benchmarking and comparison of cloud-
based databases MongoDB (NoSQL) vs MySQL (relational) using YCSB.
Technical report, Technical Report. https://doi. org/10.13140/RG. 2.2.
10789.32484, 2020.

https://graphql.org
https://graphql.org
https://www.ev-volumes.com
https://www.ev-volumes.com
https://doi.org/10.1145/2491245
https://support.microsoft.com/en-us/office/analyze-data-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://support.microsoft.com/en-us/office/analyze-data-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://www.energy.gov/energysaver/articles/new-plug-electric-vehicle-sales-united-states-nearly-doubled-2020-2021
https://www.energy.gov/energysaver/articles/new-plug-electric-vehicle-sales-united-states-nearly-doubled-2020-2021
https://raft.github.io/

REFERENCES 63

[23] J. Pokorny. NoSQL databases: A step to database scalability in web en-
vironment. In Proceedings of the 13th International Conference on Informa-
tion Integration and Web-Based Applications and Services, iiWAS ’11, page
278–283, New York, NY, USA, 2011. Association for Computing Machin-
ery. ISBN 9781450307840. doi: 10.1145/2095536.2095583. URL https:
//doi.org/10.1145/2095536.2095583.

[24] R. Bannon et al. Mysql conceptual architecture. Technical report, University
of Waterloo, 2002.

[25] R. Kesavan et al. Firestore: The NoSQL serverless database for the applica-
tion developer. In 2023 IEEE 39th International Conference on Data Engineer-
ing (ICDE), pages 3367–3379, 2023.

[26] Solar Energy Industries Association. Solar data facts sheet, 2022. URL
https://www.seia.org/research-resources/solar-data-cheat-sheet.
Accessed: 2022-08-13.

[27] Stripe. Stripe payment processing platform for the Internet, 2023. URL
https://www.stripe.com. Accessed: 2023-06-16.

[28] T. Taipalus and V. Seppänen. SQL education: A systematic mapping study
and future research agenda. ACM Trans. Comput. Educ., 20(3), Aug 2020.
doi: 10.1145/3398377. URL https://doi.org/10.1145/3398377.

[29] Uber, 2022. URL https://www.uber.com. Accessed: 2022-08-13.

[30] U.S. Department of Energy. Alternate fueling station locator, 2022. URL
https://afdc.energy.gov/stations/#/analyze. Accessed: 2022-08-02.

[31] R. Yadav and A. Rahut. FlexiRaft: Flexible Quorums with Raft. The Confer-
ence on Innovative Data Systems Research (CIDR), 2023.

[32] Yahoo! Yahoo cloud serving benchmark, 2010. URL https://research.
yahoo.com/news/yahoo-cloud-serving-benchmark/. Accessed: 2023-06-
19.

https://doi.org/10.1145/2095536.2095583
https://doi.org/10.1145/2095536.2095583
https://www.seia.org/research-resources/solar-data-cheat-sheet
https://www.stripe.com
https://doi.org/10.1145/3398377
https://www.uber.com
https://afdc.energy.gov/stations/#/analyze
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/

	Energy Auction with Non-Relational Persistence
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgements
	List of Abbreviations
	Introduction
	Motivations
	Research Question
	Context of the Study
	Objectives and Contributions
	Overview of the Thesis

	Background
	EV Charging
	Related Work
	Performance Evaluation of IoT Data Management
	Benchmarking with YCSB
	Google Firestore
	Oracle MySQL
	Sharding a Relational Database
	Google Spanner

	System Architecture
	Firestore
	MySQL

	Experiments
	Non-Relational, NoSQL Database
	Reads
	Writes
	Reads with Conditions

	Relational, SQL Database
	Reads and Writes
	Reads with Conditions

	Discussion and Future Work
	Latency
	Firestore Analysis
	MySQL Analysis

	Cost
	Firestore
	MySQL

	Flexibility and Scalability
	Discussion
	Future Work
	GraphQL

	Conclusion
	References

