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Abstract

Multiple equations in math, physics, quantum information, and elsewhere are referred

to as “the” Yang-Baxter equation, in spite of being a broad family of equations. Most

of the equations are nonlinear matrix equations, where the unknown variable is a

matrix. This is the case for the so called braided, algebraic, and generalized forms of

“the” equation, which are the primary focus of this dissertation. Finding solutions

to the various forms of these equations has been the subject of much research. The

equations in all their forms are largely considered intractable in high dimensions, and

only in dimension 2 have the solutions been fully classified.

We begin with an introduction to quantum computation, with a focus on the

topological model and its connection to the braid group. Next, we introduce the

braided, algebraic, and generalized forms of “the” Yang-Baxter equation. We provide

a full classification of diagonal solutions to each form. In particular, we show that

any diagonal matrix is a solution to the algebraic form in any dimension, and each

instance of the braided and generalized forms only have diagonal solutions that are

scalar multiples of the identity. We exploit the relationship between the algebraic

and braided forms to construct a solution in any dimension that is applicable to

topological quantum computation as a universal gate. The generalized form of the

equation is parameterized by three natural numbers, (d,m, l), and we show that

the only invertible solutions when l ≥ m are scalar multiples of the identity. We

completely classify all solutions arising from an X-shaped ansatz for five different
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choices of (d,m, l), and provide a complete classification of X-shaped solutions to

every odd dimensional braided equation, where there are no X-shaped solutions in

any dimension. We fully classify permutation solutions to each instance of the braided

and algebraic equations that can be written as a product of 3 or fewer transpositions.

We show that the problem of classifying all invertible upper triangular solutions to

the 4-dimensional algebraic Yang-Baxter equation can be split into 48 cases, and fully

classify one of the cases.
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Chapter 1

Introduction

“Let’s start at the very beginning.
A very good place to start”

The Sound of Music

In 1967, C. N. Yang was working on a one-dimensional N-body problem. After

assuming the wave function takes on a specific form (called the Bethe hypothesis

or Bethe ansatz) the wave function is shown to depend on a unitary matrix which

satisfies what we would now refer to the quantum Yang-Baxter equation with spec-

tral parameter [44]. McGuire had arrived at a very similar result appearing in [58]

three years before Yang. A similar idea referred to as the star-triangle relation from

statistical mechanics appeared as early as 1944 in [65]. In 1972 Rodney J. Baxter

was working on a 2 dimensional lattice model of ice. He found that the wave func-

tion can be computed exactly and depends on a matrix which satisfies the quantum

Yang-Baxter equation with spectral parameter [44]. In the late 1970’s the connection

was made to quantum field theory when Faddeev, Sklyani, and Takhtajan proposed

the quantum inverse method, and the phrase “Yang-Baxter equation” was coined by

them [44]. In 1982 the field of quantum groups began with a paper by Belavin and

Drinfel’d [7] which describes a connection between particular Hopf Algebras and so-

lutions to the quantum Yang-Baxter equation. Shortly thereafter, a connection was

made to the braid group and its representation theory. Many other connections exist,
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and in particular, obtaining representations of the braid group is important for knot

theory, 3-manifold invariants, quantum computation, and elsewhere.

We begin by recalling the classical braid group and its relation to topological

quantum computation to provide context for the understanding of the main results

of this dissertation. We next discuss the various forms of the Yang-Baxter equations

and how they arise in this context. For some of these forms we provide a complete

classification of diagonal solutions. We next classify low dimensional X-shaped solu-

tions of a generalized form of the equation and fully classify the X-shaped solutions

to the so-called braided Yang-Baxter equation in odd dimensions. Further classifi-

cations follow. For example, we fully classify permutations to particular forms of

the Yang-Baxter equation that can be written either as a single transposition or a

product of two or three transpositions. Finally, we address the invertible upper tri-

angular solutions to the so-called algebraic Yang-Baxter equation in dimension 4. We

note that many of these 48 cases remain computationally intractable with current

technology. A case that is tractable with current technology is identified and is fully

classified. With the impending implementation of quantum technologies and the in-

creased computational power that they bring, future directions in this area include

using this technology to address the remaining cases.
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Chapter 2

Quantum computation

“I think I can safely say that nobody
understands quantum mechanics.”

Richard Feynman

2.1 Quantum mechanics

We begin with a brief introduction to quantum physics and quantum information.

For a more detailed introduction see [63], [22], or [66]. Quantum mechanics describes

phenomena observed at the atomic and subatomic level. All elementary subatomic

particles are classified as either bosons or fermions. This classification depends on

the spin quantum number of the particle which describes the angular momentum or

spin of the particle. A boson is a subatomic particle whose spin quantum number is

a positive integer (with 0 included) [66]. A fermion is a subatomic particle whose

spin quantum number is an odd multiple of 1
2

[66]. Photons (light particles) are

examples of bosons and electrons are an example of fermions. Quasiparticles arise

from multiple particle systems. An example arising from a 2 dimensional system of

electrons exposed to an orthogonal magnetic field is the fractional quantum Hall effect

[78].

In quantum mechanics, the quantum state (for example position or momentum) of

both elementary particles and quasiparticles is modeled by a wave function, typically

3



denoted ψ. The wave functions of a system are not directly observable. Instead,

observation or measurement corresponds to the projection of the wave function onto

a set of orthogonal basis states, called the observational basis. In the observational

basis, states appear as vectors in a possibly infinite dimensional Hilbert Space. One

interpretation of the square modulus of ψ is as a probability distribution over three

dimensional physical space combined with a single time dimension. In this interpre-

tation, |ψ|2 is proportional to the probability of obtaining a specific observational

basis state at a specific time. For a given physical property, an observation for that

property corresponds to projecting onto the corresponding orthonormal basis.

In general, the Hilbert space of states is infinite dimensional. Due to stability and

the challenges of realizing and working with general quantum systems, the quantum

systems utilized in quantum computation are typically restricted to finite dimen-

sional subsystems. For example, a two-level quantum system corresponds to when

the observational bases for the system each have two basis vectors, and the result

of a measurement is binary. These observational basis states are also called pure

states and the particles in a two-level system are called qubits. Similarly, a d-level

system corresponds to when the observational bases have d basis vectors, resulting

in d possible measurement outcomes for each physical property. The particles in

a d-level system are called qudits. After choosing an observational basis, a single

qudit quantum state can be represented as a vector in Cd. These vectors are only

determined up to multiplication by an arbitrary nonzero complex number called the

phase. Phase equivalent vectors thus represent the same state. In the Dirac nota-

tion [20] the phase equivalence classes of the observational basis vectors are denoted

by {|0⟩ , . . . , |d− 1⟩}. An arbitrary quantum state is then represented by a complex

4



projective linear combination, or superposition, of the basis states:

|ψ⟩ = α0 |0⟩+ · · ·+ αd−1 |d− 1⟩

where each amplitude αj is a complex number up to a global phase. Up to phase,

the superposition can be assumed to be normalized by dividing by its length so that

the sum of the square modulus of the coefficients adds to 1. For a state given in bra-

ket notation by the ket |ψ⟩ the conjugate transpose of a state vector |ψ⟩ in bra-ket

notation is given by the bra ⟨ψ|. By the Born rule [66] a quantum system in the state

|ψ⟩ will be measured in the observational basis state |j⟩ with probability:

| ⟨j|ψ⟩ |2

After normalization, the probability of obtaining the outcome |j⟩ after measuring a

normalized superposition is |αj|2. The sum of the probabilities of all possible measure-

ment outcomes must add to 1, and upon measurement the only information obtained

is one of the observational basis states.

d−1∑
i=0

|αi|2 = 1

In particular the state space of a single qudit corresponds to the set of all complex

lines through the origin in Cd+1 which is the d-dimensional complex projective space

CP d.
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2.2 Models of quantum computation

Many different physical systems exhibit quantum phenomena, however, not all sys-

tems are amenable to the task of quantum computing. Quantum mechanical prop-

erties are only observed at the nanoscale (at the level of electrons and photons for

example), making precise control and isolation from the environment difficult [32].

It is still uncertain which hardware model and qubit system is the best candidate

for a scalable quantum computer. In the year 2000, David DiVincenzo wrote a pa-

per outlining 5 essential requirements for the physical implementation of a quantum

computer [23]. Since then lots of progress has been made and many implementations

have been tried. Here we give a brief overview of some of the most promising models

for quantum computation. The current models include the following types of qubits:

• Trapped Ion

A trapped ion quantum computer uses atomic ions confined to radiofre-

quency traps as it’s qubits [80]. Trapped ion systems have already been used

to implement algorithms with a small number of qubits. Challenges include in-

creasing the number of qubits while also being able to manipulate and measure

qubits individually [80].

• Superconducting

Superconducting qubits are based on pairs of electrons referred to as Cooper

pairs [50], which are an example of a bosonic system. Superconducting qubits

(for example Bose-Einstein condensates) currently require temperatures close

to absolute zero to operate. While superconducting qubits also suffer from the

problem of outside noise, they may be a good platform for performing noisy

intermediate-scale quantum (NISQ) computing [50].
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• Silicon

Silicon qubit systems utilize the valence electrons from silicon to encode

quantum information. Silicon provides an environment with very little magnetic

interference and construction of silicon qubits could potentially take advantage

of the large amount of infrastructure already inplace for manufacturing classical

silicon computing chips [34].

• Photonic

Photonic qubits utilize one or more of the optical degrees of freedom, for

example the polarization, of photons to encode quantum information [75]. Pho-

tons may be particularly suited for multi-level quantum computing using qu-

dits [75]. The challenges facing photonic hardware include noise reduction and

reducing the optical infrastructure required to manipulating multiple qubit sys-

tems [75].

• Topological

Topological qubits are based on quasiparticles called anyons. Anyons have

been theorized to exist for decades and relatively recently have been observed

by Google researchers [3]. While anyonic systems are extremely difficult to

physically realize, they are potentially resistant to outside noise due to their

topological properties when manipulated [61]. The next section gives a more

detailed introduction to topological quantum computation.

2.2.1 Topological quantum computation

A topological quantum computer is a theoretical machine that manipulates topolog-

ical phases of matter to perform computation. Topological phases of matter have

7



Figure 2.1: The 4-punctured disk

been observed experimentally as the fractional quantum Hall effect [5]. In particular,

quasi-particles called anyons, which arise when electrons are exposed to a magnetic

field, have been observed to exhibit a nontrivial phase change when exchanged [55].

When two bosons are physically exchanged their wave function is scaled by 1 (a +1

phase change). When two fermions are physically exchanged the wave function is

scaled by -1 (a -1 phase change). The phase change on an anyon depends only on the

number of particles exchanged and whether the exchanges were clockwise or coun-

terclockwise, and not on the specific path taken [60], [61]. Nontrivial manipulation

of a quantum state corresponds to a unitary operator acting on the state’s wave

function. Unitary operators acting on the Hilbert space of states are called gates.

When restricted to 2 dimensions the evolution of the state of an anyon depends only

on the number of particles exchanged, the clockwise or counterclockwise manner of

exchange, and not on the specific path taken [60]. This topological resilience is what

makes a topological quantum computer potentially resistant to local perturbation and

noise [74]. This means that the topological characteristics of the path of exchange

is all that is needed to know how the state evolves. For a system of n anyons this

corresponds to the mapping class group of a n-punctured disk, or the n strand braid

group [8]. An example of the 4-punctured disk is shown in figure 2.2.1.

The topological nature of evolving the quantum state of an anyonic system po-

tentially makes it more resilient against environmental noise or decoherence [29]. A
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quantum computation can be thought of abstractly as the ability to manufacture,

manipulate and measure quantum states [29]. Since the unitary evolution of anyons

corresponds to braiding it is not enough to track the permutations of the anyons.

Instead, the matrices representing the gates of an anyonic quantum system must

also be representations of the Braid group, which means they must satisfy the Yang-

Baxter relation, as described in section 4.1. The above is summarized in the following

definitions.

Definition 2.2.1 (Quantum Computation). A quantum computation is any compu-

tational model based upon the theoretical ability to manufacture, manipulate, and

measure quantum states.[29]

Definition 2.2.2 (Quantum state). The state of a quantum particle, denoted ψ or

|ψ⟩, is described by a vector (or wave function). The collection of all possible states

form a Hilbert space.

Definition 2.2.3 (Observational basis). In quantum information the Hilbert space

of all possible states is typically finite dimensional. An observational basis is an

orthonormal basis for the Hilbert space of states.

Definition 2.2.4 (Observation or measurement). The result of observing or measur-

ing a quantum system results in one of the basis vectors from the observational basis.

The result of a measurement is probabilistic.

Definition 2.2.5 (Bra-Ket notation/Dirac notation and superposition). Observa-

tional basis vectors or are denoted by kets: {|0⟩ , . . . , |d− 1⟩}. The state |ψ⟩ could

be a linear combination or superposition of basis states. The conjugate transpose of

a ket is a bra: |ψ⟩† = ⟨ψ|

9



Definition 2.2.6 (Qudit). A quantum particle which is associated to a d dimensional

state space is referred to as a qudit. When d = 2 the state is referred to as a qubit.

Definition 2.2.7 (Global phase). Scaling by a unit complex number eiθ does not

affect the measurement outcome of a state. The number θ is referred to as the global

phase. In particular, |ψ⟩ and eiθ |ψ⟩ are considered equivalent for any θ.

Example 2.2.1. States are considered equivalent if they result in the same measure-

ment outcome. For example the states π |0⟩, |0⟩, 2024 |0⟩ will all be measured in state

|0⟩ with probability 1.

Definition 2.2.8 (Anyon). An Anyon is a quasiparticle which can undergo nontrivial

evolutions when exchanged in two dimensions.

Definition 2.2.9 (Tensor and Kronecker Product). The symbol ⊗ denotes the tensor

product, when acting on two vector spaces, and the aB-convention Kronecker product

when acting on two matrices. For example in the Dirac notation if V = Span{|j⟩ |

j = 0 . . . d− 1}, then V ⊗ V = Span{|j⟩ ⊗ |k⟩ = |j⟩ |k⟩ = |jk⟩ | j, k = 0 . . . d− 1}

Definition 2.2.10 (Braid group). The braid group with n-strands, Bn, is the group

generated by: {I, σ1, . . . σn−1} with the relations: σiσj = σjσi whenever |i − j| > 1,

these relations are sometimes referred to as far commutativity and the so called Yang-

Baxter relations: σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 1. This group is further

explained with examples in section 4.2.

2.3 Universal quantum gates

Recall as in [10] that a unitary matrix (acting on n qudits) is universal for quantum

computation if it, together with all local unitary transformations from V → V (sin-

gle qudit gates), generate a dense subgroup of U(dn). A unitary matrix is exactly

10



universal if the full group U(dn) is generated. Brylinski showed in [10] that a two

qudit gate U is universal if and only if it is entangling. That is, if there is a state

|ij⟩ ∈ V ⊗ V such that U |ij⟩ cannot be written as the tensor product of two qubits.

An X-shaped solution will be universal since it entangles the state |0⟩. The CNOT

gate defined by |ij⟩ → |i, i⊕ j⟩ is exactly universal since it sends the state |00⟩+ |10⟩

to |00⟩+ |11⟩ [10]. In particular:

CNOT (|00⟩+ |10⟩) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



1

0

1

0

 =


1

0

0

1

 = |00⟩+ |11⟩ . (2.1)

The entangling condition also provides a connection between topological entan-

glement and quantum entanglement. Any R matrix gives rise to a knot and link

invariant [81], and if R is not entangling, it cannot be used to distinguish between

two knots [2]. While almost every unitary gate is universal [19], finding matrices that

are both universal and provide a braid group representation is a complex task. One

way to construct a matrix is via the braided form of the Yang-Baxter equation, as

described in section 4. There are other methods of constructing gates for topological

quantum computation. For example gates based on the behavior of specific anyonic

systems such as metaplectic anyons [18]. Some systems are particularly suited for

qutrit computation, for example weakly-integral anyons [9] can form a universal sys-

tem when supplemented with measurements. Some examples of universal gate sets

include the Clifford set consisting of the CNOT, Hadamard, and phase gate, which

is universal when combined with the phase shift gate. Another example is the Toffoli

gate and Hadamard gate [1]. Some other examples of universal gates for topological

11



quantum computing can be found in [16], [53], [86], [68], [79], [51]. Other gates have

been found via braid group representations [59]. For example it is shown by Kauff-

man and Lomonaco in [48] that the following unitary solutions to the 2-dimensional

braided Yang-Baxter equation are exactly universal as two qubit gates:


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

 1√
2


1 0 0 1

0 1 1 0

0 1 −1 0

−1 0 0 1


There are also many known examples of matrices that are universal for quantum

computation with qudits. For example the conditions under which a diagonal matrix

is universal are listed in [10]. Another example is the CNOT gate. The CNOT gate

generalizes to the controlled increment gate Cn
X,d, which is defined recursively in [42]

and is recalled next. Let n be the number of qudits being acted on. Let Xd denote

the d× d increment gate (INC):

Xd =



0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


(2.2)

CNOT (or sometimes CINC, the controlled increment gate) is then defined as in

[42] by letting C1
X,d = Xd and then recursively constructing

12



Cn
X,d =



I 0 0 . . . 0

0 Cn−1
X,d 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I


(2.3)

Note that the identity matrix block is repeated n − 2 times in the lower right.

Induction on n shows that Cn
X,d is a real unitary matrix for all n.

Proof. When n = 1, we have C1
X,d = Xd and XdX

T
d = I. Now suppose Cn

X,d is unitary

up to some n > 1.

Cn
X,d(C

n
X,d)

† =



I 0 0 . . . 0

0 Cn−1
X,d 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I





I 0 0 . . . 0

0 (Cn−1
X,d )

† 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I


(2.4)

=



I 0 0 . . . 0

0 Cn−1
X,d (C

n−1
X,d )

† 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I


=



I 0 0 . . . 0

0 I 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I


(2.5)

The CNOT gate appears in this family as C2
X,d. The examples from [48] above

may be the only known unitary braid group representations that are also universal

for quantum computation. In section 5 we construct an example of a braid group
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representation that is also universal for quantum computation in all dimensions.
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Chapter 3

Methodology

“... he who seeks for methods without having
a definite problem in mind seeks for the most
part in vain.”

David Hilbert

What follows is a summary of some of the techniques, useful properties, and

constructions used in this dissertation.

3.1 Properties of the Kronecker Product

The aB convention Kronecker product of a m× n matrix A and a k × l matrix B is

the mk × nl block matrix given by:

A⊗ B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB


The Kronecker product satisfies many useful properties including the following

[41]:

• (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD) when all matrices are a appropriately sized.

Note that this also applies to vectors (A⊗ B)(v ⊗ w) = (Av ⊗ Bw).
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• (A⊗ B)−1 = (A−1 ⊗ B−1)

• (A⊗ B)∗ = (A∗ ⊗ B∗) where ∗ denotes complex conjugation.

• (A⊗ B)T = (AT ⊗ BT )

• There exist permutation matrices P1 and P2 such that P1(A⊗B)P2 = (B⊗A).

When A and B are both n×n then the n2×n2 swap operator P defined in the

Dirac notation by P : |ij⟩ → |ji⟩ has the property that P (A⊗B)P = (B⊗A).

Proof. Here we provide a proof of the last property since it is fundamental to the

relationship between two forms of the Yang-Baxter equation. Let ei and ej be two

basis vectors of V . Then P (A⊗B)P (ei ⊗ ej) = P (A⊗B)(ej ⊗ ei) = P (Aej ⊗Bei) =

(Bei ⊗ Aej) = (B ⊗ A)(ei ⊗ ej)

3.2 Gröbner Bases

Gröbner Basis methods are roughly a generalization of Gaussian elimination and

polynomial long division for the purpose of solving systems of multivariate polynomial

equations. For a given set of multivariate polynomials (an ideal) a Gröbner Basis is

another set of multivariate polynomials which can be computed from the original set,

and has properties which can help solve original system. Here we recall the most

relevant definitions and properties from [17].

Definition 3.2.1 (Linear Combination). A linear combination of a set of polynomials

is a weighted sum of those polynomials where the weights are themselves arbitrary

polynomials in the same variables.

Definition 3.2.2 (Ordering). An admissible ordering is one in which 1 is always

considered minimal and u ≺ v ⇒ ut ≺ vt for any power products u, v, t.
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Definition 3.2.3 (Leading coefficient). Given an ordering and a polynomial P , the

greatest term is called the leading term and the corresponding coefficient the leading

coefficient.

Definition 3.2.4 (Power product). Any product of the form xα1
1 . . . xαn

n with no

leading coefficient is called a power product.

Definition 3.2.5 (Monomial). Any product of the variables x1, . . . , xn with a leading

coefficient is called a monomial.

Definition 3.2.6 (Leading power product). The largest power product appearing in

a given polynomial under a particular ordering is called the leading power product.

Denoted LPP (f). Denote by LM(f) the leading monomial which includes the leading

coefficient.

Definition 3.2.7 (Reduction). The polynomial reduction of a polynomial f by a

set of polynomials {g1, . . . gn} is a process that results in the expression of f as a

linear combination of the polynomials g1, . . . gn and a remainder r such that f =

q1g1 + q2g2 + · · ·+ qngn + r

Definition 3.2.8 (S-Polynomial). The S-Polynomial of two polynomials f and g

under a particular ordering is defined by:

SP (f, g) = LCM(LPP (f), LPP (g))

(
f

LM(f)
− g

LM(g)

)

where LCM is the least common multiple.

Definition 3.2.9 (Gröbner basis). A basis B is a Gröbner basis if and only if the S-

polynomials between each pairs of basis elements reduces to 0 (Buchberger’s theorem).

A Gröbner basis GB for a polynomial ideal I has many nice properties including:
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• Given a monomial ordering a GB can be found using Buchberger’s algorithm.

• The variety (that is the set of common zeroes, or solutions to a polynomial

system) generated by I and GB are the same.

• Hilbert’s nullstellensatz The variety generated by I is empty if and only if

GB = {1}

Buchberger’s algorithm [11] is guaranteed to result in a Gröbner basis, however, in

practice the computational complexity can be very large. In particular if the number

of variables is n and d is the maximum degree of any monomial appearing in the set

of polynomials than the degree of the polynomials in GB is bounded by 2(d
2

2
+d)2

n−1 .

Example 3.2.1. As an example consider the following system from [82]:

x2 + y + z − 1 = 0,

x+ y2 + z − 1 = 0,

x+ y + z2 − 1 = 0.

These form an ideal I = {x2+ y+ z− 1, x+ y2+ z− 1, x+ y+ z2− 1}. A Gröbner

basis for this system under the lexicographic monomial ordering can be computed

using Buchberger’s algorithm [17], which is implemented in most computer algebra

systems. The Gröbner basis consists of the following polynomials:

z6 − 4z4 + 4z3 − z2,

18



2yz2 + z4 − z2,

y2 − y − z2 + z,

x+ y + z2 − 1.

The first polynomial contains only the variable z and can be factored:

z6 − 4z4 + 4z3 − z2 = z2(z4 − 4z2 + 4z − 1)

= z2(z − 1)(z3 + z2 − 3z + 1)

= z2(z − 1)2(z2 + 2z − 1)

The original system can now be solved using back substitution into the remaining

basis polynomials to obtain the five solutions:

z = 0 y = 0 x = 1

z = 0 y = 1 x = 0

z = 1 y = 0 x = 0

z = −1−
√
2 y = −1−

√
2 x = −1−

√
2

z = −1 +
√
2 y = −1 +

√
2 x = −1 +

√
2

This example illustrates both the elimination and extension theorems for the pur-

pose of solving multivariate systems. These theorems are explained in more detail in

[17].
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3.3 Automated subsystem solver

In practice computing a Gröbner basis for a large system of multivariate polynomials

may require a prohibitive amount of memory due to the number of polynomials in

the Gröbner basis and the number of terms in each basis polynomials. Computing a

Gröbner basis was therefore only possible for solving the algebraic Yang-Baxter equa-

tion in dimension 2 [37]. Mathematica’s Solve and Reduce functions automatically

utilize Gröbner basis methods for solving multivariate polynomial systems. Therefore

these functions will fail when the Gröbner basis is too large to compute. Some poly-

nomial systems which arise when considering certain special cases of the Yang-Baxter

equation(s) have the property that it is possible to compute a Gröbner basis for a

subset of the polynomials. This observation inspired the following algorithm:

Algorithm 1 Subsystem Solver
1: Attempt to solve a subsystem of size q for a fixed length of time. If time runs out

reduce q.
2: for each partial solution s do
3: Compute the matrix M determined by s and add M to a hash table
4: if M is already in the hash table then
5: return
6: end if
7: Substitute s into the remaining polynomial system
8: if s is a solution then
9: save s and return

10: else if s is not a solution then
11: Recursively apply the subsystem solver on the new system
12: end if
13: end for

When a subsystem of the equations involved in one of the Yang-Baxter equa-

tion(s) can be solved using Gröbner Basis methods the main limitation to finding

all possible solutions is usually the number of additional sub-cases that need to be

considered. Hashing the matrix obtained at each iteration of the algorithm ensures
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(up to potential collisions of the hashing algorithm) that we do not consider duplicate

partial solutions. There are many other approaches to the Yang-Baxter equations,

including choosing a particular ansatz, or initial guess about the form of the solution,

see for example [56], [40], [15], [39], differential approaches [84], [85], and solutions

that arise from particular Lie algebras [6], [64] [77].
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Chapter 4

The Yang-Baxter equations

“Mathematics is the art of giving the same
name to different things.”

Henri Poincaré

4.1 Yang-Baxter equations in the context of topological quantum com-

putation

The gates in a topological quantum computer correspond to physically braiding the

underlying anyonic system. There are several approaches to constructing these gates.

One method is a bottom-up style method such as the one described in [35] and [18],

which starts with a physical anyonic system which will satisfy the braid relations

due to its innate physical properties, the matrices arising from these representations

must satisfy the braided form of the Yang-Baxter equation. The other method is

more top-down, as described in [48], starting with a braid group representation and

then engineering a physical system to realize the corresponding gate. What follows

is motivated by the top-down approach. The changes in phase of a quantum system

consisting of n ordered anyons corresponds to the n strand braid group in topology,

denoted by Bn. The next section is a brief introduction to this group, from which

the braided Yang-Baxter equation naturally arises from the group’s representation

theory. Forms of the Yang-Baxter equations also appear in statistical mechanics,
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quantum groups, and elsewhere.

4.2 The braid group

The braid group Bn was first introduced by E. Artin in 1925 [4]. The group Bn can

be visualized as n vertical strands which are braided over and under one another,

while maintaining that each vertical strand must pass the horizontal line test. That

is, each strand must strictly travel from top to bottom without any local maxima

or minima. Braids are considered equivalent if they are ambient isotopic with fixed

endpoints. Some particular ambient isotopies give rise to the relators of the braid

group. Multiplication between two braids is defined by placing the braids vertically

above each other, and gluing them together as indicated in Figure 4.1.

=

Figure 4.1: The multiplication of two 3 strand braids.

A set of generators for the braid group consists of the set {I, σ1, . . . σn−1}, where

σi is the braid with strand i crossing over and to the right of strand i + 1, and I

is the braid with no crossings. There are two types of relations in the braid group,

which we will refer to as braid relations. The first type of relation requires that

two generators commute as long as they are at least two strands apart: σiσj = σjσi

whenever |i− j| > 1, these relations are sometimes referred to as far commutativity.

The generators must also satisfy the second type of relations referred to as the Yang-

Baxter relations:

σiσi+1σi = σi+1σiσi+1 (4.1)
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This relation can be seen in Figure 4.2 which shows two braids that are ambient

isotopic with fixed endpoints. A group representation is a homomorphism from one

=

Figure 4.2: Two ambient isotopic braids.

group to another. A linear representation is a homomorphism from one group into

a group of invertible matrices. A faithful representation is representation a one-one

homomorphism. Linear representations of the braid group have historically been of

interest for studying the braid group.

If V is a d dimensional vector space over a field F, denote by V ⊗n the tensor

product of V with itself n times. It is then natural to look for representations of Bn

in Aut(V ⊗n). One way to define such a braid group representation is by mapping

each generator as follows:

σi → I⊗i−1 ⊗R⊗ I⊗n−i−1 (4.2)

where R : V ⊗ V → V ⊗ V is an invertible linear map. Here ⊗ denotes the aB

convention Kronecker product between two linear maps. In particular, the ij block

of A⊗B is given by (aijB) and A⊗k denotes the Kronecker product of the matrix A

with itself k times. This defines a representation of the braid group as long as the

mapping R is chosen so that all of the braid relations are satisfied.
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4.3 The braided Yang-Baxter equations

Definition 4.3.1. Let V be a d-dimensional vector space over C. Let I be the

d × d identity matrix on the vector space V , and R : V ⊗ V → V ⊗ V an invertible

linear transformation. The matrix R satisfies the d-dimensional braided Yang-Baxter

equation (bYBE) when:

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R) (4.3)

Any matrix satisfying equation 4.3 is referred to in the literature as an R-matrix

[54]. In the representation defined in equation 4.2, the matrix R, must satisfy the

matrix form of the appropriate bYBE, defined here or in [45], [47], and elsewhere.

4.4 Generalized Yang-Baxter equations

Definition 4.4.1 (Generalized Yang-Baxter equations). Let d, m, and l be natural

numbers. Let V be a vector space over C of dimension d, and R : V ⊗m → V ⊗m be

an invertible matrix. Denote the identity on V by IV . The matrix R is a solution to

the (d,m, l)-generalized Yang-Baxter equation (gYBE) whenever

(R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V ) = (I⊗l

V ⊗R)(R⊗ I⊗l
V )(I⊗l

V ⊗R) (4.4)

This gives another way to represent the braid group as introduced by Rowell,

Zhang, Wu, and Ge in [70]. For any fixed d when m = 2 and l = 1 this expression is

equivalent to the d-dimensional bYBE. Any bYBE solution gives rise to a braid group

representation while a solution to a gYBE gives rise to a braid group representation

whenever the far commutativity relations are also satisfied. This is guaranteed when
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l > m/2 [15]. The corresponding representation of Bn is given by the homomorphism:

σi → I⊗i−1
dl

⊗R⊗ I⊗n−i−1
dl

(4.5)

where Idl is the dl×dl identity matrix. Finding matrices which satisfy either a gYBE

or bYBE is a difficult task and only a few examples are known, even in low dimensions.

A full classification has been completed only for the (2,2,1)-gYBE (equivalent to the

2-dimensional bYBE), see [38]. The unitary solutions to this same set of equations in

[26]. Other solutions have been obtained by picking an ansatz to make the problem

more tractable. One example is the charge conserving ansatz, the solutions for this

ansatz have been fully classified in [57].

Theorem 4.4.1. The only invertible diagonal solutions for the (d,m, l)-generalized

Yang-Baxter equation are scalar multiples of the identity matrix.

Proof. Let (d,m, l) be given such that l < m (the l ≥ m case is handled below). Let

R = diag(r1, . . . , rdm) be an invertible diagonal matrix. Both (R⊗ I) and (I⊗R) are

diagonal and will commute. The left hand side of the (d,m, l)-gYBE can be written:

(R⊗ I⊗l
d )(I⊗l

d ⊗R)(R⊗ I⊗l
d ) = (I⊗l

d ⊗R)(R⊗ I⊗l
d )(I⊗l

d ⊗R) (4.6)

(R2 ⊗ I⊗l
d )(I⊗l

d ⊗R) = (I⊗l
d ⊗R2)(R⊗ I⊗l

d ) (4.7)

(R2 ⊗ I⊗l
d )(I⊗l

d ⊗R) = (R⊗ I⊗l
d )(I⊗l

d ⊗R2) (4.8)

R⊗ I⊗l
d = I⊗l

d ⊗R (4.9)

On the left hand side of equation 4.9, each of the variables of R is repeated dl times:

R⊗ I⊗l
d = diag(r1, ..., r1, r2, ...r2, ..., rdm , ..., rdm) (4.10)
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On the right hand side of equation 4.9, R is repeated dl times.

I⊗l
d ⊗R = diag(r1, r2..., rdm , r1, ...rdm , ..., r1, ..., rdm) (4.11)

To make R ⊗ I⊗l
d = I⊗l

d ⊗ R, the first dl variables: r1, ..., rdl must be equal to r1.

Substituting r1 for those variables in R⊗ I⊗l
d results in r1 being repeated d2l times:

R⊗ I⊗l
d = diag(r1, ..., r1, r1, ...r1, ..., rdm , ..., rdm) (4.12)

Examining R ⊗ I⊗l
d = I⊗l

d ⊗ R shows that the next group of dl variables, labeled

rdl+1 , ..., rd2l+1 , are also equal to r1. This process can be repeated until all dm variables

are shown to equal r1.

Theorem 4.4.2. All invertible solutions to the (d,m, l)-gYBE are of the form λIdm

whenever l ≥ m.

Proof. Fix (d,m, l) with l ≥ m, note that this makes R a dm× dm matrix, and Id the

d× d identity matrix. We can then write:

(R⊗ I⊗l
d )(I⊗l

d ⊗R)(R⊗ I⊗l
d ) = (I⊗l

d ⊗R)(R⊗ I⊗l
d )(I⊗l

d ⊗R) (4.13)

(R⊗ I⊗l
d )(I⊗m

d ⊗ I⊗l−m
d ⊗R)(R⊗ I⊗l

d ) = (I⊗m
d ⊗ I⊗l−m

d ⊗R)(R⊗ I⊗l
d )(I⊗l

d ⊗R)

(4.14)

(R⊗ I⊗l
d )(I⊗m

d R⊗ (I⊗l−m
d ⊗R)I⊗l

d ) = (I⊗m
d R⊗ (I⊗l−m

d ⊗R)I⊗l
d )(I⊗l

d ⊗R)

(4.15)

(R⊗ I⊗l
d )(R⊗ I⊗l−m

d ⊗R) = (R⊗ I⊗l−m
d ⊗R)(I⊗l

d ⊗R) (4.16)
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(R2 ⊗ I⊗l
d (I⊗l−m

d ⊗R)) = ((R⊗ I⊗l−m
d )I⊗l

d ⊗R2) (4.17)

(R2 ⊗ I⊗l−m
d ⊗R) = (R⊗ I⊗l−m

d ⊗R2) (4.18)

(R−1 ⊗ I⊗l
d )(R2 ⊗ I⊗l−m

d ⊗R) = (R−1 ⊗ I⊗l
d )(R⊗ I⊗l−m

d ⊗R2) (4.19)

(R⊗ I⊗l−m
d ⊗R) = (I⊗m

d ⊗ I⊗l−m
d ⊗R2) (4.20)

(R⊗ I⊗l−m
d ⊗R)(I⊗l

d ⊗R−1) = (I⊗m
d ⊗ I⊗l−m

d ⊗R2)(I⊗l
d ⊗R−1) (4.21)

(R⊗ I⊗l−m
d ⊗ I⊗m

d ) = (I⊗m
d ⊗ I⊗l−m

d ⊗R) (4.22)

R⊗ I⊗l
d = I⊗l

d ⊗R (4.23)

It follows by the argument in the proof of theorem 4.4.1 that R must be a scalar

multiple of the identity Idm in order to solve the (d,m, l)-gYBE whenever l ≥ m.

4.5 The algebraic Yang-Baxter equation

Definition 4.5.1 (Algebraic Yang-Baxter equations). Let V = Cd with basis {|i⟩ =

ei | i = 1 . . . d}. Let P : V ⊗ V → V ⊗ V be the swap operator interchanging

qudits denoted in the Dirac notation [21] by P : |ij⟩ → |ji⟩, let I be the d×d identity

matrix, and R : V → V a d2 × d2 matrix. Let Rij denote the matrix which applies R

only on the i and j factors of a vector in V ⊗ V ⊗ V :

R12 = (R⊗ I) (4.24)

R13 = (I ⊗ P )(R⊗ I)(I ⊗ P ) (4.25)

R23 = (I ⊗R) (4.26)

the algebraic Yang-Baxter equation (aYBE) is then defined by:

R12R13R23 = R23R13R12 (4.27)
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The d-dimensional aYBE and bYBE are closely related: if R solves the d-

dimensional aYBE then RP solves the d-dimensional bYBE and vice versa. The

matrix form of the d-dimensional aYBE can be written as a system of polynomial

equations (see [38], [26] or the appendix):

Rk1k2
j1j2

Rl1k3
k1j3

Rl2l3
k2k3

= Rk2k3
j2j3

Rk1l3
j1k3

Rl1l2
k1k2

(4.28)

where each equation is indexed by (j1, j2, j3, l1, l2, l3), with each index ranging from 1

to d, and following the Einstein summation convention used in differential geometry

[27], sums are taken over repeated indices. In this case, the indices denoted with a

k (kp for p = 1, 2, 3) are summed over. This indexing appears with some variation

between references because equation 4.28 is invariant under certain index changes,

as listed in [38]. We will use the lexicographic of basis vectors and the following

convention:

R(ei ⊗ ei) =
∑
a,b

Rab
ij ea ⊗ eb (4.29)

For example, when d = 3, the matrix R looks like:
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R11
11 R11

12 R11
13 R11

21 R11
22 R11

23 R11
31 R11

32 R11
33

R12
11 R12

12 R12
13 R12

21 R12
22 R12

23 R12
31 R12

32 R12
33

R13
11 R13

12 R13
13 R13

21 R13
22 R13

23 R13
31 R13

32 R13
33

R21
11 R21

12 R21
13 R21

21 R21
22 R21

23 R21
31 R21

32 R21
33

R22
11 R22

12 R22
13 R22

21 R22
22 R22

23 R22
31 R22

32 R22
33

R23
11 R23

12 R23
13 R23

21 R23
22 R23

23 R23
31 R23

32 R23
33

R31
11 R31

12 R31
13 R31

21 R31
22 R31

23 R31
31 R31

32 R31
33

R32
11 R32

12 R32
13 R32

21 R32
22 R32

23 R32
31 R32

32 R32
33

R33
11 R33

12 R33
13 R33

21 R33
22 R33

23 R33
31 R33

32 R33
33



(4.30)

Theorem 4.5.1. All d2 × d2 diagonal matrices are solutions to the d-dimensional

aYBE.

Proof. Let R be a d2 × d2 diagonal matrix. Using the indexing convention described

above, a diagonal matrix will only have nonzero entries along the diagonal: Rab
ab and

zero entries elsewhere. Now consider equation 4.28 indexed by (j1, j2, j3, l1, l2, l3). All

terms in the sum on the left side of equation 4.28 will vanish unless each variable is

from the diagonal of R, that is unless k1 = j1, l1 = k1, l2 = k2, k2 = j2, k3 = j3,

l3 = k3. By the same reasoning, the terms in the sum on the right hand side will

vanish unless k2 = j2, k1 = j1, l1 = k1, l2 = k2, j3 = k3, k3 = l3, k2 = l2. This results

in the following equation which is satisfied regardless of the diagonal entries of R:

Rj1l2
j1l2
Rj1j3

j1j3
Rj2j3

j2j3
= Rj2j3

j2j3
Rj1j3

j1j3
Rj1l2

j1l2
(4.31)
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4.6 The set-theoretic Yang-Baxter equation

In 1992 Drinfeld posed the question of classifying permutation solutions to the alge-

braic and braided Yang-Baxter equations. This question can be generalized to the

set-theoretic Yang-Baxter equation, of which the permutation solutions are a partic-

ular class of solution.

Classifying the set-theoretic (permutation) solutions to the Yang-Baxter equation

is a problem posed by Drinfeld in 1992 [24]. The set theoretic Yang-Baxter equation

when the cardiality of the set X is equal to d is equivalent to the d-dimensional

bYBE. A d-dimensional set theoretic solution can be extended to a solution of the

d-dimensional bYBE via linearization. In particular by letting the elements of X

form a basis of a vector space we can convert a d-dimensional set theoretic solution

to a permutation matrix solution of the d-dimensional bYBE. The field of quantum

groups has historically studied algebraic structures arising from bYBE solutions over

vector spaces. Set-theoretic solutions also give rise to interesting algebraic structures

[31]. What follows is an introduction to the terminology of set-theoretic solutions.

The paper by Etingof, Schedler, and Solovieve in 1999 [28] initiated the theory of

involutive solutions. Subsequently in 2003 Gateva-Ivanova and Van den Bergh in [30]

further studied square-free involutive solutions (ones in which r(x, x) = (x, x) for all

x ∈ X). Since then, lots of work has been done on involutive solutions and associated

algebraic structures including connections to radical rings, and homology [67], [12].

These connections have produced new families of set-theoretic solutions, however, the

problem of classifying all solutions or constructing new families of solutions is still

open [67]. Next we list some basic definitions as in [67] and elsewhere.

Definition 4.6.1 (Set-theoretic Yang-Baxter equation). Let X be a nonempty set

and r : X ×X → X ×X, let I denote the identity on X, and let × denote the direct
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product. The set-theoretic Yang-Baxter equation (set-theoretic bYBE) is defined by:

(r × I)(I × r)(r × I) = (I × r)(r × I)(I × r) (4.32)

The pair (X, r) is a set-theoretic solution to the Yang-Baxter equation.

Definition 4.6.2 (Set-theoretic aYBE). Let X be a nonempty set and r : X ×X →

X × X, let I denote the identity on X, and let × denote the direct product. The

set-theoretic quantum Yang-Baxter equation (set-theoretic aYBE) is defined by:

r12r13r23 = r23r13r12 (4.33)

The pair (X, r) is considered a set-theoretic solution to the quantum Yang-Baxter

equation.

The map r can be written in terms of it’s two components:

r(x, y) = (σx(y), τy(x)) (4.34)

Definition 4.6.3 (Non-degenerate). The pair (X, r) is said to be non-degenerate if

both σx and τy are bijective maps from X to itself, for each x ∈ X. If only σx is

bijective then (X, r) is said to be left non-degenerate, and if only τy is bijective then

(X, r) is said to be right non-degenerate.

Definition 4.6.4 (Involutive). The pair (X, r) is an involutive solution if r2 is the

identity on X ×X.

Definition 4.6.5 (Square-free). A solution (X, r) is square-free if r(x, x) = (x, x) for

all x ∈ X.
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Definition 4.6.6 (Finite). A solution (X, r) is finite if the set X is finite.

When a solution is non-degenerate and involutive one can write:

r2(x, y) = r(σx(y), τy(x)) = (σσx(y)(τy(x)), ττy(x)(σx(y))) = (x, y) (4.35)

and therefore:

τy(x) = σ−1
σx(y)

(x) (4.36)

σx(y) = τ−1
τy(x)

(y) (4.37)

The majority of papers in this area focus on non-degenerate involutive solutions due

to the connection, conjectured by Gateva-Ivanova [30]. Gateva-Ivanova conjectured

that every non-degenerate, involutive, square-free, finite solution to the set-theoretic

aYBE, comes from a binomial semigroup (defined in [30]). The converse of this

conjecture was already known to be true [73]. This conjecture was proved by Rump

in [71], leading many to study these semigroups and their associated solutions.

Definition 4.6.7 (Decomposable). A solution (X, r) is decomposable if there is a

disjoint partition X = Y ⊔Z such that both Y and Z are nonempty, r(Y ×Y ) ⊆ Y ×Y ,

and r(Z × Z) ⊆ Z × Z

Gateva-Ivanova’s conjecture can be equivalently stated in terms of decomposabil-

ity [28]: Let 1 < |X| <∞, then there is a non-trivial decomposition X = Y ⊔Z such

that Y × Y and Z × Z are invariant under R.

In [72] Rump introduces the idea of Braces to study involutive non-degenerate

solutions. In 2017 Guarnieri and Vendramin introduced the idea of skew braces to

study non-degenerate solutions that aren’t necessarily involutive [33].
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4.6.0.1 Algebraic structures associated to set theoretic solutions [83]

Skew braces correspond to non-degenerate solutions, and braces correspond to invo-

lutive non-degenerate solutions. Classifying braces and skew braces therefore gives

a pathway to classifying these types of solutions. It is still unknown what algebraic

structure corresponds to general set-theoretic solutions.

Definition 4.6.8 (Structure group). The structure group [72], [33] of a solution (X, r)

is the group

G(X, r) = {X|xy = σx(y)τy(x)}

Definition 4.6.9 (Skew brace). A (left) skew brace [72], [33] is a set B with two

group operations, denoted + and ◦, such that (B,+) and (B, ◦) are groups and for

any a, b, c ∈ B the following relation is satisfied:

a ◦ (b+ c) = (a ◦ b)− a+ (a ◦ c)

Definition 4.6.10 (Brace). A (left) brace [72], [33] is a skew brace, denoted by

(B,+, ◦), where (B,+) is abelian.

Braces and skew braces are connected to set theoretic solutions [33] as follows.

Let A be a skew left brace. Let σa(b) = a−1 + (a ◦ b). Then rA : A × A → A × A

defined by:

rA(a, b) = (σa(b), σ
−1
σa(b)

((a ◦ b)−1 + a+ (a ◦ b)) (4.38)

is a non-degenerate solution of the Yang-Baxter equation. The solution rA is involu-

tive if and only if a + b = b + a for all a, b ∈ A. Skew braces have received a lot of
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focus recently due to the connection between skew braces and set-theoretic solutions,

see [13], [14], [43], and the references therein.

Structure Solution Type
Braces Non-degenerate involutive

Skew braces Non-degenerate
q-cycle sets Left non-degenerate

? Arbitrary solutions

Table 4.1: A summary of the algebraic structures associated to different set theoretic
solution types [83]

4.7 Symmetries of the Yang-Baxter equations

Each solution of a gYBE generates more solutions under the following symmetries,

to the same gYBE (and with the appropriate choice of (d,m, l) these symmetries also

generate more solutions to the d-dimensional bYBE and d-dimensional aYBE).

Proposition 4.7.1. If R is an invertible solution to the (d,m, l)-gYBE then the

following are also invertible solutions:

1. λR for any nonzero scalar λ

2. R−1

3. The complex conjugate R∗

4. The transpose RT and hence the complex adjoint R†

5. Q⊗mR(Q−1)⊗m where Q is any complex non-singular d× d matrix.

6. PRP when m = 2, l = 1 and P : |ij⟩ → |ji⟩ is the swap matrix.

Proposition 4.7.2. If (X, r) is an invertible solution to the set-theoretic Yang-Baxter

equation then so are the following:
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1. (X, r−1)

2. (X, (Q×Q)r(Q×Q)) where Q : X → X is invertible.

These symmetries are well known and appear in [46] and [38], a proof that 1-5

apply to the gYBEs, and that 6 applies to the d-dimensional bYBE and d-dimensional

aYBE is provided in appendix A.1. The proof for the symmetries of the set-theoretic

equations is very similar after replacing ⊗ with ×.

Definition 4.7.1 (Diagonal dressing). New solutions to the d-dimensional aYBE can

be obtained from already known solutions via diagonal dressing as described in [39].

Let R̂ be a solution to the m-dimensional aYBE. Then a solution in dimension n > m,

denoted R, can be obtained as follows. Let A ⊂ {1, . . . , n} and define

Rkl
ij =


R̂kl

ij i, j, k, l ∈ A

sijδ
k
i δ

l
j otherwise

(4.39)

The numbers sij must satisfy:

R̂kl
ij (smismj − smksml) = 0 (4.40)

R̂kl
ij (simsml − skmsmj) = 0 (4.41)

R̂kl
ij (simsjm − skmslm) = 0 (4.42)

for all i, j, k, l ∈ A and m /∈ A.

Definition 4.7.2 (Block dressing). Alternatively R can be constructed using a block

dressing [39]:
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Rkl
ij =



R̂kl
ij i, j, k, l ∈ A

δki F
l
j j, l ∈ A, i, k /∈ A

Gk
i δ

l
j i, k ∈ A, j, l /∈ A

δki δ
l
j otherwise

(4.43)

Where F and G must satisfy:

(F ⊗ F )R̂ = R̂(F ⊗ F ) (4.44)

(I ⊗ F )R̂(G⊗ I) = (G⊗ I)R̂(I ⊗ F ) (4.45)

(G⊗G)R̂ = R̂(G⊗G) (4.46)

FG = GF (4.47)

Example 4.7.3. Next we describe solutions arising from a commutative set of ma-

trices. Let {N(α),M(α)|α ∈ S} be a set of commuting matrices d2 × d2 and S an

indexing set. Then the following is a solution to the d-dimensional aYBE [39]:

Rkl
ij =

∑
α∈S

N(α)kiM(α)lj (4.48)

Example 4.7.4. An example of a commutative ring of matrices in any dimension is
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the set of circulant matrices which take the form:

c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2

. . .
. . . cn−1

cn−1 cn−2 . . . c1 c0


(4.49)
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Chapter 5

A universal Yang-Baxter operator

“It is possible to invent a single machine
which can be used to compute any
computable sequence.”

Alan Turing

5.1 Constructing the operator

Unitary representations of the braid group serve as the gates in a topological quantum

computer [48]. It is therefore desirable to find unitary solutions the d-dimensional

bYBE or gYBE, which are also universal for quantum computation. Finding solu-

tions to any of the variation Yang-Baxter equation is generally a difficult task, which

reduces to solving a large system of multivariate polynomial equations. In particu-

lar, the d-dimensional bYBE involves solving a system of d6 cubic equations in d4

variables. What follows is one of the primary contributions of this paper: a not pre-

viously noted universal unitary solution to the d-dimensional bYBE for any d ≥ 2.

To construct the solution, first recall the discrete quantum Fourier transform denoted
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Fd and with ω = ei2π/d:

Fd =
1√
d



1 1 1 . . . 1

1 ω ω2 . . . ωd−1

1 ω2 ω4 . . . ω2(d−1)

...
...

...
. . .

...

1 ωd−1 ω2(d−1) . . . ω(d−1)(d−1)


(5.1)

To construct the d-dimensional bYBE solution, we define the following unitary

solution to the d-dimensional aYBE:

Rd = (I ⊗ Fd)C
2
X,d(I ⊗ F †

d ) (5.2)

In theorem 5.1.1, we show that this solution is part of a larger family of diagonal

unitary solutions to the d-dimensional aYBE, any of which can be converted to a

solution of the d-dimensional bYBE by composing with the swap operator P .

Theorem 5.1.1. All d2 × d2 diagonal matrices are solutions to the d-dimensional

aYBE, and in particular, Rd provides an example of an exactly universal unitary

solution to the d-dimensional aYBE.

Proof. First note that Rd is unitary since it is the product of unitary matrices. Since

the CNOT gate C2
X,d along with all single qudit gates is an exactly universal gate

set, another way to prove a particular matrix is exactly universal is to show that

CNOT can be expressed using that matrix and the Kronecker product of local unitary

matrices [10]. To express C2
X,d in terms of Rd and the Kronecker product of local linear

transformations, we can conjugate Rd by (I ⊗ Fd) as follows:
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C2
X,d = (I ⊗ F †

d )Rd(I ⊗ Fd)

To see that Rd is a solution to the d-dimensional algebraic Yang-Baxter equation,

we can simplify the form of Rd using block matrix multiplication:

Rd = (I ⊗ Fd)C
2
X,d(I ⊗ F †

d )

=



Fd 0 0 . . . 0

0 Fd 0 . . . 0

0 0 Fd . . . 0

...
...

...
. . .

...

0 0 0 . . . Fd





I 0 0 . . . 0

0 Xd 0 . . . 0

0 0 I . . . 0

...
...

...
. . .

...

0 0 0 . . . I





F †
d 0 0 . . . 0

0 F †
d 0 . . . 0

0 0 F †
d . . . 0

...
...

...
. . .

...

0 0 0 . . . F †
d



=



I 0 0 . . . 0

0 FdXdF
†
d 0 . . . 0

0 0 I . . . 0

...
...

...
. . .

...

0 0 0 . . . I


This matrix turns out to be diagonal since the Fourier transform diagonalizes Xd.

The characteristic polynomial of Xd is λd − 1 and therefore the eigenvalues of Xd are

the d roots of unity: e k2πi
d for k = 1 . . . d. It is then straightforward to check that the

corresponding eigenvectors are given by the columns of Fd.

As a consequence of theorem 4.5.1 RdP is a unitary solution to the d-dimensional

bYBE. and by the symmetries above (Q⊗Q)Rd(Q⊗Q)−1 is also a universal unitary

solution to the d-dimensional bYBE whenever Q is a complex d× d unitary matrix.
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This provides a way to generate many non-trivial examples of unitary solutions to

the d-dimensional bYBE, which are also universal as quantum gates, and provide an

explicit decomposition of the CNOT gate.

Example 5.1.2. When d = 2 we have ω = ei2π/2 = eπi = −1 and:

F2 =
1√
2

1 1

1 −1

 (5.3)

I ⊗ F2 =
1√
2



1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


= I ⊗ F †

2 (5.4)

C2
X,2 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(5.5)

Therefore Rd is given by:

Rd = (I ⊗ F2)C
2
X,2(I ⊗ F †

2 ) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(5.6)

This example is one of the universal gates found in dimension 2 in [48].

Example 5.1.3. Another non-diagonal example is when Q = F 3
3 , then we obtain the

following unitary solution to the 3-dimensional bYBE:
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1
6



4 1− i
√
3 1 + i

√
3 0 0 0 2 −1 + i

√
3 −1− i

√
3

2 −1 + i
√
3 −1− i

√
3 4 1− i

√
3 1 + i

√
3 0 0 0

0 0 0 2 −1 + i
√
3 −1− i

√
3 4 1− i

√
3 1 + i

√
3

1 + i
√
3 4 1− i

√
3 0 0 0 −1− i

√
3 2 −1 + i

√
3

−1− i
√
3 2 −1 + i

√
3 1 + i

√
3 4 1− i

√
3 0 0 0

0 0 0 −1− i
√
3 2 −1 + i

√
3 1 + i

√
3 4 1− i

√
3

1− i
√
3 1 + i

√
3 4 0 0 0 −1 + i

√
3 −1− i

√
3 2

−1 + i
√
3 −1− i

√
3 2 1− i

√
3 1 + i

√
3 4 0 0 0

0 0 0 −1 + i
√
3 −1− i

√
3 2 1− i

√
3 1 + i

√
3 4



As any diagonal matrix solves the d-dimensional aYBE, other universal unitary

solutions to the d-dimensional bYBE can be generated in a similar way. The condi-

tions under which an arbitrary diagonal matrix is universal is provided in [10]. If a

topological quantum computer is built, this result provides a method for constructing

a qudit gate that is guaranteed to be universal and solve the d-dimensional bYBE.
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Chapter 6

X-shaped solutions

“Let us wonder at how X was just a rare
letter until algebra came along and made it
something special that can be unravelled to
reveal inner value.”

Bernardine Evaristo

6.1 X-shaped solutions to the gYBE

The permutation solutions to a gYBE can be found by brute force computation in

low dimensions. From a permutation matrix solution, one can construct a monomial

solution by replacing the 1’s with variables and solving for the conditions under which

the new matrix is a solution. The (2, 3, 1) and (2, 3, 2) monomial solutions have been

classified fully in [62]. In contrast to the bYBEs, the (2, 3, 1) and (2, 3, 2) gYBEs

don’t have any monomial solutions with d free parameters. Other than the monomial

solutions in [62], there are currently only a few known solutions to the non-bYBE

(d,m, l)-gYBE up to the symmetries in proposition 4.7.1. One well known solution

is the X-shape solution to the (2, 3, 2)-gYBE that appears in [70]:
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RX =
1√
2



1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 −1 1 0 0 0

0 0 −1 0 0 1 0 0

0 −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1



(6.1)

After that solution was found, a handful of other solutions were found in [15], [69],

[49]. The question of finding all unitary (2, 3, 2)-gYBE solutions with nonzero entries

in the same position as the nonzero entries of RX is posed in [15]. This question

demonstrates another more general method used to find solutions: pick an ansatz or

initial guess about the form of the matrix, and in some cases, this will simplify the

system of polynomial equations enough that they can be fully solved. We compute

all X-shaped solutions for 6 different instances of the gYBE, and the 3-dimensional

aYBE. We were unable to find any solutions when d is odd, leading to the following

conjecture.

6.1.1 Odd dimensional solutions

Conjecture 6.1.1. The (d,m,l)-gYBE has no X-shaped solutions when d is odd.

Lemma 6.1.1 (The determinant of an X-shaped matrix). Let d > 1 be an odd

integer. Let a = d+1
2

, and ai = 2a − i. Let ≺ denote the lexicographic ordering.

Define the set of paired indices A by:
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A = {ij|i+ j = even and ij ≺ aa} ∪ {ij|i+ j = odd and ij ≻ aa} (6.2)

where i and j both range from 1 to d. The determinant of a d2× d2 X-shaped matrix

is given by:

Raa
aa

∏
ij∈A

Rij
ijR

aiaj
aiaj

−Rij
aiaj

R
aiaj
ij (6.3)

Example 6.1.2. When d = 3 define the following two sets:

A1 = {12, 21} (6.4)

A2 = {33, 31} (6.5)

Define the permutation S such that S(e1 ⊗ e2) = e3 ⊗ e3, S(e2 ⊗ e1) = e3 ⊗ e1. Then

the X-shaped matrix:



R11
11 0 0 0 0 0 0 0 R11

33

0 R12
12 0 0 0 0 0 R12

32 0

0 0 R13
13 0 0 0 R13

31 0 0

0 0 0 R21
21 0 R21

23 0 0 0

0 0 0 0 R22
22 0 0 0 0

0 0 0 R23
21 0 R23

23 0 0 0

0 0 R31
13 0 0 0 R31

31 0 0

0 R32
12 0 0 0 0 0 R32

32 0

R33
11 0 0 0 0 0 0 0 R33

33



(6.6)
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is transformed into the block diagonal matrix:

SRS−1 =



R11
11 R

11
33 0 0 0 0 0 0 0

R33
11 R

33
33 0 0 0 0 0 0 0

0 0 R13
13 R

13
31 0 0 0 0 0

0 0 R31
13 R

31
31 0 0 0 0 0

0 0 0 0 R22
22 0 0 0 0

0 0 0 0 0 R23
23 R

23
21 0 0

0 0 0 0 0 R21
23 R

21
21 0 0

0 0 0 0 0 0 0 R32
32 R

32
12

0 0 0 0 0 0 0 R12
32 R

12
12



(6.7)

Proof of lemma 6.1.1. Let d > 1 be an odd integer. Let a = d+1
2

, and ai = 2a − i.

Let ≺ denote the lexicographic ordering. Define the sets of paired indices A1 and A2

by:

A1 = {ij|i+ j = odd and ij ≺ aa} (6.8)

A2 = {ij|i+ j = even and ij ≻ aa} (6.9)

where i and j both range from 1 to d. Consider A1 as sorted in lexicographic order and

A2 as sorted in reverse lexicographic order. Define the permutation S : V ⊗V → V ⊗V

which sends the basis vectors ei ⊗ ej for ij ∈ A1 to the basis vector ek ⊗ el where

kl ∈ A2 and kl is at the same position in the set A2 as ij is in A1.

Then under conjugation by S any d2 × d2 X-shaped matrix is similar to a block

diagonal matrix consisting of one 1 × 1 block with entry Raa
aa, and d2−1

2
2 × 2 blocks
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given by:

 Rij
ij Rij

aiaj

R
aiaj
ij R

aiaj
aiaj

 (6.10)

where ij ∈ A = {ij|i + j = even and ij ≺ aa} ∪ {ij|i + j = odd and ij ≻ aa}. The

determinant of R is therefore the product of Raa
aa and the determinants of each 2× 2

block.

Theorem 6.1.3. The d dimensional bYBE has no X-shaped solutions when d is odd.

Proof. Let d be an odd integer. The X-shaped ansatz requires that:

Rab
ij =


nonzero i = a and j = b (diagonal entries)

nonzero i = 1 + d− a and j = 1 + d− b (antidiagonal entries)

0 otherwise

(6.11)

The d-dimensional bYBE can be written in the Einstein notation as follows:

Rk1k2
j2j3

Rl1k3
j1k1

Rl2l3
k3k2

= Rk1k2
j1j2

Rk3l3
k2j3

Rl1l2
k1k3

(6.12)

where each variable can range from 1 to d, and sums are taken over repeated variables.

Consider equation 6.12 when j1 = j2 = l1 = l2 = d+1
2

and j3 = l3 = d−1
2

. To

simplify the notation let a = d+1
2

, b = a − 1. We will use the convention that only

repeated indices labeled with a k are summed over. Equation 6.12 can then be written

as follows:
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Rk1k2
ab Rak3

ak1
Rab

k3k2
= Rk1k2

aa Rk3b
k2b
Raa

k1k3
(6.13)

Terms on the left side will vanish unless k1 = a and k2 = a or k1 = 1 + d− a = a

and k2 = 1+ d− b = d+3
2

= a+1, which we will denote by c = a+1. In the first case

we get Raa
abR

ak3
aa R

ab
k3a

, which is only nonzero when k3 = a. In the second case we get

Rac
abR

ak3
aa R

ab
k3c

, which is nonzero when k3 = a. So on the left side of 6.13 we get only

two nonzero terms: Rab
abR

aa
aaR

ab
ab +Rac

abR
aa
aaR

ab
ac. The terms on the right side of equation

6.13 will vanish unless k1 = k2 = a, resulting in Raa
aaR

k3b
ab R

aa
ak3

which is only nonzero

when k3 = a. Therefore we get the equation:

Rab
abR

aa
aaR

ab
ab +Rac

abR
aa
aaR

ab
ac = Raa

aaR
ab
abR

aa
aa (6.14)

Raa
aa(R

ab
abR

ab
ab +Rac

abR
ab
ac −Rab

abR
aa
aa) = 0 (6.15)

Now consider equation 6.12 with j1 = j2 = l1 = l2 = a, j3 = b, and l3 = c:

Rk1k2
ab Rak3

ak1
Rac

k3k2
= Rk1k2

aa Rk3c
k2b
Raa

k1k3
(6.16)

The terms on the left will vanish unless k1 = a and k2 = b or k1 = 1 + d− a = a

and k2 = 1 + d − b = c. In the first case Rab
abR

ak3
aa R

ac
k3b

̸= 0 requires k3 = a, leaving

only the term: Rab
abR

aa
aaR

ac
ab. In the second case Rac

abR
ak3
aa R

ac
k3c

̸= 0 requires that k3 = a.

So there are two nonzero terms on the left: Rab
abR

aa
aaR

ac
ab and Rac

abR
aa
aaR

ac
ac

The terms on the right side of equation 6.16 will vanish unless k1 = k2 = k3 = a

which leaves only one term: Raa
aaR

ac
abR

aa
aa. Therefore for R to satisfy the d-dimensional

bYBE its entries must satisfy the equation:
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Rab
abR

aa
aaR

ac
ab +Rac

abR
aa
aaR

ac
ac = Raa

aaR
ac
abR

aa
aa (6.17)

Raa
aaR

ac
ab(R

ab
ab +Rac

ac −Raa
aa) = 0 (6.18)

All entries are nonzero to preserve the X-shape, so the only solution is when Raa
aa =

Rab
ab +Rac

ac substituting this into equation 6.15 results in:

Rab
abR

ab
ab +Rac

abR
ab
ac −Rab

ab(R
ab
ab +Rac

ac) = 0 (6.19)

Rac
abR

ab
ac −Rab

abR
ac
ac = 0 (6.20)

Now consider that a + c = 2a + 1 is odd and a(a + 1) ≻ aa, therefore ac is an

index in the product for the determinant of R in lemma 6.1.1. This means that the

equation is a factor of the determinant of R:

Rac
acR

(2a−a)(2a−c)
(2a−a)(2a−c) −Rac

(2a−a)(2a−c)R
(2a−a)(2a−c)
ac (6.21)

Recall that c = a+ 1, b = a− 1, so 2a− c = 2a− (a+ 1) = a− 1 = b resulting in:

Rac
acR

ab
ab −Rac

abR
ab
ac (6.22)

This must be nonzero for R to be invertible, meaning that R cannot solve equation

6.20, and therefore an X shaped matrix cannot solve the d dimensional bYBE when

d is odd.

A similar proof might apply to the gYBE when d is odd. We now list X-shaped
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solutions found for certain instances of the gYBE. In the case of the (2, 3, 2)-gYBE

we classify which ones can be made unitary. The solving process is fully described

only in the (2, 3, 2) case. The other cases were solved using a very similar process,

although in many cases the initial factoring process takes hundreds of steps. Table

6.1.1 provides a summary of the X-shaped solutions found in this paper. Solutions

are given up to the symmetries listed in proposition 4.7.1, except with Q restricted to

only permutations and diagonal matrices, therefore the numbers in table 6.1.1 should

be considered as upper bounds, except in the cases of (2, 2, 1) and (2, 3, 2).

(m, l) d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

(2, 1) 4 0 91 0 - 0
(3, 1) 19 0 - 0 - 0?
(3, 2) 4 0 - 0? - 0?
(4, 1) - 0 - 0? - 0?
(4, 2) 91 0 - 0? - 0?
(4, 3) 12 0 - 0? - 0?

Table 6.1: Number of X-shaped solutions for different values of (d,m, l). The (2,4,1)
case could not be fully classified. When dm > 32 and d is even the system is too large
for the author’s computational resources, but could be completed in the future with
access to more computational power.

The following sections list all the X-shaped solutions found for different instances

of the gYBE. All variables can take any complex value unless it breaks the X-shape,

results in division by 0, or is otherwise specified. To list closely related solutions we

let ± denote a choice of positive or negative, all ± are assumed to take the same sign,

and ∓ = −±.

6.1.2 (2,2,1)-gYBE X-shaped solutions

The (2,2,1) X-shaped ansatz results in a polynomial system consisting of 32 equations

in 8 unknowns. These are also the 2-dimensional aYBE X-shaped solutions after
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composing with the swap matrix. Let γ =
√
β2 − 2β + 2, the four solutions are:



1 0 0 α

0 1 −1 0

0 1 1 0

− 1
α

0 0 1


(6.23)



β 0 0 α

0 1 β 0

0 β 1 0

1
α

0 0 β


(6.24)



β 0 0 α

0 1 −β 0

0 −β 1 0

1
α

0 0 β


(6.25)



2− β 0 0 α

0 1 γ 0

0 γ 1 0

1
α

0 0 β


(6.26)

6.1.3 (2,3,1)-gYBE X-shaped solutions

The (2,3,1) X-shaped ansatz results in a polynomial system consisting of 64 equations

in 16 unknowns.



1 0 0 0 0 0 0 α

0 1 0 0 0 0 ±β 0

0 0 1 0 0 β 0 0

0 0 0 1 ±1
β

0 0 0

0 0 0 ∓β 1 0 0 0

0 0 −1
β

0 0 1 0 0

0 ∓1
β

0 0 0 0 1 0

−1
α

0 0 0 0 0 0 1



(6.27)
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1
2
(1− η2) 0 0 0 0 0 0 α

0 1 0 0 0 0 −iβ 0

0 0 −1
2
(η − 1)2 0 0 β 0 0

0 0 0 −1
2
(η − 1)2 i(η−1)2

2β
0 0 0

0 0 0 −iβ 1 0 0 0

0 0 (η−1)2

2β
0 0 1 0 0

0 i(η−1)2

2β
0 0 0 0 −1

2
(η − 1)2 0

− (η−1)((η−1)η+2)
2α

0 0 0 0 0 0 η


(6.28)

±i 0 0 0 0 0 0 α

0 1 0 0 0 0 −iβ 0

0 0 1 0 0 β 0 0

0 0 0 1 − i
β

0 0 0

0 0 0 −iβ 1 0 0 0

0 0 − 1
β

0 0 1 0 0

0 − i
β

0 0 0 0 1 0

1
α

0 0 0 0 0 0 ±i



(6.29)



η 0 0 0 0 0 0 α

0 1 0 0 0 0 ∓βη 0

0 0 ±η 0 0 β 0 0

0 0 0 1 ∓η
β

0 0 0

0 0 0 ∓βη 1 0 0 0

0 0 1
β

0 0 ±η 0 0

0 ∓η
β

0 0 0 0 1 0

1
α

0 0 0 0 0 0 η



(6.30)
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Let ϕ =
√
(η − 2)η + 2.



2− η 0 0 0 0 0 0 α

0 1 0 0 0 0 ∓βϕ 0

0 0 ±ϕ 0 0 β 0 0

0 0 0 1 ∓ϕ
β

0 0 0

0 0 0 ∓βϕ 1 0 0 0

0 0 1
β

0 0 ±ϕ 0 0

0 ∓ϕ
β

0 0 0 0 1 0

1
α

0 0 0 0 0 0 η



(6.31)



η 0 0 0 0 0 0 α

0 1 0 0 0 0 ±βη 0

0 0 ±η 0 0 β 0 0

0 0 0 1 ± η
β

0 0 0

0 0 0 ±βη 1 0 0 0

0 0 1
β

0 0 ±η 0 0

0 ± η
β

0 0 0 0 1 0

1
α

0 0 0 0 0 0 η



(6.32)
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2− η 0 0 0 0 0 0 α

0 1 0 0 0 0 ±βϕ 0

0 0 ±ϕ 0 0 β 0 0

0 0 0 1 ±ϕ
β

0 0 0

0 0 0 ±βϕ 1 0 0 0

0 0 1
β

0 0 ±ϕ 0 0

0 ±ϕ
β

0 0 0 0 1 0

1
α

0 0 0 0 0 0 η



(6.33)



1 0 0 0 0 0 0 α

0 1 0 0 0 0 β 0

0 0 ±i 0 0 β 0 0

0 0 0 1 1
β

0 0 0

0 0 0 −β 1 0 0 0

0 0 1
β

0 0 ±i 0 0

0 − 1
β

0 0 0 0 1 0

− 1
α

0 0 0 0 0 0 1



(6.34)

For the next solution let θ =
√

1 + βγ(βγ − 14), Φ =
√
βγ (βγ + θ − 6) + θ − 1,
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Ψ = −
√
β
√
βγ+1

√
βγ−θ+1

2
√
2
√
γ

, κ = −
√
γ
√
βγ+1

√
βγ−θ+1

2
√
2
√
β

, and ρ = 1
4
(−βγ + θ + 3).



−βγ ± Φ
2
√
2

0 0 0 0 0 0 α

0 1 0 0 0 0 Ψ 0

0 0 ρ 0 0 β 0 0

0 0 0 −βγ κ 0 0 0

0 0 0 Ψ 1 0 0 0

0 0 γ 0 0 1
4
(−3βγ − θ + 1) 0 0

0 κ 0 0 0 0 −βγ 0

±
√
2αΦ(βγ+1)−4αβγ

4α2 0 0 0 0 0 0 1∓ Φ
2
√
2



(6.35)

The next solutions have a similar form as the ones above except with Φ =

i
√
βγ (βγ + θ − 6) + θ + 1, Ψ = −

√
β
√
βγ+1

√
βγ+θ+1

2
√
2
√
γ

, κ =
√
γ
√
βγ+1

√
βγ+θ+1

2
√
2
√
β

, and ρ =

1
4
(−βγ − θ + 3).



−βγ ± Φ
2
√
2

0 0 0 0 0 0 α

0 1 0 0 0 0 Ψ 0

0 0 ρ 0 0 β 0 0

0 0 0 −βγ κ 0 0 0

0 0 0 Ψ 1 0 0 0

0 0 γ 0 0 1
4
(−3βγ + θ + 1) 0 0

0 κ 0 0 0 0 −βγ 0

±
√
2αΦ(βγ+1)−4αβγ

4α2 0 0 0 0 0 0 1∓ Φ
2
√
2



(6.36)
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6.1.4 (2,3,2)-gYBE X-shaped solutions

The (2,3,2) X-shaped ansatz results in a polynomial system consisting of 128 equations

in 16 unknowns. What follows is a description of the procedure used to obtain all 4

distinct families of X-shaped solutions to the (2, 3, 2)-gYBE.

X =



r11 0 0 0 0 0 0 r18

0 r22 0 0 0 0 r27 0

0 0 r33 0 0 r36 0 0

0 0 0 r44 r45 0 0 0

0 0 0 r54 r55 0 0 0

0 0 r63 0 0 r66 0 0

0 r72 0 0 0 0 r77 0

r81 0 0 0 0 0 0 r88



(6.37)

The variable r22 appears in the most equations and can be scaled to 1 using the overall

scaling symmetry since all variables are assumed to be nonzero. After this scaling,

the following equations are in the set:

−r36r63(r55 − 1) = 0 (6.38)

r36r63(r44 − r77) = 0 (6.39)

and therefore r55 = 1 and r77 = r44. After making these substitutions 108 equations

remain. This system is then small enough that a Gröbner basis can be computed

using a computer algebra system. We used Mathematica to compute a Gröbner basis

with a lexicographic monomial ordering, and then used the reduce function to find
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all solutions to the system. Initially this procedure results in 7 solutions, which are

listed below, with α, β, γ, δ being complex free parameters:

X1 =



δ 0 0 0 0 0 0 αβ2

δ2

0 1 0 0 0 0 β 0

0 0 δ 0 0 α 0 0

0 0 0 1 δ2

β
0 0 0

0 0 0 β 1 0 0 0

0 0 1
α

0 0 δ 0 0

0 δ2

β
0 0 0 0 1 0

δ2

αβ2 0 0 0 0 0 0 δ



(6.40)

X2 =



−i 0 0 0 0 0 0 iαβ2

0 1 0 0 0 0 β 0

0 0 1 0 0 α 0 0

0 0 0 −i i
β

0 0 0

0 0 0 β 1 0 0 0

0 0 i
α

0 0 −i 0 0

0 i
β

0 0 0 0 −i 0

1
αβ2 0 0 0 0 0 0 1



(6.41)

58



X3 =



1 0 0 0 0 0 0 αβ2

0 1 0 0 0 0 −β 0

0 0 1 0 0 α 0 0

0 0 0 1 − 1
β

0 0 0

0 0 0 β 1 0 0 0

0 0 − 1
α

0 0 1 0 0

0 1
β

0 0 0 0 1 0

− 1
αβ2 0 0 0 0 0 0 1



(6.42)

X5 =



i 0 0 0 0 0 0 −iαβ2

0 1 0 0 0 0 β 0

0 0 1 0 0 α 0 0

0 0 0 i − i
β

0 0 0

0 0 0 β 1 0 0 0

0 0 − i
α

0 0 i 0 0

0 − i
β

0 0 0 0 i 0

1
αβ2 0 0 0 0 0 0 1



(6.43)
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X6 =



1 0 0 0 0 0 0 αβ2

0 1 0 0 0 0 β 0

0 0 1 0 0 α 0 0

0 0 0 1 1
β

0 0 0

0 0 0 β 1 0 0 0

0 0 1
α

0 0 1 0 0

0 1
β

0 0 0 0 1 0

1
aβ2 0 0 0 0 0 0 1



(6.44)

X7 =



1 0 0 0 0 0 0 αβ2

γ

0 1 0 0 0 0 β 0

0 0 γ 0 0 α 0 0

0 0 0 γ γ
β

0 0 0

0 0 0 β 1 0 0 0

0 0 γ
α

0 0 1 0 0

0 γ
β

0 0 0 0 γ 0

γ2

αβ2 0 0 0 0 0 0 γ



(6.45)
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X4 =



2− δ 0 0 0 0 0 0 αβ2

δ2−2δ+2

0 1 0 0 0 0 β 0

0 0 2− δ 0 0 α 0 0

0 0 0 1 δ2−2δ+2
β

0 0 0

0 0 0 β 1 0 0 0

0 0 1
α

0 0 δ 0 0

0 δ2−2δ+2
β

0 0 0 0 1 0

δ2−2δ+2
αβ2 0 0 0 0 0 0 δ



(6.46)

The matrices X6 and X7 are not invertible for any choice of the parameters by

lemma 6.1.1. The matrices X2 and X5 are from the same family after utilizing the

symmetries in proposition 4.7.1. In particular, X5 = 2 ∗X−1
2 with α replaced with iα

and β replaced with iβ. We now determine if there is a choice of the parameters and

overall scale factor λ, which make X1, X2, X3, X4 unitary.

Proposition 6.1.4. λX1 is unitary when Re(δ) = 0, δ2 = −|β|2, |α| = 1, |λ|2 = 1
1+|δ|2

Proof. We have that λX1(λX1)
† is equal to:

λλ̄



aβ2ᾱβ̄2

δ2δ̄2
+ δδ̄ 0 0 0 0 0 0 αβ2δ̄

δ2
+ δδ̄2

ᾱβ̄2

0 ββ̄ + 1 0 0 0 0 δ̄2

β̄
+ β 0

0 0 αᾱ + δδ̄ 0 0 δ
ᾱ
+ αδ̄ 0 0

0 0 0 δ2δ̄2

ββ̄
+ 1 β̄ + δ2

β
0 0 0

0 0 0 δ̄2

β̄
+ β ββ̄ + 1 0 0 0

0 0 δᾱ + δ̄
a

0 0 1
αᾱ

+ δδ̄ 0 0

0 β̄ + δ2

β
0 0 0 0 δ2δ̄2

ββ̄
+ 1 0

δ2δ̄
αβ2 +

δᾱβ̄2

δ̄2
0 0 0 0 0 0 δ2δ̄2

αβ2ᾱβ̄2 + δδ̄



(6.47)
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Since it is required that β̄+ δ2

β
= 0 and δ

ᾱ
+αδ̄ = 0, we must have δ2 = −ββ̄ = −|β|2

and αᾱ = −δ
δ̄

. Therefore, Re(δ) = 0 and αᾱ = 1 and all off-diagonal elements will be

zero when this is the case:

δ2δ̄

αβ2
+
δᾱβ̄2

δ̄2
= δ2δ̄ +

δαᾱ(ββ̄)2

δ̄2
= δ2δ̄ +

δαᾱ(−δ2)2

δ̄2
(6.48)

= δ2δ̄3 + αᾱδ5 = δ̄3 + αᾱδ3 = δ̄3 +
−δ
δ̄
δ3 = (−δ)4 − δ4 = 0 (6.49)

A similar computation shows that all diagonal elements are equal to 1 + |δ|2 and

therefore λX1 will be unitary whenever |λ|2 = 1
1+|δ|2 .

Proposition 6.1.5. λX2 is unitary when |α| = 1, |β| = 1, and |λ|2 = 1
2

Proof. We have that λX2(λX2)
† is equal to:

λλ̄



αβ2ᾱβ̄2 + 1 0 0 0 0 0 0 iαβ2 − i
ᾱβ̄2

0 ββ̄ + 1 0 0 0 0 iβ − i
β̄

0

0 0 αᾱ + 1 0 0 iα− i
ᾱ

0 0

0 0 0 1
ββ̄

+ 1 i
β
− iβ̄ 0 0 0

0 0 0 iβ − i
β̄

ββ̄ + 1 0 0 0

0 0 i
α
− iᾱ 0 0 1

αᾱ
+ 1 0 0

0 i
β
− iβ̄ 0 0 0 0 1

ββ̄
+ 1 0

i
αβ2 − iᾱβ̄2 0 0 0 0 0 0 1

αβ2ᾱβ̄2 + 1


(6.50)

To make the off-diagonal elements zero, we need i
β
− iβ̄ = 0 and i

α
− iᾱ = 0, which

only has the solutions |α| = |β| = 1. The diagonal elements are then all equal to 2 so

λX2 will be unitary as long as |λ|2 = 1
2
.

Proposition 6.1.6. λX3 is unitary when |α| = 1, |β| = 1, and |λ|2 = 1
2
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Proof. We have that λX3(λX3)
† is equal to:

λλ̄



αβ2ᾱβ̄2 + 1 0 0 0 0 0 0 αβ2 − 1
ᾱβ̄2

0 ββ̄ + 1 0 0 0 0 1
β̄
− β 0

0 0 αᾱ + 1 0 0 a− 1
ā

0 0

0 0 0 1
ββ̄

+ 1 β̄ − 1
β

0 0 0

0 0 0 β − 1
β̄

ββ̄ + 1 0 0 0

0 0 ᾱ− 1
α

0 0 1
αᾱ

+ 1 0 0

0 1
β
− β̄ 0 0 0 0 1

ββ̄
+ 1 0

ᾱβ̄2 − 1
αβ2 0 0 0 0 0 0 1

aβ2ᾱβ̄2 + 1


(6.51)

To make the off-diagonal elements zero, we need 1
β
− β̄ = 0 and 1

α
− ᾱ = 0 which only

has the solutions |α| = |β| = 1. The diagonal elements are then all equal to 2 so λX3

will be unitary as long as |λ|2 = 1
2
.

Proposition 6.1.7. λX4 is unitary when |α|2 = δ−2
δ̄

, |β|2 = δ̄2−2δ̄+2, |λ|2 = 1
1+|β|2 ,

and δ is one of the following: 1 + i, 1− i, 1, 5
4
+

√
7
4

, 5
4
−

√
7
4

.
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Proof. Let f = δ2 − 2δ + 2, then λX4(λX4)
† is equal to:

λλ̄



αβ2ᾱβ̄2

ff̄
+ (δ − 2)

(
δ̄ − 2

)
0 0 0 0 0 0 αβ2δ̄

f
− (δ−2)f̄

ᾱβ̄2

0 ββ̄ + 1 0 0 0 0 f̄
β̄
+ β 0

0 0 αᾱ + (δ − 2)
(
δ̄ − 2

)
0 0 2−δ

ᾱ
+ αδ̄ 0 0

0 0 0 ff̄
ββ̄

+ 1 β̄ + f
β

0 0 0

0 0 0 f̄
β̄
+ β ββ̄ + 1 0 0 0

0 0 αδā−δ̄+2
a

0 0 1
αᾱ

+ δδ̄ 0 0

0 β̄ + f
β

0 0 0 0 ff̄
ββ̄

+ 1 0

δᾱβ̄2

f̄
− ff̄

αβ2 0 0 0 0 0 0 ff̄
aβ2ᾱβ̄2 + δδ̄


(6.52)

Because we need 2−δ
ᾱ

+ αδ̄ = 0 we can set αᾱ = |α|2 = δ−2
δ̄

. We also need f̄
β̄
+ β = 0

which will happen if ββ̄ = |β|2 = f̄ = δ̄2 − 2δ̄ + 2. Clearing the denominator and

substituting into the upper-rightmost element gives us:

αᾱ(ββ̄)2δ̄ − (δ − 2)ff̄ =
(δ − 2)(δ̄2 − 2δ̄ + 2)

δ̄
− (δ − 2)(δ̄2 − 2δ̄ + 2)(δ2 − 2δ + 2)

(6.53)

Clearing the denominator again this simplifies to:

(δ − 2)(δ̄2 − 2δ̄ + 2)− δ̄(δ − 2)(δ̄2 − 2δ̄ + 2)(δ2 − 2δ + 2) (6.54)

= (δ − 2)(δ̄2 − 2δ̄ + 2)(1− δ̄(δ2 − 2δ + 2)) (6.55)

We can eliminate the case δ = 2 since that breaks the X-shape. There are then two

possibilities, either δ̄2−2δ̄+2 = 0, or δ̄(δ2−2δ+2) = 1. In the first case, the only two

solutions are δ = 1+ i or δ = 1− i. Solving the second case, we substitute δ = x+ iy
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where x and y are real:

δ̄(δ2 − 2δ + 2) = (x− iy)((x+ iy)2 − 2(x+ iy) + 2) = 1 (6.56)

This can then be split into real and imaginary parts:

x3 − 2x2 + xy2 + 2x− 2y2 − 1 = 0 (6.57)

y(x2 + y2 − 2) = 0 (6.58)

This has the following solutions: y = 0 and x = 1 or x2 + y2 = 2. In the case

x2 + y2 = 2 we need to solve:

x3 − 2(x2 + y2) + xy2 + 2x− 1 = x3 − 2(2) + xy2 + 2x− 1 = 0 (6.59)

x2 + y2 − 2 = 0 (6.60)

We can set y = ±
√

5−x3−2x
x

as long as x ̸= 0. In the case that x = 0 we must have

y = ±
√
2 however this does not solve the first equation. Substituting y = ±

√
5−x3−2x

x

into the second equation we get:

x2 +
5− x3 − 2x

x
= 2 (6.61)

Multiplying through by x and then subtracting 2x from both sides gives us:

x3 + 5− x3 − 2x− 2x = 5− 4x = 0 (6.62)

Therefore, x = 5
4

and y = ±
√
7
4

.
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6.1.5 (2,4,3)-gYBE X-shaped solutions

The (2,4,3) X-shaped ansatz results in a polynomial system consisting of 512 equations

in 32 unknowns. To save space we omit the 0 entries from the 16× 16 solutions. The

first row is the diagonal, and the second row is the antidiagonal. Let Ψ = 1+
√
βγ − 1,

and ψ = 1−
√
βγ − 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

αγ2 γ αγ
β

1
β
αβγ β α 1

γ
−γ − 1

α
− 1

β
− 1

αβγ
−β − β

α γ
− 1

γ
− 1

αγ2

 (6.63)

 1 i i 1 1 i i 1 i 1 1 i i 1 1 i

−iαβγ γ β − i
α

−iα2β α αβ
γ

− i
γ
γ − iγ

αβ
− i

α
1

α2β
α − i

β
− i

γ
1

αβ γ

 (6.64)

 i 1 i 1 1 i 1 i 1 i 1 i i 1 i 1

iαβγ γ β − i
α

−iα2β α −αβ
γ

− i
γ
γ iγ

αβ
− i

α
1

α2β
α − i

β
− i

γ
− 1

αβ γ

 (6.65)

1 −i −i 1 1 −i −i 1 −i 1 1 −i −i 1 1 −i

γ − iγ
αβ

β i
α
iα2β α iα2 β2

γ
−αβ

γ
− i γ

αβ
γ

α2β2
i
α

1
α2β

α i
β

−αβ
γ

i
γ


(6.66)−i 1 −i 1 1 −i 1 −i 1 −i 1 −i −i 1 −i 1

γ iγ
αβ

β i
α
iα2β α iα2 β2

γ
αβ
γ

iγ
αβ

γ
α2β2

i
α

1
α2β

α i
β

αβ
γ

i
γ

 (6.67)

 ψ 1 ψ 1 ψ 1 ψ 1 1 Ψ 1 Ψ 1 Ψ 1 Ψ

βη2

αγ
βη
α

η γ βη
γ
β α αγ

η
βη
α

1
α
γ γ

βη
β 1

η
αγ
η

α γ
βη2

 (6.68)

 1 1
2

1
2

1 1
2

1 1 1
2

1
2

1 1 1
2

1 1
2

1
2

1

β2γ2

α
βγ
α

γ 1
4β

4β2γ β α α
βγ

βγ
α

1
4α

1
4β

1
4β2γ

β 1
γ

α
βγ

α
4β2γ2

 (6.69)
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Let ρ = ±
√
β
√
γ

 ρ 1 ρ 1 ρ 1 −
√
β
√
γ 1 1 ρ 1 ρ 1 ρ 1 ρ

βη2

αγ
βη
α

η γ βη
γ
β α αγ

η
βη
α

1
α
γ γ

βη
β 1

η
αγ
η

α γ
βη2

 (6.70)

 1 ρ ρ 1 ρ 1 1 ρ ρ 1 1 ρ 1 ρ ρ 1

β2η2

α
βη
α
η γ βη

γ
β α α

βη
βη
α

βγ
α
γ γ

βη
β 1

η
α
βη

αγ
βη2

 (6.71)

 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

β2γ2

α
βγ
α

γ 4
β

β2γ
4

β α α
βγ

βγ
α

4
α

4
β

4
β2 γ

β 1
γ

α
βγ

4α
β2γ2

 (6.72)

6.1.6 (4,2,1)-gYBE X-shaped solutions

The (4,2,1) X-shaped ansatz (equivalent to the (2,4,2) X-shaped ansatz) results in

a polynomial system consisting of 256 equations in 32 unknowns. To speed up the

solving process we use the local conjugation symmetry, listed in proposition 4.7.1, to

scale the element in the first row and 16th column to 1 and the element in the 11th

row and 6th column to 1. Let ρ = 1√
5
.

1 ±ρ ∓ρ ±ρ ∓ρ ±ρ ±3ρ ±ρ ±ρ ∓ρ ±ρ ± 3√
5
±ρ ±3ρ ±ρ 1

α
5

γ β α α2β 1
α

γ
5αβ

1
γ

γ αβ
γ

α 1
5α2β

1
α

1
5β

1
γ

1
α

 (6.73)

 1 ±ρ ∓ρ ±ρ ∓ρ ±ρ ±3ρ ±ρ ±ρ ∓ρ ±ρ ±3ρ ±ρ ±3ρ ±ρ 1

−α
5

γ β α α2β − 1
α

γ
5αβ

1
γ

γ αβ
γ

−α 1
5α2β

1
α

1
5β

1
γ

− 1
α

 (6.74)

 1 β ±1 β ±1 β ±1 β β ±1 β ±1 β ±1 β 1

±β2η αγ
β2η

γ
η2

η γ ± 1
η

α β2η
αγ

αγ
β2η

β2

α
±η β2

γ
1
η

β2η2

γ
β2η
αγ

± 1
η

 (6.75)

 1 −β ±1 −β ±1 β ±1 −β −β ±1 β ±1 −β ±1 −β 1

±β2η αγ
β2η

γ
η2

η γ ± 1
η

α β2η
αγ

αγ
β2η

β2

α
±η β2

γ
1
η

β2η2

γ
β2η
αγ

± 1
η

 (6.76)
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 1 −i −i −i −i ±1 −i −i −i −i ±1 −i −i −i −i 1

−iγ −αβ
γ

β
γ2 γ β − i

γ
α − γ

αβ
−αβ

γ
1
α

−iγ 1
β

1
γ

γ2

β
− γ

αβ
− i

γ

 (6.77)

 1 i i i i ±1 i i i i ±1 i i i i 1

iγ −αβ
γ

β
γ2 γ β i

γ
α − γ

αβ
−αβ

γ
1
α
iγ 1

β
1
γ

γ2

β
− γ

αβ
i
γ

 (6.78)

1 η η ±1 η 1 ±1 η η ±1 1 η ±1 η η 1

α γ β α α2β
η2

η2

α
γη2

αβ
1
γ
γ αβ

γ
α η2

α2β
η2

α
1
β

1
γ

η2

α

 (6.79)

 1 η η ±1 η −1 ±1 η η ±1 −1 η ±1 η η 1

−α γ β α α2β
η2

−η2

α
γη2

αβ
1
γ
γ αβ

γ
−α η2

α2β
η2

α
1
β

1
γ

−η2

α

 (6.80)

1 i i 1 i i 1 i i 1 i i 1 i i 1

β γ − γ
αβ

β βγ
α

− 1
β
α 1

γ
γ − 1

α
−β α

βγ
− 1

β
−αβ

γ
1
γ

− 1
β

 (6.81)

 1 ±i ±i ∓1 ±i ±i ∓1 ±i ±i ∓1 ±i ±i ∓1 ±i ±i 1

±β γ − γ
αβ

β βγ
α

∓ 1
β

α 1
γ

γ − 1
α

∓β α
βγ

− 1
β

−αβ
γ

1
γ

∓ 1
β

 (6.82)

 1 ±i ±i ±i ±i ±i ±i ±i ±i ±i ±i ±i ±i ±i ±i 1

±iβ γ − γ
αβ

β −βγ
α

± i
β

α 1
γ

γ 1
α

∓iβ − α
βγ

1
β

−αβ
γ

1
γ

± i
β

 (6.83)

 1 −i −i −1 −i −i −1 −i −i −1 −i −i −1 −i −i 1

−β γ − γ
αβ

β βγ
α

1
β

α 1
γ

γ − 1
α

β α
βγ

− 1
β

−αβ
γ

1
γ

1
β

 (6.84)

 1 β ±1 β ±1 β ±1 β β ±1 β ±1 β ±1 β 1

∓β2η αγ
β2η

γ
η2

η γ ∓ 1
η

α β2η
αγ

αγ
β2η

β2

α
∓η β2

γ
1
η

β2η2

γ
β2η
αγ

∓ 1
η

 (6.85)

 1 −β ±1 −β ±1 β ±1 −β −β ±1 β ±1 −β 1 −β 1

∓β2η αγ
β2η

γ
η2

η γ ∓ 1
η

α β2η
αγ

αγ
β2η

β2

α
∓η β2

γ
1
η

β2η2

γ
β2η
αγ

∓ 1
η

 (6.86)

 1 −i −i −i −i ±1 −i −i −i −i ±1 −i −i −i −i 1

iγ −αβ
γ

β
γ2 γ β i

γ
α − γ

αβ
−αβ

γ
1
α

iγ 1
β

1
γ

γ2

β
− γ

αβ
i
γ

 (6.87)
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 1 i i i i ±1 i i i i ±1 i i i i 1

−iγ −αβ
γ

β
γ2 γ β − i

γ
α − γ

αβ
−αβ

γ
1
α

−iγ 1
β

1
γ

γ2

β
− γ

αβ
− i

γ

 (6.88)

 1 η η ±1 η 1 ±1 η η ±1 1 η ±1 η η 1

−α γ β α α2β
η2

−η2

α
γη2

αβ
1
γ
γ αβ

γ
−α η2

α2β
η2

α
1
β

1
γ

−η2

α

 (6.89)

1 η η ±1 η −1 ±1 η η ±1 −1 η ±1 η η 1

α γ β α α2β
η2

η2

α
γη2

αβ
1
γ
γ αβ

γ
α η2

α2β
η2

α
1
β

1
γ

η2

α

 (6.90)

1 ±i 1 ±i 1 1 1 ±i ±i 1 1 1 ±i 1 ±i 1

β γ − γ
αβ

β −βγ
α

− 1
β
α 1

γ
γ − 1

α
β α

βγ
1
β

αβ
γ

1
γ

− 1
β

 (6.91)

 1 ±i −1 ±i −1 −1 −1 ±i ±i −1 −1 −1 ±i −1 ±i 1

−β γ − γ
αβ

β −βγ
α

1
β

α 1
γ

γ − 1
α

−β α
βγ

1
β

αβ
γ

1
γ

1
β

 (6.92)

Let ρ1 = 1− i
√
2 and ρ2 = 1 + i

√
2

 1 ρ1 1 1 1 1 ρ2 ρ2 ρ1 ρ1 1 1 1 1 ρ2 1

−iβ γ − α
β2 β α − i

β
−βγ

α
1
γ

γ − α
βγ

−iβ − 1
α

− 1
β

β2

α
1
γ

− i
β

 (6.93)

 1 ρ2 1 1 1 ±i ρ1 ρ1 ρ2 ρ2 ±i 1 1 1 ρ1 1

iβ − α
βγ

− α
β2 β α i

β
1
γ

−βγ
α

− α
βγ

γ −iβ − 1
α

− 1
β

β2

α
−βγ

α
i
β

 (6.94)

 1 ρ2 1 1 1 ±i ρ1 ρ1 ρ2 ρ2 ±i 1 1 1 ρ1 1

−iβ − α
βγ

− α
β2 β α − i

β
1
γ

−βγ
α

− α
βγ

γ iβ − 1
α

− 1
β

β2

α
−βγ

α
− i

β

 (6.95)

Let ρ = η2 − 2η + 2.

 1 η η 1 η 1 1 2− η η 1 1 2− η 1 2− η 2− η 1

±γ αβ
γ

βρ
γ2 γ β ± ρ

γ
α γ

αβ
αβ
γ

ρ
α

±γ 1
β

ρ
γ

γ2

βρ
γ
αβ

± ρ
γ

 (6.96)
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Let Φ = 1
3

(
1 + 2i

√
2
)
, ϕ = 1

3

(
2 + i

√
2
)
, κ =

2
√

7−4i
√
2γ

9αβ
, ρ =

(−2−4i
√
2)γ2

9α2β
, η =

−1+2i
√
2

9α
, and θ = 1

3

√
−2− 4i

√
2

 Φ Φ ϕ ϕ ϕ ϕ 1 1 Φ Φ ϕ ϕ ϕ ϕ 1 1

− iαβ
2γ

γ ρ −αβ
γ
β κ α αη

γ
γ η − iαβ

γ
−2+4i

√
2

9β

2(γ+2i
√
2γ)

9αβ
α2β
γ2 η κ

 (6.97)

 Φ Φ ϕ ϕ ϕ ±θ 1 1 Φ Φ ±θ ϕ ϕ ϕ 1 1

− iβ
2
γ −2(1+2i

√
2)α

9β2 β α ακ −βγ
α

αη
γ

γ α+2i
√
2α

9βγ
iβ 2αη

γ
−2+4i

√
2

9β
β2

α
αη
γ
ακ


(6.98)Φ Φ ϕ ϕ ϕ ±θ 1 1 Φ Φ ±θ ϕ ϕ ϕ 1 1

iβ
2
γ −2(1+2i

√
2)α

9β2 β α −ακ −βγ
α

αη
γ

γ α+2i
√
2α

9βγ
−iβ 2αη

γ
2αη
β

β2

α
αη
γ

−ακ


(6.99)

Let Φ = 1
3

(
1− 2i

√
2
)
, ϕ = 1

3

(
2− i

√
2
)
, κ =

(
1
3
+ i

3

)√
2
√
2 + i, κ =

2
√

7+4i
√
2γ

9αβ
,

ρ = −1+2i
√
2

9γ
, η1 =

(−2+4i
√
2)γ2

9α2β
, η2 =

(−2+4i
√
2)α

9β2 .

 Φ Φ ϕ ϕ ϕ ϕ 1 1 Φ Φ ϕ ϕ ϕ ϕ 1 1

± iαβ
2γ

γ η1 −αβ
γ
β ±κ α ρ γ −1+2i

√
2

9α
± iαβ

γ

(
√
2+2i)

2

9β

2(γ−2i
√
2γ)

9αβ
α2β
γ2 ρ ±κ


(6.100)Φ Φ ϕ ϕ ϕ ±κ 1 1 Φ Φ ±κ ϕ ϕ ϕ 1 1

iβ
2
γ η2 β α ακ

γ
−βγ

α
ρ γ α−2i

√
2α

9βγ
−iβ (

√
2+2i)

2

9α

(
√
2+2i)

2

9β
β2

α
−1+2i

√
2

9γ
ακ


(6.101) Φ Φ ϕ ϕ ϕ ϕ 1 1 Φ Φ ϕ ϕ ϕ ϕ 1 1

± iαβ
2γ

γ η1 −αβ
γ
β ±κ α ρ γ −1+2i

√
2

9α
± iαβ

γ

(
√
2+2i)

2

9β

2(γ−2i
√
2γ)

9αβ
α2β
γ2 ρ ±κ


(6.102)
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 Φ Φ ϕ ϕ ϕ ±κ 1 1 Φ Φ ±κ ϕ ϕ ϕ 1 1

− iβ
2
γ η2 β α −ακ

γ
−βγ

α
ρ γ α−2i

√
2α

9βγ
iβ

(
√
2+2i)

2

9α

(
√
2+2i)

2

9β
β2

α
−1+2i

√
2

9γ
−ακ


(6.103)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

∓αβ
γ
γ γ2

α2β
αβ
γ
β ± γ

αβ
α 1

γ
−γ − 1

α
∓αβ

γ
− 1

β
− γ

αβ
−α2β

γ2 − 1
γ

± γ
αβ

 (6.104)

 1 1 1 ±i 1 1 ±i 1 1 ±i 1 1 ±i 1 1 1

iαβ
γ

γ − γ 2

α2β
−αβ

γ
β iγ

αβ
α 1

γ
−γ 1

α
iαβ
γ

− 1
β

− γ
αβ

α2 β
γ2 − 1

γ
iγ
α β

 (6.105)

 1 1 ±i 1 ±i ±i ±i 1 1 ±i ±i ±i 1 ±i 1 1

± iαβ
γ

γ γ2

α2β
αβ
γ

β ± iγ
αβ

α 1
γ

−γ 1
α

∓ iαβ
γ

1
β

− γ
αβ

α2β
γ2 − 1

γ
± iγ

αβ

 (6.106)

 1 1 1 ±i 1 1 ±i 1 1 ±i 1 1 ±i 1 1 1

− iαβ
γ

γ − γ2

α2β
−αβ

γ
β − iγ

αβ
α 1

γ
−γ 1

α
− iαβ

γ
− 1

β
− γ

αβ
α2β
γ2 − 1

γ
− iγ

αβ


(6.107) 1 1 ±i 1 ±i ±i ±i 1 1 ±i ±i ±i 1 ±i 1 1

∓ iαβ
γ

γ γ2

α2β
αβ
γ

β ∓ iγ
αβ

α 1
γ

−γ 1
α

± iαβ
γ

1
β

− γ
αβ

α2β
γ2 − 1

γ
∓ iγ

αβ

 (6.108)

 1 1 1 1 1 ±i 1 1 1 1 ±i 1 1 1 1 1

−β γ α
β2 β α 1

β
βγ
α

1
γ

−γ − α
βγ

β − 1
α

− 1
β

−β2

α
− 1

γ
1
β

 (6.109)

 1 1 1 ±i 1 −i ±i 1 1 ±i −i 1 ±i 1 1 1

iγ −αβ
γ

− β
γ2 γ β i

γ
α − γ

αβ
αβ
γ

1
α

−iγ − 1
β

1
γ

γ2

β
γ
αβ

i
γ

 (6.110)

 1 1 1 ±i 1 i ±i 1 1 ±i i 1 ±i 1 1 1

iγ −αβ
γ

− β
γ2 γ β i

γ
α − γ

αβ
αβ
γ

1
α

−iγ − 1
β

1
γ

γ2

β
γ
αβ

i
γ

 (6.111)
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 1 1 i 1 i ±1 i 1 1 i ±1 i 1 i 1 1

−iγ αβ
γ

β
γ2 γ β − i

γ
α γ

αβ
−αβ

γ
1
α

−iγ 1
β

− 1
γ

γ2

β
− γ

αβ
− i

γ

 (6.112)

 1 1 −i 1 −i ±1 −i 1 1 −i ±1 −i 1 −i 1 1

iγ αβ
γ

β
γ2 γ β i

γ
α γ

αβ
−αβ

γ
1
α

iγ 1
β

− 1
γ

γ2

β
− γ

αβ
i
γ

 (6.113)

Let ρ1 = 1 + i
√
2, and ρ2 = 1− i

√
2

 1 1 ρ1 1 ρ1 1 ρ2 1 1 ρ1 1 ρ2 1 ρ2 1 1

iαβ
γ

γ γ2

α2β
αβ
γ

β iγ
αβ

α 1
γ

−γ 1
α

iαβ
γ

1
β

− γ
αβ

α2β
γ2 − 1

γ
iγ
αβ

 (6.114)

The following have quite complicated parametrizations. Let Φ = 1
5

(
1 + 2i

√
6
)
, ϕ =

1
5

(
3 + i

√
6
)
, κ =

5β
√
γ√

−1+2i
√
6
√

γ+2i
√
6γ

, κ̂ =
5β

√
γ√

1+2i
√
6
√

γ+2i
√
6γ

, θ = − β
√
γ√ √

6+2i
3
√
6−14i

√
γ+2i

√
6γ

,

ρ =
3iβ

√
γ+2i

√
6γ√

1+2i
√
6
√
γ

, and η = 1+2i
√
6

25β
.

Φ Φ Φ ϕ Φ ϕ ϕ 1 Φ ϕ ϕ 1 ϕ 1 1 1

3κ γ γ+2i
√
6γ

25αβ
β −βγ

α
i
5κ̂

α −3η −γ 1+2i
√
6

25α
κ

(
√
6−3i)

2
α

25βγ
η 3αβ

γ
3η i

5κ̂


(6.115)Φ Φ Φ ϕ Φ ϕ ϕ 1 Φ ϕ ϕ 1 ϕ 1 1 1

ρ γ γ+2i
√
6γ

25αβ
β −βγ

α
− i

5κ̂
α −3η −γ 1+2i

√
6

25α
θ

(
√
6−3i)

2
α

25βγ
η 3αβ

γ
3η − 1

5κ̂


(6.116)
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Let Φ = 1
5

(
1− 2i

√
6
)
, ϕ = 1

5

(
3− i

√
6
)
, κ =

√
−1+2i

√
6
√

γ−2i
√
6γ

25β
√
γ

, ρ1 = 3
√

−1+2i
√
6β

√
γ√

γ−2i
√
6γ

,

ρ2 =
γ−2i

√
6γ

25αβ
, and η = − β

√
γ√ √

6−2i
3
√
6+14i

√
γ−2i

√
6γ

.

Φ Φ Φ ϕ Φ ϕ ϕ 1 Φ ϕ ϕ 1 ϕ 1 1 1

ρ1 γ ρ2 β −βγ
α

−κ α −3ρ2αβ
γ2 −γ 1−2i

√
6

25α
ρ1
3

(
√
6+3i)

2
α

25βγ
1−2i

√
6

25β
3αβ
γ

3ρ2αβ
γ2 −κ


(6.117) Φ Φ Φ ϕ Φ ϕ ϕ 1 Φ ϕ ϕ 1 ϕ 1 1 1

−ρ1 γ ρ2 β −βγ
α
κ α −3ρ2αβ

γ2 −γ 1−2i
√
6

25α
η

(
√
6+3i)

2
α

25βγ
1−2i

√
6

25β
3αβ
γ

3ρ2αβ
γ2 κ


(6.118)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 1 1 −1 1 1 1 1 −1 −1 −1 −1 1 −1 −1 1

 (6.119)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 i −i −1 −i 1 −1 −i −i 1 −1 −i 1 −i i 1

 (6.120)

 1 1 i i i i 1 1 1 1 i i i i 1 1

−1 e
±πi
4 e

∓πi
4 −1 e

±3πi
4 1 ±i e∓πi

4 e
∓3πi

4 ±i 1 e
∓3πi

4 −1 e
±πi
4 e

±3πi
4 1


(6.121)1 1 i i i i 1 1 1 1 i i i i 1 1

1 e
±πi
4 e

∓πi
4 1 e

−3πi
4 −1 ∓i e∓πi

4 e
∓3πi

4 ∓i −1 e
∓3πi

4 1 e
±πi
4 e

±3πi
4 −1


(6.122) 1 1 −i −i −i −i 1 1 1 1 −i −i −i −i 1 1

−1 e
±πi
4 e

∓πi
4 −1 e

±3πi
4 1 ±i e∓πi

4 e
∓3πi

4 ±i 1 e
∓3πi

4 −1 e
±πi
4 e

±3πi
4 1


(6.123)
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1 1 −i −i −i −i 1 1 1 1 −i −i −i −i 1 1

1 e
±πi
4 e

∓πi
4 1 e

±3πi
4 −1 ∓i e∓πi

4 e
∓3πi

4 ∓i −1 e
∓3πi

4 1 e
±πi
4 e

±3πi
4 −1


(6.124)

6.1.7 (3,2,1)-aYBE X-shaped / (3,2,1)-gYBE XP-shaped so-

lutions

What follows are X-shaped solutions to the 3-dimensional aYBE which are shown

below after composing with the swap matrix so that they are solutions to the (3,2,1)-

gYBE. This ansatz results in 84 equations in 17 unknowns. These 2 matrices are

similar, but not locally similar.



α 0 0 0 0 0 0 0 β

0 0 0 −ηθ
δ

0 −βη 0 0 0

0 0 1 0 0 0 α 0 0

0 −θ 0 0 0 0 0 −βδ 0

0 0 0 0 γ 0 0 0 0

0 δ 0 0 0 0 0 θ 0

0 0 α 0 0 0 1 0 0

0 0 0 η 0 ηθ
δ

0 0 0

1
β

0 0 0 0 0 0 0 α



(6.125)
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α 0 0 0 0 0 0 0 −β

0 0 0 ηθ
δ

0 −βη 0 0 0

0 0 1 0 0 0 α 0 0

0 −θ 0 0 0 0 0 −βδ 0

0 0 0 0 γ 0 0 0 0

0 δ 0 0 0 0 0 −θ 0

0 0 α 0 0 0 1 0 0

0 0 0 η 0 ηθ
δ

0 0 0

− 1
β

0 0 0 0 0 0 0 α



(6.126)
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Chapter 7

Permutation solutions

“Nothing is built on stone; All is built on
sand, but we must build as if the sand were
stone.”

Jorge Luis Borges

Here we use a computational approach to find permutation solutions to the aYBE

and bYBE. Stephen Jordan has computed all permutation matrix solutions to the

bYBE (and aYBE) up to dimension 5 by a brute force search using Microsoft super-

computers [76]. We show how to determine all permutation solutions of fixed minimal

cycle type in all dimensions.

Let d be the dimension of the vector space V in the definition of the bYBE/aYBE,

and let {e1, . . . , ed} be a basis for V . Any permutation on V ⊗ V can be decomposed

into d2−1 transpositions. A single transposition T acting on V ⊗V can be represented

by a set of four integers {a1, a2, b1, b2} that index the basis vectors being exchanged.

Each index variable ranges from 1 to d. Using this representation the transposition

T is determined by:

T (ea1 ⊗ ea2) = eb1 ⊗ eb2 (7.1)

T (eb1 ⊗ eb2) = ea1 ⊗ ea2 (7.2)

T (ei ⊗ ej) = ei ⊗ ej otherwise (7.3)

76



An arbitrary permutation can R : V ⊗ V → V ⊗ V can be decomposed as R =

T1T2 . . . Ts, where s ≤ d2 − 1, and Tj is a transposition for each j = 1, . . . , s. We will

assume that this decomposition is chosen such that s is as small as possible given the

permutation R, we will refer to this as “the minimal cycle type” of the permutation.

We can therefore represent the permutation R as an ordered set of 4s integers, each

ranging from 1 to d:

R = {a11, a12, b11, b12, a21, a22, b21, b22, . . . , as1, as2, bs1, bs2} (7.4)

where Tj = {aj1, aj2, bj1, bj2}. Under this representation, composition of two per-

mutations corresponds to concatenating their representations. For example consider

the d dimensional swap matrix Pd which is defined by Pd(ei ⊗ ej) = ej ⊗ ei for all

i, j ∈ {1, . . . , d}. The swap matrix can be represented by:

Pd = {1, 2, 2, 1, 1, 3, 3, 1, . . . 1, d, d, 1, 2, 3, 3, 2, . . . , d− 1, d, d, d− 1} (7.5)

Pd =
∪

i ̸=j∈{1,...,d}

{i, j, j, i} (7.6)

The the 4-tuples representing a single transposition must stay in order when taking

the union above. Tor the swap matrix each basis vector only appears once so this

order happens to not matter in this case. In general the order of the integers appearing

in this kind of representation of a permutation will depend on the permutation. We

can also write Pd as a product of individual transpositions:

Pd =
∏

i ̸=j∈{1,...,d}

{i, j, j, i} (7.7)

Using this representation we can find all permutation solutions in every dimen-
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sion that decomposes into a fixed number of transpositions. For each dimension d

finding all permutation solutions which decomposes into a product of s transpositions

amounts to checking d4s possible cases. It turns out that, using the representation

above, permutations that decompose into a fixed number of transpositions s can be

checked in a finite number of cases depending only on s and completely indepen-

dent of the dimension d. Consider the equivalence relation between two permutation

representations from equation 7.4 given by:

{a1, a2, a3, . . . , a4s} ∼ {b1, b2, b3, . . . , b4s} when aj = ai ↔ bj = bi (7.8)

which means that the location of matching indices is the same in the two representa-

tions. Some examples of permutations that are equivalent under ∼:

{1, 2, 3, 3} ∼ {5, 4, 1, 1} (7.9)

{6, 2, 2, 3, 3, 6, 8, 7} ∼ {2, 5, 5, 6, 6, 2, 8, 4} (7.10)

For a fixed value of s the number of possible equivalence classes corresponds to

the number of set partitions of the 4s integers. The number of set partitions of 4s

integers corresponds to the bell number Bell(4s).

Example 7.0.1. Consider the two permutations below:

A = {6, 2, 2, 3, 3, 6, 8, 7} ∼ B = {2, 5, 5, 6, 6, 2, 8, 4} (7.11)

Let i be an integer in the representation of A and denote the set of matching variables

in which i falls by [i]A. Similarly for B denote the set of matching variables in which

i falls by [i]B. We then have [6]A = 1, [2]A = 2, [3]A = 3, [8]A = 4, and [7]A = 5. And
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for the second permutation [2]B = 1, [5]B = 2, [6]B = 3, [8]B = 4, [4]B = 5. Define

the matrix Q by it’s action on the basis vectors of V :

Qei = e[i]A for i ∈ A (7.12)

Then conjugating A by Q⊗Q results in:

(Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(Q−1 ⊗Q−1) (7.13)

= {1, 2, 2, 3, 3, 1, 4, 5} (7.14)

This can be seen by considering the action on the relevant basis vectors:

(Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(Q−1 ⊗Q−1)(e4 ⊗ e5) (7.15)

= (Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(e8 ⊗ e7) (7.16)

= (Q⊗Q)(e3 ⊗ e6) (7.17)

= (e3 ⊗ e1) (7.18)

(Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(Q−1 ⊗Q−1)(e3 ⊗ e1) (7.19)

= (Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(e3 ⊗ e6) (7.20)

= (Q⊗Q)(e8 ⊗ e7) (7.21)

= (e4 ⊗ e5) (7.22)

(Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(Q−1 ⊗Q−1)(e2 ⊗ e3) (7.23)

= (Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(e2 ⊗ e3) (7.24)
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= (Q⊗Q)(e6 ⊗ e2) (7.25)

= (e1 ⊗ e1) (7.26)

(Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(Q−1 ⊗Q−1)(e1 ⊗ e2) (7.27)

= (Q⊗Q){6, 2, 2, 3, 3, 6, 8, 7}(e6 ⊗ e2) (7.28)

= (Q⊗Q)(e2 ⊗ e3) (7.29)

= (e2 ⊗ e3) (7.30)

We can also conjugate B to obtain {1, 2, 2, 3, 3, 1, 4, 5}, therefore A and B are locally

conjugate to each other.

Theorem 7.0.2. Given two permutations A and B, such that A ∼ B, if A is a

solution to the d-dimensional bYBE or aYBE then B is a solution to the d-dimensional

bYBE or aYBE, respectively. Therefore if one representative from an equivalence class

is a solution, then all the permutations in that class are also solutions.

Proof. Let A ∼ B be two permutations. Let c be the number of distinct integers in

the representation of each permutation. Then A and B must be solutions in dimension

c, (and potentially in dimensions larger than c, as shown in theorem 7.0.6). There are

then c sets of matching variables in the representations of both A and B. Enumerate

the corresponding sets of matching variables by 1, . . . c. Let i be an integer in the

representation of A and denote the set of matching variables in which i falls by [i]A.

Similarly for B denote the set of matching variables in which i falls by [i]B. Define

the matrix Q by it’s action on the basis vectors of V :

Qe[i]A = ei for i = 1, . . . , c (7.31)
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This is an invertible permutation on V . Conjugating A by Q⊗Q results in:

{[a1]A, [a2]A, . . . , [a4s]A}

Similarly for B we define the matrix S by:

Se[i]B = ei for i = 1, . . . , c (7.32)

Conjugating B by S ⊗ S results in:

{[b1]B, [b2]B, . . . , [b4s]B}

Since A ∼ B we have that ai = aj if an only if bi = bj. Therefore [ai]A = [bi]B and A

and B are conjugate as follows:

(Q⊗Q)A(Q−1 ⊗Q−1) = (S ⊗ S)B(S−1 ⊗ S−1) (7.33)

A = (Q−1 ⊗Q−1)(S ⊗ S)B(S−1 ⊗ S−1)(Q⊗Q) (7.34)

A = (Q−1S ⊗Q−1S)B(S−1Q⊗ S−1Q) (7.35)

Under the fifth symmetry in proposition 4.7.1 the local conjugation of a solution of

the bYBE or aYBE is also a solution.

Corollary 7.0.3. Every permutation that has a representation that is a product of s

transpositions and contains c distinct integers in its representation can be conjugated

to obtain a permutation whose representation only contains the integers 1, . . . , c.

Proof. Let c be the number of distinct variables in the representation of a permutation
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that is the product of s transpositions given by:

{a1, a2, . . . , a4s}

Once a dimension d is chosen, c can range from 1 to d. The product can be conjugated

by Q⊗Q as in the proof of theorem 7.0.2 to obtain a representation where only the

integers 1, . . . , c remain. We can further assume that a1 is equal to 1.

Corollary 7.0.4. There are a finite number of permutation solutions to the bYBE

and aYBE up to the symmetries in proposition 4.7.1, across all dimensions d, which

can be decomposed into s transpositions.

Proof. This follows directly from corollary 7.0.3. There are a maximum of Bell(4s)

equivalence classes under the equivalence relation ∼. By corollary 7.0.3 every per-

mutation within an equivalence class is considered equivalent under the symmetries

in proposition 4.7.1.

The symmetries from proposition 4.7.1 can be reinterpreted in terms of the rep-

resentation of a permutation in equation 7.4 as follows.

Proposition 7.0.5. Recall from proposition 4.7.1 that if R = T1...Ts is a permutation

matrix solution to the aYBE or bYBE in dimension d then so are:

1. R−1 = RT

2. Q⊗QR(Q⊗Q)−1 where Q is any d× d permutation matrix.

3. PRP where P : |ij⟩ → |ji⟩

These can be translated into symmetries of the representation of R in equation 7.4

as:
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1. Ts...T1 = {ts1, ts2,ms1,ms2, ..., t11, t12,m11,m12}

2. Following corollary 7.0.3, let A be the set of distinct integers appearing in the

representation of R, then any bijective mapping ϕ : A → {1, . . . , d} defines

another solution represented by:

{ϕ(ts1), ϕ(ts2), ϕ(ms1), ϕ(ms2), ..., ϕ(t11), ϕ(t12), ϕ(m11), ϕ(m12)}

3. PRP = PT1...TsP = {t12, t11,m12,m11, ..., ts2, ts1,ms2,ms1} (ti1 switches places

with ti2 and mi1 switches places with mi2 for i = 1, . . . , s).

4. An additional symmetries of the transposition representation: Since any single

transposition is symmetric ti1 can be exchanged with mi1 while also exchanging

ti2 with mi2 for i = 1, . . . , s.

Theorem 7.0.6. If R is a permutation solution to the aYBE in dimension d with

a representation as a product of s transpositions given by R = {a1, a2, . . . , a4s} then

{a1, a2, . . . , a4s} also represents a solution when interpreted as a permutation in any

dimension D ≥ d.

Proof. Let R be a permutation solution to the aYBE in dimension d with a represen-

tation as a product of s transpositions given by R = {a1, a2, . . . , a4s}. Let V be a D

dimensional vector space with basis {ei | i = 1, . . . , D}. Let A be the permutation

with the same representation, reinterpreted in dimension D > d, meaning that A acts

as the identity on the basis vectors ei ⊗ ej when one of i, j is larger than d. When

both i, j ≤ d then A acts according to the representation of R. We need to show that

the aYBE in equation 4.27 is satisfied by A:

A12A13A23 = A23A13A12 (7.36)
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The operators on the left and right side of equation 7.36 agree on all basis vectors

ei ⊗ ej ⊗ ek when all of i, j, k are less than or equal to d. There are two cases to

consider: one of i, j, k is greater than d, two or more of i, j, k are greater than d. If

two or more of i, j, k are greater than d, then

A12A13A23(ei ⊗ ej ⊗ ek) = A23A13A12(ei ⊗ ej ⊗ ek)

since both sides act as the identity on these basis vectors. In the case that one of

i, j, k is greater than d we have three sub-cases to consider: i > d, j > d, and k > d.

If i > d then A12 and A13 will act as the identity on any basis vector with i as the

first tensor factor, so equation 7.36 becomes A23 = A23. If j > d we then A12 and A23

will act as the identity and equation 7.36 becomes A13 = A13. If k > d we then A23

and A13 will act as the identity and equation 7.36 becomes A12 = A12. Therefore A

is a solution to the aYBE.

Lemma 7.0.7. Suppose A is an invertible non-identity solution to the bYBE in

dimension d that decomposes into the product of s transpositions with the represen-

tation A = {a1, a2, . . . , a4s}, then the representation {a1, a2, . . . , a4s} must contain all

the integers 1, . . . , d.

Proof. Suppose A is an invertible solution to the bYBE in dimension d that de-

composes into the product of s transpositions. Let c be the number of unique in-

tegers in the representation A = {a1, a2, . . . , a4s}. If c < d then let c < i ≤ d.

Then A(ei ⊗ ej) = ei ⊗ ej and A(ej ⊗ ei) = ej ⊗ ei for all j = 1, . . . , d. Let

j, k ∈ {a1, a2, . . . , a4s} we then have on one side of the bYBE:

A12A23A12(ei ⊗ ej ⊗ ek) = A12A23(ei ⊗ ej ⊗ ek) (7.37)

= A12(ei ⊗ A(ej ⊗ ek)) (7.38)
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= ei ⊗ A(ej ⊗ ek) (7.39)

The other side of the bYBE is:

A23A12A23(ei ⊗ ej ⊗ ek) = A23A12(ei ⊗ A(ej ⊗ ek)) (7.40)

= A23(ei ⊗ A(ej ⊗ ek)) (7.41)

= (ei ⊗ A2(ej ⊗ ek)) (7.42)

The bYBE will only be satisfied if A(ej ⊗ ek) = A2(ej ⊗ ek) for all j, k = 1, . . . , c.

Since A is invertible it must be the identity.

Corollary 7.0.8. A representation {a1, a2, . . . , a4s} for an invertible non-identity

solution to the bYBE in dimension d does not represent a solution in any other

dimension.

Proof. Repeat the argument in the proof of theorem 7.0.7 with the condition that

i > d instead of c < i < d.

Theorem 7.0.9. SupposeA is an invertible non-identity solution to the d-dimensional

bYBE that decomposes into the product of s transpositions with the representation

A = {a1, a2, . . . , a4s}, then every integer {1, . . . , d} appears at least two times. More-

over, each integer must appear once in the first tensor factor and once in the second

tensor factor of a transposition. That is, for all i ∈ {1, . . . d}, A(ei ⊗ ej) ̸= (ei ⊗ ej)

for some j ∈ {1, . . . d} and A(ej ⊗ ei) ̸= (ej ⊗ ei) for some j ∈ {1, . . . d}.

Proof. Let A be an invertible solution to the d-dimensional bYBE that decomposes

into the product of s transpositions with the representation A = {a1, a2, . . . , a4s}.

Suppose i ∈ {a1, a2, . . . , a4s} appears only once in the representation. Without loss of

generality we can assume that i appears in the first tensor factor of a transposition.
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That is, A(ei ⊗ ej) ̸= (ei ⊗ ej) for some unique j ∈ A, and A(ej ⊗ ei) = (ej ⊗ ei) for

all j ∈ A. Let j, k ∈ {a1, a2, . . . , a4s} such that i ̸= j and i ̸= k. We then have on one

side of the bYBE:

A12A23A12(ej ⊗ ek ⊗ ei) = A12A23(A(ej ⊗ ek)⊗ ei) (7.43)

= A12(A(ej ⊗ ek)⊗ ei) (7.44)

= (A2(ej ⊗ ek)⊗ ei) (7.45)

The other side of the bYBE is:

A23A12A23(ej ⊗ ek ⊗ ei) = A23A12(ej ⊗ ek ⊗ ei) (7.46)

= A23(A(ej ⊗ ek)⊗ ei) (7.47)

= (A(ej ⊗ ek)⊗ ei) (7.48)

The bYBE will only be satisfied if A(ej ⊗ ek) = A2(ej ⊗ ek) for all j, k = 1, . . . , c.

Since A is invertible it must be the identity. Now suppose that i appears twice and

it appears only in the first tensor factor within the transposition(s) it appears. The

same argument above applies and this can only happen if A is the identity.

Theorem 7.0.10. If A is an invertible permutation solution to the d-dimensional

bYBE that is not the identity. Then if A(ea ⊗ eb) = ec ⊗ ed it must be the case that

for all i ∈ {1, . . . , d} either A(eb ⊗ ei) ̸= (eb ⊗ ei) or A(ed ⊗ ei) ̸= (ed ⊗ ei).

Proof. Let A be an invertible permutation solution to the d-dimensional bYBE. Sup-

pose A(ea ⊗ eb) = ec ⊗ ed ̸= ea ⊗ eb. Let i ∈ {1, . . . , d} such that A(eb ⊗ ei) = eb ⊗ ei

and A(ed ⊗ ei) = ed ⊗ ei. We then have:

A12A23A12(ea ⊗ eb ⊗ ei) = A12A23(ec ⊗ ed ⊗ ei) (7.49)
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= A12(ec ⊗ ed ⊗ ei) (7.50)

= (ea ⊗ eb ⊗ ei) (7.51)

A23A12A23(ea ⊗ eb ⊗ ei) = A23A12(ea ⊗ eb ⊗ ei) (7.52)

= A23(ec ⊗ ed ⊗ ei) (7.53)

= (ec ⊗ ed ⊗ ei) (7.54)

Since A is a solution to the bYBE it must be the case that a = c and b = d, a

contradiction.

Theorem 7.0.11. Every solution R to the d-dimensional bYBE induces a solution

in dimension d > D as follows. Let Pd be the d dimensional swap matrix whose

representation is given in equation 7.4. Let PD be the D dimensional swap matrix

whose representation is given in equation 7.4. Then the representation given by

concatenating the representations of R, Pd, and PD represents a solution in dimension

D.

Proof. Let R be a solution to the d-dimensional bYBE. Then RPd is a solution to

the d-dimensional aYBE by proposition 4.7.1. By theorem 7.0.6 the representation

of RPd given by equation 7.4 can be reinterpreted as a solution in dimension D.

When RPd is interpreted as a matrix in dimension D it can be composed with PD to

obtain a solution to the D-dimensional bYBE by proposition 4.7.1. This solution is

represented by the concatenating the representations of R, Pd, and PD.
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We can also express RPdPD as follows:

RPdPD = R
∏

i=1,...,D
j=d+1,...,D

i ̸=j

{i, j, j, i} (7.55)

The following theorem outlines how two permutation solutions to the aYBE or bYBE

can be used to generate additional solutions.

Theorem 7.0.12.

1. If A is a permutation solution to the aYBE with a representation that con-

tains c1 unique integers and B is a permutation solution to the aYBE with a

representation that contains c2 unique integers then AB is a solution to the

d dimensional aYBE, where d ≥ max(c1, c2). (In the case of the bYBE, no

permutations are disjoint).

Proof. Both the domain and codomain of A and B are disjoint and are spanned

by basis vectors of the form ei⊗ej, which are indexed by disjoint sets of indices.

Therefore the aYBE will be satisfied on by AB on all basis vectors of

Span{ei ⊗ ej | i, j = 1, . . . , d}

2. A is a permutation solutions to the d-dimensional aYBE such A = BC where

B and C are permutations that have disjoint representations, then B and C

are both solutions.

Proof. After restricting A and B to their respective domains, they will still

satisfy the aYBE.
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3. If A is a permutation solution to the aYBE with a representation that con-

tains c1 unique integers and B is a permutation solution to the aYBE with a

representation that contains c2 unique integers then there exists a dimension

dim(V ) = d ≥ max(c1, c2), and Q ∈ Aut(V ) such that A(Q⊗Q)B(Q−1 ⊗Q−1)

is a solution in dimension d.

Proof. This follows directly from the above, theorem 7.0.6, and proposition

7.0.5.

Theorem 7.0.13. Up to the symmetries in proposition 7.0.5 there are only two solu-

tions to the bYBE across all dimensions that can be written as a single transposition.

Proof. By theorems 7.0.9 and 7.0.2 any single transposition solution must be locally

conjugate to one of the following representations:

A = {1, 1, 2, 2} (7.56)

B = {1, 2, 2, 1} = P2 (7.57)

Both of these representations are solutions to the 2-dimensional bYBE. The second

representation is the dimension 2 swap matrix P2 which is a solution. For the first

representation we show that the bYBE is satisfied. We can reinterpret A as a matrix

which exchanges e1 ⊗ e1 ↔ e2 ⊗ e2.

A =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0
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We then compute A12 and A23:

A12 = A⊗ I =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0



A23 = I ⊗ A =



0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0



It is straightforward to check that the bYBE is satisfied:

A12A23A12 =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1


= A23A12A23
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It’s interesting to note that:

B12B23B12 =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1


= B23B12B23

Theorem 7.0.14. Up to the symmetries in proposition 7.0.5 there are exactly 2

solutions to the bYBE that can be written as a product of two transpositions. These

solutions have the representations:

{1, 2, 2, 1, 1, 3, 3, 1} (7.58)

{1, 2, 2, 3, 2, 1, 3, 2} (7.59)

Up to the symmetries in proposition 7.0.5 there are exactly 11 solutions to the

bYBE that can be written as a product of three transpositions. These solutions have

the representations:

{1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2}

{1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2}

{1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2}

{1, 1, 2, 2, 1, 3, 3, 1, 2, 3, 3, 2}

{1, 1, 2, 2, 1, 3, 3, 2, 2, 3, 3, 1}
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{1, 1, 2, 3, 1, 2, 3, 3, 2, 2, 3, 1}

{1, 2, 2, 1, 1, 3, 3, 1, 2, 3, 3, 2}

{1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 1}

{1, 2, 2, 1, 1, 3, 3, 1, 1, 4, 4, 1}

{1, 2, 2, 1, 1, 3, 4, 1, 1, 4, 3, 1}

{1, 2, 2, 3, 2, 1, 4, 2, 2, 4, 3, 2}

Proof. One can generate all 4140 possible representations in the case of two transposi-

tions, and 4213597 possible representations in the case of three. These representations

can then easily be checked if they satisfy the bYBE on all relevant basis vectors.

Theorem 7.0.15. Up to the symmetries in proposition 7.0.5 there are only 2 solutions

to the aYBE that can be written as a single transposition. These have the following

representations:

{1, 2, 2, 1} (7.60)

{1, 2, 3, 2} (7.61)

Up to the symmetries in proposition 7.0.5 there are only 9 solutions to the aYBE

that can be written as a product of two transpositions. These have the following

representations:

{1, 1, 1, 2, 2, 1, 2, 2} (7.62)

{1, 1, 2, 2, 1, 2, 2, 1} (7.63)

{1, 2, 1, 3, 1, 2, 1, 4} (7.64)

{1, 2, 1, 3, 1, 4, 1, 5} (7.65)
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{1, 2, 1, 3, 2, 1, 3, 1} (7.66)

{1, 2, 1, 3, 2, 4, 3, 4} (7.67)

{1, 2, 1, 3, 4, 1, 5, 1} (7.68)

{1, 2, 1, 3, 4, 2, 4, 3} (7.69)

{1, 2, 3, 4, 1, 4, 3, 2} (7.70)

Up to the symmetries in proposition 7.0.5 there are only 27 solutions to the aYBE

that can be written as a product of three transpositions. These have the following

representations:

{1, 1, 1, 2, 1, 3, 2, 3, 2, 1, 2, 2} (7.71)

{1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 2} (7.72)

{1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 3} (7.73)

{1, 1, 2, 3, 1, 2, 2, 1, 1, 3, 2, 2} (7.74)

{1, 2, 1, 3, 2, 1, 2, 3, 3, 1, 3, 2} (7.75)

{1, 2, 1, 3, 2, 1, 3, 1, 2, 3, 3, 2} (7.76)

{1, 2, 2, 1, 1, 3, 3, 1, 2, 3, 3, 2} (7.77)

{1, 2, 1, 3, 1, 4, 4, 1, 2, 4, 3, 4} (7.78)

{1, 2, 1, 3, 1, 4, 4, 1, 4, 2, 4, 3} (7.79)

{1, 2, 1, 3, 2, 1, 3, 1, 1, 4, 4, 1} (7.80)

{1, 2, 1, 3, 2, 1, 3, 1, 2, 4, 3, 4} (7.81)

{1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 5} (7.82)

{1, 2, 1, 3, 1, 4, 1, 5, 2, 1, 3, 1} (7.83)

{1, 2, 1, 3, 1, 4, 5, 4, 5, 2, 5, 3} (7.84)
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{1, 2, 1, 3, 2, 4, 2, 5, 3, 4, 3, 5} (7.85)

{1, 2, 1, 3, 2, 4, 3, 4, 2, 5, 3, 5} (7.86)

{1, 2, 1, 3, 2, 4, 3, 5, 2, 5, 3, 4} (7.87)

{1, 2, 1, 3, 4, 2, 4, 3, 5, 2, 5, 3} (7.88)

{1, 2, 1, 3, 4, 2, 5, 3, 4, 3, 5, 2} (7.89)

{1, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 6} (7.90)

{1, 2, 1, 3, 1, 2, 1, 4, 5, 1, 6, 1} (7.91)

{1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 3, 6} (7.92)

{1, 2, 1, 3, 1, 4, 1, 5, 6, 2, 6, 3} (7.93)

{1, 2, 1, 3, 2, 4, 3, 4, 4, 5, 4, 6} (7.94)

{1, 2, 1, 3, 4, 1, 5, 1, 4, 6, 5, 6} (7.95)

{1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7} (7.96)

{1, 2, 1, 3, 1, 4, 1, 5, 6, 1, 7, 1} (7.97)

Proof. There are 15 possible single transposition representations:

{1, 1, 1, 1} {1, 1, 1, 2} {1, 1, 2, 1}

{1, 1, 2, 2} {1, 1, 2, 3} {1, 2, 1, 1}

{1, 2, 1, 2} {1, 2, 1, 3} {1, 2, 2, 1}

{1, 2, 2, 2} {1, 2, 2, 3} {1, 2, 3, 1}

{1, 2, 3, 2} {1, 2, 3, 3} {1, 2, 3, 4}

One can also generate all 4140 possible representations in the case of two transposi-

tions, and 4213597 possible representations in the case of three. These representations
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can then easily be checked if they satisfy the aYBE on all relevant basis vectors, and

the redundant ones removed according to proposition 7.0.5.

This method generalizes to longer products of transpositions. Let s be the num-

ber of transpositions in the product. Then 4s variables are required to represent

the product’s action on each basis vector. The number of possible representation

assumptions is the 4s Bell number, B[4s]. The number of inputs to consider for each

assumption is (4s+1)3. Therefore the total number of cases to consider for a product

of s transpositions is: B[4s](4s + 1)3. It’s well known that any permutation can be

factored into a product of transpositions, and that every permutation of d elements

can be written using d− 1 transpositions or less. Therefore this method can produce

all permutation solutions in dimension d by considering all B[4(d2−1)](4(d2−1)+1)3

possible combinations of assumptions. This is greater than the brute force method of

checking all d2! permutation matrices. Finding which representations are solutions of

the bYBE amounts to checking whether if R12R23R12 agrees with R23R12R23 on each

basis vector of V ⊗V ⊗V . For a given representation we only need to check the basis

vectors with indices ranging from 1 to c, where c is the number of matching variables

in the original representation.

Theorem 7.0.16. This theorem allows us to compose certain types of transposition

solutions that have some overlapping indices. Let B be the transposition representa-

tion:

{a, b, a, c} (7.98)

This represents a solution to the d-dimensional aYBE, where d > 2, by theorem

7.0.15, where the form in theorem 7.0.15 is equal to B after conjugating by swap and
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Q⊗Q. Consider the following related representations:

B = {a, b, a, c} (7.99)

PBP = {b, a, c, a} (7.100)

(Q⊗Q)B(Q−1 ⊗Q−1) = {l,m, l, n} (7.101)

(Q⊗Q)PBP (Q−1 ⊗Q−1) = {m, l, n, l} (7.102)

Notice that two indices appear once and one index always appears twice. These

representations can be composed to form new solutions as follows. Let B1, B2, . . . , Bs

be transpositions that can be represented by one of the above forms such that if

i ∈ Bj appears twice in Bj then it appears twice in any of the other transpositions

that it appears, and if i, j ∈ Bk such that i ̸= j then i ∈ Bp if and only if j ∈ Bp, and

i, j only appear once in each transposition that they appear, we will call these paired

indices. Denote the paired indices by single letters i and it’s pairing ı̂. Further assume

that if R(ei ⊗ ej) ̸= ei ⊗ ej then ei ⊗ ej is only transformed by a single transposition,

Bk. For example we can write the forms above as:

{a, b, a, b̂} (7.103)

{b, a, b̂, a} (7.104)

{l,m, l, m̂} (7.105)

{m, l, m̂, l} (7.106)

The following composition

R = B1B2 . . . Bs (7.107)
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is a solution to the D-dimensional aYBE where D ≥ c, and c is the number of unique

indices appearing in the representation of R.

Example 7.0.17. The following representation represents a solution to the d-

dimensional aYBE where d ≥ 9.

{1, 2, 1, 3,

1, 4, 1, 5,

1, 6, 1, 7,

2, 1, 3, 1,

9, 2, 9, 3,

9, 6, 9, 7}

Proof of Theorem 7.0.16. Let R = B1B2 . . . Bs be a permutation with a representa-

tion that follows the assumptions of theorem 7.0.16. Let c be the number of unique

indices appearing in the representation of R. We need to show that

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

holds for all i, j, k ∈ {1, . . . , c}. There are four possible cases to consider:

1. R(ei ⊗ ej) ̸= ei ⊗ ej and R(ej ⊗ ek) ̸= ej ⊗ ek

2. R(ei ⊗ ej) ̸= ei ⊗ ej and R(ej ⊗ ek) = ej ⊗ ek

3. R(ei ⊗ ej) = ei ⊗ ej and R(ej ⊗ ek) ̸= ej ⊗ ek

4. R(ei ⊗ ej) = ei ⊗ ej and R(ej ⊗ ek) = ej ⊗ ek

In the first case we have two sub-cases:
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(a) R(ei ⊗ ej) = eı̂ ⊗ ej and R(ej ⊗ ek) = ej ⊗ ek̂ in which case we have:

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ ej ⊗ ek̂) = R23R13(eı̂ ⊗ ej ⊗ ek)

It must be the case that R(ei ⊗ ek̂) = (ei ⊗ ek̂) and R(eı̂ ⊗ ek) = (eı̂ ⊗ ek) since

both indices i and k are paired. We then have:

(eı̂ ⊗ ej ⊗ ek̂) = (eı̂ ⊗ ej ⊗ ek̂)

(b) R(ei ⊗ ej) = ei ⊗ eȷ̂ and R(ej ⊗ ek) = eȷ̂ ⊗ ek in which case both i and k are

repeated and we have:

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ eȷ̂ ⊗ ek) = R23R13(ei ⊗ eȷ̂ ⊗ ek)

R12(ei ⊗ eȷ̂ ⊗ ek) = R23(ei ⊗ eȷ̂ ⊗ ek)

(ei ⊗ ej ⊗ ek) = (ei ⊗ ej ⊗ ek)

In the second case we have two sub-cases: R(ei⊗ej) = ei⊗eȷ̂ or R(ei⊗ej) = eı̂⊗ej.

(a) In the case that R(ei ⊗ ej) = ei ⊗ eȷ̂ we have:

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ ej ⊗ ek) = R23R13(ei ⊗ eȷ̂ ⊗ ek)

Then either R(ei ⊗ k) = ei ⊗ ek̂ or R(ei ⊗ ek) = ei ⊗ ek. If R(ei ⊗ k) = ei ⊗ ek̂
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then

R12(ei ⊗ ej ⊗ ek̂) = R23(ei ⊗ eȷ̂ ⊗ ek̂)

(ei ⊗ eȷ̂ ⊗ ek̂) = (ei ⊗ eȷ̂ ⊗ ek̂)

If R(ei ⊗ ek) = ei ⊗ ek then

R12(ei ⊗ ej ⊗ ek) = R23(ei ⊗ eȷ̂ ⊗ ek)

(ei ⊗ eȷ̂ ⊗ ek) = (ei ⊗ eȷ̂ ⊗ ek)

(b) In the case that R(ei ⊗ ej) = eı̂ ⊗ ej we have:

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ ej ⊗ ek) = R23R13(eı̂ ⊗ ej ⊗ ek)

If R(ei ⊗ ek) = ei ⊗ ek then we get:

R12(ei ⊗ ej ⊗ ek) = R23(eı̂ ⊗ ej ⊗ ek)

(eı̂ ⊗ ej ⊗ ek) = (eı̂ ⊗ ej ⊗ ek)

If R(ei ⊗ ek) ̸= ei ⊗ ek then it must be the case that R(ei ⊗ ek) = eı̂ ⊗ ek and

R(eı̂ ⊗ ek) = (ei ⊗ ek) giving us:

R12(eı̂ ⊗ ej ⊗ ek) = R23(ei ⊗ ej ⊗ ek)

(ei ⊗ ej ⊗ ek) = (ei ⊗ ej ⊗ ek)
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The third case can be handled almost identically to the second case. In the last

case we have three sub-cases:

(a) R(ei ⊗ ek) = ei ⊗ ek in which case we have:

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ ej ⊗ ek) = R23R13(ei ⊗ ej ⊗ ek)

R12(ei ⊗ ej ⊗ ek) = R23(ei ⊗ ej ⊗ ek)

(ei ⊗ ej ⊗ ek) = (ei ⊗ ej ⊗ ek)

(b) R(ei ⊗ ek) = eı̂ ⊗ ek in which case i is paired and k is repeated.

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ ej ⊗ ek) = R23R13(ei ⊗ ej ⊗ ek)

R12(eı̂ ⊗ ej ⊗ ek) = R23(eı̂ ⊗ ej ⊗ ek)

By the assumption R(ej ⊗ ek) = ej ⊗ ek, R23 will act as the identity on the

right. By the assumption R(ei ⊗ ej) = ei ⊗ ej, R(eı̂ ⊗ ej) = (eı̂ ⊗ ej), otherwise

it would imply that R(ei ⊗ ej) ̸= ei ⊗ ej, so R12 acts as the identity on the left.

Therefore the equality is satisfied in this case.
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(c) R(ei ⊗ ek) = ei ⊗ ek̂ in which case i is repeated and k is paired.

R12R13R23(ei ⊗ ej ⊗ ek) = R23R13R12(ei ⊗ ej ⊗ ek)

R12R13(ei ⊗ ej ⊗ ek) = R23R13(ei ⊗ ej ⊗ ek)

R12(ei ⊗ ej ⊗ ek̂) = R23(ei ⊗ ej ⊗ ek̂)

By a similar logic to the previous case, both sides are equal.
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Chapter 8

Upper triangular solutions

“It is my experience that proofs involving
matrices can be shortened by 50% if one
throws the matrices out.”

Emil Artin

8.1 Hietarinta’s method for dimension 3

The 9× 9 invertible upper-triangular solutions to the 3-dimensional aYBE have been

classified fully by Hietarinta in [39]. The only unitary upper triangular matrices are

diagonal, however, the upper triangular solutions might be transformable into a non-

trivial unitary solution as described by H. A. Dye in [25]. What follows is a description

of the solving process used by [39]. In order to keep R upper triangular the matrix

Q in proposition 4.7.1 is restricted to be upper triangular. We can examine the effect

of the Q-transformation by organizing R into 3× 3 blocks:

R =


A B C

0 E F

0 0 G



(Q⊗Q)R(Q⊗Q)−1 =


QAQ−1 B′ C ′

0 QEQ−1 F ′

0 0 QGQ−1
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Therefore the 3 × 3 diagonal blocks undergo a similarity transformation by Q.

Since Q is upper triangular we cannot always diagonalize the blocks, however, they

can be brought to a Belitskiĭ canonical form.[52] In the 3× 3 invertible case there are

5 Belitskiĭ forms:

C1 =


a 0 0

0 b 0

0 0 c

 C2 =


a b 0

0 a 0

0 0 c



C3 =


a 0 b

0 c 0

0 0 a

 C4 =


a 0 0

0 b c

0 0 b



C5 =


a b 0

0 a b

0 0 a


These were obtained by following Belitskiĭs algorithm. The diagonal elements

are left unchanged by the similarity transformation so initially there are 5 possible

cases (3 eigenvalues, 2 eigenvalues, or 1 eigenvalue and their possible arrangements).

A given element above the diagonal can be transformed to zero provided that the

eigenvalues in its row and column are different. If they are the same then the element

can be scaled to 1.

Example 8.1.1. For example when there are 3 eigenvalues:

QAQ−1 =


1 0 0

0 1 a23
a22−a33

0 0 1




a11 a12 a13

0 a22 a23

0 0 a33




1 0 0

0 1 − a23
a22−a33

0 0 1
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=


a11 a′11 a′13

0 a22 0

0 0 a33

 = A′

QA′Q−1 =


1 a12

a11−a22
0

0 1 0

0 0 1




a11 a′11 a′13

0 a22 0

0 0 a33




1 − a12
a11−a22

0

0 1 0

0 0 1



=


a11 0 a′13

0 a22 0

0 0 a33

 = A′′

QA′′Q−1 =


1 0 a13

a11−a33

0 1 0

0 0 1




a11 0 a′13

0 a22 0

0 0 a33




1 0 − a13
a11−a33

0 1 0

0 0 1



=


a11 0 0

0 a22 0

0 0 a33


For the case where there is only one eigenvalue and the upper-diagonal entries are

the same but nonzero (if there were then this is a special case of a different canonical

form) we can use

Q =


1 1 0

0 1 a12+a13
a12

0 0 1


to transform the upper right element to 0.

Belitskiĭ algorithm is more general than this and it works by going through the

off-diagonal elements one by one to make them either 0 or 1 while taking care to not
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change a previously transformed entry. The algorithm and the canonical forms for

up to the 5× 5 case are described in [52].

Hietarinta’s solution method can then be described as follows:

1. Assume that the upper left block of R takes one of the canonical forms

2. Since R is invertible and the diagonal elements must be nonzero the most com-

mon eigenvalue in that block can be scaled to 1.

3. A repeated off-diagonal element in the canonical forms can also be transformed

to 1 using the Q transformation

Some cases can be eliminated using the fact that two solutions are considered

identical if they are equivalent under the symmetries listed above. For each case

Hietarinta manually factored the simpler equations into sub-cases and solved using a

computer algebra system.

8.2 The 4 dimensional upper triangular Belitskiĭ canonical forms under

upper triangular similarity

Two matrices A and B are considered t-similar if there exists a 4×4 upper triangular

invertible matrix Q such that A = QBQ−1. We find a generating set for the set of

invertible 4 × 4 upper triangular matrices over C under t-similarity. These matrices

can be used to split the problem of finding the 16 × 16 upper triangular invertible

matrices satisfying aYBE into sub-cases. Belitskiĭs algorithm results in the following

generating set of 48 matrices after considering all possible cases:
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1 distinct eigenvalue

C1 =


a 0 0 0

0 a 0 0

0 0 a 0

0 0 0 a



C2 =


a 0 0 0

0 a 1 0

0 0 a 0

0 0 0 a

 C3 =


a 0 0 1

0 a 1 0

0 0 a 0

0 0 0 a

 C4 =


a 0 0 0

0 a 1 0

0 0 a 1

0 0 0 a



C5 =


a 0 0 0

0 a 0 0

0 0 a 1

0 0 0 a

 C6 =


a 0 0 0

0 a 0 1

0 0 a 0

0 0 0 a

 C7 =


a 1 1 0

0 a 0 0

0 0 a 1

0 0 0 a


2 distinct eigenvalues

C8 =


a 0 0 0

0 a 0 0

0 0 b 0

0 0 0 b



C9 =


a 1 0 0

0 a 0 0

0 0 b 1

0 0 0 b

 C10 =


a 1 0 0

0 a 0 0

0 0 b 0

0 0 0 b

 C11 =


a 0 0 0

0 a 0 0

0 0 b 1

0 0 0 b



C12 =


a 0 0 0

0 b 0 0

0 0 a 0

0 0 0 b
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C13 =


a 0 1 0

0 b 0 1

0 0 a 0

0 0 0 b

 C14 =


a 0 1 0

0 b 0 0

0 0 a 0

0 0 0 b

 C15 =


a 0 0 0

0 b 0 1

0 0 a 0

0 0 0 b



C16 =


a 0 0 0

0 b 0 0

0 0 b 0

0 0 0 a



C17 =


a 0 0 1

0 b 1 0

0 0 b 0

0 0 0 a

 C18 =


a 0 0 1

0 b 0 0

0 0 b 0

0 0 0 a

 C19 =


a 0 0 0

0 b 1 0

0 0 b 0

0 0 0 a



C20 =


a 0 0 0

0 b 0 0

0 0 b 0

0 0 0 b



C21 =


a 0 0 0

0 b 1 0

0 0 b 0

0 0 0 b

 C22 =


a 0 0 0

0 b 1 0

0 0 b 1

0 0 0 b

 C23 =


a 0 0 0

0 b 0 0

0 0 b 1

0 0 0 b



C24 =


b 0 0 0

0 a 0 0

0 0 b 0

0 0 0 b



C25 =


b 0 1 0

0 a 0 0

0 0 b 0

0 0 0 b

 C26 =


b 0 1 0

0 a 0 0

0 0 b 1

0 0 0 b

 C27 =


b 0 0 0

0 a 0 0

0 0 b 1

0 0 0 b


107



C28 =


b 0 0 0

0 b 0 0

0 0 a 0

0 0 0 b



C29 =


b 1 0 0

0 b 0 0

0 0 a 0

0 0 0 b

 C30 =


b 1 0 0

0 b 0 1

0 0 a 0

0 0 0 b

 C31 =


b 0 0 0

0 b 0 1

0 0 a 0

0 0 0 b



C32 =


b 0 0 0

0 b 0 0

0 0 b 0

0 0 0 a



C33 =


b 1 0 0

0 b 0 0

0 0 b 0

0 0 0 a

 C34 =


b 1 0 0

0 b 1 0

0 0 b 0

0 0 0 a

 C35 =


b 0 0 0

0 b 1 0

0 0 b 0

0 0 0 a


3 distinct eigenvalues

C36 =


a 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c

 C37 =


a 1 0 0

0 a 0 0

0 0 b 0

0 0 0 c



C38 =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 a

 C39 =


a 0 0 1

0 b 0 0

0 0 c 0

0 0 0 a
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C40 =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 a

 C41 =


a 0 1 0

0 b 0 0

0 0 a 0

0 0 0 c



C42 =


b 0 0 0

0 a 0 0

0 0 c 0

0 0 0 a

 C43 =


b 0 0 0

0 a 0 1

0 0 c 0

0 0 0 a



C44 =


b 0 0 0

0 c 0 0

0 0 a 0

0 0 0 a

 C45 =


b 0 0 0

0 c 0 0

0 0 a 1

0 0 0 a



C46 =


b 0 0 0

0 a 0 0

0 0 a 0

0 0 0 c

 C47 =


b 0 0 0

0 a 1 0

0 0 a 0

0 0 0 c


4 distinct eigenvalues

C48 =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d


These canonical forms were obtained through the following procedure. Recall we

are assuming the matrix is invertible therefore all eigenvalues are nonzero. After

picking the number of distinct eigenvalues and their arrangement on the diagonal,

any element above the diagonal can be brought to 0 (by a similarity transformation)

if the eigenvalues in it’s row and column are distinct.
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Let Eij(a) be the elementary matrix with ones on the diagonal and with the ele-

ment in row i and column j equal to a and zero everywhere else. Then multiplication

on the left represents the row operation of adding a times row j to row i. Multipli-

cation on the right represents the column operation of adding a times column i to

column j. Therefore Eij(a)BE
−1
ij (a) results in element (i, j) being transformed to:

Bij + aBjj − aBii. Choosing a =
Bij

Bii−Bjj
allows us to transform element (i, j) to 0.

So after making elements in the row and column of distinct eigenvalues 0 we are

left with sub matrix blocks that all have the a single eigenvalue. It’s left to consider

what canonical forms these can be brought to under an upper triangular similarity

transformation. Each of these blocks is of the form λI + N where N is nilpotent.

These cases are covered in [52].


0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0



0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0



0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



0 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0


Classifying all invertible upper triangular solutions to the 4-dimensional aYBE

amounts to classifying all solutions with the upper left block given by one of the 48

Canonical forms above. The upper triangular ansatz results in a polynomial system

of 163 = 4, 096 equations in 256 variables. We consider the case when the upper left

block has the same form as C34 above. This reduces the number of equations to 1974

and the number of variables to 136. The system contains many equations that factor
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and can be simultaneously solved quickly using a computer algebra system. Using

algorithm 3.3 we were able to compute all 21 solutions in this case. In many cases

two of the solutions differ by only a single entry in the lower right. We first define

the following auxiliary variables which allow the matrices to stay within the margins

of the page:

b1 = −1

4
a3 (8a1 + (a3 − 1) a3)

b2 = 1− 1

2
a3 (a3 + 3)

b3 =
1

2
a3 (a3 + 1)

b4 =
1

4
a3 (3a3 (a3 + 1)− 2)− a1

b5 =
1

2
a2 (a3 + 2)

b6 = a1 −
1

4
(a3 − 1) a3 (3a3 − 2)

b7 = (a3 − 1) (2a3 − 1)

b8 =
1

4
a3 (3a3 (a3 + 1)− 2)− a2

b9 =
1

4
a3 (8a2 + a3 (5− a3 (6a3 + 7)))

b10 = a2 −
3

4
a3

(
a23 + a3 − 2

)
b11 = −1

4
a3 (8a2 + (a3 − 1) a3)

b12 = −1

4
a6 (8a3 + (a6 − 1) a6)

b13 = a2 −
1

4
(a31) a3 (3a3 − 2)

b14 =
1

4
a6 (3a6 (a6 + 1)− 2)− a3

b15 = a10
(
a23a

2
10 − (a4 + a3 (a5 + 1)) a10 + a5 + a8 − a9

)
b16 = a3 −

1

4
(a6 − 1) a6 (3a6 − 2)
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b17 = a8
(
a23a

2
8 − a4a8 + a1 + a5 − a7 − 1

)
b18 = −1

8
(a3 + 1) (a3 + 3)

b19 = a10 (a5 − a3a10 + 1)



1 1 0 0 −1 −a3 a1 0 1 a3 − a1 b1 0 0 0 0 − a1a2
a3−1

0 1 1 0 0 −a3 b2 0 0 b3 b4 0 0 0 0 b5

0 0 1 0 0 0 1− 2a3 0 0 0 a3 (2a3 − 1) 0 0 0 0 a2

0 0 0 −1 0 0 0 a3 0 0 0 −b3 0 0 0 0

0 0 0 0 1 a3
1
2
(a3 − 1) a3 0 −1 −b3 b6 0 0 0 0 −1

2
a2a3

0 0 0 0 0 1 a3 0 0 −a3 a3 − 2a23 0 0 0 0 −a2
0 0 0 0 0 0 1 0 0 0 1− 2a3 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 a3 0 0 0 0

0 0 0 0 0 0 0 0 1 2a3 − 1 b7 0 0 0 0 a2

0 0 0 0 0 0 0 0 0 1 2a3 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −a3 −1
2
(a3 − 1) a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(8.1)
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1 1 0 0 −1 −a3 a1 0 1 a3 − a1 b1 0 0 0 0 − a1a2
a3−1

0 1 1 0 0 −a3 b2 0 0 b3 b4 0 0 0 0 b5

0 0 1 0 0 0 1− 2a3 0 0 0 a3 (2a3 − 1) 0 0 0 0 a2

0 0 0 −1 0 0 0 a3 0 0 0 −b3 0 0 0 0

0 0 0 0 1 a3
1
2
(a3 − 1) a3 0 −1 −b3 b6 0 0 0 0 −1

2
a2a3

0 0 0 0 0 1 a3 0 0 −a3 a3 − 2a23 0 0 0 0 −a2
0 0 0 0 0 0 1 0 0 0 1− 2a3 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 a3 0 0 0 0

0 0 0 0 0 0 0 0 1 2a3 − 1 b7 0 0 0 0 a2

0 0 0 0 0 0 0 0 0 1 2a3 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −a3 −1
2
(a3 − 1) a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(8.2)

1 1 0 0 −1 −a3 b8 0 1 b10 b9 0 0 0 0 a1

0 1 1 0 0 −a3 b2 0 0 b3 a2 0 0 0 0 a1

0 0 1 0 0 0 1− 2a3 0 0 0 a3 (2a3 − 1) 0 0 0 0 0

0 0 0 −1 0 0 0 1
2
(a3 + 1) 0 0 0 b18 0 0 0 0

0 0 0 0 1 a3
1
2
(a3 − 1) a3 0 −1 −b3 a3 (2a3 − 1)− a2 0 0 0 0 −a1

0 0 0 0 0 1 a3 0 0 −a3 a3 − 2a23 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1− 2a3 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1
2
(a3 + 1) 0 0 0 0

0 0 0 0 0 0 0 0 1 2a3 − 1 b7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2a3 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2
(−a3 − 1) 1

8
(1− a23) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2
(−a3 − 1) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(8.3)
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1 1 0 0 −1 −a3 b8 0 1 b10 b9 0 0 0 0 a1

0 1 1 0 0 −a3 b2 0 0 b3 a2 0 0 0 0 a1

0 0 1 0 0 0 1− 2a3 0 0 0 a3 (2a3 − 1) 0 0 0 0 0

0 0 0 −1 0 0 0 1
2
(a3 + 1) 0 0 0 b18 0 0 0 0

0 0 0 0 1 a3
1
2
(a3 − 1) a3 0 −1 −b3 a3 (2a3 − 1)− a2 0 0 0 0 −a1

0 0 0 0 0 1 a3 0 0 −a3 a3 − 2a23 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1− 2a3 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1
2
(a3 + 1) 0 0 0 0

0 0 0 0 0 0 0 0 1 2a3 − 1 b7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2a3 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2
(−a3 − 1) 1

8
(1− a23) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2
(−a3 − 1) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(8.4)

1 1 0 0 −1 −a3 a2 0 1 a3 − a2 b11 0 0 0 0 a1

0 1 1 0 0 −a3 b2 0 0 b3
1
4
a3 (3a3 (a3 + 1)− 2)− a2 0 0 0 0 0

0 0 1 0 0 0 1− 2a3 0 0 0 a3 (2a3 − 1) 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0 0

0 0 0 0 1 a3
1
2
(a3 − 1) a3 0 −1 −b3 b13 0 0 0 0 0

0 0 0 0 0 1 a3 0 0 −a3 a3 − 2a23 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1− 2a3 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 2a3 − 1 b7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2a3 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(8.5)
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1 1 0 0 −1 −a3 a2 0 1 a3 − a2 b11 0 0 0 0 a1

0 1 1 0 0 −a3 b2 0 0 b3
1
4
a3 (3a3 (a3 + 1)− 2)− a2 0 0 0 0 0

0 0 1 0 0 0 1− 2a3 0 0 0 a3 (2a3 − 1) 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0 0

0 0 0 0 1 a3
1
2
(a3 − 1) a3 0 −1 −b3 a2 − 1

4
(a3 − 1) a3 (3a3 − 2) 0 0 0 0 0

0 0 0 0 0 1 a3 0 0 −a3 a3 − 2a23 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1− 2a3 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 2a3 − 1 b7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2a3 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(8.6)

1 1 0 0 −1 −a6 a3 0 1 a6 − a3 b12 0 0 0 0 0

0 1 1 0 0 −a6 1− 1
2
a6 (a6 + 3) 0 0 1

2
a6 (a6 + 1) b14 0 0 0 0 0

0 0 1 0 0 0 1− 2a6 0 0 0 a6 (2a6 − 1) 0 0 0 0 0

0 0 0 a4 0 0 0 a5 0 0 0 a5(a5−a4)
2a4

0 0 0 0

0 0 0 0 1 a6
1
2
(a6 − 1) a6 0 −1 −1

2
a6 (a6 + 1) b16 0 0 0 0 0

0 0 0 0 0 1 a6 0 0 −a6 a6 − 2a26 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1− 2a6 0 0 0 0 0

0 0 0 0 0 0 0 a4 0 0 0 a5 0 0 0 0

0 0 0 0 0 0 0 0 1 2a6 − 1 (a6 − 1) (2a6 − 1) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2a6 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a1 −a1a5
a4

a1a5(a4+a5)

2a24
0

0 0 0 0 0 0 0 0 0 0 0 0 0 a1 −a1a5
a4

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a2


(8.7)

115





1 1 0 0 a5 a6 a7 0 a8 a1 a2 0 0 0 0 0

0 1 1 0 0 a5 a6 0 0 a8 a1 0 0 0 0 0

0 0 1 0 0 0 a5 0 0 0 a8 0 0 0 0 0

0 0 0 a10 0 0 0 b19 0 0 0 b15 0 0 a9 0

0 0 0 0 1 1 0 0 a5 a6 a7 0 0 0 0 0

0 0 0 0 0 1 1 0 0 a5 a6 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 a5 0 0 0 0 0

0 0 0 0 0 0 0 a10 0 0 0 b19 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a10 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
a10

a3 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
a10

a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a10

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(8.8)



1 1 0 0 a5 a6 a7 0 a8 a1 a2 0 0 0 0 0

0 1 1 0 0 a5 a6 0 0 a8 a1 0 0 0 0 0

0 0 1 0 0 0 a5 0 0 0 a8 0 0 0 0 0

0 0 0 a10 0 0 0 b15 0 0 a9 0

0 0 0 0 1 1 0 0 a5 a6 a7 0 0 0 0 0

0 0 0 0 0 1 1 0 0 a5 a6 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 a5 0 0 0 0 0

0 0 0 0 0 0 0 a10 0 0 0 b19 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a10 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
a10

a3 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
a10

a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a10

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



(8.9)
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1 1 0 0 −1 −1 a5 0 a1 + a5 a1 a2 0 0 0 0 0

0 1 1 0 0 −1 −1 0 0 a1 + a5 a6 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 a1 + a5 0 0 0 0 0

0 0 0 a8 0 0 0 −a3a28 0 0 0 b17 0 0 a7 0

0 0 0 0 1 1 0 0 −1 −1 a1 + a5 − a6 0 0 0 0 0

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 a8 0 0 0 −a3a28 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
a8

a3 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
a8

a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a8

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(8.10)

1 1 0 0 −1 −1 a5 0 a1 + a5 a1 a2 0 0 0 0 0

0 1 1 0 0 −1 −1 0 0 a1 + a5 a6 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 a1 + a5 0 0 0 0 0

0 0 0 a8 0 0 0 −a3a28 0 0 0 b17 0 0 a7 0

0 0 0 0 1 1 0 0 −1 −1 a1 + a5 − a6 0 0 0 0 0

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 a8 0 0 0 −a3a28 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
a8

a3 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
a8

a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a8

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(8.11)
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1 1 0 0 a6 a7 a9 0 a10 a1 a2 0 0 0 0 0

0 1 1 0 0 a6 a7 0 0 a10 a1 0 0 0 0 0

0 0 1 0 0 0 a6 0 0 0 a10 0 0 0 0 0

0 0 0 a12 0 0 0 a13 0 0 0 a11 0 0 0 0

0 0 0 0 1 1 0 0 a6 a7 a9 0 0 0 0 0

0 0 0 0 0 1 1 0 0 a6 a7 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 a6 0 0 0 0 0

0 0 0 0 0 0 0 a12 0 0 0 a13 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a12 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a5 a3 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 a5 a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a8



(8.12)
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1 1 0 0 −1 −1 a6 0 a1 + a6 a1 a2 0 0 0 0 0

0 1 1 0 0 −1 −1 0 0 a1 + a6 a7 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 a1 + a6 0 0 0 0 0

0 0 0 a9 0 0 0 0 0 0 0 a8 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 a1 + a6 − a7 0 0 0 0 0

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 a9 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 a9 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a4 0 a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 a4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a5


(8.13)

1 1 0 0 −1 −1 a7 0 a1 + a7 a1 a2 0 0 0 0 0

0 1 1 0 0 −1 −1 0 0 a1 + a7 a8 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 a1 + a7 0 0 0 0 0

0 0 0 −a5a10
a3

0 0 0 a10 0 0 0 a9 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 a1 + a7 − a8 0 0 0 0 0

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −a5a10
a3

0 0 0 a10 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −a5a10
a3

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a5 a3 a4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 a5 a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a6


(8.14)
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1 1 0 0 a4 a5 a6 0 a7 a1 a2 0 0 0 0 a3

0 1 1 0 0 a4 a5 0 0 a7 a1 0 0 0 0 0

0 0 1 0 0 0 a4 0 0 0 a7 0 0 0 0 0

0 0 0 −1 0 0 0 −a4 0 0 0 −a7 0 0 0 0

0 0 0 0 1 1 0 0 a4 a5 a6 0 0 0 0 0

0 0 0 0 0 1 1 0 0 a4 a5 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 a4 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 −a4 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(8.15)



1 1 0 0 a4 a5 a6 0 a7 a1 a2 0 0 0 0 a3

0 1 1 0 0 a4 a5 0 0 a7 a1 0 0 0 0 0

0 0 1 0 0 0 a4 0 0 0 a7 0 0 0 0 0

0 0 0 −1 0 0 0 −a4 0 0 0 −a7 0 0 a8 0

0 0 0 0 1 1 0 0 a4 a5 a6 0 0 0 0 0

0 0 0 0 0 1 1 0 0 a4 a5 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 a4 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 −a4 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 a8 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



(8.16)
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1 1 0 0 −1 −1 0 0 1 1 0 0 0 0 0 a1

0 1 1 0 0 −1 −1 0 0 1 1 0 0 0 0 a2

0 0 1 0 0 0 −1 0 0 0 1 0 0 0 0 a3

0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0 a3 − a2

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 −a3
0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 a3

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(8.17)



1 1 0 0 −1 −1 a3 0 a4 a4 − a3 a1 0 0 0 0 a2

0 1 1 0 0 −1 −1 0 0 a4 a5 0 0 0 0 a6

0 0 1 0 0 0 −1 0 0 0 a4 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 −a4 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 a4 − a5 0 0 0 0 −a6
0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(8.18)
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1 1 0 0 −1 −1 0 0 1 1 0 0 0 0 0 a1

0 1 1 0 0 −1 −1 0 0 1 1 0 0 0 0 a2

0 0 1 0 0 0 −1 0 0 0 1 0 0 0 0 a3

0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0 a3 − a2

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 −a3
0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 a3

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



(8.19)



1 1 0 0 −1 −1 a3 0 a4 a4 − a3 a1 0 0 0 0 a2

0 1 1 0 0 −1 −1 0 0 a4 a5 0 0 0 0 a6

0 0 1 0 0 0 −1 0 0 0 a4 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 −a4 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 a4 − a5 0 0 0 0 −a6
0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(8.20)
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1 1 0 0 −1 −1 a4 0 a5 a5 − a4 a1 0 0 0 0 a2

0 1 1 0 0 −1 −1 0 0 a5 a6 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 a5 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 −a5 0 0 a3 0

0 0 0 0 1 1 0 0 −1 −1 a5 − a6 0 0 0 0 0

0 0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 a3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


(8.21)

Conjecture 8.2.1. The only invertible upper-triangular solutions to the d-dimensional

bYBE are scalar multiples of the identity matrix.

Lemma 8.2.1. The diagonal elements of an invertible upper-triangular solution to

the d-dimensional bYBE are all equal.

Proof. Let R be an invertible upper triangular matrix. The upper triangular assump-

tion corresponds to the condition that Rcd
ab = 0 whenever ab ≺ cd, where ≺ denotes

lexicographic ordering. Since R is invertible the diagonal elements must be nonzero,

the diagonal elements are indexed by Rab
ab ̸= 0. The bYBE can be written in Einstein

notation as (see appendix A.2):

Rk1k2
j2j1

Rl1k3
j3k1

Rl2l3
k3k2

= Rk2k3
j3j2

Rk1l3
k3j1

Rl1l2
k2k1

(8.22)
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Consider two of the diagonal elements of R given by Rab
ab and Rcd

cd. We will show that

Rab
ab = Rcd

cd by showing that each of the following are satisfied:

Rab
ab = Rca

ca = Rdc
dc = Rcd

cd (8.23)

Consider the polynomial appearing in the bYBE indexed by j1 = b, j2 = a, j3 = c,

l1 = c, l2 = a, l3 = b:

Rk1k2
ab Rck3

ck1
Rab

k3k2
= Rk2k3

ca Rk1b
k3b
Rca

k2k1
(8.24)

For the left hand side of equation 8.24 not to vanish we need each term to be nonzero.

In order for Rk1k2
ab not to vanish we need k1k2 ≺ ab, meaning k1 ≤ a. In order for

Rck3
ck1

not to vanish we need ck3 ≺ ck1, meaning k3 ≤ k1. In order for Rab
k3k2

not to

vanish we need ab ≺ k3k2, meaning a ≤ k3. Therefore we need a ≤ k3 ≤ k1 ≤ a, so

k1 = k3 = a. The left hand side then becomes:

Rak2
ab R

ca
caR

ab
ak2

(8.25)

This will only be nonzero if b ≤ k2 ≤ b so k2 = b, making the left hand side equal to:

Rab
abR

ca
caR

ab
ab (8.26)

For the right hand side of equation 8.24 not to vanish we need each term of

Rk2k3
ca Rk1b

k3b
Rca

k2k1
to be nonzero. In order for Rk2k3

ca not to vanish we need k2k3 ≺ ca,

meaning k2 ≤ c. In order for Rk1b
k3b

not to vanish we need k1b ≺ k3b, meaning k3 ≤ k1.

In order for Rca
k2k1

not to vanish we need ca ≺ k2k1, meaning c ≤ k2. Therefore k2 = c
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which forces a ≤ k1 ≤ k3 ≤ a. So the right hand side becomes:

Rca
caR

ab
abR

ca
ca (8.27)

The full equation is therefore:

Rab
abR

ca
caR

ab
ab −Rca

caR
ab
abR

ca
ca = 0 (8.28)

Which only has the nonzero solution Rab
ab = Rca

ca. The above argument can be repeated

to show

Rab
ab = Rca

ca = Rdc
dc = Rcd

cd (8.29)
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Chapter 9

Future directions

“The future ain’t what it used to be.”

Yogi Berra

What follows are some questions for further research that build off of the results

in this dissertation.

1. Any solution to the d-dimensional bYBE gives rise to a knot and link invariant

[81], what invariants arise from the solutions we found?

2. In section 6 only some of the solutions were classified into unitary solutions,

which of the others can be made unitary?

3. In section 6 many of the solutions have quite complicated parametrizations, is

there a simpler way to represent these? Is there a generating function for the

X-shaped solutions in a given dimension?

4. Can the proof that there are no X-shaped solutions to the d-dimensional bYBE

when d is odd be extended to prove conjecture 6.1.1, that there are also no

X-shaped solutions to the odd dimensional gYBEs?

5. In section 7 the underlying vector space is assumed to be finite, can the results

be extended to the infinite setting?
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6. What kind of algebraic structures arise from the permutation solutions found

in section 7? For example, which skew braces (defined in section 4) give rise to

the solutions in section 7?

7. Can the techniques used in section 7 be extended to the gYBEs?

8. Can the techniques used in section 7 be adapted to find square-free, degenerate,

or involutive solutions?

9. Is there a basis free approach to our conjecture 8.2.1 that there are only diagonal

invertible upper triangular solutions to the d-dimensional bYBE.

10. The X-shaped and upper triangular ansatzes produce rich sets of solutions,

are there other ansatzes that can be classified using algorithm 1 and produce

unitary solutions?

11. With the impending implementation of quantum computing technologies can

a quantum algorithm be developed to compute X-shaped or upper triangular

solutions in higher dimensions? As a short term goal is there a NISQ (Noisy

intermediate-scale quantum) algorithm that can be implemented with current

quantum technology?

12. There is a generalization of the aYBEs, referred to as Zamolodchikov’s Tetra-

hedron Equations [36], do any of the methods in this dissertation apply to these

equations?
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Appendix A

Selected additional proofs

“Your appendix needs to be removed”

Dr. Rippey to the author in 2011

A.1 Proof of symmetries

What follows is a proof of the symmetries listed in proposition 4.7.1.

Proof. Let R be a solution to the (d,m, l)-gYBE and let λ be a nonzero scalar, and

Q a non-singular d× d matrix.

1.

(λR⊗ I⊗l
V )(I⊗l

V ⊗ λR)(λR⊗ I⊗l
V ) = (I⊗l

V ⊗ λR)(λR⊗ I⊗l
V )(I⊗l

V ⊗ λR)

λ3(R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V ) = λ3(I⊗l

V ⊗R)(R⊗ I⊗l
V )(I⊗l

V ⊗R)

(R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V ) = (I⊗l

V ⊗R)(R⊗ I⊗l
V )(I⊗l

V ⊗R)

2.

(R−1 ⊗ I⊗l
V )(I⊗l

V ⊗R−1)(R−1 ⊗ I⊗l
V ) = (I⊗l

V ⊗R−1)(R−1 ⊗ I⊗l
V )(I⊗l

V ⊗R−1)

(R⊗ I⊗l
V )−1(I⊗l

V ⊗R)−1(R⊗ I⊗l
V )−1 = (I⊗l

V ⊗R)−1(R⊗ I⊗l
V )−1(I⊗l

V ⊗R)−1
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((R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V ))−1 = ((I⊗l

V ⊗R)(R⊗ I⊗l
V )(I⊗l

V ⊗R))−1

(R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V ) = (I⊗l

V ⊗R)(R⊗ I⊗l
V )(I⊗l

V ⊗R)

3. The same as 2 with R−1 replaced by R∗

4. The same as 2 with R−1 replaced by RT

5. To limit the need for parenthesis, denote Q = Q−1 and consider the left hand

side of the gYBE:

(Q⊗mRQ⊗m ⊗ I⊗l
V )(I⊗l

V ⊗Q⊗mRQ⊗m)(Q⊗mRQ⊗m ⊗ I⊗l
V ) (A.1)

=(Q⊗mR⊗ I⊗l
V )(Q⊗m ⊗ I⊗l

V )(I⊗l
V ⊗Q⊗m)(I⊗l

V ⊗RQ⊗m)(Q⊗mRQ⊗m ⊗ I⊗l
V )

(A.2)

(A.3)

To simplify further, we look at the term (Q⊗m ⊗ I⊗l
V )(I⊗l

V ⊗Q⊗m) there are

then two cases to consider. In the first case m > l and in the second case

m ≤ l. In the first case we can write:

(Q⊗m ⊗ I⊗l
V )(I⊗l

V ⊗Q⊗m) = (Q⊗l ⊗ I⊗m−l
V ⊗Q⊗l)

And in the second case, we can write:

(Q⊗m ⊗ I⊗l
V )(I⊗l

V ⊗Q⊗m) = (Q⊗m ⊗ I⊗l−m
V ⊗Q⊗m)
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Substituting the first case into equation A.1 above we get:

(Q⊗mR⊗ I⊗l
V )(Q⊗l ⊗ I⊗m−l

V ⊗Q⊗l)(I⊗l
V ⊗RQ⊗m)(Q⊗mRQ⊗m ⊗ I⊗l

V )

=(Q⊗mR⊗ I⊗l
V )(Q⊗l ⊗ (I⊗m−l

V ⊗Q⊗l)RQ⊗m)(Q⊗m ⊗ I⊗l
V )(RQ⊗m ⊗ I⊗l

V )

=(Q⊗mR⊗ I⊗l
V )(I⊗l

V ⊗ (I⊗m−l
V ⊗Q⊗l)RQ⊗m(Q⊗m−l ⊗ I⊗l

V ))(RQ⊗m ⊗ I⊗l
V )

=(Q⊗mR⊗ I⊗l
V )(I⊗l

V ⊗ (I⊗m−l
V ⊗Q⊗l)R(I⊗m−l

V ⊗Q⊗l))(RQ⊗m ⊗ I⊗l
V )

=(Q⊗mR⊗ I⊗l
V )(I⊗l

V ⊗ I⊗m−l
V ⊗Q⊗l)(I⊗l

V ⊗R)(I⊗l
V ⊗ I⊗m−l

V ⊗Q⊗l)(RQ⊗m ⊗ I⊗l
V )

=(Q⊗mR⊗ I⊗l
V )(I⊗m

V ⊗Q⊗l)(I⊗l
V ⊗R)(I⊗m

V ⊗Q⊗l)(RQ⊗m ⊗ I⊗l
V )

=(Q⊗mR⊗Q⊗l)(I⊗l
V ⊗R)(RQ⊗m ⊗Q⊗l)

=(Q⊗m ⊗Q⊗l)(R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V )(Q⊗m ⊗Q⊗l)

=Q⊗m+l(R⊗ I⊗l
V )(I⊗l

V ⊗R)(R⊗ I⊗l
V )Q⊗m+l

By a similar argument, the right hand side of the gYBE can be simplified to:

Q⊗m+l(I⊗l
V ⊗R)(R⊗ I⊗l

V )(I⊗l
V ⊗R)Q⊗m+l

Conjugating by Q⊗m, we get the gYBE. We can similarly handle the second

case, when m ≤ l, by substituting into equation A.1:

(Q⊗mR⊗ I⊗l
V )(Q⊗m ⊗ I⊗l−m

V ⊗Q⊗m)(I⊗l
V ⊗RQ⊗m)(Q⊗mRQ⊗m ⊗ I⊗l

V )

=(Q⊗mR⊗ I⊗l
V )(Q⊗m ⊗ I⊗l−m

V ⊗Q⊗mRQ⊗m)(Q⊗m ⊗ I⊗l
V )(RQ⊗m ⊗ I⊗l

V )

=(Q⊗mR⊗ I⊗l
V )(I⊗m

V ⊗ I⊗l−m
V ⊗Q⊗mRQ⊗m)(RQ⊗m ⊗ I⊗l

V )
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=(Q⊗mR⊗ I⊗l
V )(I⊗m

V ⊗ I⊗l−m
V ⊗Q⊗m)(I⊗m

V ⊗ I⊗l−m
V R)

(I⊗m
V ⊗ I⊗l−m

V ⊗Q⊗m)(RQ⊗m ⊗ I⊗l
V )

=(Q⊗mR⊗ I⊗l−m
V ⊗Q⊗m)(I⊗l

V ⊗R)(RQ⊗m ⊗ I⊗l−m
V ⊗Q⊗m)

=(Q⊗m ⊗ I⊗l−m
V ⊗Q⊗m)(R⊗ I⊗l

V )(I⊗l
V ⊗R)(R⊗ I⊗l

V )(Q⊗m ⊗ I⊗l−m
V ⊗Q⊗m)

And the right hand side of the gYBE can be manipulated to:

(Q⊗m ⊗ I⊗l−m
V ⊗Q⊗m)(I⊗l

V ⊗R)(R⊗ I⊗l
V )(I⊗l

V ⊗R)(Q⊗m ⊗ I⊗l−m
V ⊗Q⊗m)

Therefore, if R is a solution to the gYBE so is Q⊗mRQ⊗m.

6. Suppose R is a solution to the bYBE. Since R−1 is also a solution to the bYBE

we have that R−1P is a solution to the aYBE. It follows that (R−1P )−1 = PR

is a solution to the aYBE and therefore PRP is a solution to the bYBE.

A.2 Forms of the aYBE and bYBE

Here we show how to obtain the form of the aYBE in equation 4.28 from equation

4.27. In equation 4.27, Rab acts on the factors a and b, and does not affect the third

factor. For example R13 does not affect the middle factor:

R13(ei ⊗ ej ⊗ ek) =
∑
ab

Rab
ik (ea ⊗ ej ⊗ eb)

The left hand side of equation 4.27 acts on (ej1 ⊗ ej2 ⊗ ej3) as follows:
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R12R13R23(ej1 ⊗ ej2 ⊗ ej3) = R12R13

∑
k2,k3

Rk2k3
j2j3

(ej1 ⊗ ek2 ⊗ ek3)

= R12

∑
k2,k3,k1,l3

Rk2k3
j2j3

Rk1l3
j1k3

(ek1 ⊗ ek2 ⊗ el3)

=
∑

k2,k3,k1,l3,l1,l2

Rk2k3
j2j3

Rk1l3
j1k3

Rl1l2
k1k2

(el1 ⊗ el2 ⊗ el3)

The action of the right hand side of equation 4.27 can similarly be written:

R23R13R12(ej1 ⊗ ej2 ⊗ ej3) = R23R13

∑
k1,k2

Rk1k2
j1j2

(ek1 ⊗ ek2 ⊗ ej3)

= R23

∑
k1,k2,l1,k3

Rk1k2
j2j2

Rl1k3
k1j3

(el1 ⊗ ek2 ⊗ ek3)

=
∑

k1,k2,l1,k3,l2,l3

Rk1k2
j1j2

Rl1k3
k1j3

Rl2l3
k2k3

(el1 ⊗ el2 ⊗ el3)

Using the Einstein notation convention of summing over repeated indices we can

write equation 4.27 as:

Rk1k2
j1j2

Rl1k3
k1j3

Rl2l3
k2k3

= Rk2k3
j2j3

Rk1l3
j1k3

Rl1l2
k1k2

(A.4)

Similarly the bYBE in equation 4.3 can be converted into Einstein summation

notation by using the fact that RP must solve the bYBE if R solves the aYBE. We

then have
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RP (ei ⊗ ej) = R(ej ⊗ ei) =
∑
k,l

Rkl
ji(ek ⊗ el)

Therefore the bYBE can be written be exchanging the bottom two indicies in the

equation for the aYBE:

Rk1k2
j2j1

Rl1k3
j3k1

Rl2l3
k3k2

= Rk2k3
j3j2

Rk1l3
k3j1

Rl1l2
k2k1

(A.5)
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