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Abstract

We develop computational tools for exploring eigenvector localization for a class

of selfadjoint, elliptic eigenvalue problems regardless of the cause for localization.

The user inputs a desired region R (not necessarily connected), a tolerance for the

amount localization in R, and the desired energy range [a, b]. The tool outputs

eigenvectors concentrated within the tolerance inside R and within [a, b]. We de-

velop ample theory that justifies our algorithm, which involves a complex, compact

perturbation of the operator L, Ls = L+ isχR, for some (small) s > 0. Our central

idea can be summarized as follows: if (λ, ψ) is an eigenpair of L with ψ highly

localized in R, then there will be an eigenpair (µ, φ) of the shifted operator Ls

such that µ is near λ+ i s and φ is near ψ i.e. the eigenpair (µ, φ) of Ls is close to

the eigenpair (λ+ is, ψ) of L+ is. The algorithm finds eigenpairs (µ, φ) of Ls with

=(µ) near s and <(µ) in or near [a, b]. In practice, the algorithm proves robust,

immediately eliminating over 90% of unwanted eigenmodes, and many examples

are provided. A post processing feature is included, which consists of (a few)

inverse iterations that further eliminate unwanted eigenvectors and even identify

computationally difficult cases.

Although most of the theory is developed with one kind of operator in mind, we

show that it applies directly to the magnetic Laplacian, Ĥ(A) := (−i∇− A(x))2

as well. We additionally provide a method for a priori prediction of where eigen-



functions may localize for the magnetic Laplacian. Essentially, if an eigenvector

achieves a global maximum (in modulus) at x0 ∈ Ω, then A behaves similarly

to a conservative vector field in a neighborhood around x0 that depends on the

eigenvalue. We provide numerical examples to show the eigenmodes localize where

|curlA| is small, at least for low energies, as expected based on our theory.
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1 Introduction

1.1 Motivating Problem

Eigenvector localization is the phenomena where the eigenvector “mass" is con-

centrated in some relatively small portion of the domain. It can be induced by

complex geometry, properties of the operator such as an inhomogeneous or discon-

tinuous potential, and/or the boundary conditions,. Examples of highly localized

eigenmodes together with their “localization measures", which indicates how con-

centrated an eigenmode is in a given region and will be introduced formally later,

are pictured in Figure 1.1.

This work develops new computational tools for exploring localization in self-

adjoint, elliptic eigenvalue problems of the form:

Lψ .
= −∇ · (A∇ψ) + V ψ = λψ in Ω , ψ = 0 on ∂Ω , ψ ̸≡ 0 in Ω, (1.1)

where Ω ⊂ Rd is a bounded, connected, open set. For convenience, the potential

V ∈ L∞(Ω) is non-negative. The diffusion matrix A : Ω→ Rd×d is symmetric and

uniformly elliptic, i.e. there are constants c, C > 0 such that

cvtv ≤ vtA(x)v ≤ Cvtv for all v ∈ Rd and a.e. x ∈ Ω .

For d = 2, A ∈ [L∞(Ω)]d×d. Otherwise, A is uniformly Lipschitz in each of its
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Potential Geometry

Figure 1.1: Left: the eigenvector is concentrated in a small region due to a higher
energy potential barrier outside this region. The eigenvector remains localized until
its corresponding eigenvalue surpasses the potential barrier. Right: the eigenvector
is geometrically localized from thin channels that “squeeze" the eigenmode into
one bulb of the Threebulb domain. Both eigenmodes have localization measures
τ = 0.99 and δ = 0.14 in their respective regions.

components.

The unbounded operator L : Dom(L) = {v ∈ H1
0 (Ω) : Lv ∈ L2(Ω)} → L2(Ω)

has a real spectrum that consists of the sequence infΩ V < λ1 < λ2 ≤ λ3 ≤ · · · , and

has no finite accumulation points; its eigenspace E(λ,L) = {v ∈ Dom(L) : Lv =

λv} is finite dimensional for each λ ∈ Spec(L). These conditions on L guarantee

the unique continuation property, which states that if v ∈ H1(Ω), Lv = 0 in

Ω, and v = 0 on some non-empty open subset of Ω, then v must be identically

zero on the whole domain Ω (cf. [1, 15, 20]). Consequently, no eigenvector can be

identically zero on any open subset of Ω, but it may be “nearly zero" outside of a

small subdomain; a localized eigenmode is thus almost zero everywhere except in

some portion of the domain. We now formally define the measures of localisation

in a nonempty, open, proper (not necessarily connected) subset R, which we will

refer to as the subdomain or region of interest. For any function v ∈ L2(Ω) and
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subdomain R, we define δ(v,R), τ(v,R) ∈ (0, 1):

δ(v,R) =
||v||L2(Ω\R)

||v||L2(Ω)

, τ(v,R) =
||v||L2(R)

||v||L2(Ω)

. (1.2)

Observe that τ is a measure of how concentrated or localized v is within R,

while δ(v,R) measures how concentrated v is outside of R. Thus, they are comple-

mentary quantities, meaning that δ2(v,R) + τ 2(v,R) = 1. Given some reasonably

small δ∗, which may depend on the size of R relative to the size of Ω, we say v is

localized in R within the tolerance δ∗ if δ∗ ≥ δ(v,R). In practice, we have (often)

used δ∗ ≤ 0.4, meaning τ(v,R) ≥ 0.165, but the issue of selecting a suitable toler-

ance will be considered later. For ease, we will just say that v is localized to mean

that v is localized in some given R within some small tolerance, δ∗.

A natural generalization of (1.2) would be to replace L2 with Lp for some

p ≥ 1. In this case, we would say that v is Lp-localized. There are multiple

methods to quantify localization. D. J. Thouless [36] introduces the confinement

of an eigenmode by the ratio of the “existence surface" with the surface area of the

domain in R2. For p < q, [18] generalizes the existence surface as

Sp,q(v) =

(
||v||Lp(Ω)

||v||Lq(Ω))

) 1
1
p− 1

q
,

where a function v is considered localized when Sp,q(v)≪ |Ω|. In practice, Thouless

[36] and Felix et al [12] have used p = 2 and q = 4, which is supported by the fact

that a higher power norm diminishes any function that is small in some region R
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faster than a lower power norm. The choice of p = 2 and q = 4 is sometimes called

the “Inverse Participation Ratio". Notice that this definition does not specify a

region in which the eigenmode is localized, simply that it is localized somewhere,

whereas the concept of being Lp localized is region dependent. If the user wanted

to quantify localization in a given R, it would be necessary to do so with the

Lp-localized measure.

While the scope of this work primarily focuses on geometric localization and

eigenvector localization caused by a scalar potential, we highlight that our tool

applies regardless of the cause for the localization, and even provide examples

where the localization occurs due to a vector potential. Furthermore, the tool

is agnostic to relative energy of the eigenvalues, which is often one key factor

for predicting if and where localization may occur. Higher energy eigenvalues, or

those that are far from the first eigenvalue, may not localize as frequently, or even

may localize in unexpected places. Figure 1.2 provides the first 40 eigenmodes

of the Three Bulb domain, where any localization is due to the geometry of the

domain. When the eigenvalues are relatively small, more localized eigenmodes

tend to occur, both in how concentrated each eigenvector is and in the number of

eigenmodes exhibiting localization. Then as one moves up in the spectrum, the

functions tend to spread more evenly throughout the domain, which decreases the

amount of localization.

The rest of this dissertation is outlined as follows. For the remainder of this

chapter, we cover existing methods and supporting theory while discussing their

limitations and compare them with our approach. We discuss recent work that
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Figure 1.2: The first 40 eigenmodes of the Three Bulb domain. Localization
becomes less frequent as one goes higher into the spectrum.

provides insight into the mechanisms driving localization, describe a numerical

method that can provide candidate subdomains for where localization may occur,

and also estimate of the smallest eigenvalue whose eigenvector is concentrated in

a such a subdomain [1, 3, 4, 6, 13, 35]. A few applications of localization are also

provided. In Chapter 2, we present new computational tools that allow the user to

predict and model localization for (1.1) regardless of the reason for the localization

–this is our algorithm, and the primary focus of this dissertation. Rigorous math-

ematical theory supporting the algorithm is also presented here. Background In-

formation, like an introduction to eigenvalue solvers such as Pythonic FEAST [22]

or an introduction to finite element methods, is provided in Chapter 3. We use

the finite element software NGSolve [24], which interfaces through Python [38],
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to run Pythonic FEAST in order to solve the eigenvalue problems in this work.

Extensive numerical experiments that provide a proof of concept for our algorithm

are given in Chapter 4; examples using the magnetic Laplacian operator are ad-

ditionally provided. Chapter 5 builds on the foundations of Chapter 3 and the

theory in Chapter 2 to provide guidance for how to set some of the parameters

in the software, focusing primarily on how one should set the shift and tolerance

values. This chapter focuses on the practical considerations one should keep in

mind when using the computational tools, and is additionally supported by theory

and numerical experiments. Chapter 6 and chapter 7 focus on what the driving

mechanisms for geometric and potential localization are, respectively. Guidance

on how to more efficiently and purposefully manipulate both types of localization

is explored, along with insight into how one may “optimize" geometric or potential

localization. Finally, Chapter 8 covers our new theory regarding a priori predic-

tion for where low-energy eigenmodes will localize for eigenvalue problems using

the magnetic Laplacian operator. Supporting numerical experiments furnish this

chapter as well. The appendices contain additional experiments and supporting

material that may be of interest, but which is not for understanding the core

information.

1.2 Existing Methods and Theory

We begin by introducing the Landscape Function u of L. For second-order differ-

ential operators, the landscape function u is the solution to the problem Lu = 1
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in Ω with u|δΩ = 0. In 2012, Mayboroda and Filoche used the landscape func-

tion, where L was the Schrödinger type operator L = −∆ + V , to predict the

location, shape, and size of the region where ground state eigenfunctions may

localize [13]. In this context, ground state eigenvectors are the eigenvectors with

the smallest eigenvalues that are localized to a given region. Essentially, they’re

the first eigenmodes localized within any given subdomain. The general result is

that every eigenmode satisfies |ψ(x)| ≤ λ||ψ||∞u(x) for all x ∈ Ω.

Theorem 1.2.1 (Pointwise Stability Result). Suppose that Lu = 1 in Ω, u = 0

on ∂Ω. If v is sufficiently regular, then |v(x)| ≤ ||v||L∞(∂Ω) + ||Lv||L∞(Ω)u(x).

Proof (via Maximum Principle). Let w = ±v − ||Lv||L∞(Ω)u. Then Lw = ±Lv −

||Lv||L∞(Ω) ≤ 0, so

w(x) ≤ max
y∈Ω

w(y) ≤ max
y∈∂Ω

max{w(y), 0} = max
y∈∂Ω

max{±v(y), 0} ≤ ||v||L∞(∂Ω)

Therefore, ±v(x) ≤ ||v||L∞(∂Ω) + ||Lv||L∞(Ω)u(x).

This general result immediately implies that u provides pointwise control of a

properly normalized eigenmode, ψ/(λ||ψ||L∞(Ω)).

Theorem 1.2.2 (Filoche/Mayboroda, PNAS 2012). Suppose that Lu = 1 in Ω,

u = 0 on ∂Ω, and that Lψ = λψ in Ω and ψ = 0 on ∂Ω. Then |ψ(x)| ≤

λ||ψ||L∞(Ω)u(x).

Consequently, since u is composed of a series of peaks and valleys, one can

map out where the eigenmodes are likely to be concentrated, at least lower in
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Figure 1.3: The landscape function and its negative given in grey in each pic-
ture, and the first six eigenvectors are superimposed in black. Regions where the
magnitude of the landscape function are the highest are the first places localiza-
tion occurs. These regions also indicate where the largest number of eigenvectors
will concentrate early in the spectrum, where the two largest peaks already have
localized non-ground states well before several of the other regions have ground
states.

the spectrum. Applying the Watershed Principle to 1
u

reveals the regions of the

domain where localization early in the spectrum may occur by separating the

domain along the lines where the eigenfunctions must be small, and therefore

identifying subdomains where the eigenfunctions can concentrate. In practice, this

method provides a very useful model for where to hunt for localized low energy or

ground state eigenvectors. Some utility is gained by examining the magnitude

of the landscape function; Figure 1.3 illustrates that regions with higher magnitude

are more likely to be the first regions with localized eigenmodes. In this case, the

first three eigenmodes are shown inside the three largest peaks of the landscape

function. Furthermore, these are the regions where the most eigenfunctions will

concentrate early on.

While the landscape function may still have pointwise control over higher en-
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ergy eigenmodes, not much information is gained with higher energies. Potential

regions of localization are identified for the ground states, however it is notable

that ground states can occur higher in the spectrum. Figure 1.4 exemplifies how

the utility of the pointwise control from the landscape function can deteriorate

with increasing energy. Here, the unit interval is sliced into 4 equally measured

intervals with potential V = 802χ( 1
4
, 1
2
) + 4002χ( 3

4
,1). The pictures show the nor-

malised eigenmode drawn in black and the landscape function in grey. In each

case, the landscape function dominates the eigenmodes as expected, and correctly

indicates that one may find localized eigenmodes in the first and third quarters

of the domain. This pointwise control, however, quickly becomes trivial since the

landscape function does not decipher in which region, or union of regions, any

specific eigenmode will be concentrated in or what the shape or behavior of the

eigenmodes will be.

The landscape function provides a very useful starting point to suggest where

one may find localized, low energy eigenvectors. It does not provide any localiza-

tion information for higher energies, where strong localization can “unexpectedly"

occur. This means that the potential regions suggested by the landscape function

are not exhaustive, and this localization was observed when hunting for higher

energy eigenpairs using our algorithm. Furthermore, even for low energies, one

must actively go hunting to pinpoint the behavior, location, or the degree of local-

ization for the eigenfunctions. For example, Figure 1.3 illustrates how looking at

the landscape function by itself, does not show what the eigenmodes actually look

like. Some eigenmodes even change sign, but there is no indication provided by
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Figure 1.4: The landscape function is pictured in grey together with the first 16
normalised eigenfunctions in black. After the first two eigenfunctions, the pointwise
control of the landscape function over the eigenmodes are no longer meaningful.
No further regions of potential localization are suggested.
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the landscape function that this would happen. Also, none of the eigenfunctions

are concentrated to the all of the potential regions suggested by the landscape

function.

Arnold et al [6] showed that replacing the potential V with the effective potential

1
u

captures the effects of both the potential and kinetic energy, as opposed to just

the potential energy. As a result, eigenfunctions with eigenvalues λ have most of

their mass concentrated in the spatially confined region E(λ̂+γ) = {x ∈ Ω : 1
u(x)
≤

λ + γ} for some suitable, small γ > 0. They developed an approach to provide

estimates of several eigenvalues together with potential regions of localization for

eigenvectors whose eigenvalues are near the estimates. This approach is outlined

below:

1. Compute the landscape function, u.

2. Determine local minima of the associated effective potential W = 1/u, Wk =

W (xk) for 1 ≤ k ≤ N , with Wk ≤ Wk+1.

3. Estimate N eigenvalues as λ̂k = (1 + d/4)Wk where Ω ⊂ Rd. The factor

(1 + d/4) is supported empirically and heuristically.

4. Choose the set Rk to be the connected component of {x ∈ Ω : W (x) ≤ C}

containing xk, where C ≥ λ̂k is a parameter to be set by the user. It is

expected that δ(ψ,Rk) is small, where ψ is an eigenvector associated with

the eigenvalue of L estimated by λ̂k.

The authors mention the option of solving for the smallest eigenpair of L with

homogeneous Dirichlet boundary conditions on Rk, which would limit the user to
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only one eigenvector estimate per region. Alternatively, it is suggested in [8] that

a ground state with peak at x0 and eigenvalue λ can be well approximated by

e−ρλ(x,x0), where ρλ is an Agmon distance between x and x0, depending on the

effective potential W . This approximation is further supported in Theorem 2.1

and several experiments by the authors in [7]. Furthermore, this method only

approximates ground state eigenvectors in each region, and not necessarily the

first N eigenvectors since some of these may not be ground state eigenvectors.

In Figure 1.5, the spatially confined region E(λ̂ + γ) indicates that there may be

localization in each of the square bulbs, correctly identifying that the first, second,

and fifth eigenmodes (these are ground state eigenmodes) are concentrated in the

left, right, and middle bulb, respectively. Notice that these regions are given in

columns 1, 2, and 4, where Rk is the left, right, and middle bulb, respectively.

This method does not identify where the third or fourth eigenvectors are. In terms

of locating any additional eigenmodes, this method only indicates that they may

be in one of the square bulbs or any union thereof. No further utility is gained

by computing the spatially confined region for non-ground state eigenfunctions, as

seen by Figure 1.5. In the first column, the region E is drawn for the first to third,

fifth, and fourteenth eigenmodes together with their estimated eigenvalues λ̂, or

actual eigenvalues λ, when no estimate is available. The actual eigenfunctions

are shown in the right column together with their actual eigenvalues. The last

row represents “higher" energy eigenmodes; observe that it is not clear from the

spatially confined region if the eigenvectors are even localized at all.

Steinerberger [35] aimed to extract the localization information from the land-
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E(λ̂1 + γ): λ̂1 = 1.26655 Ψ1 where λ1 = 1.22975

E(λ̂2 + γ): λ̂2 = 2.23167 Ψ2 where λ2 = 2.1715

E(λ3 + γ) Ψ3 where λ3 = 3.05277

E(λ̂5 + γ): λ̂5 = 4.57127 Ψ5 where λ5 = 4.50287

E(λ14 + γ) Ψ14 where λ14 = 9.38303

Figure 1.5: The spatially confined regions E(λ̂+γ) are pictured in the left column
together with their estimated eigenvalues, λ̂, or actual eigenvalues λ when no
estimate could be made. Here γ = 0.02. The actual eigenmode is pictured in the
right column together with the corresponding eigenvalue, λ.
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scape function. He started by interpreting the localized eigenstates as critical

points of the energy potential for Ω ⊂ Rd:

J(ψ) =

∫
Ω

|∇ψ(x)|2dx+
∫
Ω

V (x)ψ(x)2dx

Lu and team [28] then pointed out that the relevant quantity was the second

integral, the integral average over V , and then replaced the potential by a slightly

smoothed version:

−∆ψ(x) + (V ∗ kt)(x)ψ(x) = λψ(x) + error(x, t)

where kt : R → R≥0 is a Gaussian type kernel that is smooth, radial, with prob-

ability density centered at the origin and having most of its mass at a ball of

radius
√
t. When V is large in a region, low frequency eigenfunctions are small,

thereby isolating subregions as indicators for localization. Experimental evidence

shows that the convolution kt ∗ V agrees well and has as comparable predictive

power as the effective potential W = 1
u
, where u is the landscape function. In

fact, for small t, the error is also relatively small. Steinerberger’s approach uses

a Fast Fourier Transform to lower the computational cost and can be extended

to other operators like the fractional or bi-Laplacian ∆α, α ∈ (0, 1) ∪ {2}. While

this method is a useful tool to indicate where localization may be found, even for

a wider range of operators, one still has to go hunting through the spectrum to

actually identify these eigenmodes.

A two part iterative approach from [3,4] computes approximations of multiple
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localized eigenpairs within a given domain in the presence of a highly disordered,

structured potential, V . In the first phase, a coarse mesh T H is used to provide

potential regions of localization along with a basis for a rough approximation of

the space that will be used to approximate eigenpairs in the second phase. The

basis is obtained by using finite element hat functions that are associated with the

vertices of T H to perform a few approximate inverse iterations; one preconditioned

conjugate gradient (PCG) step per iteration, involving Rayleigh quotients and a

parameter η ∈ (0, 1) used for decreasing the set of functions after each iteration,

is performed. Then a fine mesh T ε is generated as a refinement of the coarse

mesh T H that is deemed suitable for resolving (via a finite element method) the

lowermost part of the spectrum of L, where the user determines the number of

N eigenpairs desired. In phase two, a few steps of approximate inverse iterations

on T ε are used, starting with the functions obtained from phase one; here, three

PCG steps are used per iteration, as opposed to one. Each inverse iteration and

a Rayleigh-Ritz procedure on the remaining set of functions results in approxi-

mate eigenpairs. If needed, a similar mechanism is used to decrease the number

of functions for the next iteration. Ultimately, this results in a set of at least 2N

approximate eigenpairs being obtained, where the first N are kept. This algo-

rithm provides approximations of eigenvalues and eigenvectors, where the quality

of these approximations can be controlled by the parameters in the discretization.

Furthermore, in contrast to Arnold et al [6], more than one eigenvector localized

in a given region can be found. The authors assume that the first N eigenvectors

are localized, which is a reasonable assumption in the presence of such V , but
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is limiting when there are other causes for localization (e.g. geometry, boundary

conditions, etc.) or for the eigenpairs that are higher in the spectrum.

Existing approaches either only suggest potential regions where localization

may occur or are primarily restricted to the low-energy or ground state regime when

computing approximate eigenpairs. Methods that are not restricted to the ground

state have stringent conditions that must be met and are limited to localization

that occurs due to the potential. These approaches are best suited for problems

where the targeted part of the spectrum contains many eigenvectors. Moreover,

none of these methods allow for a priori control of how localized an eigenvector

must be to be considered localized enough. In other words, for what value of δ(v,R)

is the eigenvector considered no longer localized, or similarly to what tolerance δ∗?

Our approach provides localized eigenpairs in a user determined region of interest,

within the user determined tolerance, and for eigenpairs anywhere from low to high

energy. As previously stated, localization can occur in unexpected places that are

not presently predicted by any method. Example 1.6 provides an example of what

this looks like in practice, which highlights a key benefit of being able to identify

localization at high energies.

Example 1.2.3. For Ω = (0, 1), consider the operator

L = − d2

dx2
+

4∑
k=1

VkχRk
, Rk =

1

4
(k − 1, k) ,

with homogeneous Dirichlet boundary conditions and with

V = 802χ( 1
4
, 1
2
) +4002χ( 3

4
,1) When λ > 4002, the eigenfunction, pictured in Fig-
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Figure 1.6: The landscape function (left) predicts that localization will occur
primarily in the first and third subintervals, with a small amount in the second
subinterval and none in the fourth subinterval. The eigenvector corresponding to
the first eigenvalue that is larger than 4002 is shown on the right. This eigenfunc-
tion is highly localized to τ = 0.9983301 in the fourth subinterval, for Example 1.6.

ure 1.6 is highly concentrated in the fourth subinterval, with τ = 0.998330. How-

ever, the landscape function indicates that the eigenmodes will localize only in the

regions of the zero potential, the first and third subintervals. Figure 1.6 illustrates

how localization can occur in unexpected locations that other methods would not

have predicted, specifically for high energies.

1.3 Real World Applications

Surely the most famous example of localization is Anderson localization. Early

models for predicting electrical conductivity outlined free moving electrons encom-

passed in metal or crystal lattice structures composed of positive ions. Electrical

conductivity was believed to be directly proportional to the mean free path, which

measured the mean distance an electron would travel before colliding with an ion,
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but this length was experimentally determined in metals to be almost two orders of

magnitude larger than the lattice constant, the distance between unit cells. Surely

the electrons were not traveling for a distance one hundred times greater than the

length of the encompassing lattice before colliding into that lattice! Measuring elec-

trical resistance, however, supported this claim. Resistance results when electrons

deviate from their original trajectory, or scatter, from colliding with an ion. With

quantum mechanics came the discovery that wave-like electrons diffract from reg-

ular lattice sides, indicating that no resistance occurs unless the electron meets an

imperfection in the lattice. Naturally, the more imperfections the more resistance.

Moreover, a critical amount of these randomly placed imperfections can stop all

electrical conductivity by physically trapping electrons in some subsection of the

lattice. This is the phenomena is known as Anderson Localisation, a groundbreak-

ing discovery that won the 1977 Physics Nobel Prize and which one would have to

“resort to the indignity of numerical simulations to settle even the simplest ques-

tions about it" [5, 23, 26, 29]. Anderson Localisation explains the metal-insulator

transition observed in semiconductors, paving the way for the Anderson insula-

tor, which has no conductivity along partial bands of trapped electrons where the

density of electronic states is also nonzero. This proved that quantized electrical

transport of charge and energy can be enhanced by disorder.

A more widely accessible example of localization is the “Noise Abatement Wall"

or “Fractal Wall"TM [34]. It essentially traps sound waves, at frequencies typically

experienced in practice, inside carefully placed, cleverly shaped holes located where

the eigenfunctions of the wave equation localize. Normally, rooms or walls are
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covered with a material that dampens acoustics; this can be as natural as curtains

or pictures, or as intentional as foam or profiled diffusers. Irregular geometry in

the room or along the wall will induce localization of the eigenfunctions of the

corresponding wave equation. That localization enhances damping and thereby

absorption. This is why an empty room often has an echo that is no longer observed

when decorated and filled with furniture. Presumably, the reader is convinced that

optimizing this absorption would prove incredibly useful, and hence the “Noise

Abatement Wall": providing an effective sound barrier (98% on average of the

incident acoustic energy in the audio spectrum) and minimizing traffic noise along

busy roads in the neighborhoods of France! One might even be lucky enough to

observe the Fractal Wall in action, but until then Figure 1.7 provides an illustration

that will just have to do.

It should come as no surprise that waves are everywhere. It’s worth saying

twice: waves are everywhere! And not just from sound, light, or mechanical vibra-

tions. Quantum Mechanics has disclosed that all matter has wavelike character at

the atomic level. Recently, even classical gravitational waves have been detected.

Since waves are everywhere (worth saying thrice), then obviously understanding

their movements and patterns would prove to be extremely beneficial. Conse-

quently, the phenomenon of localization is a rapidly growing field. Figure 1.8

graphs the number of citations of the original Anderson paper each year following

the year it was discovered in 1958, which serves as a proxy of the level of research

activity in this area of. Though slow to start, research in localization has grown

(almost) exponentially, even gaining the attention of 2022 Nobel Prize winner,
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Figure 1.7: The Noise Abatement Wall [34] effectively confines noise for housing
along the busy road. It contains holes ranging from 30cm to submillimeter pores
because the irregular geometry makes it a bad resonator. Absorption of acoustics
are strongly linked to the spectral properties of the Laplacian operator. Image
retrieved from IPAM Research Articles on April 15, 2024.

https://www.ipam.ucla.edu/research-articles/fractal-acoustic-barrier/
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Figure 1.8: Citation and publication report for 1958 P. Anderson paper “Absence
of diffusion in certain random lattices,” showing impressive growth in research
related to localization. Report generated by Web of Science, April 15, 2024.

Alain Aspect, and 2022 Fields Medal winner, Hugo Duminil-Copin, both leading

projects for the prestigious Simons Collaboration on Localization of Waves.
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2 The Algorithm

The theory in this chapter, with the exception of Lemma 2.1.6 and Remark 2.1.3,

was published in [33]:

J. S. Ovall and R. Reid. An algorithm for identifying eigenvectors exhibiting

strong spatial localization. Math. Comp., 92(341):1005–1031, 2023.

https://doi.org/10.1090/mcom/3734

Jeffrey .S Ovall and Robyn Reid

Author contributions to the article cited above.

J.S. Ovall: analysis, simulation, writing, and editing

R. Reid: analysis, simulation, writing, and editing

https://doi.org/10.1090/mcom/3734
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2.1 Supporting Mathematical Theory

Consider a complex-shifted version of the operator, L, defined by Ls = L+is χR on

subdomain R where s > 0 is sufficiently small. Notice L is normal and Dom(Ls) =

Dom(L). The idea for Ls comes from Marletta’s work [2,30] combating the effects

of spectral pollution when computing eigenvalues for operators having essential

spectrum. Though our shifted operator does not have an essential spectrum, we

may still apply the concept of dissipative perturbation to shift the eigenvalues of

interest up and out of “pollution". Here, “pollution" refers to eigenvalues whose

corresponding eigenfunctions are not localized in the subdomain R.

Our central idea can be summarized as follows: if (λ, ψ) is an eigenpair of L

with ψ highly localized in R, then there should be an eigenpair (µ, ϕ) of Ls such

that µ is near λ+ i s and ϕ is near ψ i.e. the eigenpair (µ, ϕ) of Ls is close to the

eigenpair (λ+ is, ψ) of L+ is. To establish this, as well as other supporting theory,

first suppose that the eigenpair (µ, ϕ) is an eigenpair of Ls, then:

µ =
(Lϕ, ϕ)
||ϕ||2L2(Ω)

+ i s[τ(ϕ,R)]2 , (2.1)

where (·, ·) is the complex inner-product on L2(Ω).

Proof. By the Rayleigh Quotient, we have that:

µ =
(Lsϕ, ϕ)
(ϕ, ϕ)

=
((L+ isχR)ϕ, ϕ)

||ϕ||2L2(Ω)

=
(Lϕ, ϕ)
||ϕ||2L2(Ω)

+
(isχRϕ, ϕ)

||ϕ||2L2(Ω)

=
(Lϕ, ϕ)
||ϕ||2L2(Ω)

+ i s[τ(ϕ,R)]2.
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This identity, in combination with the unique continuation property and vari-

ational characterization of the eigenvalue of L, can then be used to obtain the

proposition below.

Proposition 2.1.1. For any µ ∈ Spec(Ls), 0 < ℑµ < s and ℜµ > λ1(L) =

min(Spec(L)).

Proof. Let (µ, ϕ) be an eigenpair of Ls, with ||ϕ||L2(Ω) = 1. For ϕ = ϕ1 + iϕ2 and

µ = µ1 + iµ2. We compute from Lsϕ = µϕ:

(L+ isχR)(ϕ1 + iϕ2) = (µ1 + iµ2)(ϕ1 + iϕ2)

(Lϕ1 − sχRϕ2) + i(Lϕ2 + sχϕ1) = µ1ϕ1 − µ2ϕ2 + i(µ2ϕ1 + µ1ϕ2)

Then by comparing the real and imaginary parts:

Lϕ1 − sχRϕ2 = µ1ϕ1 − µ2ϕ2 , (2.2)

Lϕ2 + sχRϕ1 = µ2ϕ1 + µ1ϕ2 . (2.3)

Suppose that ||ϕ||L2(R) = 0. Then χRϕ = 0 above, implying that µ2 = 0; this

gives Lϕj = µ1ϕj for j = 1, 2. Now suppose that ||ϕ||L2(R) = 1, then similarly

µ2 = s and χRϕj = ϕj; as before, we have that Lϕj = µ1ϕj. In both cases

ϕ1 = ϕ2 = 0 in Ω, which contradicts the claim that ϕ is an eigenvector. Since the

weak unique continuation property guarantees that 0 < τ(ϕ,R) < 1, we have that

µ2 = ℑµ ∈ (0, s).
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By the variational characterization of eigenvalues of L, µ1 ≥ λ1. Recall that

λ1 is simple, so µ1 = λ1 can only occur if ϕ = cψ1 for some c ∈ C with |c| = 1,

where ψ1 is taken to be a real eigenvector of L for λ1 and ||ψ1||L2(Ω) = 1. Assuming

that µ1 = λ1, we have Lsψ1 = µψ1 and thus (2.2) apply, giving i sχRψ1 = i sµ2ψ1.

However, s ̸= 0 and consequently ψ1 is supported in R, which again implies that

ψ1 = 0 in Ω, contradicting that it is an eigenvector of L.

This proposition designates approximately where eigenvalues of the shifted op-

erator should be if their corresponding eigenfunctions are sufficiently localized in R,

and therefore hints at an approach for discerning between eigenpairs that do meet

the localization criteria and those that do not. We have the following theorem:

Theorem 2.1.2. Let (λ, ψ) be an eigenpair of L and s be sufficiently small. Then

dist(λ+ i s, Spec(Ls)) ≤ s δ(ψ,R) . (2.4)

Consequently, if (λ, ψ) is an eigenpair of L with λ ∈ [a, b] and δ(ψ,R) ≤ δ∗,

then there is an eigenpair (µ, ϕ) of Ls in the region

U = U(a, b, s, δ∗) = {z ∈ C : dist(z, L) ≤ sδ∗ , ℑz < s}, (2.5)

where L = [a, b] + i s, pictured in Figure 2.1.

Proof. As pointed out on page 68 by Kato [25], Ls is a holomorphic perturbation

of the selfadjoint operator L, when s is sufficiently small. As a result, there is an
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Figure 2.1: The region U = U(a, b, s, δ∗) from Theorem 2.1.2 supplies an area
where eigenfunctions that meet the localization criteria must be found. Increasing
s and δ∗ lengthen this search region past [a, b].

eigenpair (µ(s), ϕ(s)) of Ls, depending holomorphically on s, such that µ(s) → λ

and ϕ(s) → ψ in norm, where (λ, ϕ) is an eigenpair of L. Denote the L2 inner

product by (., .) and use that L is selfadjoint to compute:

(µ(s)ϕ(s), ψ) = (Lsϕ(s), ψ) = ((L+ isχR)ϕ(s), ψ) = (Lϕ(s), ψ) + is(χRϕ(s), ψ)

= (ϕ(s),Lψ) + is(χRϕ(s), ψ) = λ(ϕ(s), ψ) + is(χRϕ(s), ψ)

= λ(ϕ(s), ψ) + is(ϕ(s), ψ)− is(χΩ\Rϕ(s), ψ)

Rearranging the above equality and utilizing that χΩ\R is an orthogonal L2 pro-

jection gives:

λ+ is− µ(s)
is

=
(χΩ\Rϕ(s), χΩ\Rψ)

(ϕ(s), ψ)
.

Thus,

|λ+ is− µ(s)|
s

→
||ψ||2L2(Ω\R)

||ψ||2L2(Ω)

= [δ(ψ,R)]2 as s→ 0 .
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Since δ(ψ,R) < 1 this implies that:

|λ+ is− µ(s)| ≤ sδ(ψ,R) ,

when s > 0 is sufficiently small. This completes the proof.

The first part of Theorem 2.1.2 implies that for corresponding eigenfunctions,

the eigenvalues of L and the real parts of the eigenvalues of Ls should be close; the

same is said for s and the imaginary parts of the eigenvalues of Ls. Notice that a

large shift s that makes sδ > 1 renders this inequality essentially meaningless, but

setting s too small can negatively affect the algorithm, which we later consider. In

the same vein, too large a δ can have the same effect, but this is less of a concern

since δ ∈ (0, 1], whereas there are no theoretical bounds on s for this Theorem.

Naturally, one might ask in practice how small must s be to be small enough

to maintain the utility of Theorem 2.1.2, in which we have observed a trade-off

between the size of s and the size of δ(v,R). This topic will be discussed more

later.

Observe that (2.4) does not make any statement about how localized the eigen-

functions are. This result is definitely meaningful when the corresponding eigenvec-

tor ϕ is localized in R because then δ(ϕ,R) is small, and we assume s is sufficiently

small. However, when the eigenvector is very localized in the complement of R,

δ(ϕ,R) ≈ 1 and (2.4) is still meaningful for s ≤ 1. Ultimately since δ(ϕ,R) ∈ [0, 1],

then how useful (2.4) is relies mostly on the size of s, where s has an increased

range when the eigenfunction is localized in R.
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The second part of Theorem 2.1.2 indicates that if there is a localized eigen-

pair of L, then there will be a corresponding eigenpair of Ls in the bottom half

of the “Bunimovich stadium", pictured in Figure 2.1. This result is particularly

useful because it supplies for any eigenpair (λ, ψ) of L, the search region where a

corresponding (µ, ϕ) will be, if it exists. Whether µ is in the bottom half of the

Bunimovich stadium or not can then be used as a minimal requirement for where

to hunt for eigenpairs of the shifted operator.

The Bunimovich stadium first appeared in 1979 where Leonid Bunimovich il-

lustrated how a collection of particles, initially moving in the same direction, will

become distributed uniformly throughout the domain in time, which is quite the

opposite phenomenon from localization [11]. We point out that our use of the

Bunimovich stadium is merely a coincidence.

While we briefly cover the basics here, we point out that section 3.2 contains

a detailed discussion about how the Bunimovich Stadium is implemented within

the context of FEAST. Denote by γ the boundary of Ũ , and we will call it the

Bunimovich curve. We build the Bunimovich curve with a counterclockwise, unit

speed parameterization z(t) = x(t) + iy(t), that begins at the point b + i(s − r),
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where:

(x(t), y(t)) =



r
(
sin( t

r
,−cos( t

r
)
)
+ (b, s) t ∈ [0, t1]

(b+ t1 − t, s+ r) t ∈ [t1, t2]

r
(
sin( t+a−b

r
), cos( t+a−b

r
)
)
+ (a, s) t ∈ [t2, t3]

(a− t3 + t, s− r) t ∈ [t3, P ]

and

r = sδ∗, t1 = πr, t2 = t1 + b− a, t3 = t2 + πr, P = 2πr + 2(b− a) . (2.6)

This parameterization is made P−periodic by setting z(t + P ) = z(t). The

trapezoid rule is applied to the Cauchy Integral Formula,
1

2πi

∮
γ
(ξ − z)−1dξ, to

obtain the associated n-point rational filter function for γ. Note that the trape-

zoid rule converges rapidly for periodic functions and is extremely accurate when

integrating periodic functions over their intervals. For h = P
n
, the filter function,

quadrature points, and quadrature weights are given by:

f(z) =
n−1∑
k=0

wk(zk − z)−1, zk = z(kh+
πr

2
), wk =

hz′(kh+ πr
2
)

2πi
. (2.7)

The quadrature points, zk, and weights, wk, are offset by πr/2 to give a more

symmetric distribution of the points. Figure 2.2 illustrates how the points sit

along the Bunimovich curve.

More details about how this filter function is obtained and its purpose is detailed
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Figure 2.2: Bunimovich curve, γ, with
the quadrature points of f(z) overlaid on
it.

Figure 2.3: Contour plot of |f(z)| for
ℜz ∈ [a− 2r, b+ 2r] and ℑz ∈ [s− 2r, s].
The lower half of γ is given by the red
curve.

in Chapter 3. Important to note now is that the filter function is used to clearly

distinguish between points inside the contour, γ, and points outside; an ideal filter

would map points inside to one and outside to zero. Figure 2.3 provides a contour

plot of |f(z)| to show how well it differentiates between points inside and outside

the contour. The black curves drawn are the contours |f(z)| = 2j for j ∈ [−8, 2].

Observe that the curve further from γ is the |f(z)| = 2−8 contour, and the the

mapped values, which are color coded, rapidly decay in this direction; this shows

that the |f(z)| rapidly decay away from γ as desired. The red curve indicates the

lower half of γ where ℑz ≤ s, which is notable because this region is where the

imaginary parts of the eigenvalues of Ls will be, as stated in Theorem 2.1.2.

Remark 2.1.3. We refer the reader to Kato’s [25] for more details of the claims made

in this remark. The perturbed operator Ls is holomorphic of type A. A holomorphic
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operator T (ξ) that is defined for perturbation ξ on domain Dom(ξ) = D0 ∈ C,

belongs to the family of holomorphic operators of type A if it is a close-able operator

T : X → Y between Banach spaces, and it meets the following two conditions.

One: the domain of T (ξ), denoted by D is independent of the perturbation ξ.

Two: T (x) is holomorphic for all ξ ∈ D0 and u ∈ D. As discussed, Ls : H1
0 → L2

is a closeable, holomorphic operator between Hilbert Spaces. Clearly, any shift

does not change the Dom(Ls), nor does it make the operator not analytic for any

u ∈ H1
0 , so Ls is holomorphic of type A. Additionally, Theorem 2.6 provides a

criterion to determine when an operator is holomorphic of type A, of which Ls is

exemplified as a particular, easy case in Remark 2.7.

Thus, we may apply the key result from Kato, which states that if the Spec(L) is

separated into two parts by some closed contour Γ, then Spec(Ls) is also separated

into two parts by the same Γ for sufficiently small s. Further, “sufficiently small"

can be estimated, where separation of the spectrum occurs at least if :

s < r0 := min
γ∈Γ

(||R(γ,L)||L2)−1 , (2.8)

where r0 is called the radius of perturbation. We note that separation of the spectra

can occur for larger s, and we suspect that it often does, however this s < r0

guarantees it. For a contour Γ centered at the target eigenvalue λ, the radius

should be less than dist(∂Γ, Spec(L)) to guarantee that the Spec(Ls) is separated

by that contour. Observe that Γ can contain eigenvalues outside and inside it–

as in the contour can surround multiple eigenvalues, but only one eigenvalue is
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considered the target with respect to the radius of perturbation; this can pair

down to setting r0 equal to one half of the distance between the nearest eigenvalue

and the target eigenvalue. In the cases where there are multiple eigenvalues that

are very close to each other, this distance can be very small, which in turn requires

an even smaller s. Though not the topic here, a very small s can negatively impact

the algorithm or requires a lot more computational resources.

The following is the complement to Theorem 2.1.2:

Theorem 2.1.4. Let (µ, ϕ) be an eigenpair of Ls. Then

s [δ(ϕ,R)]2 ≤ dist(µ, Spec(L+ i s)) ≤ s δ(ϕ,R) , (2.9)

dist(ℜµ, Spec(L)) ≤ s δ(ϕ,R) τ(ϕ,R) . (2.10)

Let λ = argmin{|σ −ℜµ| : σ ∈ Spec(L)}. If Λ ⊂ Spec(L) contains λ, then

inf
v∈E(Λ,L)

||ϕ− v||L2(Ω)

||ϕ||L2(Ω)

≤ s δ(ϕ,R) τ(ϕ,R)

dist(ℜµ, Spec(L) \ (Λ ∪ {ℜµ}))
, (2.11)

where E(Λ,L) is the corresponding invariant subspace.

Proof. For simplicity, denote δ = δ(ϕ,R), τ = τ(ϕ,R), and µ1 = ℜµ. Since

µ /∈ Spec(L+ i s), we directly compute (L+ i s−µ)ϕ = (L+ is)ϕ− (L+ isχRϕ) =

i s χΩ\Rϕ. Following the same argument as in (2.4), we obtain the upper bound

for (2.4). To obtain the lower bound, notice: µ = µ1 + i sτ 2, then |d + i s− µ| =

|d− µ1 + i sδ2| ≥ sδ2 for any d ∈ R.
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Now, using ϕ = ϕ1 + iϕ2 and assuming µ1 /∈ Spec(L) (else 2.10 is trivial):

(L − µ1)ϕ = Lϕ1 + iLϕ2 − µ1ϕ1 − iµ1ϕ2

= isτ 2χΩ\Rϕ1 − sτ 2χΩ\Rϕ2 − δ2isχRϕ1 + δ2sχRϕ2

Comparing the real (and imaginary) parts gives (L − µ1)ϕ1 = −s(τ 2χΩ\Rϕ2 −

δ2χRϕ2). Taking the inverse of (L − µ1), applying the norm, and then squaring

both sides:

||ϕ||2L2(Ω) ≤ ||(L − µ1)
−1||2|| − isδ2χRϕ+ isτ 2χΩ/Rϕ||2 (2.12)

= ||(L − µ1)
−1||2(s2δ4||ϕ||2R + s2τ 4||ϕ||2Ω\R). (2.13)

Where we used that χΩ\RϕχRϕ = 0. Rearranging again and using the fact that

δ2 + τ 2 = 1 gives

||(L − µ1)
−1||−2 ≤ s2δ4τ 2 + s2τ 4δ2 = s2δ2τ 2 (2.14)

Thus, (2.10) is proved.

Denote by P = 1
2π i

∫
γ
(z − L)−1 dz as the orthogonal, spectral projector for

E(Λ,L), where γ is a simple closed contour that encloses Λ ∪ {µ1} and excludes

Spec(L) \ Λ. This implies that P and L commute, thus (I − P )L = L(I − P ).

Further using the fact that (I − P )2 = (I − P ) gives:

I − P = ((L+ i s)(I − P )− µ)−1(I − P )(L+ i s− µ) , (2.15)
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This in combination with (2.14) results in:

inf
v∈E(Λ,L)

||ϕ− v||L2(Ω)

||ϕ||L2(Ω)

=
||(I − P )ϕ||L2(Ω

||ϕ||L2(Ω)

≤ ||(L+ i s)(I − P )− µ)−1||sδ(ϕ,R)τ(ϕ,R) ,

where (2.11) is attained from recognizing that

||(L+ i s)(I − P )− µ)−1|| = 1

dist(µ1, Spec(L)) \ (Λ ∪ µ1)
.

For the bounds in (2.9) to be meaningful, the right hand side must be less

than one. Notice when there are two eigenvectors whose eigenvalues are close

and are included in the contour Λ, then the dist (ℜµ, Spec(L)) \ (Λ ∪ {ℜµ}) in

the denominator blows up, which means that s may have to be very tiny for the

bound to be meaningful. In these cases, an eigenvector of Ls may not need to

be as “faithful" a representation of any one eigenvector of L; this can be observed

when the eigenvector of the perturbed operator appears as a linear combination of

the eigenvectors with the close eigenvalues. When two eigenvectors are identical

except in sign, then that linear combination may be an eigenvector that (falsely)

appears localized in one region of the domain.

In the context of Theorem 2.1.4, if some scaling, cϕ, of ϕ is close to a (real)

eigenvector ψ of L, which happens when the upper bound of (2.11) is small, then
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the imaginary part of cϕ should be small. This motivates normalizing ϕ,

ϕ←− cϕ where c = argmin{||ℑ(dϕ)||L2(Ω) : |d| = 1} . (2.16)

Given a nonzero function ϕ = ϕ1 + iϕ2 such that ||ϕ||L2(Ω) = 1, the minimization

problem α = min{||ℑ(dϕ)||L2(Ω) : |d| = 1} can be cast as a 2×2 eigenvalue problem

whose smallest eigenvalue is α2 and with semidefinite matrix:

 ||ϕ2||2L2(Ω)

∫
Ω
ϕ1ϕ2 dx∫

Ω
ϕ1ϕ2 dx ||ϕ1||2L2(Ω)

 . (2.17)

The eigenvectors, c = (c1, c2), are real and unit length, and are related to the

optimal scalar by c = c1 + ic2. However, a better, more effective minimization

procedure for our purposes arises from Theorem 2.1.4 and is described below.

Proposition 2.1.5. Let (µ, ϕ) be an eigenpair of Ls. It holds that:

||(L − ℜµ)ℜϕ||2L2(Ω) = s2(τ 4||ℑϕ||2L2(Ω\R) + δ4||ℑϕ||2L2(R)) (2.18)

Proof. In the proof of Theorem 2.1.4, we obtained the identity: (L − µ1)ϕ =

isτ 2χΩ\Rϕ1− sτ 2χΩ\Rϕ2− δ2isχRϕ1 + δ2sχRϕ2, then compared the real and imag-

inary parts to obtain

(L − µ1)ϕ1 = −s(τ 2χΩ\Rϕ2 − δ2χRϕ2).
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In the same manner as before, we obtain the identity 2.18.

Notice that ϕ can be scaled by any c = eiθ while remaining an eigenvector of

unit length, and that τ and δ are scale invariant. Proposition 2.1.5 suggests that

the residual (τ 4||ℑϕ||2L2(Ω\R) + δ4||ℑϕ||2L2(R)), not |ℑϕ|, should be minimized. In

some cases, |ℑϕ| is not reduced. We begin by normalizing ϕ:

ϕ←− cϕ where c = argmin{τ 4||ℑ(bϕ)||2L2(Ω\R) + δ4||ℑ(bϕ)||2L2(R) : |b| = 1} .

(2.19)

We can recast this minimization problem as a 2× 2 Hermitian eigenvalue problem

using the matrix:

δ4

 ||ϕ2||2L2(R)

∫
R
ϕ1ϕ2 dx∫

R
ϕ1ϕ2 dx ||ϕ1||2L2(R)

+ τ 4

 ||ϕ2||2L2(Ω\R)

∫
Ω\R ϕ1ϕ2 dx∫

Ω\R ϕ1ϕ2 dx ||ϕ1||2L2(Ω\R)

 . (2.20)

Figure 2.4 exemplifies how normalizing ϕ in this manner returns eigenvectors of Ls

that more closely resemble their corresponding eigenvectors of L, and is therefore

the superior minimization procedure.

The renormalization procedure is not dependent on the size of s, despite its

appearance in Proposition 2.1.5. However, as we have noted, the quality of the

returned eigenvectors of Ls often rely (at least partially) on the size of s. Therefore

it is best to consider what s is appropriate before a renormalization is even relevant.

The proceeding lemma provides a sufficiently small s in theory, however note that

this is not something that will be computed, and furthermore it is often (much)
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Figure 2.4: Each row corresponds to an eigenmode. The first column represents
the unchanged eigenmode ϕ of Ls, the second illustrates the renormalized (as in
Proposition 2.1.5) ϕ, and the last column shows the corresponding ψ of L. The
real and imaginary parts of the eigenmode are shown in solid and dotted lines,
respectively, while the value of the residual is included in the first two columns.
Notice the renormalized eigenmode in column 2 much better resembles the eigen-
mode in column 3.
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smaller than what is practical or necessary. Practical sizes for s will be discussed

in Chapter 5.

Lemma 2.1.6. Let (λ, ψ) be an eigenpair of the selfadjoint operator L, (µ(s), ϕ(s))

be an eigenpair of Ls that depends on s, and assume the λ are simple. The size of

s is such that:

s ≤
(
1− δ(ψ,R)
1 + δ(ψ,R)

)
r

2
, (2.21)

where r = r0 is the radius of perturbation described by (2.8) and δ(v,R) =
||v||L2(Ω\R)

||v||L2(Ω)

for any v ∈ L2(Ω) and subdomain R.

Proof. From the proof in Theorem 2.1.2, we have
λ+ is− µ(s)

is
=

(χΩ\Rϕ(s), ψ)L2(Ω)

(ϕ(s), ψ)L2(Ω)

.

Taking the modulus, using the Cauchy-Schwarz Inequality, using that χ2
Ω\R =

χΩ\R, gives:

|λ+ is− µ(s)|
s

≤
||ϕ(s)||L2(Ω\R)||ψ||L2(Ω\R)

| ||ψ||2L2(Ω) − (ψ − ϕ(s), ψ)L2(Ω)|

≤
||ϕ(s)||L2(Ω\R)||ψ||L2(Ω\R)

||ψ||2L2(Ω) − ||ψ − ϕ(s)||L2(Ω)||ψ||L2(Ω)

= δ(ψ,R)
||ϕ(s)||L2(Ω\R)

||ψ||L2(Ω) − ||ψ − ϕ(s)||L2(Ω)

We want to show that the latter term
||ϕ(s)||L2(Ω\R)

||ψ||L2(Ω) − ||ψ − ϕ(s)||L2(Ω)

≤ 1, since (by

definition) δ(ψ,R) ≤ 1. This makes it so
|λ+ is− µ(s)|

s
is meaningful. Assume

that all of the λ are simple and denote by P the orthogonal spectral projector onto
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the span(ψ). From the proof of Theorem 2.1.4, we have the identity:

I − P = ((L+ is)(I − P )− µ(s))−1 (1− P )(L+ is− µ(s))

Notice (I − P )ϕ(s) = ϕ(s) − c(s)ψ for some c since P is the orthogonal spectral

projector onto span(ψ). Applying ϕ(s) to both sides of the above identity, applying

the Cauchy-Schwarz Inequality, and using that (L + is − µ(s))ϕ(s) = isχΩ\Rϕ(s)

gives:

||ϕ(s)− c(s)ψ|| ≤ || ((L+ is)(I − P )− µ(s))−1 || ||(I − P )|| ||ϕ(s)||L2(Ω\R)s

≤ || ((L+ is)(I − P )− µ(s))−1 || ||ϕ(s)||L2(Ω\R)s ,

where the last inequality is because ||(I − P )|| ≤ 1. Since L + is is a normal

operator, L is selfadjoint, and (I − P ) is idempotent, then (L+ is)(I − P ) is also

normal. As before, recognize that

|| ((L+ is)(I − P )− µ(s))−1 || = 1

dist (µ(s), Spec((L+ is)(I − P )))

Notice that Spec(L + is) is λ + is, for specific ϕ, (I − P )(λ + is)ϕ = 0, and

that applying (I − P ) to any other ϕ returns the same ϕ. Therefore, γ :=

dist (µ(s), Spec((L+ is)(I − P ))) = dist(µ(s), λb+ is), where the target eigenvalue

λ is distinct from its closest and second closest eigenvalues λb and λa, respectively.

Figure 2.5 illustrates this for some µ(s) corresponding to the target λ.
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Figure 2.5: For the proof of Lemma 2.1.6. Expressing the distance between
µ(s) and Spec((L + is)(I − P )) is the next closest eigenvalue to λ, of which µ
approximates, with the shift is added.

By definition, dist(µ(s), λb + is) ≥ r
2
, thus:

||ϕ(s)− c(s)ψ|| ≤ s

(r/2)
||ϕ(s)||L2(Ω\R) . (2.22)

Now consider the following where c(s)ψ has been added and subtracted, and

the triangle inequality has been applied:

||ϕ(s)||L2(Ω\R) ≤ ||c(s)ψ||L2(Ω\R) + ||ϕ(s)− c(s)ψ||L2(Ω\R)

≤ ||c(s)ψ||L2(Ω\R) +
s

(r/2)
||ϕ(s)||L2(Ω\R) ,

where (2.22) was used for the last inequality. Rearranging:

||ϕ(s)||L2(Ω\R) ≤
1

1− ( s
(r/2)

)
||c(s)ψ||L2(Ω\R) . (2.23)
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Going back to the first identity to apply (2.22) and (2.23):

λ+ is− µ(s)
s

≤ δ(ψ,R)
( 1
1−s/(r/2))||c(s)ψ||L2(Ω\R)

||c(s)ψ||L2(Ω) − s
(r/2)
||ϕ(s)||L2(Ω\R)

≤ δ(ψ,R)
( 1
1−s/(r/2))||c(s)ψ||L2(Ω\R)

||c(s)ψ||L2(Ω) − s
(r/2)

1
(1− s

(r/2)
)
||c(s)ψ||L2(Ω\R)

= δ(ψ,R)
( 1
1−s/(r/2))δ(ψ,R)

1− s
(r/2)

1
(1− s

(r/2)
)
δ(ψ,R)

= δ(ψ,R)
δ(ψ,R)

1− s
(r/2)
− s

(r/2)
δ(ψ,R)

= δ(ψ,R)
δ(ψ,R)

1− (1 + δ(ψ,R)) s
(r/2)

.

As before, since δ(ψ,R) ≤ 1 by definition, we want
δ(ψ,R)

1− (1 + δ(ψ,R)) s
(r/2)

≤ 1. So,

it must be that:

δ(ψ,R) ≤ δ(ψ,R)

1− (1 + δ(ψ,R)) s
(r/2)

(1 + δ(ψ,R))
s

(r/2)
≤ 1− δ(ψ,R) .

And finally,

s ≤
(
1− δ(ψ,R)
1 + δ(ψ,R)

)
r

2
.

The limit on s in Lemma 2.1.6 provides an upper bound that depends on how

localized the target eigenvectors are and how far apart the eigenvalues of interest

are from their nearest neighbors. A very localized eigenmode has a wider range of
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“sufficiently small" than one that is less localized, or not localized at all, in R, and

the same goes for eigenvalues that are further apart. It is well known that when

computing eigenmodes via subspace iteration, the eigenvectors may mix when the

dimension of the subspace is greater than 1 and the eigenvalues are “too" close

to each other. It is important to note that this mixing may produce vectors that

are falsely localized in some portion(s) of the domain, and we will call these cases

“false positives". When the eigenvalues are very close together, then one may have

to compensate with an even smaller s to avoid this, which is accounted for in

Lemma 2.1.6. We reiterate that this s is guaranteed to be sufficiently small, but

it may not be necessary or realistic in many practical applications, which will be

seen in later chapters.

2.2 Unpacking our Algorithm

Our key task is to find localized eigenpairs of (1.1):

Given an interval [a, b] and a (small) tolerance δ∗ > 0, find all eigenpairs

(λ, ψ) for which δ(ψ,R) ≤ δ∗ and λ ∈ [a, b], or determine that there are

not any, for some subdomain R, which may be given or found by our

algorithm.

(T)

Our intuition, which is explained in detail in the previous section, is that if (λ, ψ)

is an eigenpair of L with ψ highly localized in R, then there will be an eigenpair

(µ, ϕ) of Ls such that µ is near λ + i s and ϕ is near ψ. Our Algorithm 2.1 to
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achieve our key task (T) is detailed below. The “*" symbol indicates that this

line does not apply to the magnetic Schrödinger case because both of these lines

assume the eigenvectors of L are real, which they are not when L is the magnetic

Schrödinger. In the case of the magnetic Schrödinger, line 7 must be dropped and

in line 8, we use (ℜµ, ϕ) instead of (ℜµ,ℜϕ) since the eigenvalues of the magnetic

Schrödinger are real.

Algorithm 2.1 Template
1: procedure Localize(a, b, s, δ∗, R)
2: determine all eigenpairs (µ, ϕ) of Ls with µ ∈ U(a, b, s, δ∗) ▷ Theorem 2.1.2
3: if no eigenvalues are found in 2 then
4: exit ▷ There are no eigenpairs (λ, ψ) of L with λ ∈ [a, b] and
δ(ψ,R) ≤ δ∗

5: else
6: for each eigenpair (µ, ϕ) found in 2 do
7: normalize ϕ, ϕ←− cϕ ▷ *, as in Proposition 2.1.5 in (2.20)
8: post-process (ℜµ,ℜϕ) to obtain (approximate) eigenpair (λ̃, ψ̃) of L

▷ *
9: if δ(ψ̃, R) ≤ δ∗ then

10: accept (λ̃, ψ̃)
11: else
12: reject (λ̃, ψ̃)
13: end if
14: end for
15: end if
16: return accepted (approximate) eigenpairs (λ̃, ψ̃)
17: end procedure

The post-processing step given in Algorithm 2.1 involves performing (a few)

inverse operations given in Algorithm 2.2. The purpose of the post-processing is

to find the (approximate) desired eigenpair of the original operator L from the

eigenpair of the shifted operator that was found by our algorithm. Theorem 2.1.4
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and Proposition 2.1.5 indicate that a good starting point for the post-processing

is (µ1, ϕ1) = (ℜµ,ℜϕ) since it is close to the desired eigenpair. Further, Propo-

sition 2.1.5 provides an efficient way to compute the initial residual, which may

already be smaller than the prescribed tolerance, and therefore no post-processing

is needed.

Algorithm 2.2 Approximate Eigenpair Post-Processing
1: procedure Post-process(µ1, ϕ1, tol)
2: λ̃←− µ1

3: ψ̃ ←− ϕ1/||ϕ1||L2(Ω)

4: while ||Lψ̃ − λ̃ψ̃||L2(Ω) > tol do
5: ψ̃ ←− (µ1 − L)−1ψ̃
6: ψ̃ ←− ψ̃/||ψ̃||L2(Ω)

7: λ̃←− (Lψ̃, ψ̃)
8: end while
9: return post-processed (approximate) eigenpair (λ̃, ψ̃)

10: end procedure

It is expected that the post-processing will converge in no more than a few

iterations; no convergence after a few iterations may indicate that (µ, ϕ) is an

approximation of more than one eigenpair of L. These cases occur when there

are multiple eigenmodes with very close eigenvalues. As discussed, this could

produce false positives. In practice, we have often seen that the inverse iterations

converge to a more faithful representation of one eigenfunction of L that is not

truly localized. And this has the (fortunate) effect of alerting the user to the

potential false positive.
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3 Background Information and Methodology

This chapter dives into some of the basic background information such as eigen-

value solvers and descriptions of a few different methods that are commonly used.

Filtered Subspace iteration, as it relates to FEAST, and the FEAST algorithm [22]

are explained as well. Pythonic FEAST [16, 17] used in conjunction with the fi-

nite element tool NGSolve [24], interfaced with Python [38], are the tools used to

perform all of the computations herein.

3.1 Eigenvalue solvers

An eigenvalue solver aims to compute eigenvalues λ ∈ C and their corresponding

eigenvectors x⃗ ∈ Cn satisfying:

Ax⃗ = λx⃗ or equivalently Ax⃗ = λMx⃗ , (3.1)

where the stiffness matrix A and the mass matrix M are large and sparse, as is

typical when A and M arise from the discretization of a differential operator. A

common example, and one used throughout this work, is:


(−∆+ V )ψ = λψ in Ω

ψ|δΩ = 0
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where Ω ⊂ Rd is a bounded, connected, open set, the potential V ∈ L∞(Ω) is non-

negative, and the eigenfunction ψ ∈ W := H1
0 = {ψ ∈ H1 : ψ|δΩ = 0}. The strong

form of the problem (above) is converted into its weak form by multiplying by a

test function v and integrating by parts. In this case, the variational formulation

is to find λ ∈ C and ψ ∈ H1
0 satisfying

∫
Ω

∇ψ∇vdx+
∫
Ω

V ψvdx = λ

∫
Ω

ψvdx ∀v ∈ W .

Here, we used the zero boundary conditions to eliminate the boundary term that

arose from using the Divergence Theorem. To make the problem suitable for

solving via finite element methods, we choose a finite dimensional subspace Wh ⊂

W that consists of continuous piecewise polynomial functions on a triangulation

of Ω. The triangulation is called quasi-uniform if all of the triangles have the

same diameter. If the local polynomial degree is fixed and the triangulation is

quasi-uniform, then the diameter of the triangles h = 1/N is proportional to

dim(Wh) = N . The problem becomes:

∫
Ω

∇ψh∇vhdx+
∫
Ω

V ψhvhdx = λh

∫
Ω

ψhvhdx ∀v ∈ Wh .

Expanding ψh via the finite element basis functions {ϕj}Nj=1 ofWh, ψh =
∑N

j=1 xjϕj,

and substituting ϕi for each vh results in:

∀ i ∈ [0, N ],
N∑
j=1

(∫
Ω

∇ϕj∇ϕi + V ϕjϕidx

)
ψj = λh

N∑
j=1

(∫
Ω

ϕjϕidx

)
ψj .



47

Thus, the discretized eigenvalue problem is complete after assembling:

A =

(∫
Ω

∇ϕj∇ϕi + V ϕjϕidx

)
and M =

(∫
Ω

ϕjϕidx

)

A suitable eigenvalue solver can be used from here. There are many such solvers,

and a few will be summarized here such as the Power Method and Subspace Itera-

tion. For simplicity, we describe the methods for the standard eigenvalue problem

Ax⃗ = λx⃗.

3.1.1 Power Method and Shifted Power Methods

The power method begins with some normalized initial guess vector x⃗0, which is

either an approximation of the dominant eigenvector or chosen at random. The

matrix A is then applied to x⃗0, propagating another vector that is immediately

normalized to produce x⃗1. This is an iterative procedure that produces a sequence

of vectors x⃗n that converges to the dominant eigenvector, given that some basic

assumptions are satisfied. Eigenvalues are then recovered via Rayleigh quotients.

The necessary assumptions are that there is an eigenvalue λ1 of A that is strictly

greater than the other eigenvalues in magnitude (with a larger disparity preferred)

and that A is diagonalizable in the sense A = V ΛV −1, where Λ is the diagonal

matrix of eigenvalues. The diagonalizable condition on A guarantees that it has

n linearly independent eigenvectors that form a basis on the underlying space,

and therefore there is some x⃗0 guaranteed to have a nonzero component in the

direction of an eigenvector associated with λ1. However, this condition is already
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(almost surely) guaranteed: in the unlikely chance that x⃗0 was chosen to have

a zero component in the direction of the associated eigenvector, floating point

arithmetic would generally perturb this to have a nonzero coefficient.

Denote by λ2 the second largest eigenvalue. The power method convergence

rate is geometric with ratio |λ2|
|λ1| , making it clear why λ1 must be simple and dom-

inate, and why a larger disparity between λ1 and λ2 is desired. Convergence may

not even happen if the dominant eigenvalue is too close to the next eigenvalue.

Multiplication of A by x⃗k is the computationally most expensive step with O(n2)

when A is dense and O(n) when A is sparse, so the Power Method is most effective

for very large sparse matrices. Even though the convergence rate can sometimes

be slow and only one eigenpair results from the power method, it is still a decent

starting point for more sophisticated methods because it is simple to implement

and only requires a “black box" that multiplies a matrix by a vector, which is a

great advantage for problems where the matrix is mostly zeros or has some special

structure. [14, 31]

Utilizing that the eigenvalues of A−1 are the reciprocals of the eigenvalues of

A, one can instead find the smallest eigenvalue of A by implementing the power

method with A−1 substituted for A; this is known as the Inverse Power Method,

and it has the same basic assumptions and results as the Power Method above.

If one instead wishes to find other eigenpairs as opposed to just the largest or

the smallest, the Shifted Power Method can be used. This method incorporates a

shift of the operator, A−σI, by some user specified parameter σ. This new matrix

has precisely the same eigenvectors as A, and Spec(A−σI) = λ− σ : λ ∈ Spec(A).
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Applying the power method to A−σI yields an eigenvector of A whose eigenvalue

is furthest from σ. As before, the corresponding eigenvalue of A is obtained from

a Rayleigh quotient of A. Similarly, applying the inverse power method to A− σI

yields an eigenvector of A whose eigenvalue is closest to σ.

Even for a reasonable shift, the Shifted Power Method converges linearly (at

best!). To speed up the algorithm, shift dynamically! A prime example is used in

the Rayleigh Quotient Iterations Method, where the shift is chosen dynamically

by applying the Rayleigh quotient at each step:

σk+1 =
(v(k), Av(k))

||v(k)||2
.

This method is locally quadratic for asymmetric matrices and locally cubic for

symmetric matrices. However, in the case of clustered eigenvalues, these methods

may not converge or are greatly slowed; even a carefully selected shift cannot

be chosen to increase the needed gap between successive eigenvalues. In these

instances, one can turn to Subspace Iteration. [31]

3.1.2 Subspace Iteration and Filtered Subspace Iteration

Instead of focusing on finding an eigenvector associated with the dominant eigen-

value, Subspace Iteration instead finds the invariant subspace associated with the

p dominant eigenvalues, |λ1| ≥ ... ≥ |λp| > |λp+1| ≥ ... ≥ |λn|. One computes

Vk = A(k)V0 for some initial subspace V0 often chosen as a p-dimensional subspace

of random initial vectors.
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Computing the Vk requires computing a basis for the space first, which can be

achieved via QR decomposition. Essentially, any matrix A ∈ Cm×p with linearly

independent columns andm ≥ p can be factored into the product of anm×pmatrix

X with orthonormal columns and a p× p upper triangular matrix, R. Given some

gap between |λp| and |λp+1|, these iterations converge to an orthonormal basis for

the invariant subspace spanned by the first p eigenvectors of A. Particularly, the

first n columns of Xk converge to a basis for the dominant n-dimensional invariant

subspace.

Algorithm 1.3 Subspace Iteration
1: procedure Find eigenspace(A, X, tol)
2: compute eigenvectors corresponding to the p largest eigenvalues of A
3: Set X(0) := X, k = 0 ▷ A ∈ Cn×n ▷ X ∈ Cn×p

4: repeat
5: k = k + 1
6: Z(k) := AX(k−1)

7: X(k)R(k) := Z(k) ▷ QR factorization of Z(k) to prevent the columns of
X(k) from converging to the eigenvector with the largest modulus

8: until ||(I −X(k)X(k)∗)X(k−1)|| > tol
9: Converged A = X(k)R(k)X−(k) is an approximation of the partial Schur

decomposition
10: end procedure

The convergence rate is like that of the power iteration, from which it is based

on, and is often realized in practice. One iteration converges linearly and the rate

of convergence is related to the ratio of the moduli of the eigenvalues. When the

eigenvalues are close, convergence is slow. Like the power iteration, it is better if

the eigenvalues are far apart. Recall that subspace iteration focuses on finding the

entire invariant subspace associated w p eigenvalues. The value m > p denotes the
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number of initial vectors at the beginning of the iterations, so when m is small, a

relatively large number of iterations are required to converge. However when m is

large, each iteration requires more computation though there are less of them. In

an effort to optimize, it is standard to set m to the number of expected vectors p

or just above it to be safe, but not choose m so much larger that each iteration is

unnecessarily slowed. [9]

Filtered subspace iteration differs from basic subspace iteration by first trans-

forming the eigenspace of the cluster Λ to the dominant eigenspace of the filter,

another bounded operator. Subspace iteration is then applied. Computable finite

rank approximations of the resolvent at a few points are required to apply this

method; these approximations are obtained via some discretization process that

are explored in much more detail in [16]. The FEAST algorithm, which is the

primary eigenvalue solver used throughout this work, performs filtered subspace

iteration.

3.2 FEAST

FEAST [16, 17, 22] is subspace iteration with a “filtered" version of the opera-

tor/matrix A, given by B = f(A). The filter function is chosen to be a rational

approximation of the characteristic function for some search region Ũ , so that

the eigenvalues of A that are in Ũ get mapped to the dominant eigenvalues of B:

λ ∈ Spec(A)→ f(λ) ∈ Spec(B). This f greatly enlarges |f(λ)| for λ ∈ Spec(A)∩Ũ

relative to λ ∈ Spec(A) ∩ Ũ c. An ideal filter maps the desired eigenvalues to one



52

and all others to zero. Assuming A is some unbounded operator on L2(Ω), whose

domain Dom(A) ⊂ L2(Ω), then the filter function f = f(z) is rational, bounded,

and continuous on Spec(A), so B = f(A) is bounded and Dom(f(A)) = L2(Ω). It’s

important to note that even though f changes the eigenvalues λ of A to f(λ), the

eigenfunctions are unchanged; the eigenfunctions of f(A) are precisely the same

as the eigenfunctions of A. The idea for the filter function comes from Cauchy’s

Integral Formula:

F (ξ) = χŨ(ξ) =
1

2πi

∮
∂Ũ

1

z − ξ
dz =


0, ξ ∈ Ũ c \ ∂Ũ

1, ξ ∈ Ũ
(3.2)

We assume ∂Ũ is some simple, closed loop, such as a circle of nonzero radius, and

that ξ is a point not in ∂Ũ . In this case, f takes the form of the rational quadrature

approximation of (3.2) given by:

f(ξ) =
n−1∑
k=0

wk
zk − ξ

≈ 1

2πi

∮
∂Ũ

1

z − ξ
dz = F (ξ) ,

where wk are the quadrature weights and the zk are the quadrature nodes. While

there are other ways of obtaining such f that are considered in [19, 37], they will

not be explored here.

This motivates the definition of the main computational tool for the FEAST

algorithm, the orthogonal spectral projector S of A associated with Λ. S : H → H

is a bounded, linear operator obtained from the Dunford-Taylor Integral with the
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form:

S =
1

2πi

∫
∂Ũ

(zM − A)−1dz .

We then approximate S in the sense of:

S ≈ Sk =
n−1∑
k=0

(zkM − A)−1 .

Sk is iteratively applied to an initial, random, finite dimensional subspace, Eh,0 ⊂

Dom(A) that satisfies SkEh,0 = Eh, where Eh := Range(Sk) = E(Λ, A) is the

target invariant subspace and h is the standard meshing parameter. Thus FEAST

iterations generate a collection of subspaces having the form {Eh,k+1 = f(A)Eh,k}

that converge to Eh with respect to the subspace gap. The subspace gap measures

the distance between two linear subspaces V,W of Eh, and is defined:

gapEh
(V,W ) = max

(
sup
v∈BV

distE(v,W ), sup
w∈Bw

distE(w, V )

)
,

where Bw is the closed, unit ball of W . The rate of convergence of Eh,k to Eh is

the dist(Eh, Eh,k) = O(κk). This rate is controlled by the ratio:

κ :=
supλ∈Spec(A)\Λ |f(ξ)|

infλ∈Λ |f(ξ)|
< 1 . (3.3)

Recall that the filter function (ideally) maps eigenvalues in the contour to 1 and

those outside to 0. Having a filter function with clear distinction between the
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eigenvalues of interest and the remaining eigenvalues makes κ small, as desired.

In order to recover the target eigenvalues Λ, a Rayleigh-Ritz procedure is used

on a finite rank operator Ak : Ek 7→ Ek to obtain approximations Λh,k of Λ that

converge to Λh with respect to the Hausdorff metric. We define the Hausdorff

metric between two sets of numbers X, Y ∈ C as

dist(X, Y ) = max

(
sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|

)
.

This rate of convergence is dist(Λh,Λh,k) = O(κ2k). Again, it can be seen that a

“good" filter function can greatly affect the speed of the algorithm. [16,17,33]

3.2.1 Computational Complexity of FEAST

It may come as no surprise that the major cost of FEAST is solving each system:

Xj+1 =
N∑
k=1

wk(zkM − A)−1Xj ,

where M and A are N ×N matrices, X is an N × p matrix, and these should be

sparse matrices. The N number of quadrature points used determines the number

of matrix solves per linear system per iteration. In practice, this discretized version

of the finite rank approximation of the resolvent term (z−A)−1 depends on h. This

is because the quadrature points, zk, and weights, wk, both relate to the mesh

parameter, h. This relationship is clearly defined for our Bunimovich curve in 2.6

in section 2.1.
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With resolvent discretization, subspace iteration can be applied as described

before for each N quadrature point. The m0 number of initial guesses in FEAST,

which quickly becomes them number of eigenvectors in the contour, determines the

number of right hand side vectors b to the linear problem Ax = b. For example, for

m = 10 vectors given in a single iteration, there are 10 systems of linear equations.

A sparse direct solver involving LU factorization, known as UMFPACK, is used

for the linear solves. The computational complexity for one solve is on the order

of O(p · N3/2) [27]. However, each quadrature point has an associated matrix

where a sparse solve is performed and for each of these associate matrices there

are m number of linear systems to solve. Therefore, the computational complexity

becomes O(p · m · N3/2). One could choose a different solver, such as MUMPS,

and the computational complexity would become O(p ·m ·N log(N)). We see that

these matrix solves can be slow, especially when m is chosen large.

With respect to the question about how long a typical FEAST simulation takes,

there are several considerations beyond choosing a suitable number of initial vectors

m. As discussed, choosing a larger number of quadrature points N , a larger search

interval [a, b] (or just having an interval dense with eigenmodes), a finer mesh,

or a higher polynomial degree will all increase computational time. The choice

of contour also matters in practice; for the Bunimovich curve, the relationship

between N , [a, b], and some other parameters is outlined as the aspect ratio in 5.1.

Having a poor aspect ratio makes it difficult for the algorithm to determine which

eigenmodes to filter, and therefore more iterations are needed to resolve this issue;

alternatively, some eigenmodes would not be filtered, and the more eigenvectors



56

found per iteration, the more time and expense.

Still, the general takeaway should be that the most costly step is building

the rational filter, which increases in expense for larger N . The linear solves are

typically faster, however have more parameters that can affect time and expense.

For actual times and memory consumption of a typical simulation, we refer the

reader to Chapter 5 to find Tables 5.1, 5.2, and 5.3.
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4 The Algorithm

4.1 Proof of Concept

This section provides examples of the algorithm in action coupled with the post

processing. These examples range between one and two dimensional domains and

are shown for localization that derives from the domain geometry, potential, or

properties of the operator. There are 265 eigenmodes of the original operators

computed in this section; 66 of those strictly meet whatever criteria are given

and 80 are returned before any post processing. Right off the bat, the algorithm

eliminated over 90% of the unwanted eigenvectors, where some of the few unwanted

eigenmodes were very close to meeting the criteria. With the short post-processing

step, over 99% were clearly eliminated. Details of the post-processing are covered

in the post-processing section.

Example 4.1.1. Figures 4.1 and 4.2 summarize the algorithm performance on the

four dumbbell variations featured in the “Geometry" chapter. In total, there are 48

eigenpairs of L with 14 that are localized within the criteria given in each case, all

of which were returned. There were a total of 2 undesired vectors found, which were

quickly tossed after post-processing. The algorithm immediately filtered ≈ 94% of

the undesired eigenpairs and then 100% in the post processing. Note that smaller

s, such as s = 0.01 could have been used so that 100% of the unwanted eigenmodes

were immediately filtered, but such s would require many iterations. The aspect
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ratio in all cases remained below 18, and only a few iterations were needed for each

case.

Example 4.1.2. Figure 4.3 provides the first 20 eigenpairs (though 23 total were

computed) of L for the “Delitsyan" domain. It is coupled with Figure 4.4, which

pictures the moduli of the 5 returned for the shifted operator Ls after the post-

processing, where the right half of the domain is R. This region is far less likely

to exhibit localization, with only two modes localized to τ = 0.916. Prior to post-

processing, 5 eigenfunctions of Ls were found, all of which contained significant

eigenfunction mass in R, but may have bled too much into the much larger left

half of the domain; the three that did not meet the tolerance had tau values

τ = 0.867, 0.770, and 0.795, respectively. Thus, 85.7% of the unwanted eigenvectors

were filtered immediately, and then 100% in the post processing, and all of the

desired eigevectors were found. Note that a sufficient aspect ratio was maintained

for these experiments, where the search region size did not exceed 5, and so only

3 iterations of the FEAST algorithm were implemented.

Example 4.1.3. Much like the Delitsyan example, the Threebulb domain provides

another case where purely geometric localization occurs. In Chapter 5 Figure 5.3,

the first 64 eigenmodes of the Threebulb were combed for eigenvectors concentrated

to δ∗ = 0.25 (meaning τ ≥ 0.9682) in the left, right, and middle bulbs. There

are 27 eigenvectors that strictly meet this tolerance with 5 that are very close,

in the sense of having τ ∈ (0.956, 0.965). There are 3 that are pretty close in

the sense of τ ∈ (0.942, 0.95). When s = 1 for search regions having length 10,

the aspect ratio was 41 and there were 36 eigenmodes returned, which means
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µ = 2.11001 + 0.4984i 5.47257 + 0.49996i 5.09189 + 0.4859i 8.72859 + 0.4998i

Moduli of the eigenmodes of Ls for s = 0.5, δ∗ = 0.25, R = right bulb, and aspect ratio of
17. This corresponds to the first twelve eigenfunctions of L featured in Figure 6.4. All four
concentrated eigenfunctions were found without any false positives.

µ = 2.11003 + 0.4984i 5.09118 + 0.4886i

Moduli of the eigenmodes of Ls for s = 0.5, δ∗ = 0.2, R = right bulb, and aspect ratio of 16.
This corresponds to the first twelve eigenfunctions of L featured in Figure 6.6. Both localized
eigenfunctions were found without any false positives.

µ = 2.04385 + 0.4985i 5.29481 + 0.49996i 4.93914 + 0.4874i

8.44572 + 0.4998i 10.60746 + 0.49999i

Moduli of the eigenmodes of Ls for s = 0.5, δ∗ = 0.35, R = left bulb, and aspect ratio of
≈ 12.5. This corresponds to the first twelve eigenfunctions of L featured in Figure 6.5. All five
concentrated eigenvectors were found without any false positives.

Figure 4.1: The algorithm applied to 36 eigenmodes of L over three similar do-
mains from the “Geometric Localization" chapter. All desired eigenfunctions were
returned without any that did not meet the criteria.
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µ = 2.11008 + 0.5981i 5.47259 + 0.59995i 5.09252 + 0.5849i 8.72864 + 0.5998i 10.96453 + 0.59999i

Figure 4.2: Real and imaginary parts of the eigenvectors of Ls and associated
eigenvalues are featured in the top rows, respectively. Here δ∗ = 0.2, s = 0.6,
R = left bulb, and the aspect ratio is ≈ 17.67. Corresponding eigenpairs of L
are pictured in Figure 6.7. There are only 3 eigenfunctions that are sufficiently
concentrated in the left bulb, but five were returned. Post processing, pictured in
the third row, indicated that the first 2 eigenmodes were not sufficiently localized
and were thus discarded. A smaller s, such as s = 0.01, could have instead been
used to avoid returning any false positives.

immediately the algorithm discarded 28 eigenvectors. The desired 27 were all

returned, plus the close 8 and the additional was a linear combination of two

eigenvectors that had τ = 0.946 and τ = 0.875 in the right bulb. In terms of per

bulb performance, there was 1 sufficiently localized eigemode in the middle bulb,

which was identified without any false positives. For the right bulb, 5 additional

were returned. This means the algorithm, before post processing, returned 100%

of the desired eigenfunctions and only returned eigenfunctions that did not quite

meet the tolerance 5.6% of the time, but were often very close. We highlight that

improving the aspect ratio improves this performance, however this must be done

by choosing a smaller search interval, which comes at the expense of computational

resources and time. In this experiment, only three iterations of the algorithm

were needed to sweep through the entire 64 eigenvectors, and these all converged
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λ = 1.21164 2.97292 3.08300 4.86427

λ = 5.89800 6.16543 7.82188 7.99852

λ = 8.00709 9.59421 10.48179 10.48614

λ = 11.04046 11.51778 11.79314 12.31376

λ = 12.33375 13.70349 14.82324 15.31526

Figure 4.3: The first 20 eigenpairs of the “Delitsyan domain". The two purple
eigenvalues correspond to the only eigenmodes that meet the tolerance δ∗ = 0.4
in the right half of the domain. The returned eigenmodes of Ls are pictured in
Figure 4.4.



62

µ = 8.0071 + 0.999i 10.4815 + 0.919i

µ = 12.0899 + 0.751i 13.7644 + 0.592i 15.2647 + 0.632i

11.8584 13.7035 15.3153

Figure 4.4: The 5 returned (real parts of the) eigenmodes after the post processing
for s = 1, and corresponding to Figure 4.3 are shown in the top two rows. The
top row met the tolerance of δ∗ = 0.4. The bottom row contains the modulus of
the post processed eigenmodes that did not meet the tolerance and were returned
eigenvectors of Ls. Post-processing, easier seen via the modulus, clearly identifies
these to be non sufficiently localized and were then discarded. Of 23 total eigen-
modes (not all pictured) only two met the localization criteria and were returned
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within 3 FEAST iterations. One could also pick s sufficiently small to ensure

there were no false positives, but again this can be cumbersome since the search

interval must also decrease accordingly to maintain the accuracy and resolution.

For a typical use case, quickly identifying all of the desired eigenvectors and then

having the additional (if present) thrown out in the post processing is a much more

useful, practical approach than trying to optimize the parameters to ensure only

the precisely wanted eigenmodes are returned, which can be time consuming. The

very close eigenvectors may even prove unexpectedly desired.

Example 4.1.4. Testing the algorithm on cases where an interesting potential in-

duces localization proves fruitful as well. A one dimensional case on the unit inter-

val chopped into 4 equally sliced regions and having potential V = [0, 802, 0, 1602]

is given in Figure 4.5 and Figure 4.6 with a very strict δ = 0.2. After some

post processing, only the 3 eigenmodes that met the tolerance were returned, even

though there were 2 very close ones, exemplifying how rigorous the post-processing

can be. The real and imaginary parts of the 3 accepted eigenfunctions are shown;

notice the imaginary parts are five orders of magnitude smaller than the real parts,

which really drives home the idea that the eigenvectors of Ls closely resemble the

(real) eigenvectors of L, as is consistent with (2.16).

Example 4.1.5. A simple two dimensional example where the localization arises

from the potential is illustrated with the square domain, where no eigenmode of L

can concentrate in any subdomain without it being the result of some potential.

Figure 4.7 provides the first 20 eigenpairs on the unit square that is chopped into

16 total sub-squares, each having a random, constant potential in [0, 1500]. A total
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λ = 136.59654 143.18099 545.74931 572.08290 1225.36986

µ = 143.18099 + 0.99892i 572.08290 + 0.99555i

λ = 1284.57374 2171.22973 2276.20569 3374.97283 3537.72619

µ = 1284.57374 + 0.98937i

Figure 4.5: Unit interval chopped into 4 equally sliced regions having potential
V = [0, 802, 0, 1602]. The first ten eigenpairs (λ, ψ) of L are pictured along with
the eigenvalues, µ, of Ls if they were returned for s = 1 and δ∗ = 0.2 for R =
[0, 1/4) and successfully post processed. This is a strict tolerance, which even the
eighth eigenfunction does not quite meet. This example illustrates how rigorous
the algorithm can be.

Figure 4.6: The real (top) and imaginary (bottom) parts of the eigenvectors of Ls
returned. Notice, as is consistent with 2.1.2, the imaginary parts are small, since
the eigenvectors ϕ correspond to are real. These eigenmodes are normalized in the
sense of (2.16).
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of 30 eigenpairs were found, though only 20 are pictured, where 7 strictly met the

criterion τ ≥ 0.89 in R. Prior to post processing, the algorithm returned the

desired 7 plus 2 additional that are close with τ = 0.864 and 0.853. The real and

imaginary parts of these eigenvectors are pictured, plus the potential, landscape,

and shift functions in Figure 4.8. Notice as expected that the imaginary parts are

two orders of magnitude smaller than the real parts.

Example 4.1.6. A more complicated example of localization that arises from a

potential is given in Figure 4.9, which contains the first 30 eigenpairs on a unit

square that is chopped into 256 total sub-squares, each having a random, constant

potential in [0, 10, 000]. There are only four sufficiently localized eigenmodes in R,

four that are within 5% of the localization tolerance, and one within 10%– these

nine were returned, and their real and imaginary parts are seen in Figure 4.10.

Since the size of a domain is inversely related to the size of the eigenvalues, tiny

regions containing concentrated eigenfunctions are more likely to bleed than larger

regions; as a result, setting strict tolerances for relatively tiny regions can be coun-

terproductive. The eigenmodes that don’t quite make the cut in Figure 4.10 are

still very concentrated in one small subdomain together with a small surround-

ing area, and this (slightly) larger region still makes up an insubstantial part of

the domain that approximates R well. Thus, it may be wise to either provide a

larger tolerance or extend R to include a small buffer around the desired region of

interest.

Figure 4.11 provides an example where R is a small, connected region of Ω. The

first 30 eigenfunctions of L are shown in Figure 4.9, however a total of 42 were
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potential landscape shift

λ = 165.85338 186.62005 309.49092 322.68738 376.92885

λ = 407.24820 416.31101 455.43864 467.18465418 514.75860

λ = 546.79897 572.87551 597.40816 598.41565432 602.59214

λ = 640.81341 676.42361 684.17062 701.10860 729.35708

Figure 4.7: Unit square chopped into 4 × 4 sub-squares each with constant po-
tential generated randomly from 0 - 1500. The top row provides the potential,
landscape, and shift function, where the shift function is automatically created
from the n = 5 most likely regions to contain localized eigenmodes based off the
landscape function. The n number of regions are user selected. The remaining
rows provide the first 20 eigenpairs of L. The modes of Ls are in Figure 4.8.
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µ = 65.85344 + 0.9546i 186.62014 + 0.9500i 309.49138 + 0.9014i 322.68776 + 0.82472i

τ = 0.977 0.972 0.949 0.908

µ = 376.92965 + 0.7907i 407.24880 + 0.728i 416.31138 + 0.747i 455.43906 + 0.888i 701.10810 + 0.884i

τ = 0.890 0.853 0.864 0.942 0.940

Figure 4.8: Each pair of rows contains the real (top) and imaginary (bottom)
part of the returned eigenmodes of Ls for s = 1 and δ∗ = 0.45 paired with the
eigenvalues. The first 20 eigenpairs of L are pictured in Figure 4.7 before any
post-processing. There are nine eigenpairs of Ls returned of a total of 30 (not all
pictured), where all either meet the tolerance of τ = 0.89 or are very close (2). This
experiments illustrates how well the algorithm distinguishes localized eigenmodes
before post processing, even, and how well the automatic region selection identifies
potential regions of localization.
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λ = 1737.18570 1796.09081 1999.89455 2122.98736 2200.67329 2213.02292

λ = 2395.31057 2590.76880 2717.67666 2729.69019 2732.12664 2761.57635

λ = 2779.55276 2781.72949 2813.70955 2905.60294 3097.48696 3118.04829

λ = 3137.94650 3156.48816 3181.35500 3242.66122 3330.41920 3343.35926

λ = 3354.39846 3390.88154 427.85186 3435.37347 3439.72593 3495.24804

Figure 4.9: The first 30 eigenpairs of a unit square domain chopped into 16× 16
sub-squares with constant, random potential in each ranging from 0 to 10,000.
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potential landscape shift

µ = 1737.18836 + 8.727i 1796.092305 + 9.1954i 1999.90079 + 7.7517i 2200.67502 + 9.1377i

µ = 2213.02455 + 8.9569i 2717.67702 + 0.7202i 2781.72949 + 0.7370i 3343.35927 + 0.6472i 3427.85190 + 0.7254i

Figure 4.10: The potential function, landscape function, and shift functions are
pictured in the top row. Next, each pair of rows pictures the real then imaginary
parts of the eigenmodes of Ls for s = 1 and δ∗ = 0.4 related to the experiment
in Figure 4.9. There are 4 eigenmodes (1, 2, 4, 5) of 30 that meet the tolerance,
while all but one of the remaining are within 5%. The 8th is within 10%.
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shift λ = 1976.13493 + 0.9051i 2784.94972 + 0.9231

Figure 4.11: The first 30 eigenpairs of the original operator are pictured in Fig-
ure 4.9, however 42 were computed in total. For the complex shift pictured on the
left, s = 1 and δ∗ = 0.4, there were only two sufficiently localized eigenvectors of
Ls. Both were returned.

computed. Out of these 42, only two eigenfunctions met the tolerance of δ∗ = 0.4.

The algorithm returned both eigenmodes without any false positives and no post

processing was needed. This example illustrates how rigorous the algorithm is,

even for extremely choppy and huge potentials.

4.2 Post-Processing

The post processing consists of (a few) shifted inverse iterations using the real part

of the eigenvalue µ1 as the initial shift and the real part of the corresponding eigen-

vector ϕ1 as the initial test vector, though we note that the landscape function could

be used instead. The method of shifted inverse iteration is explained in the “Back-

ground Information and Methodology" chapter in the “Power Method and Shifted

Power Methods" section. This section provides examples of the post-processing

effectively eliminating false positives, even when the experiment is pathological.

Figure 4.12 tests the post processing on the pathological dumbbell case with

s = 0.5 in the right bulb. As expected, any practical s returns eigenmodes of
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Ls that are localized in the right bulb when they should not be; these real parts

and their corresponding (real parts of) eigenvalues µ1 are pictured below the λ

pairs, and notice µ1 ≈
λ1 + λ2

2
. The next two row duos are the eigenpairs of the

three shifted inverse iterations when the initial test vector is either the real part of

the eigenvector of Ls or the landscape function, respectively. When using ϕ1, the

vectors of the inverse iteration indicate there is no localization and are eliminated;

in some cases, these eigenvalues differ significantly from the µ1, which serves as

a red flag that the returned ϕ1 do not represent the ψ well. However, λ1 and λ2

are very this can be unreliable, while otherwise the inverse iterations are faithful

representations of the eigenfunctions of L. Similar can be said when using the

landscape function as the initial test function, with the exception of the fourth

column. Here the eigenmode has a tiny amount of mass in the left bulb, but it is

very faint and could easily be missed. Though the presence of mass in the left bulb

when it was not present for the shifted eigenmode should indicate that the ϕ and

ψ could be significantly different; this should then lead to further investigation, as

with the other examples.

4.3 Magnetic Laplacian

Since the theory presented in this manuscript has been developed via algebraic

manipulation and relies only on the assumption that the eigenvalues are real, it

applies to other selfadjoint operators with real spectrum. One such example is the

magnetic Laplacian, where a couple of examples applying our algorithm to this
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λ1,2 = 2.10427, 2.11564 5.04759, 5.13493 5.47254, 5.47260 8.72842, 8.72875 10.96451, 10.96454

µ1 = 2.11018 5.09373 5.47257 8.72859 10.96453

µ̃ = 2.10640 5.053378 5.47255 8.728700 10.96452

µ̂ = 2.10427 5.04759 5.47257 8.72856 10.96451

Figure 4.12: The top row of numbers lists the first five pairs of eigenvalues whose
eigenvectors of L are not localized in either bulb, but whose eigenvectors of Ls are
localized in whatever bulb hosts any practical s. The top row of pictures has the
real parts of these eigenvectors of Ls, ϕ1, when the shift is in the right bulb. The
next two rows contain the eigenpairs when the initial test vector used for post-
processing is either ϕ1 or the landscape function, respectively. It is not consistent
which initial test vector highlights that the eigenmode is not actually localized, but
overall the shifted inverse iterations do a good job of identifying that localization
doesn’t occur in either bulb.
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operator are provided in this section. Recall, the magnetic Laplacian operator Ĥ

applied to some differentiable vector field A : Ω→ Rd is defined by:

Ĥ(A) := (−i∇− A(x))2 .

For these examples, the eigenpairs of the original operator are pictured in

Figure 8.3 outlined in Example 8.2.2. In summary, the magnetic field A =

−a (cos(f(x, y)), sin(f(x, y))) where f(x, y) = π sin(πx) cos(πy) and a = 50. The

domain is the square Ω = [−1, 1]× [−1, 1]. Figure 4.13 gives the results when the

R is the middle 1
3
× 1

3
sub-square of the domain, s = 1, and δ∗ = 0.4. There are

nine eigenfunctions in total, where two are not at all localized in R and two are

centered in R, but have too much mass outside of R. The algorithm returned all

five desired eigenvectors.

Another, more selective example with the same domain and operator is provided

in Figure 4.14. Here s = 1, δ∗ = 0.3, and R is the top right corner. There was

one eigenmode, of nine total, that met the requirement; this one was returned,

exemplifying that the algorithm is robust, even for other operators. The mesh was

adaptively refined to the problem −∆u = 1 with zero boundary conditions, using

to the NGSolve adaptive refinement procedure, which utilizes the Zienkiewicz-Zhu

type error estimator, to a tolerance of 400,000.
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shift µ = 92.84704 + 0.9972i 132.62410 + 0.9692i

µ = 163.81230 + 0.8697i 185.48025 + 0.7817i 205.34509 + 0.7577i

Figure 4.13: For s = 1, and δ∗ = 0.4, all eigenpairs meeting the criteria were found;
four eigenpairs were filtered. See Figure 8.3 for the 9 eigenpairs of the original
operator. The domain is uniformly meshed with piecewise, cubic polynomials and
with edge length h = 0.01

shift µ = 167.19089374 + 1.i

Figure 4.14: For s = 1, and δ∗ = 0.3, the one eigenpair, of nine, that met the
requirement was returned. This example illustrates the robustness of the algorithm
even for other operators and for computationally difficult problems. See Figure 8.3
for the 9 eigenpairs of the original operator.



75

5 The size of s and δ∗

Naturally, the question arises about what the correct size is for the complex shift

s. The crux of our theory, Theorem 2.1.2 and Theorem 2.1.4, indicate that there

must be a balancing act between s and the chosen δ∗. In order for the eigenvector

results in Theorem 2.1.4 to be meaningful, it should be that sδ∗ ≤ 1. Moreover,

δ∗ has a limited practical range for what it means to be localized. So the size

of s should only be considered with respect to the practical range of δ∗. When

δ∗ = 0.1, only eigenvectors that have τ ≥ 0.9949 can meet the requirement, which

is already a very strict tolerance. Though δ∗ can theoretically approach 0, values

smaller than 0.1 are likely unreasonable. This immediately provides a reasonable

upper limit for s as 10 to match the lower bound of δ∗ = 0.1.

The (practical) upper limit for δ∗ is more up to the discretion of the user than its

lower limit. Figure 5.1 provides a few 1D examples of eigenmodes that are localized

for τ ∈ (0.839, 0.89), where the upper bound corresponds to δ∗ ≈ 0.45. This figure

exhibits how even τ values as high as 0.89 have a nontrivial amount of eigenvector

mass outside of R; one may not so readily call these eigenfunctions localized. In

a similar fashion, Figure 5.2 provides a few 2D examples of eigenmodes where

τ ∈ (0.89, 0.943). It may be a stretch to claim these eigenmodes are sufficiently

concentrated. One significant consideration when deciding the appropriate size of

δ∗ is how the size of R compares to the size of the domain Ω. In the cases that were
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Figure 5.1: 1D Eigenmodes pictured with their corresponding τ values. In each
case τ > 0.8. The eigenfunction mass outside R is nontrivial, which may be too
much to be considered localized.

τL = 0.89488 τR = 0.9428 τL = 0.9284

Figure 5.2: 2D Eigenmodes along with their corresponding τ values. The amount
of the eigenvector mass outside of R is nontrivial, even though τ seems high

.

just presented, R is not dramatically smaller than Ω. As seen by the definition of

τ , when R is smaller an eigenvector must be even more concentrated to boost τ .

An extreme example is given in Figure 4.10 where R is as little as 1/256 times the

area of Ω; even the eigenmodes that are not quite concentrated to the δ∗ ≤ 0.4 are

very clearly localized to a domain that approximates R well. In these cases, it is

(probably) better to increase R a small amount in the surrounding area than to

increase the tolerance since the prior ensures the eigenfunction is still concentrated

in the same general region, while the latter allows it to occupy anywhere as long

as it remains within the tolerance. The last example is fairly extreme, while the

other two are more typical use cases. With this line of reasoning, we consider the

practical range for the tolerance to be δ∗ ∈ [0.1, 0.45].
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An upper limit for δ∗ does not necessitate a corresponding lower limit for s

because Theorem 2.1.4 could have s → 0 for whatever δ∗ to meet sδ∗ ≤ 1. Since

a localized eigenpair of Ls has ℑµ ⪆ s and (in this sense) is distinct from other,

non-localized eigenfunctions, there must be a practical lower limit on s that keeps

this distinction clear, especially when the computations are subject to errors in

floating point arithmetic. For example, it is obvious that ℑµ = 0.99 and s = 1

are close, but ℑµ = 0.00001 and s = 0.00002 are not close, even though they are

closer. Here is where the theoretical and practical size limitations on s can differ,

and this disparity is exacerbated by computational limitations. Plus, note that

the operators L and Ls presented in the theory are no longer the same operators

once they are discretized. Our theory provides no bounds on s sufficiently small,

but practical bounds on s do exist. We will focus this section on what size of s

the user should set when implementing the software, for which there are several

considerations.

First, define the aspect ratio, which affects the quality of the rational filter f(z)

by:

Aspect Ratio =
(b− a) + sδ∗

sδ∗
. (5.1)

Recall from section 3.2 that, for the Bunimovich contour U , the contrast between

µ ∈ Spec(Ls) \ U and µ ∈ U determines the number of FEAST iterations re-

quired. If the contrast is greater, which happens when the aspect ratio is smaller,

fewer iterations are needed. Making s too small without compensating with an
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equally smaller search interval [a, b] can blow up/destroy the filter, thereby slowing

convergence and affecting accuracy. Examples of this are given throughout this

section.

Observe that for the Bunimovich contour pictured in Figure 2.1, increasing s

or δ∗ extends the search interval by sδ∗. A user looking for localized eigenmodes

with the corresponding µ1 ∈ [a, b], has increased chance of finding eigenmodes hav-

ing µ1 outside of this region when s is larger. This will always be an unintended

consequence of increasing s. However, some extension is necessary because the

eigenvectors of Ls have eigenvalues that converge down to those of L, albeit The-

orem 2.1.2 indicates this should be small. It would be unreasonable to consider

eigenvectors of Ls with µ1 differing from λ by integer values as the same. Even µ1

that differ from λ on the order of tenths should not be considered corresponding

eigenvalues! This means that the length of the extension, given by sδ∗, is already

big enough when it is on the order of tenths. So given δ∗ ∈ [0.1, 0.4], perhaps s

does not need to be bigger than 1.

Figure 5.3 plots |µ1 − λ| versus |s− µ2| for the returned eigenpairs of Ls when

δ∗ = 0.25 and s = 1 for R as the left, middle, or right bulb of the Threebulb domain.

Of 64 possible eigenvectors, 36 are returned, of which 27 are strictly localized, 4

are very close to meeting the tolerance, and 5 do not meet the requirement; in

Figure 5.3, these are plotted as grey scale, orange, and red dots, respectively.

Notice the clear distinction between the localized and non-localized vectors. The

red dots are clearly separate, having either |µ1−λ| > 0.1 and/or |s−µ2| > 0.1. The

orange dots that are almost localized enough, though closer in, follow the same
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(a) All 36 returned eigenmodes. (b) Zoomed in on the clustered 27 of
the 36 eigenmodes from the left Fig-
ure. The only orange dot represents
an eigenmode with τ = 0.946 in the
right bulb

Figure 5.3: The |λ − µ1| against |s − µ2| of the 36 returned eigenmodes when
δ∗ = 0.25, s = 1 and R is the left, middle, and right bulbs of the Threebulb
domain. Red modes do not meet the tolerance, while orange ones almost do.
The false positive in the right figure comes from a linear combination of the 37th
and 38th mode that have close eigenvalues. These results are consistent with
Theorem 2.1.2, where ℜµ is close to the corresponding eigenvalue λ and ℑµ is
close to the complex shift s

trend with the exception of one false positive. On the right, Figure 5.3 provides a

zoomed in view where 27 of the 36 points are located, including this false positive,

which appears to be a linear combination of the 37th and 38th eigenmodes, which

is included in the Appendix. We note that we do have robust post processing to

“weed out" such false positives, which was detailed in section 4.2. In general, we see

that the greyscale dots representing localized eigenmodes are (almost completely)

distinct, and in all cases are such that |µ1 − λ| < 0.02 and |s− µ2| ⪅ 0.052.

For contrast, Figure 5.4 plots the |λ−µ| versus |s−µ2| for the first 64 eigenmodes

of the Threebulb domain, except with s = 0.1, for δ∗ = 0.25 and R as the left,
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middle, or right bulb. There were 36 returned eigenmodes, with results similar

to the case when s = 1. Since s was ten times smaller, the search interval [a, b]

would have to also be ten times smaller to maintain the aspect ratio of 41; thus

there were ten times as many quadrature points computed, (at least) ten times as

many iterations of FEAST, and therefore more time and computational expense.

Even extending to b − a = 2 was too much, and sufficiently localized eigenmodes

were sometimes not returned. For example, for [a, b] = [8, 10], only one of three

sufficiently localized eigenmodes are returned, which occurs due to the poor aspect

ratio destroying the quality of the filter. Another example on the same domain can

be seen in Figure 5.2 where δ∗ = 0.2, [a, b] = [24, 30], and when s ≤ 0.1; there are

eigenmodes returned, but none of them are remotely localized! Again, partitioning

the search region into six or more subintervals corrects this, but at six times the

cost and with no gain from the s = 1 case.

To highlight the distinction between real and imaginary parts of localized eigen-

modes versus non localized eigenmodes, the averages for the localized eigenfunc-

tions are |λ−µ| ≈ 10−5 and |s−µ2| ≈ 10−4 versus non-localized eigenvectors with

|λ−µ| ≈ 10−3 and |s−µ2| ≈ 10−2. In all cases, localized eigenmodes are such that

|µ1 − λ| < 5.42e-4 and |s − µ2| ⪅ 5.8e-3 versus nonlocalized eigenmodes having

|µ1 − λ| > 3.7e-3 and |s− µ2| > 1.07e-3.

As just exemplified, decreasing s significantly requires smaller search regions

in order to maintain an acceptable aspect ratio, which may otherwise negatively

affect the algorithm. Equivalently, increasing s may require extending [a, b], but

too far can increase the computational cost and time needed to achieve the desired
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(a) All 37 returned eigenmodes. (b) Zoomed in on the clustered 25 of the
37 eigenmodes from the left Figure.

Figure 5.4: The |λ − µ1| against |s − µ2| of the 37 returned eigenmodes when
δ∗ = 0.25, s = 1 and R is the left, middle, and right bulbs of the Threebulb
domain. The 5 red modes do not meet the tolerance, while the 5 orange ones
almost do. These results are consistent with Theorem 2.1.2 that proposes that µ
for localized eigenvectors will be close to s.

task. As expected, there is a direct relationship between the number of eigenvectors

found outside of the desired [a, b] and the size of [a−sδ∗, b+sδ∗]; consequently, the

“hunting" phase of the algorithm, described by Algorithm 2.1, will consume more

memory and time for bigger sδ∗. The same trend follows in the post-processing

phase described by Algorithm 2.2 since all of the additional eigenvectors of Ls

that don’t correspond to eigenvectors of L within [a, b] must be post-processed

and discarded. On the contrary, setting the sδ∗ too small slows the algorithm as

well since either the size of the search region must comparatively decrease else the

algorithm may fail to identify localized eigenmodes. Table 5.1 illustrates this for

low to high energy cases with varying degrees of complexity in the localization

behavior. Highlighted with red text are cases where there were insufficiently many
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eigenmodes returned or they were insufficiently concentrated; the “worst perfor-

mance" for each category is also red, such as the slowest wall-clock time or biggest

memory consumption. The entries in each column reflect the difference relative to

the “best performance" case. In summary, too small and too large s both could fail

to return the correct set of eigenmodes, given the same search region, while also

increasing computational time. Relatively “safe" values for s in all cases ranged

from [0.5, 1] given reasonable δ∗. We note that since the search region was constant

during these experiments, the expanding aspect ratio as s decreases is the cause

for the sub par results. Observe that b − a = 1 for the experiments presented in

Table 5.1, and for s ≤ 1 the algorithm returned the correct number of eigenvec-

tors, but for larger search regions given in Tables 5.2 and 5.3, it did not. These

experiments also serve to illustrate how a poor aspect ratio affects the algorithm

and provide simulation run times and memory consumption data.

Moreover, s can be so large that it induces “false positives", which are localized

eigenmodes of Ls that do not correspond to localized eigenmodes of L. Exam-

ple 5.0.1 demonstrates a case of this on the unit interval.

Example 5.0.1. Let L = − d2

dx2
on (0, 1) with zero boundary conditions, which

has eigenpairs given by (λn, ψn) = ((nπ)2, sin(nπx)). Take R = (0, 1/4) and using
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Three bulb where R = left bulb for search region [4.5, 5.5] and δ∗ = 0.25
s # of Eigenvec-

tors Returned
Peak
Memory
(GB)

Wall-Clock
Time (s)

CPU Time
(m:s:ms)

Base 1 7.03368 9.727 2:33:59
0.01 1 +0.096984 +0.252 0:00:48
0.1 1 0 0 0
0.5 1 +0.096204 0.006 0:05:82
1 1 +0.096984 0.019 0:07:49
5 3 +0.096980 1.33 0:22:59
10 5 +0.96988 5.05 1:19:21
100 28 +0.114004 492.71 132:49:53

Table 5.1: Varying sizes of s for small search region of length 1. Considerable time,
without benefit, is added when shifting s by greater than one since the contour is
significantly enlarged.

that for integer n:

1

4
− 1

2π
≤ τ 2(ψn, R) =

πn− 2 sin(πn
2
)

4πn− 2 sin(2πn)
≤ 1

4

(
1− 2(πn

x
)

πn

)
≤ 1

4

(
1 +

2

3π

)
,

thereby squeezing τ(ψn, R)
2 to 1

4
(the limit as n → ∞ is 1

4
, even). This shows

there are no localized eigenvectors in R (there are highly localized eigenvectors in

the complement, however). Now considering Lsϕ = µϕ for s = 104, we obtain

µ = 149.02494 + 9991.7736i and δ(ϕ,R) = 0.02868, so ϕ is highly localized in R.

Because µ2 = sτ 2, an eigenvector that is sufficiently concentrated in R for

chosen δ∗ ∈ (0, 0.45] must have µ2 ∈ (0.89303s, s). To the point of Example 5.0.1,

choosing s too big can shift some µ2 close enough to s so that it isn’t filtered during

the FEAST iterations. Figure 5.5 illustrates this; the real parts of the eigenvalues
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Three bulb where R = left bulb for search region [24, 30], δ = 0.2
s # of Eigenvec-

tors Returned
Peak
Memory
(GB)

Wall-Clock
Time (s)

CPU Time
(m:s:ms)

Base 3 7.331492 19.40 4:57:41
0.01 2** +0.00018 87.48 23:13:26
0.1 1* 0 0 0
0.5 4 +0.00011 6.68 1:10:78
1 4 +0.00018 5.36 1:23:75
5 7 +0.01395 72.87 19:33:09
10 13 +0.04006 228.77 60:45:88
100 51 +0.219464 1014.60 208:46:24

Table 5.2: Varying sizes of s for small search region of length 6. There are 3
eigenmodes localized strictly within the tolerance, as well as a 4th eigenmode which
is very close within 0.4%. As before, s too large induces false positives, while also
finding acceptable localized eigenpairs that are outside the desired search region,
essentially just adding to the needed computation time. However, s can also be
too small for the given search region, which can lead to not finding all or any of
the desired eigenpairs. When s = 0.1 or s = 0.01, no localized eigenmodes were
found; not even the eigenmodes that were returned were localized.
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Unit Square where R = 16 largest for search region [1800, 2300], δ = 0.35
s # of Eigenvec-

tors Returned
Peak
Memory
(GB)

Wall-Clock
Time (s)

CPU Time
(m:s:ms)

Base 2 6.972268 14.40 3:07:13
0.01 0 +0.019972 122.412 33:08:33
0.1 2 0 9.894 3:26:72
1 2 0 11:459 3:47:65
2.857 3 +0.00038 7.719 2:47:36
10 3 0 13.372 4:16:59
100 5 0.00250 0 0

Table 5.3: A very high energy case where localization comes from a complicated
16× 16 grid potential of random values in [0, 10, 000] The 16 cells with the largest
L2 norm, computed from the landscape function, were chosen for R. Since the
eigenmodes are far apart, larger s is less likely to extend the contour to the point
of finding excess eigenmodes outside the desired search region, however larger s
still returns more eigenmodes outside of δ∗. s = 0.01 failed to converge.

are plotted along the x-axis, and they are mapped against their imaginary parts

when s ̸= 0 or against their τ 2 value when s = 0 (upper left). The behavior of

the eigenvalues when s = 0 is the same as when s = 1 or 100, in the sense that

eigenfunctions have s values proportional to their τ 2 value. This changed when

s = 10, 000, where the behavior of one eigenvalue, pointed out by the arrow, had

its imaginary part pushed up near to s, creating a false positive.

One might simply take away from Example 5.0.1 and Figure 5.5 that s = 104

is the cut-off for “too large" with respect to inducing false positives, but this phe-

nomenon is ultimately problem dependent. Even choosing s small does not ward

off all possibilities of obtaining false positives. When there are eigenvectors whose

eigenvalues are very close together, but distinct, a tiny perturbation can cause the
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Figure 5.5: The top left plots the eigenvalues of L against their τ 2 value. The
remaining three plots correspond to eigenvectors of Ls where the real parts of the
eigenvalues are plotted against their imaginary parts. As indicated by the arrow,
s = 104 is so large that it induces a false positive.
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eigenmodes to mix; the resulting eigenvectors of Ls are linear combinations of these

eigenvectors of L that may be falsely localised in one subdomain, which commonly

occurs when the eigenvectors of L differ only by a sign in one region, but not the

other. This can occur in symmetric domains with symmetric potential. Note that

these are exceptional cases, and will be referred to as “pathological" cases. 1D

and 2D pathological examples are given in Examples 5.0.3 and 5.0.2, respectively.

Notice even a tiny shift such as s = 10−5 is big enough to induce localization falsely

in either region.

Example 5.0.2. Consider each of the four examples seen in Figure 5.6. The

top row displays the two eigenpairs (λn, ψn) of L = −∆ with Dirichlet boundary

conditions, and the bottom row shows the eigenpair (µ, ψ) of Ls for s = 0.1 in the

right bulb. There is no localization in either the left or right bulb of the dumbbell

domain for the original operator L. But the eigenfunctions of the shifted operator

are linear combinations of the pair of ϕ with destructive interference in one bulb

and constructive in the other that results in localized eigenvectors. Notice that

even the µ are closer to being averages of the pair of λ than to either λ individually,

which helps to illustrate that these ψ are just a lucky mixture of the pair of ϕ.

Example 5.0.3. A simple, one dimensional pathological case occurs on the unit

interval when applying a symmetric, large potential about the center. These are

Sturm-Liuoville problems where it can be shown that all eigenvalues are simple and

the corresponding eigenvectors must have even or odd symmetry, which means that

no eigenvector can be localized in the left or right subdomain. Even though the

eigenvalues are distinct, pairs of them can be very close, becoming increasingly
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(a) λ = 5.47254 (b) λ = 5.47260 (c) λ = 8.72842 (d) λ = 8.72875

(e) µ = 5.47257 + 0.009999i (f) µ = 8.72859 + 0.009994i

(g) λ = 10.96451 (h) λ = 10.96454 (i) λ = 21.931574 (j) λ = 21.931576

(k) µ = 10.964527 +
0.009999i

(l) µ = 21.931575+0.009999i

Figure 5.6: Four cases of false positives for the dumbbell domain when s =
0.1, δ = 0.25, and R is the right bulb. Each block of three eigenmodes displays
the eigenfunctions of L, paired with their eigenvalues λ in the top row, and the
corresponding (modulus of the) false positive paired with its eigenvalue µ. Each
pair of λ1 and λ2 are close to each other while their respective eigenvectors ψ1 and
ψ2 are identical up to a change in sign. When applying the small pertubation,
s = 0.1, the resulting eigenfunction, ϕ of Ls (bottom row for each case), is a linear
combination of ψ1 and ψ2. Consequently, half of ϕ is canceled out causing ϕ it to
appear strongly localized in R. Notice even the eigenvalues µ of ϕ are close to an
average of the respective λ1 and λ2.
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close with increasing V . In fact, the eigenvalues are so close, that double precision

is (easily) insufficient to capture their distinction. Consequently, the resulting

eigenmodes are a linear combination of the pairs of eigenmodes with even and odd

symmetry, and therefore they are falsely localized in the right or left subdomain.

Figure 5.7 contains the first 8 even/odd pairs of eigenpairs when

V = [0, 1202, 1202, 0] for a quartered, unit interval domain. Observe that no eigen-

mode is localized only in the left or right regions and the eigenvalues (mostly)

match well beyond machine (double) precision, so typical computational tools us-

ing double precision are insufficient. In fact computing even these eigenfunctions,

without any shift, is a difficult process that cannot be done via double precision!

In order to obtain them the eigenmodes had to each be constructed, taking ad-

vantage of the even or odd symmetry, in Mathematica [39] and the eigenvalues

were then computed to 200 digits of accuracy. Details of this process are in the

Appendix section 8.2. Figure 5.8 exemplifies the sum of the even and odd eigen-

vectors, which are highly localized in the left region only. These are the kinds

of eigenpairs returned when using standard eigenvalue solvers in double precision,

even when s = 0. It should come as no surprise then, that essentially any shift

induces these same false positives.

Example 5.0.4. In the case of the magnetic Laplacian H(A) = (Ĥ−V )(A), where

A = (−25×y, 25×x) on the unit disk centered at the origin, there are many tightly

clustered eigenvalues. In some cases, the 16 eigenpairs of H(A) in [50, 51.3) have

eigenvalues that agree to nine digits. Similar to Example 5.0.3, the eigenvalues

are so close that only approximations of linear combinations of eigenvectors were
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λe = 147.8736094365089 591.2940076291312 1329.631565743891 2361.73184891566

82800336331012 82473892827510 99529994287306 773308506737495

λo = 147.8736094365 591.29400762913 1329.63156574389199 2361.73184891566

08982800336331464 1282473892832050 529994292183 773308506820587

|λe − λo| = 4.5266 × 10−25 4.5400 × 10−24 4.87769 × 10−23 8.3092 × 10−22

The first four pairs of eigenvectors together with their eigenvalues and the absolute 
difference between the corre-sponding even and odd eigenvalues.

λe = 3685.7129532389 5298.55176702207 7195.169253765091 9366.0261786898989

5562789792592406 489122519380625 78002520731729 5929219084365

λo = 3685.71295323895562 5298.551767022074 7195.1692537650 9366.026178689

789795314781 89122726627203 9178050483855788 899500728312005601

|λe − λo| = 2.72237 × 10−20 2.07246 × 10−18 4.7963 × 10−16 5.4799 × 10−13

The fifth through eighth pairs of eigenvectors together with their eigenvalues and the 
absolute difference between the corresponding even and odd eigenvalues.

Figure 5.7: For the Sturm-Liouville problem Lψ := (∆ + 1202)ψ = λψ on (0, 1) with ψ(0) = 
ψ(1) = 0, the eigenvalues are simple and the eigenmodes are pairs of even and odd functions. 
The top row pictures the even function and its eigenvalue λe, while the second row pictures 
the odd functions and their eigenvalues λo; where the odd and even eigenvalue disagree is 
highlighted in red. These eigenvalues are very close, (mostly) well beyond double precision 
accuracy. The bottom provides the actual absolute difference between the even and odd 
eigenvalue pairs.
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Figure 5.8: The sum of the even and odd eigenvector pairs are localized in only
the left region. These are the kinds of linear combinations that are returned when
using double precision, even for s = 0. Thus, any shift s is too large for such
pathological cases.

returned. These (modulus of the) eigenpairs are given in Figure 5.9 along with

the (modulus of the) eigenpairs of the shifted operator (in Row 4), H(A)s for

s = 1 × 10−6, δ∗ = 0.3, and R is a circle of radius 0.35 centered at the origin.

Notice that the eigenvectors of H(A)s are circular symmetry about the origin, as

they should be. This indicates s is small enough to identify the sufficiently localized

(actual) eigenvectors. This case serves as a 2D example to illustrate that having s

smaller than half the gap between the desired eigenvalue and its nearest neighbor

is unnecessary, even for such an exceptional case.

As we have pointed out, the size of s with respect to generating false positives

is problem dependent. Table 5.4 tests for what s will the first 9 pairs of eigenpairs,

(λa, ψa) and (λb, ψb) given by the rows, of the dumbbell domain return a false

positive. The leftmost column gives the magnitude of agreement for each pair

of eigenvalues, |λa − λb|; for example, the first two eigenvalues are 2.1042 and
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λ = 50.00000003 50.0000008 50.00000949 50.0000752

λ = 50.00044565 50.00210558 50.00825585 50.02761343

λ = 50.08038343 50.2068502 50.47665144 50.99497555

shift µ = 50.00000003 50.0000008
+i 9.817e-07 +i 9.084e-07

Figure 5.9: The (modulus of) eigenpairs of the magnetic Laplacian, H(A) =
(Ĥ − V )(A), where A = (−25× y, 25× x) on the unit disk centered at the origin,
are pictured in the first 3 rows. In some cases, the eigenpairs of H(A) in [50, 51.3)
have eigenvalues that agree to nine digits. Only 12 pairs were returned that were
are all linear combinations of the actual eigenpairs, which should have circular
symmetry about the origin. The (modulus of) eigenpairs for the complex shifted
operator, H(A)s, and the shift of s = 1 × 10−6 are pictured in Row 4, where
δ∗ = 0.3. Such s was small enough to identify the sufficiently localized eigenpairs
that are not approximations of linear combinations of H(A). Here h = 0.01 and
p = 3.
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The size of s and pathological cases
Order s = 1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6
1e-1 ✓ ✓ ✗ ✗ ✗ ✗ ✗

1 ✓ ✗ ✗ ✗ ✗ ✗ ✗

1e-4 ✓ ✓ ✓ ✓ ✓ ✗ ✗

1e-3 ✓ ✓ ✓ ✓ ✗ ✗ ✗

1 ✓ ✗ ✗ ✗ ✗ ✗ ✗

1e-4 ✓ ✓ ✓ ✓ ✓ ✗ ✗

1e-2 ✓ ✓ ✓ ✗ ✗ ✗ ✗

1e-1 ✓ ✓ ✗ ✗ ✗ ✗ ✗

1e-5 ✓ ✓ ✓ ✓ ✓ ✓ ✗

Table 5.4: For given δ∗ = 0.35 and R as the right bulb of the dumbbell domain,
what s induces a pathological false positive? The left column gives the magnitude
of agreement for each pair of eigenvalues, |λa − λb|. Other columns are given a
checkmark to indicate a false positive was returned, while a “✗" symbol indicates
that no false positive was returned for the given s in the top row. Observe that in
each case, s as big as the order of agreement or larger induced the false positives.

2.1156, so they agree to the order of 10−1. All of the remaining columns represent

experiments with the given shift s in the right bulb with δ∗ = 0.35. A checkmark

indicates a returned false positive, so the experiment resulted in an eigenmode

localized in R. A “✗" symbol indicates that no false positive was returned. Observe

that in each case, s is as big as the order of agreement or larger induced the false

positives.

For s near the “small enough" boundary, however, false positives are not cut

and dry– one can actually observe the “onset" with increasing s. Figure 5.10

gives an example of this on the ninth pair of eigenpairs for the dumbbell domain,

displaying (µ, ψ) of Ls for varying s approaching the “sufficiently small" cutoff.

As seen from Table 5.4, the order of agreement for the ninth pair is 1e-5, so it is
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µ = 21.931575 + i 4.7197e-6 21.931575 + i 8.85051e-6 21.931575 + i 4.9973e-5

Figure 5.10: From left to right s = 5 × 10−5, 9 × 10−6, and 5 × 10−6. As the
shift approaches sufficiently small, the (modulus of the) eigenvector approaches
the eigenvector of the unshifted operator. This is consistent with Theorem 2.1.4,
where ψ → ϕ as s→ 0.

expected using that as s generates a false positive which it does, but this is not the

actual limit. The shift can be smaller still, and one can see the eigenmode become

closer and closer to its actual, non-concentrated counterpart, ϕ. This is consistent

with Theorem 2.1.4, where ψ → ϕ as s→ 0.

As given by Kato, a safe s depends on the radius of perturbation r0 given in

(2.8), which is essentially the distance between the target eigenvalue and the next

nearest eigenvalue. This bound is quantified in Lemma 2.1.6, where r0
2

is a worst

case when the eigenfunctions are completely localized in R. Figure 5.11 pictures

four dumbbell eigenpairs together with the smallest shifts (within 10x−1, where x

is the current order of magnitude) in the right bulb that returned a false positive;

these eigenmodes are clearly not localized in R, so a user would easily determine

these were false positives. In all cases, s < r0 was sufficiently small.

Even in the cases where µ1 ≈ λ and µ2 ≈ s, false positives can still occur,

though non-pathological cases are uncommon. One example was referenced in

Figures 5.3 and 5.4, which was represented by an orange dot that was not distinct

from the grey-scale dots like the other orange or red dots did. Here 0.08 = s >

r0 = 0.033 was the smallest s (up to 10x−1) that induced this false positive, giving
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s = 6.1e-5 3.3e-4
µ = 5.47257 + i 9.8406e-5 8.7286 + i 2.3423e-4

s = 3e-5 2.5e-6
µ =10.9645 + i 2.133e-5 21.93157 + i 1.7418e-6

Figure 5.11: The modulus of eigenmodes of the dumbbell domain together with
their eigenvalues and the smallest shifts (within 10x−1, where x is the current order
of magnitude) in the right bulb that returned a false positive. While µ1 ≈ λ in
each case, notice µ2 is often far from s. A µ2 significantly different from s indicates
that the eigenmode is not as localized in R, and perhaps not as much as desired
resulting in a false positive.

µ = 18.61759 + 0.783i. However, in order to have an acceptable aspect ratio with

this s and δ∗, then [a, b] = [18.6, 18.7], but this is only realistically viable because

the eigenvalue was known beforehand; in many cases where false positives occur,

choosing the “safe" s sufficiently small so as to guarantee separation of Spec(Ls)

is not economical. Recall that smaller s requires smaller search regions in order

to maintain an acceptable aspect ratio. For the examples here, maintaining an

acceptable aspect ratio require b − a be on the order of 10−5 to 10−2, which is

extremely inefficient, even if the user only wanted to sweep over a tiny, total

energy range.

In summary, for a user with little to no prior knowledge about the eigenpairs,

aiming for s ⪅ 1 is a good starting point that balances time and computational

expense while also running a low risk of generating false positives. A practical
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δ∗ ∈ [0.1, 0.45], where the right choice is dependent on the need and the size of

the region relative to the whole domain. For a user with prior knowledge that the

eigenvalues of interest will be close, choose a smaller s, perhaps even on the order

of s < r0.
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6 Geometric Localization

6.1 Overview

As one would expect, geometric localization occurs from the geometry of the do-

main, whether by “trapping" or “squeezing" eigenmodes or by irregularities in the

geometry. Delitsyan et al [3,18] summarizes how geometric localization is induced

when narrow channels or branches of the wave-guide trap the eigenmode in a sub-

domain; this usually happens when the spatial variations of the eigenmode are

larger than the size c of the channel, πλ−
1
2 ≥ c. The bridges between the bulbs

of the Threebulb domain serve as an example of this type geometric localization.

Narrowing the channel, thereby decreasing c, increases localization. Comparing

the eigenfunctions of the Threebulb Figure 6.8 versus the eigenfunctions when the

bridges have been thinned by half, Figure 6.10, exemplifies this. Continuing to

thin these channels traps higher energy eigenmodes and allows for more and more

localized eigenpairs.

Creating irregularities in the geometry of the domain can also generate local-

ization. Figure 6.1 illustrates that these irregularities need not be extreme; simply

cutting the corner of the domain or creating a slightly rough edge can be sufficient.

Bridge location, size, and symmetry also play a key role. For example, an

eigenmode that has its minimum along the boundary of the channel is less likely

to “bleed out" into the rest of the domain than an eigenmode maximizing along
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Figure 6.1: First three Dirichlet eigenmodes with domains (a) 25 × 1 rectangle,
(b) right trapezoid with height 25, base 1, and top 0.9 right trapezoid, (c) right
triangle with height 25 and base 1 (half of (a)). [18]
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λ23 = 12.3170, τ = 0.794 λ24 = 12.3350, τ = 0.957

Figure 6.2: Eigenpairs 23 (left) and 24 (right) together with their eigenvalues and
degrees of concentration of the Threebulb domain. Even though they are rotations
of each other, one is significantly more concentrated in the left bulb because it has
low energy along the bridge.

the channel. Two eigenmodes can have close eigenvalues, but if they are shaped

differently so that one has a line of low energy along the channel and the other has

high energy, they will have significantly different τ values. Figure 6.2 highlights

how the 23rd and 24th eigenmodes of the Threebulb domain have very different

concentrations in the left bulb, even though the eigenfunctions are just rotations

of each other.

As previously discussed, the dumbbell domain does not have localization in

either square, despite the narrow channel connection. This is due to the symme-

try of the domain, so breaking the symmetry, like offsetting the bridge, corrects

this. Enlarging one square, which would also disrupt the symmetry, would have

the added benefit of forcing localization with preference in the larger square. One

might think inducing geometric localisation is then as simple as introducing asym-

metry or narrowing a bridge, and while this can introduce the desired phenomena,

it can also raise the energy of these wanted eigenpairs. How the geometry is manip-

ulated may also introduce more localized eigenmodes in R than another geometric

manipulation. Some clever combination of introducing bridges, location, relative
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λ = 2.1042 2.1156 5.0475 5.1349
τL = 0.705 0.706 0.697 0.703
τR = 0.705 0.706 0.697 0.703

λ = 5.4725 5.4726 8.7284 8.7288
τL = 0.708 0.706 0.708 0.706
τR = 0.706 0.708 0.706 0.708

λ = 9.2299 9.9051 10.9650 10.9650
τL = 0.628 0.692 0.657 0.754
τR = 0.628 0.692 0.754 0.657

Figure 6.3: The first twelve eigenvectors of the symmetric dumbbell domain occur
in pairs with no localization concentrated primarily in the left or right bulb.

size, and asymmetry may optimize geometric localization in a desired region.

6.2 Exploration in Symmetry via the Dumbbell Domain

We have mentioned that disrupting the symmetry of the dumbbell domain can

induce localization. The method to achieve this, however, can provide the user

some control for where, how, and for what relative energy the localization occurs.

The experiments in this section illustrate this point by manipulating the dumbbell

domain.

In all of the experiments, breaking the symmetry of the dumbbell caused the

eigenmode mass to favor one side of the domain over the other; in many cases, this
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λ = 2.1087 2.1308 5.0560 5.1457
τL = 0.230 0.972 0.612 0.779
τR = 0.971 0.231 0.772 0.619

λ = 5.472 5.478 8.330 8.729
τL = 0.0035 0.9999 0.961 0.002
τR = 0.999 0.004 0.132 0.999

λ = 9.4693 10.1609 10.9450 10.9645
τL = 0.426 0.880 0.999 0.003
τR = 0.815 0.433 0.005 0.999

Figure 6.4: The first twelve eigenvectors of the dumbbell where the bridge is shifted
up by 0.5. In general, the eigenmodes alternate between the left and right bulbs,
where amount of concentration is dependent on the shape of the eigenmode itself.
For each complementary pair, the distance between the corresponding eigenvalues
is larger than those of the unaltered dumbbell domain, and in most cases the
eigenvalues are also larger.
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λ = 2.0434 2.1106 4.9287 5.1026
τL = 0.995 0.082 0.959 0.251
τR = 0.082 0.995 0.242 0.960

λ = 5.2948 5.4726 8.4457 8.7289
τL = 0.9999 0.0002 0.9998 0.0016
τR = 0.0004 0.9999 0.0006 0.9998

λ = 9.1032 9.7842 10.6075 10.9645
τL = 0.735 0.576 0.999 0.002
τR = 0.509 0.790 0.003 0.999

Figure 6.5: The first twelve eigenvectors of the dumbbell where the left bulb
is larger than the right bulb by 0.05; the bulbs remain centered on the bridge.
Eigenmodes alternate between the left and right bulbs, favoring the larger bulb,
whose eigenvalues are smaller than the corresponding “pair eigenvalues" of the
right bulb. Notice that in most cases, the eigenvalues of even the right bulb are
smaller than the correlating eigenvalues of the dumbbell domain.
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λ = 0.7792 1.9292 1.9734 2.1101
τL = 0.9998 0.9989 0.9999 0.0234
τR = 0.0017 0.0023 5e-6 0.9982

λ = 3.1562 3.8204 3.9478 5.0712
τL = 0.9999 0.9968 0.9999 0.0764
τR = 1e-5 0.0182 5e-5 0.6347

λ = 5.1039 5.1273 5.4726 6.4254
τL = 0.645 0.999 6e-5 0.989
τR = 0.758 6e-5 0.999 0.049

Figure 6.6: The first twelve eigenmodes of the dumbbell where the left bulb
is much larger, a 5 × 5 versus a 3 × 3 square. The larger left bulb is greatly
favored for localization, having many concentrated eigenfunctions with much lower
energy. The right bulb, having not changed in size, still contains eigenvector mass
with about the same energies as before. Though now this mass is not evenly
concentrated, giving way to localized eigenmodes in both bulbs.
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λ = 2.1065 2.1185 5.0595 5.1465
τL = 0.839 0.541 0.784 0.604
τR = 0.540 0.840 0.597 0.790

λ = 5.4723 5.4739 8.7286 8.7297
τL = 0.999 0.020 0.992 0.131
τR = 0.020 0.999 0.127 0.991

λ = 9.2735 9.9362 10.9645 10.9647
τL = 0.665 0.656 0.997 0.072
τR = 0.592 0.728 0.072 0.997

Figure 6.7: The first twelve eigenvectors of the dumbbell where the right bulb is
shifted up by 0.05; the right bulb is no longer centered on the bridge. The slight
break in symmetry is sufficient to force eigenvector localization, often resulting
in very localized eigenmodes occurring in each bulb. The eigenvalues are largely
consistent with those of the dumbbell domain, however the distance between pairs
is greater.
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resulted in highly localized eigenvectors. Furthermore, the distance between the

eigenvalue “pairs" increased, but it was not consistent how the energies compared

in size just by disrupting the symmetry. Of course, the less the domain changed,

the less the eigenvalues did; to induce localization more consistently in one bulb,

increasing the size of that bulb, even minutely, does so with the added benefit of

generally decreasing those eigenvalues as well. When not modifying the size, how

much localization occurs depends on the shape of the eigenmode. Mode seven in

Figure 6.4 is more concentrated than eight because the bridge is centered on the

right bulb where the eigemode is zero along that line, which therefore decreased

bleeding. Similarly, this occurs in modes nine and ten, where the value of the

eigenmode is small near the top, so the high bridge placement for the left bulb

preserves the concentration more than in the right bulb where the bridge is centered

adjacent to where this eigenmode is larger. When examining Figure 6.7, notice

that the left bulb is favored in each pair; in this instance, the perfectly centered

bridge is slightly more conducive to localized eigenmodes, at least for low energy

modes, where the wave behavior of the vectors are more likely to have a lower

energy near the top, center, of bottom of the domain. It will not always be the

case that a centered bridge gives rise to more concentrated vectors, as can be seen

in the next section 6.3; instead the bridge should be place wherever the desired

eigenmodes are most expected to have lower energy.

As a key takeaway, symmetry inhibits eigenvector localization; introducing lo-

calization can be as simple as introducing asymmetry, but how this is done affects

where and when localization occurs. A larger region is more likely to host con-
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centrated eigenmodes than a comparable, yet smaller, region. For domains with a

bridge, the location of the bridge does affect the concentration, however optimal

bridge placement depends on the shape and energy of the eigenmodes themselves;

this is more deeply explored in the next section.

6.3 An Exploration via the ThreeBulb Domain

For brevity, only the first twelve eigenvectors are included for each experiment

in this subsection. Eigenfunctions 13-40 are included for each experiment in the

Appendix. For the reader who desires more examples or higher energy cases,

consult the Appendix.

The ThreeBulb domain is a typical example where localization occurs due to

the geometry; in particular, it exemplifies how the thin bridges placed between the

bulbs can cut off eigenmodes with evenly distributed mass throughout the domain,

into being concentrated in one bulb. Further, it nicely illustrates how size is the

primary factor for where the eigenfunctions will concentrate first and most. Ex-

amining Figure 6.8, one can see that the large bulb hosts most of the concentrated

eigenfunctions, having its ground state and all proceeding eigenfunctions before

any other bulb; then the medium and large bulb, as expected. The effects of size,

rather than location, can be seen in Figure 6.11 where the middle bulb is now the

largest and the left bulb is the smallest. Despite the location of the large bulb,

it still hosts just as many concentrated eigenmodes, and it obtains its series of

eigenvectors before any other bulb.
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Size of the bridge also matters; as it thickens, the domain approaches a rect-

angle, where no localization will occur, and the eigenvalues decrease. So, as the

bridge thins, we would expect the opposite: more localized eigenfunctions with in-

flating eigenvalues. Figure 6.10 shows the first 12 eigenmodes with bridges that are

thinned by half. When the bridge is thinned out, the bulbs become more isolated

and host eigenmodes that behave increasingly independent of each other, are more

concentrated since there is less bridge to leak into, and have larger eigenvalues.

Bridge location also plays a factor. Placing the bridge where one may expect

the eigenmodes to be small can reduce bleeding, resulting in more concentration.

We emphasize that moving the bridge is the same as moving the bulb on the bridge,

and really it is just the relative location that matters. Perhaps unsurprisingly, the

boundary conditions play into the effects of the bridge location. Zero boundary

conditions force the (continuous) eigenvector to get smaller as it approaches the

bottom (or top) of each bulb, in addition to actually being zero at these boundaries.

Meanwhile, there is nothing preventing the eigenmodes from being large, or even

maxing, in the center of each bulb. Therefore, we’d expect that centering the

bridge would generally lead to more leaking. Figure 6.9 illustrates the first 12

eigenmodes of the ThreeBulb domain when the bridges are centered. In many

cases, the functions rotated so as to be symmetric about the center of the bridge,

resulting in less localization when the eigenmodes had either an odd number of

oscillations or only oscillate in the x direction; when the number of oscillations is

even, the eigenmode is zero along a line that is centered on the bridge, but when the

number of oscillations is odd, the eigenmode has a high energy pocket centered on
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the bridge opening, which then bleeds. For example, the ninth or eleventh modes

in Figure 6.9 leak more easily because the eigenfunctions’ high energy pockets are

centered on the bridge. This phenomena is even worse for higher energies, where

increased oscillation creates more, smaller pockets of high energy function that can

more easily fit into the bridge opening. Note that the 13th − 40th eigenvectors for

this domain, show highly localized eigenmodes in all three bulbs when there are an

even number of oscillations while also showing that eigenfuctions are not localized

at all when there are an odd number. Additionally when the bridge is centered,

it allows the function to more easily bleed from above and below the bridge, as

opposed to just the top or bottom, which hppend when the bridge is at the top

or bottom of the domain. It is safe to assume that more opportunity to leak will

lend to more leaking.

In contrast, the eigenmodes in Figure 6.10 rotated so as to center about the

bridge openings. But with the zero boundary conditions and an even thinner

opening where the eigenvectors don’t have to be zero, there is less space for the

(continuous) eigenmodes to achieve higher energy. Therefore, less likely to leak

than the original Threebulb domain. As expected, these eigenvectors are (much)

more localized. We mention that the bridge location and size may have less of an

effect on the eigenfunctions if there were not zero boundary conditions.

One could also place the largest bulb in the center of the domain, but this

exposes this bulb, which will host the most eigenfunctions, to more opportunities

to leak. When compared to the original Threebulb domain, there are far more

eigenfunctions in the center of the domain with (now) two openings to possibly
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λ = 1.2298 2.1715 3.0528 3.0843

τL = 0.999 2.5e-8 0.999 0.999

τM = 3.8e-5 1.5e-4 3.4e-4 3.4e-6

τR = 6.6e-6 0.999 1.3e-7 1.3e-9

λ = 4.5028 4.8706 5.3053 5.4827

τL = 0.003 0.998 2.0e-5 2.8e-7

τM = 0.991 0.004 0.003 4.7e-5

τR = 0.002 2.0e-5 0.995 0.999

λ = 6.0910 6.16815 7.7167 8.0185

τL = 0.997 0.999 0.985 0.9999

τM = 0.002 4.7e-5 0.014 1.9e-4

τR = 1.7e-5 3.4e-7 4.3e-4 1.3e-5

Figure 6.8: First 12 eigenpairs of the ThreeBulb domain.
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λ = 1.2080 2.1101 2.9706 3.0823
τL = 0.999 1.8e-5 0.998 0.999
τM = 1.3e-4 4.1e-4 9.9e-4 2.7e-8
τR = 2.2e-8 0.999 8.8e-7 0

λ = 4.1680 4.9268 5.0914 5.4726
τL = 0.003 0.999 4.9e-5 6.5e-9
τM = 0.985 1.1e-7 0.006 3e-7
τR = 0.004 2.9e-9 0.990 0.999

λ = 5.8196 6.1683 7.8825 8.0000
τL = 0.989 0.999 0.991 0.999
τM = 0.005 2.4e-5 0.027 5.9e-7
τR = 7.9e-5 3.2e-7 0.001 2e-8

Figure 6.9: First 12 eigenvectors of the ThreeBulb where the bridges between
each bulb are centered. These eigenmodes are generally less localized than those
of the ThreeBulb domain, which is partially due to the zero boundary conditions
and the centered bridge providing more opportunity for the eigenmode to bleed
from both above and below. In most cases, the eigenvalues are also smaller from
increased symmetry, as expected. This trend is even true for higher energies;
notably, a ground state eigenfunction, and even another, actually formed in the
bridges, though they were not localized.
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λ = 1.2334 2.1918 3.0822 3.0843
τL = 1.0 0 1.0 1.0

τM = 6.7e-9 2e-7 3.1e-8 0
τR = 0 1.0 0 0

λ = 4.9032 4.9308 5.4719 5.4831
τL = 2.1e06 0.999 0 0
τM = 0.999 2.1e-6 2.1e-7 1.0e-9
τR = 2.0e-7 0 0.999 1.0

λ = 6.1640 6.1685 8.0012 8.0191
τL = 0.999 1.0 0.999 1.0
τM = 9.7e-8 0 2.5e-7 1.1e-9

τR = 0 0 0 0

Figure 6.10: The first 12 eigenvectors of the ThreeBulb where the bridges have
been thinned by half. The bridges are 1× 1

2
, as opposed to 1× 1, positioned along

the bottoms of the bulbs where the continuous eigenfunctions approach (and reach)
zero, so the eigenmodes do not have as much space or energy to bleed. As expected,
they are generally more localized. The eigenvalues are larger, and this disparity
grows with increasing energy.

leak into, as opposed to only one. Again, it is safe to assume more opportunity

to bleed will result in more bleeding. The eigenfunctions in the large, middle bulb

were less concentrated. The eigenfunctions of the small, leftmost bulb now had

less opportunity to bleed and were consequently more concentrated. This trend is

even more dramatic for higher energies, particularly so when the large and small

bulb are switch.

In summary, size is a strong indicator about where localization will occur most
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λ = 1.2257 2.1712 3.0474 3.0574
τL = 3.7e-5 7e-9 2.5e-4 2.2e-4
τM = 0.999 1.7e-4 0.999 0.999
τR = 4.3e-5 0.999 2.3e-4 2.0e-4

λ = 4.6997 4.8139 5.3037 5.4827
τL = 0.995 0.011 1.6e-5 2.3e-7
τM = 0.011 0.997 0.004 7e-4
τR = 1.7e-5 0.002 0.995 0.999

λ = 6.0025 6.1677 7.6670 7.7689
τL = 0.003 5.1e-5 0.008 0.009
τM = 0.994 0.999 0.984 0.985
τR = 0.004 7.2e-5 0.017 0.200

Figure 6.11: The first 12 eigenvectors of the ThreeBulb where the large and small
bulb are switched. The large bulb, while still the primary location for localization,
has its eigenmodes less localized by a small amount because the added bridge
provides another space to leak into. Alternatively, the small bulb, now with only
one bridge to leak into, has more concentrated eigenmodes. The eigenvalues are
slightly larger.
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and first. When placing bridges, note that eigenmodes may center on the bridges,

which could greatly change how they concentrate. Boundary conditions can affect

where an eigenmode is small, which in turn affects where an eigenmode is prone to

bleeding. To increase localization, bridges should be placed where the magnitude

of the eigenvector is small. Thinner bridges provide less space to eigenfunctions

to leak into and continuing to thin them approaches having isolated regions; this

results in subregions that behave more independently, therefore having greater

localization at a (nominally) higher energy. More bridges means more potential

for leakage, so place them sparingly, particularly for the largest regions of the

domain.

6.4 A Note on Higher Energies and Geometric Localization

Quite often, eigenmodes have oscillatory behavior that increases with increasing

energy. More oscillatory behavior means smaller, higher energy “pieces" of the the

eigenmode that more easily leak through bridges, and are therefore more difficult

to confine by the domain alone. This happens, for example, for higher energies

in the Threebulb domain, and can be seen in the Appendix. Because of this,

geometric localization becomes increasingly difficult to generate as one moves up

in the spectrum. A geometry that is sufficient in one part of the spectrum may not

be at another, often higher, part of the spectrum. Thus, the desired energy range

should be considered before creating or altering a domain for geometric localization,

and in general, one should shoot for lower energy eigenmodes for more success with
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geometric localization.
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7 Potential Localization

We acknowledge that the user is likely confined to some geometric constraints,

making it unrealistic to change the domain significantly. Thus, a more typical ap-

proach to inducing localization involves manipulating the potential V by placing a

potential barrier that is larger than the energy of the eigenpair outside of the region

of interest. Localization from the potential often provides a more reliable method

for controlling the shape, and to some extent even the energy, of the eigenmodes

than geometric localization. But, it can be computationally more expensive. To

help minimize expense, one should pay attention to how the potential barrier is

placed since it can make a significant difference in the eigenpairs. A relatively larger

potential magnitude outside of the region of interest generally increases both the

number of localized eigenmodes and how concentrated those eigenfunctions are.

Just continuing to increase the potential magnitude can significantly increase the

eigenvalues though, which means a user would have to sweep through a (often

much) wider energy range to locate the (same) desired eigenvectors. In this sense,

just blindly throwing an arbitrarily large barrier can be counterproductive. Fur-

thermore, the (spatial) size and arrangement of the potential barrier affects the

eigenpairs as well. A larger potential barrier, or the more high potential material

in the domain present, increases the eigenvalues without always being beneficial to

inducing more localization. Due to the inverse relationship between the size of the
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domain and the eigenvalues, smaller domains can be more sensitive to the effects

of high potential material, as well. Therefore, it is often best to use the potential

barrier sparingly, with sort of a “less is more" approach. Examples are displayed

in this section to support these claims; more examples of localization occurring

purely from the potential are provided in section 4.1.

Figure 7.1 illustrates how a larger potential magnitude surrounding the region

of interest can induce more localized eigenmdoes and with increased concentration,

but at the cost of having significantly larger eigenvalues. If only the ground state

eigenvector was desired, than perhaps the second of even the first rows, where

the potential is 200 and 100, respectively, is sufficient, depending on how tightly

confined one may want that eigenfunction. Observe that ground state eigenvalues

increase by over 40% from row 1 to row 2. If only the first four eigenmodes

were desired, than pushing the potential above 1000, as seen in row 4, would

be inefficient. Though a potential of 10,000 seems ridiculous, row 5 shows how

an arbitrarily large potential may not provide any more benefit of a smaller, yet

sufficiently large, potential, and can even slow the computations. Also notice, as

exemplified best in the first row, that once the eigenvalues surpass the potential,

the eigenpairs proceed to occupy the whole domain, indicating that the magnitude

of the potential really does determines the localization.

Instead of just having one uniform barrier throughout the entire domain, one

could introduce a higher potential, local barrier immediately along the region of

interest in order to increase concentration. Though potentially to a lesser extent,

presence of higher energy (local) material does increase the eigenvalues though,
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Landscape, 100 λ = 84.3106 135.8556 145.2197 174.0854

200 λ = 119.2950 227.2505 234.2264 262.2517

500 λ = 167.0583 391.3432 391.3515 534.7091

1000 λ = 199.1719 486.6303 486.6304 764.3914

10,000 λ = 270.6673 676.0900 676.0903 1081.4135

Figure 7.1: Unit square with zero potential inside a small sub-square and larger
constant potential outside. The constant potential for each row from top to bot-
tom is 100, 200, 500, 1000, and 10,000. The first columns display the landscape
functions, while the remaining columns correspond to the first four eigenfunctions.
As the potential increases relative to the region of interest, more eigenmodes be-
come localized and each is also more concentrated in this region. Notice that this
comes at the cost of greatly increasing the eigenvalues as well. One would have to
sweep a much larger range in order to find even the ground state eigenmode when
the potential is higher.
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but this trade-off between increased localization and eigenvalues may prove more

beneficial than just increasing the uniform potential over the whole domain, which

could increase the eigenvalues even more. This concept is exemplified in Figure 7.2.

The potential barrier does not need to be an impassable wall in order to induce

concentration, exemplified in Figure 7.2 and Figure 7.3. Much like geometric local-

ization, the eigenmodes can bleed out through channels of relatively low potential,

but as before this largely depends on the shape and energy of the eigenmodes.

When comparing Figure 7.2 and Figure 7.3, observe that the eigenfunctions of

the domains with the fenced potential in Figure 7.2 leak more. The much smaller

domain drives the eigenvalues up faster, which means an even bigger potential is

needed to confine the eigenmodes, but then this bigger potential further increases

the eigenvalues, which in turn lessens the likelihood of localization. In this sense,

smaller domains can be more sensitive to the effects of the potential material. In

Figure 7.3, the ThreeBulb domain is given a constant potential of 40 except in the

region of interest R and the immediate surrounding area, where the potential is 0

and 100, respectively. In the first row, an impassable wall of high potential gen-

erates localized first and second state eigenmodes in R; each proceeding row has

less high potential material with the same localized eigenmodes, but with lesser

energy. The third and fourth rows even display a passable barrier where the eigen-

modes could leak, but do not, and the “localized eigenvalues" are ≈ 10% smaller!

Notice also that even though the ground state eigenvalue in Row 4 is smaller than

Row 3, the next localized eigenvalue is larger, indicating that the orientation of

the potential barrier may have a better affect on eigenmodes of one shape versus
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Potential λ = 226.3811 561.17536 561.17538 893.4793

Potential λ = 226.3805 558.3540 561.1642 561.1834

Potential λ = 213.7124 524.77786 524.77786 815.0659

Potential λ = 199.1494 486.3039 486.3082 553.7099

Potential λ = 184.0767 437.2555 437.2709 542.4881

Figure 7.2: Unit square with zero potential inside a small sub-square surrounded 
immediately by a potential barrier of magnitude 2000 (top 3) or 1000 (bottom 2) and a 
smaller potential in the rest of the domain. The first column gives the potential function 
for each case. This example shows how a thin, higher potential barrier placed 
immediately around the region of interest, along with a smaller surrounding potential, 
can help to better concentrate eigenmodes. Row 3 has a surrounding potential of 1000 
and an immediate potential of 2000; it has similar eigenvalue behavior to Row 4 and Row 
5 of Figure 7.1, however its eigenvalues are larger than Row 4 and less than Row 5, while 
having eigenvectors more localized than Row 4 and less than Row 5. The last two rows 
have an outer potential of 500 and an immediate barrier of 1000. these are more localized 
than just having the surrounding potential of 500, but with bigger eigenvalues. Of 
particular interest is the final row, where the fence does not entirely surround the region 
of interest, but is sufficient to increase localization without increasing the eigenvalues as 
much as a solid barrier.
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Figure 7.3: Domain potential of 40 with immediate potential barrier in right bulb
of 100 around a 1.67×1 square R with 0 potential. The potential function followed
by the first 3 eigenmodes are pictured in each row along with the corresponding
eigenvalues.

another shape. There is just as much 100 potential material in Row 3 as Row 4,

so the energy difference is due to the arrangement of the barrier.
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8 Eigenfunctions of the Magnetic Laplacian and Localization

The theory in this chapter was published with citation: in [32]

J. S. Ovall, H. Quan, R. Reid, S. Steinerberger. On localization of eigenfunctions

of the magnetic Laplacian. 2023.

Jeffrey S. Ovall, Hadrian Quan, Robyn Reid, and Stefan Steinerberger

Author contributions to the article cited above.

J.S. Ovall: theory, writing, editing, numerical experiment advising

H. Quan: theory, proofs, writing, editing

R. Reid: analysis, simulation, writing, and editing

S. Steinerberger: theory, proofs, writing, editing
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All of the theory presented in this manuscript has been developed via alge-

braic manipulation and relies only on the assumption that the eigenvalues are real;

therefore, in the case of the magnetic Laplacian operator, which is selfadjoint with

real spectrum, all of this previous theory still holds directly. Examples of the algo-

rithm applied to localization searches using the magnetic Laplacian are provided

in the section 4.3. This chapter builds further to provide mechanisms for a priori

prediction for where eigenfunctions may localize when the operator is the magnetic

Laplacian operator. Results are supported by experimental evidence.

8.1 Theory

Suppose that Ω ⊂ Rd is a bounded domain. Though unnecessary, assume Ω

has a smooth boundary. The magnetic Schrödinger operator Ĥ applied to some

differentiable vector field A : Ω→ Rd is defined:

Ĥ(A) := (−i∇− A(x))2 + V .

It is known from Filoche and Mayboroda, and even proven earlier, that for the

eigenvalue problem with eigenpair (λ, ψ):

|ψ(x)|
||ψ||L∞

≤ λu , (8.1)

where u is the landscape function. Hoskins, Quan and Steinerberger [21] proved

that (8.1) remains true for the operator Ĥ, indicating that the potential 0⃗ ≤ V ∈ R
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dominates where localization occurs, unless it is very small compared to A. We

note that V ≥ 0 is for convenience, and could be negative as long as it was bounded

below. Naturally, the question arises about what dictates where localization occurs

when the potential is small or not present.

Define the magnetic Laplacian H as the magnetic Schrödinger without the

presence of the potential V : H(A) = (Ĥ − V )(A) and assume zero Dirichlet

boundary conditions. We aim to understand how A and the eigenvalues dominate

where and if eigenmodes of H(A) will localize. Assuming ||ψ||L2(Ω) = 1, then using

the Rayleigh Quotient gives:

λ = (H(A)ψ, ψ)L2(Ω) =
(
(−i∇− A(x))2ψ, ψ

)
=

∫
Ω

|(−i∇− A(x))ψ(x)|2

indicating that, at least for low energy eigenvalues, ∇ψ(x) tends to point in the

direction of −iA(x)ψ(x). To minimize this expression, like one would do to obtain

the first eigenvalue, it must be that A(x)ψ(x) = −i∇ψ, which indicates that

A(x)ψ(x) behaves like the gradient of a function (at least) for low energies. This

motivates the idea that the regions where A does behave like the gradient of a

function are regions of special interest, and we will show that these are the exact

regions where eigenvectors of λψ = H(A)ψ will localize. Notice that this expression

also stipulates that all of the eigenvalues are non-negative. By the Fundamental

Theorem of Vector Calculus, any A can be expressed as the sum of a solenoidal



124

vector field F and an irrotational vector field ∇ϕ. So, we express:

A(x) = ∇ϕ+ F (x) ϕ ∈ (C)1, ∇ · F = 0 . (8.2)

Performing the Helmholtz decomposition illustrates how the irrotational contribu-

tion of the vector field will not dictate where an eigenfunction will localize. This is

because the irrotational component is removed after performing the Helmholtz de-

composition. Instead, this component impacts the modulation of the eigenfunction

in the sense ψ → e−iϕψ, as seen by the following Lemma:

Lemma 8.1.1. Define the operator H̃g = e−iϕH(eiϕg). We have H̃ = (−i∇−F )2.

Then Hψ = λψ if and only if H̃(e−iϕψ) = λe−iϕψ.

Proof. Assume Hψ = λψ, and compute:

H̃(e−iϕψ) = e−iϕH(eiϕe−iϕψ) = e−iϕH(ψ) = λψe−iϕ .

Conversely, assume H̃(e−iϕψ) = λψe−iϕ:

λψe−iϕ = H̃(e−iϕψ) = Hψe−iϕ ,

where canceling e−iϕ gives the desired result.

We highlight that the key property of conservative vector fields is that their path

integrals depend only on the endpoints of the path, not the route in between; this

means that for path: γ : [0, 1]→ Ω,
∫
γ
∇ϕ · dx = ϕ(γ(1))−ϕ(γ(0)). In this same
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Figure 8.1: Two sets of two equally likely Brownian motions conditioned upon
ω(0) = (0, 0) and ω(t) = (2, 2). [32]

vein, we consider Brownian motion, ω(s) : [0, t] → Ω for time t > 0, conditioned

only upon its starting point ω(0) = x ∈ Ω, its final point ω(t) = y ∈ Ω, and that

the route remains in some domain Ω. Figure 8.1 illustrates two examples where

x = (0, 0) and y = (2, 2); though the paths differ, they are equally likely and both

allowable since they meet the necessary conditions.

For some vector field A(x), then this Brownian motion can be considered in

the context of some stochastic path integral:

ω →
∫ t

0

A(ω(s)) · ds ,

which can be considered as a real valued, random variable. If A is irrotational

only, then the path integral is deterministic, so it is independent of ω and is

almost surely equal to some point in the sense that it can be measured as a Dirac

measure. If A contained some relatively large solenoidal component, then path
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integral depends strongly on the path, being less concentrated in some fixed point.

As one may expect, the more the solenoidal component decreases, the more the

random variable becomes independent of the path, becoming closer and closer to

that fixed point ϕ(x)−ϕ(y). This paves the way for Theorem 8.1.2, which is valid

for Neumann boundary conditions as well.

Theorem 8.1.2. Let (λ, ψ) be an eigenpair of H(A), with ψ|δΩ = 0 and the

Helmholtz decomposition A = ∇ϕ+F such that ∇·F = 0. Suppose that |ψ(x0)| =

||ψ||L∞ for some x0 ∈ Ω. Then ∀t > 0:

∫
Ω

|Eω(0)=x0,ω(t)=ye
i
∫ t
0 F ·dω(s)| 1

(4πt)d/2
e−

||x0−y||2
4t dy ≥ e−λt . (8.3)

Proof. First, notice that

λ = (H(A)ψ, ψ)L2(Ω) =

∫
Ω

|(−i∇− A(x))ψ(x)|2 ≥ 0 ,

indicating that all eigenvalues are nonnegative. Under the assumption that A is

such that A · A and ∇A · A are in the Kato class, there exists a Feynman-Katz

formulation as expressed in Proposition 2.9 in Broderix et. al. [10]:

(
e−tH(A)ψ

)
(x) = E

(
e−St(A|ω)χΩ(ω, t)ψ(ω(t))

)
, (8.4)

where the expectation is taken over all Brownian motion that starts at x, ω(0) = x.

The function χΩ(ω, t) acts as an indicator for when the Brownian motion is in the
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domain:

χΩ(ω, t) =


1 if ∀s ∈ [0, t], ω(s) ∈ Ω

0 else

And define:

St(A|ω) = i

∫ t

0

A(ω(s))dω(s) +
i

2

∫ t

0

(∇ · A)(ω(s))ds . (8.5)

The time evolution operator for eigenfunctions can be represented:

(
etH(A)ψ

)
(x) = e−λtψ(x) (8.6)

Carrying out the Helmholtz Decomposition on A and then utilizing Lemma 8.1.1

allows the substitution for the operator H̃(F )g = (−i∇ − F )2g, which has the

same eigenvalues λ and the eigenvectors are just scaled, g = e−iϕψ. Since e−iϕ is of

complex modulus 1, then |g(x)| = |ψ(x)|, meaning both functions will localize in

the same regions and be maximized at the same point x0 ∈ Ω. Therefore |g(x0)| =

||ψ||L∞ . Immediately (8.4) can be rewritten in terms of using this substitution and

(8.6) applied to x0:

e−λt||ψ||L∞ = |E
(
e−St(F |ω)χΩ(ω, t)g(ω(t))

)
|

= |
∫
Ω

(
Eω(0)=x,ω(t)=ye

−St(F |ω)) g(y)ρt(x0, y)dy|
≤ ||g||L∞

∫
Ω

|
(
Eω(0)=x,ω(t)=ye

−St(F |ω)) |ρt(x0, y)dy ,
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where because the divergence free vector field F has now been substituted, (8.5)

becomes the purely imaginary expression St(F |ω) = i
∫ t
0
F (ω(s))dω(s). Here, the

expectation is conditioned on ω(t) = y, and since the probability distribution for

particles that begin at x0, go for t time, and remain inside the domain can be

represented via the heat kernel, we have y → ρt(x0, y). The last inequality is made

by applying the triangle inequality and recognizing that ρt(x0, y) ≥ 0.

Finally, using that this ρt(x0, y) is bounded above by the heat kernel over

d−dimensional Euclidean space provides the desired inequality.

e−λt ≤
∫
Ω

|
(
Eω(0)=x,ω(t)=ye

−i
∫ t
0 F (ω(s))dω(s)

)
|ρt(x0, y)dy

≤
∫
Ω

|
(
Eω(0)=x,ω(t)=ye

−i
∫ t
0 F (ω(s))dω(s)

)
| 1

(4πt)d/2
e−

||x0−y||2
4t dy .

Note that instead of using the Gaussian heat kernel, defined on Rd, the heat

kernel on a given bounded domain could be substituted, which is a stronger result

and could be advantageous. Essentially, Theorem 8.1.2 states that for an eigenpair

(λ, ψ) of H(A) where ψ(x0) = ||ψ||L∞ , then there is an expectation for where

most points y in some neighborhood of x0, from the path integral x0 to y, will

be. The path integral must be relatively concentrated around some fixed value,

which means that the vector field is either “close" to a conservative vector field

or the integration path is short, and therefore λ is large. We coin the prior as

“near-deterministic". We say that X is “near-deterministic" if it is likely to be
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found close to some fixed value (mod 2π) in the sense:

sup
z∈T
P
(
|X mod 2π − z| ≤ 1

100

)
≥ 99

100
,

for A = ∇ϕ+F such that ∇·F = 0, and where T represents the torus. For y ∈ Ω

to be near deterministic, let X =
∫ t
0
Fdω(s) for any path integral that begins at

x0 and ends ω(t) = y. Notice that this is one of the two ways that a random path

integral can be highly concentrated, as needed for Theorem 8.1.2. Corollary 8.1.4

describes where this may occur, and Lemma 8.1.3 aids in its introduction.

Lemma 8.1.3. For X as some real-valued, near deterministic, random variable,

there exists some universal constant c ∈ [0, 1) such that |E(eiX)| ≤ c.

Proof. Notice that every point eiX sits on the unit disk, and that the expectation

E is a convex combination of these points. Since S1 is convex, then any convex

combination of points in S1 must be inside the domain.

Corollary 8.1.4. Let(λ, ψ) be an eigenpair of H(A), with ψ|δΩ = 0 and the

Helmholtz decomposition A = ∇ϕ+F such that ∇·F = 0. Suppose that |ψ(x0)| =

||ψ||L∞ for some x0 ∈ Ω. For some universal constant c ∈ (0, 1) that depends

only on the spatial dimension d, let t = c
λ
. Then a large fraction of points y in a

√
t-neighborhood of x0 are near-deterministic:

{y ∈ B√
t(x0) : y is near-deterministic} ≥ 9

10
|B√

t(x0)| .

Proof. By proof of contradiction, let c → 0. Then for any c > 0 there exists an
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eigenpair of H(A), (λ, ψ), localized at x0, such that for t = λ
c
, there measure of

points t ∈ B√
t(x0) that are near deterministic is 9/10th of the measure. From the

proof of Theorem 8.1.2, we have:

e−c ≤
∫
Ω

|
(
Eω(t)=ye

−St(F |ω)) |ρt(x, y)dy
Define the set:

A = |y ∈ B√
t(x0) : y is not near-deterministic| .

Using that Ω = A ∪ Ω \A and then applying Lemma 8.1.3 gives:

∫
Ω

|
(
Eω(t)=ye

−St(F |ω)) |ρt(x, y)dy
≤
∫
A

|
(
Eω(t)=ye

−St(F |ω)) |ρt(x, y)dy + ∫
Ω\A
|
(
Eω(t)=ye

−St(F |ω)) |ρt(x, y)dy
≤ k

∫
A

ρt(x, y)dy +

∫
Ω\A

ρt(x, y)dy ,

for some k ∈ [0, 1). Since A and the kernel ρt(x, ·) each contain a positive propor-

tion of the measure in the
√
t-neighborhood, we have:

∫
A

ρt(x, y)dy +

∫
Ω\A

ρt(x, y)dy ≤ 1− c2 ,

for some constant c2. This is a contradiction when c→ 0 because then t→ 0.

Thus, far we have seen that the Helmholtz Decomposition (8.2) on the vector
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field A separates A into the irrotational vector field ∇ϕ, which is does not impact

where localization will occur, but instead simply modulates the eigenfuction, and

the solenoidal component F that determines where the eigenmode will localize.

Theorem 8.1.2 and Corollary 8.1.4 then demonstrated how the regions where F

behaved similarly to a conservative vector field are the regions where localization

should occur. These are the regions where |curlF | is relatively small. To easily

exemplify, assume Ω ∈ R2, then for F = (F1, F2), we have |curlF | = ∂F2/∂x1 −

∂F1/∂x2. Take x0 ∈ Ω and define Aline(x) = A(x0) + J(x0)(x − x0) to be the

linearization of A about x0, where J is the Jacobian of A, then we can define

the “nonlinearization" of A by Anonline = A − Aline. Furthermore, Aline can be

decomposed Aline = A1+A2 such that for the 90o counterclockwise rotation matrix

R =

0 −1
1 0

 we have:

A1 = A(x0) +
1

2

(
J(x0) + JT (x0)

)
(x− x0) (8.7)

A2 =
1

2

(
J(x0)− JT (x0)

)
(x− x0) =

curlA(x0)
2

R(x− x0) . (8.8)

Noticing that 1
2

(
J(x0) + JT (x0)

)
is the symmetric part of the Jacobian matrix of

A helps to immediately conclude that A1 is conservative. In fact, A1 = ∇f for

f(x) = A(x0) · (x− x0) +
1

2
(x− x0)tJ(x0)(x− x0) . (8.9)

Direct computation shows that A2 is solenoidal. It becomes clear from this why
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the curlA is of special interest here, and is detailed in Corollary 8.1.5.

Corollary 8.1.5. Let(λ, ψ) be an eigenpair of H(A), with ψ|δΩ = 0. Suppose

that |ψ(x0)| = ||ψ||L∞ for some x0 ∈ Ω. If Anonline is sufficiently small in a

1√
λ
−neighborhood of x0, then

curlA(x0) ≤ cλ2 ,

for some universal constant c > 0.

Proof. Using Lemma 8.1.1, we can conjugate H(A) in order to remove the con-

servative part, resulting in divA = 0. Using the Taylor expansion of A gives

A = Aline+Anonline, and one can further decompose Aline = A1 +A2 as defined in

(8.7), where the conservative part of A1 is described by (8.9). Then because the

conservative part of A has been removed and A2 is solenoidal, we have:

0 = ∇ · A(x0) = ∇ · Aline(x) = ∇ · A1(x) = ∇ · (∇f(x)) = ∆f(x)

curlA(x0) = curlAline(x) = curlA2(x) .

Now applying Ito’s lemma, using the assumption ∆f = ∇ ·A(x0) = 0, and noting

that ω(t) = y, we get:

∫ t

0

A1 · dω(s) = f(ω(t))− 1

2

∫ t

0

∆f(ω(s))ds = f(ω(t)) .
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Since Aline = A1 + A2, substituting the above gives:

∫ t

0

Aline(x, y) · dω(s) = f(ω(t)) +
curlA(x0)

2

∫ t

0

R(x− x0) · d(ω(s)) ,

where x = ω(s). Since f(ω(t)) = f(y), then the first term is deterministic. Thus we

must investigate the random variable, which is such because it is path dependent,∫ t
0
R(x−x0)·d(ω(s)). We have that ω(0) = x0 and without loss of generality assume

that x0 = 0. Notice that Brownian motion and our vector field are invariant under

rotation, and therefore our random variable can only depend on t and ||ω(t)|| =

||y||. It is also a property for Brownian motion, that for any α > 0, ω(αt) ≡
√
α · ω(t), by which we mean both random processes are identical. Applying this

property, we can say that the probability of a Brownian particle traveling along a

fixed path from ω(0) = 0 to ω(t) = 1 is the same as the probability of the rescaled

particle traveling from ω(0) = 0 to ω(1) = ω(1
t
t) =

√
1/t · ω(t) = t−1/2y. Via a

change of variables to change the limits of integration and substitute s = t · s, we

obtain:

∫ t

0

R(x) · d(ω(s)) = t

∫ 1

0

R(x) · d(ω(s · t)) = t2
∫ 1

0

R(x) · d(ω(s)) .

When t = 1 and y ≈ 1, this random variable takes a deterministic mean value that

depends only on the endpoint and with nonzero standard deviation that spread

over the interval that is the length of y ≈ 1. This interval then essentially spreads
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over t2 from which it is scaled by. Consequently,

curlA(x0)
2

∫ t

0

R(x− x0) · d(ω(s)) spreads over t2
|curlA(x0)|

2
.

For the eigenpair (λ, ψ) of H(A) where ψ attains its maximum at x0, we have the

expectation conditioned upon ω(0) = x0 and ω(t) = y:

∫
Ω

|Ee−St(A|ω)|ρt(x, y)dy ≥ e−λt ≥ 0.95 ,

where we grabbed the first inequality from the proof in Corollary 8.1.4 and the

second from letting t = 0.01/λ. In order to satisfy this inequality, without consid-

ering the nonlinear part just yet, this path integral must be highly concentrated

around most points. For some universal constant c > 0:

|curlA(x0)|
2

(
0.01

λ

)2

≤ c

Then we can define some constant c1 = 2c
0.012

to simplify that statement:

|curlA(x0)| ≤ c1λ
2 .

Finally considering the nonlinear part, we note that the higher order terms must

be locally small, thereby:

|
∫ t

0

Anonline(x, y) · dω(s)| ≪ |curlA(x0)|
1

λ2
.
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While it is not yet clear if this type of decomposition is the best, it can be

seen in the proceeding numerical examples that using sublevel sets of the |curlA|

leads to reasonable predictions of where eigenvectors may localize, at least early in

the spectrum. Another a priori evaluation for where the eigenmodes may localize

can be discovered by refining the landscape function, u, for −∆u = 1 in Ω with

u|δΩ = 0. Rearranging the Landscape Inequality (8.1), we see that for any eigenpair

(λ, ψ) of H(A) satisfying Dirichlet boundary conditions:

|ψ(x)| ≤ λ||ψ||L∞u(x) .

Since the magnetic field A is not taken into account, it may come as no surprise

that this inequality is not particularly informative; however, when A is irrotational,

it accurately predicts where localization occurs in the ground state. For brevity,

we denote:

Ex,t(y) := Eω(0)=x,ω(t)=ye
i
∫ t
0 F (ω(s))dω(s) ,

where Ex,t(y) ∈ {z ∈ C : |z| = 1}. By integrating the result in Theorem 8.1.2,

we will show when the landscape inequality is accurate for the ground state and

present an improved landscape inequality in Corollary 8.1.6.



136

Corollary 8.1.6. We have that:

|ψ(x)| ≤ λ||ψ||l∞ ·
(∫ ∞

0

∫
Ω

|Ex,t(y)|2ρt(x, y)dydt
) 1

2 √
u(x) , (8.10)

where we can bound the first integral:

(∫ ∞

0

∫
Ω

|Ex,t(y)|2ρt(x, y)dydt
) 1

2

≤
(∫ ∞

0

∫
Ω

ρt(x, y)dydt

) 1
2

≤
√
u(x) . (8.11)

Proof. From the proof of Theorem 8.1.2, we have the inequality that holds for all

x and for all t:

∫
Ω

|Ex,t(y)|ρt(x, y)dy ≥ e−λt
|ψ(x)|
||ψ||L∞

.

Integrating both sides with respect to time and recognizing that ρt(x, y) ≥ 0 gives:

∫ ∞

0

∫
Ω

|Ex,t(y)|ρt(x, y)dydt ≥
1

λ

|ψ(x)|
||ψ||L∞

,

where the integration
∫∞
0
e−λtdt = 1

λ
. Applying the Cauchy-Schwarz Inequality to

the left hand side where for |⟨f, g⟩| ≤ ||f || ||g||, we define f = |Ex,t(y)|
√
ρt(x, y)

and g =
√
ρt(x, y). Then the inequality becomes:

(∫ ∞

0

∫
Ω

|Ex,t(y)|2ρt(x, y)dydt
)1/2(∫ ∞

0

∫
Ω

ρt(x, y)dydt

)1/2

≥ 1

λ

|ψ(x)|
||ψ||L∞

.

Since the eigenfunctions of the Laplacian on Ω, ϕk, form a Hilbert basis in L2,

any function in L2 can be expressed in terms of the ϕk. With some manipulation,
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which is illustrated in Remark 8.1.7, we apply this to our heat kernel and obtain

the closed form expression:

ρt(x, y) =
∞∑
k=1

eλktϕk(x)ϕk(y) , (8.12)

where the λk are the corresponding eigenvalues. Using this and switching the order

of integration gives:

∫
Ω

∫ ∞

0

ρt(x, y)dtdy =
∞∑
k=1

1

λk
ϕk(x)

(∫
Ω

ϕk(y)dy

)
.

To focus further on this second integral, we expand the landscape function u in

terms of the eigenfunctions ϕk.

∫
Ω

ϕkdx = ⟨1, ϕk⟩ = ⟨−∆u, ϕk⟩ = ⟨u,−∆ϕk⟩ = λk⟨u, ϕk⟩ ,

where the first equality is simple since ϕk = 1 ∗ ϕk and the second is just substi-

tution since ∆u = 1 with zero boundary conditions. The third equality results

from integrating by parts twice with zero boundary conditions, so each time the

boundary term is vanished. And the last equality comes from substitution since

−∆ϕk = λkϕk. Finally, if we performed an eigenfunction expansion on u and

compare it to the above equalities, we see:

(∫ ∞

0

∫
Ω

ρt(x, y)dydt

)
= u(x) .
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Putting all of these pieces together results in the desired (8.10). For the first bound

in (8.11), recall the first is because |Ex,t(y)| ≤ 1| depending on how path dependent

the integral is.

In the instance that the vector field is conservative, or close to it, then |Ex,t(y)| ≈

1|, in which case (8.10) basically becomes the landscape inequality. But, the further

the vector field is from being conservative, the smaller |Ex,t(y)| is, and therefore

the more pessimistic the landscape inequality is; while the landscape inequality is

still true, it is not necessarily informative when A is not (at least close to) con-

servative. Corollary 8.1.6 provides an improved bound where A is far from path

independent, and that is at least as good as the landscape inequality.

Remark 8.1.7. This Remark serves to justify the statement made in (8.12). For

the heat kernel ρΩ(t, x, y), we have:

H(ρ) := ∂ρ

∂t
−∇ρ = δ ,

such that δ is the dirac delta function. For fixed t and x, we may express

ρΩ(t, x, y) =
∑∞

k=1 ck(t, x)ϕk(y), where ϕk are the eigenfunctions of the Lapla-

cian with zero boundary conditions. Applyinh H to this ρΩ(t, x, y) now results

in:

∞∑
k=1

(
∂ck(t, x)

∂t
+ λkck(t, x)

)
ϕk(y) = δx(y) .
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Integrating by both sides against ϕj(y) gives:

∂ck,j(t, x)

∂t
+ λk,jck,j(t, x) =

∫
Ω

δx(y)ϕj(y)dy .

Let x ̸= y, then the right hand side is 0. We may write ck,j(t, x) =
∑∞

k=1 fk,j(t)ϕk(x),

and so we thus have:

∞∑
k=1

(
f ′
k,m(t) + λmfk,j(t)

)
ϕk(x) .

The eigenfunction is not identically zero for all k, and therefore by rearranging

and solving the differential equation, it is revealed that fk,j = eλjt. Consequently,

ck(t, x) = eλjtϕj(x), which means ρt(x, y) =
∑∞

j=1 e
λjtϕj(x)ϕj(y) as desired.

8.1.1 The Magnetic Schrödinger Equation

Though the focus has been the magnetic Laplacian operator, the (general) argu-

ments made can be extended to the magnetic Schrödinger equation:

Ĥ(A)ψ := (−i∇− A(x))2 ψ(x) + V (x)ψ(x)

for potential V ∈ R≥0. A similar Feynman-Kac representation is used:

(
e−tH(A,V )ψ

)
(x) = E

(
e−St(A,V |ω)χΩ(ω, t)ψ(ω(t))

)
,



140

where the expectation is taken over all the Brownian motion that started at x, as

before, and the function χΩ(ω, t) is unchanged. The path integral now must take

into account the added potential:

St(A, V |ω) = i

∫ t

0

A(ω(s))dω(s) +
i

2

∫ t

0

(∇ · A)(ω(s))ds+
∫ t

0

V (ω(s))ds .

Using the same techniques as before, the div(A) disappears with the Helmholtz de-

composition and V ≡ 0, which proceeds in a very similar fashion as Theorem 8.1.2.

However, the presence of V and it’s interaction with A may significantly complicate

the result as discussed before, and is not explored in this manuscript.

8.1.2 Neumann Boundary Conditions

Up until this point, our theory has considered only Dirichlet boundary conditions.

Neumann boundary conditions are almost identical, since most of the theory does

not directly utilize properties of the boundary conditions. In practice, if the

eigenmodes being considered are localized inside of the domain and away from the

boundary, by which we mean at least several wavelengths from the boundary, then

there is very little difference when using Neumann boundary conditions. This is

illustrated in the proof of the primary result, Theorem 8.1.2, where the Feynman-

Kac is used in order to supply a reproducing identity of parabolic nature; for

our purposes means that the modes have an exponential decay away from the

boundary at the scale of a wavelength. Thus, whatever happens at the boundary

is sufficiently small and therefore not a concern for the theory presented here.
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Again, this assumes the eigenmodes are localized away from the boundary. The

same cannot be said if they are localized near the boundary.

8.2 Numerical Examples

This section includes a few numerical examples that illustrate the utility of the

primary theorem, which states that, for eigenvalues lower in the spectrum, eigen-

functions of H(A) localized where curlA is small. The examples are on the square

Ω = [−1, 1] × [−1, 1], uniformly meshed with piecewise, cubic polynomials and

with edge length h = 0.01.

Example 8.2.1. First a simple example of a polynomial vector field. Let A =

−a(x2 + y2, x2 − y2) and a = 1000. Then curlA = −2a(x − y). A stream plot of

A along with a plot of |curlA| and the real and imaginary parts of the first four

eigenmodes are pictured in Figure 8.2. Though it isn’t clear from A where the

low energy eigenmodes will localize, the first four (pictured) modes are localized

along the off diagonal where the curl is smallest. Furthermore, notice that the

eigenvectors are oscillatory, even the ground state.

As suggested by Theorem 8.1.2, an eigenpair (λ, ψ) of H(A) where ψ(x0) =

||ψ||L∞ has the expectation that most points y in some neighborhood of x0, from

the path integral x0 to y, will be relatively concentrated around some fixed value

when the vector field is either “close" to a conservative vector field or the integration

path is short (when λ is large). This suggests that localization may occur where

the magnitude of A is small compared to other regions, which can be observed in
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A |curlA|

λ = 120.52246 139.79737 170.61756 211.07299

Figure 8.2: Let A = −a(x2 + y2, x2 − y2) and a = 1000 The plots of A and |curlA| in the top row. It is not
clear from looking at A where the eigenmodes will localize, and the off diagonal is not not clearly an indicator
where we see that the curlA is smallest. The second row contains the real (above) and imaginary (below) parts
of the first four eigenfunctions together with their eigenvalues; they are localized only where |curlA| is small as
expected. These eigenfunctions are oscillatory in their components, even the ground state.
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practice. However, more complicated examples illustrate the paramount impact of

the curl, and are considered in the next examples.

Example 8.2.2. Let A = −a (cos(f(x, y)), sin(f(x, y))) where

f(x, y) = 5π sin(x2+y2) and a = 50. Figure 8.3 includes a stream plot of A and the

|curlA| together with the (modulus of the) first nine eigenmodes. The eigenmodes

begin localizing in the center of the domain, where the |curlA| is the smallest for

the most area, and develop in this spiral, as is consistent with the curlA. Two

eigenmodes even separately concentrate in the off diagonal corner, away from the

center spiral, which is another set of regions where the curl is small. Since the curl

is identical in both these corners, this is an example of two localized eigenfunctions

corresponding to the same eigenvalue.

Example 8.2.3. Let A = −a (cos(f(x, y)), sin(f(x, y))) where

f(x, y) = π sin(πx) cos(πy) and a = 50. Figure 8.4 contains a stream plot of A

and the |curlA| together with the (modulus of the) first nine eigenmodes. The

regions where the |curlA| are small, intricate curves throughout the domain, yet

the eigenfunctions can clearly be seen localizing throughout these same regions. It

is not clear from A where these early eigenvectors may concentrate, but it is from

observing the |curlA| plot, which further validates our theory.
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A |curlA|

λ = 92.84704 132.62410 163.81230

λ = 167.19 167.19 185.48025

λ = 205.34508 220.54 234.82

Figure 8.3: Let A = −a (cos(f(x, y)), sin(f(x, y))) where f(x, y) = 5π sin(x2+y2) and a = 50. A stream plot
of A and the |curlA| together with the (modulus of the) first nine eigenmodes. The eigenfunctions concentrate in
the spiral or the off-diagonal corners where the |curlA| is smallest.
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A |curlA|

λ = 62.03003 85.61013 85.87503

λ = 86.15047 89.93589 89.94917

λ = 99.49909 111.91341 111.95424

Figure 8.4: Let A = −a (cos(f(x, y)), sin(f(x, y))) where f(x, y) = π sin(πx) cos(πy) and a = 50. The regions
where the |curlA| are small, intricate curves throughout the domain, yet the eigenfunctions can clearly be seen
localizing throughout these same regions.
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Appendix A: Obtaining true eigenpairs for a 1D pathological case

We have: 

−ψ′′(x) + V (x)ψ(x) = λψ(x) ∈ (0, 1)

ψ(0) = ψ(1) = 0

V |[1/4,3/4] = 1202

V = 0, otherwise

We can construct the eigenfunctions in three parts ψ = ψ1 + ψ2 + ψ3, on the

intervals [0, 1
4
), [1

4
, 3
4
], and (3

4
, 1]. The zero boundary conditions force ψ1 and ψ3 to

be sine functions, and then assuming this ψ is even centered at 1
2

forces ψ2 to be

a cosine function. Thus:
ψ1(x) = sin(

√
λx) ∈ [0, 1/4)

ψ2(x) = a cos
(√

λ− 1202(x− 1
2
)
)
∈ [1/4, 3/4]

ψ3(x) = sin
(√

λ(1− x)
)
∈ (3/4, 1]

where a is the constant to be found in order to account for the continuity of ψ at

1
4

and 3
4
. Finding a is as simple as satisfying ψ1(1/4) = ψ2(1/4) and ψ2(3/4) =

ψ3(3/4), which gives:

a =
sin(
√
λ)/4

cos(
√
λ− 1202)/4
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We know ψ ∈ H1
0 ([0, 1]), so ψ′(x) must also be continuous. This is as simple

as satisfying ψ′
1(1/4) = ψ′

2(1/4) and ψ′
2(3/4) = ψ′

3(3/4) which, for example, is

equivalent to determining when

f(λ) := 1− ψ′
2

ψ′
1

= 0 .

Notice the roots of f(λ) are the eigenvalues, and they were roughly identified by

plotting f(λ). Then they were found to 200 digits of accuracy using Newton’s

method with the rough estimates as initial guesses. Lastly, the eigenfunctions

were then computed directly.

If the eigenfunction is instead odd, then this process is the same with few

notable exceptions. The middle ψ2 must now be odd, represented by the sine

function about 1
2
:

ψ2(x) = b
sin
(√

λ− 1202(x− 1/2)
)

√
λ− 1202

,

where we divide by
√
λ− 1202 to ensure the ψ2 is real for λ ≤ 1202, since sin(ix) =

i sinh(x). The constant b serves the same purpose as a before:

b = −
√
λ− 1202

sin
(√

λ
4

)
sin
(√

λ−1202

4

)
The rest of the process is the same as before.
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Appendix B: Geometric Localization Figures

Additional eigenpairs of L are included for the variations of the Threebulb domain

that were discussed in Chapter 6. The reader can review the effects of these

geometric changes for higher energies.
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λ = 8.3618 9.3829 10.0287 10.2838 10.4845
τL = 1.8e-3 0.134 0.836 0.305 0.999
τM = 0.035 0.794 0.212 0.258 0.005
τR = 0.971 0.118 0.173 0.795 0.008

λ = 10.6460 10.8446 10.9606 11.5621 11.7670
τL = 0.706 0.725 0.015 0.741 0.321
τM = 0.402 0.487 0.019 0.307 0.552
τR = 0.362 0.293 0.999 0.261 0.530

λ = 12.3170 12.3350 13.2125 14.0434 14.2463
τL = 0.794 0.957 0.067 0.750 0.006
τM = 0.385 0.184 0.385 0.373 0.007
τR = 0.0146 0.006 0.763 0.099 0.995

λ = 15.2686 15.4168 15.6731 16.0249 16.0409
τL = 0.188 0.999 0.798 0.964 0.960
τM = 0.465 0.009 0.390 0.180 0.192
τR = 0.605 0.007 0.108 0.021 0.021

λ = 17.3097 17.5355 17.8693 18.5886 18.6220
τL = 0.765 0.385 0.999 0.697 0.260
τM = 0.486 0.456 0.018 0.404 0.139
τR = 0.240 0.666 0.013 0.465 0.946

λ = 18.9805 19.7398 20.0948
τL = 0.314 0.696 0.650
τM = 0.247 0.348 0.296
τR = 0.874 0.522 0.610

Figure 5: The 13th - 40th eigenfunctions of the ThreeBulb domain along with the eigenvalues and τ values
for each bulb. As the energy is increased, there are less concentrated eigenmodes since the smaller, more frequent
oscillations of the higher energy eigenmodes can more easily fit through the narrow channels of the bridge.
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λ = 8.5070 8.7288 9.4620 9.5199 10.4797
τL = 0.077 8.2e-6 0.351 0.846 0.999
τM = 0.852 7e-5 0.087 0.143 7.5e-7
τR = 0.071 0.999 0.811 0.351 3.1e-7

λ = 10.9152 10.9645 11.2396 11.8680 12.1255
τL = 0.946 0.009 0.430 0.372 4.2e-5
τM = 0.091 0.302 0.292 0.302 0.999
τR = 0.061 0.999 0.282 0.361 0.001

λ = 12.2729 12.3370 13.3577 13.9365 14.1452
τL = 0.999 1.0 0.501 0.470 4.4e-5
τM = 1.7e-5 3.7e-7 0.353 0.204 2.1e-5
τR = 5.7e-6 3.2e-7 0.361 1.9e-4 5.7e-6

λ = 14.7980 15.3554 15.6000 16.0364 16.0755
τL = 0.456 0.999 0.947 0.997 0.561
τM = 0.341 4.8e-6 0.109 0.031 0.362
τR = 3.2e-7 6.6e-6 0.195 0.044 0.496

λ = 17.4546 17.8222 17.9061 18.6083 18.8036
τL = 0.580 0.999 0.928 4.1e-5 6.6e-4
τM = 0.344 1.6e-5 0.139 7.8e-5 0.995
τR = 0.482 5.5e-7 0.216 0.999 7.1e-4

λ = 19.0763 19.5712 19.6143
τL = 0.519 0.312 0.999
τM = 0.346 0.170 5.6e-5
τR = 0.588 0.888 1.6e-4

Figure 6: The 13th - 40th eigenpairs and τ values for each bulb of the ThreeBulb domain with centered
bridges. The localization is decreased significantly, particularly for the eigenfunctions with an odd number of
oscillations in the y-direction and as the energy increases, resulting in a higher number of oscillations that create
small pockets of eigenfunction that can easily bleed into the bridge. Boundary conditions also play some role in
the decreased localization.
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λ = 8.7506 10.4781 10.4864 10.9408
τL = 0 0.999 0.999 0

τM = 3.5e-7 4.6e-7 5.7e-9 1.1e-6
τR = 0.999 0 0 0.999

λ = 10.9662 11.0831 12.1903 12.2301
τL = 0 0.999 0 0

τM = 1.3e-8 1.1e-6 0.999 0.999
τR = 1 0 1.9e-6 1.7e-6

λ = 12.3054 12.3370 14.1559 14.2561
τL = 0.999 0.999 0 0
τM = 2e-4 1.5e-7 3.2e-6 2.3e-8
τR = 0 0 0.999 1.0

Figure 7: The 13th - 24th eigenfunctions paired with their eigenvalues and τ
values of the Threebulb domain with thinned bridges. The eigenfunctions behave
(fairly) independently in each bulb, being very concentrated, but at the cost of
higher eigenvalues. The required energy to obtain localized bulbs increases at
high energies when compared to the corresponding eigenfunction of the original
Threebulb domain.
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λ = 8.3610 9.8222 9.9863 10.2346 10.3521
τL = 1.5e-4 0.457 0.341 0.501 0.122
τM = 0.045 0.654 0.706 0.716 0.583
τR = 0.972 0.089 0.302 0.312 0.744

λ = 10.6043 10.9600 11.0224 11.5700 12.1272
τL = 0.137 0.013 0.217 0.229 0.408
τM = 0.950 0.048 0.790 0.552 0.602
τR = 0.123 0.998 0.330 0.481 0.281

λ = 12.3159 12.3262 12.9799 14.0291 14.2454
τL = 0.995 0.068 0.121 0.367 0.010
τM = 0.083 0.997 0.500 0.716 0.045
τR = 0.022 0.024 0.694 0.232 0.998

λ = 14.3851 15.6049 15.8248 16.0232 16.0864
τL = 0.085 0.246 0.347 0.037 0.180
τM = 0.751 0.906 0.693 0.989 0.826
τR = 0.492 0.130 0.357 0.098 0.369

λ = 17.1447 17.6100 18.1793 18.5952 18.6294
τL = 0.298 0.284 0.254 0.342 0.232
τM = 0.808 0.844 0.776 0.538 0.376
τR = 0.368 0.337 0.472 0.702 0.869

λ = 19.0997 19.7392 20.1988
τL = 0.186 0.348 0.405
τM = 0.491 0.696 0.652
τR = 0.810 0.522 0.528

Figure 8: The 13th - 40th eigenpairs together with their τ values in each bulb of the Threebulb domain
where the large and small bulbs are switched. The large bulb is still the primary host of the eigenmodes, however
since it is now in the middle of two bridges, these eigenmodes are not as concentrated, esp with higher energy. In
contrast, the small bulb now only has one channel for possible bleeding, so these eigenfuctions are more localized.
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