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Abstract

This thesis discusses distinguishing geoacoustic properties of seabeds by adaptively

sampling ambient acoustic measurements using an autonomous underwater vehi-

cle. Modern advancements in seabed characterization motivate an online method

for distinguishing between two seabed types using Fourier transformed ambient

acoustic noise snapshots. These snapshots are assumed to be associated with

their spatial location and seabed, making the goal to organize unlabeled seabed

locations. The snapshots are transformed to obtain pairwise similarities between

locations. Locations with similarities exceeding a threshold are classified together

with the goal of identifying all locations with similarities below this threshold us-

ing a process known as level set estimation. We propose an adaptive sampling

policy that aims to directly reduce the number of locations with unknown level set

membership via a lookahead step in addition to minimizing the distance traveled

through a nearest neighbors approach. Results on synthetic, single-boundary fields

and multi-boundary realistic world data are evaluated by comparing predicted and

true level set assignments and demonstrate the benefits of the proposed algorithm.

Furthermore, extensions discussing the effects of a two-step and path planning

lookahead in addition to the benefits of bathymetry data are included to motivate

further research.
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1 Introduction

Identifying, bounding, and monitoring the spatial extent of an environmental phe-

nomenon has seen significant advancements through the introduction of mobile

sensors like unmanned aerial vehicles and autonomous surface vessels [1, 2, 3,

4]. Mobile sensors allow automated and adaptive sampling techniques estimate

environmental parameters accurately and efficiently. One increasingly significant

problem that could benefit from mobile sensors is estimating seabed parameters

[5, 6] which are important for sonar performance [7]. Sonar equation calculations

are moving away from previous assumptions of fixed environmental parameters [7,

8] towards dynamic ones [8, 9], where once fixed parameters like grain size and

density of seabed sediment now change in response to actual conditions.

Previous seabed characterization solutions found success distinguishing seabeds

using their geoacoustic properties and machine learning models with comprehensive

datasets, a process known as passive learning [10, 11, 12]. However, passive learning

performance is constrained to information captured in a given data set. As a result,

it can be difficult to diagnose whether a model performs poorly due to ineffective

design or insufficient information contained in the data set [13].

Adaptively sampling an environment falls under a subfield of machine learning

called active learning, where a learning algorithm actively queries an environment

for data [1]. In passive modeling, the model uses a fixed input data set with known
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output predictions called labels. For example, a previous seabed characterization

solution collected pressure field data for gravel, sand, silt, and clay sediment types.

The passive learning model, composed of a neural network, would receive a pres-

sure field and predict a sediment type [12]. The model’s weights update on a

measure of error between the predicted label (e.g. clay) and the known true label.

The underlying assumption for active leaning relies on an active algorithm outper-

forming its passive competitors by allowing it to decide which training points it

wants labeled [14].

Active learning algorithms work by iteratively assessing a quantified definition

of information gain before asking an external source, such as a human or the envi-

ronment, for a labeled data point. These algorithms may also penalize information

gain with an associated cost, such as traveling time or labeling costs. Environmen-

tal monitoring has seen benefits of adaptive sampling through successful bounding

of the spatial spread of, for example, thermoclines [15, 16, 17], concentrations of

harmful chemicals and bacteria [18, 19, 2], and wildfires [4].

Recent advancements in seabed parameter estimation have demonstrated im-

provement through the use of a binary hypothesis test. In this approach, a sample

covariance from ambient acoustic snapshots is compared to the true covariance

of a perfectly characterized reference seabed type. The binary hypothesis test

classifies locations using the generalized likelihood ratio test, which is equivalent

to the Kullbeck-Leibler divergence between a sample covariance and a perfectly

known reference covariance [13]. This motivates an autonomous underwater ve-

hicle (AUV) to adaptively sample and identify the spatial extent of the reference
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seabed.

While ambient noise is free to measure, even a low-powered AUV cannot travel

over huge oceanic regions within a reasonable amount of time. Furthermore, a given

seabed type can show up in multiple disconnected regions, shown in Figure 1.1.
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Figure 1.1: Seabed types near Alaska, USA. Each color represents a seabed type
characterized by its geoacoustic properties discussed in Section 2.2.

As a result, the AUV must discover boundaries separating regions with snap-

shots similar to the reference from regions with dissimilar snapshots. Therefore, it

is a primary concern that an adaptive sampling strategy recommends decisions to

efficiently balance information gain against the costs associated with traveling.

When recommending locations to sample, existing environmental monitoring

algorithms consider either local or global views. Local views aim to track a single

boundary precisely by sampling nearby regions [15, 20, 17], making them efficient

and noise tolerant. They are limited to a case of a single boundary without appro-

priate means to explore new regions of interest. Using the example of Figure 1.1,
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a local view algorithm would struggle to jump between the clay (yellow) islands,

where a single island is contained within one boundary. Global views consider the

entire field of interest [18, 19, 1, 21, 22, 23], allowing them to discover multiple dis-

connected boundaries. They perform poorly in high noise environments, and this

poor performance often results from over-exploration. By considering the entire

field, these approaches may inefficiently sample by jumping across the environment

multiple times. The possibility of the reference seabed type showing up in multi-

ple disconnected regions combined with snapshots being an indirect measurement

of characterizing seabed parameters motivates a global view algorithm capable of

organizing locations from unlabeled seabed parameters.

1.1 Problem Formulation

Combining adaptive sampling with seabed characterization, we consider an algo-

rithm capable of active learning for seabed type identification using the Kullbeck-

Leibler divergence (KLD) to obtain similarities between two locations. Specifically,

consider an AUV carrying an array of M receivers continuously capturing ambi-

ent acoustic noise, which is assumed to be associated with the vehicle’s current

location. The time-series pressure recordings are Fourier transformed to obtain

snapshots, z ∈ CM , at a single frequency.

Within a finite domain of interest, D ⊂ R2, a learning algorithm obtains L

snapshots from each visited location. At a given time, these snapshots can be

used to form an estimated covariance matrix, Σ̂t =
1
L

∑L
i=1 ziz

H
i . At the start, the
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algorithm first samples a reference location to form Σ̂0. As the AUV travels, it

will compare its most recent estimated covariance location, Σ̂t, to Σ̂0 and assess

if the seabed types are equivalent. Previous work uses the KLD as a method to

compute the generalized likelihood ratio test (GLRT) between a perfectly known

distribution and a sample covariance [13]. However, because the Kullbeck-Leibler

divergence is asymmetrical, we symmetrize it

J
(
Σ̂0∥Σ̂t

)
=
(
D
(
Σ̂0∥Σ̂t

)
+D

(
Σ̂t∥Σ̂0

))
/2, (1.1)

where D(·∥·) represents the Kullbeck-Leibler divergence discussed in Section 2.2.

The resulting equation (1.1) is known as the Jefferys divergence, and it is used

to quantify separation between our two sample covariances, Σ̂t and Σ̂0. At each

location, x, we seek to obtain the similarity with reference location, x0, defined

as s(x0, x). The goal is to accurately estimate the set of locations sufficiently

dissimilar to the reference location [22]

Sτ = {x ∈ D : s(x0, x) ≤ τ}, (1.2)

where τ ≥ 0 is a user-supplied threshold. In our setting, we obtain pairwise noisy

similarity measurements,

st = exp
(
−J(Σ̂0∥Σ̂t)/ℓ

2
)
, (1.3)

where ℓ is a tuning parameter controlling the scale of the similarities. Estimating
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a solution for (1.2) returns a set of locations with similarities below the threshold

– or level – in a process known as level set estimation. A successful algorithm is

capable of achieving an estimated level set Ŝ with the following loss [22]

LLSE(Sτ , Ŝτ ) =
∣∣∣(Sτ ∩ ŜC

τ ) ∪ (SC
τ ∩ Ŝτ )

∣∣∣ , (1.4)

where SC
τ is the complementary set to S such that S ∪ SC = D. The threshold

governs the degree of dissimilarity required to claim that location x is sufficiently

different than reference location x0, indicating they are two separate seabed types

and on different levels. As our algorithm samples, it moves inefficiently by doubling

back and sampling near previous locations. To avoid excessive traveling, the AUV

must sample from its nearest neighbors. As a result, we wish to minimize the

distance traveled while obtaining a sufficiently accurate estimation of (1.2). Our

problem may be formulated as

min
x1,...,x1

T∑
t=1

|xt − xt−1| s.t. LLSE(Sτ , Ŝτ ) < ε. (1.5)

1.2 Contributions

This thesis proposes an approach for adaptive sampling with an autonomous un-

derwater vehicle to determine seabed type by formulating seabed identification as

level set estimation from pairwise noisy similarity measurements.

The main contributions of this thesis are:

1. Transforming the problem of seabed characterization into level set estimation
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2. An adaptive sampling policy to directly minimize the number of locations

with unknown level set membership via a lookahead operation

3. Distance penalization using a nearest neighbors approach

4. Empirical results on synthetic and realistic seabed types data

5. Analysis on the lookahead operation trade-offs

6. Empirical results and analysis using continuous path sampling and two-step

lookahead policies

7. Empirical results using a combination kernel composed of bathymetry and

spatial similarities
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2 Literature Review

2.1 Introduction

The following chapter begins by discussing modern advancements in seabed type

identification from ambient acoustic noise using a binary hypothesis test between

a completely known reference distribution and currently sampled ambient noise

[13]. This motivates an adaptive sampling algorithm capable of assessing seabed

similarities using two sample covariances, where similarities exceeding a threshold

indicate two seabed types are equivalent with high probability. This transforms

seabed identification into level set estimation. As a result, the section concludes

by discussing modern adaptive sampling methods for level set estimation and ex-

plaining how it points towards a policy that uses a lookahead method to directly

reduce the number of uncertain locations.

2.2 Seabed Characterization

Using the same AUV problem defined in Section 1.1, the goal is to assess if two

separate locations contain seabed types with sufficiently different geoacoustic prop-

erties [13]. The Naval Oceanographic Office maintains a bottom sediment type

database listing 23 seabed types provided in the High Frequency Environmental

Acoustics (HFEVA) data set [24]. Seabeds are often composed of a predominant
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background type, like clay, with patches of different sediment types scattered and

distributed throughout [13], as Figure 2.1 demonstrates.
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Figure 2.1: Seabed types in the northern Pacific Ocean. The seabed consists of
a dominant material such as clay (yellow) or medium silt (green). The goal is
to discover all locations where the sediment type differs significantly (light/dark
blue). The red box denotes the subregion used for experiments in Chapter 4 .

Modern advancements in seabed identification from ambient acoustic snapshots

use the Kullback-Leibler divergence (KLD) as the generalized likelihood ratio test

comparing a sample covariance derived from snapshots against a completely known

reference covariance [13]. Each snapshot, z1, . . . , zL, is assumed to be drawn from

a circularly-symmetric complex Gaussian distribution with additive covariance

Σθ = E[zzH ] = σ2
sΓθ + σ2

nI, (2.1)

where σ2
s is the ambient noise power, σ2

n is the non-acoustic sensor noise variance,

and Γθ is the signal covariance matrix characterized by non-random seabed pa-

rameters, θ [25, 26]. The probability density function for a circularly-symmetric
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complex Gaussian distribution is known to be

f(x; θ) = det (πΣθ)
−1 exp

(
−xHΣ−1

θ x
)
, (2.2)

where xH refers to the conjugate transpose of x.

With reference seabed parameters, θ0 ∈ Θ0, a binary hypothesis test assesses

if current seabed parameters, θ1 ∈ Θ1, are the same, H0 : θ1 = θ0, or sufficiently

different, H1 : θ1 ̸= θ0. Specifically, Θ0 and Θ1 are mutually exclusive sets in RN

and contain all possible parameter vectors. Using snapshots, a test statistic Λ(S)

decides when to reject H0, the null hypothesis, in favor for H1, the alternative

hypothesis,

Λ (S) ≷
H1

H0

ξ, (2.3)

where ξ results from setting the false alarm rate, e.g., PH0(Λ(S) > ξ) = 10−4.

The generalized likelihood ratio test (GLRT) is a suitable approach when the

alternative hypothesis relies on unknown parameters [27]. The GLRT statistic,

Λ(S), using recently collected L snapshots is defined as

Λ(z1, . . . , zL) = 2 log
supθ1∈Θ1

∏L
i=1 f(zi, θ1)

supθ0∈Θ0

∏L
i=1 f(zi, θ0)

. (2.4)

Since the reference parameter is completely known, the denominator can be re-

duced to θ0 = Θ0, making the numerator a maximum likelihood estimate [13].

In the case of circularly-symmetric complex Gaussian distributions, the GLRT
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simplifies to

Λ(x1, . . . , xL) = 2L

(
log

(
det(Σ0)

det(Σ̂)

)
−M + tr

(
Σ−1

0 Σ̂
))

, (2.5)

where Σ0 is characterized by θ0 and Σ̂ = 1
L

∑L
i=1 ziz

H
i is the sample covariance

belonging to unknown seabed parameters, θ1.

Eq. (2.5) is identical to the Kullbeck-Leibler divergence between two circularly-

symmetric complex Gaussians. The KLD (2.9) can be viewed as a comparison of

entropy,

H(θ) = −
∫
z∈Z

f(z; θ) log (f(z; θ)) dz, (2.6)

with cross entropy,

H(θ1; θ0) = −
∫
z∈Z

f(z; θ0) log (f(z; θ1)) dz. (2.7)

Both are non-negative measures of uncertainty [28]. One can expect (2.6) to dimin-

ish if θ fits f(z; θ) and increase if it does not. As a result, the KLD, a comparison

of entropy and cross entropy, can be viewed as a logarithmic difference,

DKL (θ0∥θ1) = H(θ1; θ0)−H(θ0)

= −
∫
z∈Z

f(z; θ0) log (f(z; θ1)) dz +

∫
z∈Z

f(z; θ0) log (f(z; θ0)) dz

=

∫
z∈Z

f(z; θ0) log

(
f(z; θ0)

f(z; θ1)

)
dz,

(2.8)
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which is an asymmetrical test. As seen above, the entropy and cross entropy are

defined by the true probability density function, f(z; θ0), with no assumptions

made about f(z; θ1). This allows the KLD to act as a measure of distance between

f(z; θ0) and f(z; θ1).

Between a completely known reference θ0 and completely known current lo-

cation seabed parameter θ1, the KLD between two circularly-complex symmetric

Gaussian distributions results in (2.5) exactly

D(θ0||θ1) = tr
(
K−1

1 K0

)
−M + log

(
det(K1)

det(K0)

)
(2.9)

In the case of the current seabed parameters being unknown, the GLRT (2.5) can

be replaced with the KLD, D(θ0∥θ1) (2.9), resulting in

Γ(z1, . . . , zL) = 2LD
(
θ̂||θ0

)
, (2.10)

where θ0 is completely known and θ̂ are the parameters under (2.4) using the

current sample covariance Σ̂t [13]. The estimated error in the sample covariance

implies that the KLD must have a discrepancy of at least c/
√
L for some c > 0 in

order to accurately assess if the two distributions are separate [29].

Our goal becomes obtaining a subset of seabed from a finite region that is

sufficiently different from a reference type using the KLD. These types of problems

can be solved using level set estimation: the problem of approximating all points in

an environment that exceed some threshold, τ , by leveraging noisy measurements

[30], as defined in Eq. (1.2).
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2.3 Adaptive Sampling for Level Set Estimation

Active learning is a subfield of machine learning used to generate a useful model

by querying for data that was previously collected or needs to be collected [1].

Similarly, online learning focuses on making sequences of optimal decisions across

many rounds as data becomes available [31]. Within a single round, an online

learning algorithm will consider information gain and a function to optimize, rec-

ommend a location, sample the location, and incur a reward or loss. Previous

active and online learning approaches to environmental monitoring assessed and

updated small, local regions of the environment in a single iteration [2, 4, 20, 16]

or globally [1, 19, 21, 32].

Local approaches often consider a subsection of possible options and update a

small portion of the estimated environment at once [20, 16, 4, 2]. These approaches

often focus on greedily accruing information, which results in failure to detect

multiple boundaries between seabed types, previously seen in Figure 1.1. They

sample in intervals along a straight line as distance penalization, and directly

search for a change point in the domain.

In comparison, global approaches update the entire domain in a single itera-

tion, allowing for multiple boundaries to be detected. These approaches are often

implemented using the multi-armed bandit framework: a statistical game with the

goal of accumulating the most money from slot machines, referred to as ‘arms’ due

to their history of being called one-armed bandits [33].

Stochastic multi-armed bandits, one of the earliest multi-armed bandit prob-
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lems, uses a learner to locate the highest paying arm, a∗, out of all possible arms,

A = {a1, . . . , aN}. During round t, a learner must select one arm to play, at ∈ A,

and observe reward, rat with the goal of accumulating highest total reward, r∗.

One of the earliest sampling policies for this game is called Explore-then-Commit

(ETC), where a learner plays each arm at least once before committing to the es-

timated highest paying arm. While exploiting one winnable arm may yield larger

rewards, it fails to explore the possibility of higher dividend arms.

To balance exploitation and exploration, the Upper Confidence Bound (UCB)

sampling policy tells the learner to sample the arm with the greatest UCB [33]. In

this approach, any arm, a, has a UCB composed of a mean, µ and a measure of

uncertainty, σ,

UCB of a =


∞ t = 0

µt(a) +
√

σt(a) t > 0

(2.11)

where t is the round number, µt(a) is the average reward from arm a, and σt(a) =

ln(∆ta)
na

with ∆ta counting the number of rounds since arm a has been sampled and

na counts the number of times arm a has been sampled. This allows the UCB

algorithm to exploit a few arms with higher means while occasionally exploring all

other arms, a principle known as ’optimism in the face of uncertainty’ [33]. There

are many other sampling policies possible, such as sampling the arm with the

maximal uncertainty, σt(a). All, however, must form a balance between exploiting

high rewards, µt(a), and exploring uncertainty, σt(a).

Contextual bandits condition rewards on feature vectors associated with each



15

arm. By basing rewards on certain conditions, there is an embedded similarity

structure between arms with similar feature vectors. In seabed characterization,

spatial locations and bathymetry could be useful feature vectors as locations near

each other and at the same depth are expected to have similar seabed character-

istics. In linear contextual bandits, the expected reward is linearly related to the

features, ca ∈ Rd, with an unknown parameter, ω∗, E [rat |cat ] = cTatω
∗. Kernelizing

contextual bandits allows for similarities between arms to be explicitly or implicitly

computed using a kernel function to reduce the number of plays needed to identify

high paying arms [34]. This can result in nonlinear relationships between ca,t and

ω∗.

Kernel methods assume a mapping ϕ : Rd → H that maps finite dimensional

data X ⊂ Rd to a Hilbert space H where the inner product can be computed

using the original feature vectors. Assuming such a Hilbert space exists, a positive

definite kernel function is defined by the inner product associated with H

k(x, y) = ϕ(x)Tϕ(y), ∀ x, y ∈ Rd. (2.12)

We view the kernel function as a measure of similarity between data x, y ∈ X .

As a result, the expected reward becomes linear with respect to the Hilbert space

mapped data, E [ra,t|xa,t] = ϕ(xa,t)
Tω∗, and non-linear in Rd. The quadratic kernel

is a clear example with its mapping defined by ϕ(x) = (x2,
√
2x, 1) and a kernel

k(x, y) = (xTy)2 + 2xTy + 1, (2.13)
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that is linear in the Hilbert space and polynomial in Rd.

Many researchers have found success in adaptive sampling using level set es-

timation and Gaussian processes to simulate the environment [1, 19, 21, 32, 35].

Level set estimation, the problem of approximating all points in an environment

that exceed some threshold, τ , utilizes multi-armed bandits by viewing all possible

sampling locations as arm where the reward is the measured specified phenomena.

The process of automating sampling patterns to perform level set estimation is

known as adaptive sampling. Gaussian processes are fully specified by a mean

function, µ(x), and covariance function, k(x, x′) [28].

In these approaches, a learner queries the environment and iteratively samples

for a phenomenon of interest. Upon receiving a measurement, it updates a current

mean estimate (2.14) and confidence width (2.15) [34]. To form the mean and

confidence width estimates, let yt = [r1, . . . , rt] contain the observed rewards, kx,t =

[k(x, x1), . . . , k(x, xt)], and Kt = {k(xi, xj)}i,j≤t then

µt(x) = kT
x,t (Kt + γI)−1 yt (2.14)

and

σt(x) = γ−1/2
√

k(x, x)− kT
x,t (Kt + γI)−1 kx,t, (2.15)

where γ ≥ 0 is a regularization parameter. In performing level set estimation,

it is common to maintain estimates of superlevel, sublevel, and uncertain sets. The

superlevel and sublevel sets are each defined as locations with upper confidence

bounds, µt(x) +
√
σt(x), and lower confidence bounds, µt(x) −

√
σt(x), on the
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same side of the threshold, τ , indicating their true level set membership is likely

known. The uncertain set maintains locations with unknown level set membership

with upper and lower confidence bounds on opposing sides of τ . Therefore, the

definitions for the superlevel, sublevel, and uncertain set are respectively,

Ht = {x ∈ D : µt(x)− ησt(x) ≥ τ} (2.16)

Lt = {x ∈ D : µt(x) + ησt(x) ≤ τ} (2.17)

Ut = {x ∈ D : |µt(x)− τ | ≤ ησt(x)}, (2.18)

where η > 0 is a parameter controlling confidence widths. For all points in the

domain, the estimated mean and confidence width can be used to form a confidence

interval,

Ct(x) = [µt−1(x)± ηtσt−1(x)] , (2.19)

representing uncertainty about the true mean. Shown in Figure 2.2, the estimated

mean and confidence widths approach the true mean when sampled. Uncertainty

around sampled locations also reduces as they have associated feature vectors,

which is their location on the x-axis.
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Figure 2.2: Estimated mean (black) with confidence widths (shaded) over the true
mean(blue). The true mean is shown in blue with the estimate mean (dashed)
wavering about it. The measured locations (red) reduce the uncertainty (shaded)
about the location of the true mean evident by the dips. Locations that are not
near sampled locations are shown to hold more uncertainty.

The equations (2.14) and (2.15) are identical across kernel ridge regression

and Gaussian processes. Kernel ridge regression is derived using regularization

– specifically using the matrix inversion lemma to kernelize least squares. The

Gaussian process view of (2.14) and (2.15) is one of a linear combination of mul-

tivariate Gaussian random variables, where the confidence interval (2.19) contains

all reasonable prior functions. The empirical results are equivalent while the in-

terpretations of the equations differ.

Gotovos et. al [1] introduce the use of Gaussian processes for level set estima-

tion in an algorithm known as GP-LSE. This pivotal paper serves a baseline for

global view level set estimation with mean and uncertainty updates coming from

(2.14) and (2.15). Its policy – an empirical formula for recommending sampling
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locations – selects current uncertain locations, x ∈ Ut, with maximal ambiguity

at(x) = min{max(Ċt(x))− τ, τ −min(Ċt(x))}, ∀x ∈ Ut (2.20)

where Ċt(x) is the intersection of previous confidence intervals, Ċt(x) =
⋂t

i=1Ci(x).

Ambiguity sampling minimizes the uncertain location with the largest confidence

width from the threshold, encouraging uncertain locations to be assigned to the

superlevel or sublevel set. It also proposes approaches for implicit thresholds,

where the threshold is expressed as a percentile, τ = α max
x∈D

µ(x), α ∈ [0, 1], batch

sampling, which obtains measurements after sampling all B locations, and path

planning, which uses a traveling salesperson solution to sample batches efficiently.

Various path planning approaches build upon GP-LSE, some which include se-

lecting paths by information gain using dynamic programming [18, 36]. In these

approaches, paths are quantified using a measure of information gain such as condi-

tional mutual information or cross entropy. These approaches focus on exploration

and implemented a receding horizon to reduce exploitation.

Other problems involve maintaining a set of potential maximizers for exploita-

tion, Mt, [35, 19], which contains points with UCB greater than the largest lower

bound. In [35], the problem requires sampling points deemed sufficiently larger

than the threshold, St. As a result, there is a set of potential expanding locations

that seem safe and could add more locations to St+1. This could be viewed as only

sampling locations in the superlevel set, Ht, with some potentially safe points in Ut

that could expandHt+1. While this approach discovers safe regions, it favors higher
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rewards over the pure exploration approach suitable for seabed characterization.

In contrast, [19] aligns more with GP-LSE and considers sampling locations that

maximally reduce variance using a lookahead operation. The lookahead operation

involves forming σ(x)t+1 conditioned on, ẋ, a location simulated for sampling. Be-

cause (2.15) does not require measurement values, it can be updated without a

posterior mean.

Other approaches make paths intentionally exploring locations in the uncertain

set while traveling to a selected next location [32, 21]. In [32], a graph with nodes

containing all points in the uncertain set is made with a node’s weight being

assigned the location’s ambiguity (2.20). The edge weight is the cost associated

with traveling between nodes. An orienteering step calculates an affordable path by

solving a traveling salesperson problem that maximizes cumulative ambiguity from

visiting nodes. A separate approach selects a terminal location using (2.20) and

travels through as many uncertain locations within a specified radius as it moves

[21]. Both of these approaches utilize a process of explicitly sampling uncertain

locations.

Outside of environmental monitoring, two multi-armed bandit solutions uti-

lize directly exploring the decision boundary by sampling locations closest to the

threshold [37, 22]. These approaches, which also perform level set estimation, di-

rectly focus on partitioning arms by discovering locations near the threshold. They

travel minimally and often sample near previous locations, but fail to explore ad-

ditional separated boundaries.

It stands to a reason that an algorithm focused on reducing the number of
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uncertain locations, defined as locations in Ut (2.18), would be beneficial for LSE.

Empirical results from [1, 19] and [21] indicate path sampling and variance re-

duction are also beneficial for environmental monitoring use LSE. To this end, we

hypothesize that an algorithm capable of directly reducing the size of the uncertain

set using a lookahead operation could perform exceptionally well in environmen-

tal monitoring. Unlike variance or ambiguity focused approaches, reducing the

uncertain set size directly tackles LSE.
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3 Lookahead Uncertain Set Reduction

The following chapter introduces the main contribution of this thesis: an adaptive

sampling algorithm for seabed type identification using an autonomous underwater

vehicle. It begins by connecting to previous environmental monitoring solutions

before introducing uncertain set reduction and pessimistic sampling for a lookahead

operation.

Lookahead uncertain set reduction (LUSR) is a distance penalized level set es-

timation algorithm that samples to directly reduce the cardinality of the uncertain

set, defined as locations with upper and location confidence bounds straddling the

threshold. defined by (2.18). Despite having the same goal of level set estimation,

previous works sampled using surrogates, such as variance reduction [1, 19] and

points near the decision boundary [37, 22], to prioritize correct level set assign-

ment. In contrast, LUSR is designed to reduce the cardinality of the uncertain

set as quickly as possible. Furthermore, it is restricted to sample from a fixed

number of neighbors. This directly reduces the distance traveled while providing

significant information gain.

LUSR sequentially updates its mean estimate through kernel ridge regression

(KRR) (2.14) and its confidence interval through the kernelized Mahalanobis dis-

tance (2.15), which are equivalent to the update equations for Gaussian processes

[28] and previous environmental monitoring solutions [1, 32, 21, 35, 18]. It is well
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known that inverting matrix K ∈ Rt×t, which is used in both (2.14) and (2.15),

has a computational complexity of O(t3). As a result, an online update utilizing

the Schur complement [38] is introduced [34] with a computational complexity

of O ((t− 1)2). Finally, while any regression algorithm with an uncertainty esti-

mate can be used, there are significant benefits we leverage from kernel methods,

particularly contextual bandits discussed in Section 2.3.

Briefly, kernel methods assume a mapping ϕ : X 7→ H to place data X ⊂ Rd

in a Hilbert Space, H. Assuming the associated Hilbert space exists, a positive

definite kernel function is defined by the inner product of the mapping,

k(x, x′) = ϕ(x)Tϕ(x′). (3.1)

where the mean estimate exists as an inner product with our high dimensional data,

µ∗(x) = ϕ(x)Tω∗ [34]. Furthermore, it is shown in [34] that the mean estimate is

bounded by

|µ(x)t − ϕ(x)Tω∗| ≤ η(1 + ∥ω∗∥) + γ(1/2)∥ω∗∥σt(x), (3.2)

with high probability where γ is a regularization parameter from the confidence

width update (2.15) and η is a tuning parameter controlling the weight of the

confidence interval (2.19).

Consider a set of visited sample location x1, . . . , xt with corresponding similarity

measurements s1, . . . , st obtained from the exponentiated Jefferys divergence (1.3).
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Given a kernel, k(x, x∗) = ϕ(x)Tϕ(x∗), define a matrix Kt ∈ Rt×t to have entries

Kt = {k(xi, xj)i,j≤t, xi, xj ∈ D}. (3.3)

Denote kx,t to be

kx,t = [k(x, x1), . . . , k(x, xt)]
T , (3.4)

and form a collection of recorded samples,

yt = [s1, . . . , st]
T . (3.5)

The KRR mean prediction and confidence widths satisfy (2.14) and (2.1) respec-

tively.

It is known that inverting A ∈ R(t×t) is an O (t3) operation using Gaussian elim-

ination. Since Kt is symmetric and positive semi-definite, an online matrix inverse

update utilizing the Schur complement is implemented to reduce the computa-

tional complexity, as shown in Algorithm 1 [38, 34]. This approach is O((t− 1)2)

as it relies only on matrix multiplication.

LUSR utilizes a one-step lookahead to estimate the size of the future uncertain

set after sampling location xt. The confidence widths (2.15) do not depends on

the measurement value and can be evaluated exactly prior to sampling a given

point. The uncertain set (2.18) requires the posterior mean estimation (2.14),

which depends on similarity measurement st. A lookahead estimate, therefore, can

utilize the existing confidence interval (2.19) to obtain a false measurement for a
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Algorithm 1 Online Matrix Inversion Update

Input: Matrices Kt and K−1
t−1, Regularization parameter γ, kernel k(·, ·), Sampled

location (x1, . . . , xt)
Output: K−1

t

1: if Kt ∈ R(1×1) then
2: K−1

t ← 1
k(xt,xt)+γ

3: else
4: b← (k(xt, x1), . . . , k(xt, xt−1)

T

5: K22 ←
(
k(xt, xt) + γ − bTK−1

t−1b
)−1

6: K11 = K−1
t−1 +K22K

−1
t−1bb

TK−1
t−1

7: K12 ← −K22K
−1
t−1b

8: K21 ← −K22b
TK−1

t−1

9: K−1
t ←

[
K11 K12

K12 K22

]
10: end if
11: return K−1

t

given location. In the Gaussian process view, the confidence interval acts as a

bound on the true mean, allowing a fake measurement to be s̃ = {x : |µt(x)− τ | ≤

ησt(x)} with high probability [34, 28]. In particular, we set

s̃t+1 =


µt(x)− ησt(x), µt(x) > τ

µt(x) + ησt(x), µt(x) ≤ τ

(3.6)

then form estimate level set L̃t+1, H̃t+1, and Ũt+1 from an updated mean, µ̃t+1, and

confidence width, σt+1. The false measurement (3.6) can be viewed as a pessimistic

choice as the pseudo-sample removed the fewest points from the uncertain set. If

µt(x) > τ , s̃t+1 is set to the lower bound, it pushes x and similar points closer

to the level set boundary τ . Equation (3.6) was decided upon as it pushes more
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locations into the lookahead uncertain set, Ũt+1, by assuming a worse-case level set

membership. Equation (3.6) was validated empirically, as seen in Figure 4.1. As

a means of distance penalization, LUSR is restricted to the ρ nearest neighbors,

denoted as Nρ(xt) where xt is the AUV’s current location

Nρ(xt) = argmin
Ut,k∈Ut, |Ut,k|=ρ

∑
xi∈Ut,k

∥xi − xt∥. (3.7)

LUSR samples the uncertain location that maximizes the estimated uncertain set

reduction

xt+1 = argmax
x∈Nρ(xt)

|Ut| − |Ũt+1|. (3.8)

Distance penalization is an important decision that controls computational com-

plexity, cost, and performance, as shown in Chapter 4. We show in Chapter 4 that

the ρ nearest neighbors approach effectively balances exploring new regions and

exploiting known boundaries. Pseudocode for LUSR can be found in Algorithm 2.

Extending (3.2), the error bound for a lookahead estimate can be derived by

appending a pessimistic sample to kx,t and yt. The results show that a lookahead

estimate incurs error related to the similarity between the lookahead location, x̃t+1,

and any other point in the domain

|µ̃t(x)− ϕ(x)Tω∗| ≤ η̄σt(x) +
2η̄

γ
σt(x)

∣∣k(x, x̃t+1)− kT
x,t+1(Kt+1 + γI)−1kx̃t+1,t+1

∣∣
(3.9)

where η̄ = η (1 + ∥ω∗∥) + γ1/2∥ω∗∥ with full derivation in Appendix A. This re-

sult shows a reliance on the previous confidence width, as shown in [34], with an
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Algorithm 2 Lookahead Uncertain Set Reduction (LUSR)

Input: domain D, initial location x0, kernel function k, threshold τ , tuning pa-
rameters γ, η, similarity parameter ℓ, number of neighbors ρ, number of samples
T
Output: predicted sets LT , HT

1: L0 ← ∅, H0 ← ∅, U0 ← D
2: for t = 0, . . . , T do
3: Nρ(xt)← ρ nearest neighbors of xt in Ut

4: xt+1 ← argmaxx∈Nρ(xt) |Ut| − |Ũt+1|
5: collect snapshots, form similarity st+1 = exp

(
−J(Σ̂0∥Σ̂t)/ℓ

2
)

6: yt+1 ← [s0, s1, . . . , st+1]
7: update kx,t+1 by (3.4) and K−1

t+1 by Algorithm 1
8: µt+1(x)← kT

x,t+1K
−1
t+1yt+1, ∀x ∈ D

9: σt+1(x)← γ−1/2
√
k(x, x)− kT

x,t+1K
−1
t+1kx,t+1, ∀x ∈ D

10: Ht+1 ← {x ∈ D : µt+1(x)− ησt+1(x) ≥ τ}
11: Lt+1 ← {x ∈ D : µt+1(x) + ησt+1(x) ≤ τ}
12: Ut+1 ← {x ∈ D : |µt+1(x)− τ | ≤ ησt+1(x)}
13: end for

additional factor loosely representing (2.15) between x and x̃t+1. In theory, η is

a time-varying parameter. LUSR, however, sets it as a constant parameter to be

optimized [39] as it proved to be difficult to set. While this comes with practical

benefits, it lacks theoretical analysis [34].
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4 Results

This section empirically evaluates the performance of LUSR on synthetic data and

realistic seabeds from the HFEVA database. LUSR is compared to a few sample

policies in the spirit of previous solutions. Specifically, LUSR is compared to ran-

dom sampling, margin [22], max variance [1], max ambiguity [1], and a lookahead

variance reduction [19]. Lookahead variance reduction (LA VAR) samples the lo-

cation estimated to reduce the most variance via a lookahead operation and was

made in the spirit of Truncated Variance Reduction (TruVar) [19]. While TruVar

surveys the whole domain, LA VAR considers locations only in the uncertain set.

All policies, which are defined in Table 4.1, use the radial basis function kernel for

their mean (2.14) and confidence width (2.15) estimates

k(x, x′) = exp

(
− 1

2δ2
∥x− x′∥2

)
, (4.1)

and are restricted to the ρ nearest neighbors. Although not shown, the state-of-

the-art straddle heuristic [40] performed similarly to margin while requiring an

additional tuning parameter.

Class accuracy is used to quantify the performance of each algorithm

Lt =
1

|D| |(H
∗ ∩Ht) ∪ (L∗ ∩ Lt)| , (4.2)
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Table 4.1: Sampling Policies

Tested Sampling Policies

Identifier Policy

Margin xmar = argmin
x∈Nρ(xt)

|µt(x)− τ |

Variance Reduction xV AR = argmax
x∈Nρ(xt)

σt(x)

Ambiguity xambig = argmax
x∈Nρ(xt)

at(x) (2.20)

Lookahead Variance Reduction xLAV AR = argmin
x∈Nρ(xt)

∑
xi∈X σt+1(xi)

with H∗ and L∗ being the true superlevel and sublevel set respectively.

4.1 Lookahead Sampling

When introducing a lookahead sampling policy, we consider mean, optimistic, and

pessimistic estimate for the false measurement, s̃t+1. A mean estimate simply

sets s̃t+1 = µt(x) while an optimistic estimate sets s̃t+1 maximally away from the

threshold using its confidence bound

s̃t+1 =


µt(x) + ησt(x), µt(x) > τ

µt(x)− ησt(x), µt(x) ≤ τ

. (4.3)
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A pessimistic sampling policy, defined earlier in Chapter 3, sets the false measure-

ment towards the threshold, encouraging more uncertain locations. Six trials over

12 synthetic boundaries, discussed in Section 4.2, were used as environments to

compare the three false measurements. The pessimistic estimate achieved a higher

accuracy with ρ = [20, 50, 80] and T = 100 samples, as shown in Figure 4.1.
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Figure 4.1: The solid lines reflect the median value over 6 trials for the first 12
randomly generalized boundaries discussed in Section 4.2. The interquartile range
is shaded. In the low noise setting, 20 neighbors (a), 50 neighbors (b), and 80
neighbors (c) all show pessimistic sampling outperforming optimistic and mean
sampling by reaching a higher accuracy with lower cost.
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(a) Original Fields (b) Additional Fields

Figure 4.2: Twenty randomly simulated fields used to evaluate each policy (a) and
twenty additional fields, each with two boundaries (b). The reference location is
the top left of each boundary with yellow indicating the superlevel set and purple
indicating the sublevel set.

4.2 Synthetic Results

Twenty simulated boundaries of dimension 50 × 50 were randomly generated by

mapping the coordinates to a fourth-order polynomial, generating a random weight

vector in the high dimensional space, then labeling each location using a linear clas-

sifier defined by the weight vector. The results, shown in Figure 4.2, are composed

of a superlevel set, H∗, in yellow and sublevel set, L∗, in purple. Each field un-

derwent 32 trials with measurements drawn from a truncated normal distribution

with means zero and one for within-class and across-class similarities. The low and

high noise settings set σnoise = 0.15 and σnoise = 0.45 respectively.

The level set threshold was set at the median, τ = 0.5. For all policies, γ = 0.01

and η = 0.5. The number of neighbors ρ ∈ [1, 2, 5, 10, 15, 20, 40, 60, 80, 100] was
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designed to minimize computational complexity and distance traveled. There is no

cost to sample as ambient acoustic noise is captured continuously and freely. After

each iteration, each policy was evaluated on its classification accuracy treating the

level set membership as a binary label.

Figure 4.3 shows the median accuracy against the distance traveled in the

original fields for ρ = 100 neighbors in low and high noise settings along with

the interquartile range. It demonstrates that LUSR reaches a higher accuracy

with a lower distance compared to the other competing algorithms. Of the two

variance reducing algorithms, maximal variance reduction (VAR) is shown as it

preformed similarly to the lookahead variance reduction algorithm (LA VAR) made

in the spirit of TruVar [19] while being computationally cheaper. It was removed

from Figure 4.3 for clarity. VAR can detect multiple boundaries quickly, but

its strong preference for exploration increases its traveling distance. By focusing

on reducing the uncertain set, LUSR indirectly sampled locations that are both

near the boundary and have high uncertainty, obtaining an appropriate degree of

exploration.

Margin sampling surpassed our expectations, which we assumed was due to the

simplicity of the original fields. As a result, additional fields with two boundaries

each were generated to mimic the realistic seabed data discussed in Section 4.3.

The results, shown in Figure 4.4, show LUSR performing strongly in the low noise

setting and similarly to VAR in the high noise setting. Random sampling, which

consistently performs poorly, was replaced with ambiguity sampling as it uses

information from both the mean and uncertainty estimates like LUSR.
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Figure 4.3: Accuracy compared to cost for the original synthetic fields. The solid
lines reflect the median value over 32 trials for each of the boundaries. The in-
terquartile range is shaded. In a low noise setting with 100 neighbors (a), LUSR
achieves a high accuracy with very little cost compared to its competitors. In
the high noise setting (b), LUSR moves a bit close to its competitors while still
attaining a higher accuracy and lower cost.

Figure 4.5 shows the accuracy and distance traveled against the number of

neighbors in the low noise setting after 100 samples on the original fields. LUSR’s

median accuracy begins to outperform VAR’s with ρ = 15 neighbors. The plot

shows margin achieving a worse accuracy across all ρ values while also traveling

the least, a feature of prioritizing exploitation over exploration. VAR, in turn,

performs similarly to LUSR while traveling significantly more as ρ increases due

to over-exploration. LUSR reaches an middle ground between margin and VAR,

which is hypothesized to be a product of prioritizing level set assignment. It

samples both the boundary and locations of high variance.

Table 4.2 shows computation times for all algorithms using the synthetic bound-

aries. All algorithms ramp up within the first 10 samples before reaching a steady
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Figure 4.4: Accuracy compared to cost for the additional synthetic fields over 150
samples. In a low noise setting with 100 neighbors (a), LUSR still achieves a
higher accuracy than its competitors. In the high noise setting (b), LUSR begins
to struggle and performs similarly to VAR.

state computation time. Despite similar performances, LUSR requires more than

106 times longer than VAR. Both of these, however, are small enough to be usable.

With limited computational resources, a small number of neighbors to consider,

or if investigating a small environment, VAR may be preferred. LUSR seems to

perform better with more computational resources, a higher number of neighbors,

or when a larger environment is available. Similarly, the tuning parameters, η and

γ were found to be difficult to set appropriately.

4.3 Seabed Results

The algorithms are compared on model data from the state-of-the-art Multi-

Dimensional Ambient Noise Model [41] over a region in the the north Pacific Ocean,
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Figure 4.5: At the end of 100 iterations, LUSR’s median accuracy (a) outperforms
the other algorithms with 15 neighbors. Similarly, it travels less than VAR and
slightly more than margin. Margin’s favorability for the decision boundary helps
keep a low traveling cost.

specifically the red box shown in Figure 2.1. The region contains HFEVA sediment

types 2, 8, 16, 17, and 22, which are rock, gravelly muddy sand, gravelly mud or

sandy silt, medium silt or sand-silt-clay, and silty clay respectively. Types 16-22

have very similar covariances and represent the predominant background sediment.

The goal is to distinguish types 2 and 8, gravelly sediment types, from 16-22, silty

sediment types. For each sediment type, the corresponding signal covariance from

the multi-dimensional ambient noise model [41] is used to generate complex normal

snapshots according to the covariances defined by (2.1) with a signal-to-noise ratio

of 10. Each sampled location provides L = 300 snapshots from M = 32 receivers.

The tuning parameter in the similarity measurements (1.3) is set to ℓ = 10 with the
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Table 4.2: Mean and median time (s) to compute the 100th sample with 40 neigh-
bors

Computation Time (seconds) at Steady State

Policy Mean Median

Margin 4.411× 10−4 3.757× 10−4

Variance Reduction 0.0001.251× 10−4 1.191× 10−4

Ambiguity 1.428× 10−4 1.159× 10−4

Lookahead Variance Re-
duction

27.212 23.084

LUSR 16.292 13.455

level set threshold chosen to be τ = 0.3 from domain knowledge. It is important

to note that all policies are invariant to these parameters.

Figure 4.6 shows the performance metrics over the north Pacific Ocean region.

This region contains multiple boundaries. As a result, margin sampling struggles

to explore the new boundaries. VAR and LUSR operate similarly, which is justified

as both attempt to reduce uncertainty. However, VAR over explores while LUSR

remains committed to reducing the size of the uncertain set, evidenced by the 6000

km distance cost shown in Figure 4.6.
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Figure 4.6: LUSR and VAR perform similarly (a), however, LUSR gets more of
an edge over VAR between ,5000 - 7,500 km by finding an unexplored boundary
earlier. This is shown in LUSR’s uncertain set size (b).
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5 Extensions

The following chapter discusses secondary LUSR iterations in addition to simulated

path sampling. Since AUVs can sample freely, previous solutions implemented con-

tinuous sampling and path planning stages [21, 32, 42]. In regard to the lookahead

estimate error derived in (3.9), it makes sense to ask how additional lookahead

steps would alter performance in the view of a second LUSR iteration, known as

LUSR-2. After an initial LUSR iteration, a second LUSR iteration performs LUSR

again using Ũt+1 to predict the reduction in Ũt+2, which forms similarities using the

current mean estimate µt(x) (2.14) with the future confidence interval σt+2 (2.15).

The current mean estimate is used for the fake measurements as each lookahead

mean estimate adds error, proven in (3.9). Similarly, LUSR Path – an algorithm

that computes LUSR along a path – can be viewed as a n-step LUSR operation

and is detailed in Section 5.2.

Additional kernel data would be beneficial since mean and confidence widths

are reliant on kernel measurements. Bathymetry data covering a region of the

northern Atlantic Ocean was combined with the radial basis function kernel in an

attempt to encourage information gain.
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5.1 Second-Order LUSR

A second-order LUSR could use a second lookahead operation to verify the first

LUSR search and authenticate that the AUV is moving towards an appropriate

area for exploration. LUSR-2, a second-order LUSR operation, completes an initial

LUSR to identify sampling location, xt+1. After forming the lookahead uncertain

set, Ũt+1, a secondary LUSR operation is computed to identify x̃t+2, a hypothesized

secondary future location to sample assuming the AUV travels to xt+1. To compute

a second-order LUSR, two similarity measurements are appended to (3.5) forming

ỹt+1 = [s1, . . . , st, s̃t+1, s̃t+2],

where s̃t+1 and s̃t+2 come from (3.6) using the current mean µt(x̃) while updating

the confidence widths, σt(x̃t+1) and σt+1(x̃t+2) respectively. This process is re-

peated for all combinations of x ∈ Nρ(xt) and x̃t+1 ∈ Ñρ(x), where Ñρ(x) contains

the nearest ρ uncertain locations after the secondary mean and confidence width

update. Like LUSR, the sampling policy for LUSR-2 selects the next location upon

the maximum cardinality reduction

xt+1 = argmax
x∈Nρ(xt)

|Ut| − max
x̃∈Ñρ(x)

|Ũt+2|, (5.1)

where Ũt+2 is the uncertain set after the two-step lookahead that samples x ∈

Nρ(xt) then x̃ ∈ Ñρ(x). It is important to note that both iterations of LUSR use

the current mean estimate, µt, to form lookahead similarity measurements (1.3),
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which was proven theoretically (3.2) and empirically, as shown in Figure 5.1.
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Figure 5.1: LUSR-2 is shown performing marginally better with the current mean
estimate (orange) than one using a lookahead measurement (blue). The lookahead
error bound (3.2) is worse than the current mean estimate, justifying the worse
performance using the updated mean.

Excluding margin sampling, which performed significantly worse as ρ increased,

LUSR-2 does achieve a higher accuracy than other algorithms while maintaining

a worse cardinality, as shown in Figure 5.2.
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Figure 5.2: With 40 nearest neighbors, LUSR-2 reaches a near perfect accuracy
with less cost than other algorithms (a). The cardinality, however, performed
worse (b). Further testing is required if LUSR-2 maintains a higher accuracy with
a lower cardinality or obtains a lower cardinality and the higher accuracy in (a) is
due to simple boundaries.

5.2 Continuous Sampling

Since LUSR-2 achieved a higher accuracy LUSR, it stands to reason that LUSR-

n, an n-step LUSR algorithm may perform more optimally. Previous sampling

methods benefit from continuous sampling as the AUV travels from one location

to the next [21, 43, 32, 42]. Unlike original LUSR, which samples only at specified

locations, continuous sampling locations collect data as they travel between loca-

tions. However, performing a lookahead process over a continuous path, where the

estimated future predictions compound on each other, continues to add variance

at each lookahead iteration. To counter this, the current mean estimate is used for

all lookahead processes like LUSR-2. The path predicted to reduce the uncertain
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set the most is executed using continuous sampling, shown in Figure 5.3.
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Figure 5.3: Executed paths computed using LUSR Path over a smaller region in
the norther Pacific Ocean using ρ = 20.

In a given iteration, the original LUSR (3.8) estimates the reduction of the

uncertain set given we synthetically sample a location x̃t+1 ∈ Nρ(xt). For each

x̃t+1 ∈ Nρ(xt), the shortest path from xt to x̃t+1, P is calculated. For each location

x ∈ P , a pessimistic mean and confidence width update is calculated using the

current mean estimate µt.

Previously, all algorithms operated in rounds, where each round required one

sample to be collected. LUSR Path, however, executes an entire path with varying

length. In the beginning, paths are relatively short as the nearest neighbors are

closer. In the later iterations, uncertain locations spread out, resulting in longer

paths. Despite the significantly more sampling LUSR Path collects, it performs

only slightly better than the other competing algorithms, as seen in Figure 5.4.
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Figure 5.4: Due to the wide sampling range, LUSR Path avoids a dip that LUSR
falls for (b) and (c). Despite this, they generally track each other while LUSR Path
takes significantly more computation time – often taking days or weeks longer than
LUSR.

LUSR Path successfully avoids a pitfall that LUSR does not avoid, shown in

??. The benefits on limited beyond that. In terms of computational cost, LUSR

Path would take days to weeks longer than LUSR, stunting our ability to consider

larger number of neighbors. In may be beneficial to restrict paths to finite number

of samples taken at fixed intervals along the path, similar to some local approaches

[20, 3, 16].

5.3 Bathymetry Data

When additional data is available, it may be beneficial to incorporate it into a

Gaussian process model as an additional feature [28]. In regard to seabed identifi-

cation, bathymetry – the depth of the ocean – data is a readily available to be used

as an additional feature. As a result, a combination kernel, kcombo(·, ·) is formed
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using spatial and bathymetry similarities,

kcombo(x1, x2) = kRBF (x1, x2) + c kbathymetry(x1, x2), c ∈ [0, 1], (5.2)

where kRBF is the radial basis function kernel described in Chapter 4. Adding

kernels can be viewed as a boolean OR operation where kcombo(x1, x2) will be high

if either kRBF (x1, x2) or kbathymetry(x1, x2) is high. As a result, locations sharing

similar bathymetry that are not physically close together will be viewed as similar

under kcombo.

To do this, a region in the northern Atlantic Ocean with known bathymetry

data is used, shown in Figure 5.5.
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Figure 5.5: New region for LSE (a) with its corresponding bathymetry data (b)
where white designates land. The seabed types shown in (a) is shown to be corre-
lated to the depth of the ocean in (b).

The results, shown in Figure 5.6, reveal that the bathymetry data quickly

produces accurate field estimates. However, it is difficult to find the appropriate
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weight for the combined kernels. Using only bathymetry data, it is difficult to

surpass 93% accuracy.
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Figure 5.6: The results generally track when adding in the new kernel. The new
kernel bumps accuracy to .9 quickly (f), and the adaptive sampling policies push
past that at the same rate.

It is important to note that a kernel using only bathymetry data quickly ter-

minates sampling as all locations have been assigned to Ht or Lt. Appropriately

weighting uncertainty through tuning parameter η has proven to be difficult.
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Table 5.1: Mean and median time (s) to compute the 100th sample with 40 neigh-
bors

Computation Time (seconds) at Steady State

Policy Mean Median

Margin 4.411× 10−4 3.757× 10−4

Variance Reduc-
tion

0.0001.251× 10−4 1.191× 10−4

Ambiguity 1.428× 10−4 1.159× 10−4

Lookahead Vari-
ance Reduction

27.212 23.084

LUSR 16.292 13.455

LUSR-2 487.351 456.891

LUSR Path∗ Terminated Terminated

∗ Two attempts were terminated after stalling after 4 weeks
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6 Conclusion

Approaching seabed characterization through a binary hypothesis test using ambi-

ent acoustic noise captured by an autonomous underwater vehicle (AUV) motivates

an online adaptive sampling algorithm. We introduce an algorithm capable of using

the test statistic from the generalized likelihood ratio test to identify locations that

exceed a user-supplied threshold, transforming the problem of seabed characteri-

zation into level set estimation. During this process, the algorithm maintains three

sets for locations exceeding the threshold, falling short of the threshold, and with

uncertain placement with respect the threshold. Our algorithm, named LUSR, di-

rectly seeks to reduce the uncertain set using a lookahead operation. Furthermore,

we implement distance penalization by restricting sampling to the nearest neigh-

bors. While our algorithm excels at reducing the number of uncertain locations,

it is sensitive to the coefficient scaling confidence widths, and it is unclear on how

to set these appropriately. While we provide a bound on this coefficient, it can be

difficult to tune in practice.

Empirical results on synthetic boundaries and realistic seabed data proved our

algorithm outperforms or tracks competing algorithms. In particular, LUSR ex-

cels in low noise environments. Three extensions of LUSR are introduced: two-step

LUSR, continuous sampling LUSR, and a combination kernel. LUSR-2, an algo-

rithm with two lookahead operations, promoted high accuracy but fails to reduce
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the cardinality of the uncertain set. More clarity is needed around whether LUSR-2

performs better across various boundaries or only in the single boundary synthetic

fields it was simulated on. LUSR Path, a natural nth order extension of LUSR-2,

seems to avoid pitfalls LUSR fell into. However, performed slightly better with

20 nearest neighbors while consuming significantly more computational resources.

Both attempts to simulate LUSR Path with the same setup at LUSR were termi-

nated after stalling for weeks. The combination kernel appears to be an appealing

addition which would improve information gain. Bathymetry data for a region in

the Atlantic Ocean is introduced and quickly obtains a high accuracy. However, it

is difficult to improve performance after the initial increase.

Future work could consider the estimated reduction in the uncertain set by

using a neural network. The effects of realistic AUV movement, especially under-

water, is another area to consider as we assume the AUV is capable is moving

in straight lines. Additionally, determining how to set the correct bounds for the

coefficient could provide significant advantages to set assignment and sampling

protocol.
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8 Appendix: Lookahead Error Bound

Valko et. al provides

|µ(s)
a,t − ϕ(xa,t)

Tω∗| ≤ η̄σ
(s)
a,t , (8.1)

where η̄ = η(1 + ∥ω∗∥) + γ1/2∥ω∗∥ and each group {Ψ(s)}s is mutually exclusive.

This allows the Azuma-Hoeffding inequality to be applied. We will eliminate the

index sets to simplify superscripts and subscripts resulting in

|µt(x)− ϕ(x)Tω∗| ≤ η̄σt(x), ∀x ∈ D. (8.2)

The difference decomposes into

µt(x)−ϕ(x)Tω∗ = ϕ(x)T (Cγ
t )

−1ΦT
t (yt−Φtω

∗)− γϕ(x)T (Cγ
t )

−1ω∗, ∀x ∈ D. (8.3)

Looking at Eq. 8.3, a lookahead operation forms an estimated ỹt+1 by appending

synthetic reward r̃t+1 to yt. While our work practically benefits from a pessimistic

sampling protocol, we are only considering a mean estimate fake sample in this

proof producing

µ̃t+1(x)−ϕ(x)Tω∗ = ϕ(x)T (Cγ
t+1)

−1ΦT
t+1(ỹt+1−Φt+1ω

∗)−γϕ(x)T (Cγ
t+1)

−1ω∗, (8.4)
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and

ϕ(x)TC−1
t+1Φ

T
t (ỹt+1 − Φt+1ω

∗) = ϕ(x)TC−1
t+1Φ

T
t+1



r1 − ϕ(x1)
Tω∗

...

rt − ϕ(xt)
Tω∗

r̃t+1 − ϕ(x̃t+1)
Tω∗


, (8.5)

where ỹt+1 = [yt, r̃t+1] = [r1, r2, . . . , rt, r̃t+1]. We can split this up into

µ̃t+1(x)− ϕ(x)ω∗ = ϕ(x)TC−1
t ΦT

t (yt − Φtω
∗)+[

ϕ(x)TC−1
t+1Φ

T
t+1

]
t+1

(µt(x̃t)− ϕ(x̃t)
Tω∗)− γϕ(x)T (Cγ

t+1)
−1ω∗ (8.6)

which we can bound using techniques from the original proof. Specifically, we can

use the Cauchy-Schwarz inequality to find that

|ϕ(x)TC−1
t+1Φ

T
t | ≤ ∥ω∗∥

√
ϕ(x)TC−1

t+1γ
−1γIC−1

t+1ϕ(x)

≤ γ−1/2∥ω∗∥
√
ϕ(x)TC−1

t+1Ct+1C
−1
t+1ϕ(x)

≤ γ−1/2∥ω∗∥σt+1(x)

≤ γ−1/2∥ω∗∥σt(x).

(8.7)

Additionally, we can bound the first term using the Azuma-Hoeffding inequality

such that

P
(
|ϕ(x)TC−1

t ΦT
t (yt − Φtω

∗)| > (1 + ∥ω∗∥)ησt(x)
)
≤ 2e−η2/2. (8.8)
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Now, Eq. (8.6) looks like

µ̃t+1(x)− ϕ(x)ω∗ ≤ (1 + ∥ω∗∥)ησt(x) + γ−1/2∥ω∗∥σt+1(x)+[
ϕ(x)TC−1

t+1Φ
T
t+1

]
t+1

(µt(x̃t)− ϕ(x̃t)
Tω∗)

≤ η̄σt(x) +
[
ϕ(x)TC−1

t+1Φ
T
t+1

]
t+1

(µt(x̃t)− ϕ(x̃t)
Tω∗)

(8.9)

where we only need to bound the middle term.

For a mean-estimate lookahead, r̃t+1 = µt(x̃t), where µt(x̃t) is the most recently

mean estimate at lookahead sampling location, x̃t. To begin bounding Eq. (8.2),

we start with

r̃t − ϕ(x̃t)
Tω∗ = r̃t − rt + rt − ϕ(x̃t)

Tω∗

= µt(x̃t)− rt + rt − ϕ(x̃t)
Tω∗.

(8.10)

We can bound rt − ϕ(x)Tω∗ using Hoeffding’s inequality

P(|rt − ϕ(x)ω∗| ≥ ϵ) ≤ 2 exp (− ϵ2

2R
), (8.11)

where R is from the resulting R-subGaussian. This forms

|rt − ϕ(x)ω∗| ≤ η̄σt(x) w.p. ≥ 1− 2 exp (− η̄2σ2
t (x)

2R
), (8.12)

where rt comes from sampling x. Returning to Eq. (8.10), we can bound using
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Eq. (8.2) and Eq. (8.12)

|µt(x)− ϕ(x)ω∗| ≤ η̄σt(x)

|µt(x)− rt + rt − ϕ(x)ω∗| ≤ η̄σt(x)

|µt(x)− rt| ± η̄σt(x) ≤ η̄σt(x)

|µt(x)− rt| ≤ 2η̄σt(x)

(8.13)

Reproducing Eq. (8.9) with lookahead values r̃t+1 and x̃t+1, the most updated

bound looks as follows

|µ̃t(x)− ϕ(x)Tω∗| ≤ η̄σt(x) + 2η̄σt(x)
[
ϕ(x)TC−1

t+1Φ
T
t+1

]
t+1

(8.14)

where µ̃(·) is the lookahead mean estimate having sampled location x̃t and received

measurement µt(x̃t). Now, we want to bound
[
ϕ(x)TC−1

t ΦT
t

]
t+1

.

[
ϕ(x)TC−1

t+1Φ
T
t+1

]
t+1

=
[
ϕ(x)TC−1

t [ϕ(x1), ϕ(x2), . . . , ϕ(x̃t+1)]
]
t+1

=
[
ϕ(x)TC−1

t+1ϕ(x1), . . . , ϕ(x)
TC−1

t+1ϕ(x̃t+1)
]
t+1

= ϕ(x)TC−1
t+1ϕ(x̃t+1)

(8.15)

To bound ϕ(x)TC−1
t+1ϕ(x̃t+1), we use the following lines from Valko

(ΦT
t Φt + γI)ΦT

t = ΦT
t (ΦtΦ

T
t + γI)

ΦT
t (ΦtΦ

T
t + γI)−1 = (ΦT

t Φt + γI)−1ΦT
t

(8.16)
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and ϕ(x) = ΦT
t (ΦtΦ

T
t + γI)−1kx,t + γ(ΦT

t Φt + γI)−1ϕ(x). Therefore

ϕ(x̃t+1) = ΦT
t+1(Φt+1Φ

T
t+1 + γI)−1kx̃t+1,t+1 + γ(ΦT

t+1Φt+1 + γI)−1ϕ(x̃t+1)

ϕ(x)Tϕ(x̃t+1) = ϕ(x)T
(
ΦT

t+1(Φt+1Φ
T
t+1 + γI)−1kx̃t+1,t+1+

γ(ΦT
t+1Φt+1 + γI)−1ϕ(x̃t+1)

= ϕ(x)TΦT
t+1(Φt+1Φ

T
t+1 + γI)−1kx̃t+1,t+1+

γϕ(x)T (ΦT
t+1Φt+1 + γI)−1ϕ(x̃t+1)

We can swap sides of the equation for convenience,

ϕ(x)TΦT
t+1(Φt+1Φ

T
t+1 + γI)−1kx̃t+1,t+1+

γϕ(x)T (ΦT
t+1Φt+1 + γI)−1ϕ(x̃t+1) = ϕ(x)Tϕ(x̃t+1)

γϕ(x)T (ΦT
t+1Φt+1 + γI)−1ϕ(x̃t+1) =

ϕ(x)Tϕ(x̃t+1)− ϕ(x)TΦT
t+1(Φt+1Φ

T
t+1 + γI)−1kx̃t+1,t+1

ϕ(x)T (ΦT
t+1Φt+1 + γI)−1ϕ(x̃t+1) =

1

γ

(
ϕ(x)Tϕ(x̃t+1)− ϕ(x)TΦT

t+1(Φt+1Φ
T
t+1 + γI)−1kx̃t+1,t+1

)
ϕ(x)TC−1

t+1ϕ(x̃t+1) =

1

γ

(
ϕ(x)Tϕ(x̃t+1)− ϕ(x)TΦT

t+1(Φt+1Φ
T
t+1 + γI)−1kx̃t+1,t+1

)

ϕ(x)TC−1
t+1ϕ(x̃t+1) =

1

γ

(
k(x, x̃t+1)− kT

x,t+1(Kt+1 + γI)−1kx̃t+1,t+1

)
(8.17)
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Our final bound is complete

|µ̃t(x)− ϕ(x)Tω∗| ≤ η̄σt(x) +
2η̄

γ
σt(x)

∣∣k(x, x̃t+1)− kT
x,t+1(Kt+1 + γI)−1kx̃t+1,t+1

∣∣
(8.18)

which proves we do as poorly as the original bound plus additional variance related

to the lookahead measurement location. This makes sense as we are not actually

sampling a location but using an estimate for our measurement.
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