
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

7-3-2024

Concolic Testing for Scripting Languages Concolic Testing for Scripting Languages

Zhe Li
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Li, Zhe, "Concolic Testing for Scripting Languages" (2024). Dissertations and Theses. Paper 6690.

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6690&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6690
mailto:pdxscholar@pdx.edu

Concolic Testing for Scripting Languages

by

Zhe Li

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Suresh Singh

Fang Song

Jingke Li

Portland State University

2024

i

Abstract

Scripting languages, such as JavaScript and Lua, are becoming more and more popu-

lar. They are typically easy to learn and use, making them accessible to a wide range

of developers, even those with limited programming experience. Lua, for instance, is a

lightweight, efficient, and versatile scripting language. It is designed to be easy to inte-

grate into other systems and is often used as an embedded scripting language in larger

applications such as NMap, which is a network scanning tool.

As another example, web front-end development with JavaScript (JS) is a popular

choice for developers due to its ability to add interactivity to websites. JavaScript has

also evolved into a versatile and popular programming language for not only front-end

development but a wide range of server-side and client-side applications. With such

popularity, there is a great demand for thorough testing of scripting language applica-

tions.

We propose to develop a holistic framework for applying concolic testing to appli-

cations in scripting languages. Concolic testing synergistically integrates concrete and

symbolic execution for test generation, which alleviates the path explosion problem of-

ten encountered in symbolic execution by only exploring symbolically along a concrete

execution path. Under this framework, scripts are executed in their native execution

engines concretely instead of the modeled test environments, these executions are effi-

ii

ciently traced in OS-level virtual machines (VMs) and analyzed in a customized manner

within symbolic engines, and new test inputs generated by symbolic engines are fed

back into the concrete execution in their native environment to drive new iterations of

test generation. As a result, test cases generated reflect realistic usage to the full extent.

First, we present an approach for applying concolic execution on attacking scripts in

NMap for Lua language in order to automatically generate lightweight fake versions of

the targeted services so that they can fool or slow down the attacking scripts. The behav-

ior of the attacking scripts was captured within their native execution environments for

symbolic analysis later. By doing so in an automated and scalable manner, this approach

can enable rapid deployment of custom honeyfarms leveraging the results of concolic

execution to trick an attacker’s script into returning a result chosen by the honeyfarms,

making the script unreliable for the use by the attackers.

Second, for JavaScript, we present an approach to applying concolic testing to JS

scripts in-situ, i.e., JS scripts are executed in their native environments as part of con-

colic execution, and test cases generated are directly replayed in these environments.

We implemented this approach in the context of Node.js, a JS runtime built on top of

Chrome’s V8 JS engine, and evaluated its effectiveness and efficiency through appli-

cations to 180 Node.js libraries with heavy use of string operations. For 85% of these

libraries, it achieved statement coverage ranging between 75% and 100%, a close match

in coverage with the hand-crafted unit test suites accompanying their NPM releases. Our

approach detected numerous exceptions in these libraries. We analyzed the exception

reports for 12 representative libraries and found 6 bugs in these libraries, 4 of which are

previously undetected. The bug reports and patches that we filed for these bugs have

iii

been accepted by the library developers on GitHub.

Third, we present a novel approach to concolic testing of front-end JavaScript web

applications based on in-situ concolic testing. This approach leverages widely used

JavaScript testing frameworks such as Jest and Puppeteer and conducts concolic exe-

cution on JavaScript functions in web applications for unit testing. The seamless inte-

gration of concolic testing with these testing frameworks allows injection of symbolic

variables within the native execution context of a JavaScript web function and the precise

capture of concrete execution traces of the function under test. Such concise execution

traces greatly improve effectiveness and efficiency of the subsequent symbolic analysis

for test generation. We have implemented our approach on both Jest and Puppeteer. The

application of our Jest implementation on Metamask, one of the most popular Crypto

wallets, has uncovered 3 bugs and 1 test suite improvement, whose bug reports have

been accepted by Metamask developers on GitHub. We also applied our Puppeteer im-

plementation to 21 Github projects and detected 4 bugs.

At last, we improved how execution traces of scripts are captured concretely and

analyzed symbolically. These traces were captured through OS-level VMs and were at

the binary level before, which is time-consuming and complex. Symbolic analysis of

binary traces was also less efficient than analyzing higher-level traces. We have devel-

oped a new execution tracer leveraging V8’s Sparkplug baseline compiler to improve the

tracing process and a new assembly to LLVM IR using remill libraries. It improves the

efficiency and effectiveness of the infrastructure of execution tracing and trace transla-

tion for JavaScript while keeping the native execution environments for JS scripts under

test. We evaluated its effectiveness and efficiency by comparing the coverage, bug de-

iv

tection, and time consumption with the in-situ approach on the same test set, which are

160 Node.js libraries that heavily utilize the String type and its operations. The results

show our approach achieve similar statement coverage on these libraries within no more

than 10% difference on average and is able to detect all bugs that are detected by the

in-situ approach, which only uses a fraction of the time needed by the in-situ approach.

v

Dedication

To Dad, Mom and Kellen

vi

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor, Professor Fei

Xie. His unwavering encouragement and support have provided me with a conducive

environment to concentrate on my research and successfully complete this dissertation.

Fei consistently challenged me to cultivate independence as a researcher, foster collabo-

ration, and excel as a mentor. He also facilitated numerous opportunities for me to glean

insights from others. His passion for addressing real-world challenges and constructing

practical systems has profoundly influenced my doctoral research and will undoubtedly

shape my future career.

I extend my heartfelt appreciation to Professor Fang Song, Professor Suresh Singh,

and Professor Jingke Li for graciously serving on my dissertation committee. Their

invaluable feedback on the dissertation draft and the thought-provoking questions they

posed during my defense was instrumental in refining my work.

I am also very grateful to my shepherds, Dr. Bo Chen, Dr. Zhenkun Yang, Dr. Li

Lei, and Dr. Kai Cong. Their mentorship played an important role in initiating my Ph.D.

research journey. Bo shared important and useful experiences and advice about how

to progress through obstacles. Zhenkun generously volunteered in many discussions

and provided invaluable insights into progressing my research. Li consistently offered

constructive advice that encouraged me to think creatively. Beyond their professional

vii

roles, they have been inspirations for me towards life and careers.

I extend my gratitude to my co-author, Wu-chang Feng, for his collaboration and

contributions to our work. Additionally, I would like to acknowledge and appreciate the

support of my colleagues at PSU: Huan Wu, Li Shi, Yanzhao Wang, Bo Chen, Haifeng

Gu, and Bin Lin, whose camaraderie and assistance enriched my Ph.D. experience. They

are also great friends to me. A special thanks goes to Rebecca Sexton-Lee, Ella Barrett,

Kristine-Anne Sarreal, and all the staff from the Department of Computer Science at

PSU for their diligent handling of administrative matters throughout my Ph.D. journey.

Their efforts ensured a smooth and efficient academic environment, allowing me to focus

on my research endeavors.

Finally, I’d like to thank our dog Sedona. Throughout late nights of studying and

writing papers, she was always by my side, offering quiet companionship. Most im-

portantly, I would like to thank my parents for their unconditional love, support, and

trust. They gave me the absolute courage to try, fail, and accomplish anything in life.

Particularly, many thanks to Kellen McInerny, my husband, for his everlasting love, care

and tolerance. He came into my life and went through most of the ups and downs of

my Ph.D. study, and was always there for me when things didn’t go well, which I would

never expect. I am very happy that we did it together.

viii

Table of Contents

Abstract . i

Dedication . v

Acknowledgments . vi

List of Tables . xii

List of Figures . xiii

1 Introduction . 1

1.1 Overview . 1

1.1.1 Symbolic Execution for Emerging Scripting Languages at Bi-

nary Level . 1

1.1.2 Concolic Execution of NSE Scripts for Automated Honeyfarm

Generation . 4

1.1.3 Effective Bug-finding for NPM libraries of Back-end JavaScript 5

1.1.4 Automated Bug Detection for Front-end JavaScript Application 7

1.1.5 Improvement for the Execution Tracing and Trace Translation . 8

1.2 Solution Overview . 9

1.2.1 Customized Concolic Execution at Binary Level of Scripting

Language . 9

1.2.2 Concolic Execution of NMap Scripts for Automated Honeyfarm

Generation . 11

1.2.3 In-Situ Concolic Testing of JavaScript on Node.js Libraries . . . 12

1.2.4 Concolic Testing of Front-end JavaScript 13

1.2.5 Concolic Testing of JavaScript using Sparkplug and Remill . . . 14

ix

2 Background and Related Works . 16

2.1 Background . 16

2.2 Related Works . 19

2.2.1 Binary Level Concolic Execution Engines 19

2.2.2 Symbolic Execution for Scripting Languages 19

2.2.3 Fuzzing Testing . 20

3 Concolic Execution of NMap Scripts for Honeyfarm Generation 23

3.1 Background . 23

3.2 Design . 23

3.2.1 Overview . 23

3.2.2 Concolic Execution Stage . 25

3.2.3 Defending Stage . 30

3.3 Implementation . 31

3.3.1 Concolic Script Execution . 31

3.3.2 Lua Interpreter Instrumentation 33

3.3.3 Snort response . 33

3.4 Evaluation . 36

3.4.1 Experimental Setup for NSE Scripts 36

3.4.2 Control Interface Evaluation 37

3.4.3 NSE Script Evaluation . 38

3.5 Summary . 44

4 In-Situ Concolic Testing of JavaScript . 46

4.1 Background . 46

4.1.1 Node.js Runtime . 46

4.1.2 V8 JS Engine . 47

4.2 Design . 49

4.2.1 Overview . 49

4.2.2 Shallow Integration of Tracing in Node.js 52

4.2.3 Deep Integration of Tracing in V8 54

4.3 Implementation . 55

4.3.1 Shallow Tracing Interface as C++ Addons 57

4.3.2 Deep Tracing Interface as V8 Builtins 60

x

4.3.3 Symbolic JS Object for V8 . 62

4.4 Evaluation . 64

4.4.1 Results from Shallow Tracing Using Node.js Addons 67

4.4.2 Results from Deep Tracing with V8 Builtins 68

4.4.3 Comparisons . 69

4.4.4 Discussions and limitations . 73

4.5 Summary . 75

5 Concolic Execution of Front-end JavaScript 76

5.1 Background . 77

5.1.1 Front-end JavaScript Testing Frameworks 77

5.1.2 In-situ Concolic Testing of Backend JavaScript 78

5.2 Design . 79

5.2.1 Overview . 79

5.2.2 Concolic Testing of JS Web Function within Execution Context . 81

5.2.3 Execution Context Extraction 82

5.2.4 Execution Context Tracing Customization 83

5.2.5 Concolic Testing within Execution Context 86

5.3 Implementation . 87

5.3.1 Implementation on Puppeteer 87

5.3.2 Implementation on Jest with React Testing Library 90

5.4 Evaluation . 92

5.4.1 Evaluation of Puppeteer Implementation on Github Projects . . 93

5.4.2 Evaluation of Jest Implementation on Metamask 96

5.5 Summary . 101

6 Concolic Testing of JavaScript using Sparkplug and Remill 103

6.1 Background . 104

6.1.1 Sparkplug . 104

6.1.2 Interpreter Stack Frame Mirroring 105

6.1.3 Remill . 107

6.2 Design . 108

6.2.1 Overview of goals . 108

6.2.2 Improvement . 110

xi

6.2.3 Why we choose Sparkplug? . 111

6.3 Implementation . 112

6.3.1 Modification on Bytecode Handlers of Sparkplug 113

6.3.2 Implementation on Remill translator 113

6.4 Evaluation . 115

6.4.1 Coverage Analysis . 116

6.4.2 Bug Detection Efficiency . 118

6.5 Summary . 120

7 Conclusions . 121

7.1 Summary of Contributions . 121

7.2 Future Directions . 122

Bibliography . 124

xii

List of Tables

3.1 Examples of interesting test cases and bugs discovered 40

4.1 Demographics for Libraries under Test 67

4.2 Bugs Detected in 12 NPM Libraries 73

5.1 Selected Projects that utilize Puppeteer for unit testing 94

5.2 Bugs detected in web applications using Puppeteer from Github 96

5.3 Bugs Detected in Metamask under UI folder 98

6.1 Demographics for Libraries under Test 116

6.2 Bugs detected in functions . 119

xiii

List of Figures

1.1 Structure for Applications with Embedded Scripts and Symbolic Exe-

cution Interface . 11

2.1 Symbolic execution covers all paths; Concrete execution covers path4;

Concolic execution covers path4 and path5 17

2.2 Architecture of CRETE . 18

3.1 Concolic Execution Stage . 25

3.2 Defending Stage . 26

3.3 Explanation of Our Approach . 26

3.4 Structure for Applications with Embedded Scripts and Symbolic Exe-

cution Interface . 29

3.5 Control Library for Concolic Execution 32

4.1 How V8 runs a JS Script: Interpreted vs Optimized 47

4.2 V8’s Unified Code Generation . 49

4.3 Workflow for Concolic Testing of JavaScript 50

4.4 Shallow Integration of Tracing in Node.js 52

4.5 Deep Integration of Tracing in V8 . 54

4.6 How Deep Integration of Tracing Captures the Most Concise Execution

Traces . 56

4.7 Implementation of Shallow Tracing using Addons 58

xiv

4.8 Memory System for C++ Addons . 59

4.9 Deep Tracing Interface in V8 . 61

4.10 V8 Object Memory Model . 62

4.11 Coverage on All 995 Node.js Libraries 66

4.12 Coverage Achieved by Shallow Tracing 68

4.13 Coverage Growth Trend with Shallow Tracing 69

4.14 Coverage Achieved by Deep Tracing 70

4.15 Coverage by Hand-Crafted NPM Test Suites 71

4.16 Coverage Comparison: Shallow vs. Deep Tracing 72

4.17 Comparison with ExpoSE . 72

5.1 Front-end JS testing framework workflow 77

5.2 Overview for concolic testing of front-end JS 80

5.3 Concolic testing of JS Web function within execution context 82

5.4 How to avoid unnecessary tracing of the test runner setup by delaying

the injection of symbolic values and the start of tracing 84

5.5 How we obtain the most concise concrete execution trace 85

5.6 How Puppeteer executes a JS function in a web page 88

5.7 How we set symbolic variables in the execution context and enable cus-

tomized execution context tracing in Puppeteer 91

5.8 Example React Components . 92

5.9 How to apply in-situ concolic testing on React components using Jest . 93

5.10 Coverage statistics of ui folder of Metamask-extension 97

5.11 Error trace of the bug discovered in buy-eth 99

xv

6.1 Sparkplug’s restricted optimization feature 106

6.2 Workflows of In-situ Concolic Testing Based on Sparkplug and CRETE 109

6.3 Workflow of the Translator . 110

6.4 Workflow of Execution Tracer between In-situ Approach and Our Ap-

proach . 112

6.5 How the execution tracer only extracts the execution traces that con-

tribute to the main control flow of JS scripts 114

6.6 How the execution tracer only extracts the execution traces that con-

tribute to the main control flow of JS scripts 115

6.7 Statement Coverage Comparison between our approach and In-situ ap-

proach . 117

6.8 Coverage Distribution Comparison between our approach and In-situ

approach . 118

6.9 Statement Coverage Comparison among our approach, In-situ approach,

and ExpoSE . 119

1

1 Introduction

1.1 Overview

Scripting languages are becoming more frequently used in programs and applications

because they allow easy and rapid programming at a higher level of abstraction and can

be easily embedded into other frameworks. Embedding a script is a very powerful way

of configuration because applications can execute any script as an argument that users

customize. They are often used for rapid prototyping or for creating proof-of-concept

applications. Their ease of use and flexibility make them ideal for quickly testing out

ideas. Therefore, approaches to testing that are comprehensive and automated become

more crucial. The goal of this dissertation is to improve the reliability of applications

using scripting languages by strengthening popular applications of widely used scripting

languages individually and by improving state-of-art techniques.

1.1.1 Symbolic Execution for Emerging Scripting Languages at Binary Level

Scripting languages have gained a lot of popularity in recent years, in part because of

their flexibility and ease of use. One of the benefits of using these languages is that de-

velopers can create their own functionality scripts and share them with others through li-

brary managers such as NSE libraries (Nmap Scripting Engine Library) and npm (Node

Package Manager). These package managers provide a central repository for developers

2

to publish and distribute their code, making it easy for others to find and use their scripts.

This has led to a vast ecosystem of third-party libraries and modules that can be used

to extend the functionality of these languages and accelerate the development process.

However, it also comes with some security risks. Because anyone can publish code to

these package managers, there is a risk that malicious code could be introduced, either

intentionally or unintentionally. For example, one security issue that has been identified

in Node.js in the past is related to the way it handled HTTP headers. Insufficient testing

of the HTTP parser in older versions of Node.js led to the discovery of a vulnerability

that could allow an attacker to execute arbitrary code on a target system by sending a

specially crafted HTTP request. Therefore, thorough and automated testing of scripts

written in such languages becomes important.

A powerful technique for automatically generating test cases and finding bugs in

real-world software is symbolic execution, which executes a program with symbolic

values, accumulates program path conditions as symbolic expressions, and generates

test cases exploring these paths by solving symbolic path conditions [60]. Concolic

testing is a hybrid verification technique that alleviates path explosion that often bogs

down symbolic execution [63]. Concolic testing utilizes symbolic execution to only ex-

plore the branches along a concrete execution path of the program under test, therefore,

narrowing down the search space for path exploration [88]. Traditional symbolic or

concolic execution engines mostly target C/C++, low-level intermediate representation

(LLVM) [66] or binary code, e.g., KLEE [47], BitBlaze [91], S2E [50], DART [54],

CUTE [90], SAGE [55], and CRETE [49].

However, scripting languages are never statically compiled as low-level languages

3

like C/C++. They are interpreted by an interpreter. Statements of interpreted languages

can wrap complex operations that, in lower-level languages, would be implemented

through libraries. Due to such complexity, simply applying traditional concolic exe-

cution on scripting languages can easily cause path explosions. Consequently, testing

embedded scripts still need to be done manually.

There have been tools to automate these testing tasks for scripting languages us-

ing symbolic execution. For Lua language, CHEF is an execution engine for stand-

alone Lua interpreters. However, most of the use cases of a Lua interpreter are to

be embedded in a more comprehensive environment such as Nmap. Test cases gen-

erated under such comprehensive environments are not able to reflect real use cases.

For JavaScript, most symbolic execution methods required building application-specific

symbolic execution engines or significantly modifying JavaScript execution engines to

apply symbolic execution. As an example of symbolic execution targeting browser-

based JavaScript, SymJS is a framework for testing client-side JS script [68]. It modifies

Rhino JS engine for symbolic execution [58]. For browser-less JavaScript, JALANGI

is a framework for writing heavy-weight dynamic analysis, which can be enabled on

JavaScript as a symbolic execution engine [89]. COSETTE is another symbolic execu-

tion engine for JavaScript using an intermediate representation, namely JSIL, translated

from JavaScript [83]. ExpoSE applies symbolic execution on standalone JavaScript

and uses JALANGI as its symbolic execution engine. ExpoSE’s contribution is in ad-

dressing the limitation that JALANGI does not readily support regular expressions for

JavaScript [71]. Kudzu targeted AJAX applications by implementing a dynamic sym-

bolic interpreter that takes a simplified intermediate language for JavaScript [85]. To

4

the best of our knowledge, no symbolic execution framework for scripting languages

has directly utilized existing powerful binary-level concolic execution engines in their

native execution environment [69].

1.1.2 Concolic Execution of NSE Scripts for Automated Honeyfarm Generation

Lua, in particular, is intended to be embedded into C applications and provides develop-

ers with a mature C API to integrate with. As a result, it has been extensively used with

C in many practical applications such as Apache2 (web server), OpenResty3 (applica-

tion server), and Awesome4 (window manager for X). It is also used within NMap [72],

a popular open-source utility for network discovery and security auditing that is preva-

lently used by security practitioners and adversaries alike. NMap as a network tool

allows attackers to efficiently perform reconnaissance. Many offensive tools are built

using modular frameworks that support extensibility via scripts, allowing developers to

continuously update the capabilities of the tool. Such updates are often published imme-

diately after new vulnerabilities are disclosed, allowing anyone (both good and bad) to

locate and exploit vulnerable systems. For example, within a month of the Eternal Blue

release [43], updates to attack tools allowed adversaries to leverage the flaw with devas-

tating effects before systems could be patched. In an even more severe case, on the day

the Apache Struts vulnerability involved in the Equifax breach was disclosed, identifi-

cation and attacking scripts were published for it, thus allowing adversaries to instantly

scan for vulnerable systems and exploit them soon after [45]. Honeypots, honeynets,

tarpits, and other deceptive techniques can be used to slow attackers down. However,

5

such approaches have difficulty keeping up with the sheer number of vulnerabilities be-

ing discovered and attacking scripts that are being released. Therefore, an automated

way of generating such honeypots is strongly desired for defending attacking scripts.

Applying concolic execution on attacking scripts in NMap in order to automatically

generate lightweight fake versions of the vulnerable services that can fool the scripts

will address such issues.

1.1.3 Effective Bug-finding for NPM libraries of Back-end JavaScript

Since its inception as a scripting language for dynamic web elements, JavaScript (JS)

has seen its popularity balloon and has become a versatile and widely used application

programming language. The Node.js runtime [15], which is built upon Chrome’s V8 JS

engine [21], allows developers to build various server-side and client-side browser-less

applications in pure JavaScript. A whole ecosystem of Node.js libraries is developed,

available through the Node Package Manager (NPM) [16], and widely used in applica-

tion building. NPM is considered the largest package manager based on the number of

packages it manages [62]. This number is still growing at an average rate of 996 more

packages per day in the past year [32].

Many developers consider JS scripts (either browser or Node.js based) a major se-

curity vulnerability because of its growing popularity in today’s systems [53]. Errors

and failures in JS scripts running on Node.js can lead to server crashes or compromises.

The most common Node.js security issues include NPM phishing [99] and regular ex-

pressions denial of service (DoS) [52]. NPM allows developers to create and upload

6

JS libraries for reuse purposes. This flexibility enables developers to build applications

very easily by leveraging libraries already implemented by others. However, this ex-

tensive cross-dependences among JS libraries further exacerbate security threats [96].

Studies also show on average 6.8% of the code from a Node.js application is original

code and 93.2% of the code is from other JS libraries [62]. And only 45.2% of those JS

libraries have test suites provided [42]. Thus, there is a great need for developers to craft

high-coverage test suites that detect bugs and security vulnerabilities early. However,

handcrafting such test suites has become costly endeavors and bottlenecks for software

development [76].

Although early applications of symbolic execution for testing JS scripts have shown

some promise in automatically generating such test suites, they never reach the same

scale and effectiveness as those for C/C++ applications. Generally speaking, JS scripts

are not statically compiled but are interpreted by an interpreter. A simple JS state-

ment can encapsulate complex operations that, in lower-level languages, would be im-

plemented in tens, if not hundreds, lines of codes [46]. This complexity makes naı̈ve

applications of traditional symbolic execution engine to JavaScript intractable and can

easily lead to path explosion. Consequently, efforts in applying symbolic execution to

JavaScript have been focused on building JS-specific symbolic engines which typically

take JS scripts out of their native execution environments and analyze them in artificial

test harnesses. For example, the Kudzu engine addresses the problem of client-side code

injection vulnerabilities for JavaScript [85]. It involves modifying the JS interpreter to

build a new symbolic execution engine, which requires significant effort in implemen-

tation and maintenance. Such JS-specific symbolic engines have not demonstrated ef-

7

fectiveness and efficiency that warrant wide adoption [94]. Therefore, we propose an

approach of in-situ concolic testing of JavaScriptto find bugs in NPM libraries effec-

tively.

1.1.4 Automated Bug Detection for Front-end JavaScript Application

JavaScript as a frond-end programming language is used by 95.1% of websites [40].

Many such websites handle sensitive information such as financial transactions and pri-

vate conversions. Errors in these websites not only affect user experiences, but also

endanger the safety, security, and privacy of users. Therefore, these websites, partic-

ularly their dynamic functions that are often implemented in JS, must be thoroughly

tested to detect software bugs. There have been many testing frameworks for JS appli-

cations, such as Jest and Puppeteer. These frameworks provide a systematic way to test

JS applications and reduce the tedious testing setup, particularly for unit testing. How-

ever, although these testing frameworks simplify the execution of testing, they do not

provide test data for web applications. Such test data still needs to be provided manually

by the application developers, which is often very time-consuming and laborious. And

achieving high code and functional coverage on web applications with high-quality test

data still remains a challenge [76].

It is strongly desirable to apply concolic testing to front-end JS web applications

to generate high-quality test data automatically, so manual efforts can be reduced and

test coverage can be improved. However, front-end JS applications pose major chal-

lenges to concolic testing. These applications typically execute in the contexts of web

8

browsers, which tends to be complex, and they are usually event-driven, user-interactive,

and string-intensive [79]. There are few symbolic analysis frameworks for JS web appli-

cations. Oblique injects symbolic JS library into the page’s HTML. When a user loads

the page, it conducts a symbolic page load to explore the possible behaviors of a web

browser and a web server during the page load process. It generates a list of pre-fetch

url for client-side to speed up page load [61]. It is an extension of the ExpoSE con-

colic engine. Therefore, we propose an approach to concolic testing of front-end JS web

applications to address this problem.

1.1.5 Improvement for the Execution Tracing and Trace Translation

In-situ concolic testing of JS scripts is a novel framework that enables concolic testing

of JS scripts in their native environments and can automatically generate test cases that

achieve comparable, if not better, code coverage than manually crafted unit test suites for

Node.js libraries and discovered previously unknown bugs in these libraries [70]. Most

approaches of concolic testing on JavaScript typically take JS scripts out of their na-

tive execution environments and analyze them in artificial test harnesses. For example,

the Kudzu engine addresses the problem of client-side code injection vulnerabilities for

JavaScript [85]. It involves modifying the JS interpreter to build a new symbolic execu-

tion engine, which requires significant effort in implementation and maintenance. Such

JS-specific symbolic engines have not demonstrated the effectiveness and efficiency that

warrants wide adoption [94]. In-situ concolic testing for JavaScript using JavaScript’s

native execution environments becomes its biggest strength. However, it has several lim-

9

itations [70]. It utilized the tracing engine of CRETE, which leverages the interpreted

mode of Qemu, a dynamic translator [44], to capture the execution trace of JS scripts

and uses KLEE as the backend symbolic execution engine. The concrete execution trace

is converted from a piece of code to the host instruction set, and the instruction set is

then translated to qemu-ir by the tiny code generator (TCG) of Qemu dynamic transla-

tion backend. This process hinders the efficiency of the tracing process greatly since the

in-situ approach uses the interpreted mode with TCG to enable tracing. The execution

tracer of CRETE takes 3 minutes to trace a JS function with 12 lines of code on average,

which is inefficient. The execution traces are then translated from qemu-ir to LLVM IR

by an offline translator based on S2E. This workflow involves two stages of translation

for the execution traces, which gives more chances for introducing errors and mistakes.

1.2 Solution Overview

1.2.1 Customized Concolic Execution at Binary Level of Scripting Language

A script conceptually executes both on the high level—the level of the script language

and the low level—the level of the host language. In general, an application that consists

of C as the host language and the scripting language has a three-layer structure. Figure

1.1 illustrates this structure. The base layer includes the host program of the application

in C. The top layer consists of embedded scripts in scripting languages used by the

user. Users can customize the application as they wish without recompiling the entire

program by providing various scripts. The glue layer, which is also written in a low-

level language like C, has often built-in interpreters and glues the gap between C and

10

the scripting language.

We provide a framework of applying concolic execution in the embedded scripts

making use of the glue layer naturally existing in the scripting Language so that we

can not only bridge scripting languages to low-level languages together but also allow

concolic testing to happen in their native execution environment. Conceptually, we in-

troduce three important interfaces to involve symbolic execution: start analysis(),

mark symbolic(), end analysis(). These interfaces will give us control over sym-

bolic execution. Modifying the glue layer to include the interfaces can transfer concolic

execution from the binary level to the script level. Due to the complexity of scripting

languages, being able to start symbolic execution from the script level will generate a

massive execution trace which leads to path explosion. Because one line of scripting

code can contain thousands of lines of c code implementation and also scripts can run in

collaboration to complete one task. Hence, we introduce customized concolic execution

to only target the script under test. We have start analysis() and end analysis()

to allow us to customize symbolic analysis against the execution traces. As a result,

when scripts are running in collaboration (library scripts can be invoked within the tar-

get scripts), we can easily avoid analyzing unwanted scripts symbolically and only an-

alyze the scripts under test symbolically by calling the interfaces. Different scripting

languages will require various strategies for implementing our framework since each

scripting language has a different execution engine. In the coming Sections, we will go

into further depth about each strategy.

11

C code (Host Program)

C code with C API

Built-in Interpreter
(Lua/JavaScript)

Scripts Scripts Scripts Script Layer

Glue Layer

Base Layer

Symoblic Execution
 start_sym_exe()
make_symbolic()
end_sym_exe()

Figure 1.1: Structure for Applications with Embedded Scripts and Symbolic Execution

Interface

1.2.2 Concolic Execution of NMap Scripts for Automated Honeyfarm Generation

Nmap uses NSE scripts written in Lua to perform network scanning. One way to slow

down such script scanning is to use fake networks and servers to either trick automated

attacking tools into believing they are interacting with a real vulnerable system (such

as with honeypots and honeynets) or to selectively terminate the operation of the script

by denying access (such as with web application firewalls). Unfortunately, due to the

massive code bases being used and the volume of vulnerabilities that are being discov-

ered, it is difficult to keep such approaches up to date and to scale them to the number

of vulnerabilities that are being disclosed. Thus, it is important that automated defenses

keep up with this arms race and attempt to make some of the most common tasks an

adversary relies upon more difficult and time-consuming. In particular, as reconnais-

sance and targeting are critical in an attack, slowing down or degrading this capability

can provide defenders valuable breathing room in protecting their networks.

12

In this work, we introduce an approach for applying concolic execution on NSE

scripts in NMap that are used for performing reconnaissance and scanning. The goal

is to generate responses that can allow automated defenses to trick the script into an

arbitrary state within itself. The approach is driven by the observation that most NMap

scripts for scanning and identifying vulnerable hosts are well-structured and clean. By

using concolic execution to generate responses that can fool such scripts into its various

execution states, one can slow down an adversary enough to allow for vulnerabilities

to be remediated. For example, returning a response that causes a script to identify a

service as vulnerable could be used to set up potemkin honeyfarms [97], while return-

ing an input that causes a script to identify a service as not vulnerable could be used at

the network edge as an application firewall to stop reconnaissance. To support concolic

execution of NSE scripts our implementation of integrating the framework focuses on

extending C Modules to NSE libraries of NMap. We use CRETE as the concolic exe-

cution back-end engine and add C Modules providing C API to NMap to allow users to

customize concolic execution for the target application. This includes allowing users to

start concolic execution to introduce symbolic values and to stop concolic execution as

needed from NSE scripts.

1.2.3 In-Situ Concolic Testing of JavaScript on Node.js Libraries

We introduce a new approach to applying concolic testing to JS scripts in-situ, i.e., JS

scripts are executed in their native environments as part of concolic execution and test

cases generated are directly replayed in these environments. We have implemented this

13

approach in the context of Node.js and its V8 JS engine leveraging their intrinsic func-

tions. As a JS script is executed on Node.js, its binary-level execution trace is captured

and later analyzed through symbolic execution for test generation. This brings the power

of binary-level concolic testing to JavaScript. We have evaluated the effectiveness and

efficiency of this approach through application to 180 Node.js libraries with heavy use of

the string operations. For 85% of the libraries, it achieved statement coverage between

75% and 100% and for 61% of the libraries, it achieves statement coverage between

85% and 100%, which is a close match in coverage with the hand-crafted unit test suites

by the developers in their NPM distributions. This shows our approach can help re-

duce the efforts needed for developing unit test suites. Our approach has detected many

exceptions in these libraries. We analyzed the exception reports for 12 representative

libraries and found 6 clear-cut bugs, 4 of which are previously undetected. The bug

reports and patches that we filed for these bugs have been accepted by the library devel-

opers on GitHub. This shows that our approach can detect bugs missed by handcrafted

test suites.

1.2.4 Concolic Testing of Front-end JavaScript

We introduce a novel approach to concolic testing of front-end JS web applications

based on in-situ concolic testing. This approach leverages widely used JS testing frame-

works such as Jest and Puppeteer and conducts concolic execution on JS web functions

for unit testing [95]. These testing frameworks isolate the web function under test in

the context of its embedding web page by mocking the environment and provide the test

14

data that drives the function. This isolation of web function provides an ideal target for

the application of concolic testing. We integrate concolic testing APIs into these testing

frameworks. The seamless integration of concolic testing allows injection of symbolic

variables within the native execution context of a JS web function and the precise cap-

ture of concrete execution traces of this function. As the testing framework executes

the function under test with test data, parts or all of the test data can be made symbolic

and the resulting execution traces of the function are captured for later symbolic anal-

ysis. Concise execution traces greatly improve the effectiveness and efficiency of the

subsequent symbolic analysis for test generation. The new test data generated by the

symbolic analysis is again fed back to the testing frameworks to drive further concolic

testing. We have implemented our approach on Jest and Puppeteer. The application of

our Jest implementation to Metamask, one of the most popular Crypto wallets, has un-

covered 3 bugs and 1 test suite improvement, whose bug reports have been accepted by

Metamask developers on Github. We have also applied our Puppeteer implementation

to 21 Github projects and detected 4 bugs.

1.2.5 Concolic Testing of JavaScript using Sparkplug and Remill

To improve the efficiency of the execution tracer, reduce the number of translation

stages, and conduct concolic testing in their native environments like the in-situ ap-

proach at the same time, our approach proposed to deploy a new execution tracer lever-

aging V8’s Sparkplug baseline compiler to improve the tracing process and a new as-

sembly to LLVM IR using remill libraries in this paper. We evaluated its effectiveness

15

and efficiency by comparing the coverage, bug detection, and time consumption with

the in-situ approach on the same test set, which are 160 Node.js libraries that heavily

utilize the String type and its operations. The results show our approach achieves simi-

lar statement coverage on these libraries within no more than 10% difference on average

and is able to detect all bugs that are found by the in-situ method, which only uses a

fraction of the time needed by the in-situ approach.

16

2 Background and Related Works

2.1 Background

Concolic Testing Several approaches exist to ease the problems caused by path explo-

sion, such as using heuristic path-finding to increase code coverage [73], reducing exe-

cution time by parallelizing independent paths [92] or simply merging similar paths [64].

However in general, one cannot completely avoid the problem, making exhaustive ex-

ploration unrealistic for most systems code.

One fundamental idea to cope with these issues and to make symbolic execution

feasible in practice is to mix concrete execution and symbolic execution together, also

referred to as concolic execution, where the term concolic is a combination of the words

“concrete” and “symbolic”. For example, as Figure 2.1 shows, classic symbolic execu-

tion will explore all 5 paths in the figure.

Any feasible path relevant to the input value x is explored, once x is made sym-

bolic with make symbolic, which will lead to path explosion when testing complex

programs. Path 4 is a concrete execution path of a target application driven down by a

concrete initial value x. By forcing execution to take br1 concretely before running the

target application symbolically, a concolic approach would only execute br3 and br4

symbolically while avoiding br2, br5, and br6. Thus, concolic execution can reduce

the possibility of path explosion, making it more suitable than symbolic execution for

testing complex applications with an embedded interpreter.

17

make_symbolic(x)

start

if x <3

tc1/path1 tc2/path2 tc3/path3 tc4/path4 tc5/path5

if x>5
br3 br4

br2

br5 br6

br1

Figure 2.1: Symbolic execution covers all paths; Concrete execution covers path4; Con-

colic execution covers path4 and path5

CRETE To enable concolic execution of scripting languages, we build on CRETE,

a binary-level concolic testing framework [49]. CRETE features an open and highly

extensible architecture allowing easy integration of concrete execution front-ends and

symbolic execution engine back-ends.

As shown in Figure 2.2, CRETE uses a configuration file to mark symbolic and con-

crete inputs in the CRETE runner. As the target program is concretely executed in a

18

CRETE Manager

CRETE Runner

Configuration + Target
Binary

CRETE Tracer

QEMU Guest OS

CRETE Replayer

Symbolic Execution
Engine

capture traces

new test case

selected traces new test case

Figure 2.2: Architecture of CRETE

modified QEMU virtual machine [44], the CRETE tracer, a QEMU extension, captures

concrete execution traces. These traces are in the form of LLVM bytecode augmented

to indicate the execution paths induced by the concrete inputs [66]. If a path contains a

symbolic variable marked in the configuration file, CRETE feeds the captured trace of

the path to its symbolic execution engine (in this case KLEE [47]), to run it symboli-

cally via CRETE replayer. CRETE extends KLEE to avoid forking unnecessary states

and generates test cases only for feasible branches confined by concrete traces. This

results in fewer paths exercised symbolically. CRETE uses a Dynamic Taint Analysis

(DTA) algorithm to implement selective tracing [86]. It only captures the execution

traces relevant to the marked symbolic values using DTA. CRETE uses tainted memo-

ries to represent memories relevant to the variables initially marked as symbolic. For

example, if variable “a” is marked as symbolic, when there is an assignment opera-

tion involving “a”, such as “b=a”, the memory slot that “b” possesses is also marked

as symbolic. So CRETE will capture any execution trace involving memory slots of

“a” and “b”. CRETE provides two helper interface functions: crete make symbolic

and crete start tracing to allow users to mark symbolic variables and initiate trac-

ing of concrete execution. We leverage CRETE and its interface functions to realize

19

customized concolic execution proposed.

2.2 Related Works

2.2.1 Binary Level Concolic Execution Engines

Most existing symbolic and concolic execution engines target low-level code represen-

tations. For example, symbolic execution engines such as KLEE [47], BitBlaze [91]

and S2E [50] as well as concolic execution engines such as DART [54], CUTE [90]

and SAGE [55] work with either machine code or LLVM intermediate representation

code [66] that has been statically compiled. The scripts that we are dealing with, are

however, interpreted, not statically compiled. There have also been efforts in building

symbolic engines targeting script languages. However, such implementation requires a

significant amount of work for every single language and constant maintenance if the

target language is updated.

2.2.2 Symbolic Execution for Scripting Languages

NICE [48] for Python and Kudzu [85] for Javascript are early efforts to directly im-

plement symbolic execution engines for dynamically interpreted scripts in high-level

languages. Existing symbolic execution engines that can support Lua only target stan-

dalone interpreters such as CHEF [46] while NSE scripts are interpreted by an interpreter

embedded in NMap.

Commonly targeted JS scripts include the browser-based ones and those running on

20

browser-less runtimes, e.g., Node.js. Most of symbolic execution methods for JavaScript

required building application-specific symbolic execution engines or significantly modi-

fying JavaScript execution engines to apply symbolic execution. As an example of sym-

bolic execution targeting browser-based JavaScript, SymJS is a framework for testing

client-side JS script [68]. It modifies Rhino JS engine for symbolic execution [58]. For

browser-less JavaScript, JALANGI is a framework for writing heavy-weight dynamic

analysis, which can be enabled on JavaScript as a symbolic execution engine [89].

COSETTE is another symbolic execution engine for JavaScript using an intermediate

representation, namely JSIL, translated from JavaScript [83]. ExpoSE applies symbolic

execution on standalone JavaScript and uses JALANGI as its symbolic execution engine.

ExpoSE’s contribution is in addressing the limitation that JALANGI does not readily

support regular expressions for JavaScript [71]. Kudzu targeted AJAX applications by

implementing a dynamic symbolic interpreter that takes a simplified intermediate lan-

guage for JavaScript [85].

2.2.3 Fuzzing Testing

Another alternative approach to automatically generate test inputs to applications is

fuzzing, which uses code coverage as feedback to test generation. Therefore, the ef-

fectiveness of test cases generated by fuzzing greatly depends on the accuracy of code

coverage feedback. Without the knowledge of the source code, it’s difficult for fuzzing

to penetrate into nested branches. While fuzzing is random test case generation guided

by code coverage, symbolic execution is guided by code trace. Therefore, symbolic ex-

21

ecution and fuzzing may have similar outcomes regards to code coverage when source

codes have less nested branches. Symbolic execution can also deal with source codes

with more complicated logic more efficiently.

AFL (American Fuzzy Lop) is one of the most popular fuzzing tools that has been

used widely in the industry [22]. Becasue it is fast, simple and efficient. While testing

the target application, AFL runs in loops. It uses coverage as a guide to mutate the

seed in order to generate more new test cases and then filters test cases that improve

code coverage into a queue for the next iteration. Internally, AFL checks if that input

makes the program reach new code path or increases the coverage (either completely

new blocks, or different sequence of blocks). If this is the case, the input is marked as

’interesting’ and will be selected into the seed pool and mutated later or remixed with

other random or interesting inputs to try to reach a deeper code path in the program, and

yield more coverage. To achieve runtime monitoring, AFL will instrument the target

application and inject code at compile time. This is done by substituting gcc or clang

with AFL’s wrappers: afl-gcc and afl-clang. The wrapper will call the normal

compiler, then add the instrumentation code and produce a binary that can be monitored

by afl-fuzz.

With its low-level compile-time or binary-only instrumentation, AFL provides an

near-native fuzzing speeds against common real-world targets. Therefore, it can find

bugs effectively with the fast speed. There are a few fuzzers for JS, e.g., jsfuzz [30]

and js-fuzz [29], which are largely based on the fuzzing logic of AFL (American fuzzy

lop) [22] and re-implemented it for JS. We view fuzzing and symbolic/concolic testing

as complementing techniques: fuzzing for broader exploration of JS while symbolic/-

22

concolic testing for deeper exploration.

23

3 Concolic Execution of NMap Scripts for Honeyfarm Generation

3.1 Background

Methods of Honeyfarm Generation There are two ways for deploying honeyfarms:

low-interaction honeyfarm and high-interaction honeyfarm. Low-interaction honeyfarm

can monitor activities over millions of IP addresses at a time, such as KFSensor Honey-

pot [75] and Conpot [74]. This kind of scalability is achieved by emulating the network

interface exposed by common services and requires low maintenance. However, such

systems do not execute any code from applications; therefore, they may not be able

to block attacks that have multiple phases of communication [97]. On the other hand,

high-interaction honeyfarms run native application code, and therefore, is able to catch

code behavior in its full complexity [80]. As a consequence, the implementation cost is

quite high. Systems of high interaction honeyfarms include Honeynets [80], Sebek [57],

Argos [78], etc. Our method is a light way of achieving the purpose of high-interaction

honeyfarms.

3.2 Design

3.2.1 Overview

In this Chapter, we present e introduce an approach for applying concolic execution

on NSE scripts in Nmap that are used for performing reconnaissance and scanning.

24

Our goal is to run NSE scripts using concolic execution to generate test cases to form

decoys against the attackers. Because the nature of concolic execution is to explore

every possible execution state along a concrete execution trace, this will allow us to

focus our symbolic execution on discovering sets of network responses that force an

NSE script into transitioning into each of its execution states. This generation is key

for honeyfarms as it provides them with responses that can be used to control the NSE

scripts’ execution behavior. For example, returning an input that leads the script into

believing the host is vulnerable would allow the interaction to continue in order to further

consume an attacker’s time and energy. Selecting a response that leads the script into

believing the host is not vulnerable or has no resource of interest would send the attacker

away. Randomly selecting from calculated inputs per connection would allow defenders

to actively confuse the attacker. Finally, returning inputs that may leverage bugs and

errors would allow defenders to potentially crash the attacking scripts and terminate the

scan altogether. All of these synthesized responses would potentially allow defenders to

slow down an attacker’s workflow. In order to complete this process, the approach we

take is broken into two stages:

• Concolic Execution Stage: As shown in Figure 3.1, in this stage, we perform

concolic execution on NSE scripts to generate test cases for honeyfarm synthesis.

For the case shown, we can set response.body and response.size to symbolic

values for the engine to explore.

• Defending Stage: As shown in Figure 3.2, in this stage, we use the various test

cases generated from concolic execution to synthesize honeyfarm responses with

25

1. Concolic Execution Stage

Nmap Host
request

response

NSE script:
…
makeconcolic(response.body)
if not(response.body) or response.status==500 then
 return true
end
if response.body:find("SERVER ERROR") then
 return true
end
...

Symbolic input:
response.body/size

Test case set

Test cases that cause
false positive

Figure 3.1: Concolic Execution Stage

which we can then have an Intrusion Detection System (IDS) to respond upon

detecting the corresponding NMap scan.

3.2.2 Concolic Execution Stage

There are several challenges when considering the use of symbolic and concolic execu-

tion on an NMap script. Most existing symbolic and concolic execution engines target

low-level code compiled statically. NSE scripts use Lua as the base language and are

not statically compiled, but rather interpreted by NMap’s built-in Lua interpreter. The

Lua interpreter itself is extended by NMap with a library for communication, which is

responsible for providing additional information that NSE scripts need to execute. For

example, nmap.new socket() function supplied by the library returns a new socket

wrapper object NSE scripts can use. The NMap library also takes care of initializing the

26

2. Defending Stage

Honey Farm

Test cases that cause
false positive

Nmap::script.nse

 Hostrequest

response

IDS

Figure 3.2: Defending Stage

static int portrule (lua_State *L) {
...
 4b7aa3: 53 push %rbx
 Target *target;
 Port *p;
 Port port; /* dummy Port */
 4b7aab: 48 89 e7 mov %rsp,%rdi
}
...

const char *init; /* to search for a '*s2' inside 's1' */
 while (l1 > 0 && (init = (const char *)memchr(s1, *s2, l1)) !=
NULL) {
 init++; /* 1st char is already checked */
 537fe0: 4c 8d 7b 01 lea 0x1(%rbx),%r15
 if (memcmp(init, s2+1, l2) == 0)
 537fe4: 48 8b 54 24 10 mov 0x10(%rsp),%rdx
 ...
 537ff1: e8 4a 4b ef ff callq 42cb40 <memcmp@plt>
 537ff6: 85 c0 test %eax,%eax
 537ff8: 0f 84 49 01 00 00 je 538147

 else if (l2 > l1) return NULL; /* avoids a negative 'l1' */
...

<str_find_aux+0x317>
 return init-1;
 else { /* correct 'l1' and 's1' to try again */
 l1 -= init-s1;
 537ffe: 4d 29 fe sub %r15,%r14

NSE Scripts involved Code Segment Corresponding Trace within Nmap

Pre-rule scripts portrule = function(host, port)
 local auth_port = { number=113, protocol="tcp" }
 local identd = nmap.get_port_state(host, auth_port)
 return identd ~= nil and identd.state == "open"
End
...

Customized scripts action = function(host, port)

 local request = port.number .. ", " .. localport ..
"\r\n"
 try(client_ident:send(request))
 owner = try(client_ident:receive_lines(1))
 if string.find(owner, "ERROR") then
 owner = nil
 else
 owner = string.match(owner,
"%d+%s*,%s*%d+%s*:%s*USERID%s*:%s*.+%s*:%s*(.+)\r?\n")
 end
End
...

Post-rule scripts postrule()
...

static int postrule (lua_State *L) {
 535616: 48 89 fd mov %rdi,%rbp
 535619: 53 push %rbx
 53561a: 48 81 ec 48 20 00 00 sub $0x2048,%rsp
}
...

Figure 3.3: Explanation of Our Approach

Lua context, scheduling parallel scripts and collecting the output produced by completed

scripts.

Because NSE scripts can utilize both the extended libraries in NMap and the de-

fault libraries of the Lua language, they are more complex than stand-alone Lua scripts.

27

Compounding this complexity is that statements of interpreted languages can encapsu-

late complex operations that are implemented in underlying compiled libraries written

in lower-level languages. For example, the Lua language supports 7 string operations

that are implemented in a string library of the Lua interpreter, which contains thousands

of lines of C code interpretation [65]. Symbolically executing such code can easily

cause path explosion. Consequently, symbolic execution of such scripts may require

manual intervention to avoid this problem. Recent work has sought to automate this

task, which involves changing the interpreter and building a new symbolic execution

engine. Unfortunately, the implementation of a dedicated symbolic execution engine

adds a significant amount of work for each language, requiring constant maintenance if

the language is updated.

Therefore, we need to apply symbolic execution to analyze arbitrary NSE scripts in a

way that avoids the path explosion problem as well as continually updating our execution

engine when there are update to the Lua language. To meet this goal, we adapt CRETE,

our concolic execution engine, using API calls in the glue layer of the built-in interpreter.

Specifically, we use the interface provided by CRETE and modify glue layer in NMap

to allow users to conveniently inject symbolic values from the scripts. Additionally, we

modify the engine to provide interfaces that allow users to defer concolic execution of

a program as needed in order to further limit the execution paths of the script to the

minimum. The reason why we need to defer concolic execution is that we need to keep

execution complete for the whole scanning process to guarantee completeness of the

trace whiling ensuring that we only symbolically execute the portion of the trace that

is of interest. We will show the significant reduction in execution time by deferring

28

concolic execution in Section 3.4.

Figure 3.3 shows an example of NSE scripts involved in a NMap network scan, which

has pre-rule scripts, customized scripts and post-rule scripts running in three scan phases

respectively (script pre-scan, script scan and script post-scan). In each scan phase, more

than one NSE script will be executed. In the script pre-scan phase, pre-rule scripts are

executed to collect information for customized scripts which will be executed in the

script scan phase. In most cases, users are interested in testing customized scripts be-

cause they can be modified, allowing the library to be extended. Testing them with

concolic execution requires capturing the execution traces for all the NSE scripts that

have been executed. The last column in Figure 3.3 gives an example of one such trace

that shows the obstacles facing concolic execution, which is one to many code mapping

from scripting language to low level code. The figure shows assembly code snippets for

each phase of the scan. As concolic execution works with low-level code representation,

path explosion can happen in the script pre-scan phase before the concolic engine can

even reach the script scan phase for customized scripts. This situation worsens when the

interpreted pre-scan script involves loops or nested pattern matching operations, which

is quite common in NSE scripts for string manipulation. Therefore, being able to test the

scripts users are actually interested in requires methods to defer symbolic execution to

specific segments in order to prevent path explosion. As a result, our approach lever-

ages the adapted interface of CRETE to allow user to customize concolic execution as

needed.

In doing so, we make the observation that on such application, an embedded script

conceptually executes both on the high level (e.g. at the script language) and the low

29

level (e.g. at the host language). In most cases, applications use C and its interfaces for

the host language. Figure 3.4 illustrates a typical structure for embedding scripts as of

NMapṪhe base layer includes the host program of the application in C. The top layer

consists of embedded scripts prepared by the user. By providing various scripts, the user

can customize the application as their wish without recompiling the entire program. The

glue layer, which is also written in C, contains the built-in interpreter and glues the gap

between C and the scripting language.

C code (Host Program: Nmap)

C code with C API

Built-in Interpreter
(Lua)

Embedded
Script (.nse)

Embedded
Script (.nse)

Embedded
Script (.nse)

Script Layer

Glue Layer

Base Layer

Symoblic Execution
 start_sym_exe()
make_symbolic()
end_sym_exe()

Figure 3.4: Structure for Applications with Embedded Scripts and Symbolic Execution

Interface

We make use of the glue layer to achieve our goal of concolically executing NSE

scripts. To gain control of concolic execution, we introduce three important interfaces

for symbolic execution: start analysis(), mark symbolic(), and end analysis().

These interfaces will allow us to customize concolic execution in scripts. Modifying

the glue layer to include these interfaces allows users to start symbolic execution with

a function call. At the same time, starting symbolic execution from the script layer

30

generates a massive execution trace which leads to path explosion. Hence, we have

start analysis() and end analysis() to allow us to delay the symbolic execution

till later in the execution where we want it and stop it as wish. Therefore, when the

target scripts invoke additional scripts of no interest to the analysis, we can easily avoid

running unwanted scripts symbolically and only execute the target scripts symbolically

by properly calling the above functions. This method has a potential to be applied on

other application with the similar structure. In our case (NMap), embedded scripts and

built-in interpreter refer to NSE scripts and Lua interpreter respectively. With these in-

terfaces we can go through the entire execution for pre-rule scripts, customized scripts,

and post-rule scripts but only symbolically execute the traces of customized scripts, thus

reducing possible symbolic paths significantly.

3.2.3 Defending Stage

With the method explained above, we can apply concolic execution to any NSE script to

get responses that can be leveraged by honeyfarm to control the execution state of the

attacking scripts. To achieve our objectives, a range of selection rules targeting different

application scenarios can be implemented. Two rules, in particular, include:

• Early Termination Rule. With this rule, responses selected will be the ones

which will cause the attacking script to stop as soon as possible. We use script

coverage as an indicator. We will consider test cases that achieve lower coverage

on a script with higher priorities for the synthesis of a honeyfarm.

31

• False Positive Rule. The test cases selected for honeyfarm generation will be the

ones which will cause the attacking script to believe that it has find a host with

certain vulnerabilities. We will consider test cases that reach certain end-points

in a script. These end-points can be annotated manually or identified through

templates.

Upon selecting a response, the next step of the defending stage is handling the attack-

ing connection and delivering the response back to the script. Intrusion detection sys-

tems (IDS) combined with templating systems provide a natural mechanism for doing

so. For example, consider an NSE script seeking to find a vulnerable HTML form sub-

mission. An IDS running on a honeyfarm system can provide us hooks into the request

being made by the script, while an HTML-templating engine such as Mustache [98],

can allow us to use templates that we fill in with the test cases from concolic execution

in order to complete the defending stage response.

3.3 Implementation

3.3.1 Concolic Script Execution

To support concolic execution of NSE scripts our implementation focuses on the glue

layer of NMap. We use CRETE as the concolic execution back-end engine and modify

the glue layer of NMap to allow users to customize concolic execution for the target ap-

plication. This includes allowing users to start concolic execution, to introduce symbolic

values and to stop concolic execution as needed.

By default, CRETE performs concolic execution on the entire execution trace of a

32

Figure 3.5: Control Library for Concolic Execution

program captured by the CRETE front-end in QEMU. Because we wish to finely control

the parts that are symbolically executed, we modify CRETE to decouple concolic exe-

cution with a set of interface functions, namely sendpid(), mconcolic() and exit().

These functions pass control of concolic execution from CRETE to NSE scripts. For

clarity, the naming convention we used in our implementation of the glue layer for NSE

scripts is to keep consistent with the CRETE back-end engine: sendpid() is the inter-

face function to start concolic execution if a symbolic variable is present (in correspond-

ing to start analysis()). mconcolic() is the interface function to mark symbolic

variable (in corresponding to mark symbolic()). exit() is to stop concolic execution

(in corresponding to end analysis()). As a result, we can defer the concolic execution

in NMap until after the script pre-scan phase and end it before the post-scan phase. We

use this control library to minimize symbolic execution on execution traces to address

the path explosion problem when concolically executing an interpreted script as shown

in Figure 3.5. The control library allows us to decide which segment of the intermediate

33

code we want CRETE to execute symbolically.

3.3.2 Lua Interpreter Instrumentation

The embedded Lua Interpreter in NMap interprets NSE scripts utilizing the string intern-

ing optimization. We disabled string interning so that CRETE can use taint analysis to

make sure all the relative traces to the symbolic values are captured. Disabling string

interning is relatively simple and can be done through a Lua configuration macro [65].

We also handled the Lua’s two internal representations for numbers: float and integer.

Specifically, we ignored numbers whose internal representation are float, as the under-

lying symbolic execution engine CRETE uses, namely KLEE, does not support floating

point numbers. In addition, we modified Lua math library for all functions to support

making internal integer representations symbolic. As an example, Listing 3.1 shows

how we call the interface functions from a NSE script that allows for us to customize

concolic execution. The script performs a form submission on a potential vulnerable

site and obtains a response. It returns true if a null response body is received or if an

error is returned. In this example, we choose to inject symbolic values and start sym-

bolic analysis right when the relevant parts of the script are being executed to minimize

path explosion.

3.3.3 Snort response

Once we have performed concolic execution on the script, we then use Snort [82], a

network-based IDS to deliver the response. Snort can be configured to detect malicious

34

1 local function check_response(response)

2 --crete start

3 crete.sendpid()

4 crete.mconcolic(response.body,12)

5

6 if not(response.body) or response.status==500 then

7 return true

8 end

9 if response.body:find("SERVER ERROR") then

10 return true

11 end

12

13 --exit program

14 crete.mexit(0)

15

16 return false

17 end

Listing 3.1: http-form-fuzzer.nse instrumented with CRETE.

behaviors over the network with a set of rules in snort.conf. We leverage one such

set of rules that is maintained, validated, and updated by Proofpoint [81] to allow Snort

to detect NMap scans. Listing 3.2 shows the rule used to detect NMap web application

attacks in the evaluation. As part of the Snort rule, we configure the rule’s react option

to deliver specific responses that are synthesized using the generated test cases from

our concolic execution when the NMap scan is detected. For the Web Application Scan

from Listing 3.1, an example of the synthesized response is shown in Listing 3.3. The

string ”SERVER ERROR” in line 3 has been generated by CRETE. Note that for this

case, while the string appears in the page’s title, one can place the string anywhere in the

response.body to trick this particular script. The generation of the response HTML

can be done using any automated templating system such as Mustache [98] that allows

us to replace parts of the content with the test case generated from concolic execution.

Listing 3.2: Snort detecting rule for NMap web application scan

alert tcp any any -> any any (msg:"ET SCAN Nmap Scripting

35

Engine User-Agent Detected (Nmap Scripting Engine)";

flow:to_server,established;

content:"User-Agent3a Mozilla/5.0 (compatible3b Nmap

Scripting Engine";

react; fast_pattern:38,20; http_header;

nocase; reference:url,doc.emergingthreats.net/2009358;

classtype:web-application-attack; sid:2009358; rev:5;)

1 <!doctype html>

2 <html lang="en">

3 <head><title>SERVER ERROR</title></head>

4 <body>

5 <div style="color:red">

6 </div>

7 <form name="LoginForm" method="post"

8 action="/loginclass/Login.do;jsessionid=D34B538055462B75E1CD6DFD18B9650E

">

9 User Name:<input type="text" name="userName" value="">

10 Password:<input type="password" name="password" value="">

11 <input type="submit" value="Login">

12 </form>

13 </body>

14 </html>

Listing 3.3: An Example of Synthesized Response in Snort

36

3.4 Evaluation

In this section, we first introduce the NSE scripts we target and the experimental setup

for our approach including the CRETE settings which are used in the concolic execution

stage. Then, we will summarize our preliminary results, which shows the type of test

cases from running NSE scripts with our approach with a set of examples. Finally, we

analyze why we are able to achieve these results.

3.4.1 Experimental Setup for NSE Scripts

Because a large majority of network protocols such as HTTP are string-based, string

manipulation operations are some of the most frequently used in NSE scripts. As a

result, our experiments mainly focus on string variables when injecting symbolic values

into NSE scripts. We follow the simple heuristics below to select which variables are

made symbolic:

• For host scan scripts, variables that are involved in if-else branches in scripts are

set as symbolic values. Among string operations, substring finds and string pat-

tern matching commonly appear in branch statements since such functions return

values that are of boolean type.

• For web scripts, response.body and response.size are set as symbolic since

they are commonly involved in branches as information they return is often of

interest to NSE scripts.

To showcase our approach, we use http-form-fuzzer.nse as an example, which

37

involves the string.find function. With the above heuristics, we set response.body

and response.size as symbolic variables for the case where response is an HTML

page.

3.4.2 Control Interface Evaluation

Naı̈ve Case Our early attempt of applying concolic execution on NSE scripts is to run

the NSE script concolically using CRETE without deferring concolic execution until

when it is needed. The experiment setup for this case is that we simply use the interface

of crete.mconcolic() to mark symbolic variables then run the NSE script directly. As

expected, doing so causes the pre-scan stage to be involved in the concolic execution

process, leading to excessive execution time. Across four executions of the script done

in this manner, execution time averages 4519 seconds to explore each new feasible path

in the script.

Customized Concolic Execution Case The advantage of our approach is the sup-

port for a control interface that allows the NSE script to defer concolic execution. For

example, the segment of code in Listing 3.1 is from http-form-fuzzer.nse. It is

frequently used to fuzz the fields of web page that contain <form> tags to try to find

a certain request that will cause an ERROR in the web page [77]. Listing 3.1 shows

an example of how we use the control interface to efficiently enable concolic execution

when needed. In the listing, we wish to test line 6 to line 11, which contains two if

statements and the symbolic value we wish to evaluate, response.body, whose type

is a string. We then call function crete.sendpid to start symbolic analysis before we

38

mark symbolic value with crete.mconcolic function. In this way, we have CRETE

defer symbolic execution of the code until after we inject the symbolic value, thus avoid-

ing the symbolic execution of pre-run scripts. Finally, we terminate symbolic execution

using crete.mexit so that the symbolic execution only targets line 6 to 11 and avoids

running post-run scripts symbolically.

When testing http-form-fuzzer.nse, with otherwise the same experimental setup

as the naı̈ve case, execution time is reduced from 4519 seconds on average to around

179 seconds per new feasible path in the script. This indicates the effectiveness of

customized concolic execution. For the rest of our experiments, we apply this method

for deferring concolic execution when testing NSE scripts.

3.4.3 NSE Script Evaluation

Test case generation for honeyfarms Our goal is to concolically execute a variety of

NSE scripts in order to produce inputs that can be used to drive them to particular states.

To demonstrate this, we initially select a collection of NSE scripts for HTTP shown in

Table 3.1. For the script we have been using as an example, http-form-fuzzer.nse,

concolic execution yields the test case with the content of “SERVER ERROR” that leads

execution to go into the if branch in Listing 3.1, demonstrating that our approach can

produce results at the script level despite the massive amount of interpreted code being

executed. We use this test case in a Snort react defense rule and succeed in fooling

NMap into thinking it identified a vulnerability, accomplishing the False Positive goal

for the honeyfarm.

39

Listing 3.4: A code segment of http-title.nse

1 if display_title and display_title ~= "" then

2 display_title

3 = string.gsub(display_title , "[\n\r\t]", "")

4 if #display_title > 65 then

5 display_title

6 = string.sub(display_title, 1, 62) .. "..."

7 end

8 else ...

A more interesting case is the http-form-brute.nse script, in which a string.m

-atch call tries to validate whether a certain value exists in a user information form

returned by a scan. Furthermore, the script checks that the value v parsed from the

form via string.match(form[k], v) has a pattern ’%d%d’. To match this, concolic

execution generates the test case with two digits in random combinations. Our concolic

execution approach also uncovers invalid patterns that lead execution into an error state.

For example, the value of ’username/(’ crashes the script since magic characters such

as ’(’ need to be escaped in Lua in order to be taken literally or they must appear in pairs

such as ’()’. Such a crashing pattern can be used to trigger the Early Termination rule

for the honeyfarm.

For http-auth.nse, we have test cases that have ’\0’ in the middle of the name

variable, e.g., ’name = do\0in’. This causes an error since ’\0’ is not considered as a

terminator for a string in NSE with the Lua interpreter instead treating the character as

an embedded zero instead. Therefore, in NSE the length of variable name is 6 but in C it

is 2. This leads to an inconsistency in length which forces execution into the Lua error

state, triggering another Early Termination situation.

Finally, our concolic approach exposes another similar bug in http-grep.nse by

40

NSE scripts Test Cases/Bugs Defending Rules

http-form-fuzzer SERVER ERROR False positive

http-form-brute Invalid patterns Early termination

http-auth Embedded zero Early termination

http-grep Type inconsistency Early termination

Table 3.1: Examples of interesting test cases and bugs discovered

generating input that triggers a type inconsistency bug in the script shown in Listing 3.6.

Detailed explanation is given later in the Anlysis section. Our patch for this crashing

bug has been accepted by the NMap team 1.

We use the generated test cases discussed above to form honeyfarm responses that

fool the scripts. These test cases are expected to trick the scripts or stop them from

running. We synthesized these test cases with templates and deliver them back to NMap

using Snort configured with appropriate react rules. The test cases successfully cause

NMap to reach the desired states, accomplishing the goals from Section 3.2: namely

Early Termination and False Positive as summarized in Table 3.1.

Analysis We use a few scripts as an example to show how we generate such test cases.

When testing http-form-fuzzer.nse, we have the desired test case with the content

of “SERVER ERROR” that leads the execution to go into the if branch. We get to this

particular test case at the 80th iteration, and we obtain the test cases that cover both if

and else branches. We disassemble the relevant part of the NMap binary and show it in

Listing 3.5. For this case, our approach only captures the basic block that has the branch

(“537ff6”) in shown in line 12, which matches the branch of string.find in the NSE

1https://github.com/nmap/nmap/issues/1931

41

script in Listing 3.1. Only this part of the execution trace is executed symbolically

instead of the entire trace, thus allowing us to generate the desired test cases efficiently.

For testing of the http-grep.nse script shown in Listing 3.6, our approach enabled

us to discover a bug in a local function within the script that implements Luhn, an al-

gorithm that is used to validate a variety of identification numbers, such as credit card

numbers. To understand how the bug works, we first describe the Luhn algorithm [56]

in the following 4 steps:

1. Starting from the rightmost digit, double the value of every second digit.

2. If doubling a number results in a two-digit number, then add the digits of the

product to get a single-digit number.

3. Take the sum of all the digits.

4. If the total modulo 10 is equal to 0 (if the total ends in zero) then the number is

valid according to the Luhn formula; otherwise, it is not valid.

The two loops (in lines 5-7 and in lines 9-15) show the implementation of steps 2 and

3 in the NSE script and contain a bug. The bug is triggered by a test case that causes

the value of variable double inside of string.gsub to be 14. When this happens, the

returning value of the string.gsub call in line 12 becomes 5.0.0, which cannot be

coerced to a string by the code in line 13. Thus, our concolic approach allows us to

easily reveal crashing bugs in NSE scripts that could be used to trigger the termination of

the scan. In this case, however, the bug was reported and the NMap developers changed

its implementation to fix the issue.

42

Listing 3.7 shows the captured execution trace that corresponds to the loop of the

reverse function in C code that triggers the issue. This trace guides concolic execution

to mutate the input string backwards (from the last position instead of the first position).

In addition, it has the information about the two for loops, which increment i by 2 every

iteration. This means that only mutating the bytes in odd positions of the input string

after being reversed can trigger the bug in line 12 due to the step of 2 in each iteration.

With this knowledge, our approach can make changes on the proper position of the

string, which is every other character in the string after being reversed. The effective

change is to flip the bits of the character to an ASCII code that can be converted to a

number so it can pass line 11 to get to line 12 where the bug resides. The bug is triggered

if the number (doubled) in an odd position is greater than 9. Our approach was able to

make the right mutation after a few iterations to trigger the bug in line 12.

1 const char *init; /* to search for a '*s2' inside 's1' */

2 l2--; /* 1st char will be checked by 'memchr' */

3 l1 = l1-l2; /* 's2' cannot be found after that */

4 while (l1 > 0 && (init = (const char *)memchr(s1, *s2, l1)) != NULL) {

5 init++; /* 1st char is already checked */

6 537fe0: 4c 8d 7b 01 lea 0x1(%rbx),%r15

7 if (memcmp(init, s2+1, l2) == 0)

8 537fe4: 48 8b 54 24 10 mov 0x10(%rsp),%rdx

9 537fe9: 48 8b 74 24 18 mov 0x18(%rsp),%rsi

10 537fee: 4c 89 ff mov %r15,%rdi

11 537ff1: e8 4a 4b ef ff callq 42cb40 <memcmp@plt>

12 537ff6: 85 c0 test %eax,%eax

13 537ff8: 0f 84 49 01 00 00 je 538147 <str_find_aux+0x317>

43

14 return init-1;

15 else { /* correct 'l1' and 's1' to try again */

16 l1 -= init-s1;

17 537ffe: 4d 29 fe sub %r15,%r14

18 else if (l2 > l1) return NULL; /* avoids a negative 'l1' */

Listing 3.5: Captured trace from http-form-fuzzer.nse script

1 function luhn (matched_ccno)

2 crete.mconcolic(matched_ccno, matched_ccno.len)

3 local n = string.reverse(matched_ccno)

4 local s1 = 0

5 for i=1, n:len(), 2 do

6 s1 = s1 + tonumber(n:sub(i,i))

7 end

8 local s2 = 0

9 for i=2, n:len(), 2 do

10 --conversion from string to double

11 local doubled = n:sub(i,i)*2

12 doubled = string.gsub(doubled,'(%d)(%d)',

13 function(a,b)return a+b end)

14 s2 = s2+doubled

15 end

16 end

Listing 3.6: A code segment of http-grep.nse script with string.reverse function: a type

inconsistency bug is triggered in line 13 when trying to sum doubled with s2. This

function (luhn) is used to validate credit card numbers

1 static int str_reverse (lua_State *L) {

2 535616: 48 89 fd mov %rdi,%rbp

3 535619: 53 push %rbx

44

4 53561a: 48 81 ec 48 20 00 00 sub $0x2048,%rsp

5 size_t l, i;

6 luaL_Buffer b;

7 const char *s = luaL_checklstring(L, 1, 1);

8 535621: 48 8d 54 24 08 lea %rsp,%rdx

9 else lua_pushliteral(L, "");

10 return 1;

11 }

Listing 3.7: The captured trace when testing http-grep.nse script. This trace segment

contributes to finding the type inconsistency bug

3.5 Summary

This chapter illustrates an approach to test NSE scripts via concolic execution and to

use the result to generate honeyfarms that can slow down attackers. Preliminary results

have shown its efficiency in generating test cases that can stop NMap scans or return

false positive responses. Our approach is effective with complicated programs such

as NMap which runs embedded scripts where traditional concolic execution does not

work at all. Our approach does so by avoiding path explosion by supporting customized

concolic execution at specific locations in order to generate useful test cases efficiently.

The implementation for our approach makes use of the glue layer that most embedded

scripting languages provide to integrate the concolic execution engine and the interface

functions for customizing concolic execution. In this way, the approach does not need to

modify the built-in interpreter each time the language is updated. In the future, we aim

45

to test more libraries in NSE since the effective concolic execution of more NSE scripts is

the key to building diverse honeyfarms. Finally, we will further automate the process of

synthesizing test cases with response templates so that the results of concolic execution

can be included in honeyfarms with minimal manual intervention.

46

4 In-Situ Concolic Testing of JavaScript

In this Chapter, we introduce a new approach to applying concolic testing to JS scripts

in-situ, i.e., JS scripts are executed in their native environments as part of concolic ex-

ecution, and test cases generated are directly replayed in these environments. We have

implemented this approach in the context of Node.js and its V8 JS engine. As a JS script

is executed on Node.js, its binary-level execution trace is captured and later analyzed

through symbolic execution for test generation. This brings the power of binary-level

concolic testing to JavaScript.

4.1 Background

In this section, we introduce the related background Node.js and V8 JS engine and

explain the components we leveraging to implement our approach.

4.1.1 Node.js Runtime

Node.js is an open-source, cross-platform JS runtime environment. It builds around

the V8 JS engine and enables high-performance execution of JavaScript. Node.js pro-

vides a broad set of asynchronous I/O primitives to the application, which enables it to

run unblocked. Node.js allows extensions to its functionalities through addon libraries.

Such libraries are typically written in C/C++ and can be loaded into Node.js as ordinary

47

Node.js modules using require() statements in JavaScript.

4.1.2 V8 JS Engine

V8 is Google’s high-performance JS and WebAssembly engine [21]. V8 can run stan-

dalone or can be embedded in C++ applications such as Node.js and Chrome. As shown

in Figure 4.1, V8 supports two modes for executing a JS script: (1) interpreted mode

JavaScript Parser

Abstract
Syntax Tree

Ignition

Bytecode

Optimized
Machine Code

Turbofan

Optimize

Ignition
Bytecode
Handlers

Machine
Code

Deoptimize

Interpreted Optimized

Figure 4.1: How V8 runs a JS Script: Interpreted vs Optimized

where the JS bytecode [20] translated from the JS script is interpreted by its interpreter,

Ignition [8]; (2) optimized just-in-time compilation mode where the bytecode is com-

piled by V8 engine into optimized machine code using its just-in-time compiler, Tur-

bofan [19], and then executed on the target machine. As Ignition interprets a byte-

48

code statement, it invokes the corresponding bytecode handler for this statement that

is pre-compiled to the machine code of the target host. If a piece of bytecode is being

interpreted repeatedly, the Ignition interpreter may decide that it deserves further op-

timization. It sends this piece of bytecode and its runtime information from the prior

interpretation to Turbofan. Turbofan will then analyze the bytecode and its runtime in-

formation to generate further optimized machine code that is then executed in place of

the bytecode.

Builtin functions in V8 are intrinsic functions that handle common operations with-

out the need to invoke the optimizing compiler. They are designed to provide inter-

nal functionality, or to implement the functions of builtin objects in JavaScript such as

String.Prototype and String.Map. In V8, these builtin functions are implemented

in CodeStubAssembler (CSA). CSA provides efficient low-level functionality that is

very close to the assembly language, but also offers an extensive library of higher-level

functionality. For example, CSA as part of V8’s builtins can load data from a specified

address, and it can modify the internal data of JavaScript objects [6]. Ignition’s bytecode

handlers are also implemented in CSA. A key advantage of CSA is that it makes V8’s

builtin functions platform-independent and those builtin functions are compiled into the

binaries for a target platform by V8’s unified code generation as shown in Figure 4.2.

CSA allows us to create new V8 builtin functions to extend V8’s functionality [19]. Ig-

nition’s bytecode handlers are written in CSA and compiled into binary by the unified

code generation. V8’s optimizing compiler, Turbofan, is also based on the unified code

generation. We leverage this feature to integrate concolic execution into the V8 engine.

49

CodeStubAssembler

RawMachineAssembler

CodeAssembler

Instruction Selector

Code Generator

Register Allocator

Scheduler
Control Flow

Graph

Turbofan
Optimizing
Compiler

WASM Compiler

"Sea of Nodes"
Graph

V8 Unified Code
Generation

Architecture

C++ DSL

ARM,MIPS...

Ignition

Bytecode
Builtins

Figure 4.2: V8’s Unified Code Generation

4.2 Design

4.2.1 Overview

JavaScript, as one of the most popular scripting languages for both client side and server-

side applications, is often deeply embedded in its execution platform, e.g., web browsers

and Node.js runtime. Although taking a JS script out of its native environment and

analyzing it in an artificial test environment through modeling would make the analysis

more tractable [84], the analysis often becomes less accurate. Test cases generated are

not able to fully reflect realistic use cases and can only represent part of the use cases

that are accurately modeled [51], and bugs detected may also be false positives [48].

Thus, it is strongly desirable to analyze a JS script in its native environment under its

normal usage.

50

Our approach conducts concolic testing on JS scripts in-situ, as illustrated in Fig-

ure 4.3. The concrete execution step of concolic testing as indicated by the dashed box

on top is conducted in the native execution environment for JS scripts, where the trace of

this concrete execution is captured. The trace is then analyzed in the symbolic execution

step of concolic testing to generate test cases and these test cases are then fed back into

the native concrete execution to drive further test case generation.

Concrete Execution

Symbolic Execution

Test Harness

JavaScript

Execution Tracer
JavaScript Execution Trace

JS execution engine

Symbolic Execution
Engine

Test cases

Constraint Solver

Path Explosion

Path Constraint

Figure 4.3: Workflow for Concolic Testing of JavaScript

Central to our approach is the quality of the captured concrete execution traces of

JS scripts in terms of correctness and precision. If the traces captured are incorrect, the

test cases generated in symbolic execution will often be misguided, thus not effective.

On the other hand, if the traces captured are not concise, they are often unnecessarily

complex and lead to path explosion in symbolic execution, thus not efficient. Therefore,

while developing our approach, we focus on how to capture the concrete execution trace

51

of a JS script under test from its native execution environment so that the captured trace

is both correct and concise. To obtain such traces, we must address two major challenges

as follows:

• Sheer complexities of native execution environments. The embedding environ-

ments for JS scripts, web browsers, or Node.js, are often quite complex, not only

the runtimes themselves but with their numerous extensions available.

• JS scripts are heavily optimized. Both client-side and server-side JS scripts are

often optimized just-in-time to achieve the best performance. Such optimizations

tend to obfuscate the execution flows of these JS scripts [87].

Due to the popularity of the Node.js runtime and its embedded V8 JS engine, we address

the above challenges in this context. The solutions are readily generalized to other JS

runtimes and engines. We have explored two methods for tracing the concrete execution

of JS scripts running in the Node.js runtime as follows:

• Shallow Integration of Tracing in Node.js. Tracing of the concrete execution of a

JS script is invoked within Node.js, but outside V8. The V8 engine is treated as a

black box.

• Deep Integration of Tracing in V8. Tracing of the concrete execution is invoked

inside V8; therefore, irrelevant parts of Node.js are not traced.

52

capture traces Symbolic Execution Engine

exported as shared library

Execution Tracer
(i.e. qemu)

JavaScript

Node.js

V8
Ignition Turbofan

C/C++ function call

execution tracing libraries

Shallow tracing interface
C++ addons

Execution traces for JS
:trace of Node.js
 :trace of V8
 :trace of Ignition
 :trace of bytecode Interpretation
 :trace of Turbofan
 :trace of code optimization
 :trace of code generation
:trace of Node.js Add-on
 :trace of memory copying

traces in detail

traces captured for JavaScript

Figure 4.4: Shallow Integration of Tracing in Node.js

4.2.2 Shallow Integration of Tracing in Node.js

As shown in Figure 4.4, in order to use concolic execution to test a JS script, we need

to extract the execution trace of this script as it is running on Node.js with an execu-

tion tracer, and then feed the execution trace to a symbolic execution engine to gen-

erate test cases. Addons in Node.js are dynamically-linked shared libraries written in

C++. This addons feature offers an interface between the JavaScript and C/C++ li-

braries. A library of execution tracers for concolic testing can be made available to the

JS script as Node.js modules by leveraging the addons feature. Such a library needs

to support two general functions: make symbolic and start tracing respectively.

The make symbolic function allows us to mark the variables as symbolic in the execu-

tion. The start tracing function allows us to take control of the underlying execution

53

tracer so that we can start tracing for symbolic execution when necessary. We use this

library to initiate concolic execution for a JS script under test, which is typically done

in the test harness to avoid modifications to the JS script itself. This initiation involves

setting symbolic variables and informing the execution tracer of when to trace.

As shallow integration of tracing is invoked in Node.js which builds around V8, it

has the disadvantage of capturing overly complicated execution traces. The execution

tracer, e.g., the CRETE tracer in QEMU, treats Node.js as a whole binary program

and captures all of its traces once tracing starts. Furthermore, V8 includes a JavaScript

interpreter (Ignition) and a JavaScript just-in-time compiler (Turbofan). Hence, when

JavaScript runs on top of Node.js, the execution tracer will capture the execution traces

of the entire Node.js, which includes not only traces of the JS script under test, but

also traces of Ignition, Turbofan, other parts of V8 and Node.js. The resulting trace

is often massive and contains unnecessary execution trace segments. After feeding it

to the symbolic execution engine, the engine essentially analyzes the JS script under

test and all parts of Node.js and V8 that are involved. This may cause path explosion

for symbolic execution. However, such integration of tracing for concolic execution

using Node.js addons has the advantage of simplicity, i.e., requiring no modification to

Node.js and particularly the V8 engine. It is our baseline tracing method to enabling

concolic execution for JavaScript.

54

4.2.3 Deep Integration of Tracing in V8

The part of an execution trace that is of the highest relevancy to test case generation

using symbolic execution is the binary code that is directly corresponding to the byte-

code of JS script under test. Therefore, the best place to trace such binary code is inside

the V8 engine. As shown in Figure 4.5, for deep integration of tracing, we move the

interface for interacting with the execution tracer from the Node.js using C++ addons

into the V8 engine using CSA runtime builtin functions. This interface allows us to only

capture the execution traces representing the interpretation of JS bytecode instead of the

execution traces of the entire Node.js captured by shallow integration in Figure 4.4.

JS execution binary

Symbolic Execution Engine

exported as shared library

capture tracesExecution Tracer
(qemu)

JavaScript

Node.js

V8
Ignition Turbofan

C/C++ function call

execution tracing libraries

Execution traces for JS
...
: trace of bytecode Interpretation
...

interface in detail

In-stu tracing interface

:: start_tracing()
:: make_symbolic()

traces in detail

Execution traces captured are greatly reduced

traces of JS execution binary captured within Ignition

Figure 4.5: Deep Integration of Tracing in V8

JS bytecode interpretation happens in V8’s Ignition interpreter. As shown in Fig-

55

ure 4.6, for each JS statement in bytecode, there is a corresponding bytecode handler in

Ignition for its interpretation [3]. Ignition bytecode handlers are compiled at V8 build

time and embedded into the binary. Interpretation of JS bytecode means that the byte-

code handlers themselves are executed. Hence, in order to get an execution trace that

closely represents JS bytecode, we defer tracing till the interpretation of JS bytecode

starts, using deep integration of tracing. More specifically, this deep tracing interface

captures traces of the execution of Ignition bytecode handlers during interpretation,

which closely matches JS bytecode. This way we also avoid capturing the execution

traces of the code generation and the optimization in Turbofan. This process of deep in-

tegration of tracing is illustrated in the green dashed box of Figure 4.6. On the contrary,

the shallow integration of tracing with Node.js addons will capture the whole execution

traces for every component as shown in Figure 4.6. Thus, our deep tracing interface

embedded in V8 can reduce the problem of path explosion when applying symbolic ex-

ecution on JavaScript by having a precise execution trace that closely matches the JS

bytecode.

4.3 Implementation

In our implementation, we use CRETE as our concolic execution engine. CRETE pro-

vides two interface functions for accessing its execution tracer: crete start tracing

and crete make symbolic. Through these functions, developers can gain control over

when to start tracing and what to capture through the execution tracer. In order to trace

the JS library under test, we expose CRETE’s tracing control interfaces to the JS script.

Our implementation of shallow tracing is to achieve this through Node.js addons. We

56

CSA Runtime_builtin

equivlent in CFG

JavaScript

Parser

Abstract
Syntax Tree

Ignition

Bytecode

Optimized
Machine Code

TurbofanOptimize

Ignition
Bytecode
Handlers

Machine
Code

Deoptimize

Interpreted Optimized

equivlent in CFG

JS Bytecode:
...
CallRuntime [start_trace]
TestEqualStrict r0, [0]
JumpIfFalse [5] 22
TestGreaterThan r0, [1]
...
Constant Pool:
...

Ignition Handlers:
...

IGNITION_HANDLER(TestEqualStrict)
IGNITION_HANDLER(JumpIfFalse)
IGNITION_HANDLER(TestGreaterThan)
... In-situ tracing interface

::start_tracing()
::make_symbolic()

The Most Concise Execution Traces for JS

calling In-situ interface
IGNITION_HANDLER(CallRuntime)

Figure 4.6: How Deep Integration of Tracing Captures the Most Concise Execution

Traces

implement a new addon library in C++, which is later loaded into the Node.js runtime

during JS script execution. This addon library wraps around the CRETE’s tracing con-

trol interfaces and provides them to the JS script running on Node.js. This implemen-

tation requires no modification on Node.js, but only introducing a new addon library

for tracing control. The JS script under test can invoke the tracing control library as it

invokes any other Node.js modules. Our shallow tracing implementation contains 527

lines of C++. This implementation treats the V8 JS engine as a whole; thus, in addition

to traces of the JS script, it may also capture extensive traces from the V8 engine.

Our implementation of deep tracing is to integrate the tracing control interface into

the V8 JS engine to gain more precise control over tracing. We achieve the implemen-

tation by extending V8 builtin functions to integrate the tracing control interface for

57

symbolic execution in V8. V8 builtin functions allow developers to extend the inter-

nal functionalities of the V8 engine. These builtin functions are implemented in V8’s

CodeStubAssembler and provide accesses to CRETE’s tracing interface. They are

compiled into binary by V8’s unified code generation and integrated into the Ignition

interpreter. The JS script under test can then invoke CRETE’s tracing interface through

these builtin functions. This deep tracing implementation provides better control for

tracing the JS script by only tracing the bytecode handlers within V8 which are corre-

sponding to the bytecode of the JS script, but not other parts of V8. V8’s mechanism

of builtin functions allows precise accesses to the bytecode handlers. Our deep tracing

implementation contains 2041 lines of C++, 463 lines of JavaScript and 178 lines of

bash.

Also note that everything in JavaScript is represented as an object. As we make

inputs to the JS script symbolic, we must make sure that the objects that we set symbolic

remains valid objects during symbolic execution.

4.3.1 Shallow Tracing Interface as C++ Addons

Figure 4.7 illustrates our implementation of the shallow tracing interface as a Node.js

addon library, which supports two tracing control functions: start tracing and make

-symbolic. Node.js provides a standard way of implementing an addon library in C++.

The addon library can be loaded as a Node.js module using require() statements in

the JS script. The two tracing control interface functions are first exported from CRETE

execution tracer and can later be invoked from the JS script to mark symbolic variables

58

new test case

selected traces

CRETE Manager

CRETE Runner

Symbolic Execution Engine

new test cases

CRETE Replayer

QEMU Guest OS
exported as shared library

capture tracesCRETE Tracer

JavaScript

traces captured for JavaScript
Execution traces for js
:trace of Node.js
 :trace of V8
 :trace of Ignition
 :trace of bytecode Interpretation
 :trace of Turbofan
 :trace of code optimization
 :trace of code generation
:trace of Node.js Add-on
 :trace of memory copying

Node.js

V8
Ignition Turbofan

interface in detail

X
Shallow tracing interface

C++ addons

C/C++ function call

 :: start_tracing()

Object Model in JS
Object {
 value1;

 }
value2;

memory address of the copy of value2

:: make_symbolic()

execution tracing libraries
:: crete_start_tracing()
:: crete_make_symbolic()

traces in detail

limited access
to V8 internal

Figure 4.7: Implementation of Shallow Tracing using Addons

and initiate tracing through the addon library. This is done in the test harness of the

JS script under test so that the JS script itself is not modified. Although the addons

library, as part of Node.js, offer a bridge between JavaScript and C/C++ libraries, it has

the following drawbacks in tracing for concolic execution:

• Separate address spaces: As shown in Figure 4.8, the addon library has a differ-

ent address space from V8 while V8 allocates JS variables within its own address

space as storage cells [10]. Therefore, when a JS script invokes the addon li-

brary in Node.js, it involves memory translations in between. Due to the fact that

CRETE uses Dynamic Taint Analysis, which will capture relevant traces of mem-

ory translations related to symbolic variables, symbolic execution may get lost

among memory address translations between the addon library and V8.

59

Node.js Process Space (C++)

V8 Runtime (C++)

C++ addons

...
var addon = require ("addon");
var obj = {x: 2};

addon.mutate(obj);
...

Node.js Code

void mutate(const FunctionCallbackInfo<Value>& args)
{
 Isolate *iso = args.GetIsolate();
 Local<Object> target = args[0].ToObject();
}

storage cell

Heap

Isolate's memory store

Figure 4.8: Memory System for C++ Addons

• Limited V8 internal access: The addon library has limited access to V8 internals.

Thus, when implementing make symbolic, the addon library cannot access the

runtime memory address on heap for a variable in the JS script, but a copy of its

value. We can only get the memory address of this copy. As a result, the exe-

cution traces CRETE captured may contain irrelevant traces of underlying value

copying during the execution of the JS script, thus, it is not a close match to the

JS bytecode.

• Tracing inside Node.js but outside of V8: Through the addon library, tracing is

initiated inside Node.js. CRETE tracer will treat V8 as a black box binary and

trace its entire execution including the execution of Turbofan and other Node.js

modules after the tracing starts. Such tracing captures the entire execution trace

that contains the redundant execution traces indicated by line 5 to 9 listed below.

60

1 :trace of Node.js

2 :trace of V8

3 :trace of Ignition

4 :trace of bytecode Interpretation

5 :trace of Turbofan

6 :trace of code optimization

7 :trace of code generation

8 :trace of C++ addon

9 :trace of memory translation

The parts of the trace closely corresponding to the JS script are indicated by line

2 to 4.

4.3.2 Deep Tracing Interface as V8 Builtins

Figure 4.9 illustrates how we implement the deep tracing interface of start tracing

and make symbolic as builtin functions, which reside inside the V8 engine and have ac-

cess to the JS interpretation by Ignition. (We have explained the technical feasibility in

Section 4.1.2, V8 JS Engine). V8 allows developers to extend the set of builtin functions

with new ones written in CodeStubAssembler. The new builtin functions are compiled

into the binary of the target host by the V8’s unified code generation and directly embed-

ded into V8. Implementing the tracing interface as V8 builtin functions enables the con-

trol of CRETE execution tracer from within V8. Hence, we are able to defer tracing till

JavaScript bytecode interpretation starts. This way we can keep the captured execution

trace confined within the JavaScript interpretation. What’s more, builtin functions have

61

Symbolic Object Model in JS
Object {
 value1;

}

new test case

CRETE Manager

selected traces new test cases
CRETE Runner

Symbolic Execution Engine

CRETE Replayer

QEMU Guest OS

exported as shared library

capture tracesCRETE Tracer

JavaScript

Node.js

 V8
Ignition Turbofan

execution tracing libraries
:: crete_start_tracing()
:: crete_make_symbolic()

interface in detail

Deep tracing interface
CSA runtime_builtin

Execution traces for JS
...
: trace of bytecode Interpretation
...

C/C++ function call

 :: start_tracing()

runtime memory address of value2

:: make_symbolic()

value2; //symbolic value

traces in detail

Execution traces captured are greatly reduced compared to Fig. 8

direct access to
V8 internal

(In-situ)

traces captured for JavaScript

Figure 4.9: Deep Tracing Interface in V8

access to V8 internals and can be called from Ignition. Therefore, it is able to get the run-

time address of an object or one of its fields. V8 runtime builtin functions can be called

directly from JavaScript through a %-prefix with the flag --allow-natives-syntax as

shown in line 3 and line 4 of Listing 4.1. The deep tracing interface allows precise trac-

ing of the JS bytecode execution by tracing Ignition bytecode handlers. To avoid tracing

of just-in-time code generation and optimization in Turbofan, we turn off Turban while

tracing.

62

4.3.3 Symbolic JS Object for V8

In this sub-section, we explain how we make a JS Object symbolic for V8. V8 builtin

functions allow us to access the runtime memory address of a JS object, which is al-

located on heap when V8 creates a HeapObject. For safety reason, a HeapObject is

pointed to by a pointer inside a handle in V8’s C++ implementation [5]. As shown

in Figure 4.10, a String object is a HeapObject that is allocated on the heap during

runtime. Since CRETE captures execution traces based on the memory addresses of

the initial variables set as symbolic. We set the memory address that holds the actual

value for the String allocated at runtime as symbolic. Therefore, the trace that CRETE

captures is relevant to this String object. In V8’s implementation, we are given the

interfaces to use the Handle to access objects in JavaScript. Figure 4.10 shows how we

get the memory address of the value in the String on heap using Handle. By setting

symbolic inputs this way, we only set the memory address containing the actual value of

an Object symbolic during symbolic execution to explore branches related to the value.

It does not mark memory of other fields of the Object symbolic; otherwise, the object

may be invalid. We mainly focus on JavaScript’s String type because strings are popu-

lar inputs to JS scripts and making string variables symbolic leads to many valuable test

cases.

C++

Handle

Object location

Heap

Memory address for
variable being set

symbolic

Object

Address ptr_

String

value

Figure 4.10: V8 Object Memory Model

63

We encountered four cases when attempting to retrieve the memory address of the

actual value of the String object for symbolic execution [4], they are listed as below:

• SeqOneByteString: The simplest form, containing a few header fields and then

the string’s bytes (which are not UTF-8 encoded and can only contain characters

among the first 256 unicode code points).

• SeqTwoByteString: Similar form, but with two bytes for each character (using

surrogate pairs to represent unicode characters that cannot be represented in two

bytes).

• SlicedString: A substring of some other string, containing a pointer to the “parent”

string and an offset and length.

• ConsString: The result of concatenating two strings (if over a certain size), con-

taining pointers to both strings (which may themselves be any types of strings).

Listing 4.1 and Listing 4.2 show an example JS script and its bytecode during inter-

pretation. CRETE only captures the trace related to the runtime memory address of

the actual value of str var, which is a String object in V8. The runtime address is

0x34ecf6d42849 as shown at line 26 of Listing 4.2. The actual value stored in this run-

time address is loaded at line 5 of Listing 4.2 and this runtime address is later marked

as symbolic at line 7. After StartTracing is called at line 8, CRETE captures the

traces for all bytecode related to the symbolic runtime address, which are highlighted

by the underscores in Listing 4.2, as the concrete execution trace. The captured trace

also preserves all constraints corresponding to the JS script of Listing 4.1. Thus, the

traces captured with our method are concise and accurate for symbolic execution.

64

1 var str_var = "init";

2

3 %MakeSymbolic(str_var);

4 %StartTracing();

5

6 if(str_var === "tests")

7 return "tests";

8

9 if(str_var > "tests1"){

10 return "tests1";

11 }else{

12 return "tests2"

13 }

Listing 4.1: A Simple Example of JavaScript and Calling Convention of In-Situ Tracing

Interfaces

4.4 Evaluation

For our evaluation, we target Node.js libraries that are available on NPM. We install

these libraries through NPM and their source code is also downloaded so we can access

their unit test suites for comparison purposes. We apply our approach to in-situ concolic

testing, both shallow tracing and deep tracing, on these libraries, and compare them in

terms of performance. We have also evaluated the code coverage achieved by our auto-

matically generated test cases with coverage achieved by hand-crafted unit test suites of

these libraries as reference. This evaluation is carried out on a Ubuntu OS Version 18.04

with 4-core Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16G memory.

In order to apply our approach to these libraries, we built a test harness to system-

atically exercise all exported (public) methods in a given library with arguments whose

type is String. The seed test cases are generated randomly within the test harness. We

implemented an automation pipeline that helps set up the concolic testing environment

65

1 [generated bytecode for function:]

2 Parameter count 6

3 Frame size 8

4 0x40b8ec2c9a StackCheck

5 0x40b8ec2c9b LdaConstant [0]

6 0x40b8ec2c9d Star r0

7 0x40b8ec2c9f CallRuntime [MakeSymbolic],r0-r0

8 0x40b8ec2ca4 CallRuntime [StartTracing]

9 0x40b8ec2ca9 LdaConstant [1]

10 0x40b8ec2cab TestEqualStrict r0,[0]

11 0x40b8ec2cae JumpIfFalse [5](0x40b8ec2cb3)

12 0x40b8ec2cb0 LdaConstant [1]

13 0x40b8ec2cb2 Return

14 0x40b8ec2cb3 LdaConstant [2]

15 0x40b8ec2cb5 TestGreaterThan r0,[1]

16 0x40b8ec2cb8 JumpIfFalse [5](0x40b8ec2cbd)

17 0x40b8ec2cba LdaConstant [2]

18 0x40b8ec2cbc Return

19 0x40b8ec2cbd LdaConstant [3]

20 0x40b8ec2cbf Return

21 0x40b8ec2cc0 LdaUndefined

22 0x40b8ec2cc1 Return

23 Constant pool (size = 4)

24 - map: 0x01eccde023c1 <Map>

25 - length: 4

26 0: 0x34ecf6d42849 <String[4]: init>

27 1: 0x0040b8ec2949 <String[5]: tests>

28 2: 0x0040b8ec2969 <String[6]: tests1>

29 3: 0x0040b8ec2989 <String[6]: tests2>

Listing 4.2: Bytecode for JS Script in Listing 4.1

in CRETE for each Node.js library automatically. With the test harness and automa-

tion pipeline we can set up concolic testing for Node.js libraries conveniently and have

applied our approach to 995 Node.js libraries which include approximately 9000 JS

files. Our current study focuses on string-intensive libraries due to their popularity in

Node.js applications. We randomly pull libraries from NPM. If the majority of a li-

brary’s functions process strings, we select it. We set string-type parameters symbolic

and non-string parameters to random concrete values in the test harness for each library.

66

If a library contains no exported function with string-type parameters, we skip it.

The overall statement coverage on all 995 Node.js libraries for shallow tracing and

deep tracing is shown in Figure 4.11. Figure 4.11d and Figure 4.11b show that deep

tracing via V8 builtin functions performs significantly better than shallow tracing via

Node.js addons in terms of statement coverage. The darker shadow between 75% and

100% in Figure 4.11d indicates that more libraries achieved the coverage between 75%

and 100% with deep tracing. Figure 4.11a and Figure 4.11c show the exact number of

libraries in each coverage range.

0

100

200

300

0-25% 25-50% 50-75% 75-85% 85-100%

(a) Shallow Tracing:

Number of libs in

each coverage range

0

25

50

75

100

(b) Shallow Tracing:

Statement coverage

distribution

(c) Deep Tracing:

Number of libs in

each coverage range

(d) Deep Tracing:

Statement coverage

distribution

Figure 4.11: Coverage on All 995 Node.js Libraries

Due to the sheer volume of libraries and JS files, we randomly select 180 libraries to

conduct a deep-dive analysis of coverage achieved by shallow tracing and deep tracing

methods respectively. Coverage for all JavaScript libraries are calculated using istanbul,

a popular JS coverage tools used by V8 [11] and compatible with most JavaScript testing

frameworks, e.g., Mocha [13] and Node-Tap [14]. Coverage may vary slightly due to the

randomness of the seed test case generation. By default, the coverage that we show in

this evaluation is statement coverage. Table 4.1 shows the demographics of the selected

libraries. The LoC (lines of code) for a library under test is calculated with github-

loc [9]. The number of weekly downloads of a library under test is calculated with

67

Metric Range Average

Line of Code [93, 16910] 1687

Weekly Downloads [3, 37491350] 9552965

Dependencies [3, 18154] 282

Table 4.1: Demographics for Libraries under Test

npm-stats-api [17]. The number of dependencies is the number of dependent libraries

that the library under test has. We calculated it with dependent-counts [7].

4.4.1 Results from Shallow Tracing Using Node.js Addons

For evaluation of concolic testing with shallow tracing of JavaScript libraries via the

Node.js addon method, we wrap the 180 randomly selected libraries with our test har-

ness, in which the shallow tracing is invoked through the tracing control interface made

available via the Node.js addon. As shown in Figure 4.12a, the statement coverage

achieved between 85% and 100% only accounts for 9.93% of the libraries under test,

the coverage between 75% and 85% accounts for 14.89% of the libraries, the coverage

between 50% and 75% accounts for 17.73% of the libraries, the coverage between 25%

and 50% accounts for 35.46% of the libraries, and the coverage below 25% accounts

for 21.99% of the libraries. We can see the overall performance of shallow tracing by

looking at Figure 4.12b where most of the dots representing the coverage appear below

the line of 75%. As we analyzed more libraries, the proportion of libraries that fall into

a higher coverage range do not seem to improve, indicated by a mostly flat line in Fig-

ure 4.13, which shows the average coverage growth trends when the number of libraries

grows. It can be observed from Figure 4.11a and Figure 4.12a that the overall coverage

68

on 995 libraries closely resembles that of 180 representative libraries randomly selected.

0

10

20

30

40

50

0~25% 25~50% 75~85% 75~85% 85~100%

(a) Number of libraries in each cover-

age range (b) Statement coverage distribution

Figure 4.12: Coverage Achieved by Shallow Tracing

4.4.2 Results from Deep Tracing with V8 Builtins

To evaluate the method of deep tracing with V8 builtins, we apply it to the same set

of 180 Node.js libraries. For each library, in its test harness, we invoke deep tracing

through the tracing control interface made available via the V8 builtins. We can see

an overview of the deep tracing method’s performance in Figure 4.14b. Most of the

dots indicating the coverage appear above the line of 75%. Only one library achieved

a coverage below 25% and the reason is that it is a function with multiple arguments

of String type, which can be made symbolic. Our test harness did not catch all of the

arguments and only managed to set one of them as symbolic input. Therefore, it only

explored the branches that are related to that one argument we set as symbolic input

within the test harness.

As shown in Figure 4.14a, it is clear that the deep tracing method is able to achieve

the coverage between 85% and 100% for most libraries indicated by the right most bar.

69

Number of Javascript files

%

0

20

40

60

80

77 499 998 1998 2998 3998 4998 5998 6998 7998

0~25% 25~50% 50~75% 75~85% 85~100%

Figure 4.13: Coverage Growth Trend with Shallow Tracing

This performance gain comes from the ability of being able to run symbolic analysis on

a more precisely captured trace that closely corresponds to the JS bytecode, which has

been explained in detail in Sections 4.3.2 and 4.3.3. It can be observed from Figure 4.11c

and Figure 4.14a that the overall coverage on 995 libraries closely resembles that of 180

representative libraries randomly selected.

4.4.3 Comparisons

Test Coverage Achieved by NPM Test Suites A systematic investigation on test cov-

erage of hand-craft test suites in NPM [93] is illustrated in Figure 4.15. The blue line

(the lower line) represents statement coverage achieved by test suites found in the pack-

ages released in NPM registry where only 4.2% of the libraries in the evaluation set

have statement coverage above 80%, 6.0% of the libraries have coverage above 20%,

70

(a) Number of Libraries in Each Coverage

Range

(b) Statement Coverage Distribution

Figure 4.14: Coverage Achieved by Deep Tracing

and 6.6% of the libraries contain tests with coverage barely above zero. This result

shows that most libraries do not have unit tests at all in their releases in NPM. Only

a small number of the libraries has high-quality unit tests. The green line (the upper

line) represents the tests included in the latest commit of the master branch of the li-

brary repositories. We can see that the number of libraries in each coverage range has

improved. However, those libraries that have coverage in the range of 80% to 100% are

still inadequate. Our method can automatically achieve similar and even better coverage

for JS library than the manually crafted test suites by its developers. It can significantly

reduce the efforts in equipping these libraries with high-quality unit tests.

Performance Comparison between Shallow and Deep Tracing For comparison, it

can be observed from Figure 4.16a and Figure 4.16b that the number of libraries achiev-

ing code coverage above 85% using deep tracing is significantly higher than that of

shallow tracing. And the number of libraries achieving code coverage between cover-

age 75% and 85% is also higher. This indicates that the deep tracing method has the

71

Statement coverage

N
um

be
r o

f N
P

M
 li

br
ar

ie
s

0

50

100

150

200

20 40 60 80 100

npm registry latest commit in repository

Figure 4.15: Coverage by Hand-Crafted NPM Test Suites

ability to achieve higher coverage in JavaScript libraries at the cost of extending the V8

engine with new builtins.

Comparison with Related Work We have compared our approach with an existing

tool, ExpoSE [71]. ExpoSE has been evaluated on 4 JS libraries shown in Figure 4.17.

We selected the same libraries for comparison. ExpoSE specifically targets solving

regular expression problems for its symbolic execution engine JALANGI and detected

a new bug in the “minimist” library. Our method of deep tracing via V8 builtin achieved

better coverage consistently. This comparison partially reflects our method’s ability in

achieving higher coverage.

Bugs and Exceptions For the 180 libraries we selected for evaluation, on average,

4 exceptions are thrown per library on the generated tests. We had time to carefully

72

0

10

20

30

40

0~25 25~50 50~75 75~85 85~100

Addon CSA

(a) Number of Libraries in Each Coverage

Range

0

25

50

75

100

Addon CSA

(b) Statement Coverage Distribution

Figure 4.16: Coverage Comparison: Shallow vs. Deep Tracing

0

25

50

75

100

minimist validator semver querystring

ExpoSE Addon CSA

Figure 4.17: Comparison with ExpoSE

analyze 12 libraries for their exceptions. In total, 9 distinct exceptions are encountered

for the 12 libraries. Among those exceptions, we identified 6 as clear-cut bugs: 2 are

previously known bugs that have been fixed while 4 are previously unknown. After we

filed these bugs on Github, they have been accepted and patched by their developers.

73

The bugs we filed are all due to unhandled exceptions.

Node.js lib Bugs Known

benchmarkify No boundary check for empty string No

msgpack5 No NULL check for function args No

is-regex Unhandled input syntax error No

validator Mishandled country code No

chalk Deprecated constructor invoked Yes

stringify Incorrect parsing of separators Yes

Table 4.2: Bugs Detected in 12 NPM Libraries

Table 4.2 shows a summary of the bugs that we discovered. The bug from bench-

markify is a missing boundary check for empty string. It causes the formatNumber

function to return a NULL object. When another function is later invoked on this NULL

Object, it throws a TypeError exception. In the encodeDate function of msgpack5, a

parameter, dt, is used directly without checking for NULL value. In is-regex, an input

syntax error is not handled in the regexExec function. In validator, a particular country

code is not handled and it leads the execution to an error catch block in the isVAT func-

tion. In chalk, a deprecated constructor is used in an else branch in the chalkClass

function, causing an unhandled exception. In stringify, incorrect parsing of separators

in the stringify function causes an unhandled exception.

4.4.4 Discussions and limitations

A test case typically has two parts: test inputs and output assertions. In our study, we

focus on generating test inputs and utilize default assertions for testing, e.g., exceptions

and reuse assertions that user previously defined for existing test cases. The reason why

our approach achieves the results above is that deep tracing via V8 builtin gets a most

74

concise execution trace which is a close match to JavaScript bytecode. However, some

bytecode might later become hot and is sent to TurboFan’s optimizing compiler [87].

Under such circumstances, our approach becomes less effective due to the optimization

conducted by Turbofan and will require new filters on tracing that are aware of the

optimization. The effectiveness of our approach also depends on the symbolic object

model that we can handle. As we make more types of objects symbolic, our approach

can potentially become more powerful.

Our implementation is based on CRETE which uses QEMU as its tracing plat-

form [44]. This makes it less portable to browser-based JavaScript. We strive to lift

this limitation. JavaScript execution in Node.js works in an event loop which includes a

main thread and worker threads. CRETE captures concrete traces from a process, unless

instructed otherwise, CRETE captures all binary code from the process, multi-threaded

or not. Such a naı̈ve application may cause path explosion in symbolic analysis. In our

study, we targeted unit testing of Node.js libraries. Our test harness separated functions

in a NPM library and ran each function individually. The libraries we used do not have

async or callback functions so traces are restricted to one thread. Conceptually, our ap-

proach can run and test a multi-threaded JS program since CRETE captures traces from

all threads within a process. However, this could lead to path explosions. Additional

algorithms are needed to handle multi-threaded executions efficiently, which is not the

focus of this paper.

75

4.5 Summary

In this Chapter, we have presented a novel approach to in-situ concolic testing of JS

scripts. This approach enables concolic execution of JS scripts in their native environ-

ments and is able to automatically generate test cases that achieves comparable, if not

better, code coverage than manually crafted unit test suites for Node.js libraries and

discover previously unknown bugs in these libraries. We will further extend this ap-

proach to support a wider range of JS scripts, e.g., those executing in web browsers and

those following application frameworks that build on Node.js, e.g., Express in Chap-

ter 5. We will optimize the tracing mechanism, e.g., further reducing the complexities

of binary-level traces captured for the JS script under test and subsequently reducing the

overheads of symbolic execution and generating more effective test cases. In addition

to optimizing the tracing mechanism, we aim to remove the dependency on the QEMU

virtual machine, which we will explain in Chapter 6.

76

5 Concolic Execution of Front-end JavaScript

In this Chapter, we introduce a novel approach to concolic testing of front-end JS web

applications based on in-situ concolic testing. This approach leverages widely used JS

testing frameworks such as Jest and Puppeteer and conducts concolic execution on JS

web functions for unit testing [95]. These testing frameworks isolate the web function

under test in the context of its embedding web page by mocking the environment, and

provide the test data that drives the function. This isolation of web function provides an

ideal target for the application of concolic testing. We integrate concolic testing APIs

into these testing frameworks. The seamless integration of concolic testing allows the

injection of symbolic variables within the native execution context of a JS web function

and the precise capture of concrete execution traces of this function. As the testing

framework executes the function under test with test data, parts or all of the test data

can be made symbolic and the resulting execution traces of the function are captured

for later symbolic analysis. Concise execution traces greatly improve the effectiveness

and efficiency of the subsequent symbolic analysis for test generation. The new test data

generated by the symbolic analysis is again fed back to the testing frameworks to drive

further concolic testing.

77

5.1 Background

5.1.1 Front-end JavaScript Testing Frameworks

In a general software testing framework, a test case is designed to exercise a single,

logical unit of behavior in an application and ensure the targeted unit operates as ex-

pected [39]. Typically, it is structured as a tuple {P, C, Q}:

• P are the preconditions that must be met so that the function under test can be

executed.

• C is the function under test, containing the logic to be tested.

• Q are the post assertions of the test case that are expected to be true.

As shown in Figure 5.1, a front-end JS testing framework inspects the web applica-

tion in the browser for JS functions to test.

Front-end JS Testing Framework
Browser

Page
<div>
 ...
 <script>js_function</script>
 ...
 <Button onClick={function}>
 </Button>
</div>

unit.test.js
test(js_function)
test(onClick)

test runners test cases

Testing
Libraries

js_function body onClick function body

Figure 5.1: Front-end JS testing framework workflow

It utilizes testing libraries to obtain the web pages, parses them and stores page

functions and their context information individually so that test runners can run the

78

functions browser-less [24]. The test runner sets up the three parts of a test case for

each JS function under test and then executes the test case. The front-end JS testing

framework helps isolate the JS function under test and provides the execution context

for testing the function, which is an ideal entry for our application of the concolic testing

to front-end JS.

5.1.2 In-situ Concolic Testing of Backend JavaScript

In Chapter 4, we introduced to applying concolic testing to backend JS in-situ [70], i.e.,

scripts are executed in their native environments (e.g., Node.js) as part of concolic ex-

ecution and test cases generated are directly replayed in these environments [15]. As

illustrated in Figure 4.3, the concrete execution step of concolic testing as indicated by

the dashed box on top is conducted in the native execution environment for JS, where the

trace of this concrete execution is captured. The trace is then analyzed in the symbolic

execution step of concolic testing to generate test cases that are then fed back into the

native concrete execution to drive further test case generation. This approach has been

implemented on the Node.js execution environment and its V8 JS engine [21]. As a

script is executed with Node.js, its binary-level execution trace is captured and later an-

alyzed through symbolic execution for test case generation. It also offers the flexibility

of customizing trace as needed. We leverage this functionality in our approach.

79

5.2 Design

5.2.1 Overview

Our approach strives to apply concolic testing on front-end JS web applications to gen-

erate effective test data for unit testing of these applications. Below are the specific

design goals for our approach:

• Front-end JS Extraction. JS web functions need to be extracted from web pages

to execute independently to reduce complexity for concolic testing.

• Execution Context Construction. JS web functions under test need to have the

same execution environments as they are executed in the web pages.

• Non-intrusive and Effective Concolic Testing. Concolic execution on JS web

applications needs to require minimal changes on both the applications and the

symbolic engine and generate useful test cases effectively.

With the above goals in mind, we design an approach to concolic testing of front-end JS

web applications, which leverages the JS testing frameworks such as Jest and Puppeteer

and conducts concolic execution on JS web functions for unit testing. The seamless

integration of concolic testing with these testing frameworks is achieved through ex-

tending in-situ concolic testing of backend JS applications. Figure 5.2 illustrates how

the integration is realized:

1. Workflow 1 in Figure 5.2a illustrates the original capability of in-situ concolic test-

ing of backend JS applications. It tests pure JS functions from NPM JS libraries.

80

Node.js

Test Harness

Symbolic Execution
Engine

（In-situ concolic testing）
Execution Tracer

Test Case
pure JS

function trace

1

symbolic exeuction
interface function

pure JS
 function

JS NPM libraries
export function 1
export function 2
...

(a) Original workflow of in-situ concolic testing

no

Web JS Application
<html>
<component/>
<script>js_func</script>
...
</html>

2

Node.js

Execution Tracer

symbolic exeuction
interface function

Web JS
function

Symbolic Execution
Engine

(In-situ concolic testing) no
Test Case

(b) Naı̈ve execution of JS web function directly with in-situ concolic testing

Execution Context
 <frame>

args (symbolic variable)
function js_func (args) =>
{
 if (args=='test')
 ...
 else
 ...
 return;
}
 testRunner.call();
 exit();
</frame>

call symbolic execution interface

3

Web JS Application
<html>
<component/>
<script>js_func</script>
...
</html>

Node.js

Execution Tracer

symbolic exeuction
interface function

pure JS function
with Web Info

Symbolic Execution
Engine

（In-situ concolic testing）

Test Case

JS Testing Famework

 Test Runner Testing Libraries
Mocking input

HTML renderer
Extract

Function
Interceptor

(c) Workflow for enabling effective in-situ concolic testing on front-end JS

Figure 5.2: Overview for concolic testing of front-end JS

The execution tracer captures the traces of the pure JS functions and feeds them

to the symbolic execution engine to generate new test data.

2. Workflow 2 in Figure 5.2b illustrates a naı̈ve application of in-situ concolic testing

to a JS web application. However, in-situ concolic testing cannot handle web

elements, e.g., <HTML> tags, without the capability of a browser.

81

3. Workflow 3 in Figure 5.2c illustrates how we leverage a JS testing framework

to extract the front-end JS web function and its execution context from the web

page. In the extraction, we encapsulate them as a pure JS function augmented with

the web page information, inject symbolic values and capture execution traces

for later symbolic analysis by calling the symbolic execution interface functions

within the extracted execution context. We then utilize the test runner of the JS

testing framework to initiate and drive concolic testing within the execution con-

text to generate new test data.

This workflow allows faithful simulation of the execution context of a JS web function

without the presence of a web browser. It enables injection of symbolic variables and

captures of concrete execution traces within the execution context of the JS web function

under test. A concise and accurate concrete execution trace can greatly improve the

effectiveness and efficiency of the following symbolic analysis for test generation. We

explain how to decide the starting point of tracing within the native execution context

and what difference it makes in Section 5.2.4.

5.2.2 Concolic Testing of JS Web Function within Execution Context

A front-end JS web function is invoked from a web page and its execution depends on

the execution context from the web page [59]. The core of our approach is to enable

concolic testing on the JS web function within its native execution context from the web

page in a manner same as in-situ concolic execution of back-end JS. We can achieve

this by the following three steps: execution context extraction, execution context tracing

82

customization (including symbolic value injection and tracing control), and concolic

execution within execution context.

JS Testing Framework

Test Runner

Testing Libraries

HTML render
Function

Interceptor

Mocking Input

Page frame detail

Web JS Application

Page JS
Script

<html>
<component/>
<script>js_func</script>
...
</html>

HTML
Unit

 Execution Context (EC)
//construct EC with test-helper
page = requesting_url;
CallArgument[] = helper_js_1.helper;
...
func js_func(args) => {

}
%StartTracing();
//encapsulated Web JS function call
//by test runner
Runtime.callFunction();
exit();

%MarkSymbolic(args)
if (args=='test')
 ...
else
 ...
return;

Execution Tracer

Execution Trace

Trace 1 (page)

Trace 2 (js_helpers)

js_func trace

Trace 3

start tracing

end tracing

Execution Trace For
In-situ Concolic

Execution

SE Engine

Figure 5.3: Concolic testing of JS Web function within execution context

5.2.3 Execution Context Extraction

To transform a JS web function to a pure JS function without losing the context of a web

page, we introduce a function interceptor to the JS testing framework to serve this

purpose. As shown in Figure 5.3, the function interceptor completes the following

tasks to finish this transformation in order to suit later in-situ concolic testing in the back

end:

• First, the function interceptor requests the page frame detail of the web page

where the targeted JS web function resides, utilizing the existing mocking data and

83

the HTML render function. The mocking data and the HTML render function are

usually created manually and included in the unit test suite.

• Second, from the page frame detail, the function interceptor identifies the

function body in a pure JS form given the function name. To preserve the JS

function’s native web environment, it extracts the associated execution context of

the web page. This is realized by calling helper functions provided by the testing

libraries of the JS testing framework. The execution context contains everything

that is needed for the pure JS function to be executed in the web page, which

includes the arguments of the function, its concrete dependency objects set by

mocking data and the function scope.

• Third, the function interceptor delivers a complete function in the pure JS

form encapsulated with its associated web execution context by assembling them,

and then makes it accessible for the test runner of the JS testing framework so that

the test runner can initiate the concolic execution in the execution context when

running the test suite.

5.2.4 Execution Context Tracing Customization

In-situ concolic testing offers the capability of tracing inside the V8 JS engine to capture

the execution trace that closely matches the JS bytecode interpretation [20,70]. The con-

ciseness of an execution trace determines the efficiency and effectiveness of later sym-

bolic analysis and test case generation. Therefore, to make the most of this capability,

we pinpoint the locations of where to introduce symbolic values and start tracing during

84

the extraction of the execution context, before we commence concolic testing on the en-

capsulated JS web function with its execution context. In-situ concolic testing provides

interface functions for introducing the symbolic values (MarkSymbolic()) and tracing

control (StartTracing()). We use these interface functions to customize execution

context tracing as needed.

Symbolic Value Injection and Tracing Control A JS testing framework uses a test

runner to execute its test suites. As shown in Figure 5.4, the test runner prepares the

dependencies for setting up the testing environment and loads the JS libraries the test

suites need before starting run the individual function under test. In order to avoid

JS Testing Framework

Test Runner

...
require from './TestUtils';
require from 'render';
...

loading mocking-input;
loading test-file dependencies;
loading HTML render libs;
...

Load test runner dependencies Load test suite dependencies

mockingInput();
HTMLrender();
Execute Test Suites...

Page frame detail

function_interceptor()

Execution Context

identify web function and
extract execution context

inject symbolic value
and start tracing

Figure 5.4: How to avoid unnecessary tracing of the test runner setup by delaying the

injection of symbolic values and the start of tracing

tracing the unnecessary startup overhead of the test runner (indicated by the red box in

Figure 5.4), we choose to inject symbolic values inside the execution context and start

tracing when the test runner actually executes the encapsulated function, by calling the

interface functions the in-situ concolic testing provides. This way the execution tracer

only captures the execution trace of the encapsulated JS web function. The locations for

injecting symbolic values and starting tracing are indicated in the ”Execution Context

85

(EC)” box in Figure 5.3 and the captured execution trace is indicated by the ”Execution

Trace” box in the right corner of Figure 5.3.

Most Concise Execution Trace Figure 5.5 shows why our approach can obtain the

most concise execution trace for the JS web function driven by the test runner of the JS

testing framework.

JS Testing Framework

Web JS Application Execution Context

Page JS Script

 Execution Context

Symbolic Execution
Engine

(In-situ concolic testing)

requesting_url;
helper_js_1(); ...
func js_func(args) => {

}
%StartTracing();
Runtime.callFunction();
exit();

%MarkSymbolic(args)
if (args=='test')
 ...
else
 ...
return;

Execution TracerExecution Trace 1

Trace 1 (page)

Trace 2 (js_helpers)

js_func trace

Trace 3

start tracing

end tracing

<html>
<component/>
<script>js_func</script>
...
</html>

HTML Unit

Test Runner

Test Libraries

HTML render

function inspector
Mocking Input

Test Case

Execution Trace 0

Trace 1 (Page)

Trace 2(js_helpers)

js_func trace

Trace 3

requesting_url;
helper_js_1(); ...
func js_func(args) => {
 if (args=='test')
 ...
 else
 ...
 return;
}
Runtime.callFunction();
exit();

page frame

page frame
 %MarkSymbolic(args)
 %StartTracing();

Figure 5.5: How we obtain the most concise concrete execution trace

86

Apart from the overhead caused by the test runner, the extraction of the execution

context for the JS web function involves calling a set of JS helper functions to collect

web page information, such as helper js 1 and JSHandle js 1. If we directly apply

symbolic execution within the test runner where the JS function is intercepted along

with the execution context extraction, the execution tracer will also capture the execu-

tion traces of the test runner and the testing helper functions from the testing libraries

shown as ”Execution Trace 0” in the right-hand side of Figure 5.5. We modified the test

runner to mark symbolic variables and enable tracing control within the execution con-

text. Instead of starting tracing when the test runner starts, we defer the tracing of the

execution to when and where the test runner actually executes the encapsulated function

under test in the extracted execution context, indicated by the ”Execution Trace 1” in

the left-hand side of Figure 5.5. This way we minimize the extend of execution tracing

needed.

5.2.5 Concolic Testing within Execution Context

We leverage the test runner of the JS testing framework to initiate and start the in-

situ concolic testing of the JS web function under test. Typically the test runner starts

running the JS web function with an existing unit test. In our approach, the execution of

the unit test triggers the function interceptor, which starts the process of extracting

the execution context and encapsulating the target JS web function. During this process,

symbolic values are injected and tracing is started in the right place as described in

previous sections. The resulting pure JS application is then executed by in-situ concolic

87

testing. Newly generated test data is fed back to the JS testing framework to drive further

concolic testing.

5.3 Implementation

In this section, we demonstrate the feasibility of our approach to concolic testing of

front-end JS functions by implementing it on two popular JS testing frameworks, namely

Puppeteer and Jest assisted by the React testing library [33, 37].

5.3.1 Implementation on Puppeteer

Puppeteer is a testing framework developed by the Chrome team and implemented as

a Node.js library [33]. It provides a high-level API to interact with headless (or full)

Chrome. It can simulate browser functions using testing libraries. Puppeteer can ex-

ecute JS functions residing in a web page without a browser. Puppeteer allows us

to easily navigate pages and fetch information about those pages. In the implemen-

tation of our approach on Puppeteer, we augment it with the implementation of the

function interceptor to identify the targeted web JS functions and extract their ex-

ecution contexts from the web pages and encapsulate them for in-situ concolic testing.

Encapsulating JS Web Function with Execution Context As shown in Figure 5.6,

Puppeteer communicates with the browser [34]. One browser instance can own mul-

tiple browser contexts. A Browser Context instance defines a browsing session and

can have more than one page. The Browser Context provides a way to operate an

88

ExecutionContext

Page

Puppeteer Browser
BrowserContext

BrowserContext 1 BrowserContext N...

Page NPage 1 ...

Frame
Frame 1 Frame N...

3 ExecutionContext 1 ExecutionContext N...

Execution Context

Arguments

pageFunction

returnByValue

1

2

function interceptor

Runtime.callFunction

Figure 5.6: How Puppeteer executes a JS function in a web page

independent browser session [23]. A Page has at least one frame. Each frame has a

default execution context. The default execution context is where the frame’s JavaScript

is executed. This context is returned by frame.executionContext() method, which

gives the detail about a page frame. We implement the function interceptor in the

Execution Context class under the browser context to collect necessary information for

encapsulating a JS function with its associated web execution context. The Execution

Context class represents a context for JS execution in the web page. We modified it to

identify the page function, its arguments and return value [25]. The pageFunction is

the function in the HTML page to be evaluated in the execution context, which is in a

pure JS form. For example, Listing 5.1 shows a front-end application example written

with the Express web development framework [26]. This example contains a web page

(from line 7 to line 17) with a JS web function marked by <script> tag in line 15. The

${path} points to the JS file that contains the implementation of the JS web function,

89

as shown in Listing 5.2. Our approach is able to encapsulate the pure JS form of the web

JS function (its implementation) with its associated web execution context.

Listing 5.1: An example of a front-end web application using Express framework

1 const app = express()

2 .use(middleware(compiler, { serverSideRender: true }))

3 .use((req, res) => {

4 const webpackJson = res.locals.webpack.devMiddleware.stats.toJson()

5 const paths = getAllJsPaths(webpackJson)

6 res.send(

7 `<!DOCTYPE html>

8 <html>

9 <head>

10 <title>Test</title>

11 </head>

12 <body>

13 <div id="root"></div>

14 ${paths.map((path) =>

15 `<script src="${path}"></script>`).join('')}

16 </body>

17 </html>`

18)

19 })

Listing 5.2: An example of a front-end JS script under Express framework

1 function foo(args) {

2 if(args === 'foo'){

3 return 'match';

90

4 }

5 return 'not match';

6 }

7 module.exports = foo;

Execution Context Tracing Customization We utilize the page.evaluate function of

the Puppeteer testing framework to drive the JS function under test and extend it with

the function interceptor. As described in Figure 5.7, to enable customized exe-

cution context tracing, the function interceptor introduces symbolic variables and

set the starting point for tracing within the web execution context of the JS function

wrapped by the <script> tag in the web page. This way, we make it possible for the

test runner to initiate concolic testing when it starts running the test suites so that JS

function can be tested concolically and automatically without tracing additional over-

heads. Since the Execution Context is triggered by the evaluate function in unit

tests. We target applications from GitHub that uses Puppeteer to test front-end features

and utilizes evaluate in unit testing. We will discuss the results later in Section 5.4.

5.3.2 Implementation on Jest with React Testing Library

Another implementation of our approach is on the Jest testing framework assisted by the

React testing library for unit testing. The React testing library is a lightweight library

for testing React components that wrap the JS functions with the HTML elements [37].

As shown in Figure 5.8, there are three components in the application as indicated by the

numbers. Components allow splitting of an UI into independent, reusable pieces, and

91

//pageFunction
x => {
 function foo(x) {
 if (args === 'foo') { return 'match';}
 return 'not match';
 }
 module.exports = foo;
}

 //Mark symbolic value and set tracing start point
 %MarkSymbolic(Object.values(arguments)[2]);
 %StartTracing();

 //where the JS function is executed
 rs = Runtime.callFunction(foo);

 return rs;

Execution Context

Arguments

pageFunction

returnByValue

//Arguments
{ '0': true,
 '1': [Function],
 '2': 'test'
}

Runtime.callFunction

function interceptor

Figure 5.7: How we set symbolic variables in the execution context and enable cus-

tomized execution context tracing in Puppeteer

designing each piece in isolation. React is flexible; however, it has a strict rule: all Re-

act components must act as pure functions with respect to their inputs [35]. We refer to

them as ”functional components”. They accept arbitrary inputs (called “props”) and re-

turn React elements describing what should appear on the web page [36]. An individual

component can be reused in different combinations. Therefore, the correctness of an in-

dividual component is important with respect to the correctness of their compositions. In

our implementation, we only consider components that have at least one input. Jest has

a test runner, which allows us to run tests from the command line. Jest also provides ad-

ditional utilities such as mocks, stubs, etc., besides the utilities of test cases, assertions,

and test suites. We use Jest’s mock data to set up the testing environment for the front-

end components defined with React. Figure 5.9 shows how we leverage and extend Jest

92

assisted by React testing library to apply the in-situ concolic testing to React component.

Account Panel

Search...

Click Me!

Account ID Name

 xxx xxx

 xxx xxx

3

2

1

Figure 5.8: Example React Com-

ponents

To encapsulate the JS function in the compo-

nent with its execution context, we augmented the

render function, whose functionality is to render

the React component function and props as an in-

dividual unit for Jest to execute from the web page,

with the function interceptor. Through the

render function, the function interceptor

extracts a complete execution context for the func-

tional component and intercepts the JS function wrapped in the functional component

indicated by the arrows in Figure 5.9. To enable customized execution context tracing,

the function interceptor then marks symbolic variables and starts tracing after the

completion of the encapsulation. At last, we configure Jest’s test runner to run each

unit test individually while initiating in-situ concolic execution so that we can obtain the

most concise execution traces for later symbolic analysis.

5.4 Evaluation

For evaluations, we apply our approach to in-situ concolic testing on front-end JS web

application projects that come with unit test suites. They are utilizing Jest with React

testing library and Puppeteer. In these evaluations, we target the String and Number

types as symbolic variables for the functions under test.

93

React Component Jest Testing Framework

test("isValid", ()=>){
 var pw="goodpassword";
 let tc=render(<NewAccount onSubmit={mockProp}/>);

 return;
}

//Mark symbolic value and set tracing start point
 %MarkSymbolic(pw);
 %StartTracing();
//where the JS function is executed
 tc.isValid(pw);

class NewAccount {
 static prop = {onSubmit};
 var password;

 isValid(password);

 return (<div>
 <Button onClick= {this.isValid()}>Validate</Button>
 </div>) }

Execution Tracer

Trace for isValid()Symbolic Execution Engine
(In-situ concolic testing)Test cases

 isValid(password) {
 //concrete value set by mocking input
 const { confirmPw, pwError,confirmPwError} = this.state;
 if (!password || !confirmPw || password !== confirmPw)
 { return false; }
 return !pwError && !confirmPwError; }

function interceptor

Figure 5.9: How to apply in-situ concolic testing on React components using Jest

5.4.1 Evaluation of Puppeteer Implementation on Github Projects

We have selected 21 GitHub projects utilizing Puppeteer. We test them using the Pup-

peteer framework extended with our concolic testing capability. As a result, we dis-

covered 4 bugs triggered from their web pages and 2 of them originated from their

dependency libraries.

Evaluation Setup We selected GitHub projects with the following properties as as our

targets:

(1) They use Puppeteer for unit testing of their JS web features;

(2) They have JS functions in web pages and such functions have at least one argu-

ment whose type is string or number;

(3) They utilize evaluate in their unit tests.

94

We have developed a script based on such properties and used the searching API pro-

vided by GitHub to collect applicable projects [38]. 21 projects were collected. Ta-

Table 5.1: Selected Projects that utilize Puppeteer for unit testing

name LoC/JS LoC/HTML LoC/unit test test ratio

keepfast 15835 514 58 8.61

DragAndScale* 982 16 370 77.49

affiliate 306 13 197 64.37

ecowetrics 3363 339 0 0

phantomas 5973 655 1440 24.10

polymer* 5399 157 2045 37.87

Insugar* 1967 32 410 20.84

wolkenkit* 1618 15 0 0

vidi 192048 2430 3505 1.82

vue* 849 125 0 0

weatherzen 333 45 0 0

querystringme 835 12 191 22.87

avocode* 5330 9 0 0

Odoo 1303 528 92 7.06

easy 54620 25141 4081 7.47

drag-and-

scale

1100 24 548 88.09

My-first* 22729 808 0 0

boxtree 2033 48 1434 70.53

foundation 967 0 18 1.86

treezjs 109975 1475 8519 7.74

TicTacToe 543 442 243 44.75

ble 5.1 summarizes the demographics of the 21 GitHub projects collected by our script.

We calculated the statistics using ls-files [27] combined with cloc provided by GitHub [28].

The LoC/JS is the LoC (lines of code) of all JS files, which includes the JS files of the

libraries the project depends on. The LoC/HTML is the LoC of HTML files, which indi-

cates the volume of its front-end web contents. The LoC of unit tests (LoC/unit test)

95

includes the unit test files ending with .test.js. The test ratio is the ratio between the

LoC/unit test over the LoC/JS, indicating the availability of unit tests for the projects.

Before evaluation, we configure these projects to use the extended Puppeteer framework

instead of the original one.

Result Analysis We ran each project with our approach for 30 minutes. On average,

our implementation generates 200 to 400 test cases for each function. Table 5.2 sum-

marizes the bugs detected. For polymer, our method generates two types of test cases

that trigger two different bugs in user password validation functionalities of the project:

1) a generated test case induces execution to skip an if branch, which causes the pass-

word to be undefined, leading to the condition !password || this.password ===

password to return true, which should have returned false. We have fixed this bug by

changing the operator || to &&. 2) test cases containing unicode characters fail password

pattern matching using regular expression without g flag, i.e., /[!@#$%&̂*(),.?":|<>]/

.test(value). For InsugarTrading, a test case of a string not containing comma is gen-

erated for str.split(’,’) function. The return value of an empty array causes er-

rors in the dependency library cookie-connoisseur. A number out-of-bound error

is discovered in the changeCell() function of TicTacToe. For phantomas, function

phantomas has a check for url to be the string type but does not have pattern match-

ing for it. A generated test case with an invalid url causes an exception in function

addScriptToEvaluateOnNewDocument of chromeDevTools.

We identified two traits of the projects for which we did not detect bugs in. (1) A

project does not fit the design of our Puppeteer implementation, i.e., evaluate is not

96

Table 5.2: Bugs detected in web applications using Puppeteer from Github

GitHub

Projects

Bugs Error Sources

polymer Passwords fail validate and match validator-

match.js

InsugarTrading Empty array caused by invalid

string

cookie-

connoisseur

TicTacToe changeCell() out of bound game.js

phantomas Invalid string for url due to lack of

pattern matching

chromeDevTools

used in the test suite. (2) The applicable JS part is small and well tested.

5.4.2 Evaluation of Jest Implementation on Metamask

In evaluation of the implementation of our concolic testing approach on Jest, we focus

on Metamask’s browser extension for Chrome. MetaMask is a software crypto-currency

wallet used to interact with the Ethereum blockchain. It allows users to access their

Ethereum wallet through a browser extension or mobile app, which can then be used to

interact with decentralized applications [31]. Metamask extension utilizes the render

functionality for testing JS functions in React components. We focus on front-end JS

web functions, React component functions in particular. They reside in the ui folder of

the metamask-extension project.

Testing Coverage Statistics of Metamask We select the ui folder as our evalua-

tion target for two reasons: (1) React components of metamask-extension are mostly

defined and implemented under this folder; (2) the functions in this folder is under

97

tested. Figure 5.10 shows the current testing coverage statistics of the ui folder of

metamask-extension [12]. We can see that only one sub-folder of ui (which also hap-

pens to be named as ui) has a relatively high coverage of 82.03%. Most other folders

have coverage under 70% or even lower coverage.

ui/
64.21%

lib/
78.26%

app/
64.06

components/
77.38%

contexts/
41.3%

hooks/
72.57%

pages/
58.99%

helpers/
70.0%

selectors/
69.03%

ducks/
55.57%

store/
47.21%

ui/
82.03%

app/
75.06%

Metamask-extension UI Folder Tree with Coverage Status

Figure 5.10: Coverage statistics of ui folder of Metamask-extension

Evaluation Setup In the unit testing workflow of metamask-extension, there is a global

configuration for all unit test suites of UI components. This is because one component’s

functionality may depend on other components. Therefore, metamask-extension needs

to be executed as an instance to support unit testing. To evaluate the implementation of

in-situ concolic testing for React components, we need an independent environment for

each component function wrapped with a single test file. This test file only contains one

function under test. Therefore, each test file is an independent in-situ concolic testing

runner for a function in a component. We implement an evaluation setup script to com-

plete this task. This script automatically prepares the evaluation environment for in-situ

concolic testing of a React component. Specifically, it does the following work under

98

the folder where the target component resides:

• Jest Configuration. Configure Jest for the individual component test file with an

independent jest.config.js

• Babel Configuration. Configure Babel for the component test file to take JS

native syntax, which is required by in-situ concolic testing. This is because

metamask-extension JS source files are transformed using Babel.

• Dependency Installation. Collect and install dependencies for the target compo-

nent. Such dependencies can be components or libraries.

Result Analysis After we set up the evaluation environment, we can conduct our eval-

uation in a sandbox on the test network of Metamask. We have uncovered 3 bugs and

1 test suite improvement as shown in Table 5.3. We have filed them as bug reports

through GitHub. They have been accepted by Metamask developers. Along the way, we

also found some similar test cases that Metamask’s bot reported.

Table 5.3: Bugs Detected in Metamask under UI folder

Features Bugs Functions

buy-eth Missing checks for if the returned url

is null causes page to return 500 in

test network

buyEth

token-search Syntax error without boundary

checking

isEqualCase-

Insensitive

ens-input No NULL check for function argu-

ment

isValidDomainName

advanced-gas-

fee

Show error if gas limit is not in range gasLimit

99

For the buy-eth feature as shown in Figure 5.11, a test network error with a re-

spond code of 500 was triggered when testing the Ether deposit functionality. Concolic

testing generates a test case of an invalid chainId for buyEth(), which is defined in

the DepositEtherModal component. It is wrapped by a <Button> tag and can be

triggered by onClick(). buyEth() calls into buyEthUrl(), which retrieves a url for

buyEth() function. Because buyEthUrl() did not check if the url is valid or null be-

fore it calls openTab(url) with the returned url. And there is also no validation for

input in the component implementation. Additionally, this process was not wrapped

in a try/catch block. We caught this error in our evaluation. We tested 16 com-

ponent folders and discovered that metamask-extension most likely will ignore input

checking if inputs are not directly from users. chainId is retrieved from mock data

in this case, which is generated by our concolic engine. For the token-search feature,

 render(){chainId, buyEth}
 return (<div> ...
 //Component has no input checking
 <Button
 onButtonClick=buyEth(chainId)/>
 ... </div>)

DepositEtherModal

 buyEth(chainId) {...
 var url=getBuyEthUrl(chainId);
 //no validation of url.
 var re=openTab(url);
 //invalid chaidId cause empty url.
 ...}

 Test("buyEth", ()=>{
 let tc=render(<DepositEtherModal
onClick=mockProp>)
 var chainId = "0x4";
 %MarkSymbolic(chainId);
 %StartTracing()
 tc.buyEth(ChainId);})

Test Runner

actoin.js

Figure 5.11: Error trace of the bug discovered in buy-eth

we uncovered a bug triggered by an empty string. In the TokenSearch component,

100

function handleSearch() is wrapped by <TextField> with onChange method. It

calls isEqualCaseInsensitive() with an empty string as its second argument with-

out boundary checking. Function isEqualCaseInsensitive is defined in utils.js,

which provides shared functions. We found that the unit testing for utils.js does not

have test suites for that function, while the same bug is not found in the experiment

conducted on the send.js file. In send.js, function validateRecipientUserInput

also calls the incorrect function isEqualCaseInsensitive. However, since send.js

checks for both empty string and null inputs before calling the faulty function, it avoids

the potential error in utils.js.

For the ens-input feature, in the onChangemethod of component EnsInput’s <input

-/>, the function isValidDomain is called. Our approach generated test cases with un-

acceptable ASCII characters in the domain name, e.g., %ff.bar. We replay this test

case, function isValidDomain returns true when it should return false. In Listing 5.3,

function isValidDomain returns the value of the condition match!==undefined. This

test case made through regex matching and returned null but null is not equal to

undefined in JS.

Listing 5.3: A code segment of utils.js with function isValidDomain showing in-

correct behavior in line 8

1 function isValidDomainName(\%ff.bar) {

2 var match = punycode

3 .toASCII(address)

4 .match(

5 /^(?:[a-z0-9](?:[-a-z0-9]*[a-z0-9])?\.)+[a-z0-9][-a-z0-9]*[a-z0-9]$/u

,

101

6);

7 //After match function, returning string match=null; therefore, match !==

undefined return true.

8 return match !== undefined;

9 }

For the advanced-gas-fee feature, we found the updateGasLimit(gasLimit) func-

tion (expecting a numeric input) in the <FormField> component has wrong behavior

when given a string input containing only digits such as "908832". The function sim-

ply sets the gas limit to 0 without emitting errors. We do not consider this as a bug

since component <FormField> restricted the input to be numeric in the HTML ele-

ment. After we filed it, this has been marked with the area-testSuite tag on GitHub

by developers as a test suite improvement.

5.5 Summary

In Chapter, we have presented a novel approach to apply concolic execution to front-

end JS. The approach makes use of an in-situ concolic executor for JS and leverages the

functionality of JS testing frameworks as test runners and web content extractors. Our

approach works in three steps: (1) extracting JS functions from web pages using with JS

testing framework; (2) integrating the in-situ concolic testing interface in the execution

context for the JS Web functions; (3) utilizing the testing framework’s test runner and

its mock data as the driver for concolic execution to generate additional test data for the

JS web function under test.

We have conducted evaluation on open-source projects from Github and on Meta-

102

mask’s UI features, which are proper targets for our implementations on Puppeteer and

Jest respectively. We have found bugs in each evaluation, whose bug reports have been

accepted on GitHub. This contributes to both bug finding and test suite improvement for

the applications tested. The results show that our approach to concolic testing frontend

JS is both practical and effective.

103

6 Concolic Testing of JavaScript using Sparkplug and Remill

In-situ concolic testing of JS scripts is a novel framework that enables concolic testing

of JS scripts in their native environments and can automatically generate test cases that

achieve comparable, if not better, code coverage than manually crafted unit test suites for

Node.js libraries and discovered previously unknown bugs in those libraries [70]. Most

approaches of concolic testing on JavaScript typically take JS scripts out of their na-

tive execution environments and analyze them in artificial test harnesses. For example,

the Kudzu engine addresses the problem of client-side code injection vulnerabilities for

JavaScript [85]. It involves modifying the JS interpreter to build a new symbolic execu-

tion engine, which requires significant effort in implementation and maintenance. Such

JS-specific symbolic engines have not demonstrated the effectiveness and efficiency that

warrants wide adoption [94]. In-situ concolic testing for JavaScript using JavaScript’s

native execution environments becomes its biggest strength. However, this approach

has several limitations [70]. It utilized the tracing engine of CRETE, which leverages

the interpreted mode of Qemu, a dynamic translator [44], to capture the execution trace

of JS scripts and employs KLEE as the backend symbolic execution engine. During this

process, the concrete execution trace is converted from the original code to the host

instruction set. Subsequently, the tiny code generator (TCG) of Qemu, serving as the

dynamic translator, translates the instruction set to qemu-ir. This process impedes the

efficiency of the tracing process greatly because execution tracing uses the interpreted

104

mode of TCG. For example, the execution tracer of CRETE takes 3 minutes to trace a JS

function with 12 lines of code on average, which is inefficient. The execution traces are

then translated from qemu-ir to LLVM IR by an offline translator based on S2E. This

workflow involves two stages of translation for the execution traces, which gives more

chances for introducing errors and mistakes.

In this chapter, we proposed to deploy a new execution tracer leveraging V8’s Spark-

plug baseline compiler to improve the tracing process and a new assembly to LLVM IR

translator using remill libraries to improve the efficiency of the execution tracer, reduce

the complexity of translation stages, and conduct concolic testing in their native envi-

ronments like the in-situ approach at the same time. We evaluated its effectiveness and

efficiency by comparing the coverage, bug detection, and time consumption with the in-

situ approach on the same test set, which is 160 Node.js libraries. They heavily utilize

the String type and its operations. The results show our improvement achieves compa-

rable statement coverage (within 10% difference on average) on these libraries, detects

all bugs that are discovered by the in-situ method, and only uses a fraction of the time

needed by the in-situ approach.

6.1 Background

6.1.1 Sparkplug

Sparkplug is a non-optimizing JavaScript compiler of V8 [67]. It is engineered for swift

compilation, which enables us to compile at our convenience. A couple of techniques

are employed by the Sparkplug compiler to achieve its impressive speed. Firstly, Spark-

105

plug utilizes a shortcut; the functions it compiles are already processed into bytecode in

a prior stage, which handles complex tasks such as variable resolution and parsing arrow

functions. Sparkplug bypasses these intricate processes by compiling JavaScript from

bytecode rather than directly from source code. Secondly, Sparkplug adopts a unique

approach by skipping the generation of an intermediate representation (IR), a typical

step in most compilers. Instead, it directly translates bytecode into machine code in a

single linear pass using bytecode handlers [3], aligning the emitted code with the execu-

tion flow of the bytecode. We will discuss the bytecode handler in detail in Section 6.3.

This feature guarantees that the emitted execution trace in the form of machine code we

used for concolic analysis represents the execution flow of the source code. Remark-

ably, the entire Sparkplug compiler operates within a switch statement nested within a

for loop, efficiently dispatching to predetermined bytecode handlers, the machine code

generation functions based on the bytecode encountered. The absence of an IR restricts

optimization opportunities to localized peephole optimizations as shown in Figure 6.1,

we heavily this feature of Sparkplug to improve execution tracing.

6.1.2 Interpreter Stack Frame Mirroring

V8 JavaScript engine supports two modes for executing a JS script, namely interpreted

mode and optimized just-in-time compilation mode. The interpreted mode is where the

JS bytecode [20] translated from the JS script is interpreted by its interpreter, Igni-

tion [8], which is the foundation of in-situ concolic testing for JavaScript [70]. The

optimized just-in-time compilation mode is where the bytecode is compiled by the V8

106

JS Bytecode Handler
(V8 Built-in)

equivlent in CDFG

JavaScript

Parser

Ignition

Bytecode

Optimize
Optimized

CodeTurbofan

Sparkplug

JavaScript Execution Trace
(Machine Code)

restricted

Interpreted

Figure 6.1: Sparkplug’s restricted optimization feature

engine into optimized machine code using its just-in-time compiler, Turbofan [19], and

then executed on the target machine. Sparkplug as a baseline JavaScript compiler can re-

strict JS script from being optimized to mitigate complexity for later concolic execution.

Furthermore, Sparkplug mirrors the execution of Ignition for JavaScript. Sparkplug in-

tentionally aligns its stack frame layout with that of Ignition, ensuring that when Igni-

tion stores a value in a register, Sparkplug does the same. This design choice simplifies

Sparkplug compilation by allowing it to mirror the behavior of Ignition without the need

for complex mappings between interpreter registers and Sparkplug’s state. Therefore,

it allows us to improve the efficiency of the in-situ approach and keep its effectiveness

at the same time. Sparkplug primarily consists of bytecode handler calls, which are

short sequences of machine code embedded within the binary, along with control flow.

107

Ignition and Sparkplug share significant portions of the bytecode handlers. In essence,

Sparkplug serves as a serialization of Ignition execution, invoking the same built-ins

and maintaining identical stack frames. This feature allows us to trace JS bytecode ex-

ecution in its corresponding machine code like Ignition does in the in-situ approach.

Furthermore, Sparkplug effectively pre-compiles certain unavoidable interpreter over-

heads, such as operand decoding and dispatching to the next bytecode. This streamlined

strategy contributes to Sparkplug’s efficiency and performance. Therefore, Sparkplug

can generate machine code that contains the same control flow as JS script, which can

later be used for code translation from machine code (assembly code) to LLVM.

6.1.3 Remill

McSema is an executable lifter that specializes in converting executable binaries from

their machine code into LLVM. This process enables the translation of low-level binary

instructions into a higher-level intermediate representation. Within McSema [41], the

instruction translation functionality is powered by the Remill library. Unlike other tools,

Remill exclusively handles machine code translation into LLVM IR [18].

The versatility of Remill extends to both static and dynamic binary translation sce-

narios. Notably, it has been employed in symbolic execution workflows alongside tools

like KLEE [47]. KLEE, which performs symbolic execution, typically operates on the

LLVM IR generated from source code using the LLVM toolchain [66]. By utilizing

Remill to translate machine code into the LLVM IR, previously inaccessible targets be-

come available for analysis with KLEE, thus expanding the range of symbolic execution

108

capabilities.

Remill delegates the implementation of memory accesses and specific types of con-

trol flow to the consumers of the generated LLVM IR. This deferral is facilitated through

Remill intrinsics, which are special functions representing various actions within the

translated program. For instance, the remill read memory intrinsic function sym-

bolizes the act of reading 8 bits of memory. By leveraging these intrinsics, downstream

tools can differentiate between LLVM load and store instructions and access to the mod-

eled program’s memory. Moreover, downstream tools have the flexibility to implement

memory intrinsics using LLVM’s native memory access instructions. This approach

allows us to create a seamless integration of Remill generated LLVM IR into existing

LLVM-based workflows while providing the necessary flexibility for custom memory

access implementations tailored to specific analysis requirements. We utilized this fea-

ture to adapt the output to LLVM-based symbolic analysis tools.

6.2 Design

6.2.1 Overview of goals

Our approach aims to make improvements in efficiency for the in-situ approach, mainly

in generating execution traces and execution trace translation. Our approach strives to

apply concolic testing on JS scripts in their native environment to generate effective test

data for unit testing of these scripts. The workflow of concolic execution on JS scripts

contains the following steps. As shown in Figure 6.2, the concrete execution step in the

leftmost box of concolic testing is conducted in the native execution environment for

109

Symbolic ExecutionTranslatorConcrete Execution

JavaScript

CRETE Execution Tracer
(QEMU)

JavaScript Execution Trace
(qemu-ir representation)

JS execution engine

Symbolic Execution Engine
(KLEE)

Test cases

qemu-ir to llvm-ir Translator JavaScript Execution Trace
(llvm-ir representation)

JS execution engine
(Interpreted Mode)

JavaScript

JavaScript Execution Trace
(Assembly Code)

Bytecode Handler's pre-compiled assembly code

Remill
assembly to llvm-ir Translator

JavaScript Execution Trace
(llvm-ir representation)

Execution Tracer
(Sparkplug)

(Non Optimizing engine)

Figure 6.2: Workflows of In-situ Concolic Testing Based on Sparkplug and CRETE

JS scripts, where the trace of this concrete execution is captured using the JS execution

tracer. The trace is then analyzed in the symbolic execution step in the rightmost box of

concolic testing to generate test cases automatically.

• Execution trace capture. Concrete execution traces of JS scripts are captured

with a JS execution tracer, which is the interpretation of JavaScript bytecode. The

concrete execution traces are in the form of assembly code, which represents the

interpretation of JS bytecode execution.

• Translation. In this step, our approach uses a translator to translate assembly

code generated by the JS execution tracer into LLVM IR.

• Symbolic Analysis. The execution trace represented by LLVM IR is fed into a

symbolic execution engine to generate test cases.

110

6.2.2 Improvement

In-situ concolic testing offers the capability of tracing inside the V8 JS engine to capture

the execution trace that closely matches the JS bytecode interpretation [20, 70]. The

conciseness of an execution trace determines the efficiency and effectiveness of later

symbolic analysis and test case generation. Therefore, we intend to preserve such traits

and achieve improvement of execution efficiency at the same time.

Translator

Instructions Decoder

Basic Blocks

JS Execution Trace
(LLVM IR)

Symbolic Execution Engine
(KLEE)

helper_functions

Test cases
Helper Component
::AddEntryFunc()
::MarkSymbolic()

JS Execution Trace
(assembly code)

Figure 6.3: Workflow of the Translator

Our approach improves in-situ con-

colic testing in 2 aspects. In Figure 6.2,

the in-situ approach is represented by the

diagram in the red box and our approach

in the green box. Compared to the in-situ

approach of concolic testing for scripting

languages, our approach frees the execu-

tion tracer from dependence on an emu-

lator, which is normally slow. The con-

crete execution is obtained by the execu-

tion tracer, which leverages V8’s Spark-

plug engine instead of CRETE execution tracer based on qemu in the in-situ approach.

This speeds up the execution trace capture process. At the same time, it preserves the

character that the execution trace capture happens in the native execution environment

for JS script because we leverage the native Sparkplug baseline engine as the execution

tracer.

111

6.2.3 Why we choose Sparkplug?

Sparkplug disables the Turbofan path naturally. It compiles from bytecodes that Igni-

tion emits as shown in Figure 6.4. JS bytecode preserves all necessary control flow JS

source code has. Therefore, execution traces captured by Sparkplug have a one-to-one

correspondence to the JS source code. The execution tracer based on Sparkplug di-

rectly traces the bytecodes translated from JS source code inside of V8. Furthermore,

as mentioned in Section 6.1.2, Sparkplug mirrors Ignition’s execution for JavaScript,

Sparkplug and Ignition have almost identical stack frame [67]. This simplifies the de-

sign by removing the deep tracing control interface used in the in-situ approach shown

in the red box. Instead, it captures execution traces within Sparkplug. To retrieve the

most concise execution trace for JS script, our approach only extracts bytecodes that

contribute to the control flow of JS script execution with Instruction Extraction compo-

nent, which removes the stack verification-related bytecodes in the generated execution

trace without influencing the verification workflow of Sparkplug.

The in-situ approach uses an offline translator to translate qemu-ir to llvm-ir.

Qemu, the emulator first translates assembly code to the intermediate presentation of

qemu-ir and then uses an offline translator to translate qemu-ir to llvm-ir. LLVM is

a widely used intermediate presentation for symbolic analysis. Our approach simplifies

this process by directly translating the captured execution traces from assembly code

to llvm-ir shown in the middle box in Figure 6.2. In this process, we introduce a

helper component in the translator. This helper component aims to make the translated

execution trace amenable to symbolic analysis tools by providing the main entry point

112

caller frame pointer

JS Context

JS Function

Argument count

Bytecode array

Register 0

...

Register N

End of stack

JS Bytecode Handler
(V8 Built-in)

A Sparkplug Stack Frame

CSA Runtime_builtin

equivlent in CDFG

JavaScript

Parser

Abstract
Syntax Tree

Ignition

Bytecode

Optimize
Optimized

CodeTurbofan

Interpreted

equivlent in CDFG

JS Bytecode:
...
CallRuntime [start_trace]
TestEqualStrict r0, [0]
JumpIfFalse [5] 22
TestGreaterThan r0, [1]
...
Constant Pool:
...

Ignition Handlers:
...

IGNITION_HANDLER(TestEqualStrict)
IGNITION_HANDLER(JumpIfFalse)
IGNITION_HANDLER(TestGreaterThan)
...

deep tracing interface
::start_tracing()
::make_symbolic()

calling In-situ interfaceIGNITION_HANDLER(CallRuntime)

Sparkplug

JavaScript Execution Trace
(Assembly Code)

Instruction Extraction
remove verification Instr.
::extract_function_instr()
::mark_symbolic()

Figure 6.4: Workflow of Execution Tracer between In-situ Approach and Our Approach

and marking symbolic variables as shown in Figure 6.3. As a result, the output of the

translator forms a complete concrete execution trace for later symbolic execution engine

to generate test cases.

6.3 Implementation

In this section, we demonstrate the feasibility of our approach by implementing its com-

plete workflow with an execution tracer based on V8’s Sparkplug, a translator leveraging

Remill, and a symbolic execution engine using KLEE [47].

113

6.3.1 Modification on Bytecode Handlers of Sparkplug

To capture the most concise execution trace, we implemented the function extract fun

-ction instr to filter out the stack verification-related compilation from Sparkplug

and only extract the execution trace for bytecodes that contribute to the control flow of

JS scripts. The left column of Figure 6.5 shows an example of an interpreted JS byte-

code array of a concrete execution trace. Before interpreting each bytecode, Sparkplug

verifies frame size and feedback vector. The execution tracer based on Sparkplug only

removes the corresponding interpretation from the execution trace without changing

Sparkplug’s behavior. The green box indicates the bytecode extracted by the function

and its correspondence assembly code generated by the bytecode handler of Sparkplug.

The red box indicates the assembly instructions that are filtered out, which corresponds

to stack frame verification. A special bytecode handler MARK SYMBOLIC is implemented

to cache the symbolic value in the execution trace for later symbolic analysis.

6.3.2 Implementation on Remill translator

We utilized remill library to implement an assembly-to-LLVM translator. Figure 6.6

shows the important components we implemented for the translator. It first checks if

an instruction is valid as in whether the memory is executable and readable. In this

process, it identifies the symbolic memory we cached by the execution tracer based on

Sparkplug. After the correctness check, the translator translates remill basic blocks to

LLVM basic blocks. A helper component is added to create a main entry function to

make the trace a self-contained LLVM module and mark symbolic memory for later

114

Interpreted JS Bytecode Array of Concrete Execution Trace Captured execution trace
6b f9 04 TestEqual r1, [4]

 [VerifyFrame
 [VerifyFrameSize
0x555e65804430 3f0 4989e2 REX.W movq r10,rsp
0x555e65804433 3f3 4983c240 REX.W addq r10,0x40
0x555e65804437 3f7 4c3bd5 REX.W cmpq r10,rbp
0x555e6580443a 3fa 740d jz 0x555e65804449 <+0x409>]

 -- Verify feedback vector
0x555e65804449 409 4c8b45d8 REX.W movq r8,[rbp-0x28]
0x555e6580444d 40d 41f6c001 testb r8,0x1
0x555e65804451 411 0f8424000000 jz 0x555e6580447b <+0x43b>
0x555e6580446a 42a 458b48ff movl r9,[r8-0x1]
0x555e6580446e 42e 4181f91d030000 cmpl r9,0x31d
0x555e65804475 435 0f840d000000 jz 0x555e65804488 <+0x448>

 [CallBuiltin
0x555e65804488 448 488b55c8 REX.W movq rdx,[rbp-0x38]
0x555e6580448c 44c bb04000000 movl rbx,0x4]

99 0f JumpIfFalse [15]

 [VerifyFrame
 [VerifyFrameSize
0x555e65804496 456 4989e2 REX.W movq r10,rsp
0x555e65804499 459 4983c240 REX.W addq r10,0x40
0x555e6580449d 45d 4c3bd5 REX.W cmpq r10,rbp
0x555e658044a0 460 740d jz 0x555e658044af <+0x46f>]

 -- Verify feedback vector
0x555e658044af 46f 4c8b45d8 REX.W movq r8,[rbp-0x28]
0x555e658044b3 473 41f6c001 testb r8,0x1
0x555e658044b7 477 0f8424000000 jz 0x555e658044e1 <+0x4a1>
0x555e658044d0 490 458b48ff movl r9,[r8-0x1]
0x555e658044d4 494 4181f91d030000 cmpl r9,0x31d
0x555e658044db 49b 0f840d000000 jz 0x555e658044ee <+0x4ae>]

 [CallBuiltin
0x555e658044ee 4ae 3de10d0000 cmp rax,0xde1
0x555e658044f3 4b3 7505 jnz 0x555e658044fa <+0x4ba>
0x555e658044f5 4b5 e96a020000 jmp 0x555e65804764
<+0x724>]

99 0f JumpIfFalse [15]
 [CallBuiltin
0x555e658044ee 4ae 3de10d0000 cmp rax,0xde1
0x555e658044f3 4b3 7505 jnz 0x555e658044fa <+0x4ba>
0x555e658044f5 4b5 e96a020000 jmp 0x555e65804764 <+0x724>]

6b f9 04 TestEqual r1, [4]
[CallBuiltin
0x555e65804488 448 488b55c8 REX.W movq rdx,[rbp-0x38]
0x555e6580448c 44c bb04000000 movl rbx,0x4]

Figure 6.5: How the execution tracer only extracts the execution traces that contribute

to the main control flow of JS scripts

115

symbolic analysis. The main function then calls into the basic blocks LLVM functions.

At last, the resulting trace is readily consumable by KLEE. We tested the execution tracer

to ensure its correctness on 16 combinations of instructions such as math functions,

basic arithmetic, for loop, if-else, etc.

Remill

Instructions Decoder

Remill basic blocks

JS Execution Trace
(LLVM IR)

Helper Component
::MarkSymbolic()
::AddEntryFunc()

JS Execution Trace
(assembly code)Instruction address verification

LLVM basic blocks

Figure 6.6: How the execution tracer only

extracts the execution traces that contribute

to the main control flow of JS scripts

During the symbolic execution stage,

KLEE is modified to recognize the remill

intrinsic function for log error and ex-

ception. The execution trace is fed into

KLEE to generate test cases. Test cases

are used as a seed for the next iter-

ation of symbolic execution to gener-

ate a comprehensive set of test cases,

which is done by execution harness

scripts.

6.4 Evaluation

For evaluations, we targeted 160 Node.js libraries used in the in-situ approach to show

the effectiveness and efficiencies after improvement. For effectiveness, we calculated

the average time used for executing all libraries between the two methods. For efficiency,

we evaluated the code coverage achieved by two methods. This evaluation is carried out

on a Ubuntu OS Version 18.04 with 4-core Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

116

and 16G memory.

To compare the two methods with these libraries, we built a test harness to system-

atically exercise all exported (public) methods in a given library with arguments whose

type is String. The seed test cases are generated randomly within the test harness. We

implemented an automation pipeline that helps set up the concolic testing environment

for each Node.js library automatically. Coverage for all libraries is calculated using is-

tanbul, a popular JS coverage tool used by V8 [11] and compatible with most JavaScript

testing frameworks, e.g., Mocha [13] and Node-Tap [14]. Coverage may vary slightly

due to the randomness of the seed test case generation. By default, the coverage that

we show in this evaluation is statement coverage. Table 6.1 shows the demographics

Metric Range Average

Line of Code [93, 16910] 1687

Weekly Downloads [3, 37491350] 9552965

Dependencies [3, 18154] 282

Table 6.1: Demographics for Libraries under Test

of the selected libraries. The LoC (lines of code) for a library under test is calculated

with github-loc [9]. The number of weekly downloads of a library under test is calcu-

lated with npm-stats-api [17]. The number of dependencies is the number of dependent

libraries that the library under test has. We calculated it with dependent-counts [7].

6.4.1 Coverage Analysis

Figure 6.7 shows the comparison of statement coverage achieved between our approach

and the in-situ approach. The red line presented the statement coverage of the in-situ

approach and the blue line indicates the statement coverage of our approach of improve-

117

ment. We can see that they represent a similar trend of achieving statement coverage

over 160 Node.js libraries under test. Figure 6.8 indicates the distribution of statement

coverage between the two approaches, where the red dots represent the result of the in-

situ approach and the blue dots indicate that of our approach. We can see major dots of

both colors fall above the line of coverage of 75%. Only 9 libraries achieved a coverage

below 50% and the reason is that it is a function with multiple arguments of String

type, which can be made symbolic. Our test harness did not catch all of the arguments

and only managed to set one of them as symbolic input. Therefore, it only explored the

branches that are related to that one argument we set as symbolic input within the test

harness. Among the libraries achieved below the coverage of 75%, the red dots appear

more times than the blue dots, which indicates our approach achieved higher coverage

on average.

Figure 6.7: Statement Coverage Comparison between our approach and In-situ approach

We also compared our approach with an existing tool, ExpoSE [71], by testing the

same set of libraries as shown in Figure 6.9, on which ExpoSE has been applied. Our

118

Figure 6.8: Coverage Distribution Comparison between our approach and In-situ ap-

proach

method and the in-situ approach achieved similar higher coverage consistently. This

comparison only partially reflects our method’s ability to achieve higher coverage since

ExpoSE mainly targets solving regular expression problems for its symbolic execution

engine JALANGI.

6.4.2 Bug Detection Efficiency

As the test cases generated by our approach are replayed on the libraries under test,

our method detected all the bugs that the in-situ method found. At the same time, our

method only uses a fraction of the time that the in-situ approach needs. Typically, the

in-situ approach with execution tracing on OS-VM level takes about 3 to 5 minutes to

119

0

25

50

75

100

minimist validator semver querystring

ExpoSE Our Approach In-situ

Figure 6.9: Statement Coverage Comparison among our approach, In-situ approach, and

ExpoSE

functions Bugs Found

formatNumber No boundary check for empty string Yes

encodeDate No NULL check for function argument Yes

regexExec Unhandled input syntax error Yes

isVAT Mishandled country code Yes

chalkClass Deprecated constructor invoked Yes

stringify Incorrect parsing of separators Yes

Table 6.2: Bugs detected in functions

120

complete an iteration of test case generation and it only needs about 5 to 10 seconds to

complete an iteration with our approach. Table 6.2 shows a summary of the bugs that

we detected again. The detailed explanation for each bug can be found in Section 4.4.3.

6.5 Summary

In this Chapter, we introduced improvements to the in-situ concolic testing of JavaScript.

We have deployed a new execution tracer leveraging V8’s Sparkplug baseline compiler

to improve the tracing process and a new assembly to LLVM IR translator using remill

libraries. It improves the efficiency and effectiveness of the infrastructure of the in-

situ concolic testing for JavaScript while keeping the native execution environments for

JS scripts under test. We evaluated its effectiveness and efficiency by comparing the

coverage, bug detection, and time consumption with the in-situ approach on the same

test set, which are 160 Node.js libraries that heavily utilize the String type and its

operations. The results show our improvements achieve similar statement coverage on

these libraries within no more than 10% difference on average and can detect all bugs

that are detected by the in-situ method, which only uses a fraction of the time needed by

the in-situ approach.

121

7 Conclusions

In this dissertation, we introduced a holistic framework for applying concolic testing to

applications in scripting languages, which extended the applicability and flexibility of

traditional concolic execution (binary-level concolic execution) to scripting languages,

especially JavaScript and Lua applications. We also presented the designs, implemen-

tations, and evaluations of several systems and frameworks based on the proposed ap-

proach to make popular modern applications using JavaScript and Lua languages more

reliable, including network scan tools, Node.js applications, and several front-end ap-

plications. To conclude, this chapter summarizes the main contributions and highlights

some directions for future research.

7.1 Summary of Contributions

Broadly, this dissertation pushed the boundaries of testing automation techniques, in

particular concolic testing, enriched the research communities of both academia and

industry (specially for software engineering and testing) by developing a framework and

implementing several prototype systems, and contributed directly to build more reliable

applications in the real world by detecting and fixing unknown bugs in some important

software applications. In summary, this dissertation makes the following contributions:

• Provide and implement the approach of concolic execution for scripting languages

and use it on Lua and JavaScript.

122

• Design and develop concolic testing on NSE scripts to generate honey farms au-

tomatically to provide defense against attackers.

• Design, develop and apply in-situ concolic testing on backend JavaScript in the

environment of Node.js and perform concolic testing NPM libraries.

• Design and implement in-situ concolic testing to test front-end JavaScript based

on JS testing framework. Eventually, we mprove the execution tracer using Spark-

plug to remove its dependence on a virtual machine and adapt the translator ac-

cordingly.

7.2 Future Directions

In this section, we highlight some interesting future directions. More detailed discus-

sions and future work can also be found in previous sections (Section 3.5, Section 4.4.4

and Section 5.5)

Refine symbolic interfaces of JavaScript object. Currently, our in-situ concolic test-

ing framework for JavaScript, supports String and Integer JavaScript Objects. Cover-

ing more JS Objects will make the symbolic interfaces more comprehensive and enable

testing for a wide range of JS scripts. One future work is to further extend the symbolic

object model to make the framework more effective.

Refine execution context extraction for front-end JS Our implement currently cov-

ers Puppeteer test framework and React testing library of Jest. We can further extend

123

our implementation based on our approach to more libraries of Jest and also more test-

ing frameworks, such as Jasmine [2], Cypress [1], etc. As a result, more applications

using various testing frameworks can benefit from the approach.

Improve the Sparkplug-based execution tracer and Remill-based translator. The

current workflow of the two components is connected by automation harness scripts and

also does not exploit the potential of multiprocessing and parallelism. Improving the

automation of the workflow and encouraging parallelism will provide opportunities for

future optimization.

124

Bibliography

[1] Cypress web testing framework. https://www.browserstack.com/guide/

cypress-framework-tutorial, June 2010.

[2] Jasmine, simple javascript testing. https://jasmine.github.io/, June 2010.

[3] Ignition: V8 interpreter. https://docs.google.com/document/d/

11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44/mobilebasic, March

2016.

[4] V8 stringobject. https://v8docs.nodesource.com/node-0.8/d9/d38/

classv8 1 1 string object.html, March 2016.

[5] V8’s object model using well-defined c++. https://docs.google.com/

document/d/1 w49sakC1XM1OptjTurBDqO86NE16FH8LwbeUAtrbCo/edit,

January 2019.

[6] Codestubassembler builtins. https://v8.dev/docs/csa-builtins, August

2021.

[7] dependent-counts. https://www.npmjs.com/package/dependent-counts,

June 2021.

[8] Firing up the ignition interpreter. https://v8.dev/blog/ignition-

interpreter, August 2021.

[9] github-loc. https://www.npmjs.com/package/github-loc, June 2021.

[10] How (not) to access v8 memory from a node.js c++ addon’s worker

thread. https://nodeaddons.com/how-not-to-access-node-js-from-c-

worker-threads, August 2021.

[11] Istanbul. https://istanbul.js.org/, August 2021.

[12] Metamask-extension coveralls. https://coveralls.io/github/MetaMask/

metamask-extension, March 2021.

[13] Mocha: simple, flexible, fun. https://mochajs.org/, August 2021.

https://www.browserstack.com/guide/cypress-framework-tutorial
https://www.browserstack.com/guide/cypress-framework-tutorial
https://jasmine.github.io/
https://docs.google.com/document/d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44/mobilebasic
https://docs.google.com/document/d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44/mobilebasic
https://v8docs.nodesource.com/node-0.8/d9/d38/classv8_1_1_string_object.html
https://v8docs.nodesource.com/node-0.8/d9/d38/classv8_1_1_string_object.html
https://docs.google.com/document/d/1_w49sakC1XM1OptjTurBDqO86NE16FH8LwbeUAtrbCo/edit
https://docs.google.com/document/d/1_w49sakC1XM1OptjTurBDqO86NE16FH8LwbeUAtrbCo/edit
https://v8.dev/docs/csa-builtins
https://www.npmjs.com/package/dependent-counts
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter
https://www.npmjs.com/package/github-loc
https://nodeaddons.com/how-not-to-access-node-js-from-c-worker-threads
https://nodeaddons.com/how-not-to-access-node-js-from-c-worker-threads
https://istanbul.js.org/
https://coveralls.io/github/MetaMask/metamask-extension
https://coveralls.io/github/MetaMask/metamask-extension
https://mochajs.org/

125

[14] Node-tap. https://node-tap.org/, August 2021.

[15] Node.js. https://nodejs.org/en/, August 2021.

[16] Npm. https://www.npmjs.com/, August 2021.

[17] npm-stats-api. https://www.npmjs.com/package/npm-stats-api, June 2021.

[18] Remill, 2021. https://github.com/lifting-bits/remill.

[19] Turbofan: A new code generation architecture for

v8. https://docs.google.com/presentation/d/

1 eLlVzcj94 G4r9j9d Lj5HRKFnq6jgpuPJtnmIBs88/htmlpresent, Au-

gust 2021.

[20] Understanding v8’s bytecode. https://medium.com/dailyjs/

understanding-v8s-bytecode-317d46c94775, August 2021.

[21] v8. https://v8.dev/, August 2021.

[22] Afl: American fuzzy lop. http://lcamtuf.coredump.cx/afl/, January 2022.

[23] Browser context. https://pptr.dev/api/puppeteer.browser, October 2022.

[24] Building a javascript testing frameworkbuildtestframework.

https://cpojer.net/posts/building-a-javascript-testing-

framework#building-a-testing-framework, October 2022.

[25] Executioncontext class. https://pub.dev/documentation/puppeteer/

latest/puppeteer/ExecutionContext-class.html, October 2022.

[26] Express. https://expressjs.com/, October 2022.

[27] git-ls-files. https://git-scm.com/docs/git-ls-files, October 2022.

[28] git-ls-files. hhttps://github.com/AlDanial/cloc, October 2022.

[29] js-fuzz. https://github.com/connor4312/js-fuzz, January 2022.

[30] Jsfuzz: coverage-guided fuzz testing for javascript. https://github.com/

fuzzitdev/jsfuzz, January 2022.

[31] Metamask. https://metamask.io/, October 2022.

https://node-tap.org/
https://nodejs.org/en/
https://www.npmjs.com/
https://www.npmjs.com/package/npm-stats-api
https://github.com/lifting-bits/remill
https://docs.google.com/presentation/d/1_eLlVzcj94_G4r9j9d_Lj5HRKFnq6jgpuPJtnmIBs88/htmlpresent
https://docs.google.com/presentation/d/1_eLlVzcj94_G4r9j9d_Lj5HRKFnq6jgpuPJtnmIBs88/htmlpresent
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://v8.dev/
http://lcamtuf.coredump.cx/afl/
 https://pptr.dev/api/puppeteer.browser
https://cpojer.net/posts/building-a-javascript-testing-framework#building-a-testing-framework
https://cpojer.net/posts/building-a-javascript-testing-framework#building-a-testing-framework
 https://pub.dev/documentation/puppeteer/latest/puppeteer/ExecutionContext-class.html
 https://pub.dev/documentation/puppeteer/latest/puppeteer/ExecutionContext-class.html
https://expressjs.com/
 https://git-scm.com/docs/git-ls-files
 hhttps://github.com/AlDanial/cloc
https://github.com/connor4312/js-fuzz
https://github.com/fuzzitdev/jsfuzz
https://github.com/fuzzitdev/jsfuzz
 https://metamask.io/

126

[32] Module counts. http://www.modulecounts.com/, August 2022.

[33] Puppeteer. https://pptr.dev/, October 2022.

[34] Puppeteer architecture. https://devdocs.io/puppeteer, October 2022.

[35] React component. https://reactjs.org/docs/react-component.html, Oc-

tober 2022.

[36] React component. https://reactjs.org/docs/components-and-

props.html, October 2022.

[37] React testing library. https://testing-library.com/docs/react-testing-

library/intro/, October 2022.

[38] Search: The search api lets you to search for specific items on github. https:

//docs.github.com/en/rest/search, October 2022.

[39] Six essential frameworks for creating automated tests. https://dzone.com/

refcardz/javascript-test-automation-frameworks, October 2022.

[40] Usage statistics of javascript as client-side programming language on web-

sites. https://w3techs.com/technologies/details/cp-javascript, Octo-

ber 2022.

[41] Sparkplug. https://github.com/lifting-bits/mcsema, August 2023.

[42] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. Why do developers use trivial packages? an empirical case study on npm.

pages 385–395, 08 2017.

[43] Ars Technica. NSA-leaking Shadow Brokers Just Dumped Its Most Damag-

ing Release Yet, April 2017. https://arstechnica.com/information-

technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-

most-damaging-release-yet/.

[44] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX annual

technical conference, FREENIX Track, volume 41, page 46. Califor-nia, USA,

2005.

http://www.modulecounts.com/
https://pptr.dev/
 https://devdocs.io/puppeteer
 https://reactjs.org/docs/react-component.html
 https://reactjs.org/docs/components-and-props.html
 https://reactjs.org/docs/components-and-props.html
 https://testing-library.com/docs/react-testing-library/intro/
 https://testing-library.com/docs/react-testing-library/intro/
https://docs.github.com/en/rest/search
https://docs.github.com/en/rest/search
https://dzone.com/refcardz/javascript-test-automation-frameworks
https://dzone.com/refcardz/javascript-test-automation-frameworks
https://w3techs.com/technologies/details/cp-javascript
https://github.com/lifting-bits/mcsema
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/

127

[45] Bloomberg Technology. Equifax Suffered a Hack Almost Five Months Earlier

Than the Date It Disclosed, September 2017. https://www.bloomberg.com/

news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-

earlier-than-the-date-disclosed.

[46] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping symbolic exe-

cution engines for interpreted languages. In Proceedings of the 19th international

conference on Architectural support for programming languages and operating

systems, pages 239–254, 2014.

[47] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and

automatic generation of high-coverage tests for complex systems programs. In

OSDI, volume 8, pages 209–224, 2008.

[48] Marco Canini, Daniele Venzano, Peter Perešı́ni, Dejan Kostić, and Jennifer Rex-

ford. A NICE way to test openflow applications. In 9th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 12), pages 127–140, San

Jose, CA, April 2012. USENIX Association.

[49] Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong, Raghudeep Kannavara,

and Fei Xie. Crete: A versatile binary-level concolic testing framework. In

Alessandra Russo and Andy Schürr, editors, Fundamental Approaches to Software

Engineering, pages 281–298, Cham, 2018. Springer International Publishing.

[50] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A platform for

in-vivo multi-path analysis of software systems. Acm Sigplan Notices, 46(3):265–

278, 2011.

[51] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris,

and Eddie Kohler. The scalable commutativity rule: Designing scalable software

for multicore processors. ACM Trans. Comput. Syst., 32(4), jan 2015.

[52] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. The

impact of regular expression denial of service (redos) in practice: An empirical

study at the ecosystem scale. ESEC/FSE 2018, page 246–256, New York, NY,

USA, 2018. Association for Computing Machinery.

[53] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security

vulnerabilities in the npm package dependency network. In Proceedings of the

15th International Conference on Mining Software Repositories, MSR ’18, page

181–191, New York, NY, USA, 2018. Association for Computing Machinery.

https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed

128

[54] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated

random testing. In Proceedings of the 2005 ACM SIGPLAN conference on Pro-

gramming language design and implementation, pages 213–223, 2005.

[55] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox fuzzing

for security testing. Communications of the ACM, 55(3):40–44, 2012.

[56] Hans Peter Luhn. Luhn algorithm, 2021. https://en.wikipedia.org/wiki/

Luhn algorithm.

[57] Pei-Sheng Huang, Chung-Huang Yang, and Tae-Nam Ahn. Design and imple-

mentation of a distributed early warning system combined with intrusion detection

system and honeypot. In Proceedings of the 2009 International Conference on

Hybrid Information Technology, pages 232–238, 2009.

[58] Xiao-ou JIN, Bao-yan ZHONG, and Xiang LI. Research and implementation of

interpreting javascript dynamic web page based on rhino engine [j]. Computer

Technology and Development, 2(002), 2008.

[59] Jordan Jueckstock and Alexandros Kapravelos. Visiblev8: In-browser monitoring

of javascript in the wild. In Proceedings of the Internet Measurement Conference,

IMC ’19, page 393–405, New York, NY, USA, 2019. Association for Computing

Machinery.

[60] James C King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385–394, 1976.

[61] Ronny Ko, James Mickens, Blake Loring, and Ravi Netravali. Oblique: Acceler-

ating page loads using symbolic execution. In 18th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 21), pages 289–302. USENIX

Association, April 2021.

[62] Igibek Koishybayev and Alexandros Kapravelos. Mininode: Reducing the attack

surface of node.js applications. In 23rd International Symposium on Research

in Attacks, Intrusions and Defenses (RAID 2020), pages 121–134, San Sebastian,

October 2020. USENIX Association.

[63] Saparya Krishnamoorthy, Michael S Hsiao, and Loganathan Lingappan. Tack-

ling the path explosion problem in symbolic execution-driven test generation for

programs. In 2010 19th IEEE Asian Test Symposium, pages 59–64. IEEE, 2010.

https://en.wikipedia.org/wiki/Luhn_algorithm
https://en.wikipedia.org/wiki/Luhn_algorithm

129

[64] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. Ef-

ficient state merging in symbolic execution. SIGPLAN Not., 47(6):193–204, June

2012.

[65] LabLua. Lua reference manuals. https://www.lua.org/manual/, June 2021.

[66] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program

analysis transformation. In International Symposium on Code Generation and

Optimization, 2004. CGO 2004., pages 75–86, 2004.

[67] Leszek Swirski. Sparkplug — a non-optimizing JavaScript compiler, 2021.

https://v8.dev/blog/sparkplug.

[68] Guodong Li, Esben Andreasen, and Indradeep Ghosh. Symjs: automatic symbolic

testing of javascript web applications. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 449–

459, 2014.

[69] Yuan-Fang Li, Paramjit K Das, and David L Dowe. Two decades of web applica-

tion testing—a survey of recent advances. Information Systems, 43:20–54, 2014.

[70] Z. Li and F. Xie. In-situ concolic testing of javascript. In 2023 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages

236–247, Los Alamitos, CA, USA, mar 2023. IEEE Computer Society.

[71] Blake Loring, Duncan Mitchell, and Johannes Kinder. Expose: practical symbolic

execution of standalone javascript. In Proceedings of the 24th ACM SIGSOFT

International SPIN Symposium on Model Checking of Software, pages 196–199,

2017.

[72] Gordon Lyon. Nmap: the network mapper. https://nmap.org/, June 2021.

[73] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. Directed

symbolic execution. In Eran Yahav, editor, Static Analysis, pages 95–111, Berlin,

Heidelberg, 2011. Springer Berlin Heidelberg.

[74] Microsoft. CONPOT ICS/SCADA Honeypot, 2021. http://conpot.org/.

[75] Microsoft. KFsensor: Advanced Windows Honeypot System, 2021. http://

www.keyfocus.net/kfsensor/.

https://www.lua.org/manual/
https://v8.dev/blog/sparkplug
https://nmap.org/
http://conpot.org/
http://www.keyfocus.net/kfsensor/
http://www.keyfocus.net/kfsensor/

130

[76] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. Jseft: Automated

javascript unit test generation. In 2015 IEEE 8th International Conference on

Software Testing, Verification and Validation (ICST), pages 1–10. IEEE, 2015.

[77] Piotr Olma and Gioacchino Mazzurco. Nse script description. https://

nmap.org/nsedoc/scripts/http-form-fuzzer.html, June 2021.

[78] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an emulator for

fingerprinting zero-day attacks for advertised honeypots with automatic signature

generation. ACM SIGOPS Operating Systems Review, 40(4):15–27, 2006.

[79] Bobby Powers, John Vilk, and Emery D. Berger. Browsix: Bridging the gap be-

tween unix and the browser. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’17, page 253–266, New York, NY, USA, 2017. Association for

Computing Machinery.

[80] Honeynet Project. Know Your Enemy: Revealing the Security Tools, Tactics, and

Motives of the Blackhat Community. Addison-Wesley Professional, 2001.

[81] Proofpoint. Proofpoint Emerging Threats Rules, 2021. https://

rules.emergingthreats.net/.

[82] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,

pages 229–238, 1999.

[83] José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and

Philippa Gardner. Symbolic execution for javascript. In Proceedings of the 20th

International Symposium on Principles and Practice of Declarative Programming,

pages 1–14, 2018.

[84] Samir Sapra, Marius Minea, Sagar Chaki, Arie Gurfinkel, and Edmund Clarke.

Finding errors in python programs using dynamic symbolic execution. volume

8254, pages 283–289, 11 2013.

[85] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

and Dawn Song. A symbolic execution framework for javascript. In 2010 IEEE

Symposium on Security and Privacy, pages 513–528, 2010.

[86] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever

wanted to know about dynamic taint analysis and forward symbolic execution (but

https://nmap.org/nsedoc/scripts/http-form-fuzzer.html
https://nmap.org/nsedoc/scripts/http-form-fuzzer.html
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/

131

might have been afraid to ask). In 2010 IEEE Symposium on Security and Privacy,

pages 317–331, 2010.

[87] Marija Selakovic and Michael Pradel. Performance issues and optimizations in

javascript: an empirical study. In Proceedings of the 38th International Conference

on Software Engineering, pages 61–72, 2016.

[88] Koushik Sen. Concolic testing. In Proceedings of the twenty-second IEEE/ACM in-

ternational conference on Automated software engineering, pages 571–572, 2007.

[89] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi:

A selective record-replay and dynamic analysis framework for javascript. In Pro-

ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,

pages 488–498, 2013.

[90] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine

for c. ACM SIGSOFT Software Engineering Notes, 30(5):263–272, 2005.

[91] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

Bitblaze: A new approach to computer security via binary analysis. In Interna-

tional Conference on Information Systems Security, pages 1–25. Springer, 2008.

[92] Matt Staats and Corina Pundefinedsundefinedreanu. Parallel symbolic execution

for structural test generation. In Proceedings of the 19th International Symposium

on Software Testing and Analysis, ISSTA ’10, page 183–194, New York, NY, USA,

2010. Association for Computing Machinery.

[93] Haiyang Sun, Andrea Rosà, Daniele Bonetta, and Walter Binder. Automati-

cally assessing and extending code coverage for npm packages. arXiv preprint

arXiv:2105.06838, 2021.

[94] Sümeyye Süslü and Christoph Csallner. Spejs: A symbolic partial evaluator for

javascript. In Proceedings of the 1st International Workshop on Advances in Mo-

bile App Analysis, A-Mobile 2018, page 7–12, New York, NY, USA, 2018. Asso-

ciation for Computing Machinery.

[95] Mohit Thakkar. Unit Testing Using Jest, pages 153–174. Apress, Berkeley, CA,

2020.

132

[96] Neline van Ginkel, Willem De Groef, Fabio Massacci, and Frank Piessens. A

server-side javascript security architecture for secure integration of third-party li-

braries. Security and Communication Networks, 2019, 2019.

[97] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker,

and S. Savage. Scalability, Fidelity, and Containment in the Potemkin Virtual

Honeyfarm. In ACM SOSP, pages 148–162, October 2005.

[98] Chris Wanstrath. Mustache Processor, 2009. https://mustache.github.io/.

[99] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael

Pradel. Small world with high risks: A study of security threats in the npm ecosys-

tem. In 28th USENIX Security Symposium (USENIX Security 19), pages 995–1010,

Santa Clara, CA, August 2019. USENIX Association.

https://mustache.github.io/

	Concolic Testing for Scripting Languages
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Symbolic Execution for Emerging Scripting Languages at Binary Level
	Concolic Execution of NSE Scripts for Automated Honeyfarm Generation
	Effective Bug-finding for NPM libraries of Back-end JavaScript
	Automated Bug Detection for Front-end JavaScript Application
	Improvement for the Execution Tracing and Trace Translation

	Solution Overview
	Customized Concolic Execution at Binary Level of Scripting Language
	Concolic Execution of NMap Scripts for Automated Honeyfarm Generation
	In-Situ Concolic Testing of JavaScript on Node.js Libraries
	Concolic Testing of Front-end JavaScript
	Concolic Testing of JavaScript using Sparkplug and Remill

	Background and Related Works
	Background
	Related Works
	Binary Level Concolic Execution Engines
	Symbolic Execution for Scripting Languages
	Fuzzing Testing

	Concolic Execution of NMap Scripts for Honeyfarm Generation
	Background
	Design
	Overview
	Concolic Execution Stage
	Defending Stage

	Implementation
	Concolic Script Execution
	Lua Interpreter Instrumentation
	Snort response

	Evaluation
	Experimental Setup for NSE Scripts
	Control Interface Evaluation
	NSE Script Evaluation

	Summary

	In-Situ Concolic Testing of JavaScript
	Background
	Node.js Runtime
	V8 JS Engine

	Design
	Overview
	Shallow Integration of Tracing in Node.js
	Deep Integration of Tracing in V8

	Implementation
	Shallow Tracing Interface as C++ Addons
	Deep Tracing Interface as V8 Builtins
	Symbolic JS Object for V8

	Evaluation
	Results from Shallow Tracing Using Node.js Addons
	Results from Deep Tracing with V8 Builtins
	Comparisons
	Discussions and limitations

	Summary

	Concolic Execution of Front-end JavaScript
	Background
	Front-end JavaScript Testing Frameworks
	In-situ Concolic Testing of Backend JavaScript

	Design
	Overview
	Concolic Testing of JS Web Function within Execution Context
	Execution Context Extraction
	Execution Context Tracing Customization
	Concolic Testing within Execution Context

	Implementation
	Implementation on Puppeteer
	Implementation on Jest with React Testing Library

	Evaluation
	Evaluation of Puppeteer Implementation on Github Projects
	Evaluation of Jest Implementation on Metamask

	Summary

	Concolic Testing of JavaScript using Sparkplug and Remill
	Background
	Sparkplug
	Interpreter Stack Frame Mirroring
	Remill

	Design
	Overview of goals
	Improvement
	Why we choose Sparkplug?

	Implementation
	Modification on Bytecode Handlers of Sparkplug
	Implementation on Remill translator

	Evaluation
	Coverage Analysis
	Bug Detection Efficiency

	Summary

	Conclusions
	Summary of Contributions
	Future Directions

	Bibliography

