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Abstract 

Despite advanced policies, plans, and facilities, many pedestrians are still injured and 

killed in traffic crashes in the United States. To improve pedestrian safety and the 

walking environment, the relationship between surrounding crash risk factors and 

perceived safety that influence people’s behavior needs to be studied. This study aims to 

examine pedestrian crash risk factors, the relationship between crash risk factors and 

perceived safety, measured as threatened experiences and safety attitudes, and the 

relationship between safety attitudes and walking behavior.  

The analysis used data from three primary sources: (1) an original survey of 551 

residents in 10 neighborhoods in Oregon conducted in 2023; (2) pedestrian crash data 

that occurred in Oregon for 2018 – 2022; and (3) pedestrian count data collected at 65 

sites in 2022. 729 pedestrian crashes occurred in the census block groups surrounding the 

65 sites over five-year periods. These were complemented with built environment data. 

The dissertation first tested whether crash risk factors predict actual pedestrian crashes 

in the study areas. One of the results shows that the pedestrian volume measured as 

pedestrian count data has better predictive power to explain the pedestrian crashes, 

cumulated for a shorter period of time than the pedestrian volume measured as population 

density. Though the count data was collected only for two days, it was more accurate 

than the population density. This result supports the need to collect pedestrian volume 

data in various places to develop road safety plans and policies. In addition to pedestrian 

volume, crash risk factors in macro-level areas, including mixed-use land areas, 

commercial land areas, and public transit stops, are significant in predicting pedestrian 
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crashes. However, in this study, the number of intersections, speed limit, and vehicle 

speed were not statistically significant in predicting crash cases. 

The structural equation model (SEM) results for the second research question show 

that the threatened experiences influenced by the surrounding environment significantly 

affect safety attitudes. Pedestrians feel more threatened in areas with higher intersection 

density and mixed-use land areas after controlling other risk factors, including speed and 

pedestrian and traffic volumes. However, intersection density is not significantly related 

to the cumulated pedestrian crashes. This may be because vehicle speeds decrease as the 

density of intersections increases. This implies that when pedestrians encounter 

intersections more frequently, they perceive that they have had more threatened 

experiences, even though the environment is not significantly riskier. Pedestrian crashes 

did not affect pedestrians’ threatened experiences and safety attitudes in the SEMs. This 

can be interpreted as pedestrians’ attitudes being mainly determined by their perceived 

experiences in a given environment rather than an actual crash risk. 

In modeling results for the third research question, positive safety attitudes and nearby 

sidewalks increase walking frequency. On the other hand, larger commercial areas, faster 

vehicle speeds, and more vehicles in their households significantly reduce walking 

frequency. One likely reason for the negative relationships with having commercial areas 

nearby is that most survey respondents were walking primarily for exercise, to walk their 

pets, or for entertainment rather than to visit specific destinations such as work, school, or 

restaurants.  
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This study has several limitations despite meaningful findings. One limitation relates 

to the unit of analysis. For this analysis, crash risk factors, such as intersection types, road 

classification, weather conditions, or street lights, were aggregated around each 

respondent’s home. In addition, pedestrian count data was available only for one or two 

major intersections within that area. Such aggregation does not account for details of the 

risk of each crash event or in micro-level places. The other limitation relates to cross-

sectional analysis. If panel data can be collected and time-series analysis is possible, it 

would likely investigate how people’s attitudes toward safety and behaviors change due 

to surrounding crash risk factors and threatened experiences.  
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1 Introduction 

1.1 Background 

Improving transportation safety is one of the essential goals in transportation planning. 

Despite various and continuous efforts, in the U.S., more than 42,900 people were killed 

in road crashes in 2021 alone, and among vulnerable road users, more than 7,500 

pedestrians were killed in 2022 (National Highway Traffic Safety Administration, n.d.). 

Furthermore, over the last decade (2012-2021), the percentage of pedestrian fatality has 

increased from about 14% to 17% (National Highway Traffic Safety Administration, 

n.d.). The number of pedestrian fatalities in 2018 increased compared to 2008, while the 

total crash fatalities decreased between 2008 and 2018 (National Highway Traffic Safety 

Administration, n.d.). Even though travel distance and frequency decreased significantly 

in 2020-2021 during the pandemic caused by COVID-19, fatal traffic crashes increased 

compared to 2019 before the pandemic (33,487 in 2019, 35,935 in 2020, and 39,508 in 

2021, respectively). The number of pedestrian fatalities also increased (6,565 in 2020 and 

7,388 in 2021, respectively) (National Highway Traffic Safety Administration, n.d.). 

Given these numbers and trends, the first goal of the USDOT strategic plan for the fiscal 

year 2018-2022 is safety (U.S. Department of Transportation, 2018).  

In the U.S., pedestrian safety issues in the urban environment are especially noticeable 

due to the increased exposure and proximity to vehicles than in rural areas. Land use 

diversity and better accessibility increase the demand for walking in urban areas, which 

causes denser pedestrian activities (volume), which increases the probability of 

pedestrian exposure to traffic flow (Monsere et al., 2017). According to the Pedestrians 
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Traffic Safety Fact Sheets from 2015 to 2019 (National Highway Traffic Safety 

Administration, 2017, 2018, 2019, 2020, 2021), from 2015 to 2017, pedestrian fatalities 

in urban areas were more than three times the number of pedestrian deaths in rural areas. 

In 2018 and 2019, pedestrian fatalities in urban areas were more than four times the 

number of deaths in rural areas.  

1.2 Motivation & Research Purpose 

Pedestrian safety has emerged as one of the primary challenges facing transportation 

professionals. Despite many efforts, pedestrian crashes have increased, even during the 

pandemic. To protect road users, including drivers and pedestrians, from the risk of 

crashes, many existing researchers have defined crash risk factors, tested their influence, 

and predicted the likelihood of crashes. In addition to identifying factors that influence 

crash frequency, models have been developed to predict the severity of injuries resulting 

from crashes. In most of these studies, external environmental characteristics were 

investigated, including traffic volume, spatial characteristics such as road and land use 

types, and conditions of facilities in addition to roads (Al-Mahameed et al., 2019; Almasi 

et al., 2021; Chen & Zhou, 2016; Cho et al., 2009; Clifton et al., 2009; Gill et al., 2022; 

Lee & Abdel-Aty, 2005; Mahmoud et al., 2021; Sanders et al., 2017; Schneider et al., 

2004, 2021). Some studies also investigated demographic characteristics of road users 

related to crash risk (Anderson et al., 2022; Campbell et al., 2004; Campos-Outcalt et al., 

2002; Carter et al., 2017; Chang, 2008; Loukaitou-Sideris et al., 2007; Moyano Dıáz, 

2002; Zegeer & Bushell, 2012). Despite these research results and policy efforts such as 
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Vision Zero, road users, especially pedestrians, still need to be protected from the risk of 

crashes. 

Traffic crashes are probabilistically rare events from an individual’s perspective 

(Carter et al., 2017). Nonetheless, a crash can physically and psychologically primarily 

affect those involved once an incident occurs. In this study, my question begins with how 

objectively quantifiable real risks can affect an individual's perceptions and behaviors. In 

other words, how well are road users, especially pedestrians, who represent vulnerable 

road users, aware of these risks? Also, could this perceived risk be related to their daily 

travel? Perceptions and behaviors in this study are not the risk cognition in a specific 

situation or the immediate reaction. People use different modes of transportation in their 

daily lives and are exposed to various risk factors. However, not all of these risks are 

perceived as dangerous, and individuals may have different standards for safety. Instead 

of focusing on immediate risk awareness and reaction, my research aims to explore 

travelers’ experiences in their everyday surroundings, how they interpret these 

experiences, and how their attitudes and experiences can impact their daily activities. 

Recent research also emphasizes understanding travelers’ risk perception, which may 

affect their travel behavior and be able to explain factors contributing to crashes (Cho et 

al., 2009; Rankavat & Tiwari, 2016; Schneider et al., 2004). However, unanswered 

questions remain regarding human factors in crash risk. The perceptions and attitudes of 

travelers influence their behavior and can increase the likelihood of crashes or near-

crashes involving pedestrians and vehicles.  
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The other reason to raise these questions is the decrease in Americans’ daily physical 

activities. Walking is a representative physical activity that can be done routinely and 

continuously at all ages. However, according to the U.S. Census Bureau’s American 

Community Survey (ACS) statistics released by the Centers for Disease Control and 

Prevention (CDC), the national proportion of adults commuting to work by walking or 

biking decreased from 3.4% in 2012 to 2.9% in 2022 (Centers for Disease Control and 

Prevention, n.d.). The 2020 survey shows that only 25% of Americans over-met the 

physical activity guidelines for aerobic and muscle-strengthening activities (Elgaddal et 

al., 2022). In addition, according to the results of the National Youth Risk Behavior 

Surveillance System (YRBSS) survey, adolescents’ physical activity, which was 

measured as the national percent of students in grades 9-12 who achieve 1 hour or more 

of moderate and vigorous-intensity physical activity daily, also decreased from 28.7% in 

2011 to 23.2% in 2019 (Centers for Disease Control and Prevention, n.d.).  

There may be many reasons why people choose walking as a physical activity or one 

of the modes of transportation. Perceived safety may also impact the amount or frequency 

of walking since experiences, attitudes, and perceptions may influence a person’s 

behavioral intentions. Therefore, this research aims to understand how the typical crash 

risk factors affect actual pedestrian crashes and pedestrians’ perceived safety. Also, I 

strive to understand the relationship between pedestrians’ perceptions of safety and 

walking behavior.  



5 

 

2 Literature Review 

This second chapter defines ‘pedestrian safety’ and how it differs from ‘pedestrians’ 

perceived safety.’ Definitions of two main concepts are followed by what crash risk 

factors are studied in the previous research related to pedestrian safety and perceived 

safety. This chapter also reviews studies about the relationship between pedestrians’ 

perceived safety and walking behavior. Lastly, analysis methods predicting pedestrian 

crashes and estimating the relationship between crash risk factors, perceived safety, and 

walking behavior are reviewed. 

2.1 Definition of Pedestrian Safety & Perceived Safety 

Transportation safety can be defined as the absence of crashes between road users 

(Carter et al., 2017). So, this study defines pedestrian safety as the absence of crashes 

between pedestrians and other transportation mode users. Perceived safety can be defined 

as the human feelings resulting from evaluating a situation where the existing risk is less 

than the permitted risk. Permitted risk is a risk perception criterion defined as controllable 

and not potentially harmful (Proske, 2019). Viewed in this light, pedestrians can feel safe 

after determining or predicting (self-rating) that the perceived existing crash risk is less 

dangerous than their criteria on whether the risk is controllable or not (permitted risk). 

Definitions of pedestrian safety and perceived safety are different because the 

probability that crash risk factors cause a crash in a certain situation and the perceived 

risk of pedestrians who confront it may be different. For example, people may over-

evaluate a risk when they first perceive it. However, when similar risks are repeated, they 

may under-evaluate the danger (Proske, 2019). This changeable perceived risk need not 
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be the same as the objective risk, since objective risk prediction models can be built 

based on detailed data. The objective risk is measured by a certain probability with a 

margin of error, while the perceived risk is subjective and is often affected by 

misconception or misunderstanding (Raue & Schneider, 2019).  

In the safety literature, observed pedestrian crash risk is defined as the observed 

pedestrian-involved crashes divided by pedestrian exposure estimates (Turner et al., 

2018), while the pedestrians’ perceived safety has been defined and measured in more 

diverse ways depending on research questions and purposes than observed crash risk 

(Basu et al., 2022; Cho et al., 2009; Mehta, 2008; Rankavat & Tiwari, 2016, 2020; 

Schneider et al., 2004; Yoh et al., 2022).  

Several researchers measure perceived safety with pedestrians’ safety attitudes, which 

refers to how safe one feels in particular situations, scenarios, or previous experiences. In 

measuring perceived safety, safety attitudes are sometimes measured separately from 

threatening situations or threatened experiences. Cho et al. (2009) used survey items to 

measure perceived safety related to surrounding environments and their experiences. 

Rankavat & Tiwari (2020) also used a survey to measure perceived risk and study the 

relationship between perceived risk and preference for crossing behavior. Basu et al. 

(2022) measured perceived safety as attitudes regarding ten different walking 

environment scenarios. On the other hand, Mehta (2008) and Yoh et al. (2022) have 

studied perceived safety through the relationship between walking experience and 

attitudes, emphasizing the importance of experiences as reasons for safety attitudes. In 
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common, researchers considered travelers’ surrounding built environments, threatened 

experiences, and safety attitudes for measuring pedestrians’ perceived safety.  

Pedestrian’s perceived safety is essential for analyzing safety issues since the 

pedestrian’s perceived information affects their behavior in dangerous situations despite 

not always being consistent (Basu et al., 2022; Cho et al., 2009; Holland & Hill, 2007; 

Jacobsen et al., 2009; Mehta, 2008; Rankavat & Tiwari, 2016, 2020; Schneider et al., 

2004; Yoh et al., 2022). Therefore, the following sections will review which crash factors 

and pedestrians’ perceived safety are explained in research and how their relationships 

have been studied. 

2.2 Crash Risk Factors & Perceived Safety 

2.2.1 Pedestrian Exposure  

Pedestrian volume is one of the strongest predictors of pedestrian crashes (Griswold et 

al., 2019) along with other road risk factors. Pedestrian exposure can be defined as their 

activity rate encountering potentially harmful vehicular traffic, and it can be measured by 

their volume in a certain unit of time and area (Raford & Ragland, 2004). Several recent 

studies have identified pedestrian exposure to traffic flow as a critical factor in pedestrian 

crashes and found relationships between ‘pedestrian exposure and crash frequency’ or 

‘pedestrian exposure and their perceived safety (Al-Mahameed et al., 2019; Almasi et al., 

2021; Cho et al., 2009; Gill et al., 2022; Lee & Abdel-Aty, 2005; Mahmoud et al., 2021; 

Sanders et al., 2017; Schneider et al., 2004, 2021). Higher numbers of pedestrians are 

related to more frequent crash events (Al-Mahameed et al., 2019; Mahmoud et al., 2021), 

and longer segments, more intersections, and denser activities at intersections are 
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significantly related to higher levels of police-reported crashes (Lee & Abdel-Aty, 2005; 

Schneider et al., 2004, 2021). On the other hand, pedestrian exposure does not only 

increase the probability of crash events but also affects the interaction between 

pedestrians and motorists, including indistinct communication and intentions, when the 

number of pedestrians increases (Elvik & Bjørnskau, 2017). Therefore, pedestrian 

exposure to traffic flow should be considered in relation to pedestrian crash risk and 

perceived safety. 

Measuring pedestrian exposure is challenging because of the lack of direct pedestrian 

count data or estimated volume data. Additionally, since the number of pedestrians is 

usually smaller than the number of vehicles, slight variations may cause a more 

significant impact on statistical models. Inaccuracy of pedestrian volume estimations may 

cause a more substantial effect on crash model accuracy than that of vehicles. Thus, 

researchers have measured pedestrian exposure in a variety of ways using census 

population data and GIS data as follows: the rate of employees walking to work (Al-

Mahameed et al., 2019); population or employment density (Almasi et al., 2021; Almasi 

& Behnood, 2022; Cho et al., 2009; Lee & Abdel-Aty, 2005; Raford & Ragland, 2004; 

Sanders et al., 2017); and facilities for pedestrians, including intersection or crosswalk 

density, pedestrian route network, and public transit (Al-Mahameed et al., 2019; Almasi 

et al., 2021; Almasi & Behnood, 2022; Cho et al., 2009; Raford & Ragland, 2004). 

Recently, scholars have used actual pedestrian count data to measure pedestrian exposure 

(Gill et al., 2022; Griswold et al., 2019; Mahmoud et al., 2021; Schneider et al., 2021). 

Gill et al. (2022) and Schneider et al. (2021) used manually counted video data and 
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Mahmoud et al. (2021) used Automated Traffic Signal Performance Measures (ATSPM) 

data for pedestrian volume and pedestrian movement data using automatic video 

recognition techniques. Although these measuring methods tried to measure pedestrian 

volume as accurately as possible, these have both pros and cons. Using only pedestrian 

count data may represent their activity at a particular time and area, while using only 

walk commute estimates from census data represents only one trip purpose and 

pedestrians who regularly walk (Schneider et al., 2021).  

2.2.2 Demographic and Socioeconomic Factors 

Demographic and socioeconomic factors are necessary to be considered in studies on 

pedestrian crash frequency, perceived safety and the relationship between them. First, age 

is an important demographic variable in pedestrian crash analysis. Adults younger than 

65 have the most considerable crash frequency, injury, and fatality rates since they make 

up the largest portion of pedestrians (Campbell et al., 2004; Chang, 2008). However, 

several researchers target the older or children’s pedestrian populations because those 

groups are considered more vulnerable than the other age groups (Anderson et al., 2022; 

Carter et al., 2017; Zegeer & Bushell, 2012). Older pedestrians, especially, may struggle 

to meet situational demands because of slower walking speeds and reactions (Levi et al., 

2013). Researchers have elucidated the relationship between age and pedestrian crash risk 

based on not only activity level, which is related to pedestrian exposure, but also their 

attitudes, behavioral intention, and perceived safety (Abdullah et al., 2019; Barton & 

Schwebel, 2007; Campbell et al., 2004; Olvera et al., 2012; Oxley et al., 2005). Research 

on children’s safety shows they are more likely to be involved in crashes at intersections 
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and crosswalks (Campbell et al., 2004). Children may experience a different cognitive 

process than adults since they are more likely impacted by parental control and repeated 

learning related to their safety (Barton & Schwebel, 2007; Olvera et al., 2012; Oxley et 

al., 2005). On the other hand, research on older pedestrians’ walking behavior shows that 

they tend to stick to their previously chosen routes (conservative travel choices), which 

can lead to more crashes despite their efforts to be more careful compared to other age 

groups, especially at crossings (Abdullah et al., 2019; Campbell et al., 2004; Oxley et al., 

2005). 

Gender is also often studied as a demographic factor affecting pedestrian crash risk. 

Data from several studies show that the rate of male fatality and severe injury from 

crashes are higher compared to females. Researchers found that boys are less careful 

when they walk on the sidewalk compared to girls (Wang et al., 2018). This is not only 

because of their age; in general, male pedestrian’s behavior shows that they tend to take 

more risk while walking in several studies (Campbell et al., 2004; Clifton & Livi, 2005; 

Onieva-García et al., 2016; Useche et al., 2021; Zegeer & Bushell, 2012) because of 

lesser perceived risk compared to female pedestrians (Rankavat & Tiwari, 2019). In 

addition, younger males had more positive attitudes toward violations, errors, and lapses, 

and their attitude affected their intention to violate traffic regulations more frequently 

(Moyano Dıáz, 2002). 

Race and ethnicity are also important demographic factors in pedestrian safety 

(Monsere et al., 2017). Campos-Outcalt (2002) and Loukaitou-Sideris (2007) reported 

that African American, Latino, Hispanic, and American Indians were more likely to be 
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involved in pedestrian-vehicle crashes. Recently, African American and American Indian 

pedestrians are more likely to be killed in crashes (Smart Growth America & National 

Complete Streets Coalition, 2019). According to the Governors Highway Safety 

Association’s (GHSA) recent report, the proportion of Black, Indigenous, and People of 

Color (BIPOC) pedestrian fatalities from 2015-2019 was larger than expected for 

minority populations (Governors Highway Safety Association, 2021). This could be due 

to economic disparities such as less access to public transportation, private vehicles, and 

immediate medical care (Campos-Outcalt et al., 2002).  

Socioeconomic factors like income are also important considerations in pedestrian 

safety. Low social status measured by low wage, poverty level, zero vehicle household, 

and low education level is positively related to more often pedestrian crash frequency 

(Al-Mahameed et al., 2019). Moreover, low income directly affects pedestrians’ behavior 

and travel choices (Al-Mahameed et al., 2019; Noland et al., 2013; Zegeer & Bushell, 

2012). It also indirectly affects pedestrian safety regarding spatial inequality (Kravetz & 

Noland, 2012; Sallis et al., 2011; Siddiqui et al., 2014; Thornton et al., 2016). Noland et 

al. (2013) studied the relationship between income and safety, and there were more 

casualties from pedestrian-vehicle crashes in areas with low-income households. This 

means that the income factor can be related to household vehicle ownership or individual 

mode choice, which links to spatial inequality regarding transportation safety. The 

following research suggests an indirect impact due to a discriminatory built environment. 

While higher-income neighborhoods have lower population density on street segments 

and more walkable streets (King & Clarke, 2015), low-income neighborhoods may lack 
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safe amenities and facilities in the pedestrian streetscape (Sallis et al., 2011; Siddiqui et 

al., 2014; Thornton et al., 2016). Therefore, the disparity in neighborhood income levels 

relates to the disparities in the built environment and pedestrian safety. In conclusion, 

although socioeconomic factors and income levels are considered individual-level 

factors, they can be macro-level issues when the factors that make individual choices are 

spatially aggregated. 

2.2.3 Land Use 

According to the 2015-2019 Pedestrians Traffic Safety Fact Sheet of the National 

Highway Traffic Safety Administration (NHTSA), more U.S. pedestrian-vehicle crashes 

and fatalities occur in urban rather than rural areas (National Highway Traffic Safety 

Administration, 2017, 2018, 2019, 2020, 2021). This is because a higher population, 

employment density, and denser street connectivity in urban areas relate to the higher 

pedestrian exposure to traffic flow. This results in increased crash frequency and fatalities 

(Al-Mahameed et al., 2019; Almasi et al., 2021; Cho et al., 2009; Gill et al., 2022; Lee & 

Abdel-Aty, 2005; Mahmoud et al., 2021; Sanders et al., 2017; Schneider et al., 2004, 

2021).  

Since pedestrian volume and density of their activity (pedestrian exposure) are highly 

related to land use characteristics, researchers have studied the relationship between land-

use type and pedestrian-vehicle crashes (Campbell et al., 2004; Dissanayake et al., 2009; 

Kadali & Vedagiri, 2015; Loukaitou-Sideris et al., 2007; Pulugurtha & Sambhara, 2011; 

Wier et al., 2009). Results about the relationship between ‘land use and pedestrian crash 

rates’ and ‘land use and perceived safety’ vary by researchers. This may be because 
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details of land use classifications and characteristics defined by researchers and regional 

context vary (e.g., countries, states, and cities). 

Some land use types, such as commercial land, high-density residential, and mixed-

use land areas, are highly related to pedestrian crash frequency since these induce 

pedestrian travel demand and other mode users’. Commercial land areas, especially those 

related to alcohol establishments, are positively associated with a higher number of 

pedestrian crashes compared to different types of land use (Campbell et al., 2004; Long 

& Ferenchak, 2021; Loukaitou-Sideris et al., 2007; Wier et al., 2009). However, 

Dissanayake et al. (2009) show that high-density residential land areas are negatively 

associated with child pedestrian casualties, while retail, low-density residential, and 

educational land areas are positively associated with child pedestrian casualties. 

Pulugurtha & Sambhara (2011) find that single-family, urban residential commercial 

(areas with residential, retail, office, recreational, and cultural uses), and neighborhood 

service areas (mixed-use areas focusing on neighborhood retail and service activities) 

lower pedestrian crashes. 

Research results on pedestrians’ perceived safety by land use type differ by studies. In 

the Cho et al. (2009) study, low-density and non-mixed land areas (less compactness) 

increase general perceived crash risk, which means denser places make people feel safer 

despite more crashes than living in low-density areas. This can be called “perception 

mismatch,” when people feel safer when more crash events occur (Schneider et al., 

2004). Cho et al. (2009) study shows that pedestrians are more influenced by how dense 

the neighborhood is than by the condition of the pedestrian path itself. In other words, 
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perceived safety is more affected by the relationships between the built environment and 

pedestrians, or groups of facilities and pedestrians, than the characteristics of a pedestrian 

facility alone. However, Kadali & Vedagiri (2015) found that mixed-use, residential, and 

commercial lands with higher traffic volume made pedestrians feel more unsafe while 

they were crossing the road.  

These inconsistencies may come from differences in how land use types are 

categorized and how researchers measure pedestrian perceived safety. Therefore, land use 

type should be well designed in the analysis model as an essential variable to explain 

pedestrian exposure, crash risk, and perceived safety. 

2.2.4 Facilities for Pedestrians 

Like the land use factor, facilities for pedestrians, such as marked or unmarked 

crosswalks, crosswalk density, medians, sidewalk width and density or connectivity, and 

transit stops are related to pedestrian crash risk and perceived safety since they are linked 

with pedestrian exposure (Chen & Zhou, 2016; Cho et al., 2009; Clifton et al., 2009; 

Mfinanga, 2014; Mukherjee & Mitra, 2019; Rankavat & Tiwari, 2016; Schneider et al., 

2004; Zegeer & Bushell, 2012). Regarding this, intersections are one of the most critical 

locations for pedestrian safety (Diogenes & Lindau, 2010; Gitelman et al., 2017; 

Loukaitou-Sideris et al., 2007; Sandt & Zegeer, 2006; Zegeer et al., 2005). At marked 

crosswalks, pedestrians may feel safer to walk than unmarked crosswalks at intersections. 

However, pedestrian crash rates can be controversial depending on motor vehicle traffic 

and traffic calming measures at intersections (Zegeer et al., 2005). Diogenes & Lindau 

(2010) found that the pedestrian crash rate decreases as the sidewalk width and the 
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number of crossing stages (such as parts of a crosswalk separated by refuge islands) 

increase. Structural improvements at crosswalks, such as curb extensions and bulb-outs, 

can increase visibility for both pedestrians and drivers while reducing the driving speed 

and shortening the crossing distance (Sandt & Zegeer, 2006). In addition, public transit 

stops or stations can be important factors regarding pedestrian safety since transit stops 

induce people to gather at public transit stations, such as bus stops in the middle of 

sidewalks (Diogenes & Lindau, 2010; Monsere et al., 2017; Pulugurtha & Sambhara, 

2011). Therefore, they need safer design guidelines with more visibility, lower speed 

limits, and education programs for children (Zegeer & Bushell, 2012).  

Other types of pedestrian facilities, such as traffic signals, street lights, speed humps, 

or speed limits, are also related to pedestrian safety by protecting pedestrian activity from 

automobiles and making pedestrians feel safer (Kadali & Vedagiri, 2015; Mfinanga, 

2014; Schneider et al., 2004). Several countermeasures for controlling vehicle speeds, 

such as speed humps, and signals, are preferred options for pedestrians at intersections 

(Mfinanga, 2014). These facilities protect pedestrian activities from high-speed vehicles 

or separate traffic spaces from each other in space and time. 

On the other hand, in the Delhi, India case study, Rankavat & Tiwari (2016) show that 

actual high crash locations are not the same as pedestrian-perceived high-risk crash spots. 

In their research, the number of road lanes, vehicle speed, street lights, the width of the 

sidewalk, and marked crosswalks are related to pedestrians’ risk perception (Rankavat & 

Tiwari, 2016). 
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2.2.5 Speed 

Speed is also an important risk factor related to pedestrian crashes. Vehicle speed 

significantly impacts the probability of crashes and the severity of injuries from crash 

events (Aarts & van Schagen, 2006; Elvik, 2013; Hussain et al., 2019; Mahmoud et al., 

2021, 2023; Monsere et al., 2017). Especially, higher speed is significantly related to the 

higher probability of fatality from crashes (Clifton et al., 2009; Davis, 2001; Elvik, 2013; 

Haleem et al., 2015; Hussain et al., 2019; Monsere et al., 2017; Nilsson, 2004; Nishimoto 

et al., 2019; Rosén et al., 2011; Rosén & Sander, 2009). Rosén & Sander (2009) showed 

that there are apparent differences in pedestrian fatality rates from crashes between 

different speed intervals. In their findings, pedestrian fatality risk at 50 km/h (about 31 

mph) is more than twice the probability of the risk at 40 km/h (about 24 mph) and more 

than five times higher than the probability of the risk at 30 km/h (about 19 mph). Hussain 

et al. (2019) recommended 30-40 km/h (about 19-24 mph) in areas with high pedestrian 

traffic to reduce the probability of pedestrian fatality. 

Vehicle speed affected by surrounding road conditions and facilities also may relate to 

pedestrians’ and drivers’ perceptions regarding safety. Aceves-González et al. (2020) 

showed whether a road’s speed limit is posted and how fast surrounding vehicles are 

traveling can affect pedestrians’ attitudes toward safety, in addition to lack of signages. 

On the other hand, Kwon et al. (2022) showed the results based on virtual reality (VR) 

experiments showed that visual exposure to information related to vehicle speed did 

affect perceived safety. 
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There are studies on the relationships between speed and pedestrian crash frequency or 

injury severity, especially fatalities, or the relationships between speed and perceived 

safety. These previous studies measured the speed as the average or max of the posted 

speed limit (Haleem et al., 2015; Nilsson, 2004; Nishimoto et al., 2019) or using vehicle 

speeds at crash impact (Davis, 2001; Elvik, 2013; Kwon et al., 2022; Rosén & Sander, 

2009). Although not all drivers drive below the speed limit, a significant correlation 

exists between the average vehicle speeds and the posted speed limit (Elvik et al., 2004). 

However, the model results may vary depending on the measurement method, spatial unit 

of this speed, and analysis method. Previous studies used posted speed limits at the 

spatial level of intersections or short road segments or used speeds at the moments of 

crashes as an explanatory variable. This is because the probability of crashes between 

vehicles and pedestrians and the degree of injury vary depending on subtle speed 

changes. Fundamentally, as vehicle speed can strongly explain pedestrian safety issues, 

aggregated speed can also sufficiently explain the impact (Elvik et al., 2019). 

Nevertheless, the aggregated speed limit calculated spatially or temporally may act as a 

limitation within the crash prediction model rather than using the actual speed when the 

event occurred. In addition, a person’s perception of speed can be subjective rather than 

objective since the surrounding environment influences it (Kwon et al., 2022; Papić et al., 

2020; Shi et al., 2020; Sudkamp & Souto, 2023). Thus, explanations of measuring the 

speed variable are necessary when it is used to explain crashes or perceived safety in the 

model. 
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2.2.6 Weather & Lighting   

Weather affects pedestrian safety in two ways: pedestrian volume through behavior 

changes and crash injury severity. Aultman-Hall et al. (2009) point out the relationship 

between temperatures, wind speed, humidity, and precipitation affect the degree of 

pedestrian activity. In their study, humidity varies by season and affects pedestrian 

activities, while only extreme temperatures affect pedestrian behavior (Aultman-Hall et 

al., 2009). Although this study did not address pedestrian safety directly, the weather can 

be thought of as affecting pedestrian behavior and volume, which may affect pedestrian 

exposure to traffic flow. On the other hand, some studies directly explain the relationship 

between weather and pedestrian crashes. For example, rainy days affect injury severity 

(Zhai et al., 2019), although most pedestrians involved in crashes occur when the weather 

is clear (Fitzpatrick et al., 2014). 

Additionally, insufficient lighting can be a serious risk factor since it is related to road 

users’ visibility (Monsere et al., 2017). Zegeer & Bushell  (2012) show that about 65% of 

pedestrian fatalities occur under low light conditions or at night. More crashes occur 

during the fall and winter, especially for older pedestrians (Campbell et al., 2004). 

Campbell et al. (2004) also emphasize that fatal pedestrian crashes occurred at night 

while non-fatal pedestrian crashes occurred during the day. 

Because of these reasons, lighting at night is essential for pedestrians’ safety by 

making pedestrians more visible to motorists (Zegeer & Bushell, 2012). In addition, 

brightness is also important in terms of perceived safety (Haans & de Kort, 2012; 

Holland & Rabbitt, 1992). Based on Appleton’s (1975) prospect-refuge theory, street 
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lights are important pedestrian facilities. Under low-light conditions, they provide 

forward visibility and visual context, which makes fast escape possible if pedestrians 

encounter danger (Haans & de Kort, 2012). 

2.3 Perceived Safety & Walking Behavior 

Previous research discussed how perceived safety and experiences regarding walking 

influence people’s attitudes and mode choice (Alton et al., 2007; Foster et al., 2004; 

Kweon et al., 2021; Lyu & Forsyth, 2021; Mehdizadeh et al., 2017). Kweon et al. (2021) 

investigated attitudes and behavioral intentions regarding whether people want to walk in 

specific built environments by showing and letting them compare several virtual 

scenarios of the pedestrian-built environments. They found that safer (virtual) built 

environments from the parent’s perspective affect them to allow their children to walk to 

school. Alton et al. (2007) explain the relationship between a child’s walking level and 

the local environment. Walking frequency increases when people feel that the 

surrounding walking environment, which is affected by traffic, is safe. However, 

concerns about strangers have a negative effect on walking frequency, and the lack of 

nearby leisure facilities such as parks also reduces walking frequency. Lyu & Forsyth 

(2021) found that people walk more when they perceive the environment as safe and 

experience or expect discomfort due to traffic jams. Specifically, people walk more, 

especially when they are safe from the risk of crashes at intersections and when 

accessibility increases due to the convenience of public transportation. 

The relationship between perceived safety and walking behavior may differ depending 

on gender. Foster et al. (2004) examined whether perceived safety, which is influenced 
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by time of day (day or night), surrounding land use, and level of traffic, influenced 

walking frequency for men and women. For men, there was a difference in walking 

frequency depending on whether a park was nearby, but perceived safety was not 

significant in predicting walking frequency. In the case of women, whether there were 

stores within walking distance and whether the walking environment was safe during 

daytime significantly influenced walking frequency. Their study suggests that 

surroundings can significantly impact walking while influencing perceived safety and 

that this influence may vary by gender. 

2.4 Analysis Methods 

2.4.1 Predicting Pedestrian Crash 

The Poisson and negative binomial regression models are the two most popular 

methods for predicting pedestrian crashes (count data). Poisson regression model is more 

popular and is more widely applied to estimate transportation count data, including crash 

events (Washington et al., 2003). However, pedestrian crash events rarely occur. 

Excessive zero cases in the dataset can happen depending on spatial and time units used 

for analysis. Even in macro-level crash analysis, if there are too many zero-valued cases, 

statistical models based on a zero-inflated probability distribution can be an option to 

allow excessive zero-valued observations (Cai et al., 2016; Chen et al., 2022; Lord et al., 

2005; Pew et al., 2020). Several discussions have concerned the legitimacy of 

considering zero-inflated models in crash analysis. To handle too many zero cases in data 

distribution, Cai et al. (2016) argue that it is necessary to estimate crash models based on 

assumptions about places where they are inherently safe and where they are not. 
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Washington et al. (2003) and Lord et al. (2005) assert that an underlying justification 

should be needed for the splitting process in models (two distinct states) since this 

process assumes that there are completely safe places; in reality, this cannot be the case. 

Several studies agree with this assertion (Lord et al., 2007; Mitra & Washington, 2012). 

However, Pew et al. (2020) assert that zero-inflated models do not assume there are 

inherently safe or unsafe places. Zero-inflated models, e.g., zero-inflated Poisson (ZIP) or 

zero-inflated negative binomial (ZINB), can also be considered as an option in model 

selection from the perspective of selecting the model that best explains the given data, 

especially in micro-level conflict analysis. This method will be helpful if the models can 

better predict zero-value cases when analyzing crashes at the intersection or short road 

segment levels (Dong et al., 2014; Pew et al., 2020). However, whether they will also be 

helpful in macro-level conflict analysis needs to be confirmed through the underlying 

distribution of the data. In addition, for the final model selection among these different 

types of models, Akaike’s information criterion (AIC) and Bayesian information criterion 

(BIC) can be considered to evaluate how well models predict or explain the data 

(Chakrabarti & Ghosh, 2011; Shmueli, 2010). 

2.4.2 Perceived Safety Between Crash Risk & Walking 

Considering perceived safety has often been measured as latent variables with multiple 

survey items in previous research (Cho et al., 2009; Dinh et al., 2020; Gill et al., 2022; 

Rankavat & Tiwari, 2020), structural equation modeling (SEM) is useful to investigate 

relationships between crash risk factors and walking behavior mediated by perceived 

safety. This is because SEM allows the testing of various statistical models, including 
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regression, path, and confirmatory factor analysis (Kline, 2012, 2016; Schumacker, 

2016). In the SEM, confirmatory factor analysis can be employed to investigate how 

consistently survey items measure perception. Furthermore, SEM allows the testing of 

path models that extend multiple regression models and specify direct, indirect, and 

correlated effects among variables (Schumacker, 2016). Pedestrians’ perceived safety can 

connect the relationship between crash risk factors and pedestrians’ walking behavior as a 

mediator. Structural equation models, including the path model, will be helpful in 

understanding these relationships. Several recent pedestrian safety studies also use 

structural equation modeling. Many of them use path analysis with mediators in models 

(Cho et al., 2009; Dinh et al., 2020; Gill et al., 2022; Rankavat & Tiwari, 2020). 

Although SEM has many advantages as an analysis method, it requires many samples 

to test complex relationships (Kline, 2012, 2016; Schumacker, 2016). There is no 

completely agreed-upon minimum number of samples needed to estimate SEM. 

However, depending on the estimator type in SEM and the characteristics of factors 

(items) measuring latent variables, the required minimum sample size can be 250 or more 

(Hu & Bentler, 1999). In particular, the structure regarding the relationship between 

pedestrians’ perceived safety and risk factors can become complex, and it may require 

more samples. In several previous studies on pedestrians’ perceived safety or behavior, 

1,000 or more samples were used to estimate models (Rankavat & Tiwari, 2020; Useche 

et al., 2021). 
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3 Research Questions 

3.1 Research Gap 

Motivated by the aforementioned research, this study aims to enhance understanding 

of the following three knowledge gaps.  

First, more accurate measuring of pedestrian exposure, including pedestrian counts, is 

needed to investigate the observed crash risk more accurately, which refers to observed 

crashes divided by exposure estimates (Turner et al., 2018). Estimating more accurate 

pedestrian exposure with real pedestrian counts has been challenging because of 

insufficient data sources and difficult measurements. Several previous studies estimated 

pedestrian exposure to traffic flow calculated with indirect measurements of pedestrian 

activity such as population density, the rate of employees walking to walk, and pedestrian 

facility density (Al-Mahameed et al., 2019; Almasi et al., 2021; Almasi & Behnood, 

2022; Cho et al., 2009; Lee & Abdel-Aty, 2005; Sanders et al., 2017). Despite the 

difficulty of estimating pedestrian volume, some other studies used the actual pedestrian 

count to measure pedestrian exposure using video and signal performance data (Gill et 

al., 2022; Mahmoud et al., 2021; Schneider et al., 2021). However, these pedestrian 

counts can be sensitively affected by time, season, weather, and so forth (Schneider et al., 

2021). Since it is very difficult to obtain pedestrian counts, particularly at all times and 

seasons and at many locations in the network, it is often necessary to estimate pedestrian 

volume and exposure through other types of data that previous researchers have used, 

such as densities of population and employees walking to work. 
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Second, research on how external crash risk factors, including built environment 

factors, pedestrian exposure, actual crash events, and internal individual characteristics, 

affect pedestrians’ perceived safety is necessary for proactive transportation planning to 

improve pedestrian safety. Several studies found the relationship between actual 

pedestrian crash risk factors and pedestrians’ perceived safety. Their findings show that 

external crash risk factors can affect pedestrians’ perceived safety (Abdullah et al., 2019; 

Aceves-González et al., 2020; Barton et al., 2016; Campbell et al., 2004; Cho et al., 2009; 

Gill et al., 2022; Kadali & Vedagiri, 2015; Kwon et al., 2022; Mfinanga, 2014; Moyano 

Dıáz, 2002; Olvera et al., 2012; Oxley et al., 2005; Papić et al., 2020; Rankavat & Tiwari, 

2019; Schneider et al., 2004; Shi et al., 2020; Sudkamp & Souto, 2023; Wang et al., 

2018). However, their findings on environmental factors and pedestrian exposure have 

been limitedly explained because of the small area or short length of the spatial unit of 

analysis. Moreover, these findings can be different by region. Individuals’ demographic 

and socioeconomic characteristics can also be studied further regarding the relationship 

between crash risk and perceived safety.  

By understanding perceived safety, we can identify which built environmental factors 

directly or indirectly relate to pedestrian’s perceptions. However, perceived safety can be 

a broad concept that measures the perception process of the surrounding environment 

related to pedestrian safety. So, separating the concept of perceived safety with 

threatened experiences and pedestrians’ safety attitudes may be helpful in measuring and 

explaining in detail how pedestrians’ perceived safety is affected by the surrounding 

environment or situations. This is because previous experiences can predict following 
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attitudes (Fazio et al., 1978), and experiences can affect attitudes toward a walking 

environment (Johansson et al., 2016).  

In addition, understanding pedestrians’ perceived safety can help to design more 

effective countermeasures to make pedestrians act more safely where more pedestrian-

involved crashes have occurred in a proactive approach. To design proactive 

countermeasures effectively, it is necessary to cover a more diverse spatial context 

beyond specific intersections, road segments, or places with particular purposes, such as a 

campus (Rankavat & Tiwari, 2016; Schneider et al., 2004). Therefore, interrelationships 

among those factors, including built environmental factors, pedestrian exposure, 

pedestrians’ perceived safety, and actual crashes, are needed. 

Lastly, research on whether pedestrians’ perceived safety affects walking behavior is 

necessary to investigate what makes people hesitate to walk in their neighborhoods to 

encourage people to walk more and choose active transportation modes. Previous studies 

found some relationships between perceived safety and walking frequency (Alton et al., 

2007; Foster et al., 2004; Kweon et al., 2021; Lyu & Forsyth, 2021; Mehdizadeh et al., 

2017). However, there is a tendency for researchers to focus more on individual 

characteristics, including gender and age, or specific relationships (e.g., the perceived 

safety of parents about their children’s walking). In addition to these individual 

characteristics, further study should be conducted to determine how external crash risk 

factors and built environmental factors affect pedestrians’ perceived safety and walking 

behavior for efficient planning and design to improve pedestrian safety. 
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3.2 Overview of Research Questions 

Based on the above three research gaps, three research questions separately ask about 

the relationship between pedestrian exposure, crash risk factors, individual 

characteristics, perceived safety, and walking behavior. The following conceptual 

framework schematizes the assumptions and logical structures (Figure 3-1), followed by 

brief research questions. Figure 3-1 shows that crash risk factors, including pedestrian 

volume, motor vehicle traffic, and related built environmental factors, may predict 

pedestrian crash cases. In addition, it shows that crash risk factors may affect both 

pedestrians’ perceived safety and walking behavior, as individual characteristics do. For 

measuring perceived safety, perceived threatened experiences and safety attitudes are 

used. More detailed follow-up questions of three research questions will be explained in 

each research question and finding chapters. 

 

Figure 3-1 Conceptual Framework 
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1. Can pedestrian count and crash risk factors identified in previous studies explain 

actual pedestrian crashes in the research sites? 

2. Do pedestrian and motor vehicle traffic, the built environment, crashes, and 

individual characteristics affect pedestrians’ perceived safety, measured as 

threatened experiences and safety attitudes?  

3. How do pedestrian crash risk factors and individual characteristics affect the 

walking frequency mediated by safety attitudes? 

The following chapter will explain the data collection methods, descriptive analysis of 

each data set, analysis methods, and units of analysis. Three research questions and result 

chapters will follow the methods chapter. 
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4 Methods 

4.1 Overview Methods 

4.1.1 Overview of Data Collection 

Table 4-1 shows each research question’s spatial unit of analysis and data collection 

methods. To answer the first question, I tested crash risk factors and whether they predict 

pedestrian crash frequency in my research target area. I used the census block group as a 

spatial analysis unit in the first question. Using crash factors tested in the first question, I 

investigated whether crash factors and pedestrian crash frequency affect pedestrians’ 

perceived safety and walking frequency to answer the second and third research 

questions. I used half-mile straight-line buffer areas from survey respondents for the 

following research questions.  

 

I selected 346 census block groups near 65 signalized intersections with available 

pedestrian count data for the first research question about crash factors. Selected census 

Table 4-1 Overview of Data Collection by Research Question 

Research Question 
Spatial Unit of 

Analysis 
Data Collection 

Crash Factors Census Block Group 

Secondary data: pedestrian volume, 

motor vehicle traffic, and built 

environment factors 

Perceived Safety 0.5-mile straight-line 

buffer areas from the 

residential address of 

survey respondents 

Survey: perceived safety (threatened 

experiences, safety attitudes), 

individual characteristics, walking 

purpose, and behavior 

Secondary data: pedestrian volume, 

motor vehicle traffic, and built 

environment factors 

Walking Behavior 
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block groups are within a half-mile straight-line buffer from each signalized intersection. 

However, I excluded block groups if more than half of the total area was not land (e.g., 

river). This is because it is difficult to say the pedestrian count collected at the 

intersection represents the pedestrian volume of those block groups.  

For the following two research questions, I selected research sites containing 

signalized intersections with available pedestrian count data before I collected all datasets 

in two ways: conducting surveys and collecting secondary data. Note that the final 

location of intersections where pedestrian count could be obtained was 65. However, 

before starting the survey, the number of intersections where I could obtain pedestrian 

count data was 47. After excluding four sites with a low rate of residential area (census 

tract), the number of candidate study sites for the survey near intersections was 43. I 

scored census tracts based on pedestrian crash risk factors, including densities of crashes 

of all types over the past five years (2016-2020), pedestrian crashes, pedestrian fatalities, 

public transit stops, intersections, population density, spatially aggregated (average) 

annual average daily traffic (AADT), and the ratio of commercial land and mixed-use 

land area. I grouped census tracts into five based on the order of the score of each tract 

from the safest to most dangerous. I selected two of each group, a total of ten research 

sites spread over nine cities (two sites in Portland): Albany, Hillsboro, Lake Oswego, 

McMinnville, NW Portland, SE Portland, Tigard, Wilsonville, Wood Village, and 

Woodburn. 

I purchased randomly selected 250 mailing addresses within a half-mile of each 

intersection where I could obtain the pedestrian count data. I sent survey invitations to a 
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total of 2,500 mailing addresses. I alternated twice between sending postcards and paper 

questionnaires and received 551 completed responses from 514 households online and by 

mail. Frequency, purpose, and timing of walking, types of walking paths, perceived 

safety, experiences being threatened, and individual characteristics were collected.  

Pedestrian volume is another essential data in this study to estimate the effect of 

pedestrian exposure on traffic flow in crash analysis. The pedestrian volume is measured 

in two ways: actual pedestrian count and population density (proxy). A project collected a 

pedestrian count: “Active transportation counts from existing on-street signal and 

detection infrastructure” PI: Sirisha Kothuri, Portland State University, and Patrick 

Singleton, Utah State University in 2022 (Kothuri et al., 2024). I used Census Block 

Group 2020 data (U.S. Census Bureau, 2020) and population change by city from the US 

Census for measuring population density and scaling population density of 2018, 2019, 

2021, and 2022 (US Census Bureau, 2020, 2023).  

Another data to estimate pedestrian exposure to motor vehicle traffic was measured 

with the average annual average daily traffic (AADT) within a half-mile straight-line 

buffer from each survey respondent’s residence address from 2018 to 2022, except for the 

volume collected on the highway (freeway). I collected the annual average daily traffic 

(AADT) data from 2018 to 2022 from the Traffic Count Database System (TCDS: 

Oregon Traffic Monitoring System) from the open data source of the Oregon Department 

of Transportation (ODOT). 

ODOT’s Crash Data system provided data on pedestrian crashes. Using ArcGIS Pro, I 

marked the locations of pedestrian crashes between 2018 and 2022 on a map and counted 
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pedestrian crashes within a half-mile straight-line buffer from each survey respondent’s 

residence address. 

As pedestrian crashes were measured by a half-mile straight-line buffer (circle) from 

each survey respondent’s address, other built environment factors were also measured by 

a half-mile straight-line buffer from each survey respondent’s address: sidewalk, 

intersection, public transit stops, commercial area, mixed-use area, and park. So, all 

measurement values equal the densities of each built environment factor in 0.785 square 

miles. I collected these factors from ODOT, Metro’s Regional Land Information System 

(RLIS), and open data sources from the city of McMinnville and Albany. Figure 4-1 

shows how I spatially analyzed all variables by survey respondents. Note that Figure 4-1 

is not a real research site but an example image for the reader’s understanding.  

The top circle shows the analyzed area of each survey respondent’s address, and the 

light-blue pin stands for the nearest signal location where I could obtain the pedestrian 

count data. Lastly, small red dots stand for pedestrian crashes. The bottom bold black 

bubble-shape or flower-shape boundary line shows the overlapped areas from each 

survey respondent’s address around the light-blue pin in the middle of the boundary 

standing for the selected intersection (Figure 4-1). So, research sites included ten bubble-

shape or flower-shape boundaries from the selected signalized intersections.  
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4.1.2 Overview of Analysis Methods 

As shown in Table 4-1, I used two types of spatial units for two different analysis 

methods to answer three research questions. For the first research question, I estimated 

generalized linear models (GLM) to find how well pedestrian count explains pedestrian 

Figure 4-1 Example Map for Spatial Unit for Analysis (0.5-mile straight-line buffer) 
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crashes with other crash risk factors than a proxy of pedestrian volume does. My final 

model types are negative binomial regression models based on the distribution of the 

dependent variable (cumulated pedestrian crash cases) and model fit.  

I used structural equation modeling that allows path analysis and factor analysis to 

investigate relationships between pedestrian exposure factors, actual crash risk, perceived 

safety, and walking behavior for the second and third research questions. This analysis 

method affected the goal of the sample size, based on both statistical meaning and the 

previous research. After testing which crash risk factors can predict the actual pedestrian 

crashes in my selected research sites in the first research question chapter, I used those 

crash risk factors in the second and third research question chapters. Each path model by 

research question can have a different combination of explanatory variables depending on 

the purpose of the research question. More detailed analysis methods and limitations of 

the methods will be explained in the chapters for each research question. The following 

paragraphs provide a detailed explanation of site selection for the survey. 

4.2 Site Selection 

4.2.1 Purpose 

I planned to distribute the survey based on mailing addresses to investigate how the 

built environment can influence perceived safety in residential neighborhoods and the 

actual risks of pedestrian crashes. 

Structural equation modeling (SEM) necessitates substantial sample sizes. While there 

is no absolute minimum sample size for this modeling, the previous review about the 

median sample size for SEM is about 200 (Shah & Goldstein, 2006); however, Kline 
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(2016) argues that 200 may be too small to estimate complex models. Recent studies 

utilizing SEM to study pedestrian crash risk and their perceived risk have used a larger 

dataset with nearly 1,000 cases (Dinh et al., 2020; Rankavat & Tiwari, 2020; Useche et 

al., 2021). The reasons for the sample size of these studies were not explicitly stated; it 

appears that a relatively large sample size was necessary because they estimated models 

that included latent variables and multiple complex paths. Considering that survey 

respondents may not answer all questions, the data from the survey can have missing 

data. For this reason, the robust adjustments with full information maximum likelihood 

estimator can deal with the missing data in SEM, and it works well with sample sizes of 

about 400 or more (Savalei & Bentler, 2005). Therefore, I set a goal for a sample size of 

500 or more for this study. To collect responses from 500 people, survey invitations were 

sent four times, alternating between two times of postcards and two times of paper 

questionnaires with cover letters to 2,500 households. 

The selection of 2,500 households to receive survey invitations and paper 

questionnaire packets was based on two meticulous criteria. I used census tract 2020 as 

the spatial unit for site selection. This choice was made because the unit should be small 

enough to be separated by signal intersections but large enough to be ordered by the 

number of crashes, intersections, and public transit stops, in addition to the number of 

populations and households by spatial unit. It is important to note that I used census tract 

2020 solely for the site selection, and the model’s spatial unit of analysis is within a half-

mile straight-line buffer from the respondent’s address. 
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1. I selected areas where I could obtain pedestrian count data and where enough 

households lived near the site to send sufficient survey invitations. 

2. For the possibility of pedestrian crashes, I selected areas with diverse built 

environments related to pedestrian safety. 

4.2.2 Three Steps to Select 

Figure 4-2 shows the flowchart of the site selection process for the survey and other 

data collection. There were largely three steps before finalizing ten sites for data 

collection. 

Firstly, I selected census tracts that have pedestrian count data. The number of 

pedestrians is one of the critical variables affecting actual crash risk in my models, and I 

needed responses from residents near signalized intersections with pedestrian count data. 

Before conducting the survey, a list of 47 signalized intersections with available 

pedestrian count data was available. Note that the final number of signal locations for 

pedestrian count data is 65. I excluded 4 census tracts from the 47 available tracts that 

had too low a residential land area ratio or a high household vacancy rate, which could 

have lowered the response rate. 

Next, I selected ten census tracts with residents living in diverse environments among 

43 tracts. I did not choose simply the 2,500 households around 43 signalized 

intersections. This is because the response rate in some areas (especially Portland) could 

be much higher than in others. When multiple respondents live in very similar physical 

environments, it is difficult to observe changes in perceived safety and behavior due to 
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the external built environment factors. Therefore, to survey people living in various 

settings, I divided 43 areas into five groups ranging from low to high risk of pedestrian 

crashes or high traffic flow exposure. I used the nine criteria described below to score, 

rank, and divide 43 tracts into five groups. The score for each indicator ranges from 1 to 

10. Each census tract scores higher as the number or degree of relevant indicators 

increases (e.g., less than the ten percentile goes to 1; more than the 90 percentile goes to 

10). The nine indicators that I used to score are as follows. 

• Density of the crashes of all types over the past five years (2016-2020) (n/mi2) 

• Density of pedestrian crashes over the past five years (2016-2020) (n/mi2) 

• Density of crashes involving pedestrian fatalities over the past five years (2016-

2020) (n/mi2) 

• Population density (persons/mi2) 

• Average motor vehicle traffic using spatially aggregated annual average daily traffic 

• Density of public transport stops (n/mi2) 

• Commercial land area ratio (%) 

• Mixed-use land area ratio (%) 

• Intersection density (n/mi2) 

Lastly, I selected ten census tracts from the five groups regarding pedestrian crash 

safety and exposure frequency. I chose two from each group for a total of 10 intersection 

regions: (A) very safe, (B) somewhat safe, (C) neither safe nor dangerous, (D) somewhat 
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dangerous, and (E) very dangerous. I then selected two intermediate rankings in each 

group. When only one region is selected from each group, one tract with a small number 

of survey responses could not represent that group. To prevent this, two tracts were 

chosen from each group.  

 

I purchased 2,500 street addresses and resident names from DataAxle. Since I selected 

ten tracts and needed 2,500 street addresses, I asked for 250 street addresses within a 

half-mile straight buffer of each signalized intersection. However, less than 250 addresses 

were available for purchase from DataAxle for some selected locations. In this case, I 

selected the following ranked tract. For example, 250 addresses were requested for the 4th 

and 5th ranked tract among the eight tracts in Group A, respectively. If DataAxle can 

provide less than 250 residential addresses in the 5th ranked tract, I requested addresses 

47 Census Tracts

• Exclude 4 tracts with low residential area & 
high vacancy rate

43 Census Tracts

• Score using 9 criteria related to pedestrian 
safety

5 Groups

• 43 tracts are divided into 5 groups from A 
(very safe) to E (very dangerous)

10 Census Tracts

• 2 tracts are selected from each group

Figure 4-2 Site Selection Process 
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around one of the 3rd or 6th signalized intersections with 250 or more addresses that could 

be provided.   

4.2.3 Final Selection 

Table 4-2 and Table 4-3 summarize the characteristics of ten selected research sites by 

group (safest group A – most dangerous group E). Figure 4-3 shows ten selected 

intersections where I could obtain the pedestrian count data. Table 4-2 does not include 

the number of crashes involving pedestrian fatalities since most neighborhoods do not 

have the case. The ten cities (neighborhoods) selected are near Interstate 5 (I-5) in 

northeastern Oregon, listed alphabetically: Albany, Hillsboro, Lake Oswego, 

McMinnville, NW Portland, SE Portland, Tigard, Wilsonville, Wood Village, Woodburn. 

Ten maps of specific research sites, including dissolved half-mile buffers of survey 

respondents by the city, are in Appendix B Ten Maps of Selected Research Sites. 
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Group City Name 
All Types of 

Crash 

Pedestrian 

Crash 

Population 

Density 

(person/mi2) 

Motor 

Vehicle 

Traffic 

A 
Tigard 39 1 4,522 18,808 

Wilsonville 556 2 794 19,290 

B 
Woodburn 483 7 629 14,740 

McMinnville 223 1 3,713 21,468 

C 
Lake Oswego 49 3 6,126 12,548 

SE Portland 279 1 5,631 40,975 

D 
Albany 476 9 4,239 15,644 

NW Portland 248 4 5,335 27,636 

E 

Hillsboro 810 27 1,694 19,053 

Wood 

Village 
342 14 6,185 16,537 

 

  

Table 4-2 Crashes & Pedestrian Exposure of Ten Selected Research Sites 

Table 4-3 Built Environment Characteristics of Ten Selected Research Sites 

Group City Name 

Density (n/mi2) 
Commercial 

area (%) 

Mixed-use 

area (%) Transit 

stops 
Intersection 

A 
Tigard 5.62 90 3.90 < 0.01 

Wilsonville 6.22 26 4.87 < 0.01 

B 
Woodburn 1.92 15 3.62 0.11 

McMinnville 6.58 151 2.50 0.10 

C 
Lake Oswego 2.13 167 0.38 9.06 

SE Portland 31.62 229 0.00 7.78 

D 
Albany 12.59 233 17.22 5.07 

NW Portland 42.96 278 < 0.01 28.09 

E 

Hillsboro 11.56 75 6.92 11.60 

Wood 

Village 
18.05 165 5.55 26.98 
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Figure 4-3 Selected Ten Research Sites 
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4.3 Survey 

4.3.1 Overview of Survey 

A survey for this research was conducted from April to August 2023 to measure 

individual perceived safety, walking behavior, and personal or household characteristics 

that may affect daily walking. The survey had 25 questions, which was expected to take 

about 10 minutes to complete. Responses from over 500 adults (aged over 18) who are 

Oregon residents were received. This research and data collection methods, including the 

survey instrument and protocol, were approved by Portland State University’s 

Institutional Review Board (IRB) in November 2022, and the amendment was approved 

in March 2023 (Human Research Protection Program Number: 227889-18).  

4.3.2 Survey Development 

To measure walking safety experience and walking behavior, I referred to the second 

national survey of bicyclist and pedestrian attitudes and behavior conducted in 2012 and 

the draft of the third national survey by the National Highway Traffic Safety 

Administration (NHTSA) (National Highway Traffic Safety Administration, 2022; 

Schroeder & Wilbur, 2013a, 2013b, 2013c). Next, I referred to the Family Activity Study 

(FAS) survey instrument using measurement items developed by Mokhtarian and Handy 

to measure safety attitudes related to walking and individual characteristics (Cao et al., 

2006; Dill et al., 2014). The following criteria show the features of the participant’s age 

group and spatial boundary for my questionnaire. 

 My research question pertains to the general perception of safety and its influence 

on walking behavior rather than focusing on specific age groups. I have 



42 

 

designated the survey participants as adults over 18, as their mode of 

transportation may be less restricted compared to younger children. 

 The survey aims to assess the perceived safety of walking and related behaviors 

and correlate these with factors contributing to the risk of crashes in the vicinity 

of the respondent’s residence, although it did not directly ask about the crash 

experiences. The survey questions pertain to walking behavior, perceived safety, 

and instances of feeling unsafe. The scope of walking activities in the survey 

encompasses walking, jogging, or running within the respondent’s neighborhood. 

The survey questions were structured with easier concepts at the beginning to 

encourage survey participation, understanding, and completion (Dillman et al., 2014). 

Items about walking behavior in Part 1 are for answering the third research question, 

while ones about perceived safety, attitude, and experience in Parts 2 and 3 are for 

answering both second and third research questions (Table 4-4). The following 

paragraphs explain the details of each part of the survey, and the paper version of the 

whole survey is in Appendix A Paper Questionnaire. 
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* Respondents were asked this question only if they answered that they do not walk 

usually on the sidewalk. 

** Respondents were asked this question only if they answered that they have a child (or 

children). 

*** Respondents were asked this question only if they answered that they have a 

disability (or disabilities). 

Table 4-4 Summary of Survey Development 

Part Item Answer Format Reference 

Part 1: 

Walking 

Behavior 

Number of walking days a week Enter/write the number 

National 

Survey of 

Bicyclist and 

Pedestrian 

Attitudes and 

Behavior 

Walking frequency by time in a 

day 

Check one of three options 

to indicate how often 

Number of weekly walking days 

by season: weekdays & weekends 
Check one of the numbers 

Walking purpose 
Check one of the 

categorized options 

Walking frequency by path type 
Check one of four options 

to indicate how often 

Reason why not choose “usually” 

for walking on the sidewalk* 

Allow checking multiple 

categorized options 

Part 2: Safety 

Attitudes 

Attitude related to (possible) 

unsafe situations for walking 

Check one of four options 

to indicate how much 

agree or N/A Family 

Activity 

Study 

Child(ren) in household Check “Yes” or “No” 

Attitude related to (possible) 

unsafe situation for walking with 

child(ren) ** 

Check one of four options 

to indicate how much 

agree or N/A 

Part 3: 

Threatened 

Experiences 

Threatened experiences regarding 

other road user’s behaviors 
Check one of three 

categorized frequency 

options 

National 

Survey of 

Bicyclist and 

Pedestrian 

Attitudes and 

Behavior 

Threatened experiences regarding 

facilities 

Other threatened experiences 
Write your answer (it can 

be a short essay type) 

Part 4: 

Individual 

& Household 

Characteristics 

Age Enter/write the year 

National 

Survey of 

Bicyclist and 

Pedestrian 

Attitudes and 

Behavior 

 

Community 

Planning 

Survey 

Gender 

Check one of the 

categorized options 

Race/Ethnicity 

Income 

Frequency of use by mode of 

transportation 

Disability (Y/N/NA) 

Type of disability*** Allow checking multiple 

categorized options Type of mobility aids*** 

Residence period in the current 

neighborhood 

Enter/write the number Household members (adults and 

children) 

Number of vehicles 
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4.3.3 Recruit Survey Participant 

The survey data sample size aimed to have more than 500 adults residing in the ten 

selected regions. I decided on areas around ten signalized intersections according to the 

site selection method. I obtained a random sample of 250 residential addresses from each 

location, or 2,500 total, from a marketing company, DataAxle. 

Invitations to recruit survey participants were distributed in four steps from April to 

July 2023. I sent 2,500 postcards with a Uniform Resource Locator (URL) and a QR code 

to link to the online survey. Each postcard had a unique code with two digits of letters 

from the city name and five digits of numbers to allow adults receiving postcards to 

respond to the online survey. After about a month, in May 2023, I sent a paper version of 

the survey, including an invitation cover letter, business reply envelope, and reward form, 

to 2,181 households other than those that had already responded or were returned due to 

an address error or change of residence. Three weeks after the first paper survey packets, 

I sent reminder postcards to 2,084 households that had not responded in the first week of 

June 2023. Lastly, in the last week of June 2023, I sent the second paper survey packet to 

1,871 addresses that had not responded. I received 551 completed replies from 514 

residential addresses based on survey codes by August 31st, 2023. The deadline for 

responding to the survey on the last cover letter was July 15th. However, some paper 

responses arrived late due to shipping delays. For this reason, I received the responses 

online or posted by August 31st. All survey participants who finished the survey and 

wanted to receive compensation for the survey were sent a five U.S. dollar Starbucks gift 

card, and one randomly selected participant won a hundred U.S. dollar Amazon gift card. 
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4.3.4 Response Rate 

Figure 4-4 shows my survey response timeline and the number of responses by 

distribution method. Note that Figure 4-4 and Table 4-5 include online and paper 

responses, but only completed cases were recorded (arrived) by August 31st. Respondents 

who answered online accessed the survey via the QR code more than the URL.  

 

After the first postcard inviting the survey was distributed, most first-round 

participants responded within two weeks. After that, I waited for responses for another 

two weeks, but there were not many responses. When I distributed the paper survey to 

households that did not respond (enclosing a cover letter with a QR code and URL to 

enable access to the online survey), I received responses for about two months. Survey 

Figure 4-4 Timeline of Survey Response 
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recruitment through postcards with online access codes can receive responses relatively 

immediately (two weeks). However, relying solely on this recruitment method may result 

in missing responses from people who have difficulty accessing online surveys or do not 

prefer them, which can lead to bias in the data. Before conducting the survey, it was 

expected that most people would have access to online surveys because of the increase in 

personal smartphone use. However, nearly half (43%) of all respondents returned paper 

survey responses (paper survey responses: 239, total responses: 551).  

Table 4-5 shows that the overall survey response rate is approximately 26%, excluding 

returned mailing addresses. SE Portland, Tigard, NW Portland, and Lake Oswego have 

more than a 30% response rate. On the other hand, response rates for Wood Village, 

Hillsboro, and Woodburn were relatively low, ranging from 13% to 15%. 
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* Numbers excluding incomplete responses, missing or incorrectly coded responses, 

completely identical responses from one household (matching age, gender, and all other 

responses), or submitting multiple responses even though the number of people in the 

household is only one. 

 

4.4 Descriptive Analysis of Survey Data 

4.4.1 Individual & Household Characteristics 

I measured individual characteristics, including age, gender, race/ethnicity, income, 

frequency of use by mode of transportation, disability, residence period in the current 

neighborhood, household members (adults and children), and the number of vehicles. I 

choose characteristics that can affect walking behavior, mode choice, perceived safety, 

and crash risk (Cho et al., 2009; Monsere et al., 2017; Moyano Dıáz, 2002; Rankavat & 

Tiwari, 2016; Schneider et al., 2004; Schroeder & Wilbur, 2013c). For the answer format 

of the disability questions, I used options for the item from the Community Planning 

Survey developed by Dr. Corbin and Dr. Dill. 

Table 4-5 Response Rate by City (signalized intersection) 

Signal (City) 

Sent 

(number of 

househoulds) 

Return 

(number of 

households) 

Response 

(number of 

responses*) 

Rate (%) 

Albany 250 26 60 27 

Hillsboro 250 21 29 13 

Lake Oswego 250 52 67 34 

McMinnville 250 54 54 28 

NW Portland 250 26 76 34 

SE Portland 250 64 69 37 

Tigard 250 5 86 35 

Wilsonville 250 88 45 28 

Wood Village 250 18 30 13 

Woodburn 250 23 35 15 

Total 2,500 377 551 26 
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Table 4-6 summarizes survey respondents’ individual and household characteristics. 

Of the 551 survey participants, over 50% were female, and about 40% were male. I 

received survey responses from ages 19 to 91. The age of the respondents was not biased 

towards a specific age group. Except for those in their 80s or older, more than 60 

responses were received from all age groups. More survey responses were received from 

females in all age groups. Note that age was measured as a continuous variable (unit: 

year). Among 551 respondents, 74 people responded that they have certain types of 

disability, and 44 among them have a mobility disability.  

Regarding race and ethnicity, more than 75% of respondents were ‘White/Caucasian,’ 

and more than 10% of people did not answer or answered that they prefer to identify 

themselves or prefer not to say. 5% of respondents were ‘Hispanic/Latino/a/x’ and 

another 5% were ‘Asian/Asian American.’ About 3% of people were ‘Black/African 

American/African,’ ‘American Indian, Native American, Alaska Native,’ ‘Native 

Hawaiian/Pacific Islander,’ ‘Slavic/Eastern European,’ ‘South Asian/Indian,’ or ‘Middle 

Eastern/North African.’ 

According to the Census’s Quick Facts of Oregon, the median household income in 

Oregon between 2018 and 2022 is about $76,000 (U.S. Census Bureau, 2023). More than 

50% of respondents said their household income was over $75,000. About 40% of the 

total answered that their household income is $100,000 or more. About 95% of 

respondents owned one or more vehicles per household.  

In this survey sample, the period respondents have lived in their neighborhood ranges 

from 2 months to 75 years; on average, respondents have lived in their current 
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neighborhood for more than 11 years (median: 6.5 years). More than 90% of respondents 

had lived in their current residence for over one year. 

Table 4-6 Individual & Household Characteristics 

Category Characteristics Percent (%) 

Gender 

Female 57 

Male 39 

Non-binary or third gender 2 

Prefer Not to self-identify <1 

Prefer not to say 2 

Age 

19-29 13 

30-39 18 

40-49 15 

50-59 12 

60-69 16 

70-79 17 

80+ 7 

Did not respond 1 

Income 

Less than $15,000 3 

$15,000 to less than $24,999 4 

$25,000 to less than $34,999 6 

$35,000 to less than $49,999 9 

$50,000 to less than $74,999 17 

$75,000 to less than $99,999 16 

$100,000 to less than $149,999 21 

$150,000 or over 17 

Did not respond 7 

Disability 

Yes 13 

No 84 

Prefer not to say 2 

Did not respond 1 

Kids 

Yes 24 

No 76 

Did not respond 0 

Number of 

Motorized 

Vehicles 

None 5 

1 34 

2 45 

3+ 16 

Did not respond <1 

Total (n) 551 



50 

 

4.4.2 Walking Behavior 

I measured the participant’s walking behavior by asking the number of walking days 

and walking time of the day during the previous seven days. I categorized the walking 

time of day into five groups: morning before sunrise, morning after sunrise but before 

noon, afternoon, evening before sunset, and evening after sunset. The time of the day was 

not divided by the exact time because sunrise and sunset times are different depending on 

the survey respondents (survey distributed and response period: April – August). For the 

walking time of day, the participant can check their walking frequency between ‘never or 

rarely,’ ‘sometimes,’ or ‘often’ by category. These questions measured respondents’ 

recent walking frequency and how often they walk during the day or night. The number 

of days of walking during weekdays and the number of days of weekends during the four 

seasons (spring, summer, fall, and winter) were also asked. Seasons were divided into 

four: spring (March-May), summer (June-August), fall (September-November), and 

winter (December-February). The walking days by season were used to calculate the 

average annual walking number.  

Since only a few Americans walk to commute to work or school, I asked about their 

reason for walking, as shown in Table 4-4. The answer format and options are referred 

from the NHTSA’s decadal survey: National Survey of Bicyclist and Pedestrian Attitudes 

and Behavior (National Highway Traffic Safety Administration, 2022; Schroeder & 

Wilbur, 2013a, 2013b, 2013c).  

Lastly, the type of path or road of walking is asked to measure how often people walk 

on sidewalks. If they did not usually use sidewalks, participants can check why did not in 
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the following question. The answer options were also referred to the NHTSA’s decadal 

survey (National Highway Traffic Safety Administration, 2022; Schroeder & Wilbur, 

2013a, 2013b, 2013c).   

Table 4-7 shows survey respondents’ number of days of walking a week. The annual 

average is 4.3 (median: 4.5). More than half of respondents walk at least four days a 

week annually, and they walk more days during the summer season (June–August) while 

walking less during the winter season (December—February). 

 

Figure 4-5 shows that respondents mainly walk after sunrise before sunset. In 

particular, fewer people answered that they walk in the morning before sunrise. Although 

more people walk in the evening after sunset than before sunrise, it is still less than half 

the number of people who say they walked in the afternoon. 

Table 4-7 Days of Walking a Week: last week, four seasons, and annually 

Statistics 
Last 7 

days 
Spring Summer Fall Winter Annually 

Average 4.28 4.58 5.06 4.45 3.24 4.33 

Standard 

deviation 
2.36 2.11 2.14 2.16 2.38 2.00 

Minimum 0 0 0 0 0 0 

25th 

percentile 
3 3 4 3 1 3 

Median 5 5 6 5 3 4.5 

75th 

percentile 
7 6 7 6 5 6 

Maximum 7 7 7 7 7 7 
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The question asking the purpose of walking allowed multiple answers. Figure 4-6 

shows that people who walk to commute to work or school in this survey were only about 

10%, and after including people who walk to use public transportation, they were about 

15% of the total. Most people walk for recreational pleasure or exercise for their health, 

followed by walking their pets rather than to a specific destination. 
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20%
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40%
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90%

100%

Morning,
before
sunrise

Morning, after
sunrise, but
before noon

Afternoon Evening,
before sunset

Evening, after
sunset

Often Sometimes Never/Rarely

Figure 4-5 Walking Time 



53 

 

 

 

As the following two figures show (Figure 4-7, Figure 4-8), it is evident that a 

majority of people prefer walking on the sidewalk. However, some individuals opt to 

walk elsewhere due to the absence of a sidewalk or unsafe walking conditions. 

Furthermore, those who view the sidewalk as hazardous cited reasons such as unleashed 

dogs, homeless individuals camping on the sidewalk, people using drugs, and the 

presence of sharp debris and trash. 

0 100 200 300 400 500

Required for my job

Commuting to/from school

Drop off/Pick up someone, including
children at school

Commuting to/from work

Going to/from a transit or bus stop

Some other reasons

Visit a friend or relative

Walk the dog or other pet

Personal errands (to/from the post
office, and so on)

Recreational pleasure

Exercise/for my health

Number of Responses (n)

Figure 4-6 Purpose of Walking (multiple responses possible) 
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Grass or fields next to road

Unpaved roads (e.g., dirt, gravel,
sand)

Bike paths, walking paths, or trails

Paved roads, not on the shoulder
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Sidewalks
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Prefer softer surface

Don't feel safe

Not in good repair

Other

No sidewalk along the route I need to
take

Number or Responses (n)

Figure 4-7 Walking Path Selection by Type 

Figure 4-8 Reason Why People Do Not Usually Use the Sidewalk (multiple responses 

possible) 
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4.4.3 Perceived Safety: Threatened Experiences 

The perceived safety was measured in two different ways: threatened experiences and 

safety attitudes. Note that questions about safety attitudes were asked first in the survey, 

and then questions about threatened experiences were asked (Table 4-4). However, this 

descriptive analysis results section explains the threatened experiences first since 

threatened experiences came before the safety attitudes in the path model for the second 

research question in Chapter 6. Threatened experiences were measured into two 

categories: nine different threatening behaviors of other road users, especially motorists, 

and six different threatening situations because of the qualities or status of facilities. I 

used the items related to possible threatened experiences developed for NHTSA’s 

decadal survey (National Highway Traffic Safety Administration, 2022; Schroeder & 

Wilbur, 2013a, 2013b, 2013c).  

I measured threatened experiences on a three-point ordered scale: no (0), yes, 

sometimes (1), and yes, often (2). Figure 4-9 shows that about 75% of my survey 

respondents had experienced being threatened by motorists’ fast driving in their 

neighobhoords. About 70% of them also experienced being threatened by motorists’ 

inattentive driving and entering intersections without looking. However, not many of 

respondents had experienced being threatened by motorists’ honking, crowded sidewalks, 

or potential physical assaults.  
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On the other hand, Figure 4-10 shows that no item makes more than 50% of the 

respondents experience being threatened by facilities. Relatively more respondents 

0% 20% 40% 60% 80% 100%

Motorist honking at me

Path or sidewalk crowded with
bicyclists, pedestrians, and other

people

Potential for physical assault

Motorist (e.g., driver of car,
motorcycle, truck) cutting me off

Motorist driving very close to me

Motorist disregarding traffic signal

Motorist entering intersection
without looking

Inattentive driving (e.g. using a
smartphone, or talking with others)

Motorist driving very fast

Percentage of Responses (%)

Yes, often Yes, sometimes No

Figure 4-9 Threatened Experiences (other road users’ behaviors) 
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experienced being threatened by poorly maintained paths, obstacles on the path, or poorly 

lit sidewalks or paths. Interestingly, motorists’ inattentive behaviors at intersections 

threatened people in the above Figure 4-9; however, not many respondents thought 

crosswalks were too long to cross in the Figure 4-10. 

 

 

0% 20% 40% 60% 80% 100%

Crosswalks too long to cross (or too
many road lanes at intersections)

Structure of the road makes it
difficult to recognize the

approaching vehicles (e.g. bumpy
road, steep curve, hillside)

Sidewalk or path too close to motor
vehicle traffic

Poorly lit sidewalk or path

Obstacles blocking the path or
sidewalk (e.g., parked vehicles,

trash cans)

Poorly maintained paths or roadway
surfaces (e.g., cracks, potholes,

broken glass)

Yes, often Yes, sometimes No

Figure 4-10 Threatened Experiences (facilities) 
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4.4.4 Perceived Safety: Safety Attitudes 

To measure safety attitudes, I asked nine questions about how people feel safe or 

unsafe related to traffic speeds, street lighting, walking on rainy or snowy days, and 

crime during the day and at night were asked on a four-point ordered scale from ‘strongly 

disagree’ to ‘strongly agree.’ I referred to the Family Activity Study (FAS) survey 

instrument using measurements developed by Mokhtarian and Handy (Cao et al., 2006; 

Dill et al., 2014).  

To investigate whether participants who have a child or children in their household are 

more conservative concerning pedestrian safety, I asked if participants have a child (or 

children) under the age of 18 in their household. In this case, they can answer follow-up 

questions about safety attitudes when walking in the neighborhood with their child (or 

children) on a four-point ordered scale from ‘strongly disagree’ to ‘strongly agree.’ 

To prevent survey participants from checking the same answer to all questions, a 

survey question was created using negative and positive sentences. Regarding the 

positive sentence items, the more they agreed, the safer they felt, and they were coded a 

higher score. In the case of the negative sentence item, the more they disagreed, the safer 

they felt, and they reversed-coded this item. Therefore, the higher score in both cases 

means that respondents felt safer. 

Figure 4-11 shows how people perceived the nine different situations related to safety 

while walking in their neighborhood. They felt safer regarding traffic, crime during the 

day, and vehicle speed. However, they responded that they felt unsafe regarding street 
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lighting, crime, and traffic at night. In particular, people answered that they felt relatively 

less safe at intersections during the day and at night than in other situations.  

 

 

 

Item with “(rev)” was reversely coded, and the right part of this chart shows the same 

direction regarding safety attitudes. 

0% 20% 40% 60% 80% 100%

Some intersections make me feel
UNSAFE while crossing at NIGHT.

(rev)

Some intersections make me feel
UNSAFE while crossing during the

DAY. (rev)

I feel SAFE from traffic while I walk
in my neighborhood at NIGHT.

I feel SAFE from traffic while I walk
in my neighborhood during the DAY.

Crime makes it UNSAFE for me to
go on walks alone at NIGHT. (rev)

Crime makes it UNSAFE for me to
go on walks alone during the DAY.

(rev)

I feel SAFE while walking in my
neighborhood on RAINY/SNOWY

days.

Street lighting makes me feel SAFE
while I walk at NIGHT.

Traffic speeds on nearby streets are
SLOW enough to make me feel

SAFE.

Percentage of Reponses (%)

Safe Somewhat safe Somewhat unsafe Unsafe

Figure 4-11 Safety Attitudes 
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In Figure 4-12, regarding walking with their children, the street lighting at night and 

walking at intersections made them feel less safe than other possible safety issues about 

traffic or crime. 

 

 

 

 
Item with “(rev)” was reversely coded, and the right part of this chart shows the same 

direction regarding perceived safety. 

0% 20% 40% 60% 80% 100%

Crime makes it UNSAFE for me to
go on walks with my child(ren). (rev)

There are some intersections where
I feel UNSAFE while crossing with

my child(ren). (rev)

Traffic speeds on most nearby
streets while I walk with my

child(ren) are SLOW enough to…

Street lighting makes me feel SAFE
while I walk with my child(ren) at

NIGHT.

I feel SAFE from traffic while I walk
with my child(ren) in my

neighborhood.

Percentage of Responses (%)

Safe Somewhat safe Somewhat unsafe Unsafe

Figure 4-12 Safety Attitudes: Walking with Kids 



61 

 

4.5 Secondary Data1 

4.5.1 Pedestrian Volume 

4.5.1.1 Pedestrian Counts 

Pedestrian volume is measured in two ways. The first is using pedestrian count data, 

which was collected from a project called “Active transportation counts from existing on 

street signal and detection infrastructure,” funded by Oregon Department of 

Transportation (ODOT), PI: Sirisha Kothuri, Portland State University and Patrick 

Singleton, Utah State University in 2022 (Kothuri et al., 2024). Pedestrians are counted in 

multiple directions, including north-south and east-west, and for different hours (but 

mostly 48 hours) by intersections. I scaled the pedestrian counts to 24 hours by 

intersections. These signalized intersections are located on various road classification 

types, including interstate, principal arterial, minor arterial, or major collector, but mostly 

on principal arterial or major collector roads.  

Each survey respondent’s address was linked with the count data of the nearest 

intersection within a half-mile straight-line buffer. I assumed that the number of 

pedestrians counted at an intersection could represent the pedestrian volume of about a 

half-mile buffer area from a specific street address. Note that two Portland areas in ten 

selected census tracts (Figure 4-3) had multiple signalized intersections collecting the 

                                                

1 Basic statistics of each variable of secondary data are by half-mile straight buffer. Basic 

statistics by census block group for the first research question are explained in Chapter 5. 
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pedestrian counts within a half-mile. In this case, I used the average of the count data 

from the available signalized intersections. 

The pedestrian count data collected in 2022 was scaled to the count of the previous 

four years, 2018–2021, using the city’s annual population change in Oregon released by 

the U.S. Census. Using this scaled pedestrian number, I also estimated cumulated 

pedestrian crashes in several different periods including 2022: 2018-2022 (average of 

pedestrians in the last five years) and 2020-2022 (average of pedestrians in the previous 

three years).  

4.5.1.2 Proxy: Population Density 

Based on the census block group 2020 data, the average population density (number of 

people per square mile) of block groups included within a half-mile straight buffer from 

the address of 514 households was used as a proxy to measure pedestrian volume (U.S. 

Census Bureau, 2020). I also scaled the population density based on the annual 

population change from 2018 to 2022 by city in Oregon released by the Census (US 

Census Bureau, 2020, 2023).  

Based on these two pedestrian volume measurements, I could estimate the latest one-

year, three-year, and five-year cumulated pedestrian crashes. Table 4-8 shows the 

distribution of both pedestrian count and population density in three different periods: 

average in the previous five years (2018 – 2022), during the COVID-19 pandemic (2020 

– 2022), and recent year (2022). Note that the scaled pedestrian count including the 

pandemic period can be different from the real pedestrian number since the pandemic 

affected pedestrian activities.  
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4.5.2 Motor Vehicle Traffic 

To measure the motor vehicle traffic, I used annual average daily traffic (AADT) data 

from 2018 to 2022 provided by the Traffic Count Database System (TCDS: Oregon 

Traffic Monitoring System) of the Oregon Department of Transportation (ODOT).  

I tested eight different motor vehicle traffic types by measurement type. Table 4-9 

shows how the motor vehicle traffic were measured in eight different ways. First, for 

aggregating motor vehicle traffic by spatial unit, the measurements can be divided into 

two ways based on the difference in details of traffic counting places/points based on the 

data source. One is including the AADTs only on highway and the other includes other 

road types, including interstate, highway/freeway, arterial, collector, and local roads. The 

Table 4-8 Pedestrian Volume: Count & Proxy (0.5-mile straight-line buffer) 

n=514 

Statistics 

Pedestrian Count (24-hr) Population Density (person/mi2) 

2018-

2022 

5-year 

2020-

2022 

3-year 

2022 

1-year 

2018-

2022 

5-year 

2020-

2022 

3-year 

2022 

1-year 

Average     226.90     226.92     225.81   6,425   6,439   6,404 

Std. 

deviation 
    223.12     221.43     218.13   4,923   4,877   4,791 

Minimum   13   13   13   1,007   1,036   1,034 

25th 

percentile 
124 126 130   3,936   3,955   4,006 

Median 155 154 152   4,818   4,835   4,839 

75th 

percentile 
313 311 312   7,372   7,341   7,246 

Maximum 816 811 800 26,679 26,532 26,168 

Skewness 1.63 1.62 1.60 2.32 2.32 2.32 

Kurtosis 1.67 1.66 1.62 5.04 5.07 5.08 
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TCDS does not provide AADTs for all roads and all years; however, the motor vehicle 

traffic is collected on the various road types (classification), including local, minor 

collector, major collector, principal arterial (other), principal arterial (freeway & 

expressway), and interstate. Thus, including AADTs provided by TCDS can capture 

more detailed differences in motor vehicle traffic by spatial unit of analysis than AADTs 

counted only on the highways.  

Table 4-9 Eight Methods of Motor Vehicle Traffic Measurements 

Detail of Counting Points Interstate 
Calculation for 

Aggregation 

Highway Segment Traffic 

Data provided by ODOT 

Not Include 
Average (1) 

Maximum (2) 

Include 
Average (3) 

Maximum (4) 

All Other Counting Points 

provided by TCDS of 

ODOT 

Not Include 
Average (5) 

Maximum (6) 

Include 
Average (7) 

Maximum (8) 

 

Second, another criterion for dividing motor vehicle traffic measurement is whether 

the motor vehicle traffic on the interstates was included. It is difficult to assume that 

pedestrians easily access or routinely use interstate highways, which have more traffic 

and faster vehicle speeds than other roads. So, it can be assumed that the traffic measured 

on interstate highways may not be the traffic volume that affects pedestrian crashes. 

However, pedestrian-involved crashes have occurred on interstate highways such as I-84 

and I-5. This is why testing two values of the motor vehicle traffic, including AADTs on 

the interstate or without AADTs on the interstate, is necessary.  
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Lastly, to aggregate motor vehicle traffic by spatial unit, I tried average and maximum 

values. The average motor vehicle traffic may be able to represent the traffic volume of a 

particular area. However, if the motor vehicle traffic on a specific road in the area is 

much larger than on other roads, the highest motor vehicle traffic may better predict the 

likelihood of a crash. Additionally, because the number of spots that count traffic volume 

is different by region, it is difficult to say that the average always best represents the 

aggregated motor vehicle traffic by spatial unit. Thus, I respectively tried the average and 

maximum of motor vehicle traffic for estimating models.  

Figure 4-13 shows an example of how motor vehicle traffic is aggregated by a half-

mile straight-line buffer. Multiple motor vehicle traffic collecting points can be located in 

the spatial unit. If no collecting points are within the boundary, motor vehicle traffic was 

calculated by spatially joining the nearest collecting point. Table 4-10 summarizes how 

the number of motor vehicle traffic collecting points is different by the spatial unit.  
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Statistics 
Census Block Groups 

(n= 346) 

Half-mile Straight-line 

Buffer (n=514) 

Average 4.8 14.8 

Std. deviation 7.4 12.8 

Minimum   1   1 

25th percentile   1   5 

Median   3 13 

75th percentile   7 22 

Maximum 52 64 

 

Figure 4-13 Example of Measuring Motor Vehicle Traffic in Buffer Around 

Respondent’s Mailing Address 

Table 4-10 Number of Motor Vehicle Traffic Collecting Points 
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After testing and comparing eight different types of motor vehicle traffic, the model 

with the eighth motor vehicle traffic2 in Table 4-9 was the best predictor in estimating 

pedestrian crashes for the first research question. This eighth motor vehicle traffic was 

also used for the second and third research questions. Table 4-11 shows the basic 

statistics of aggregated motor vehicle traffic of three different periods: the last five years 

(2018–2022), three years of the pandemic (2020–2022), and the latest year (2022). 

Comparing three different periods, it can be seen that motor vehicle traffic has decreased 

in the last five years. This can be interpreted as a reflection of the reduced motor vehicle 

traffic during the pandemic compared to the traffic volume in 2018 and 2019. 

                                                

2 Motor vehicle traffic was measured at all counting points provided by the Traffic Count 

Database System of the Oregon Department of Transportation; included interstate traffic 

volume; and was aggregated as maximum by spatial unit of analysis. 

Table 4-11 Motor Vehicle Traffic: All(TCDS)/Interstate/Max (0.5-mile straight-line 

buffer) 

n=514 

Statistics 
2018-2022 

5-year 

2020-2022 

3-year 

2022 

1-year 

Average   39,165   38,116   37,902 

Std. deviation   36,897   35,258   34,970 

Minimum        173        170       178 

25th percentile   18,627   18,195   18,920 

Median   24,803   24861   24,970 

75th percentile   38,325   37,670   39,348 

Maximum 157,800 153,870 154,838 

Skewness 2.11 2.15 2.23 

Kurtosis 3.48 3.80 4.20 
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4.5.3 Pedestrian Crash 

Crash data from 2018 to 2020 was collected through a shapefile (a vector data file 

format for geospatial analysis) provided by ODOT. In August 2023, I could create 

shapefiles of crashes that occurred in 2021 and 2022 based on text-type data provided by 

ODOT’s Crash Data system. The crash data was extracted by county: seven counties 

containing ten study sites (Benton, Clackamas, Linn, Marion, Multnomah, Washington, 

and Yamhill).  

Crashes are rare events, so they are generally analyzed in more extended periods: one 

year or more (Carter et al. 2017). Table 4-12 shows the descriptive statistics of cumulated 

pedestrian crashes by different periods: a recent five-year period (2018-2022), three-year 

(2020-2022), and one year (2022). Cumulated pedestrian crashes are normally distributed 

within a half-mile radius buffer from each address according to the cutoffs for skewness 

and kurtosis suggested by West et al. (1995). 

 

Table 4-12 Pedestrian Crashes (0.5-mile straight-line buffer) 

n=514 

Statistics 
2018-2022 

5-year 

2020-2022 

3-year 

2022 

1-year 

Average 7.41 3.78 0.83 

Std. deviation 6.36 3.23 0.96 

Minimum   0   0 0 

25th percentile   2   1 0 

Median   6   3 1 

75th percentile 11   5 1 

Maximum 32 18 6 

Skewness 1.09 1.36 1.32 

Kurtosis 0.90 2.33 2.85 
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4.5.4 Sidewalk 

Data were collected from various sources by location (neighborhood) to measure the 

length of the sidewalk. However, a consistent strategy was used to collect the data. Note 

that in this study, the variable "sidewalk" only refers to the portion of the walkway 

installed adjacent to the road and not the ones installed separately (e.g., multi-use path). 

 Seven cities in Clackamas, Multnomah, and Washington counties: sidewalk 

data for seven cities provided by Metro’s Regional Land Information System 

(RLIS) was used. The sidewalk data provided by RLIS distinguishes whether 

there are sidewalks on both sides of the road (full), one side or incomplete 

(partial), or there are no sidewalks on both sides of the road (missing). I also 

coded the sidewalk data of the following three cities in this way: McMinnville, 

Albany, and Woodburn as follows. 

 McMinnville and Albany: I used road network and sidewalk data provided by 

the city governments of these two cities. Since Oregon State’s road network 

shapefile did not include the detailed road network in the city of McMinnville, 

I used the data provided by the city government.  

 Woodburn: I used road network data from the Oregon Transportation Network 

and checked whether sidewalks existed in each road section or on both sides of 

the road in Google Street View. In the case of Woodburn, the most recent data 

on roads in the target area was taken in July 2023, and changes in the condition 

of sidewalks were confirmed through previous data. 
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The sidewalk length was aggregated by spatial unit, census block group, and half-mile 

straight-line buffer area, using three different weights (full = 2, partial = 1, missing = 0). 

Table 4-13 displays the descriptive statistics of the sidewalk and road length. Two 

different methods were used to calculate the length of the sidewalk. The first method 

considers the length of the sidewalk regardless of whether it is on both sides or only on 

one side. The second method calculates the length of the path differently depending on 

whether there are sidewalks on both sides, only one side, or no sidewalks at all. For 

instance, if there are 10 miles of road in a half-mile radius buffer, out of which three 

miles have no sidewalks, two miles have sidewalks on one side only, and five miles have 

sidewalks on both sides, then the number of miles calculated using the first method 

would be seven miles, whereas the second method would yield 12 miles.  

 

Table 4-13 Length of Road & Sidewalk (0.5-mile straight-line buffer) 

n=514, unit: mi 

Statistics (mile) Road 
Sidewalk 

(missing or not) 

Sidewalk 

(full/partial/missing) 

Average 16.57 12.76 22.59 

Std. deviation   5.34   5.27 10.33 

Minimum   3.34   2.43   3.80 

25th percentile 13.55   8.96 13.38 

Median 16.90 14.02 24.81 

75th percentile 19.52 16.24 29.23 

Maximum 30.45 25.07 49.06 

Skewness -0.35 -0.26 -0.09 

Kurtosis 0.50 -0.79 -0.84 
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4.5.5 Intersection and Public Transit Stops 

An intersection is a point where two or more roads cross and pedestrians can 

encounter motorized vehicles. To create an intersection data set as a shapefile, I created 

intersection points on lines using ArcGIS Pro and the road network data from the ODOT 

and the city of McMinnville’s3 open data source.  

The number of public transit stops in this study was measured as the number of stop 

locations of all kinds of regularly scheduled public transit services in Oregon as derived 

from General Transit Feed Specification (GTFS) data, and the GIS data created date is 

2020 January 8. Most of the transit service data has been updated after the spring of 2023, 

when my survey was conducted, although data update dates vary for each region4. Based 

on this update, there has been no confirmed change in the number of stops within a half 

mile of the survey respondent’s address. Table 4-14 shows the descriptive statistics and 

distribution of the intersection and public transit stops.  

                                                

3 The road network shapefile of McMinnville data was in polygon, I created line data 

from polygons in ArcGIS Pro. 

4 Newly updated General Transit Feed Specification (GTFS) data in Oregon: 

https://www.oregon-gtfs.com/ 
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4.5.6 Land Use: Commercial & Mixed-Use and Park 

Pedestrians can encounter motorized vehicle flows in commercial land, mixed-use 

land, and park areas since these areas have multiple destinations for exercise, fun, and 

walking their pets. In estimating models, I excluded residential to avoid high 

multicollinearity among land use variables.  

I used Oregon’s Department of Land Conservation and Development (DLCD) to 

calculate areas by zone, which provides the statewide land use zoning (2017)5 shapefile 

data. Table 4-15 shows commercial land, mixed-use land, and park areas are normally 

distributed.  

                                                

5 Data source: ftp://ftp.gis.oregon.gov/adminbound/Oregon_Zoning_2017.zip 

Table 4-14 Intersection & Public Transit Stop (0.5-mile straight-line buffer) 

n=514 

Statistics Intersection Public Transit Stop 

Average 127 17 

Std. deviation   53 13 

Minimum   16   0 

25th percentile   87   8 

Median 135 13 

75th percentile 163 25 

Maximum 271 55 

Skewness -0.08 0.92 

Kurtosis -0.23 0.03 
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4.5.7 Posted Speed Limit & Actual Speed 

Speed limits or ranges of speed scenarios were used in crash studies as indirect 

measurements for actual speed (Aceves-González et al., 2020; Hussain et al., 2019; 

Kwon et al., 2022; Rosén & Sander, 2009). However, speed variable is needed to be 

aggregated in crash model for macro-level spatial units such as neighborhoods, cities, or 

traffic analysis zones. Because of this aggregation, some information on speed may be 

lost depending on the measurement method. Moreover, it becomes difficult to determine 

the impact of the higher range of speeds when speed is aggregated into specific spatial 

units because the frequency of crashes and the probability of serious injury from them 

can increase at high speeds (Aarts & van Schagen, 2006; Elvik, 2013; Hussain et al., 

2019; Mahmoud et al., 2021, 2023; Monsere et al., 2017). Therefore, several different 

Table 4-15 Land use (0.5-mile straight-line buffer) 

n=514, unit: mi2 (%) 

Statistics Park 
Mixed-use land 

area 

Commercial land 

area 

Average 
0.04  

(5%) 

0.10  

(13%) 

0.05  

(7%) 

Std. deviation 0.05 0.14 0.06 

Minimum 0.00 0.00 0.00 

25th percentile 
0.01  

(1%) 

0.00 

(0%) 

0.00 

(0%) 

Median 
0.03  

(3%) 

0.03  

(4%) 

0.03  

(4%) 

75th percentile 
0.05  

(7%) 

0.15  

(19%) 

0.10  

(13%) 

Maximum 
0.26  

(33%) 

0.61  

(78%) 

0.26  

(33%) 

Skewness 1.85 1.78 1.08 

Kurtosis 3.00 2.98 0.39 
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measurement strategies can be tried to determine the model to answer research questions. 

In this study, speed limits and actual speeds were measured differently by two spatial 

units: census block group and half-mile straight-line buffer. 

First, I collected data for speed limits using Portland Maps - Open Data, Oregon Speed 

Zones, and Google Street View. The speed limits by the half-mile straight-line buffer unit 

were aggregated in three ways: 1) weighted by road length, 2) maximum value within the 

unit boundary, and 3) nearest value from the survey respondent’s mailing address. Table 

4-16 summarizes the descriptive statistics of weighted, max, and nearest speed limits. 

Note that there are no nearest speed limit values for the census block groups, and the 

descriptive statistics of speed limits by census block group are shown in the following 

chapter. 

 

Table 4-16 Speed Limit (0.5-mile straight-line buffer) 

n=514, unit: mph 

Statistics 
Speed Limit 

(weighted) 

Speed Limit 

(max) 

Speed Limit 

(nearest) 

Average 26.87 44.68 25.57 

Std. deviation   4.45   8.70   6.77 

Minimum 20 30 20 

25th percentile 23 40 20 

Median 26 45 20 

75th percentile 30 55 30 

Maximum 49 65 40 

Skewness 0.79 -0.02 0.76 

Kurtosis 0.48 -0.85 -0.90 
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Next, the actual speeds were also tested. I obtained the INRIX probe data, which was 

generated by the positions of vehicles (roadway sensors) from the Regional Integrated 

Transportation Information System (RITIS). The 24-hour 50th percentile and 85th 

percentile speed data from 2018 to 2022 were collected. The 85th percentile of vehicle 

speed is considered to be unsafe (Oregon Department of Transportation, 2022). 

According to the Speed Zone Manual of ODOT, this 85th percentile speed has been used 

to set the posted speed to minimize the probability of crashes. The 50th percentile speed 

means that 50 percent of motorists drive at this speed or below on road segments, and this 

speed can be more appropriate for vulnerable road users in urban areas (Oregon 

Department of Transportation, 2022). The actual speeds by the percentile of speed, 50th 

and 85th, were aggregated in two ways: 1) weighted by road segment length, and 2) by 

nearest value from the survey respondent’s mailing address.  

Figure 4-14 shows an example of how actual speeds are aggregated by a half-mile 

straight-line buffer. Using the start and end points of the road segments, called TMC 

segment or TMC code, and the length of each segment, actual speeds by the spatial unit 

were aggregated. Multiple road segments with actual speed data in the spatial unit are 

possible within the spatial unit. If there are no start and end points of the segments with 

actual speed data within the boundary, the actual speed was calculated by spatially 

joining the nearest collecting point from the spatial unit. Table 4-17 summarizes the 

number of collecting points (road segments) and total length (mile) by the spatial unit.  
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Statistics 

Census Block Groups 

(n= 346) 

Half-mile Straight-line Buffer 

(n=514) 

Total segment 

length (miles) 

Number of 

segments 

Total segment 

length (miles) 

Number of 

segments 

Average   4.4 8 5.2 21 

Std. deviation   7.0 12 3.2 20 

Minimum   0.2 1 0.4 1 

25th percentile   0.9 4 3.1 5 

Median   2.0 9 4.9 16 

75th percentile   4.5 19 7.1 32 

Maximum 74.1 87 14.5 85 

 

Figure 4-14 Example of Measuring Actual Speed within Buffer Around Respondent’s 

Mailing Address 

Table 4-17 Number of Actual Speed Collecting Routes 
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Table 4-18 summarizes the descriptive statistics of weighted and nearest actual speed 

in 2022. Note that estimating models predict pedestrian crash frequencies by year 

periods, five years, three years, and one year. I used the aggregated actual speed of each 

period, 2018-2022, 2020-2022, and 2022. 

  

Table 4-18 Actual Speed in 2022 (0.5-mile straight-line buffer) 

n=514, unit: mph 

Statistics 
Actual Speed (weighted) Actual Speed (nearest) 

50th 85th 50th 85th 

Average 29.2 33.0 27.1 30.6 

Std. deviation 5.4 5.5 9.5 9.8 

Minimum 18.0 21.0 7.0 9.0 

25th percentile 24.9 29.0 22.0 24.0 

Median 27.7 32.2 26.0 30.0 

75th percentile 32.1 36.1 30.0 34.0 

Maximum 46.8 50.6 66.0 69.0 

Skewness 0.7 0.6 2.0 1.8 

Kurtosis -0.3 -0.3 5.9 5.0 
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5 Risk Factors Affecting Pedestrian Crashes 

5.1 Research Purpose & Question 1: Crash Risk Factors 

5.1.1 Two Research Purposes for Finding Better Crash Risk Factors 

This study starts by asking whether crash risk factors and actual crashes affect 

pedestrians’ perceived safety and walking behavior. Before answering this question, it is 

necessary to define crash risk factors and investigate whether they can explain pedestrian 

crashes in the research sites of this study. This is because crash risk factors vary by 

regional characteristics (e.g., state or city) and the size of the analysis spatial unit (e.g., 

micro-level or macro-level).  

The first research question aims to test crash risk factors at the macro level. Figure 5-1 

shows the part of the overall conceptual framework that includes the first research 

question, which, along with this framework, links with the research questions in the 

following chapters. 

 

For analysis, the characteristics of crash risk factors are needed to be aggregated by 

spatial unit. Macro-level crash analysis, such as neighborhood, census block group, city, 

or county level, differs from the micro-level crash analysis, including crash cases at 

intersection or short road segment level. Micro-level crash studies have focused on 

Figure 5-1 Research Question 1 Conceptual Framework 
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spatially more detailed factors: traffic volume at intersections, number of road lanes, 

individual characteristics of road users involved in crashes, time of day, weather, and 

light conditions (Al-Mahameed et al., 2019; Haleem et al., 2015; Lee & Abdel-Aty, 2005; 

Toran Pour et al., 2018; G. Zhai et al., 2022; Zhai et al., 2019). On the other hand, macro-

level crash studies consider spatially more aggregated factors: spatially aggregated traffic 

volume, land use, overall demographic characteristics of residents, and road network 

(Almasi et al., 2021; Chen & Zhou, 2016; Cho et al., 2009; Ding et al., 2018; Lee et al., 

2017, 2019; Schneider et al., 2021; Ukkusuri et al., 2012; Wang et al., 2016). I tested 

crash risk factors at the macro level, which is defined as a census block group since 

pedestrians are generally affected by surrounding environments while walking to multiple 

places, not only a single road network or an intersection.  

Another purpose of this first research question is to test whether pedestrian count can 

explain pedestrian crashes better than population density. As explained in the previous 

sections, 2.2.1 Pedestrian Exposure and 3.1 Research Gap, collecting pedestrian count 

data can be challenging, although pedestrian volume is one of the most important 

predictors of pedestrian crashes (Griswold et al., 2019). Instead of pedestrian count, 

proxies of pedestrian volume, such as population density, have been used to predict 

pedestrian crash probability (Al-Mahameed et al., 2019; Almasi et al., 2021; Cho et al., 

2009; Lee & Abdel-Aty, 2005; Raford & Ragland, 2004). Recent studies have started to 

utilize reliable actual pedestrian count data for predicting pedestrian crashes (Gill et al., 

2022; Mahmoud et al., 2021; Schneider et al., 2021). Thus, two pedestrian crash model 

results were compared using actual pedestrian count and population density.  



80 

 

5.1.2 Research Question 1: Crash Risk Factors 

My first research question is to test crash risk factors and investigate whether they can 

explain pedestrian crash cases in the research sites, i.e., the selected census block groups 

in the state of Oregon. I measured pedestrian volume in two ways: using actual pedestrian 

counts in 2022 and scaling them by year for estimating pedestrian counts in previous 

years, 2018-2021, and using population density as a proxy. My detailed research 

questions for this chapter are as follows. 

 Which crash risk factors are statistically significant in explaining pedestrian crashes 

in the selected census block groups? 

 Does pedestrian count data as the measurement of pedestrian volume explain 

pedestrian crashes better than population density? 

 

5.2 Analysis Methods 

The following paragraphs explain spatial and temporal analysis units for this first 

research question and also explain what data is utilized to measure two volume variables, 

pedestrian and motor vehicle traffic. Furthermore, better model selection methods are 

explained regarding the zero cases in the pedestrian crash models. 

5.2.1 Analysis Unit  

For the first research question, I used reported crash data in 346 census block groups 

around 65 signalized intersections where the pedestrian count data was collected. 

Regarding temporal units, the cumulated crash cases for one year or more are mostly 
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predicted in crash analysis. I compared the model results of the crashes for one year 

(2022), three years (2019-2022), and five years (2018-2022).  

5.2.2 Comparing Volume Data: Pedestrian Volume & Motor Vehicle Traffic 

To answer the second research question of this chapter, models using pedestrian count 

(the number of pedestrian per day) data were compared with models using population 

density. In addition, since motor vehicle traffic is one of the most significant variables in 

predicting crashes, the method used to measure motor vehicle traffic can affect the model 

result and the model fit. Therefore, I found the best model that described the data by 

comparing eight different vehicle traffic volumes divided by three criteria: type of data 

included, method of volume aggregation (average or maximum), and road classification 

criteria (including interstate or excluding interstate). Additionally, macro-level built 

environmental factors were tested to predict pedestrian crash frequency in three periods, 

five-year, three-year, and one-year, by census block group. For selecting better models, 

models were compared based on the Akaike information criterion (AIC), the Bayesian 

Information Criterion (BIC), and pseudo-R-squared values (Cameron & Trivedi, 1998; 

Cameron & Windmeijer, 1996).  

5.2.3 Zero-valued Cases & Model Selection 

Based on spatial and tempoal analysis units, zero-valued cases of pedestrian crashes 

that occurred for five years (2018-2022) and three years (2020-2022) were not excessive, 

as shown in the following histograms (Figure 5-2, Figure 5-3) although many block 

groups have zero cases of pedestrian crashes for one year, 2022 (Figure 5-4).  
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* Average of pedestrian crash cases by Census Block Groups: 3.69 (standard deviation: 

3.99) 

 

* Average of pedestrian crash cases by Census Block Groups: 1.73 (standard deviation: 

2.01) 
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Figure 5-2 Pedestrian Crashes by Census Block Group: 5-year (2018-2022) 

Figure 5-3 Pedestrian Crashes by Census Block Group: 3-year (2020-2022) 
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* Average of pedestrian crash cases by Census Block Groups: 0.54 (standard deviation: 

0.90) 

 

The Poisson and negative binomial families can deal with large numbers of zero 

values in the dataset, especially where the number of zero cases is less than the peak (one 

or more value cases) (Green, 2021; Warton, 2005; Xie et al., 2013). However, data 

distribution is difficult to use as a firm ground for model selection. So, the following 

strategy is used to select a better model. 

To select better models, the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) can be utilized. For both AIC and BIC, models with smaller 

values are better at predicting or explaining data. However, AIC and BIC values may 

tend to differ when comparing models. For example, one of the models with a smaller 
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Figure 5-4 Pedestrian Crashes by Census Block Group: 1-year (2022) 
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AIC may have a larger BIC. In this case, a model with a smaller BIC was selected for this 

study. AIC determines how well a model can predict, while BIC determines how well a 

model can explain the data (Chakrabarti & Ghosh, 2011; Shmueli, 2010). Because this 

study aimed to determine how well the model explains pedestrian crashes using data and 

variables, a model with a smaller BIC was ultimately selected.  

This study compared four different models: Poisson regression, negative binomial 

regression, zero-inflated Poisson regression, and zero-inflated negative binomial 

regression. Table 5-1 and Table 5-2 summarize the AIC and BIC of each model by period 

(year) and type. Table 5-1 summarizes the AIC and BIC of the models using the 

pedestrian count, and Table 5-2 summarizes the AIC and BIC of the models using the 

population density. Negative binomial regression models (one of the generalized linear 

regression models) of each period have smaller BIC; however, in only the case of the 

one-year model using population density, zero-inflated Poisson regression has smaller 

BIC. Note that pedestrian volume and motor vehicle traffic variables are used to predict 

excess zeros in two types of zero-inflated models. Although the zero-inflated Poisson 

model is a better fit in terms of BIC for a one-year model using population density, for 

the consistency of comparing models, the results of all models were compared using the 

results of negative binomial regression models.  
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* Generalized Linear Model 

* Generalized Linear Model 

 

5.3 Results 

5.3.1 Descriptive Statistics (spatial unit: census block group) 

Table 5-3 summarizes descriptive statistics of variables of 346 census block groups: 

pedestrian crashes, pedestrian count, population density, and motor vehicle traffic; have 

three values by time-period (five-year: 2018-2022, three-year: 2020-2022, and one-year: 

2022). Other built environment factors each except actual speed in Table 5-4 were 

measured in a single time: intersections, public transit stops, three types of land use (park, 

mixed-use land area, and commercial land area), speed limit (weighted by road length 

and maximum), and actual speed (50th and 85th of vehicle speed) by time-period. 

  

Table 5-1 Model Selection: Pedestrian Count 

Distribution Model Type 
5-year 3-year 1-year 

AIC BIC AIC BIC AIC BIC 

Poisson 
GLM* 1726 1764 1220 1258 673 711 

Zero-Inflated 1694 1744 1198 1248 666 716 

Negative 

Binomial 

GLM* 1556 1598 1169 1211 665 707 

Zero-Inflated 1550 1604 1163 1217 664 718 

Table 5-2 Model Selection: Population Density 

Distribution Model Type 
5-year 3-year 1-year 

AIC BIC AIC BIC AIC BIC 

Poisson 
GLM* 1728 1766 1229 1267 674 713 

Zero-Inflated 1687 1737 1210 1260 649 699 

Negative 

Binomial 

GLM* 1556 1599 1175 1217 666 708 

Zero-Inflated 1555 1609 1170 1224 647 701 
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n=346 

Statistics Min. Median Max. Ave. Std. dev. 

Pedestrian 

Crash 

5 years   0 3 34 3.7 4.0 

3 years   0 1 14 1.7 2.0 

1 year   0 0 6 0.5 0.9 

Pedestrian 

Count 

5 years   5 251 1,207 379 314 

3 years   5 249 1,242 380 315 

1 year   5 250 1,250 379 313 

Population 

Density 

(persons/mi2) 

5 years   5 5,074 79,206 6,539 7,898 

3 years   5 5,069 78,772 6,543 7,858 

1 year   5 5,042 77,690 6,505 7,761 

Motor 

Vehicle 

Traffic 

5 years 52 17,065 167,330 26,554 33,569 

3 years 54 17,503 165,460 26,173 32,618 

1 year 57 17,593 166,664 26,275 32,807 

 

n=346 

Statistics Min. Median Max. Ave. Std. dev. 

Intersection 4 41 382 63.2 40.8 

Transit Stop 0 5 83   7.9   9.2 

Land 

Use (%) 

Park 0 0 65   5.4 10.9 

Mixed-use 0 2 100 15.0 26.1 

Commercial 0 0 51   3.7   8.0 

Speed 

Limit 

Weighted* 18 27 62 28.4   7.0 

Maximum 20 45 70 43.9 11.8 

Actual 

speed 

(50th) * 

5 years 3 28 67 29.8 12.2 

3 years 6 28 69 30.3 12.2 

1 year 7 28 70 30.7 12.0 

Actual 

speed 

(85th) * 

5 years 4 31 72 33.2 12.5 

3 years 7 31 72 33.9 12.3 

1 year 9 32 72 34.2 12.2 

* This speed limit is aggregated by road length weight. 

 

Table 5-3 Descriptive Statistics: Pedestrian Crash & Volumes  

Table 5-4 Descriptive Statistics: Built Environment  
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5.3.2 Correlation Analysis: Pedestrian Crashes & Risk Factors 

Table 5-5 summarizes the bivariate correlation between the cumulated pedestrian 

crashes over the past five years (2018-2022) and traffic volume-related variables. Table 

5-6 shows the bivariate correlation between pedestrian crashes and the built environment. 

Pedestrian count significantly and positively correlated with pedestrian crashes, and 

motor vehicle volume also positively correlated with pedestrian crashes, while population 

density did not. Population density was positively correlated with the pedestrian count 

and negatively correlated with motor vehicle traffic (Table 5-5).  

 ‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

 

Table 5-6 shows that the built environment variables were also positively correlated 

with the pedestrian crashes including intersections, public transit stops, and all three types 

of land use (park, mixed-use land, and commercial land). Although speed-related 

variables were not statistically significantly correlated with pedestrian crashes, higher 

Table 5-5 Bivariate Correlation: Pedestrian Crash & Volume 

5-year (2018-2022) 

Variable 
Pedestrian 

Crash 

Pedestrian 

Count 

Population 

Density 

Motor Vehicle 

Traffic 

Pedestrian 

Crash 
1    

Pedestrian 

Count 
    0.089* 1   

Population 

Density 
-0.027      0.25*** 1  

Motor Vehicle 

Traffic 
     0.18*** -0.015 -0.1* 1 
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speed limits, and faster vehicle speeds were negatively correlated with pedestrian count 

and population density while they are positively correlated with motor vehicle traffic.  

 ‘ ’ p <1, ‘+’ p <0.1, ‘*’ p <0.05, ‘**’ p <0.01, ‘***’ p <0.001 

1 This variable value is normalized by road length. 

Table 5-6 Bivariate Correlation: Pedestrian Crash & Built Environment 

5-year (2018-2022) 

Variable 
Pedestrian 

Crash 

Pedestrian 

Count 

Population 

Density 

Motor 

Vehicle 

Traffic 

Intersection 

n 
0.13* -0.12* -0.39*** 0.04 

normalized by 

area: (n/mi2) 

0.13* 0.41*** 0.69*** -0.12* 

normalized by 

road length: 

(n/mi)1 

0.063 0.30*** 0.53*** -0.25*** 

Public 

Transit Stop 

n 
0.43*** 0.05 -0.12* 0.24*** 

normalized by 

area: (n/mi2) 

0.29*** 0.28*** 0.53*** 0.0014 

(normalized by 

road length: 

n/mi)1 

0.32*** 0.25*** 0.41*** 0.05 

Park (%) 
0.17** 0.06 -0.09 0.10+ 

Mixed-use (%) 
0.27*** 0.21*** 0.6*** 0.15** 

Commercial (%) 
0.16** -0.18*** -0.13* 0.03 

Speed limit 
Weighted 

-0.033 -0.27*** -0.37*** 0.29*** 

Max 
0.043 -0.26*** -0.4*** 0.32*** 

Actual speed (50th)1 
-0.030 -0.19*** -0.31*** 0.20*** 

Actual speed (85th)1 
-0.017 -0.18*** -0.31*** 0.22*** 
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As shown in Figure 5-5 and Figure 5-6, pedestrian crashes have occurred at both speed 

limits and actual speeds, ranging from low to high. Considering that speed limits and 

actual speeds are influenced by road classification and motor vehicle traffic, it can be 

seen that pedestrian crashes occur in various classifications of roads. However, many 

pedestrian crashes occurred within the speed limit and actual speed range between 20 and 

40mph (Figure 5-5 and Figure 5-6). This may imply that pedestrians mostly walk near 

roads with speed limits and actual speeds between 20 and 40mph, although they can 

access roads with higher speed limits and faster vehicles. This assumption is supported by 

the bivariate correlation results between pedestrian count and speed limit and between 

pedestrian count and actual speeds. In addition to the relationships between pedestrian 

count and speeds, population density negatively correlates with speed limits and actual 

speeds. This means more people lived in areas where vehicles moved at lower speeds. 

 

 

γ= -0.033, p-value=0.54 

Figure 5-5 Bivariate Correlation: Speed Limit & Pedestrian Crash (5-year) 
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γ= -0.03, p-value=0.58 

 

5.3.3 Pedestrian Crash Estimation Models by Periods 

Table 5-7 summarizes the results of negative binomial regression models using 

pedestrian count for three periods: five-year, thee-year, and one-year. In all three 

pedestrian crash models, motor vehicle traffic, the mixed-used land area ratio (%), and 

the commercial land area ratio (%) had significant relationships with pedestrian crashes.  

The number of intersections, speed limit, and actual speed were not statistically 

significant (or marginally significant) in predicting pedestrian crashes in all three models. 

While the number of intersections was significantly positively correlated with the 

pedestrian crashes in the bivariate correlation analysis, it was not statistically significant 

in the negative binomial regression when controlled by other risk factors in the model. I 

also tested the normalized number of intersections by road length, which was also not 

statistically significant in all three models.  

Figure 5-6 Bivariate Correlation: Actual Speed (50th) & Pedestrian Crash (5-year) 
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Overall, among the three models, the five-year and three-year models had almost the 

same significant variables and signs of the coefficients. However, the one-year model 

results slightly differed from the results of five-year and three-year models. The 

pedestrian count and public transit stop were not statistically significant in predicting 

pedestrian crashes for one year. The park area ratio was only significant in the one-year 

model. 

‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

 

Table 5-8 shows the results of the model using population density. Population density 

was significant in predicting five-year pedestrian crashes. However, this proxy was not 

statistically significant in three-year and one-year models. Regression results of other 

Table 5-7 Negative Binomial Results with Pedestrian Count 

coefficients estimate 

Variables 5-year Model 3-year Model 1-year Model 

Pedestrian Count (Ln) 0.127** 0.153** 0.097 

Motor Vehicle Traffic (Ln) 0.141*** 0.200*** 0.227** 

Intersection 0.001 0.001 0.004+ 

Public Transit Stop 0.028*** 0.021** -0.001 

Park area (%) 0.005 0.006 0.023*** 

Mixed-use area (%) 0.010*** 0.009*** 0.013*** 

Commercial area (%) 0.030*** 0.026*** 0.029** 

Speed limit (weighted) -0.016+ -0.007 0.004 

Actual speed (weighted 50th) 0.003 0.001 -0.004 

n 346 346 346 

pseudo-R2 0.31 0.22 0.15 
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variables are similar to those of pedestrian count models. More motor vehicle traffic, 

mixed-use land area, and commercial land area significantly predicted more pedestrian 

crashes, while speed limit and actual speed did not. Unlike the models with the pedestrian 

count, the number of intersections significantly predicted pedestrian crashes in five-year 

and one-year (marginally) models. 

‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

 

Figure 5-7 shows that the cumulated residuals (the red line) of the pedestrian count 

(number of pedestrians per day) and the motor vehicle traffic were mostly within the two-

sigma of cumulated residuals (the blue dotted line). However, the left side plot in Figure 

5-7 shows that the cumulated residuals of pedestrian count of more than 1,100 were 

Table 5-8 Negative Binomial Results with Population Density 

coefficients estimate 

Variables 5-year Model 3-year Model 1-year Model 

Population Density (Ln) 0.151** 0.071 0.083 

Motor Vehicle Traffic (Ln) 0.144*** 0.206*** 0.229** 

Intersection 0.003* 0.002 0.005+ 

Public Transit Stop 0.028*** 0.021*** -0.001 

Park area (%) 0.007+ 0.008 0.025*** 

Mixed-use area (%) 0.009*** 0.009*** 0.013*** 

Commercial area (%) 0.025*** 0.022*** 0.026** 

Speed limit (weighted) -0.004 -0.004 0.010 

Actual speed (weighted 50th) 0.003 0.001 -0.004 

n 346 346 346 

pseudo-R2 0.31 0.20 0.15 
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beyond the range of two sigma. This means that more than 1,100 pedestrians may not 

predict cumulated pedestrian crash frequency by census block groups (Cameron & 

Trivedi, 1998). The right-side plot in Figure 5-7 shows that the cumulated residuals of 

motor vehicle traffic of more than 130,000 were not within the range of two-sigma. This 

also means that more than 130,000 motor vehicle traffic may not predict precisely 

cumulated pedestrian crashes by census block groups (Cameron & Trivedi, 1998). 

 

On the other hand, Figure 5-8 shows that, the cumulated residuals (the red line) of the 

population density of more than about 40,000 persons per square mile were off from the 

two-sigma of cumulated residuals (the blue dotted line). This means that more than about 

40,000 population density may not precisely predict pedestrian crashes (Cameron & 

Trivedi, 1998) while the tendency of motor vehicle traffic cumulative residual plot 

(CURE plot) was almost the same as the result in Figure 5-7. Note that only three census 

block groups had over 40,000 population density in the sample. Although excessively 

high population density can be considered outliers in the sample, this still implies that a 

Figure 5-7 Cumulative Residual Plots (5-year model): Pedestrian Count  
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place with a higher population density than the surrounding places can expect fewer 

pedestrian crashes. 

The CURE plots of other models, three-year and one-year, are almost the same as the 

plot of the five-year model; however, both pedestrian count and population density plots 

show that three-year and one-year models have slightly more ranges of pedestrian volume 

and motor vehicle traffic that may not precisely predict the pedestrian crashes. It can be 

implied that more accurate crash frequency predictions can be made by cumulating the 

number of pedestrian crashes over a longer period of time. 

 

5.4 Discussion 

In this chapter, crash risk factors were tested to determine whether they can be 

statistically significant in explaining the cumulated pedestrian crashes. Three main points 

from the model results are as follows: 

Figure 5-8 Cumulative Residual Plots (5-year Model): Population Density 
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1. Pedestrian Volume: Pedestrian count explained pedestrian crashes better than 

population density. 

2. Intersections and speeds: Intersections are likely places where pedestrians can 

encounter vehicles, and other research has found that the higher the vehicle 

speed, the greater the likelihood of crashes with pedestrians. However, these 

are not statistically significant in explaining the number of cumulated 

pedestrian crashes in this chapter. 

3. Public transit stop and land use: Public transit stops and land use types 

explained the pedestrian exposures and the likelihood of their crashes that 

other variables did not cover. 

First, higher pedestrian counts were significantly related to more pedestrian crashes in 

five-year and three-year models. This is consistent with findings in the previous studies 

(Al-Mahameed et al., 2019; Gill et al., 2022; Mahmoud et al., 2021). On the other hand, 

the population density was significant in predicting pedestrian crashes only in the five-

year model. Although this pedestrian count data was collected in only two days, it can 

explain two different time periods of cumulated pedestrian crashes. This result may 

implty that the pedestrian count is better to explain the cumulated the number of 

pedestrian crashes for more than one year at the macro level with using the same 

explanatory variables. However, this does not mean that population density cannot 

explain the probability of pedestrian crashes. Several previous studies used population 

density as a proxy for measuring pedestrian volume and found significant results with the 

population density (Chimba et al., 2018; Raford & Ragland, 2004; Ukkusuri et al., 2012).  
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There are likely to be more pedestrians in densely populated areas; however, this does 

not mean that higher population density necessarily causes more pedestrian crashes. 

Population density may relate more to other factors, especially residential land areas, 

which are less likely to be destinations by walking. In addition, higher population density 

may relate to road classification, with fewer motor vehicle traffic. This can be supported 

by the fact that higher population density correlates with less motor vehicle traffic (Table 

5-5), another essential crash predictor. In other words, the reduced motor vehicle traffic 

in places with higher population density may reduce the effect of pedestrian exposure that 

causes pedestrian crashes. Based on this result, I can conclude that pedestrian counts, 

which explain pedestrian activity more precisely, should be collected regularly at more 

sites, like motor vehicle traffic data (AADT or VMT). It helps to conduct more accurate 

pedestrian crash analysis, which is fundamental for improving pedestrian safety.  

Next, intersection and speed-related variables are not statistically significant in 

explaining the number of cumulated pedestrian crashes, although previous studies 

referred to these as important crash risk factors (Hussain et al., 2019; Lee & Abdel-Aty, 

2005; Lee et al., 2015, 2017; Schneider et al., 2004, 2021). Depending on road 

classification and surrounding land use, this may be due to the relationship between 

intersection and speed. For example, if local roads are connected with more intersections, 

they can be more accessible to pedestrians since they have fewer and slower vehicles 

because of the characteristics of the roads. In other words, increasing the number of 

intersections may imply improved pedestrian accessibility while inducing fewer vehicles 

and slower vehicle speeds. In addition, regarding speed, pedestrian crashes occur in a 
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wide range of vehicle speeds and may cause speed variables to be not statistically 

significant in the model. 

Lastly, public transit stops and land use variables, especially mixed-use land and 

commercial land areas, explained the pedestrian crashes. It is difficult to assert that more 

transit stops directly increased the number of pedestrian crashes. However, public transit 

stops can explain the exposure effect, which cannot be explained only by pedestrian and 

motor vehicle traffic. Previous studies have also referred to the importance of this factor 

(Chen & Zhou, 2016; Cho et al., 2009; Clifton et al., 2009; Mfinanga, 2014; Mukherjee 

& Mitra, 2019; Schneider et al., 2004; Zegeer & Bushell, 2012). In addition to the public 

transit factor, land use types also explained the exposure effect. More mixed-use land 

areas and commercial areas are expected to induce activities of both pedestrians and 

drivers (Chen & Zhou, 2016; Loukaitou-Sideris et al., 2007; Priyantha Wedagama et al., 

2006; Pulugurtha & Sambhara, 2011; Ukkusuri et al., 2012).  

Despite the unique findings from this first research question, several limitations could 

be improved upon in future research. First, although the number of pedestrians may differ 

by intersection, only one or two pedestrian counts represented the pedestrian volume of 

each census block group, which has multiple intersections. This measurement limitation 

can be overcome if it is possible to collect the pedestrian counts at more places in future 

research.  

In addition, motor vehicle traffic in this study may not fully account for the amount of 

traffic volume that pedestrians may encounter. Since the maximum traffic volume within 

a unit was used in the final models, the detailed traffic volumes may not be considered in 
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the model if traffic measured on interstates or freeways within or very close to the census 

block group was included. Considering pedestrians are less likely to access interstates or 

freeways, the maximum traffic volume may not perfectly represent the traffic volume that 

pedestrians usually encounter. Therefore, if there are methods that can offset these 

measurement errors, it will be possible to more accurately measure the amount of traffic 

that pedestrians may encounter, thereby predicting pedestrian crashes more accurately 

and improving the safety of road users with different speeds. Rather than directly 

measuring traffic counts, traffic volume may be measured by road classification, number 

of road lanes, road width, etc. In particular, the number of road lanes at an intersection 

where pedestrians cross may correlate with road classification and traffic volume. Instead 

of relying on measuring traffic volume at a specific location, it is possible to indirectly 

measure traffic volume with road segment length or the number of road lanes by road 

classification.   

Next, this study includes pedestrian crashes during the COVID-19 pandemic. Slight 

inconsistencies between model results may come from the influence of the pandemic. In 

models, motor vehicle traffic reflected changes in volume due to the pandemic, but 

pedestrian counts were only measured in 2022. The number of pedestrians from 2018 to 

2021 may differ from the actual number of pedestrians because it was scaled from the 

population changes by city, and this estimation may affect model results. This limitation 

can be overcome when pedestrian volumes are regularly measured in more places. 
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6 Factors Affecting Perceived Safety 

6.1 Research Question 2: Perceived safety 

This research aims to examine whether pedestrians accurately perceive crash risk 

factors and whether these perceptions affect their walking behavior. In the previous 

chapter, I tested whether crash risk factors can predict actual pedestrian crashes in 

Oregon. Following this test, I investigated how crash risk factors and crashes affect 

pedestrians’ perceived safety. The next chapter completes the analysis by testing how 

perceived safety affects walking behavior.  

For this analysis, I assume that actual crashes could indirectly measure possible risks 

that are not measured by other crash risk factors, such as interactions between road users 

and micro-level facility influence (Chaurand & Delhomme, 2013; Cho et al., 2009). I 

subdivided pedestrians’ perceived safety into threatened experiences and safety attitudes. 

Terminology and measuring methods of perceived safety vary depending on researchers. 

However, as I previously defined, the perceived safety in this study includes awareness of 

external stimuli and judgment of possible risks based on possibilities of controlling those 

risks. Threatened experiences in this study refer to pedestrians’ experiences in which they 

perceive a dangerous situation while walking that may occur due to uncontrolled 

surrounding circumstances, especially a possible crash with a vehicle. This is an 

experience that pedestrians recognize may be more dangerous than the permitted risk 

(Proske, 2019) defined in the section 2.1. Safety attitudes refer to pedestrians’ attitudes 

about their safety when walking in their neighborhood.  
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Threatened experiences while walking are measured by adding scores of 15 items 

related to pedestrian facilities and the behavior of other road users. Note that 15 items are 

listed in Figure 4-9 and Figure 4-10 in section 4.4.3. Safety attitudes are measured by 

asking about people’s thoughts on nine items affecting walking safety. After factor 

analysis, seven items among nine were made into one latent variable. Survey items are 

listed in Figure 4-11 in section 4.4.3. 

The accumulation of personal experience influenced by various external 

environmental or personal factors may affect safety attitudes (Johansson et al., 2016; Liao 

et al., 2022; Lyu & Forsyth, 2021; Mukherjee & Mitra, 2019; van der Vlugt et al., 2022). 

Thus, I divided pedestrians’ perceived safety concept into ‘threatened experiences’ and 

‘safety attitudes’ and measured them. I assume these are affected by external crash risk 

factors and individual characteristics. In terms of individual characteristics, individual-

level factors can influence perceptions and behaviors as confounding factors (Cho et al., 

2009; Mesch, 2000). It is also possible that individual characteristics can be considered 

moderators of relationships between crash risk factors and perceptions. Although they 

were tested as moderators in models, the data of this research did not fit well when 

selected individual characteristics were moderators to explain the relationships between 

risk factors and perceptions in the model. So, individual characteristics, including age, 

gender, etc, control two perceived safety concepts, threatened experiences and safety 

attitudes, as confounding factors. Figure 6-1 shows the part of the overall conceptual 

framework that covers my second research question.  
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The main research question for this chapter is: do pedestrian and motor vehicle traffic, 

built environment, and crashes affect pedestrians’ threatened experiences and safety 

attitudes? More specifically: 

1. Can crashes, in addition to crash risk factors, predict the pedestrian’s 

threatened experiences and safety attitudes?  

2. Do pedestrians’ threatened experiences affect their safety attitudes? 

3. Besides the crash risk factors and crashes, how do individual characteristics 

affect the perceived safety? 

Figure 6-1 Research Question 2 Conceptual Framework 
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6.2 Analysis Methods 

6.2.1 Modeling Method & Possible Issue 

In this section, I explain the analysis method and spatial unit of analysis for the second 

research question, which differs from the previous chapter. This section also explains 

how I solve the possible issues in analysis because of the spatial unit and analysis 

method. Lastly, I explain why I estimated four different model types by crash variables. 

6.2.1.1 Structural Equation Modeling (SEM) 

Structural equation modeling (SEM) allows the testing of various statistical models, 

including regression, path, and confirmatory factor analysis (Kline, 2012, 2016; 

Schumacker, 2016). Since estimators are normally distributed but have some missing 

data in the data sample, the full information maximum likelihood (FIML) method is used 

to compute each set of cases with the same unique pattern of missing values (Arbuckle, 

1996). Estimating the model requires more than 400 cases (Savalei & Bentler, 2005). In 

the SEM, various combinations of exogenous variables are possible, including crash risk, 

actual crash frequency, and personal characteristics. The final model was decided based 

on the assumption of relationships between variables, model fit, and multicollinearity. 

The combination of exogenous variables in SEMs will be explained in more detail in 

section 6.2.3 after the bivariate correlation results. 

6.2.1.2 Spatial Unit of Analysis and Possible Issue in Path Analysis 

For the second and third research questions, I defined a neighborhood as a space 

within a half-mile from one’s mailing address. Because of this spatial analysis unit, 

‘crash event’ is not a path analysis (or SEM) mediator. When the pedestrian crash is a 
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mediator in the path model, it causes an issue based on the data bias since crash cases in 

the same areas will be considered different observations multiple times in crash 

prediction. Multiple survey responses can be sent from the same street address. For 

example, multiple adults can answer my survey in the same household, or adults from 

different house units in the same apartment can participate. 

The following two figures schematize the possible issue when the crash variable 

becomes a mediator in the path analysis (Figure 6-2 and Figure 6-3). In Figure 6-2, the 

relationships within the grey dash round square show the partial regression model 

estimating pedestrian crashes. The dependent variable in this model can be duplicated, as 

shown in Figure 6-3, because of the spatial unit. On the other hand, the dependent 

variable, i.e., perceived safety (experiences & attitudes) of the other partial part in the 

path analysis (within the black-lined round square) in Figure 6-2, is not duplicated since 

these observations are from individual answers. Therefore, I tested the crash as an 

exogenous variable rather than a mediator in the final model to investigate whether crash 

risk factors and crash cases affect pedestrians’ perceived safety. In the following 

paragraphs, I will discuss another possible issue in path analysis (measuring speed in 

macro-level analysis) and an alternative way to deal with this possible problem. 
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6.2.2 Using Actual Speed Rather Than Speed Limit for Estimating Perception 

Vehicle speeds, which vary by vehicle, time of day, and road classification, can 

significantly affect the likelihood of a crash and the severity of injuries (Clifton et al., 

Figure 6-2 Possible Issue in Path Analysis with Duplicated Observations  

Figure 6-3 Duplicated Observations in Dataset Example 
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2009; Davis, 2001; Haleem et al., 2015; Hussain et al., 2019; Monsere et al., 2017; Rosén 

et al., 2011; Rosén & Sander, 2009). Posted speed limit and actual speed can be used to 

measure aggregated vehicle speed at a spatially macro-level. However, it is difficult for 

pedestrians to accurately perceive the speed of passing vehicles or accurately perceive the 

speed difference between vehicles (Kwon et al., 2022; Papić et al., 2020; Shi et al., 2020; 

Sudkamp & Souto, 2023). Because of these reasons, I used only the actual speed in the 

final model for the second and third research questions. In the following paragraphs, I 

explain why posted speed limits were not included in the model, but actual vehicle speeds 

were included in the model for the second and third research questions. 

6.2.2.1 Reasons for Excluding Posted Speed Limits 

Using speed limit in structural equation models predicting perceived safety had two 

problems: leading to misinterpretation of model results and multicollinearity. As shown 

in Table 4-16, the speed limit can be measured in three ways for the half-mile straight-

line buffer spatial unit: weighted by road length, maximum speed limit within the unit 

area, and nearest speed limit from the survey resident’s address. Using the weighted 

speed limit and the nearest speed limit in structural equation models did not show any 

statistically significant results, as they were not statistically significant for the first 

research question models in the previous chapter. However, in the models, the maximum 

speed limit within the half-mile buffer area significantly and negatively correlated with 

pedestrians’ threatened experiences. This result runs counter to my assumption and other 

research (Aceves-González et al., 2020; Kwon et al., 2022). This result may be due to the 

spatial unit for measurement (possible measurement error) or due to differences in 
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individual perceptions in each neighborhood (perception mismatch). First, the spatial 

unit, a half-mile buffer area from the survey respondent’s address, can include some 

roads with higher speed limits that can be less accessible for pedestrians. For example, 

NW Portland is close to Interstate I-405, but the actual pedestrian paths or sidewalks that 

residents can walk on are separated from high-speed roadways. In the case of Tigard, the 

neighborhood is surrounded by arterial roads, but pedestrian paths or sidewalks that 

residents can walk on are also separated. In these cases, the individual observations in the 

dataset can have higher maximum speed limits in their neighborhoods, while survey 

respondents may answer that they feel safer walking on the separate path adjacent to the 

road with lower speed limits. 

Next, the speed limit variable’s result from ten all neighborhoods may differ from the 

result of each neighborhood since each neighborhood had a different speed limit range 

(Figure 6-4, Figure 6-5, Figure 6-6). The ANOVA test result shows that the speed limits 

were significantly different by neighborhood (weighted speed limit: F=189.4, p-

value<0.001; max of speed limit: F=329, p-value<0.001; nearest speed limit: F=32.26, p-

value<0.001).  
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* In this figure, each boxplot shows the 25th percentile to 75th percentile range and the 

bold line in the middle, which means the median. Whiskers (vertical lines) stand for the 

rest of the percentile (minimum to 25th percentile and 75th percentile to maximum). Dots 

in the boxplot mean the outliers. 

 

* Since this figure shows the maximum speed limit range, several neighbhorhoods can 

have only the median (bold horizontal line) and outliers (dots). If the neighborhood does 

not have the observation stands for the 25th percentile or 75th percentile value in the 

range, the boxplot can show only the lower quartile, upper quartile, or neither. 

Figure 6-4 Speed Limit Range by Neighborhoods: Weighted* 

Figure 6-5 Speed Limit Range by Neighborhoods: Maximum* 
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* Since this figure shows the nearest road speed limit range, several neighborhoods can 

have only the median (bold horizontal line) and outliers (dots). If the neighborhood does 

not have the observation stands for the 25th percentile or 75th percentile value in the 

range, the boxplot can show only the lower quartile, upper quartile, or neither. 

 

Table 6-1 summarizes bivariate correlation results between the posted speed limit and 

perceived safety. Bonferroni correction was applied to the test since three data sets were 

used and compared for each neighborhood. The Bonferroni correction is used to adjust 

the significance level, α (i.e., 0.05) (Zielstra & Hochmair, 2012). Using Bonferroni 

correction, most of the relationships were not statistically significant. In addition, the 

correlation coefficients were weak (mostly less than 0.3).  

Figure 6-6 Speed Limit Range by Neighborhoods: Nearest* 
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1 The sign of the assumption is to help understand the direction of the correlation. This 

research question assumes that speed limits and actual speeds will have a negative 

relationship with safety attitudes and a positive relationship with threatening experiences.  

2 There are no correlation coefficients when the speed limit has one value (the speed 

limits are the same in some neighborhoods depending on the measurement methods of 

the speed limit). 

 

The bivariate correlation results on speed limits by neighborhood may be because of 

the contrast of the surrounding road environment which can affect pedestrians’ speed 

Table 6-1 Bivariate Correlation: Speed Limit & Perceived Safety 

Types of 

Speed Limit 

Meausrement 

Speed Limit 

Weighted Maximum Nearest 

Perceived 

Safety 
Threatened 

Experience 

Safety 

Attitude 

Threatened 

Experience 

Safety 

Attitude 

Threatened 

Experience 

Safety 

Attitude 

Expected Sign 

Direction1 

(+ vs. -) 
+ - + - + - 

Ten 

Neighborhoods 
-0.045 -0.013 -0.110 0.041 -0.004 -0.089 

By Neighborhoods 

Albany 0.230 -0.023 0.098 -0.311 0.330 -0.191 

Hillsboro 0.190 -0.052 -0.026 -0.183 0.012 -0.191 

Lake 

Oswego 
0.240 -0.467 0.080 -0.176 0.200 -0.195 

McMinnville -0.140 0.091 -0.210 0.182 -0.120 -0.008 

NW Portland 0.190 0.115 0.220 -0.177 0.023 0.066 

SE Portland 0.140 -0.273 -0.038 -0.074 0.320 -0.309 

Tigard 0.210 -0.263 na2 na2 -0.034 -0.062 

Wilsonville 0.011 -0.315 -0.250 -0.100 na2 na2 

Woodburn -0.110 -0.072 0.210 -0.261 0.061 -0.341 

Wood 

Village 
0.200 -0.311 na2 na2 -0.190 -0.278 
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perception. In other words, pedestrians do not perceive the absolute posted speed limit as 

low or high, but they may perceive the relative speed difference compared to the 

surrounding environment (Sudkamp & Souto, 2023). When measuring speed as speed 

limit, there is a risk of misinterpreting the results of the perceived safety analysis if the 

analysis is not conducted separately for each neighborhood or road network.  

In addition to possible misunderstanding of the result, when the model was estimated 

using both the speed limit and the actual speed, the crash risk factors estimating 

pedestrian’s threatened experiences have unacceptable variance inflation factor (VIF) 

values (five or higher). In the previous chapter, the speed limit and the actual speed were 

used in the model answering the first research question, but the VIF values of all 

variables were less than two. However, in this chapter, models answering the second 

research question with both the speed limit and the actual speed variables or with only the 

speed limit showed high multicollinearity.  

6.2.2.2 Reasons for Including Actual Speed in SEM 

Table 6-2 and Table 6-3 show the bivariate correlation results between actual speed. 

Bonferroni correction was also applied to the test and perceived safety by neighborhood 

were not statistically significant and the coefficients are small (mostly less than 0.3).  
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1 The sign of the assumption is to help understand the direction of the correlation. This 

research question assumes that speed limits and actual speeds will have a negative 

relationship with safety attitudes and a positive relationship with threatening experiences. 

 

Table 6-3 summarizes the bivariate correlation between the nearest actual speeds (50th 

and 85th percentile), threatened experiences and safety attitudes. Bonferroni correction 

was also applied to the test. As the results in Table 6-2, there were no statistically 

significant correlation reults.   

Table 6-2 Bivariate Correlation: Actual Speed (weighted) & Perceived Safety 

Types of Actual 

Speed Measurement 

Actual Speed 

50th percentile 

(weighted by road length) 

85th  percentile 

(weighted by road length) 

Perceived Safety 
Threatened 

Experiences 
Safety Attitude 

Threatened 

Experiences 
Safety Attitude 

Expected Sign 

Direction1 

(+ vs. -) 
+ - + - 

Ten Neighborhoods -0.100 0.032 -0.100 0.031 

By Neighborhoods 

Albany 0.190 -0.100 0.025 -0.104 

Hillsboro 0.030 -0.220 0.043 -0.220 

Lake Oswego 0.100 -0.230 0.100 -0.234 

McMinnville -0.150 0.152 -0.100 0.116 

NW Portland 0.070 0.176 0.082 0.183 

SE Portland -0.040 -0.025 0.002 -0.043 

Tigard -0.280 0.322 -0.270 0.262 

Wilsonville -0.089 -0.244 -0.092 -0.238 

Woodburn -0.170 0.043 -0.170 0.044 

Wood Village 0.011 -0.131 -0.002 -0.111 
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Types of Actual 

Speed Meausrement 

Actual Speed 

50th percentile 

(nearest) 

85th  percentile 

(nearest) 

Perceived Safety 
Threatened 

Experiences 
Safety Attitude 

Threatened 

Experiences 
Safety Attitude 

Expected Sign 

Direction1 

(+ vs. -) 
+ - + - 

Ten Neighborhoods -0.016 0.026 -0.006 0.016 

By Neighborhoods 

Albany 0.240 -0.213 0.230 -0.256 

Hillsboro 0.009 -0.180 0.046 -0.188 

Lake Oswego 0.015 -0.221 0.032 -0.247 

McMinnville 0.046 0.042 0.180 0.011 

NW Portland -0.033 0.295 -0.034 0.300 

SE Portland 0.008 -0.123 0.011 -0.100 

Tigard 0.025 -0.148 0.038 -0.128 

Wilsonville 0.056 -0.092 0.022 -0.198 

Woodburn -0.140 -0.004 -0.120 -0.041 

Wood Village 0.290 -0.380 0.290 -0.380 

1 The sign of the assumption is to help understand the direction of the correlation. This 

research question assumes that speed limits and actual speeds will have a negative 

relationship with safety attitudes and a positive relationship with threatening experiences.  

 

Considering the results of the above analyses, the probability that actual vehicle speed 

significantly predicts perceived safety in the structural equation model seems low. 

However, in the case of actual vehicle speed, unlike the posted speed limit, it did not 

cause serious multicollinearity problems with other explanatory variables in the model. In 

Table 6-3 Bivariate Correlation: Actual Speed (nearest) & Perceived Safety 
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addition, the model fits the model using only actual speed than the model using both 

speed limit and actual speed since the model result has a lower Akaike information 

criterion (AIC), the Bayesian Information Criterion (BIC). Especially the model with 

both actual speed and the maximum speed limit has higher BIC (more than 6) than the 

model with only using the nearest actual speed from the respondent’s address. This 

means that the model with only the actual speed explains better with the sample data for 

this research (Bauldry, 2015). Therefore, final structural equation models were estimated 

that included the actual vehicle speed variable. 

6.2.3 Four Structural Equation Models by Crash Variables 

Four different models were tested using different crash data variables based on 

bivariate correlation results (Table 6-4): 

1. Without crash cases: I estimated a model without crash cases to compare its 

results with those of other models, including other crash variables. 

2. Including all types of crashes: All-type crashes significantly correlated with 

threatened experiences and safety attitudes (Table 6-4). So, I tested all types of 

crashes in the model to confirm whether the results differed from those of a 

model that included pedestrian crash cases. 

3. Including pedestrian crashes: The model with pedestrian crash cases is the 

main model to answer my second research question, and the following result 

section explains this in detail. 
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4. Including pedestrian fatal crashes: Although pedestrian fatal crashes do not 

significantly correlate with two perceived safety variables, I also tested the 

model with pedestrian fatal crash cases for model comparison. 

Table 6-4 also shows the bivariate correlation results of variables that I used in SEMs. 

Intersections, transit stops, sidewalks, and mixed-use land areas inducing pedestrian 

activities significantly positively correlate with threatened experiences. Although the park 

area negatively correlates with threatened experiences, it positively correlates with safety 

attitudes. In other words, more park areas relate to fewer threatened experiences and 

make people feel safer walking in their neighborhoods. On the other hand, public transit 

stops negatively correlated with their safety attitudes but positively correlated with 

threatened experiences. This means that people were threatened more often in the 

neighborhood with more transit stops and felt less safe. Regarding individual 

characteristics, the older people were, the fewer threats they experienced while walking, 

and they felt relatively safer walking. On the other hand, people with disabilities feel less 

safe about walking. People with children (under 18 years old) in their household 

responded that they experienced more threatening situations while walking, although the 

correlation with attitude was not significant. In the following paragraph, I will discuss 

how these correlation analysis results are similar to or different from the results of 

structural equation models.  
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‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

1 Motor Vehicle Traffic is divided by 1,000 as it is used in the following final struactural 

equation model. 

2 This value is normalized by road length as it is used in the following final struactural 

equation model. 

 

Different combinations of land use, pedestrian facility, and individual characteristics 

factors were used to predict pedestrians’ threatened experience and safety attitudes in the 

model. First, to predict pedestrians’ threatened experiences, crash risk factors inducing 

pedestrian activities were used: intersection, public transit stop, areas of park, mixed-use 

land, and commercial land area. Next, to predict safety attitudes, factors that are 

Table 6-4 Correlation Between Crash Risk Factors and Perceived Safety 

Variables Perceived Safety 

Crash Risk Factors 

& Individual Characteristics 

Threatened 

Experience 
Safety Attitude 

Pedestrian Count 0.110** -0.032 

Motor Vehicle Traffic1 0.045 -0.043 

Actual Vehicle 

Speed 

(weighted 50th) -0.100* -0.061 

(nearest 50th) -0.016 0.308 

Intersection 
(n) 0.110** -0.023 

(n/mile) 2 0.049 -0.002 

Transit Stop 
(n) 0.210*** -0.157*** 

(n/mile) 2 0.093* -0.111* 

Sidewalk (mile) 0.120** -0.021 

Park (square mile) -0.088* 0.139** 

Mixed-use area (square mile) 0.160*** -0.077 

Commercial area (square mile) -0.034 0.005 

All-type Crash (5-year) 0.230*** -0.166*** 

Pedestrian Crash: All-type (5-year) 0.210*** -0.125** 

Pedestrian Fatal Crash (5-year) 0.064 -0.025 

Age -0.190*** 0.149** 

Gender -0.071 0.047 

Disability 0.023 -0.093+ 

Kids 0.098* -0.070 
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relatively easily recognized by pedestrians or may affect their perceived safety were used: 

pedestrian crash cases, sidewalks, intersections, and areas of the park. Pedestrian 

exposure variables, including pedestrian count and motor vehicle traffic, actual speed, age, 

gender, disability, and kids, were commonly used as predictors for both endogenous 

variables. Between two endogenous variables, threatened experiences (cumulated score) 

were used to predict the pedestrian’s attitudes toward safety. The final variable 

combination was selected based on model fit and multicollinearity. 

6.3 Results 

There are four different model results: without crash cases, a model including all types 

of crashes, a model including pedestrian crashes, and a model including pedestrian fatal 

crashes. For the third model, including pedestrian crashes, I cumulated five years of 

crashes. The three-year and one-year models were also tested, but the five-year model 

had the best fit and explanatory power. In this result part, I discuss the model with all-

type pedestrian crash cases that occurred for the last five years (2018-2022). The other 

three models, which have almost the same results as the pedestrian crash model, are 

shown in Appendix D RQ2: Comparison of Structural Equation Models.  

I used one latent variable, including seven items accessing safety attitudes (Table 6-5), 

and two modification indices as follows:  

1. Correlation in the error terms between ‘safety from traffic during the day’ and 

‘safety from traffic at night’  
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2. Correlation in the error terms between ‘feeling unsafe while crossing the 

intersections during the day’ and ‘feeling unsafe while crossing the 

intersections at night.’  

Factor loadings of all seven items measuring pedestrian attitudes toward safety are 

more than the acceptable standardized loading value (greater than 0.4) suggested by Hair 

et al. (1998). However, before applying the modification indices, the Comparative Fit 

Index (CFI) did not reach the standard (greater than 0.95). This is because the survey 

respondents’ answers to similar questions in different time zones, ‘during the day’ or ‘at 

night,’ may not be completely independent. Therefore, the correlation between the 4th and 

5th items and the 6th and 7th items in Table 6-5 was added after the modification indices 

test. Adding these two indices improved the model fit in all the following structural 

equation models.  

Table 6-5 shows that all seven items have acceptable standardized loading values (> 

0.4) (Hair, 1998). The seven items assessing traffic speeds, street lighting, walking on 

rainy or snowy days, traffic amount during the day or at night, and intersections during 

the day or at night had acceptable standardized loadings on the factor in the all-type 

pedestrian crash model.  
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‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

1 reversely coded item 

 

The model results are summarized and plotted as shown in Table 6-6 and Figure 6-7. 

The chi-square value was significant, χ2 (107) = 225.240, p-value <0.001, suggesting a 

poor fit to the data. This is because the chi-square statistic tends to increase with 

increasing sample size; this model with a sample size of more than 400 easily rejects the 

null hypothesis that the observed covariance matrix and the covariance matrix predicted 

by the model are the same. The Comparative Fit Index (CFI) and Standardized Root 

Mean Square Residual (SRMR) showed acceptable model fits (CFI = 0.973, SRMR = 

0.028), because the both CFI and SRMR reached standards (CFI greater than 0.95 and 

SRMR less than 0.08) suggested by Hu and Bentler (1999) for a good fitting model (Hu 

& Bentler, 1999). 

Table 6-5 Factor Loadings of Safety Attitudes (research question 2) 

Items 
Standardized 

Coefficient 

Standard 

Error 
p-value 

Traffic speeds on most nearby streets 

are slow enough 
0.663  <0.001*** 

Street lighting makes me feel safe at 

night 
0.530 0.089 <0.001*** 

Walking on rainy or snowy days 0.570 0.075 <0.001*** 

Safety from traffic during the day 0.714 0.058 <0.001*** 

Safety from traffic at night 0.764 0.085 <0.001*** 

Intersections make me feel unsafe 

while crossing during the day1 
0.575 0.109 <0.001*** 

Intersections make me feel unsafe 

while crossing at night1 
0.593 0.117 <0.001*** 
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‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

 

The most important finding of this model was that more threatened experiences 

affected by several crash risk factors and individual characteristics significantly predicted 

less positive safety attitudes toward walking. Moreover, the threatened experience was 

Table 6-6 Regression Results of SEM: Crash Risk Factors & Perceived Safety 

Regression 
Standardized 

Coefficient 

Standard 

Error 
p-value 

Threatened 
Experience 

(R-square 

:0.087) 

 

Pedestrian Count -0.105 0.002 0.100 

Motor Vehicle Traffic 
(n/1,000) 

0.053 0.008 0.346 

Intersection (n/mi) 0.187 0.201 0.002** 

Public transit (n/mi) 0.079 0.356 0.156 

Park (mi2) -0.014 5.734 0.798 

Mixed-use area (mi2) 0.184 2.855 0.015* 

Commercial area (mi2) -0.042 4.667 0.470 

Actual Vehicle speed: 
nearest 50th (mph) 

-0.057 0.03 0.298 

Age -0.163 0.014 0.001** 

Gender (0: Female, 1: 

Male) 
-0.064 0.448 0.135 

Disability (0: No, 1: Yes) 0.073 0.68 0.100 

Kids (0: No, 1: Yes) 0.079 0.593 0.107 

Safety 
Attitudes 

(R-square 

:0.555) 

 

Threatened experience -0.726 0.007 <0.001*** 

Pedestrian Crash: all-type, 

5-year (2018-2022) 
0.033 0.004 0.476 

Pedestrian Count -0.008 <0.001 0.904 

Motor Vehicle Traffic 

(n/1,000) 
0.006 0.001 0.897 

Sidewalk (mi) 0.057 0.005 0.535 

Intersection (n/mi) -0.025 0.028 0.723 

Park (mi2) 0.083 0.567 0.057+ 

Actual Vehicle speed: 

nearest 50th (mph) 
0.046 0.003 0.236 

Age 0.046 0.001 0.286 

Gender (0: Female, 1: 

Male) 
-0.004 0.047 0.913 

Disability (0: No, 1: Yes) -0.095 0.083 0.036* 

Kids (0: No, 1: Yes) 0.019 0.056 0.628 
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this model’s strongest predictor of safety attitudes. Although not all crash risk factors 

tested in the previous chapter can predict threatened experiences and safety attitudes, 

more detailed results of significant factors are explained in the following paragraphs. 

Three significant predictors of pedestrians’ threatened experiences were intersection 

density normalized by road length, the mixed-use land area, and age. Higher intersection 

density and more mixed-use land area can predict more often threatened experiences. 

Older people had fewer experiences of being threatened. This was possible because older 

pedestrians tend to walk on routes, at certain times of day, or in weather conditions they 

consider safer based on their previous (or lifetime) experiences. The fact that age 

positively correlated with the period of living in the neighborhood (γ=0.47, p-value 

<0.001) can support this assumption. Age was positively correlated with safety attitudes, 

while it was not a significant predictor of attitudes in the structural equation model. This 

means that threatened experience in the path model fully mediated the relationship 

between age and attitudes. The model with these significant predictors can explain 

pedestrians’ threatening experiences by 8.7% (R2= 0.087).  

Two more variables significantly predicted safety attitudes in addition to threatened 

experiences: park and disability. Park areas positively impacted safety attitudes, while 

other built environment and facility factors did not. Although age significantly predicted 

the threatened experiences, it did not significantly predict safety attitudes. Disability was 

significantly related to safety attitudes. People with disabilities were less positive about 

walking. The model with these significant predictors can explain pedestrian safety 

attitudes by 55.5% (R2= 0.555). 
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Regarding the results of bivariate correlation analysis and SEM analysis (Table 6-4, 

Table 6-6, Figure 6-7), threatened experiences only mediated one relationship between 

age and attitudes toward safety. It fully mediated the relationship between age and safety 

attitudes (direct effect = 0.046, indirect effect = 0.118, total effect = 0.164). When age 

alone predicted safety attitudes, it was significantly positive. However, when the 

mediator, the threatened experiences, was included in the path, only the indirect effect 

was significant, and the threatening experience influenced by age is significant in 

predicting the safety attitudes. 

The results shown in the Table 6-6 are schematized in the Figure 6-7. Several of the 

crash risk factors that were significant in previous research question 1 also significantly 

explained the frequency of threatened experiences. On the other hand, safety attitudes 

were influenced by the frequency of previous threatened experiences, the area of the 

park, and the presence of disability rather than crash risk factors. Regardless of how I 

measure crashes, crash variables did not statistically significantly predict safety attitudes 

(Appendix D RQ2: Comparison of Structural Equation Models). All types of crashes and 

pedestrian-involved crashes were significant only in bivariate correlation results (Table 

6-4). 
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Figure 6-7 Structural Equation Model Result: 5-year Pedestrian Crash 
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6.4 Discussion 

To answer the second research question, crash risk factors in the previous chapter 

were examined whether they affect pedestrians’ threatened experiences and safety 

attitudes. Three main points from the model results are as follows: 

1. Threatened experience: Threatened experience was a powerful predictor of 

pedestrians’ safety attitudes. 

2. Intersection density: Intersection density statistically significantly explained 

pedestrians’ threatened experiences, although it did not statistically 

significantly predict pedestrian crashes. 

3. Pedestrian crashes: While crash risk factors influenced safety attitudes 

mediated by threatened experiences, the cumulative number of pedestrian 

crashes did not explain safety attitudes. 

First, pedestrians’ threatened experiences, which are affected by crash risk factors and 

individual characteristics, significantly predict safety attitudes. As direct experiences can 

predict following attitudes (Fazio et al., 1978) and perceived experiences can affect 

attitudes toward a walking environment (Johansson et al., 2016), I assumed that safety-

related experiences predict safety attitudes and confirmed it in model results. Although 

not all crash risk factors significantly predict threatened experiences, higher intersection 

density and wider mixed-use land areas increase threatened experiences, and more 

threatened experiences predict negative safety attitudes.  

Next, among facility factors, the number of intersections normalized by the road 

length significantly predict the threatened experiences after being controlled by other 
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factors. Higher intersection density can increase pedestrian’s threatened experiences. This 

may be because of the increased probability that vehicles and pedestrians can encounter 

(Chen & Zhou, 2016; Cho et al., 2009; Clifton et al., 2009; Lee & Abdel-Aty, 2005; 

Mfinanga, 2014; Mukherjee & Mitra, 2019; Schneider et al., 2004, 2021; Zegeer & 

Bushell, 2012). However, intersection density did not directly predict safety attitudes as it 

did not statistically significantly predict pedestrian crashes in the previous chapter. It can 

be interpreted that people do not have negative safety attitudes simply because of the 

higher intersection density. However, when they experience and perceive more threats at 

intersections, those experiences negatively impact their safety attitudes.  

The relationship between cumulative crashes and safety attitudes was not statistically 

significant in structural equation analysis. I assumed that the actual crashes could explain 

the parts of the safety attitudes that the crash risk factors cannot explain, but all three 

crash variables were not statistically significant in the models. It can be explained that 

pedestrians’ attitudes toward safety change through threatened experiences related to 

other crash risk factors rather than being directly affected by the cumulated number of 

actual crashes.  

Two individual characteristics, age, and disability, also significantly explained 

pedestrians’ perceived safety. Regarding age, older pedestrians had fewer threatened 

experiences, and the relationship between age and safety attitudes was fully mediated by 

threatened experiences. In other words, only when older pedestrians had fewer 

experiences of being threatened, they had more positive safety attitudes. It is also 

possible that the older pedestrians are, the more likely they choose to walk in safer 
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places, as previous research shows that they tend to stick to their previously chosen 

routes, especially when crossing the streets (Abdullah et al., 2019; Campbell et al., 2004; 

Oxley et al., 2005). On the other hand, pedestrians with disabilities had more negative 

attitudes toward safety. Disability significantly predicted safety attitudes but not 

threatened experiences. Thus, pedestrians with disabilities may have more negative safety 

attitudes without the threatened experiences. 

In conclusion, this chapter’s results show that pedestrians’ experiences influenced by 

external factors predict their attitudes. In particular, when pedestrians have more chances 

to encounter vehicles at the intersection or mixed-use land area, they can expect more 

threatening experiences and less positive attitudes toward pedestrian safety. 

Despite the above meaningful statistical results regarding pedestrian safety, this 

analysis has several limitations. First, the macro-level spatial aggregation of data, 

especially speed, can make capturing subtle differences of crash risk factors and 

psychological factors difficult. Since people’s walkshed is wider than a single 

intersection or short road segment, spatial data aggregation is necessary for analysis. 

However, this means that other crash risk factors were not included in the model, 

including specific ranges of vehicle speeds, road classification, intersection types, 

weather, or street light conditions. In addition, because of the overlapped spatial unit of 

each observation, the crash variable cannot be a mediator in the path model. If it is 

possible to collect survey answers from residents who live apart enough from each other, 

the pedestrian crashes can be tried to predict perceived safety as a mediator. Overcoming 
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these limitations can explain how more detailed crash risk factors have influenced 

pedestrians’ perceived safety.  
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7 Factors Affecting Walking Behavior 

7.1 Research Question 3: Walking Behavior 

The last research question is how safety attitudes, which are influenced by the crash 

risk factors, affect walking behavior, as shown in Figure 7-1. Walking behavior in this 

study refers to the walking frequency, and it was measured by the annual average weekly 

walking days of more than five minutes in the survey respondents’ neighborhood (within 

a half mile from respondents’ street addresses). Perceived safety for this research 

question refers to pedestrians’ attitudes toward safety while walking. In the previous 

chapter, I investigated how crash risk factors affect pedestrians’ safety attitudes and how 

safety attitudes affect people’s walking frequency in this chapter (Figure 7-1). 

 

Figure 7-1 Conceptual Framework of Research Question 3 
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More detailed research questions for this chapter are as follows: 

 How do pedestrian crash risk factors and individual characteristics affect the 

walking frequency mediated by safety attitudes?  

In this third research question, the threatened experience did not mediate the 

relationship between crash risk factors and safety attitudes. This is because when 

threatened experiences are included in the model, the order of events may be reversed in 

path analysis. The method part below will explain this possible issue in more detail. 

7.2 Analysis Methods 

7.2.1 Possible Issue in Path Analysis: the matter of sequence 

The structural equations model assumes probabilistic causal relationships (Kline, 

2016). Causal relationships assume that there is a sequential relationship between events, 

so the temporal order of events within a path should be reasonable. However, some 

sequential relationships could be unclear when measuring variables in social science 

research (Bohrnstedt & Knoke, 1988). One example is the relationship between 

threatened experiences and walking frequency in this study.  

In the previous chapter for the second research question, pedestrians’ perceived safety 

was measured by experience and attitude. The analysis showed that pedestrians’ 

threatened experiences had a negative impact on safety attitudes. Based on these results, 

my third research question begins with the assumption that perceived safety measured by 

safety attitudes can influence walking frequency. However, the temporal order problem 

can arise when a model includes all three variables, experience, attitude, and behavior, in 
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a recursive model, which does not have direct or indirect feedback loops in the path. As 

shown in Figure 7-2, when three variables are connected, the temporal order between 

experience and behavior can be reversed. The path model shown in Figure 7-2 assumes 

that previous threatened experiences may decrease the walking frequency. However, on 

the contrary, it is possible that people may have more threatened experiences since they 

walk frequently. This is because in this study, threatened and walking frequency were 

measured simultaneously in one survey.  

 

The scatter plot of the relationship between the two variables also shows that some 

people who rarely walk in a week had a high level of threatening experience in addition 

to a generally positive correlation between them (Figure 7-3). Table 7-1 compares the 

results of simple linear and simple nonlinear regression analysis of the relationships 

between threatened experiences and walking frequency. The threatened experiences 

significantly increased as the walking frequency increased in simple linear regression 

relationship and vice versa. In addition, the threatened experiences also significantly 

increased as the square of walking frequency increased in the simple nonlinear regression 

relationship but not vice versa. Figure 7-3 and Table 7-1 support that if I estimate the 

path model as shown in Figure 7-2, both types of cases are in the same model: cases 

Figure 7-2 Possible Issue of Temporal Order in Recursive Path 
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where people who have had a lot of threatened experiences tend to walk less often and 

cases where people who walk more often have had a lot of threatened experiences. 

 

‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

 

Figure 7-3 Bivariate Correlation: Threatened Experience & Walking Frequency 

Table 7-1 Threatened Experiences & Walking Frequency 

Regression Dependent (y) Independent (x) Intercept Coefficient p-value 

Linear 

Walking 

Frequency 

Threatened 

Experiences 
4.05 0.04 0.012* 

Threatened 

Experiences 
Walking Frequency 6.36 0.28 0.012* 

Nonlinear 

Walking 

Frequency 

Square of 

‘Threatened 

Experiences’ 

4.30 0.00065 0.407 

Threatened 

Experiences 

Square of the 

‘Walking Frequency’ 
6.84 0.03 0.02* 
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In the previous chapter, the direction of the path was not a problem in interpreting the 

results in the relationship between threatened experiences and safety attitudes because, 

considering the time order, the direction of the assumption that experience affects attitude 

is reasonable (Fazio et al., 1978). However, in this chapter, the model interpretation may 

be misunderstood because the respondent’s increased walking frequency may cause the 

increased frequency of threatened experiences. In other words, if all three variables, 

experience, attitude, and behavior, are connected in a recursive model, as shown in 

Figure 7-2, a relationship that does not match the temporal order may be derived, and the 

results from this model may be misunderstood. Thus, this study did not use threatened 

experiences to predict walking frequency.  

7.2.2 Recursive vs. Non-recursive Structural Equation Modeling 

To address the temporal order problem, a non-recursive model, including an indirect 

feedback loop in which walking frequency affects the threatened experience, can be 

considered an alternative to the previous recursive model (Figure 7-4). However, this 

model is not a framework that structures the research question I want to answer and raises 

the following problems. 

 

Figure 7-4 Indirect Feedback Loop in Non-recursive Path 
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Identifying causal relationships in the non-recursive model with feedback loops with 

cross-sectional data is difficult, and there is a high possibility of severely biased estimates 

(Kaplan et al., 2001; Kline, 2016). Because of these problems, non-recursive models are 

used to test causal relationships with short-time lags, such as reciprocal relationships 

between parents and their children, or in longitudinal studies with panel data (Finkel, 

1995; Kline, 2016; Wong & Law, 1999). Thus, in this study, only the relationship 

between pedestrians’ safety attitudes and walking frequency was estimated using a 

recursive model, as shown in Figure 7-1. 

7.3 Results 

7.3.1 Bivariate Correlation Analysis: Crash Risk Factors & Walking  

Table 7-2 summarizes the bivariate correlation analysis results between annual 

average walking frequency and other variables. Safety attitudes, sidewalks, and the 

number of public transit stops were significantly and positively correlated with walking 

frequency. On the other hand, commercial land area, actual vehicle speed, and number of 

household motorized vehicles negatively correlated with walking frequency. Mixed-land 

area and several facilities inducing pedestrian’s activities, including the number of 

intersections, and public transit stop density, had weak and marginally significant (p-

value < 0.1) correlation with walking frequency. 
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7.3.2 Structural Equation Model Results: Annual Weekly Walking Frequency 

Table 7-3 shows the factor loadings of the latent variable measuring pedestrian’s 

safety attitudes are more than the acceptable standardized loading value (greater than 0.4) 

suggested by Hair et al. (1998). I also used two modification indices: the correlation 

between safety from traffic during the day and safety from traffic at night and the 

correlation between feeling unsafe while crossing the intersections during the day and 

unsafe while crossing the intersections at night. 

Table 7-2 Crash Risk Factors & Walking Frequency 

Variables Annual Average Weekly Walking Frequency 

Safety Attitudes 0.115* 

Sidewalk (mile) 0.170*** 

Intersection n 0.082+ 

n/mile 0.046 

Public Transit Stop n 0.160*** 

n/mile 0.076+ 

Park (mi2) 0.033 

Mixed-use land (mi2) 0.075+ 

Commercial land (mi2) -0.130** 

Actual Vehicle 

speed (mph) 

weighted 
50th -0.170*** 

85th -0.170*** 

nearest 
50th -0.130** 

85th -0.130** 

Age 0.037 

Gender -0.067 

Disability -0.068 

Kids -0.079+ 

Motorized Vehicles -0.150*** 
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1 reversely coded item 

 

The regression results of structural equation model are summarized in Table 7-4 and 

they are plotted in Figure 7-5. The number of used observations is 512 out of 551. The 

chi-square value of this model was significant, χ2 (116) = 243.697, p-value <0.001, 

suggesting poor fit to the data. However, the Comparative Fit Index (CFI) and 

Standardized Root Mean Square Residual (SRMR), showed the acceptable model fits 

(CFI = 0.97, SRMR = 0.031) (Hu & Bentler, 1999). 

The model’s significant predictors of safety attitudes were park area, age, and 

disability. Although the significance of the park area was marginal (p-value=0.097), it 

predicts positive attitudes toward safety, as it did in the path model of the previous 

Table 7-3 Factors Loading of Safety Attitudes  (research question 3) 

Items 
Standardized 

Coefficient 

Standard 

Error 
p-value 

Traffic speeds on most nearby streets 

while I walk in my neighborhood are slow 

enough to make me feel safe 

0.660  <0.001*** 

Street lighting in our neighborhood makes 

me feel safe while I walk at night 
0.507 0.096 <0.001*** 

I feel safe while walking in my 

neighborhood on rainy/snowy days 
0.579 0.084 <0.001*** 

I feel safe from traffic while I walk in my 

neighborhood during the day 
0.715 0.069 <0.001*** 

I feel safe from traffic while I walk in my 

neighborhood at night 
0.799 0.109 <0.001*** 

There are some intersections in my 

neighborhood where I feel unsafe while 

crossing during the day1 

0.536 0.110 <0.001*** 

There are some intersections in my 

neighborhood where I feel unsafe while 

crossing at night1 

0.575 0.127 <0.001*** 
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research question. While disability predicted negative safety attitudes, older age 

significantly predicted more positive attitudes. In the previous path model for the second 

research question, age was not statistically significant in predicting safety attitude 

because of the mediator, threatened experiences, in the model. However, age was 

significant in predicting the safety attitudes without the mediator effect. These factors are 

explained only by 6.7% of the variation in safety attitudes (R-square: 0.067). This 

explanatory power is reduced from 55.5% of the SEM model result in Chapter 6 because 

of the absence of the threatened experiences. 

 To predict walking frequency, safety attitudes, weighted sidewalk length, actual 

vehicle speed, and the number of motorized vehicles in the household were significant. 

However, the land use variables were not. More positive attitudes toward safety and more 

sidewalks in the respondents’ neighborhoods predicted more frequent annual average 

weekly walking. On the other hand, faster vehicle speeds (50th percentile) on the nearest 

road from the respondent’s address predicted less walking frequency. I also tested other 

actual vehicle speeds, the nearest 85th percentile, and 50th and 85th weighted actual 

vehicle speeds by road length. The speeds measured on the nearest road were significant 

for predicting walking frequency, not the weighted one. Between two speeds, 50th 

percentile speeds and 85th percentile speeds, the 50th percentile speeds variable made the 

model fit better than the 85th percentile speeds. This may be because people were 

influenced by the speed of vehicles on the nearby road when they started walking. 

Depending on how speed was measured, it might have different significance and 

influence on walking frequency in the model. However, what is clear is that the high 
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speed of vehicles around a residence can significantly impact walking frequency as much 

as safety attitudes did, considering the standardized coefficient in the model result. 

Among the three land use variables, park and mixed-use land areas were not 

statistically significant in predicting walking frequency. Many survey respondents 

answered that they mostly walk for entertainment and exercise. In addition, some 

respondents answered that they enjoyed going to the park and walking. For this reason, I 

assumed that the park was one of their primary destinations. Moreover, more areas of the 

park affected more positive safety attitudes. However, the park’s size in their 

neighborhood did not significantly encourage actual walking as a physical activity. On 

the other hand, the commercial land area was marginally significant in predicting the 

lower walking frequency. 

In addition to these external factors, the number of motorized vehicles in households 

also significantly predicted walking frequency. More motorized vehicles in their 

household affected less frequent weekly walking. Other personal characteristics, 

including age, gender, disability, and whether children are in the household, did not 

statistically significantly predict weekly walking frequency. These factors explained the 

waking frequency of about 10% (R-square: 0.097). 
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Table 7-4 Regression Results of SEM: Safety Attitudes & Walking 

Regression 
Standardized 

Coefficient 

Standard 

Error 
p-value 

Safety 

Attitudes 

(R-square: 

0.067) 

 

Pedestrian Crash 

Frequency: all-type, 

5-year (2018-2022) 

-0.090 0.006 0.155 

Pedestrian count 0.037 0.000 0.646 
Motor Vehicle Traffic 

(n/1,000) 
-0.016 0.001 0.764 

Sidewalk (mi) 0.040 0.007 0.734 

Intersection (n/mi) -0.055 0.037 0.546 

Park (mi2) 0.095 0.735 0.097+ 

Actual Vehicle speed: 

nearest 50th (mph) 
0.047 0.003 0.372 

Age 0.156 0.002 0.006** 

Gender 

(0: Female, 1:  Male) 
0.043 0.062 0.386 

Disability 

(0: No, 1: Yes) 
-0.138 0.100 0.012* 

Kids (0: no, 1: yes) -0.033 0.078 0.545 

Walking 

Frequency 

(R-square: 

0.097) 

 

Safety Attitude 0.118 0.185 0.036* 

Sidewalk (mi) 0.126 0.010 0.016* 

Public transit (n/mi) 0.08 0.132 0.133 

Park (mi2) 0.018 2.279 0.737 

Mixed-use area (mi2) -0.022 0.862 0.708 

Commercial area 

(mi2) 
-0.100 1.610 0.052+ 

Actual Vehicle speed: 

nearest 50th (mph) 
-0.115 0.009 0.006** 

Age 0.019 0.006 0.710 

Gender 

(0: Male, 1: Female) 
-0.043 0.174 0.315 

Disability 

(0: No, 1: Yes) 
-0.071 0.304 0.164 

Kids (0: no, 1: yes) -0.037 0.207 0.403 

Motor -0.097 0.101 0.048* 
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Figure 7-5 Regression Results of SEM: Safety Attitudes & Walking 
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7.4 Discussion 

The model results in this chapter show relationships between safety attitudes and 

walking behavior influenced by the surrounding physical environment and personal 

characteristics. Three main points from the model results are as follows: 

1. Safety attitudes and walking: Safety attitudes significantly predicted walking 

frequency. 

2. Importance of sidewalks and land use: Although sidewalks did not 

significantly predict positive safety attitudes, sidewalks and commercial areas 

were significant predictors of walking frequency. 

3. Actual speed: Speed significantly predicted walking frequency and, like the 

sidewalks, should be considered an essential factor in encouraging people to 

walk. 

First, more positive safety attitudes predict more frequent walking, which is supported 

by previous studies on the relationships between perceived safety and walking behavior 

(Alton et al., 2007; Kwon et al., 2022; Lyu & Forsyth, 2021). While only the area of the 

park (among crash risk factors) significantly explains safety attitudes, several other 

factors can significantly explain walking frequency. 

Next, longer sidewalks significantly predicted more frequent walking while 

commercial areas decreased it. This finding of positive relationship between the sidewalk 

and walking amount is supported by previous research results (McCormack et al., 2012; 

Saelens & Handy, 2008). However, my result of negative correlation between 

commercial land areas and walking frequency differs from the results of several previous 
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studies (Nathan et al., 2012; Seong et al., 2021). In other words, people’s frequent 

walking appears to be encouraged by pedestrian-friendly facilities rather than various 

nearby destinations. At least in my sample, this result may imply that there was no 

destination worth walking to within the commercial area, or it may mean that the 

commercial area was not a place people wanted to pass by for exercise. Also, the increase 

in the ratio of the commercial area may mean that the proportion of residential areas as 

the starting point for walking decreased.  

Additionally, faster vehicle speeds on the nearest road decreased the walking 

frequency. Since the higher speeds of vehicles in the surrounding environment were 

likely to impede walking for pedestrians, the speed limit and traffic speed are important 

indicators in determining walkability, as well as in previous research (Fonseca et al., 

2022; Guzman et al., 2022).  

In conclusion, pedestrians, influenced by the surrounding environment and their 

characteristics, routinely walked more often when they felt safe. Furthermore, safe 

walking network connections separated from faster-speed vehicles were more important 

for encouraging walking frequency than the diversity of nearby destinations. Despite the 

above meaningful results related to pedestrian perceived safety and walking frequency, 

this study has the limitation of using cross-sectional data. Due to this limitation, I could 

not test the paths through which experience influences attitudes, and then those attitudes, 

in turn, influence behavior. If it is possible to obtain panel data, meaningful results can be 

obtained about individuals’ active transportation mode choices, which are complexly 

influenced by the external environment and personal characteristics.  
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8 Conclusion 

8.1 Key Findings & Practical Implications 

The study starts by examining whether individuals are aware of the potential dangers 

in their surroundings as they navigate their neighborhood and whether this awareness 

impacts their safety attitudes. It also seeks to explore how these influences can affect 

walking behavior. I confirmed that crash risk factors can shape pedestrians’ perceived 

safety and that their safety attitudes can ultimately impact behavior. 

Previous studies on crash risk factors from the perspective of pedestrians or on their 

cognition and behavior had small spatial analysis units of study, such as intersections or 

short roads (Ihssian & Ismail, 2023; Mukherjee & Mitra, 2019). However, in this case, 

there is a possibility that the context of pedestrians’ surrounding environment cannot be 

sufficiently captured due to the spatial unit of analysis being too small. Since a 

pedestrian’s walking range is likely more extended and broader than a limited space, such 

as an intersection or a short road segment, it is necessary to analyze spatial units of a 

possible walkshed. Suppose we can understand the intertwined relationships between 

road networks, land use, traffic volume, and vehicle speed within that space. In that case, 

we can identify risk factors that pose real threats from a pedestrian’s perspective. In 

addition, it will be possible to understand how each complex factor can affect an 

individual’s perception of safety. Therefore, I set the research spatial unit to be within a 

half-mile straight-line buffer from the survey respondent’s address. Before analyzing the 

relationship between risk factors and perceived safety in the half-mile buffer space, I first 
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investigated pedestrian crash risk factors by census block group, a statistical geographic 

unit based on the number of people and households. 

For the first research question, several variables related to the effect of pedestrian 

exposure on vehicle flow were tested. Two models estimating pedestrian crashes were 

compared using the pedestrian count and the population density. I confirmed that the 

pedestrian count data could better predict pedestrian crashes than the proxy population 

density, although the number of pedestrians was counted for two days. This can support 

the need for pedestrian counts to continue to be counted in various places to develop road 

safety plans and policies based on pedestrian safety research. Additionally, land use 

variables that induce the activities of pedestrians and drivers were significant risk factors 

for pedestrian crashes. In particular, mixed-use and commercial land areas relate to more 

pedestrian crashes, as there is a possibility that various transportation mode users may 

share the space simultaneously. 

In the model result of the first research question, the significance of intersections, 

speed limits, and actual vehicle speeds were mainly not statistically significant, and they 

were also inconsistent across models. This inconsistency may be due to the correlation 

between explanatory variables and spatial characteristics. In particular, the number of 

intersections or intersection density may relate to speed limits and actual speeds. For 

example, a larger number of intersections or intersection density, where the smaller size 

of blocks, may lead to lower road classification and fewer motor vehicle traffic. In this 

case, denser intersections may decrease speed limits and actual vehicle speeds, affecting 

the possibility of pedestrian crashes.  



143 

 

Regarding the public transit stops, in the sample of this study, the number of them was 

significantly related to population density and land use (especially mixed-use land and 

commercial land areas). It may relate to pedestrian crashes. Even though public 

transportation stops are not the direct cause of crashes, they may explain pedestrian 

crashes, which other pedestrian exposure factors cannot explain (Diogenes & Lindau, 

2010; Monsere et al., 2017; Pulugurtha & Sambhara, 2011). This model result implies the 

importance of the appropriate transit stop design and location (Zegeer & Bushell, 2012), 

avoiding the interaction between road users at stops. Avoiding interaction between road 

users may be related to securing sufficient visibility for each road user (Craig et al., 

2019), enough space to avoid each other in case of unavoidable interactions, and facilities 

such as ramps, curbs, or signage to reduce the speed difference when interactions occur. 

The model results for the second research question show that the threatened 

experience influenced by the surrounding environment influenced safety attitudes. 

Pedestrians’ threatened experiences were influenced by the density of the intersection and 

the mixed-use land area, while the park’s size positively affected their safety attitudes 

rather than their experiences. Interestingly, although the intersection factor was not 

statistically significant in predicting actual pedestrian crashes if pedestrians encounter 

intersections more frequently while walking, they perceived that they have had more 

threatened experiences. These threatened experiences decreased with age, which may be 

because they knew safe routes based on longer experiences in their neighborhood. 

Another significant personal characteristic was disability. Although disability had no 

significant effect on the threatened experiences, it had a negative effect on safety 
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attitudes. Another interesting finding was that the actual pedestrian crashes did not affect 

safety attitudes on the path model. However, the bivariate correlation results showed that 

pedestrian crashes negatively correlate with safety attitudes. This can be interpreted that 

pedestrians’ safety attitudes were mainly determined by their perceived experiences in a 

given environment rather than an actual crash probability.  

This difference between the actual likelihood of crash risk and the perception of risk 

or safety should be considered important in transportation planning. While reducing 

actual crashes is one of the top priorities in transportation safety, perceived safety based 

on individual experiences and attitudes is also important because it can influence 

pedestrians’ subsequent behaviors (Kwon et al., 2022; Lyu & Forsyth, 2021).  

Since these two concepts, pedestrian safety and perceived safety were differently 

defined and measured in this study, the approaches and methods for improving pedestrian 

safety and perceived safety should be different. In particular, intersections should be 

designed to make pedestrians aware that higher density of them may not be dangerous. In 

urban design and transportation planning, smaller block designs may relate to denser 

intersections associated with lower levels of road classification, fewer road lanes, slower 

speed limits (or actual vehicle speeds), and fewer motor vehicle encounters. It may be 

difficult to make pedestrians intuitively aware of this, especially for those who have had 

threatened experiences at intersections. However, improving facilities, such as expanded 

curbs and medians, may induce the idea that a space with a high intersection density may 

not be too dangerous for pedestrians. 
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The third result about the relationship between safety attitudes and walking behaviors 

is also important for urban planners, designers, and transportation planners. Positive 

safety attitudes and nearby sidewalks increased walking frequency. On the other hand, 

larger commercial areas, faster vehicle speeds, and more vehicles in their households 

reduced walking frequency. In other words, people may walk more often when 

pedestrians feel safer in the surrounding walking environment. They walk more often in 

places with more sidewalks, fewer commercial land areas, and slower vehicle speeds. 

One interesting result is that although survey respondents answered that they walk 

mostly for their physical exercises or entertainment, the area of the park was not 

statistically significant in predicting more frequent walking. It was only statistically 

significant in predicting more positive safety attitudes. Instead of the area of the park, 

more sidewalk length encourages more frequent walking. This may imply that 

respondents in this study sample enjoy walking along the sidewalk rather than walking to 

visit specific places. This may be the reason why the lower commercial land area and 

slower vehicle speed near the house can encourage more frequent walking.  

In this third result, the importance of the intersection density was not directly shown. 

However, considering the previous result, intersection density can be an important factor 

affecting walking frequency since it affects safety attitudes mediated by threatened 

experiences. For pedestrians who enjoy walking along the sidewalk, frequently 

encountering intersections can make them hesitant to walk frequently. Thus, it is 

important to plan and design intersections that do not look dangerous to cross, with fewer 
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road lanes and wider visibility (G. Lee et al., 2016). So, it will make people not hesitate 

to cross the intersection and allow them to keep walking.  

8.2 Limitations & Future Research 

As previously mentioned in the discussion section of each research question chapter, 

this study has several limitations. First, one or two pedestrian count places should 

represent a neighborhood pedestrian volume. Although pedestrian count significantly 

explained the number of cumulated pedestrian crashes, it is difficult to assume that this 

pedestrian count at intersections, collected over two days, can perfectly represent the 

annual average pedestrian volume or their exposure to traffic flow. This limitation can be 

overcome if pedestrian counts are collected at more intersections and paths is necessary. 

In addition, due to the nature of the spatial analysis unit, some built environment 

factors were aggregated. This made accurate measurement of crash risk factors difficult. 

The maximum value of the motor vehicle traffic by spatial unit was applied to the 

models. Although the maximum traffic value significantly predicted pedestrian crashes, 

the measurement cannot fully describe the traffic volume pedestrians usually encounter. 

Since measuring traffic volume at all road points is virtually impossible, avoiding 

measurement errors in aggregating traffic volume in macro-level spatial units is 

challenging. Measuring the traffic volume using weights based on the road length for 

each road classification can be one approach instead of directly measuring and 

aggregating the traffic volume for each spatial unit of analysis. Additionally, if the 

number of road lanes is also considered, more accurate traffic volume measurement using 

proxies can be achieved. In this study, the physical characteristics of the intersection, 
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such as whether there is a marked crossing, whether there is a traffic signal, and what the 

shape of the intersection is, were not included in the crash models. These characteristics 

of roads and intersections can be included in future research. If so, it would be possible to 

explain in more detail how each roadway characteristics affects the risk of pedestrian 

crashes and the perceived safety of pedestrians. 

Next, the number of crashes was cumulated spatially and temporally (by year). This 

makes it challenging to investigate the characteristics of individual crashes, such as 

weather and lighting conditions. As the visibility of each road user can significantly 

impact pedestrian crashes, changes in actual crash probabilities and perceived safety due 

to weather and lighting are also important topics that should be studied in the future. In 

particular, in this study’s survey, people walked least frequently before sunrise. In 

addition, regarding safety attitudes, they responded that they considered intersections at 

night the most unsafe. If the length of day, weather by season, and the quality of street 

lights in each neighborhood were also investigated, it would help to understand the actual 

and perceived safety of pedestrians and their walking behavior. This will help with better 

traffic safety planning and designing a safer walking environment. 

This study also has limitations since it is a cross-sectional study. If longitudinal 

research with panel data is possible, examining how people’s safety attitudes and 

behavior change due to threatened experiences would be possible. In addition, research 

using panel data can help evaluate or predict the outcomes of transportation safety plans, 

projects, and facilities that each city or county has attempted or will attempt. Future 

research could overcome these limitations by acquiring and analyzing panel data. This 
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could have meaningful implications for improving pedestrian safety in future 

transportation plans. 
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Appendix B Ten Maps of Selected Research Sites 

 

 

Figure B-1 Buffered Map of Albany 

Figure B-2 Buffered Maps of Hillsboro 
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Figure B-3 Buffered Map of Lake Oswego 

Figure B-4 Buffered Map of McMinnville 
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Figure B-5 Buffered Map of NW Portland 

Figure B-6 Buffered Map of SE Portland 
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Figure B-7 Buffered Map of Tigard 

Figure B-8 Buffered Map of Wilsonville 
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Figure B-9 Buffered Map of Wood Village 

Figure B-10 Buffered Map of Woodburn 
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Appendix C RQ1: Cumulative Residual Plots (CURE Plots) 

 

 

 

 

 

Figure C-1 CURE Plots (3-year Model): Pedestrian Count 

Figure C-2 CURE Plots (3-year Model): Population Density 
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Figure C-3 CURE Plots (1-year Model): Pedestrian Count 

Figure C-4 CURE Plots (1-year Model): Population Density 
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Appendix D RQ2: Comparison of Structural Equation Models 

 

‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001 

1 reversely coded item 

Table D-1 Model Fit of SEM: Perceived Safety 

Model No Crash Variable 5-year All Crash 
5-year Fatal 

Pedestrian Crash 

Number of observed 551 551 551 

Number of used 514 514 514 

Model Fit 

Chi-test 218.048 234.364 222.651 

Degree of freedom 100 107 107 

P-value <0.001 <0.001 <0.001 

CFI 0.972 0.974 0.972 

SRMR 0.028 0.028 0.028 

Table D-2 Factor Loadings of Safety Attitudes 

Items 
No Crash 

Variable 

5-year All 

Crash 

5-year Fatal 

Pedestrian 

Crash 

Traffic speeds on most nearby 

streets are slow enough 
0.663*** 0.663*** 0.663*** 

Street lighting makes me feel 

safe at night 
0.529*** 0.529*** 0.530*** 

Walking on rainy or snowy 

days 
0.570*** 0.570*** 0.571*** 

Safe from traffic during the 

day 
0.714*** 0.714*** 0.715*** 

Safe from traffic during at 

night 
0.763*** 0.763*** 0.763*** 

Intersections make me feel 

unsafe while crossing during 

the day1 

0.575*** 0.575*** 0.576*** 

Intersections make me feel 

unsafe while crossing at night1 
0.592*** 0.592*** 0.593*** 
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‘ ’ p <1 ‘+’ p <0.1 ‘*’ p <0.05 ‘**’ p <0.01 ‘***’ p <0.001  

Table D-3 Comparison SEM Results by Crash Variable Type 

Standardized coefficient 

Model 

 

Variable 

No Crash 

Variable 

5-year All-

type Crash 

5-year Fatal 

Pedestrian 

Crash 

Threatening Experience R-square 0.087 0.087 0.087 

Threatening 

Experience 
 

Pedestrian Volume -0.105 -0.105 -0.105 
Motor Vehicle Traffic 

(n/1,000) 
0.053 0.053 0.053 

Intersection (n/mi) 0.187** 0.187** 0.187** 

Public transit (n/mi) 0.079 0.079 0.079 

Park (mi2) -0.014 -0.014 -0.013 

Mixed-use area (mi2) 0.184* 0.184* 0.184* 

Commercial area 

(mi2) 
-0.042 -0.042 -0.042 

Actual Vehicle speed 

(mph) 
-0.057 -0.057 -0.057 

Age -0.163** -0.163** -0.163** 

Gender (0: Female, 1: 

Male) 
-0.064 -0.064 -0.064 

Disability (0: No, 1: 

Yes) 
0.073 0.073 0.073 

Kids (0: No, 1: Yes) 0.079 0.079 0.079 

Safety Attitude R-square 0.553 0.554 0.556 

Safety 

Attitude 
 

Threatened 

experience 
-0.724*** -0.725*** -0.725*** 

Crash Frequency NA 0.008 0.038 

Pedestrian count 0.002 0.001 0.003 
Motor Vehicle Traffic 

(n/1,000) 
0.006 0.003 0.008 

Sidewalk (mi) 0.07 0.068 0.068 

Intersection (n/mi) -0.026 -0.028 -0.026 

Park (mi2) 0.075+ 0.078+ 0.073+ 

Actual Vehicle speed 

(mph) 
0.043 0.043 0.042 

Age 0.044 0.044 0.047 

Gender (0: Female, 1: 

Male) 
-0.003 -0.003 -0.004 

Disability (0: No, 1: 

Yes) 
-0.093* -0.093* -0.098* 

Kids (0: No, 1: Yes) 0.021 0.02 0.022 
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