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Abstract

Given a connected topolgical space X, we say that L ⊆ X is a min-

imal separating set if removing L from X gives a disconnected surface,

but removing any proper subset of L leaves the surface connected. We

classify which embeddings of topological graphs are minimal separat-

ing in an orientable surface X with genus g, and construct a computer

program to compute the number of such embeddings, and the number

of topological graphs which admit such an embedding for g ≤ 5.
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1 Introduction

A mediatrix informally is the set of points in some space that are equidistant from

two given points (or more generally from two given sets of points). The study

of mediatrices has a long history, as lines and conic sections are all examples of

mediatrices in the plane with the standard Euclidean metric. The mediatrix of

two points is a line (the perpendicular bisector of the segment connecting them),

and one definition of the conic sections is as follows:

A parabola is the mediatrix of a line and a point not on that line. An ellipse is

the mediatrix of a circle and a point in the interior of the circle. A hyperbola

is the mediatrix of a circle and a point lying outside the region bounded by the

circle (this follows from the definition of hyperbola in terms of foci).

Mediatrices even appear in international law, as Article 15 of the United Nations

Convention on Law of the Sea states that (barring previous agreement) the ter-

ritorial sea border of two nations lies on the median line every point of which is

equidistant to the nearest points to each country [20], which is precisely a media-

trix! Although mediatrices themselves are not the focus of this dissertation, they

provide the motivation. Rather than a mediatrix, our focus is on a related object

which we call a minimal separating set :

Definition 1.1. A subset L of a connected topological space X is minimal sep-

arating if X \ L is disconnected, but for any proper subset L′ ⊂ L, X \ L′ is

connected.

It [32] it was shown that for Brillouin spaces, a large class of metric spaces which
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includes all Riemannian manifolds, mediatrices are minimal separating, and it

was then shown in [3] that the mediatrix of any two points in a 2 dimensional

Riemannian manifold is homeomorphic to a finite topological graph. Then in [10]

these results were extended even larger classes of metric spaces (length spaces

without branching geodesics and 2-dimensional Alexandrov spaces respectively).

Much stranger sets than finite topological graphs may be realized as minimal

separating sets, such as the Lakes of Wada [35], but we are not interested in these

as according to [3] and [10] these cannot be realized as mediatrices in fairly “nice”

metric spaces. From now on we will freely use the phrase “minimal separating

set” in place of the tediously long “minimal separating set which may be realized

as a mediatrix of a 2-dimensional Alexandrov space”.

The focus of this dissertation is on classifying and computing the topological

graphs and graph embeddings which can be realized as minimal separating sets

in a surface of genus g. Since the question of whether a graph can even be

embedded in a given surface is non-trivial [13], and the fastest algorithm we

know of [23] involves actually constructing the embedding, there is no reason to

believe that one can find, or even count, the graphs which can be embedded in

a minimal separating set in a surface without using a computer to construct the

embeddings. Therefore our approach is to find properties that allow us to classify

these graphs and graph embeddings, and then use this classification to write a

computer program which will actually compute them.

The dissertation is organized as follows: In Chapter 2 we establish relevant back-
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ground on graph theory, topology, and topological graph theory. In the final part

of this chapter we also define several sets relevant to the enumeration of minimal

separating sets and their computation.

In Chapter 3 we establish relationships between the sets of interest laid out at

the end of Chapter 2, allowing us to find and count the elements in some of the

larger sets while only directly computing the elements of a smaller set. We also

establish a method for associating each embedding of interest to a unique cellular

embedding.

In Chapter 4, we introduce the language and properties of combinatorial maps

to efficiently store cellular embeddings in a computer, and lay out the properties

of combinatorial maps associated to a minimal separating embedding. There is a

brief discussion of existing techniques in the enumeration of combinatorial maps,

but there appear to be significant obstacles to their use in our case, as we will

observe. We also define the dual of a combinatorial map, and the properties of

the dual of a combinatoral map associated to a minimal separating embedding.

In Chapter 5 we introduce hypermaps, a generalization of the combinatorial maps

from Chapter 4, and relate each minimal separating embedding to a hypermap

through the duals of combinatorial maps discussed in Chapter 4. The replace-

ment of combinatorial maps with hypermaps will be key to writing an efficient

algorithm to find all minimal separating embeddings in a surface. As we will

observe, this dramatically reduces the size of the space we will need to search for

minimal separating embeddings.

In Chapter 6 we use the association of each minimal separating embedding with
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a hypermap to construct an algorithm for their computation.

Chapter 7 describes some technical obstacles to actually running the algorithm

from Chapter 6 and how they are handled. It also presents the final results from

running the algorithm from Chapter 6.

Chapter 8 discusses some possibilities for future work and briefly discusses appli-

cations to Hurwitz theory and the computation of matrix integrals in physics.

Appendix A gives a very brief introduction to the representation theory of finite

groups. Almost all of the preceding chapters are independent of this appendix,

but it establishes a formula due to Frobenius which we modify to compute some

bounds for memory allocation needed in Chapter 7. We also use the material from

this section to compute the exact number of minimal separating embeddings sat-

isfying some specific properties, which allows us to verify the accuracy of some

of our computations and also leads to a nice congruence result about sums of

reciprocals of binomial coefficients. Appendix A has a substantial amount of ma-

terial including original results, but we choose to place it as an appendix, rather

than a primary chapter, because the material is so different from the rest of the

material in the dissertation, and it is really only used for memory estimates in

the computer program from chapter 7 and in verifying some computed results.

Finally Appendix B provides the full code for the computer program to do the

actual computations.

One issue we have encountered, and which we wouldd like to warn the reader

about is the amount of variation in both terminology and precise definitions used

across sources. The bulk of this dissertation will be focussed on graph embeddings
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in surfaces. Much of the existing literature focusses on the case of what we will

call ‘cellular embeddings’ (see Definition 2.10) where there are natural bijections

between the sets of some of the objects we consider, leading to their names being

used interchangeably. For example graph embedding, ribbon graph, topological

map, and combinatorial map (all to be defined later) are often used as synonyms.

Other choices, such as whether graphs are directed or undirected, whether graphs

are labelled or not, and the backgrounds and interests of authors lead to a great

deal of variation in language. A reader looking at some cited theorems in their

original context will notice that they may appear not to match their statement

in this dissertation (for example theorems may refer to isomorphism classes of

combinatorial maps in this dissertation, but to combinatorial maps in the cited

document), and this is due to our modifying the language to match the particular

versions of the definitions used here.
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2 Preliminaries

2.a Graph Theory Background

In this section we present a few definitions and results from graph theory that

will be useful throughout the dissertation. We will only consider as graphs what

might be called undirected graphs in other literature.

Definition 2.1. A graph G consists of an edge set E(G), a vertex set V (G), and

a function iG which maps each edge to a pair of (not necessarily distinct) verticse.

We call the elements of E(G) edges, the elements of V (G) vertices, and say that

an edge e is incident to a vertex v if v ∈ iG(e). If iG(e) = (v, w) then we say that

e joins v and w.

When there is no risk of ambiguity we will simply refer to E(G),V (G), and iG as

E, V , and i respectively. Sometimes we may refer to a graph as a combinatorial

graph to emphasize the contrast with topological graphs (see Definition 2.9 in a

later section).

It is tradtional to visualize a graph G with the vertices V as points in space, and

each edge e as a line or curve through space with endpoints at i(e). Figure 1

shows a drawing of a graph G in the plane. The dots represent the elements of

V , the lines and arcs represent the elements of E, and for a given edge e ∈ E,

i(e) consists of the vertices connected by the line for e.

Here we define a few terms about graphs that we will make use of

Definition 2.2. [2] For a graph G = (E, V, i)
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Figure 1: A graph with 4 vertices and 8 edges.

� We say an edge e ∈ E is a loop if i(e) = (v, v) for some v ∈ V .

� The degree of a vertex v ∈ V is the number of times v appears in i(E) =

{i(e) : e ∈ E} (i.e. the number of edges incident to v with loops counted

twice).

� For u, v ∈ V , a path from u to v is a sequence of vertices and edges:

v0, e1, v1, e2, . . . , vk−1, ek, vk

where i(ei) = (vi−1, vi) for each i, v0 = u, vk = v, and vi ̸= vj whenever

i ̸= j.

� G is connected if for all distinct u, v ∈ V there exists a path from u to v.
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In many cases, including the problems we are interested in, the names of the

elements in V and E are unimportant, and we might want to treat two graphs

as if they were the same when the only difference is “relabeling” the elements of

the vertex and edge sets. Here we make this precise with the following definition

of isomorphism from [2]:

Definition 2.3. We say that two graphs G and H are isomorphic if there exist

bijections f1 : E(G) → E(H) and f2 : V (G) → V (H) which preserve incidence

and non-incidence. The last condition can be formalized as

For all e ∈ E(G)

iH(f1(e)) = (f2 × f2)(iG(e))

where (f2 × f2)(u, v) := (f2(u), f2(v)).

At this point a reader familiar with graph theory might be noticing that the

definitions of graph and isomorphism given here include more functions than the

more familiar definitions. This is because we will need to consider graphs with

loops (edges incident to a single vertex) and multiple edges (multiple elements of

E with identical image under i). For graphs without loops or multiple edges both

the edge sets and isomorphisms can be defined purely in terms of the vertex sets.

The following definition will be particularly important to us in later chapters.

Definition 2.4. An proper n-vertex-coloring of a graph G is a partition of the

vertices of G into n blocks, such that each edge of G is incident to vertices in

two distinct blocks. In the case where n = 2, any graph which can be properly

2-vertex-colored is called a bipartite graph.
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Figure 2: A bipartite graph (left) and a 2-coloring of that graph (right). This graph
is called K3,3, signifying that it can be properly 2-vertex-colored into two groups of 3
vertices, and each vertex is joined to all vertices of the opposite color class.

A consequence of this definition is that we cannot properly vertex-color any graph

with loops. We provide an example of a proper 2-vertex-coloring of a graph in

Figure 2.

2.b Topological Background and Notation

In this section we present background definitions and results on topological spaces

for future reference. We assume familiarity with basic point-set topology, and

results in this section are generally presented without proof, but with citation,

for the interested reader.

The following definitions are from [16] (which also has definitions of the terms

9



used in the definitions).

Definition 2.5. � An n-dimensional (topological) manifold is a Hausdorff

topological space such that every point has a neighborhood homeomorphic

to an n-dimensional open disk Dn(0, r) = {x ∈ Rn|∥x∥ < r} for some r > 0.

� An n-dimensional manifold with boundary is a Hausdorff topological space

such that every point either has a neigborhood homeomorphic to an n-

dimensional open disk, or to an n-dimensional open half-disk Hn(0, r) =

{x = (x1, . . . , xn) ∈ Rn|∥x∥ < r and xn ≥ 0}.

� A surface is a 2-dimensional manifold. A surface with boundary is a 2-

dimensional manifold with boundary.

� A 2-dimensional manifold X is orientable if it does not have a subset home-

omorphic to a Möbius band.

For the purposes of reasoning about orientable manifolds, we find the definition

from [15] more useful, but it requires introducing a large amount of technical

machinery that wouldn’t be used anywhere else in this dissertation. Instead we

summarize it in plain language in the case of surfaces: A surface is orientable

if you can choose direction for clockwise around every point, and those choices

are compatible over the whole surface (meaning that if one walks around the

surface, what used to be clockwise does not suddenly become counterclockwise).

Unless explicitly stated, we assume that an orientation has been chosen for our

orientable surfaces, and throughout this dissertation we adopt the convention that

counterclockwise is the ‘positive direction’ for rotation.
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We aim to classify minimal separating sets for compact connected surfaces without

boundary, so the classification of compact connected surfaces without boundary

will naturally be useful.

Theorem 2.1. [16] Every compact connected orientable surface (without bound-

ary) is homeomorphic to a sphere or the connected sum of n tori. The genus of

such a surface is defined to be 0, if it is homeomorphic to a sphere, or n if it is

homeomorphic to the connected sum of n tori.

While classifying minimal separating sets, we will find ourselves looking at con-

nected components of X \L (where X is a surface and L is a minimal separating

set). These are non-compact surfaces which get quite a bit more complicated

than compact ones. To simplify things, we will compactify these surfaces by

adding boundaries, so the related classification of compact connected surfaces

with boundary will also be quite useful.

Theorem 2.2. [16] A compact connected orientable surface with boundary is

homeomorphic to a sphere or the connected sum of n tori, with a finite number

of open disks removed. The genus of such a surface is defined to be 0, if it is

homeomorphic to a sphere, or n if it is homeomorphic to the connected sum of n

tori.

We adopt the notation Xg for the orientable surface of genus g and Xg,i for the

orientable surface of genus g with i open disks removed. By the above theorems,

these objects are unique up to homeomorphism.

Finally, in discussing connectedness of surfaces, we will sometimes want to refer

11



to paths in topological spaces.

Definition 2.6. Given a topological space X with points x, y ∈ X, a path from

x to y is a continuous map f : [0, 1]→ X with f(0) = x and f(1) = y.

Whenever we use the word path from here on, context should make it clear whether

we are using Defintion 2.2 or Definition 2.6. This next definition and the following

theorem are what make paths particularly useful to us.

Definition 2.7. [1] We say a topological space X is path-connected if for all

x, y ∈ X there exists a path from x to y. We say X is locally path-connected

if for each x ∈ X and each neighborhood U of x, there is a path-connected

neighborhood of x contained in U .

We have only been able to find the following result as an exercise, so we provide

a brief proof

Theorem 2.3. A manifold is connected if and only if it is path-connected.

Proof. Let X be an n-dimensional manifold. Assume X is path-connected and

let U, V be open subsets of X such that X = U ∪ V . Take u ∈ U and v ∈ V .

By assumption there exists a path f from u to v. By continuity f−1(U) is an

open subset of [0, 1] and f−1(V ) is an open subset of [0, 1]. Since [0, 1] cannot be

written as a disjoint union of nonempty open subsets, U ∩ V is nonempty and X

is connected.

12



Now assume X is connected. Let x ∈ X and define

P := {y ∈ X| there is a path from x to y}.

Since X is an n-manifold, each point y ∈ P has a neighborhood homeomorphic to

Rn, a path-connected space. Therefore each y ∈ P has a neighborhood U which

is path-connected to y, and therefore path-connected to x (by joining the path

from x to y with a path from y to a point in U). This shows P is open. Similarly,

each point y ∈ P̄ has a neighborhood V homeomorphic to Rn, and if any point

z ∈ V were path connected to x we would have a path from x to y by joining the

path from x to z with the path from z to y. Thus P̄ is also open. This shows

that P is both open an closed, and the only such sets of a connected space are the

empty set and the entire space. x ∈ P , so P = X and X is path-connected.

The following definitions and theorems will be useful in several later proofs:

Definition 2.8. Given a surface X, we call the connected sum of X with a torus

the result of adding a handle to X.

Suppose X is a surface of genus g > 0 and let γ be a non-separating curve in X.

Then we call the surface X ′ obtained by gluing a disk onto each hole in X \ γ the

result of cutting a handle in X.

Theorem 2.4. [1] Let X be an orientable surface with genus g. The surface

obtained by adding a handle to X has genus g + 1. If g > 0, it is possible to cut

13



a handle of X, and the resulting surface has genus g − 1.

Theorem 2.5. Let X, Y be surfaces of genus g1, g2 respectively and let Z be their

connected sum. The genus Z is g1 + g2.

The proof follows immediately from Theorem 2.1 for surfaces without boundary

and Theorem 2.2 for surfaces with boundary.

Notational Conventions For Genera: We will often be simultaneously con-

sider the genera of multiple surfaces. To minimize confusion we will adopt the

following conventions:

� Xg will be the closed orientable surface (without boundary) of genus g.

� We use g to represent the the genus of primary interest in contex (see next

item for example), typically the genus of the of the surface being minimally

separated.

� We use ĝ to represent a genus that is varying. For example Theorem 2.7

will state

Mg =

g⋃
ĝ=0

Lg

� We use gR to denote the genus of the ribbon graph in context (see Definition

2.13).

� For an indexed set of objects S1, . . . , Sk (where each object has a genus) we

use gi to denote the genus of Si.

14



2.c Background and Terminology: Topological Graphs and Embed-

dings

From [33], we know that all minimal separating sets in the surfaces we consider

are finite closed 1-complexes, which is a synonym for finite topological graphs. We

will now define topological graphs:

Intuitively, we can imagine a graph as a geometric object, with the vertices as

discrete points, and each edge e ∈ E as an arc joining the vertices in i(e). We can

formalize this with the following definition of a topological graph (a specification

of the general definition of a cell-complex in [15]):

Definition 2.9. A topological graph is a 1 dimensional cell-complex. That is, it

is defined by a set V of points, a set E of copies of the closed interval [0, 1], and

a map ϕe : {0, 1} → V for each e ∈ E which maps the boundary of the edge e

to 2 (possibly non-distinct) elements of V . This is made into a topological space

by taking the disjoint union V ⊔ E and taking the quotient by identifying the

boundary points of each e ∈ E with their image under ϕe.

This is a fairly technical definition, but informally: a topological graph is the

topological space you get from a graph G, giving each loop the topology of the

circle, and for each edge between distinct vertices, we give that edge together with

its incident vertices the topology of the closed interval [0, 1]. A neighborhood of

a vertex v is a union over the edges incident to v of open subsets of the edges,

each containing the boundary point (or points) identified with v by the incidence

function.
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Before going any further, we want to make a note of an important distinction

between topological graphs and more familiar combinatorial definition as a set

of vertices and edges. Given a finite topological graph Γ with e an edge of Γ,

we can consider the graph Γ′ obtained by marking a vertex v somewhere in the

middle of e, which splits e into two edges, e1 and e2. As combinatorial objects,

Γ and Γ′ wouldn’t be considered isomorphic graphs, because Γ′ has one more

vertex and one more edge than Γ. In the combinatorial language, we would say

that Γ′ is a subdivision of Γ. However, since e1 ∪ v ∪ e2 is homeomorphic to

e, and the rest of the Γ′ is certainly homeomorphic to the rest of Γ, the two are

homeomorphic and considered equivalent as topological graphs. As a consequence,

every homeomorphism class of topological graph has a representative with no

degree two vertices in any connected component which is not homeomorphic to the

circle, and with exactly one vertex in each connected component homeomorphic

to the circle.

Our interest in topological graphs is due to the following result from [10] (an

extension of a similar result from [3]).

Theorem 2.6. Let X be a compact Alexandrov1 surface (possibly with boundary).

For any pair of disjoint nonempty compact subsets A,B ⊆ X, the equidistant

set of points equidistant from A and B is homeomorphic to a finite closed 1-

dimensional cell-complex.

1We do not give a precise definition of what it means for a space to be Alexandrov as it
involves technical details and this theorem will be our final reference to them. For details on
Alexandrov spaces we refer the reader to [4] and here we just note that Alexandrov spaces form
a class of metric spaces which contain and generalize such familiar examples as Euclidean spaces
and Riemannian manifolds.
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Figure 3: Two embeddings of the graph with one vertex and two loops into the torus
are shown (the standard square depiction of the torus above and a sketch below). In the
left figure, the complement of the embedding is homeomorphic to a punctured torus
and two disks, so the embedding is noncellular. In the embedding on the right, the
complement is homeomorphic to a disk, so the embedding is cellular.

In this dissertation we are only concerned with the case where A and B are points

and the surface is compact with no boundary.

Definition 2.10. An embedding of a topological graph Γ into a topological space

X is a continuous map f : Γ → X such that the restriction f̂ : Γ → f(Γ) is a

homeomorphism. We say f is a cellular embedding if X \ f(Γ) is homeomorphic

to a collection of open disks.

Given a topological graph Γ, a surface X, and an embedding f : Γ → X with

f(Γ) a minimal separating set in X, there are infinitely many embeddings of

Γ which are minimal separating in X, because we can consider deformations of

f(Γ) (Figure 4 illustrates this). For example, any simple closed curve drawn on

17



Figure 4: Two minimal separating sets are shown (red) on the sphere S2. Although
the curves are visibly different, both are homeomorphic to the circle S1.

the sphere is homeomorphic to a topological graph with a single vertex and a

single loop edge at that vertex. So, the idea of ‘counting’ minimal separating sets

is fairly meaningless without a some equivalence relation on minimal separating

sets.

One reasonable equivalence relation to use would be to consider two minimal sep-

arating sets L1, L2 ⊆ X to be equivalent if the underlying topological graphs are

homeomorphic. This is the approach taken in [31]. Classifying minimal separat-

ing sets up to this level of equivalence was our original goal, and we accomplish

this in Chapter 7 with a computer program for surfaces of genus ≤ 5. With this

equivalence relation in mind, we define the following three families of sets:

Definition 2.11. 1. Mg is the set of all graphs which can be realized as min-

imal separating sets in Xg.
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2. Lg is the set of all graphs which can be realized as minimal separating sets

in Xg, but not in Xĝ for ĝ < g. We say these are the graphs with least

separating genus g.

3. Cg is the set of all connected graphs with least separating genus g.

It was observed in [3] that any graph graph which embeds as a minimal sepa-

rating set in Xg also embeds as a minimal separating set in Xĝ for ĝ ≥ g, so we

immediately have

Theorem 2.7. Lg =Mg \Mg−1.

This motivates us to focus our efforts on the study of Lg. In Chapter 4, we will

introduce powerful tools for the study of embeddings of connected graphs, so a

key step will be to relate the Lg to the Cg.

However, it turns out that focusing on a finer equivalence relation not only makes

the computation much faster, but also relates our research to enumeration of

combinatorial maps (see Chapter 4), Hurwitz numbers, and matrix integrals (see

Chapter 8 for the latter two topics). With this in mind we introduce the following

type of equivalence:

Definition 2.12. For f1 : Γ→ X, and f2 : Γ→ Y a pair of embeddings of a graph

Γ, we say f1 and f2 are equivalent embeddings if there is an orientation-preserving

homeomorphism φ : X → Y such that f2 = φ ◦ f1.

From now on, we will frequntly use the much shorter phrase minimal separating

set in place of the tediously long but more precise class of minimal separating sets
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Figure 5: Left: A minimal separating embedding of the graph with a single loop in the
sphere. Center and Right: Adding a handle to give a minimal separating embedding of
the same graph in the torus.

which are equivalent embeddings of the same topological graph. This is closer to

the kind of equivalence relation we would like, but still not quite right. Given any

graph G embedded in a surface X as a minimal separating set, we can construct

an infinite family of embeddings of G in surfaces of increasing genera that all “feel

the same”. The idea is that we can add as many handles as we want to a one of

the connected components of X \ G and retain a minimal separating set in the

new surface. See Figure 5 for an example with the graph consisting of one loop.

These embeddings “feel the same” and we can make this more precise by ob-

serving that if we restrict our view of the surface to a small neighborhood of the

embedding, these embeddings are all equivalent. There’s a handy object from the

study of graph embeddings in topology that captures what we are talking about,

the ribbon graph. Intuitively, this object is a thickening of an embedding so that

it becomes a submanifold of the surface. More formally:
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Definition 2.13. Let η : Γ→ X be an embedding of a graph Γ in a surface X.

1. The ribbon graph R(η) is a neighborhood of η(G) which is small enough to

retract to η(G). This is called a collared neighborhood.

2. Xη is the surface obtained by gluing a disk along each boundary component

of R(η), but ‘remembering’ the decomposition into disks and R(η). We call

those disks the faces of R).

Both R(η) and Xη are treated as oriented surfaces inheriting their orientations

from X. If G is a connected graph, then both R(η) and Xη are connected so it

makes sense to talk about the genus of Xη. That leads to the next definition:

Definition 2.14. Let η : G→ X be an embedding of a connected graph G. Then

we define the genus gR of R(η) to be the genus of Xη. Then it is given by the

formula

gR =
2− V + E − F

2

where V is the number of vertices of G, E the number of edges of G, and F the

number of faces of R(η).

Sometimes in other literature the ribbon graph is defined as Xη. This is because

much work on graph embeddings focuses on the case of cellular embeddings,

where any one of η, Xη, and R(η) is enough to recover (up to homeomorphism)

the other two. Unfortunately, we cannot restrict ourselves to cellular embeddings.

See Figure 6 for an example of a noncellular embedding which gives a minimal

separating set.
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Figure 6: Above we see two depictions of an embedding of the graph with one vertex
and two loops embedded as a minimal separating set in the torus. The complement
of the embedding has two components, one homeomorphic to a disk, and the other
homeomorphic to a punctured disk, giving an embedding which is both noncellular and
minimal separating

From the definition, we immediately have that for any graph G with two equiv-

alent embeddings η1 : G→ X, η2 : G→ Y , R(η1) is homeomorphic to R(η2) (by

an orientation preserving homeomorphism). In fact, in the case where η1, η2 are

both cellular embeddings, it follows from Theorems 1 and 2 of [7] that η1 and η2

are equivalent if and only if there is an orientation preserving homeomorphism

from R(η1) to R(η2).

Considering the ribbon graph of an embedding, rather than the image of the

embedding is often useful in proofs, because of the following issue: Suppose we

have an embedding η : G→ X and we want to examine a connected component

A of X \ η(G), A will not be compact. We will find ourselves wanting to use the

classfication of surfaces, and want to find a compact subset of X related to A

that still captures what we are looking at. A logical choice for this would be to
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observe: The image η(G) is the boundary of A in X, so A ∪ η(G) is a compact

subset of X. Unfortunately, outside of some special cases, A∪η(G) is usually not

a surface. If we look at a vertex of G along the boundary of A∪η(G), we see that

unless the vertex has degree 1 or 2, it has no neighborhood homeomorphic to a

half-disk, so A ∪ η(G) is not a surface with boundary (see Figure 6).

Looking at the ribbon graph R(η) solves this issue. Since R(η) retracts to η(G),

it is separating if and only if η(G) is, and the components of X \R(η) are home-

omorphic to the corresponding components of X \ η(G). Now, rather than look

at a component A of X \ η(G), which is not compact, or a closure A ∪ η(G),

which is not a surface, we can consider A with the interior of A ∩R(η) removed.

This is just a formal way of saying we are taking the component of X \R(η) that

corresponds to A, and then we add its boundary with R(η).

Now we can define one final family of sets which will be important to us, along

with theMg,Lg, and Cg.

Definition 2.15. Rg is the set of connected ribbon graphs (up to homeomor-

phism) which can be realized as the ribbon graph of a minimal separating set in

Xg, but not in Xg−1.

We can immediately relate Cg to Rg as follows:

Lemma 2.8. A graph G is in Cg if and only if there is an embedding η : G→ Xg

with ribbon graph R(η) ∈ Rg, but for any ĝ < g there is no embedding ψ : G→ Xĝ

with ribbon graph R(ψ) ∈ Rĝ.
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Proof. Suppose G is in Cg. Then certainly there is an embedding η : G → Xg

where η(G) is a minimal separating set, and R(η) is the ribbon graph of a minimal

separating set in Xg. Since the topological graph underlying a ribbon graph is

unique (up to homeomorphism), R(η) cannot be realized as a minimal separating

set in Xĝ for any ĝ ≤ g, or else G would have a minimal separating embedding in a

surface of genus ĝ, contradicting the least separating genus condition on Cg. Thus

R(η) ∈ Rg. Similarly, if there was any embedding ψ : G → Xĝ with R(ψ) ∈ Rĝ

for ĝ < g, we could recover from it a minimal separating embedding of G into Xĝ,

contradicting the least separating genus condition.

On the other hand, suppose that there is a surface X and embedding η : G→ X

such that R(η) ∈ Rg, but there is no surface Y and embedding ψ : G → Y with

R(ψ) ∈ Rĝ for any ĝ < g. Since R(η) ∈ Rg, we know that G embeds as a minimal

separating set in a surface of genus g so G ∈ Cḡ for some ḡ ≤ g. For purposes

of contradiction, suppose ḡ < g. Then there exists a surface Y of genus ḡ and a

minimal separating embedding ψ : G → Y . We then have R(ψ) ∈ Rĝ for some

ĝ ≤ ḡ < g, a contradiction.

In [3] it is shown that

M0 = L0 = C0 = {the graph with a single loop on a single vertex}.

Since we only consider orientable surfaces, the only possible ribbon graph for the

graph with a loop on a single vertex is the annulus, and R0 = {the annulus}.

From now on we will focus our attention on g > 0 and and can assume, at least
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for connected graphs, that no vertices have degree 2 (which excludes the graph

consisting of one vertex with a single loop).
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3 Topological Results

The main goal of this section is to establish the necessary topological results

to show that we can determine the elements of the sets Mg and Lg from the

elements of the Cĝ where ĝ ≤ g, and to show that although the minimal separating

embeddings of a graph need not be cellular embeddings, we can associate them to

cellular embeddings (via ribbon graphs) in a way which will help us to enumerate

them.

First we establish a useful lemma which follows almost immediately from the def-

inition of minimal separating and the fact that we only consider oriented surfaces.

Lemma 3.1. An embedding η(G) of a graph G into a surface X is minimal

separating in X if and only if X \ η(G) has two connected components, A and B,

and for every edge e of G, η(e) has A on one side and B on the other.

Proof. Suppose η(G) is minimal separating. Then by defintion X \ η(G) has at

least two connected components, which we call A,B, . . .. By minimality of η(G),

for any edge e of G we have (X \η(G))∪η(e) is connected. This means that η(G)

is incident to all the components of X \ η(G). Then there must be exactly two

components A and B of X \ η(G), one lying on either side of η(e).

Now, assume that η(G) is an embedding of G into X such that X \ η(G) has two

connected components, A and B, and for each edge e of G, η(e) is incident to

A on one side and incident to B on the other. By definition, η(G) is separating,

but we need to show that it is minimal separating. Every point x ∈ η(G) lies in
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η(e) for some edge e. Since A lies on one side of η(e) and B lies on the other,

we have a path from any point in A to x, and a path from any point in B to x.

Thus (X \ η(G)) ∪ {x} has a single connected component and η(G) \ {x} is not

separating for any x ∈ η(G). This shows η(G) is minimal separating.

The following definition will let us restate the above lemma in a more concise

form:

Definition 3.1. An n-face-coloring of a graph embedding η : G→ X is a parti-

tion of the set of components of X \ η(G) into n blocks. Traditionally each block

is named with a color. We say an n-face-coloring is proper if every edge of G is

incident to two components with distinct colors.

Then Lemma 3.1 can be restated as saying: An embedding η(G) is minimal

separating if and only if X \ η(G) has 2 connected components and they can be

properly 2-face-colored.

Lemma 3.2. Let G ∈ Lg, ϕ : G → Xg be a minimal separating embedding of G

into Xg, and A,B be the connected components of Xg \ R(ϕ). Then the surfaces

Ā and B̄ (the closure of A and B respectively) both have genus 0.

Proof. If Ā has genus greater than 0, we could cut a handle in it and call the

resulting surface Ā′. The boundary would be unchanged, so we could glue Ā′

back onto R(ϕ), and glue B̄ back onto R(ϕ) to obtain new surface X ′, the result

of cutting a handle in Xg. R(ϕ) would still minimal separating in this new surface

of genus g − 1. This would contradct the assumption that G ∈ Lg.
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Figure 7: Here we see a circle S1 embeded as a minimal separating set in the torus T .
One component of T \S1 is homeomorphic to a puctured torus, but by “cutting it open”
and gluing on disks to “plug” the holes we obtain a minimal separating embedding in
the sphere.

As a corollary (of the proof) we have

Corollary 3.2.1. Let R be a connected ribbon graph. R ∈ Rg if and only if R

can be realized as the ribbon graph of a minimal separating set in Xg and Ā, B̄

have genus 0 (where A and B are the connected components of X \R).

As a further corollary we have

Corollary 3.2.2. Let R be a connected ribbon graph and η an embedding with

R = R(η) and assume that the faces of Xη can be 2-colored so that each edge of

R is incident to one red face and one blue face. Then R ∈ Rg if and only if

F = 2 + g − gR

where F is the number of faces of R. Since F ≥ 2 this gives gR ≤ g.
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Proof. Suppose R ∈ Rg and let η be a minimal separating embedding of a graph

G into Xg with R as its ribbon graph. Let A,B be the connected components of

Xg \ R. By the previous corollary, Ā and B̄ both have genus 0 and are homeo-

morphic to spheres each with some number of disks removed. Specifically, they’re

homeomorphic to spheres with one disk removed for each component of their

boundary with R(η). With this in mind, we now reconstruct Xg from Xη while

preserving the minimal separating status of R(η) as follows:

Split the faces of Xη into two sets FA and FB according to whether they were

glued to R(η) along the boundary with A or the boundary with B. Now select a

disk D ∈ FA as a ‘base disk’ and for each other disk D′ in FA we add a handle

joining D to D′ in Xη. By connecting each face in FA to D in this fashion, we

have connected those disks into a single connected surface. Since cutting any of

the cylinders will disconnect D from the disk on the other end, we haven’t added

any genus and by the classification of surfaces with boundary the resulting surface

must be a sphere with a boundary component for each boundary with R(η). By

the Corollary 3.2.1 this is homeomorphic to Ā. Doing the same process to the

disks of FB gives a surface homeomorphic to B̄ as well.

Now we consider what this operation has done to Xη. We added |FA|− 1 handles

in order to reconstruct Ā and |FB| − 1 handles in order to reconstruct B̄. Since

R is connected, so was Xη and each handle contributed 1 to the genus of the

resulting surface. Then we have

g = gR + (|FA| − 1) + (|FB| − 1) = gR + F − 2
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giving F = 2 + g − gR as desired.

Now suppose R = R(η) for some η, the faces of Xη can be 2-colored so that each

edge of R is incident to a red face and blue face, and Xη has 2+ g− gR faces. Do

exactly the procedure described above to connect all the blue faces into a single

connected component and all of the red faces into a single connected component

by adding handles. As shown above, it produces the surface Xg, and contracting

R to its underlying topological graph gives a minimal separating set in Xg, by

Lemma 3.1. This shows that R ∈ Rg′ for some g′ and then the applying the first

part of the proof gives g′ = g.

Now we have a precise condition on whether a ribbon graph R is in any of the

Rg for some g, and what that value of g would be. For R = R(η) we construct

the related surface Xη. If the faces of Xη can be colored red and blue such that

each edge has a red face on on side and a blue face on the other, then R ∈ Rg for

g determined by the above corollary.

Next we will describe the elements of the Lgs in terms of the elements of the Cgs

and use this to find a formula for |Lg| in terms of |Cĝ| for ĝ ≤ g. Our first step is

the following theorem and corollary:

Theorem 3.3. Let G be a topological graph which is the disjoint union of graphs

G1 and G2. Then

G ∈ Lg ⇔ (Gi ∈ Lgi with g = g1 + g2 + 1)

30



Proof. Let G ∈ Lg and η be a minimal separating embedding of G in Xg. We

will let η1 and η2 be the restrictions of η to G1 and G2 respectively. Consider the

decomposition ofXg into R(η) = R(η1)∪R(η2) and the two connected components

of X \R(η) (see Figure 8).

By Lemma 3.2, we know that each component ofXg\R(η) has genus 0. So, we can

draw a simple closed curve on each component of Xg \ R(η) which separates the

boundary components incident to R(η1) from the boundary components incident

to R(η2). Cutting these two closed curves (one for each componet of Xg \ R(η))

and gluing disks onto the new boundaries we obtain two connected surfaces X ′

and X ′′, with R(η1) the ribbon graph of an embedding of G1 in X
′ and R(η2) the

ribbon graph of an embedding of G2 in X ′′ (see Figure 8).

Observe that in X ′ each edge of R(η1) is still incident to the blue component and

the red component, and our cutting has not connected the two components, so

the induced embedding of G1 in X ′ is minimal separating. Similarly the induced

embedding of G2 in X ′′ is minimal separating. Thus there exist g1, g2 with G1 ∈

Lg1 and G2 ∈ Lg2 , and X
′ has genus at most g1, while X

′′ has genus at most g2.

We recover X from X ′ and X ′′ by taking their connected sum (glued together

within the blue component of each surface) and adding a handle connecting the

red components. This recovers a surface where R(η) contracts to a minimal

separating set and by Theorem 2.5 and Theorem 2.4 it has genus g1 + g2 + 1.

Thus

g ≥ 1 + g1 + g2.
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Figure 8: An example whereG1 is a single vertex with two loops, G2 is a pair of isolated
loops, and gluing the components together recovers a minimal separating embedding of
G = G1 ∪G2 in a surface
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Now G1, G2 be topological graphs with G1 ∈ Lg1 and G2 ∈ Lg2 and let G be

the disjoint union of G1 and G2. Let η1 : G1 → Xg1 and η2 : G2 → Xg2 be

minimal separating embeddings. Then we can construct a minimal separating

embedding of G in X1+g1+g2 as follows: Color the connected components of Xg1 \

η1(G1) red and blue, and do the same for the components of Xg2 \ η2(G2). Take

the connected sum of Xg1 and Xg2 by gluing within the blue components and

add a handle connecting the red components. We’ve now constructed a surface

of genus g1 + g2 + 1 and an embedding of G into it with a2-face-coloring. By

construction each edge of G is incident to the blue component on one side and

the red component on the other, so the embedding is minimal separating. Thus

G ∈ Lg for some g and we know that

g ≤ 1 + g1 + g2.

Combining the two inequalities we obtain the desired result.

The following corollary gives the relation between the Lgs and Cgs that we have

been looking for

Corollary 3.3.1. Let G be a topological graph with connected components G1, G2, . . . , Gk.

G ∈ Lg if and only if there exist g1, g2, . . . , gk such that Gi ∈ Cgi for each i and

g = g1 + g2 + . . .+ gk + (k − 1).

Proof. The proof follows from Theorem 3.3 by induction on the number of con-
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nected components of G.

Now we can give the following formula for the cardinality of Lg, which we denote

by |Lg|.

Theorem 3.4. Let Kg = {(k0, k1, . . . , kg) : g = (
∑g

i=0(i+ 1)ki)− 1}. Then

|Lg| =
∑

(k0,...,kg)∈Kg

∏
i = 0g

(
|Ci|+ ki − 1

ki

)

Proof. From Corollary 3.3.1 we know that the graphs in Lg are precisely those

whose connected components G1, G2, . . . , Gℓ satisfy Gi ∈ Cgi for some i and

g1 + g2 + . . .+ gℓ + (ℓ− 1) = g.

Now for each i ∈ {0, 1, . . . , g} let ki = |{G1, G2, . . . , Gℓ} ∩ Ci|, the number of the

Gj which are elments of Cgi . Then we have:

g =

(
g∑

i=0

iki

)
+ (ℓ− 1)

and since each of the Gj is in exactly one of the Ci we have ℓ =
∑g

i=0 ki giving

g =

(
g∑

i=0

iki

)
+

(
g∑

i=0

ki

)
− 1

=

(
g∑

i=0

(i+ 1)ki

)
− 1
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This means that G ∈ Lg if and only if this equality holds. The remaining ques-

tion to answer here is: For a given g, how many graphs G have ki connected

components in Ci?

So, for a graph G ∈ Lg define K(G) := (k0, . . . , kg) where ki is the number of

connected components of G in Ci. Since two graphs G and G′ are isomorphic if

and only if there is a bijection between their connected components which takes

distinct components of G to distinct isomorphic components of G′, the number of

graphs G with K(G) = (k0, . . . , kg) is equal to the number of ways to choose (with

replacement) k0 elements of C0, times the number of ways to choose k1 elements

of C1,. . . , times the number of ways to choose kg elements of Cg.

The number of ways to choose k objects with replacement from a set of size n is

equal to
(
n+k−1

k

)
, which can be seen as follows: Line up the n objects and each

time you select an object, place a marker to the right of the object, so that any

selection is represented as a string of n + k symbols (n objects and k markers),

with the only restriction being that the first position is not a marker. There are(
n+k−1

k

)
such choices [29]. This gives the desired formula:

|Lg| =
∑

(k0,...,kg)∈Kg

g∏
i=0

(
|Cgi |+ ki − 1

ki

)
.
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4 Combinatorial Maps

In this section we introduce the language of combinatorial maps and hypermaps

and state some of their relevant properties. Combinatorial maps provide an en-

coding of a cellular embedding of a connected graph in a surface as an ordered

triple of permutations with properties that we will find very useful. Most ob-

viously, an encoding of a graph embedding as a permutation allows us to store

it efficiently in a computer. Additionally, two cellular graph embeddings are

equivalent if and only if they are associated to isomorphic combinatorial maps.

Furthermore, in some limited cases we can use the representation theory of the

symmetric groups to enumerate minimal separating embeddings up to embedding

equivalence without need of a computer. Hypermaps are a generalization of com-

binatorial maps. We will see later that translating from combinatorial maps to

hypermaps adds some complications to our work but yields great computational

benefits and simplifies some of the relevant representation theory.

A key motivating idea for combinatorial maps comes from the goal of recovering

a ribbon graph from discrete data. Topologically, a ribbon graph is a collection

of disks (one per vertex) with copies of [0, 1]× [0, 1] (one for each edge) glued to

their boundaries. Since we only consider oriented surfaces, there are no half-twists

on any of the edges, and knowing the cyclic ordering of the edges glued to each

vertex is enough to recover the ribbon graph (up to homeomorphism).

Following [17] we give the following definition of a combinatorial map.

Definition 4.1. A combinatorial map is a triple of permutations (σ, α, φ) in the
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symmetric group S2n (for some n) satisfying:

1. α is an involution with no fixed points

2. φ ◦ α ◦ σ = ()

3. The permutation group ⟨σ, α, φ⟩ acts transitively on {1, . . . , 2n}.

The last part of the defintion, that ⟨σ, α, φ⟩ acts transitively will correspond to

requiring that a ribbon graph is connected. While we allow ribbon graphs in

general to be connected or disconnected, this part of the definition is convenient

for us, as the sets Rg that we wish to enumerate consist of connected ribbon

graphs.

Given a embedding η of a connected graph G in an oriented surface X, we can

associate to η a combinatorial map as follows:

1. Let n equal the number of edges in G, and label each end of each edge with

a distinct integer in {1, 2, . . . , 2n}.

2. Define α as the permutation which swaps each edge end label with the label

on the other end of its edge.

3. Define σ to be the permutation which maps edge end i to the next edge end

at the same vertex, where ‘next’ is with respect to the orientation on X.

4. Define φ = (α ◦ σ)−1

By this construction the cycles of α correspond to the edges of G and the cycles

of σ correspond to the vertices. In the case where φ is a cellular embedding the
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Figure 9: Considering the labels 2 and 4, which are drawn in the same face, we can
see that applying α−1 to 4 would take it to 3, and the applying σ−1 would take it to 2,
so φ(4) = 2. This matches the drawing precisely.

faces of the embedding correspond to the cycles of φ and in fact each cycle of φ

gives the oriented boundary walk along its corresponding face. This is illustrated

by Figure 9. For a proof, see [17] . In this figure (and all future figures of labelled

graph embeddings) we are going to adopt a convention from [17]. Labels on edge

ends will always be drawn on the left from the perspective of a walker who starts

at that edge end and is walking to the other end of the edge.

We can reverse this process and go from a combinatorial map to a cellular graph

embedding as well. We let {1, 2, . . . , 2n} be the set of edge ends of our graph. For

each cycle of σ we make a vertex, and take the elements of that cycle (in order)

as the edge ends placed incident to σ. Then we glue edge ends together into

full edges according to the cycles of α, and finally glue disks onto the resulting

topological graph according to the cycles of φ.
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Ribbon Graph Property Combinatorial Map Property
Number of Vertices c(σ)
Number of Edges c(α)
Number of Faces c(φ)

Table 1: Glossary for translating between ribbon graphs and combinatorial maps

This correspondence between cycles of σ, α, and φ and vertices, edges, and faces

of a cellular embedding, means we will be frequently referring to the number of

disjoint cycles of permutations. We introduce the following notation to make this

more convenient:

Definition 4.2. Given any permutation ρ we define c(ρ) to be the number of

disjoint cycles of ρ.

The glossary in Table 1 gives a translation of some properties of a ribbon graph

to properties of a corresponding combinatorial map.

Definition 4.3. The genus of a combinatorial map (σ, α, φ) is defined to be the

genus gR of the corresponding ribbon graph. It satisfies the equation:

gR =
2− c(σ) + c(α)− c(φ)

2
.

Note that the formula above is a translation of the formula from Definition 2.14

via the glossary in Table 1.

Motivated by our desire to use a computer to find minimal separating sets and

the fact that it is much easier to store and work with permutations on a computer

than pictures or continuous maps from graphs to topological surfaces, we would
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like to count the elements of Rg by counting combinatorial maps, rather than

starting with ribbon graphs.

If we associate the same combinatorial map to a pair of cellular graph embeddings

it follows that the embeddings are equivalent. The cycles of φ give a dissection

of the underlying surface into polygons, and the cycles of α give the instructions

on how to glue the polygons together. The reverse, that equivalent embeddings

necessarily give rise to the same map, is not true. The first step in our construction

of a combinatorial map from a graph embedding in a surface was a choice of

labelling on the edge ends. Hence our next definition:

Definition 4.4. We say that two combinatorial maps (σ1, α1, φ1) and (σ2, α2, φ2)

(both composed of elements of S2n) are isomorphic if there exists permutation

ρ ∈ S2n such that

ρ ◦ σ1 ◦ ρ−1 = σ2, ρ ◦ α1 ◦ ρ−1 = α2, and therefore ρ ◦ φ1 ◦ ρ−1 = φ2.

A useful way to think of this definition is that two combinatorial maps are iso-

morphic if and only if they differ only by the choice of labelling. To make this

interpretation clearer: The symmetric group S2n has a natural action on the in-

tegers {1, 2, . . . , 2n}, so given ρ ∈ S2n and a labelling of edge ends on a cellularly

embedded graph, we can interpret ρ as the following relabeling of edge ends: The

edge end that was originally labelled i is now labelled ρ(i).

Now when we restate the isomorphism condition as: (σ1, α1, φ1) ≃ (σ2, α2, φ2) if

40



there exists ρ ∈ S2n such that

ρ ◦ σ1 = σ2 ◦ ρ, ρ ◦ α1 = α2 ◦ ρ, ρ ◦ φ1 = φ2 ◦ ρ,

and we can see that this means we can relabel edge ends according to ρ so that

if i and j are two ends of the same edge (so α1(i) = j) then

ρ(j) = ρ(α1(i)) = α2(ρ(i)),

so that ρ takes the two ends of an edge in the first map to the two ends of an

edge in the second map. An analogous result occurs for the ordering of edge ends

about vertices (given by the σs) and for the boundary of each face (given by the

φs).

The following theorem is a combination of Theorems 1 and 2 in [7], restated in

our language. It is a consequence of the bijection between isomorphism classes

of combinatorial maps and ribbon raphs sharing the same underlying graph (and

the correspondence between ribbon graphs and cellular embeddings).

Theorem 4.1. [7] Let G be a topological graph and let f1 : G→ X1, f2 : G→ X2

be cellular embeddings of G. Then f1 and f2 are equivalent embeddings if and only

if any combinatorial maps associated to them are isomorphic.

We can already naturally translate Corollary 3.2.2 into the following statement

about combinatorial maps. It says that a ribbon graph R is inRg if and only if the

faces can be properly 2-colored and a combinatorial map (σ, α, φ) corresponding
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to R satisfies

g = ĝ + c(φ)− 2

where ĝ is the genus of (σ, α, φ). We will come back to this at the end of this

chapter when we can restate Corollary 3.2.2 particularly cleanly.

At this point an algorithm to compute the elements of Rg starts to take shape. If

we could bound the number of edges, E, for a ribbon graph in Rg, which we will

do in Lemmas 6.3 and 6.2, we could exhaustively search for combinatorial maps

made of elements of SE for each possible E. Without any modifications, such

an algorithm would be wildly inefficient. We’d like to restrict the search space

to a much smaller set of combinatorial maps and we can. For example, since we

restrict all our connected topological graphs (and thus ribbon graphs) to have no

degree two vertices (other than the graph which is one vertex with one loop), our

algorithm shouldn’t search through combinatorial maps with degree two vertices.

We also want to require that our maps can be properly 2-face-colored. This

condition is a little trickier to ensure ahead of time. The following definition of

the dual of a combinatorial map will help us with this condition.

Definition 4.5. The dual of a combinatorial map (σ, α, φ) is the combinatorial

map (φ, α, σ).

The definition is stated in the language of permutations, but there is an intuitive

geometric interpretation. When we consider a combinatorial map as a cellular

embedding of a graph in a surface, taking the dual exchanges faces with vertices,

like the more familiar dual of polyhedra or a plane graphs. As shown in Figure 10
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Figure 10: The circles and solid lines show the combinatorial map,
σ = (1)(2, 3, 4, 5, 7)(6, 9)(8, 10), α = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10), φ =
(1, 7, 10, 6, 4, 2)(3)(5, 9, 8). The squares give the vertices of the dual map, and
the dashed lines its edges. If we assign labels to the edges of the dual map to match
those of the original map we see that the permutation describing the vertices of
the dual is φ, α is still the permutation describing the edge-end pairings, and the
permutation describing faces of the dual map is σ.

the vertices and faces of the original map are now, respectively, the faces and ver-

tices of the new map, with each edge running between the vertices corresponding

to the faces it was incident to in the original map.

Considering the dual graph allows us to translate our statement about 2-face-

coloring into a statment about vertex coloring (Definition 2.4). Note that taking

the dual does not change the genus of a combinatorial map (see Definition 4.3),

since taking a dual does not change the number of edges and simply exchanges

the number vertices with the number of faces.

We can now restate Lemma 3.1 in terms of dual combinatorial maps (for connected

graphs only)

43



Lemma 4.2. Let Γ be a connected graph. An embedding η(Γ) is minimal sep-

arating if and only if the corresponding combinatorial map has a bipartite dual

map.

Proof. The lemma is nearly just a restatement of Lemma 3.1 in terms of dual

maps. A proper 2-face-coloring of a map becomes a proper 2-vertex-coloring upon

taking the dual. We add the hypothesis that Γ is connected because Definition

4.1 only allows us to define combinatorial maps for connected graphs.

Now a proper 2-face-coloring of a combinatorial map becomes a proper 2-vertex-

coloring of the dual map, and a combinatorial map can be 2-face-colored if and

only if the dual is bipartite. In the next chapter, we will introduce a generaliza-

tion of combinatorial maps that will allow us to take advantage of this bipartite

condition to help us find the elements of Rg more efficiently.

We can similarly restate Corollary 3.2.2 now in terms of dual combinatorial maps,

and it becomes much neater:

Corollary 4.2.1. Let R(η) be a ribbon graph, and let (σ, α, φ) be the correspond-

ing combinatorial map and let g > 0. R(η) ∈ Rg if and only if (φ, α, σ) is

bipartite, c(σ) has no cycles of length 2, and

g =
−c(σ) + c(α) + c(φ)

2
− 1

Proof. Elements of Rg must be connected, so all of the ribbon graphs we are

considering here do in fact have corresponding combinatorial maps. The condition
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that (φ, α, σ) is bipartite comes from the equivalence between a combinatorial map

being properly 2-face-colorable and the dual being bipartite (properly 2-vertex-

colorable). The condition that c(σ) has no cycles of length 2 comes from the fact

that we are excluding g = 0 (so we exclude the ribbon graph which is a single

vertex with a single loop edge). Then the relating g to c(α), c(φ), and c(σ) comes

from the statement of Corollary 3.2.2, which says g− gR +2 = F , where F is the

number of faces of Xη. Since c(φ) is the number of faces of Xη, we obtain the

equality from substituting gR = 2−c(σ)+c(α)−c(φ)
2

from Definition 4.3.

Before we move on to the next chapter, we feel some remarks should be made

about why we are not using existing methods from the study of map enumeration

(and hypermap enumeration in the next chapter). After all, these are active fields

of research, going back to the 1960s with work such as [14] and [30] and continuing

to the present day. Early work in the field was mostly concerned with developing

techniques for enumerating labelled maps, or rooted maps (a rooted map is a

map with a distinguished edge end) to reduce symmetries of the problem. More

recently great progress has been made in enumerating maps and hypermaps up to

isomorphism as we would want to, such as in [18], [21] and [22], but unfortunately

applying these methods to our problems has a major obstacle. The methods

devised in those papers enumerate families of maps (and hypermaps in [22]) by

first enumerating all the maps (resp hypermaps) which can be realized as quotients

of the desired objects by an automorphism. Here when we refer to the quotient

of a map by an automorphism, we mean the map obtained by identifying all edge

ends in the same orbit of the action of the automorphism, as shown in Figure 11.
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Figure 11: The combinatorial map σ = (1, 2, 3, 6)(4, 5, 7, 8), α = (1, 2)(3, 4)(5, 6)(7, 8)
(left) and it is quotient (right) under the autmorphism ρ = (1, 7)(2, 8)(3, 4)(5, 6). The
unlabelled edge ends that occur are called singular edges in [18] and these would be
fixed points under the involution α describing the quotient, which means it violates our
definition of a combinatorial map. Instead [18] using an altered definition of combina-
torial map which admits singular edges.

This method is clearly most practical when the quotients of the objects you’re

enumerating are a family of objects you’ve already counted. For example, it is

very effective for enumerating maps with n edges, because a quotient necessarily

has fewer edges, so if you work inductively you will have already enumerated

the possible quotient objects. In our case, it is very possible that there may

be quotients of a minimal separating embedding which are either not minimal

separating or have degree 2 vertices, leading to an entirely new enumeration

problem. In fact, as shown in Figure 11 they may not even be maps at all

according to our definition. This related problem of determining precisely which

maps and “map-like-objects” can be realized as quotients of minimal separating

sets is a possible avenue for research and it may turn out to be a solvable problem

which could lead to a way to enumerate elements of Rg without a computer, but

for now we leave that investigation to future work.
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5 Hypermaps

In this section we introduce a natural generalization of combinatorial maps which

will allow us to more efficiently compute the elements of the Rg. As a nice

additional side benefit, they’ll also simplify some of the representation theory

used in Appendx A to determine how to preallocate memory.

In the definition of a combinatorial map, the first requirement, that α is an

involution, is oddly specific, and combinatorial maps have a natural generalization

that drops this requirement.

Definition 5.1. A hypermap is an ordered triple of permutations (σ, α, φ) in Sn

satisfying

1. φ ◦ α ◦ σ = 1.

2. The permutation group ⟨σ, α, φ⟩ acts transitively on {1, 2, . . . , n}.

Hypermaps are to combinatorial maps as hypergraphs are to graphs, so it is

common to refer to the cycles of σ as the vertices of a hypermap, the cycles of α

as the hyperedges, and the cycles of φ as the faces. In the context of hypermaps,

the elements of {1, 2, . . . , n} are commonly referred to as bits, brins, or darts.

This definition and the upcoming definitions of hypermap isomorphism and genus

follow [17].

Just as was the case for combinatorial maps, we want to consider two hypermaps

isomorphic if they differ by a relabeling. As a result we again say:
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Definition 5.2. Two hypermaps (σ, α, φ) and (σ′, α′, φ′) (both with n bits) iso-

morphic if there exists ρ ∈ Sn such that

ρ ◦ σ ◦ ρ−1 = σ′, ρ ◦ α ◦ ρ−1 = α′, and therefore ρ ◦ φ ◦ ρ−1 = φ′.

We call such a ρ an isomorphism of hypermaps

The genus of a hypermap is defined as

Definition 5.3. The genus of a hypermap (σ, α, φ) with elements in Sn is define

to be equal to

gR =
2− c(σ)− c(α) + n− c(φ)

2
.

We denote this by gR, because the next theorem will show that each hypermap

is associated to a combinatorial map (and therefore a ribbon graph), and the

hypermap genus as defined is equal to the genus of that ribbon graph.

In terms of the correspondence between graph embeddings and combinatorial

maps, relaxing the requirement that α be an involution without fixed-points might

be most naturally seen as allowing edges with more (or less) than 2 ends, and

hypermaps would describe hypergraph embeddings (hence the name). Under this

interpretation we would now call the cycles of α the hyperedges of the hypermap.

The following result of Walsh gives another interpretation of hypermaps which is

more connected with our investigation of minimal separating sets:

Theorem 5.1. [34] There is a one-to-one correspondence between isomorphism

classes of hypermaps and isomorphism classes of 2-vertex-colored bipartite com-
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Ribbon Graph Combinatorial Map Hypermap of Dual Map
Number of Vertices c(σ) c(φ̄)
Number of Edges c(α) n
Number of Faces c(φ) c(σ̄) + c(ᾱ)

Table 2: A glossary for translating between ribbon graphs that can be properly 2-face-
colored, their corresponding combinatorial map (σ, α, φ), and the hypermap (σ̄, ᾱ, φ̄)
corresponding to a vertex-colored dual of the combinatorial map.

binatorial maps which preserves the genus and maps vertices, hyperedges, faces,

and bits of a hypermap onto (respectively) the vertices of one color class, vertices

of the other color class, faces, and edges of a 2-vertex-colored bipartite map.

Now the reasoning behind the definition of hypermap genus becomes clear. Since

vertices and hyperedges of a hypermap (σ, α, φ) correspond to the two color classes

of vertices in a 2-vertex-colored bipartite map, c(σ)+c(α) is the number of vertices

in the corresponding map. The bits of a hypermap are mapped to edges of the

bipartite map, so n is the number of edges, and similarly c(φ) is the number

of faces, since faces of the hypermap map to faces of the bipartite map. Then

the hypermap genus formula is simply a translation of the genus formula for the

corresponding combinatorial map. We organize this into a new glossary (but

comparing hypermaps to the duals of combinatorial maps since that is our actual

use case) in Table 2.

Not only does the correspondence from Theorem 5.1 exist, but the correspondence

is relatively straightforward. Here we give a description of how to take a 2-vertex-

colored bipartite combinatorial map and construct the corresponding hypermap,

but a picture is the best kind of explanation. See Figure 12 for an example of a
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Figure 12: Above is a drawing of the combinatorial map (σ, α, φ) where σ =
(1, 2, 3, 4)(6, 7), α = (1, 5)(2, 6)(3, 7)(4, 8), φ = (1, 5, 4, 8, 3, 6)(2, 7). Below is the cor-
responding hypermap (σ̄, ᾱ, φ̄) where σ̄ = (1, 2, 3, 4), ᾱ = (2, 3), φ̄ = (1, 4, 3). Each
drawing can be viewed as an embedding in the sphere.

50



2-vertex-colored bipartite combinatorial map and a corresponding hypermap.

The idea is to take a 2-vertex-colored bipartite combinatorial map (σ, α, φ) and

consider the cycles corresponding to the blue vertices separately from the cycles

corresponding to the red vertices. Since each edge of a 2-vertex-colored bipartite

graph is incident to exactly one blue vertex and one red vertex, the cycles of σ

corresponding to blue vertices induce a permutation on the edges of the graph

(with one cycle per blue vertex) and so do the cycles of σ corresponding to the red

vertices (but with one cycle per red vertex now). We label the edges 1, 2, . . . , n and

now the permutations on {1, 2, . . . , n} induced by the action of σ restricted to the

blue vertices and red vertices will be respectively the σ̄ and ᾱ of the corresponding

hypermap (σ̄, ᾱ, φ̄). For now we simply define φ̄ = (σ̄ᾱ)−1 and we will look at

its properties more soon. The definition of a hypermap requires ⟨σ̄, ᾱ, φ̄⟩ acts

transitively on {1, . . . , n}, so we verify that now.

Transitivity follows from the fact that we started with a combinatorial map,

so the underlying graph was connected. This means that for any two edges

i, j ∈ {1, 2, . . . , n} there is some path: e0, e1, . . . , ek with e0 = i and ek = j.

Consecutive edges in this path share a vertex, so they are in the same orbit of

either σ̄ or ᾱ (depending on whether the shared vertex is red or blue). Then

application of σ̄ or ᾱ the correct number of times maps any eℓ to eℓ+1, and

repeated application of σ̄ and ᾱ maps i to j, showing the action is transitive.

The process of going from a hypermap to the corresponding (isomorphism class)

of 2-vertex-colored bipartite combinatorial map starts to show how we can gain
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computationally from using hypermaps:

Starting with a hypermap (σ̄, ᾱ, φ̄) with n edges, we define α ∈ S2n as the invo-

lution with α(i) = i+ n for 1 ≤ i ≤ n and α(i) = i− n for n+ 1 ≤ i ≤ 2n. Now

we define σ ∈ S2n by:

σ(i) =


σ̄(i) if 1 ≤ i ≤ n

ᾱ(i− n) + n if n+ 1 ≤ i ≤ 2n

The idea is as follows: We treat the permutations σ̄ and ᾱ as orderings of the

incident edges around the blue and red vertices respectively. In a combinatorial

map we label each edge end, rather than just each edge, so for the edge labelled

i we now assign the label i to the end of edge i incident to a blue vertex, and the

label i+ n to the end of edge i incident to a red vertex. Each edge now has ends

labelled i and i+n for some i ∈ {1, 2, . . . , n}, so α, the permutation which swaps

the two ends of each edge, should be precisely what we defined it to be. Similarly,

σ has been constructed so that the cycles which contain elements of {1, 2, . . . , n}

give the cyclic orderings of edge ends around blue vertices, and the cycles which

contain elements of {n+ 1, . . . , 2n} give the cyclic orderings of edges around the

red vertices.

It is very worth noting though that Theorem 5.1 is about isomorphism classes. We

chose a very specific way to label the edge ends when going from our hypermap

to a combinatorial map. We could just as easily have a different convention

for assigning the n bit labels to edge ends and then assigning the n additional
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labels needed for the combinatorial map. Even if we imposed the condition that

in the combinatorial map the end of each edge incident to a blue vertex (in

the hypermap) gets labelled with the number of the corresponding bit i in the

hypermap, we still have n! ways to “extend” a labelling on a hypermap to one

on a combinatorial map. This is why translating our problem into the language

of hypermaps will be so useful. For enumerating elements of Rg, we do not care

about the choice of labelling. We want to enumerate isomorphism classes, so

searching the much smaller space of labelled hypermaps will accomplish the same

goal more efficiently.

Before going any further we should discuss how the cycles of φ in a hypermap

(σ, α, φ) relate to the faces of the corresponding 2-vertex-colored combinatorial

map. From Theorem 5.1 we know that the cycles of φ should be in bijection with

the faces of the corresponding 2-vertex-colored combinatorial map. If n is the

number of bits in our hypermap, then φ ∈ Sn, but the permutation describing

the faces of the corresponding combinatorial map, which we will call φ′ would

be an element of S2n. The bijection between faces says that c(φ) = c(φ′), so

some of the cycles of φ must be shorter than the corresponding cycles in φ′. A

reasonable question to ask would be “are they shorter in a predictable way?”

Another reasonable question would be “The cycles of φ′ do not just correspond

to faces, they give an oriented boundary walk around the face. Does something

similar happen with φ?”

The answer to both questions is yes. Suppose (σ, α, φ) is a hypermap correspond-

ing to the 2-vertex-colored combinatorial map (σ′, α′, φ′) and consider a fixed face
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F of the map. The edges that appear in the corresponding cycle of φ are pre-

cisely those edges where F is to the left of the walker while they walk from a blue

vertex to a red one during a walk along the boundary of F in the positive direc-

tion (recall we always counterclockwise is the positive direction). This is most

clearly and easily explained by drawing a picture and adopting a convention for

placement of labels in the picture. See Figure 13. By the convention adopted for

placing labels, the label on an edge has been placed inside the face that is on

the left as one walks along that edge from a blue vertex to a red vertex. Only a

small bit of the hypermap is shown, because we only need to verify that φ(1) = 3

and the argument will apply to any face on any hypermap. Now, recalling that

φ = (α ◦ σ)−1 = σ−1 ◦ α−1 we observe that applying α−1 to 1 gives 2, the edge

clockwise from 1 around the red vertex. Then applying σ−1 to 2 maps 2 to the

edge clockwise from 2 around the blue vertex, which is 3 as desired. If we use

our convention of label placement and think about what (α ◦ σ)−1(e) is for any

edge e drawn inside F , we see that applying α−1 to e takes it to the next edge

along the boundary of F , but that this edge will have the label drawn outside of

F . Then applying σ−1 rotates around the blue vertex on the other end of α−1(e),

which again is along the boundary of F , this time with the label drawn inside F .

Since exactly half of the edges along the boundary of the face meet this condition,

we can see that each cycle of φ is exactly half the length of the corresponding cycle

in φ′. Of particular interest to us, it means that in a hypermap (σ, α, φ), φ has

a fixed point (cycle of length 1) if and only if the corresponding 2-vertex-colored

bipartite map has a face of degree 2. In our goal of enumerating elements of the
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Figure 13: From the label placement, and recalling that σ acts on bits by mapping
them to the next bit counterclockwise about and blue vertex and α acts by mapping a
bit to the next bit counterclockwise about a red vertex, we see that (α◦σ)−1 = σ−1◦α−1

maps a bit to the next bit counter-clockwise about the face it is drawn inside.
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Rgs, we have already determined R0, and for g > 0 we know that the elements

of Rg have no vertices of degree 2.

Before we go on to the next section, we use the language of hypermaps to restate

Corollary 3.2.2 yet again, this time in the language of hypermaps.

Corollary 5.1.1. Let R(η) be a ribbon graph and g > 0. R(η) ∈ Rg if and only

if the corresponding combinatorial map M has a bipartite dual, φ has no fixed

points and

gR =
−c(φ) + n+ c(σ) + c(α)

2
− 1

where (σ, α, φ) is a hypermap corresponding to a 2-vertex-coloring of the dual of

M .

Proof. The corollary follows immediately from Corollary 3.2.2 which says g −

gR + 2 = F and Definition 2.14, and translating into the language of hypermaps

according to Table 2.

Now that we have established the necessary background on combinatorial maps

and hypermaps, it is time to apply all of this to an algorithm to determine the

elements of the Rgs.
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6 An Algorithm to Find the Elements of Rg

In this section we use make use of Corollary 5.1.1 to establish conditions on the

number of bits and cycle types of σ, α, φ for a hypermap (σ, α, φ) corresponding

to an element of Rg. We then construct an algorithm to enumerate the elements

of Rg and Cg and use these bounds to restrict the search space to a manageable

size.

Lemma 6.1. Let R ∈ Rg and let (σ, α, φ) be a hypermap corresponding to R (i.e.

it corresponds to the 2-vertex-colored dual of the combinatorial map associated to

R). Then

c(σ) + c(α) = g − gR + 2

Proof. From Corollary 3.2.2 we know that F = g − gR + 2. Translating through

Table 2 we have F = c(σ) + c(α).

Lemma 6.2. Let (σ, α, φ) be a hypermap with n bits and genus gR. Let X be the

dual of the corresponding 2-vertex-colored bipartite map. If X is a combinatorial

map corresponding to an element of Rg then n ≤ 2g + 2gR.

Proof. From Lemma 6.1 we have

c(σ) + c(α) = g − gR + 2

Since g > 0, Corollary 5.1.1 tells us that φ has no fixed points. Then each cycle

of φ has length at least 2. Each of the n-bits appears in precisely one cycle of φ
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so

c(φ) ≤ n

2
.

Then by the genus formula for (σ, α, φ) (see Definition 5.3) we have

gR =
2 + n− c(α)− c(σ)− c(φ)

2

which simplifies to

c(α) + c(σ) + 2gR = 2 + n− c(φ)

c(α) + c(σ) + 2gR ≥ 2 + n− n

2

substituting c(α) + c(σ) = 2 + g − gR we obtain

2 + g − gR + 2gR ≥ 2 +
n

2

which implies the result

2g + 2gR ≥ n

Lemma 6.2 now gives an upper bound on the size of the symmetric groups we

need to search, so we now have a stopping condition for an exhaustive search. For

g = 5 though, this still entails searching through symmetric groups up to S20, so

58



we would like to further restrict the search space if possible. A lower bound on

E would be nice.

Lemma 6.3. Let (σ, α, φ) be a hypermap with n bits and genus gR. Let X be the

dual of the corresponding 2-vertex-colored bipartite map. If X is a combinatorial

map corresponding to an element of Rg then n ≥ g + gR + 1.

Proof. Again we use the genus formula for (σ, α, φ) and solve for n:

gR =
2 + n− c(α)− c(σ)− c(φ)

2

simplifies to

n = c(α) + c(σ) + c(φ) + 2gR − 2

Then substituting Lemma 6.1 and the fact that c(φ) ≥ 1 proves the statement.

These two bounds are both sharp. Figure 14 shows two elements of R1 which

achieve the two bounds.

Now we have sharp upper and lower bounds on the sizes of the symmetric groups

Sn which we will need to search. We would like to restrict our search space within

those groups though. Lemma 6.1 gives one restriction, that c(σ)+c(α) = 2+g−gR.

Corollary 5.1.1 gives another, that φ has no 1-cycles. At this point we would like to

make use of two facts about what we are counting: We are counting hypermaps

up to isomorphism and we are counting hypermaps as a shortcut to counting
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Figure 14: On the left is shown a 2-bit hypermap dual to an element of R1, with the
corresponding graph emebedding shown below. In this case n = 2, g = 1, gR = 0. On
the right is shown a 4-bit hypermap dual to an element of R1, with the corresponding
graph embedding below. Different line dashings are used to help identify edges since
this embedding is nonplanar and must be drawn on the page with crossings. It is hard
to see the faces here, but for this hypermap we have σ = (1, 2, 3, 4), α = (1, 2, 3, 4), φ =
(1, 3)(2, 4) so n = 4, gR = 1 and g = 1. These two examples show that the bounds from
Lemma 6.3 and Lemma 6.2 are sharp.
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bipartite combinatorial maps.

The first fact, that we are counting hypermaps up to isomorphism means we do

not want to count different labellings of the same hypermap separately. Recall

that two n-bit hypermaps (σ, α, φ) and (σ′, α′, φ′) are isomorphic if and only if

they differ by conjugation by an element ρ ∈ Sn. I.e if there exists ρ ∈ Sn such

that

ρ ◦ σ ◦ ρ−1 = σ′, ρ ◦ α ◦ ρ−1 = α′, ρ ◦ φ ◦ ρ−1 = φ′.

Since two permutations in Sn are conjugate if and only if they have the same

cycle type there exists at least one (σ′, α′, φ′) isomorphic to (σ, α, φ) for every σ′

with the same cycle type as σ (and similar for α, φ). Thus within each triple of

possible cycle types satisfying Corollary 5.1.1 we can fix one of σ, α, or φ to be a

specific element of the desired cycle type.

The point of the second fact, that we are counting hypermaps as a shortcut to

counting bipartite maps, is that the choice of 2-vertex-coloring does not matter.

For a connected bipartite map, the choice of color for a single vertex determines

a proper 2-vertex-coloring (since each vertex must be a different color from its

neighbors), but this typically leads to a pair of distinct colorings, as shown in

Figure 15, and thus 2 nonisomorphic hypermaps. It is possible for both colorings

to give isomorphic hypermaps, as shown in Figure 16, so we will need to handle

this carefully, but this gives us the freedom to require a basic relationship between

σ and α. We can always require that there be no more blue vertices than red

vertices (so c(σ) ≤ c(α)) and when there are equal numbers of vertices in each
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Figure 15: Two hypermaps corresponding to the same underlying bipartite combina-
torial map, but with distinct colorings are shown.
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Restrictions on n Restrictions on (C1, C2, C3) Restrictions on σ, α, φ
n ≥ g + gR + 1 c(C1) + c(C2) = 2 + g − gR σ is a fixed element of C1.

n ≤ 2g + 2gR gr =
2+n−c(C1)−c(C2)−c(C3)

2
α or φ varies.

C3 has no 1-cycles
c(C1) ≤ c(C2)

If c(C1) = c(C2), #C1 ≥ #C2

Table 3: A table of all the restrictions we have imposed on the space of permutations
triples to search for hypermaps corresponding to elements ofRg with given ribbon graph
genus gR. Column 1 gives restriction on n, the number of bit. For fixed n, column 2
gives restrictions on the cycle types (C1, C2, C3) to search for hypermaps (σ, α, φ). Here
we use the notation c(Ci) = the number of disjoint cycles in cycle type Ci, and #Ci =
the number of permutations in Sn with cycle type Ci. Column 3 gives any possible
restrictions on the values of σ, α, φ to search once the cycle types C1, C2, C3 have been
chosen.

color class we require that there not be more permutations with the cycle type

of α than there are with the cycle type of σ. When σ and α have the same cycle

type we will need to do some isomorphism testing.

Now we are ready to lay out an algorithm for finding all the elements of Rg for

g > 0 (recall that R0 = {the annulus}). To avoid writing the algorithm with

basically the entire algorithm nested inside a pair of outer loops, we first define

subsets Rg,ĝ of Rg by:

Rg,ĝ := {R ∈ Rg : gR = ĝ}.

Then, by Corollary 3.2.2 Rg is the disjoint union of the Rg,ĝ for 0 ≤ ĝ ≤ g.

Next we define subsets Rg,ĝ,n of Rg,ĝ by:

Rg,ĝ,n := {R ∈ Rg : R has n edges}.
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Figure 16: This figure shows two choices of 2-vertex-coloring of the same underlying
combinatorial map which give rise to isomorphic hypermaps. The isomorphism can
be seen visually as rotation by π about the midpoint of edge 2, or algebraically as
conjugation by ρ = (1, 3).
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For n1 ̸= n2 we certainly have that Rg,ĝ,n1 and Rg,ĝ,n2 are disjoint and by Lemmas

6.3 and 6.2 we have

Rg,ĝ =

2(g+ĝ)⋃
n=g+ĝ+1

Rg,ĝ,n.

Now we give an algorithm to compute the elements of Rg,ĝ,n for g > 0, 0 ≤ ĝ ≤ g,

and g + ĝ + 1 ≤ n ≤ 2(g + ĝ) and taking the union over valid choices of ĝ and n

will recover Rg.

In the algorithm, whenever we write α < β for two permutations in Sn, the “<”

is with respect to the lexicographic ordering on permutations. The ordering is

defined by: α < β if α(i) < β(i) for the first integer i such that α(i) ̸= β(i).

Given enough processing time and storage space the algorithm described above

will find a single hypermap representative for each isomorphism class of graph

embedding in Rg. Due to the size of the search space, time and space do become

concerns, which we address in the next section on computational methods and

results. In practice, the number of elements in Rg grows quite rapidly (see the

next section for just how large it becomes) and we are most interested in the sizes

of the sets Rg, Cg,Lg, and Mg so we made a change to the last portion of the

algorithm. Rather than exhaustively check each hypermap against the others in

our list to find a single representative from each isomorphism class we can simply

determine which hypermaps (σ, α, φ) were counted twice and subtract one half

this number from the total size of the list. When we compute Cg from our list

we will have to test the underlying graphs for isomorphism anyways, so this will

catch any duplicate graphs. Even though graph isomorphism testing is much
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Algorithm 1

1: r ← 1 ▷ r for number of red vertices
2: while r ≤ 2+g−ĝ

2
do

3: CC ← {(C1, C2, C3)} ▷ C1 a conjugacy class in Sn with r disjoint cycles,
C2 a conjugacy class in Sn with 2 + g − ĝ − r disjoint cycles, C3 has no fixed
points, and c(C1) + c(C2) + c(C3) = 2− 2ĝ + n

4: for (C1, C2, C3) ∈ CC do
5: ψ ← the first element in lex order of the largest of C1, C2, and C3

6: H ← the set of elements of Sn that commute with ψ
7: C ← the smallest of C1, C2, C3

8: for θ ∈ C do ḡ ← the genus of the hypermap determined by ψ and θ
9: if ḡ is equal to ĝ then ▷ We only want one hypermap from each

isomorphism class, so we pick the one where θ comes first in lex-order isMin
← 1

10: for ρ ∈ H do
11: if ρ−1 ◦ θ ◦ ρ < θ then isMin ← 0
12: end if
13: end for
14: if isMin is 1 then Add the hypermap determined by ψ and θ

to Rg,ĝ,n

15: end if
16: end if
17: end for
18: end for
19: end while ▷ At this point we have a representative of each isomorphism

class, but may have counted elements of Rg,ĝ,n twice if changing the coloring
gave another element in our list

20: for (σ, α, φ) ∈ Rg,ĝ,n do
21: for (σ′, α′, φ′) ∈ Rg,ĝ,n do
22: if (α, σ, φ) ≃ (σ′, α′, φ′) and (σ′, α′, φ′) < (σ, α, φ) then Remove

(σ, α, φ) from Rg,ĝ,n

23: end if
24: end for
25: end for
26: return Rg,ĝ,n
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more computationally difficult than hypermap isomorphism testing, |Rg| is so

much larger than |Cg| that this turns out to be much faster.
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7 Computational Methods and Results

Now that we have established a way to describe the elements of the Rgs and a

way to determine the contents of the Cgs, Lgs andMgs from those elements, we

need a method to actually compute the elements of the Rg. The search space we

will need to look at consists of conjugacy classes of symmetric groups, and these

grow quite large quite quickly, so this will be computationally expensive and will

require a great deal of memory. To avoid both unnecessary memory usage and

extra computation time from reallocating space to store the hypermaps being

computed we would like to establish bounds on the numbers of hypermaps that

will need to be stored. Theorem A.10 from the appendix on methods and results

in representation theory gives us the following bounds for how many hypermaps

we will need to store:

Bounds on the number of hypermaps to be stored: Let σ ∈ Sn, let C2, C3

be conjugacy classes in Sn, and let N (σ,C2, C3) be the number of isomorphism

classes of hypermaps (σ, α, φ) on n bits with α ∈ C2 and φ ∈ C3. Then from

Theorem A.10 in the appendix on representation theory,

|C2||C3|
n!

∑
Vi∈Irr Sn

χi(σ)χi(C2)χi(C3)

χi(1)

provides an upper bound for the number of hypermaps we might need to store for

given σ,C2, C3. Here Z(σ) is the set of permutations in Sn that commute with σ

and Irr Sn is the set of irreducible representations of Sn (see Definition A.6).
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Unfortunately, as was discovered when attempting to put this bound into use, the

amount of memory that would be needed to store a list of such size is impractical.

Even storing the two permutations needed to define a hypermap in one line form

as lists of 8-bit integers to minimize storage space, we would need to preallocate

over 1000 GB of memory for the single case where σ is a 17-cycle, C2 are the

permutations in S17 which are 17-cycles, and C3 are permutations in S17 consisting

of a 4-cycle, a 3-cycle, and 5 2-cycles.

To deal with this problem, we made use of the following facts: From attempts to

find the elements of the Rg before crashing due to lack of memory, we knew that

memory space was not a problem until we consider the subset of hypermaps in R5

where the hypermaps themselves have genus 5. According to Corollary 3.2.2 and

Lemmas 6.3 and 6.2 this means that memory trouble only occurs when σ is an n-

cycle in Sn for 11 ≤ n ≤ 20. After doing some Euler characteristic calculations to

determine the allowable cycle types it follows from Theorem A.12 that if n = 11

the lower bound from Theorem A.10 differs from the actual number of hypermaps

by 8, and that for n = 13, 17, and 19 the lower bound is exact. Theorem A.12

only applies when n is prime, so there is no reason to believe that the lower bound

will be as close for non-prime n, but pre-allocating space according to the lower

bound from Theorem A.10 leaves enough memory free to double the allocated

space when the bound is not sharp. This solves the issue of memory usage for

our computations.

Compute time was also a concern, since we couldn’t find any way around search-

ing whole conjugacy classes of symmetric groups. The procedure described in
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Algorithm 1 chooses the smallest possible conjugacy classes to search but they

are quite large and there are many of them. Fortunately, the bulk of the process

described in Algorithm 1 consists of iterating through the elements in a conjugacy

class of a symmetric group and doing the same computations on each element,

so it is a natural case for using parallel computing. Distributed computing with

separate nodes on each thread of many computers would have been a natural fit,

but then our memory concerns return. There are only two high-memory nodes

on our compute cluster and while we can afford the memory usage from doubling

our array sizes on those machines, we do not a priori know how the hypermaps

we are looking for are distributed within a conjugacy class. It is very possible

that with the process running on n nodes there could be one or more nodes that

wouldn’t need to story any solutions, while another node might need to store far

than 1/n of the total number. As a result, one of the smaller machines might need

far more than the expected amount of memory. Instead we compromise between

memory usage and maximum parallelism by using mulithreaded code on a single

high-memory compute node.

We use the Julia programming language, a high-level language which is still ex-

tremely fast, and use the OSCAR computational algebra package [26] for some

of the group theoretic computations. This package is the most well-developed

computational algebra package for Julia right now, but unfortunately it relies on

GAP for its group theoretic computations, and a version of GAP that supports

multithreading is still in development [11]. For small objects, like centralizer

subgroups of fixed permutations we pre-compute the needed objects with OS-
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g |Rg| |Cg| |Lg| |Mg|
0 1 1 1 1
1 3 3 4 5
2 31 17 21 26
3 1831 164 191 217
4 462645 3096 3338 3555
5 255135636 318186 322179 325734

Table 4: Values of |Rg|, |Cg|, |Lg|, and |Mg| for 0 ≤ g ≤ 5

CAR/GAP before the parallel portion of the algorithm, but for iterating through

conjugacy classes without storing the entire class in memory we needed to write

our own iteration algorithm. This algorithm, along with several related itera-

tive algorthms can be found in combinadics.jl in Appendix B. The algorithm is

built off of standard constant-amortized-time algorithms for iterating through all

k-subsets of {1, 2, . . . , n} and for iterating through all elements of Sn found in

[27]. While the function to iterate through elements of a conjugacy class may not

see much use, we noticed while working on it that our implementations of the

algorithms for iterating through subsets and permutations run significantly faster

(less than 1% of the runtime) and use less memory than the implementations

in the standard Julia language combinatorics package and could be a valuable

contribution to the language’s ecosystem of packages.

With a parallel implementation of Algorithm 1 and memory allocation handled,

we have a program that can compute the elements of the Rg and Cg for 1 ≤ g ≤ 5.

Then Theorems 2.7 and 3.4 give the sizes of the Lg andMg (recall that |R0| =

|C0| = |L0| = |M0| = 1 from [3]). These values are given in the Table 4:
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None of the sequences {R0,R1, . . . ,R5}, {C0, C1, . . . , C5}, etc. from Table 4 appear

in the Online Encyclopedia of Integer Sequences (OEIS) at this time, [24]. This

is a bit disappointing, as it would have been fascinating to see them appear in

another sequence and use this to find a way to compute some of these numbers

without a computer search, but does provide a new sequence to add to the OEIS.
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8 Applications and Directions for Future Work

Since we were only able to compute the sets Rg and Cg for g ≤ 5, a natural exten-

sion of the work here would be to compute these values for g = 6. Based on the

methods used here, this is impractical without tremendous computing resources,

as there are triples of conjugacy classes for genus 6 where just storing the hyper-

maps for a single triple would take up multiple terabytes of memory. Conceivably

we could adjust Algorithm 1 to only store graph isomorphism classes, but the

growth in compute time would still make this likely implausible (computing R4

takes about 15 minutes, but computing R5 takes about a month on our current

machine so a reasonable estimate for R6 would be about 300 years). Instead we

see three different avenues to extend this work.

The first direction for future work is to attempt to resolve the difficulties with

using the methods of [18], [21], and [22] to determine the sizes of the Rg. This

would involve a classification of what hypermaps can appear as a quotient by an

automorphism of a hypermap corresponding to an element of Rg, which would

be an interesting challenge. As far as we know the methods in these papers have

only been used to enumerate combinatorial maps and hypermaps with relatively

general criteria, such as all hypermaps with fixed genus and fixed number of bits,

or fixed number of bits and fixed number of faces, etc. so such a study could

potentially yield useful tools for generalizing those methods to other families of

combinatorial maps and hypermaps as well.

The next direction for future work would be to attempt to use and develop tech-
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niques in the representation theory of groups and algebras with the goal of directly

computing the values of the |Rg|. In the appendix on representation theory we

formulated this problem in terms of arithmetic in the group algebras CSn (for a

precise definition see Definition A.1), presented a formula due to Frobenius A.9 to

solve a similar problem, and saw a major obstruction to adapting the formula to

our case was that key elements in the adapted formula were not in the center of

CSn. If a suitable sub-algebra could be found where these elements were central,

then an analogous formula might be found, in terms of characters of that algebra.

Another approach here would be to follow along that taken in Theorem A.12.

In that formula we gave the number of isomorphism classes of p-bit hypermaps

(σ, α, φ) when p is a prime, σ is a p-cycle, and the conjugacy classes of α and φ are

given by using properties of p-cycles in Sp. In the case of n-bit hypermaps with

σ and n-cycle when n is a product of distinct primes, or the square of a prime,

similar methods combined with some of the techniques to deal with symmetries

from [22] should work to generalize this formula. Such results may also yield new

congruency results similar to Corollary A.12.1.

The final direction for additional work is to generalize the computer program

developed here to make it potentially useful to other researchers in related fields.

The field of Hurwitz theory, which studies maps between Riemann surfaces is

very closely connected to the study of hypermaps. Even a moderately detailed

exposition of the field is beyond the scope of this dissertation, but here we give

a very brief description of a problem in the field (for more information, see [6]).

Given positive integers n and k, and a k-tuple {C1, C2, . . . , Ck} of conjugacy
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classes in Sk, the disconnected Hurwitz number H•(C1, C2, . . . , Ck) is 1
n!

times

the size of the set

{(c1, . . . , ck)|ci ∈ Ci for all i and c1c2 . . . ck = 1}.

As discussed in the appendix on representation theory, this is certainly closely

related to the hypermap counting that we do here. In fact a formula for the value

of H•(C1, . . . , Ck) (up to a factor of n!) is given by Theorem A.9, and its much

faster to compute these numbers using that formula than our software. Some

questions studied in the field include finding non-character based formulae for

these numbers [8] [12], and studying their growth rates [5].

Our software is only written for the case where k = 3, but the degeneration

formula for Hurwitz numbers allows all Hurwitz numbers to be determined from

the case where k = 3 [25] so the specific case where our software work is a

fundamental case for the field. Since our software computes the actual isomophism

classes of the objects contributing to these sums, and they can be visualized as

2-vertex-colored embeddings of bipartite graphs, we hope that it may be useful

as a tool for experimentation and visualization here. Lists of the objects may

be useful for cases where the number is not too large, and if the software was

extended to also render an image of the graph embeddings, then we hope that

being able to see a collection of these objects might grant researches in the field

additional insights. In addition to adding a visualization component, such an

updated version of the software should give the number of labellings for each
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isomorphism class, since they are considered distinctly in this field.

Another potential generalization of the computer program could be towards com-

putation of matrix integrals in physics. As with Hurwitz theory, any significant

digression into the study of matrix integrals and their connection with enumer-

ation of combinatorial maps is beyond the scope of this dissertation, so we refer

the reader to [9], [17], or [36] for an introduction to these connections. We simply

observe without proof (see the cited texts, particularly [9]) that some integrals

over spaces of Hermitian matrices can reformulated as problems of counting com-

binatorial maps. Our method of map counting by counting related hypermaps

can only be applied when the either the maps of interest or their dual maps are

bipartite, but when those conditions are satisfied and the more powerful methods

from [18], [21], and [22] are not applicable our program could find use given some

updates. For this more general use our program would need to be modified in a

few ways. The simplest change would be to generalize some functions involved in

memory management to accept arbitrary conjugacy classes of symmetric groups,

rather than being specialized to the ones where memory management was a con-

cern in our specific computations. The more substantial change would be to

replace the specific conditions we imposed based on our focus on minimal sep-

arating embeddings with functionality to accept a range of conditions based on

the maps of interest.
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Appendix A Representation Theory and Hypermap Enumeration

At this point we have nice descriptions of the elements in the Rgs, a procedure to

find the elements of the Cgs from the Rgs, and a way to determine the elements of

the Lgs andMgs from the Cgs. We still need to actually compute the elements of

the Rg. Once we start doing the computing memory is going to be a big concern.

The Rg get very large just for g = 5 and storing all of the embeddings takes

hundreds of gigabytes of memory. This leads to a memory allocation problem.

We will not know ahead of time how large these sets are, so we cannot preallocate

space to store them. Without memory concerns, the natural choice would be to

use dynamically sized data structures. Informally speaking, these are lists that

hold a certain amount of data, and if more space is needed the computer finds a

spot that can hold about twice as much data, copies the list there, and then can

add entries into this new block of space. If that space fills up, it looks for a new

bigger location and the process repeats. After writing a program to find |Rg| and

|Cg| for g ≤ 4 and trying to run it for g = 5, we discovered that even the highest

memory node on our university compute cluster does not have enough memory

space to follow this procedure that involves repeatedly looking for bigger blocks

of memory.

The alternative to dynamic memory allocation is called static allocation. Speaking

informally again, the idea here is to tell the computer ahead of time exactly how

long our list will be and what kinds of objects will be in it. Then the computer can

know exactly how much space to reserve and we avoid the ‘space-doubling’ issue.
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The difficulty here is that it requires us to know how large the |Rg| will be in

advance. As mentioned in Chapter 5, existing techniques for map and hypermap

enumeration do not translate nicely to our problem so this information is not

known ahead of time. The good news is, to avoid the ‘space doubling’ problem,

we just need an upper bound on the length of our list which is small enough to fit

in memory. We can compute such a bound using a little bit of the representation

theory of finite groups.

Throughout this section when we consider whether a triple of permutations

(σ, α, φ) ∈ Sn forms a hypermap, we will generally omit any consideration for

whether the action of ⟨σ, α, φ⟩ on {1, . . . , n} is transitive and only consider whether

φ ◦ α ◦ σ = (). In any results depending on the assumption that this action is

transitive, we will make note of being “under the transitivity hypothesis”. Our

primary motivation in this appendix is to establish bounds for memory usage and

in all of the cases where memory scarcity is a concern, σ is an n-cycle, which guar-

antees that the ⟨σ, α, φ⟩ acts transitively. Making this assumption will simplify

both exposition and calculuations. Also, we replace the function composition

notation for permutation multipilcation with the more standard group theoretic

notation where α ◦ σ becomes σα. There will be a great deal of formal multipli-

cation of elements of Sn, but few concrete examples with cycle notation and we

believe the more compact notation will be simpler to read.

We have assumed that the reader is familiar with some elementary group theory

so far, but here we will introduce some basic definitions and results in the repre-

sentation theory of finite groups, leading up to a formula we can adapt into an
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approximation of |Rg|. For more details on this material and proofs of results,

see [28] and [19].

First we state the following definition from [19]

Definition A.1. Given a field k, a k-algebra is a ring A (with unit 1) together

with a ring homomorphism i : k → A such that i(k) is in the center of A (the

center, Z(A) := {a ∈ A : ax = xa∀x ∈ A}).

It is often helpful to think about a k-algebra A as a k-vector space equipped with

a compatible multiplication operation. Most of what follows holds for arbitrary

fields k, but we will only consider the case where k = C. Before introducing the

specific type of C-algebra that will be of most interest to us, we will introduce a

more familiar type of example which will also be of relevance to us:

Definition A.2. Given a C-vector space V , the endomorphism algebra of V ,

denoted End(V ) is defined as follows: As a set, End(V ) is the set of all C-linear

transformations of V . The addition operation is given pointwise: For S, T ∈

End(V ), S + T is defined by:

(S + T )(v) = S(v) + T (v).

The multiplication operation is given by composition: S · T is defined by

(S · T )(v) = S(T (v)).

The homomorphism i : C→ End(V ) is the map z 7→ zI.
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The C-algebras that we will be particularly concerned with are called group alge-

bras :

Definition A.3. The group algebra of a group G, denoted CG is the C-algebra

constructed as follows: As a C-vector space, CG is the C-vector space of formal

C-linear combinations of the elements of G. The multiplication operation is given

as follows:

(∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g,h∈G

agbh(gh) =
∑
x∈G

∑
g,h∈G
gh=x

agbh

x.

We will take the elements of G (with Id denoting the identity) as our standard

basis for CG as a C-vector space.

Before going any further, let us motivate this definition through a quick example

of how it relates to our goal of counting hypermaps. Suppose we fix an element

σ ∈ Sn, and two conjugacy classes C1, C2 of Sn and want to know: How many

choices of (α, φ) ∈ C1 × C2 result in (σ, α, φ) being a hypermap? Knowing the

answer to this question would not tell us how many isomorphism classes there

are with α ∈ C1 and φ ∈ C2, since there may be distinct (α1, φ1) and (α2, φ2)

such that (σ, α1, φ1) and (σ, α2, φ2) are isomorphic, but it would give us an upper

bound since each isomorphism class would be counted at least once. The following

lemma expresses the solution to this problem nicely in terms of arithmetic in CSn.

Lemma A.1. Let σ,C1, C2 be as defined above. Under the transitivity hypothesis,

the number of ways to choose (α, φ) ∈ C1 × C2 such that (σ, α, φ) is a hypermap
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is the coefficient of the identity in the following element of CSn:

σ

(∑
α∈C1

α

)(∑
φ∈C2

φ

)
.

Proof. Starting from the expression in the lemma:

σ

(∑
α∈C2

α

)(∑
φ∈C3

φ

)
=

∑
α∈C2,φ∈C3

σαφ

=
∑
ρ∈Sn

 ∑
α∈C2,φ∈C3

σαφ=ρ

1

 ρ

Then we observe that in the final expression, the coefficient on any ρ ∈ Sn is the

number of ways to pick α ∈ C2, φ ∈ C3 such that σαφ = ρ. Setting ρ = () we

have the desired result.

Here’s an example to make this more concrete:

Example: We will look at elments of S4 and take σ = (1 2 3 4), and let us

consider hypermaps (σ, α, φ) where α is another 4-cycle and φ is a pair of 2-

cycles. So

C2 = {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}

and

C3 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
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Then

σ

(∑
α∈C2

α

)(∑
φ∈C3

φ)

)
= σ

( ∑
α,φ∈C2×C3

αφ

)

multiplying out αφ for each pair (α, φ) and writing their sum in CS4 we have

= σ
(
2(1 2) + 2(1 3) + 2(1 4) + 2(2 3) + 2(2 4) + 2(3 4)

+ (1 2 3 4) + (1 2 4 3) + (1 3 2 4) + (1 3 4 2)

+ (1 4 2 3) + (1 4 3 2)
)

= 1() + 2(1 3 4) + 2(1 4)(2 3) + 2(2 3 4) + 2(1 2 4)

+ 2(1 2)(3 4) + 2(1 2 3) + (1 3)(2 4) + (1 3 2)

+ (1 4 2) + (1 4 3) + (2 4 3)

The coefficient on the identity permutation here is 1, showing that there is only

a single pair (α, φ) in the specified conjugacy classes such that σαφ = ().

Ideally, we would have an explicit formula for the number of isomorphism classes

of hypermaps (σ, α, φ) where σ, α, and φ have specified cycle-types, but it will

turn out that outside of special cases we will need to settle for a formula for

bounds of the type described above. Once we have such a formula, we will adapt

it to a formula for the number of isomorphism classes of hypermaps in some very

special cases and see the obstruction to finding a general formula this way. We

need to introduce some more machinery first though. The method will essentially

be representing group elements as invertible matrices.
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Definition A.4. A representation ρ of a groupG is a vector space V together with

a group homomorphism ρ : G→ GL(V ) (where GL(V ) is the group of invertible

linear transformations of V ). Following common convention, ρ : G → GL(V )

will be denoted simply as V unless discussing the specific transformation ρ(g) for

some g ∈ G.

Much of what follows holds for vector spaces over any field, but from now on we

assume that V is always a C-vector space and G is a finite group. We are also

going to adopt some common notational conventions: We will commonly denote

a representation ρ : G → GL(V ) by simply V , and for any v ∈ V, g ∈ G we will

denote ρ(g)(v) by gv.

Definition A.5. Given a group G and two representations V1, V2 of G, a mor-

phism of G-representations f : V1 → V2 is a linear transformation f : V1 → V2

such that for all g ∈ G, v ∈ V1 the following diagram commutes:

V1 V1

V2 V2

ρ1(g)

f f

ρ2(g)

Just as we look at subspaces of vector spaces and subgroups of groups, subobjects

of representations are of interest.
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Definition A.6. We say that U is a subrepresentation of a G-representation V

if U is a subspace of V , and gU = U for all g ∈ G. We say a G-representation V

is irreducible if the only subrepresentations of V are {0} and V .

Theorem A.2. [28] Every representation is a direct sum of irreducible represen-

tations.

The following results about irreducible representations will be particularly impor-

tant to us. For proofs, see [28]

Lemma A.3 (Schur’s Lemma). [28] Let V1, V2 be irreducible representations of

a group G. If V1 and V2 are not isomorphic than any morphism f : V1 → V2 is

the zero map. Any morphism f : V1 → V1 is a scalar multiple of the identity.

Theorem A.4. [28] The number of irreducible representations of G (up to iso-

morphism) is equal to the number of conjugacy classes of G.

Finally, before relating representations to the group algebras we are interested in,

we give one more definition that is going to be very important to us:

Definition A.7. The character of a G-representation ρ : G → GL(V ) is the

function χρ : G→ C defined by:

χρ(g) = Trace(ρ(g)).

Characters of representations are going to play a very important role in the upper

bound formula we are working towards. Characters of representations have the
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following very nice properties:

Lemma A.5. [28] Let ρ : G → GL(V ) be a G-representation. χρ has the

following properties:

a χρ(1) = dim(V ) (because ρ(Id) is the identity matrix).

b χρ(g
−1) = ¯χρ(g) (where x̄ denotes the complex conjugate of x) for all g ∈ G

(because for finite groups all eigenvalues of ρ(g) are lie on the unit circle

and the eigenvalues of ρ(g−1) are the complex conjugates of those of ρ(g)).

c χρ(g) = χρ(hgh
−1) for all g, h ∈ G (because the trace of a matrix is invariant

under conjugation)

Of particular note to us is that property (c) of the lemma says that the trace of

a representation is constant within any conjugacy class of G. Since characters

are constant within a conjugacy class, it is common to abuse notation and write

χ(C) (where χ is a character and C is a conjugacy class) to denote the value of

χ evaluated at any element of C.

Noting that CG is a C-vector space, there is a natural representation of G acting

on CG, where we take the elements of G as a basis for CG. Since group elements

act on themselves, g ∈ G acts on the basis elements by left multiplication. This

is called the left-regular representation of G. It is particulary easy to compute

the character of this representation.

Lemma A.6. Let χG be the character of the left-regular representation of G.
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Then

χG(g) =


|G| if g = Id

0 if g ̸= Id

This follows from the observation that with respect to the standard basis on CG,

χG(g) is the number of elements h ∈ G such that gh = h. Since the trace is a

linear operator, we can define the trace of any element of CG as follows:

Definition A.8. The function Trace : CG→ C is the linear function defined by

Trace(g) = χG(g) and extending onto CG by linearity.

The following result ties together the irreducible representations of a group G and

the group-algebra CG.

Theorem A.7. [28] Let Irr G = {V1, V2, . . . , Vm} be the set whose elements

consist of a single representative from each isomorphism of class of irreducible

representation of G. Then there is a cannoical isomorphism

ρ̃ : CG→
⊕

Vi∈ Irr G

End(Vi)

The proof of the theorem is found in [28] but we note that we can describe this

isomorphism quite nicely. Letting ρi : G→ GL(Vi) be the group homomorphism

associated with the representation Vi, the isomorphism is given by:

g 7→ (ρ1(g), ρ2(g), . . . , ρm(g))
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and extending onto all of CG by linearity. The following result builds on this and

gives even more information that we will use in our proof of the next theorem:

Lemma A.8. [28] Let ρ̃ be the canonical isomorphism between CG and⊕
Vi∈ Irr G End(Vi) and let ρ̃i be the projection of ρ̃ onto End(Vi). ρ̃i maps the

center of CG into the set of scalar multiples of the identity on Vi and defines a

C-algebra homomorphism ωi : Center(CG)→ C.

At this point, we have enough machinery to state the following formula due to

Frobenius:

Theorem A.9. Let G be a finite group and let C1, . . . , Ck be arbitrary conjugacy

classes in G. Define:

N(C1, . . . , Ck) := |{(g1, . . . , gk) ∈ C1 × . . .× Ck : g1g2 . . . gk = Id}|

Then

N(C1, . . . , Ck) =
|C1| . . . |Ck|
|G|

∑
Vi∈ Irr G

χi(C1) . . . χi(Ck)

χi(Id)k−2

The formula is stated in an exercise in[19], so we provide a proof here:

Proof. First we define the following family of elements in CG: For any conjugacy

class C of G, define

eC =
∑
g∈C

g.

The plan of the proof is to compute the trace of eC1eC2 . . . eCk
in two separate

ways.
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First we observe the following consequence of Lemma A.6. For any element∑
g∈G agg ∈ CG,

Trace

(∑
g∈G

agg

)
= aId|G|.

As a consequence, N(C1, . . . , Ck) =
Trace(eC1

eC2
...eCk

)

|G| .

Next we observe that eC commutes with all elements of CG: Since the elements

of G generate CG, it is enough to show that eC commutes with h for all h ∈ G.

Take h ∈ G. Then

heC = h
∑
g∈C

g

and since C is a conjugacy class we have:
∑

g∈C g =
∑

g∈C h
−1gh, giving

heC = h
∑
g∈C

h−1gh

=
∑
g∈C

gh

= eCh

Now, since eC is in the center of CG, by Lemma A.8 eC acts on each Vi as

scalar multiplication by some constant. Then for each Cj ∈ {C1, . . . , Ck} we can

compute the trace of eCj
on any Vi ∈ Irr G by

TrVi
(eCj

) = ci,j · dim(Vi) = ci,jχVi
(Id)
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for some constant ci,j. Now we compute the ci,j. Let χi be the character associated

to Vi for each Vi in Irr G. For any g ∈ G, χi(g) is the trace of g on Vi, and since

χi is constant on each conjugacy class, the trace of eCj
acting on Vi is:

ci,jχi(Id)TrVi
(eCj

) =
∑
g∈Cj

χi(g) = χi(Cj)|Cj|

and we obtain

ci,jχi(Id) = TrVi
(eCj

)

ci,jχi(Id) = χi(Cj)|Cj|

ci,j =
χi(Cj)|Cj|
χi(Id)

Using the fact that each eC acts on each Vi as a scalar multiple of the identity,

eC1 . . . eCk
acts on each Vi as ci,1ci,2 . . . ci,k times the identity. Then eC1 . . . eCk

also acts as scalar multiplication by ci,1 . . . ci,k on End(Vi), which has dimension

dim(Vi)
2 = χi(1)

2 (since End(Vi) is the space of square matrices acting on Vi) and

we have that the trace of eC1 . . . eCk
acting on End(Vi) is:

TrEnd(Vi)(eC1 . . . eCk
) = ci,1 . . . ci,kχi(Id)

2

=

(
k∏

j=1

χi(Cj)|Cj|
χi(Id)

)
χId(1)

2

=

∏k
j=1 χi(Cj)|Cj|
χi(Id)k−2

Since CG is the direct sum of the End(Vi), the trace of eC1 . . . eCk
is the sum of
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the traces over each End(Vi) and we have

Tr(eC1 . . . eCk
) =

∑
Vi∈Irr G

∏k
j=1 χi(Cj)|Cj|
χi(Id)k−2

=

(
k∏

j=1

|Cj|

) ∑
Vi∈Irr G

∏k
j=1 χi(Cj)

χi(Id)k−2

Since N(C1, . . . , Ck) =
Tr(eC1

...eCk
)

|G| the theorem follows.

In the case where G = Sn and k = 3, this looks quite similar the upper bound

for hypermaps (σ, α, φ) where σ is a given permutation and α, φ are required

to be elements of specified conjugacy classes. The key difference is that in the

formula due to Frobenius, we have dropped the requirement that σ be a given

permutation and simply specify its conjugacy class. We modify the formula to

obtain the following bounds:

Theorem A.10. Let σ ∈ Sn, let C2, C3 be conjugacy classes in Sn and let

N (σ,C2, C3) denote the number of isomorphism classes of hypermaps (σ, α, φ)

such that α ∈ C2 and φ ∈ C3. Under the transitivity hypothesis we have

|C2||C3|
|Z(σ)| · n!

∑
Vi∈Irr Sn

χi(σ)χi(C2)χi(C3)

χi(Id)
≤ N (σ,C2, C3) ≤

|C2||C3|
n!

∑
Vi∈Irr Sn

χi(σ)χi(C2)χi(C3)

χi(Id)

where Z(σ) = {ρ ∈ Sn|ρσ = σρ}.

Proof. The upper bound is simply Frobenius formula N(C1, C2, C3) in Sn (where

C1 is the conjugacy class of σ) divided by |C1|. N(C1, C2, C3) counts the number of
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labelled hypermaps (σ′, α, φ) where σ′ ∈ C1, α ∈ C2, and φ ∈ C3. Since choice of

labelling does not affect the number of unlabelled maps, each σ′ ∈ C1 contributes

an equal number of labelled hypermaps to the total and we reduce this number

by a factor of |C1| when we fix σ′ = σ. As noted earlier in this section, fixing σ

does not ensure that we have only counted each isomorphism class of hypermap

once, so this gives an upper bound on N (σ,C2, C3).

For the lower bound, we consider a hypermap (σ, α, φ) and ask how many pairs

(α′, φ′) ∈ C2 × C3 there could be such that (σ, α, φ) is isomorphic to (σ, α′, φ′).

Recalling that (σ, α, φ) is isomorphic to (σ, α′, φ′) if there exists ρ ∈ Sn such that

ρσρ−1 = σ′, ραρ−1 = α′, ρφρ−1 = φ′

we can see that the only isomorphisms from (σ, α, φ) to another hypermap of the

form (σ, α′, φ′) are the ρ ∈ Z(σ). Therefore each isomorphism class of hypermap

contributes at most |Z(σ)| to the sum and dividing by |Z(σ)| gives a lower bound

on N (σ,C2, C3). It also shows that when we let Z(σ) act by conjugation on the

set of hypermaps (σ, α, φ) for fixed σ, α ∈ C2, φ ∈ C3, then the N (σ,C2, C3) is the

number of orbits in this action, since there is an isomorphism between (σ, α, φ)

and (σ, α′, φ′) if and only if they are conjugate by some ρ ∈ Z(σ).

Unfortunately, this lower bound is not typically sharp because there may be

hypermaps (σ, α, φ) and elements ρ ∈ Sn such that

ρσρ−1 = σ, ραρ−1 = α, ρφρ−1 = φ.
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For example: Consider the 6-bit hypermap (σ, α, φ) where

σ = (1 2 3 4 5 6), α = (1 5 6 4 2 3), φ = (1 2 3)(4 5 6).

Letting ρ = (1 4)(2 5)(3 6) we observe that

ρ−1σρ = σ, ρ−1αρ = α, ρ−1φρ = φ

so there are fewer than |Z(σ)| hypermaps isomorphic to (σ, α, φ) and the lower

bound in Theorem A.10 is an underestimate for the number of isomorphism classes

of hypermaps where (σ, α′, φ′) where α′ is a 6-cycle and φ′ is the product of 2

disjoint 3-cycles. Note that by Corollary 5.1.1 (σ, α, φ) and all other hypermaps

with the same cycle-types corresponds to elements of R2.

We would have liked to recast our problem of counting isomorphism classes of

hypermaps with fixed cycle-types into a problem of arithmetic in CSn and found

an analog of Frobenius’ formula to solve that problem. It turns out not to be

too difficult to restate our problem as an arithmetic problem in CSn, but the

resulting problem differs in a critical way from the problem solved by Frobenius’

formula which presents a serious obstacle. Here we set up that problem and see

what makes it more challenging.

Theorem A.11. Let σ,C2, C3, and N (σ,C2, C3) be as defined in Theorem A.10.

Under the transitivity hypothesis, N (σ,C2, C3) is equal to the coefficient of the
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identity in

1

|Z(σ)|
σ

 j∑
i=1

∑
ρ∈Z(σ)

ρ−1αiρ

 k∑
i=1

∑
ρ∈Z(σ)

ρ−1φiρ


where {α1, . . . , αj} are a set of representatives for the orbits of C2 under the

conjugation action by Z(σ) and {φ1, . . . , φk} are a set of representatives for the

orbits of C3 under the conjugation action by Z(σ).

Proof. We define H = {(σ, α, φ)|α ∈ C2, φ ∈ C3, σαφ = ()}, the set of labelled

hypermaps with first element σ, and with α and φ having the prescribed cycle

types. As in Lemma A.1, |H| is given by the coeffcient of the identity in the

following product:

σ

(∑
α∈C2

α

)(∑
φ∈C3

φ

)
.

Since the orbits of H under the conjugation action by Z(σ) correspond to the

isomorphism classes of hypermaps (σ, α, φ) with α ∈ C2, φ ∈ C3, we found a

lower bound for this coefficient in Theorem A.10 by dividing the entire result by

|Z(σ)|, the maximum size of any one orbit. The idea here is to add some terms to

the product which will cause each isomorphism class of hypermap to contribute

|Z(σ)| to the sum, rather contributing the size of its orbit.

Fix φℓ as one of the {φ1, . . . , φk} and consider the coefficient of the identity in

the product

σ

 j∑
i=1

∑
ρ∈Z(σ)

ρ−1αiρ

 ∑
ρ∈Z(σ)

ρ−1φℓρ.

We observe that we can choose the representative of each orbit of C2 under the
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Z(σ) action freely, so within each orbit, if there is an element α which makes

(σ, α, φℓ) a hypermap, we will choose that α as the representative of its orbit to

simplify some notation.

We also observe that for any fixed σ, φ, there is a unique element α ∈ Sn (not

necessarily in C2) such that the equation σαφ = 1 holds. Therefore, for each

i ∈ {1, 2, . . . , j}, if σαjφℓ = (), then taking any ρ ∈ Z(σ) we have

σ(ρ−1αjρ)(ρ
−1φℓρ) = σρ−1αjφℓρ

= ρ−1(σαjφℓ)ρ

= ()

Thus, if (σ, αi, φℓ) is a hypermap, then the coefficient of the identity in

σ

 ∑
ρ∈Z(σ)

ρ−1αiρ

 ∑
ρ∈Z(σ)

ρ−1αℓρ


is either 0 or |Z(σ)| (since there are |Z(σ)| terms in the rightmost summa-

tion). Furthermore, since that coefficient can be non-zero for at most one αi ∈

{α1, . . . , αj} we conclude that for each φℓ the coefficient of the identity in

σ

 j∑
i=1

∑
ρ∈Z(σ)

ρ−1αiρ

 ∑
ρ∈Z(σ)

ρ−1φℓρ


is |Z(σ)| if there is an α ∈ C2 such that (σ, α, φℓ) is a hypermap, and 0 otherwise.

This reasoning holds for each φℓ ∈ {φ1, . . . , φk} so the coefficient of the identity
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in

σ

 j∑
i=1

∑
ρ∈Z(σ)

ρ−1αiρ

 k∑
i=1

∑
ρ∈Z(σ)

ρ−1φiρ


is exactly |Z(σ)| times N (σ,C2, C3).

At first glance, this formula looks quite similar to the one in Lemma A.1, but in

the formula from Lemma A.1 two of the terms in the product were elements of

the center of CSn and for the third term, σ, we could replace it with an element

of the center of CSn and appeal to symmetry. It was crucial that the elements of

our product were in the center of CSn because it ensured the action of each term

on the irreducible representations of Sn was by scalar multiplication. In our case,∑j
i=1

∑
ρ∈Z(σ) ρ

−1αiρ and
∑k

i=1

∑
ρ∈Z(σ) ρ

−1φiρ are not central elements of CSn,

so we cannot say as much about the trace of their product in general.

All is not lost, however, in the particular case where σ is a p-cycle in Sp for p a

prime, we can compute N (σ,C2, C3) exactly.

Theorem A.12. Let p be prime and σ a p-cycle in Sp. Then for C2, C3 conjugacy

classes in Sp,

� If exactly one of C2, C3 is the identity and the other is the set of p-cycles,

N (σ,C2, C3) = 1.

� If C2 and C3 are both the set of p-cycles, then

N (σ,C2, C3) =
(p− 2)(p− 1)

p
+

(p− 1)!

p2

∑
Vi∈Irr Sp

χ(σ)

χi(Id)
.
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� Otherwise

N (σ,C2, C3) =
|C2||C3|
p(p!)

∑
Vi∈Irr Sp

χ(σ)χi(C2)χi(C3)

χi(Id)
.

Note that the third case above is the lower bound from Theorem A.10.

Proof. For the case where exactly one of C2 or C3 is the identity and the other

is the set of p-cycles, we can compute N (σ,C2, C3) simply and directly. Without

loss of generality assume that C2 is the identity and C3 are the p-cycles. Then

α = (), and whenever (σ, (), φ) is a hypermap we have:

σ · () · φ = () =⇒ φ = σ−1

and there is a unique choice of φ that makes (σ, (), φ) a hypermap.

For the other cases, as in Theorem A.10 we note that the number of ways to

choose (α, φ) ∈ C2 × C3 such that (σ, α, φ) forms a hypermap is given by

|C2||C3|
p!

∑
Vi∈Irr Sp

χi(σ)χi(α)χi(φ)

χi(Id)
.

Letting H = {(σ, α, φ)|α ∈ C2, φ ∈ C3, σαφ = ()}, we saw in the proof of

Theorem A.10 that the number of orbits of H under the conjugation action by

Z(σ) is equal to N (σ,C2, C3). Now we procede by determining precisely how

many elements of H have orbits of size less than |Z(σ)| under the conjugation

action and showing that if they do, they are fixed by the action.
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First we note that when σ is a p-cycle in Sp, |Z(σ)| = ⟨σ⟩ = {(), σ, σ2, . . . , σp−1}.

Since the conjugacy class of σ in Sp is the set of p-cycles, and there are (p − 1)!

of them, by the Orbit-Stabilizer Theorem we have

|Z(σ)| = |Sp|
(p− 1)!

= p.

Since σ certainly commutes with other powers of σ, and σ is of order p, ⟨σ⟩ must

be all of Z(σ).

Now, since |Z(σ)| = p, a prime, all orbits of H under the conjugation action by

Z(σ) have order dividing p, so each orbit has either size p or size 1. Suppose

(σ, α, φ) is a hypermap which is fixed under conjugation by Z(σ). I.e., for all

ρ ∈ Z(σ)

ρ−1αρ = α, ρ−1φρ = φ.

In particular, since σ ∈ Z(σ) this means

σ−1ασ = α, σ−1φσ = φ

so both α and φ are elements of Z(σ). Since |Z(σ)| = p, all of its non-identity

elements must have order p, and the only order-p elements of Sp are the p-cycles,

so we immediately conclude that C2 and C3 are either the p-cycles or the identity.

We already handled the case where precisely one of them is the identity.

Next suppose that both C2 and C3 are the p-cycles. The fixed points of H under

conjugation by Z(σ) are the hypermaps (σ, α, φ) with α, φ ∈ ⟨σ⟩ (and not the
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identity) so we simply need to count those. There are p−1 ways to choose α as a

non-identity element of Z(σ), namely α = σk for 1 ≤ k ≤ p− 1. Since σαφ = ()

for a hypermap we have:

() = σαφ = σσkφ =⇒ φ = σ−(k+1).

As long as k + 1 ̸= p, this uniquely determines φ is a p-cycle in Z(σ), so we see

there are p − 2 choices of (α, φ) ∈ C2 × C3 yielding hypermaps (σ, α, φ) which

are fixed under the action of Z(σ). All of the other orbits of H under the Z(σ)

conjugation action have size p, so we have:

N (σ,C2, C3) = p− 2 +
|H| − (p− 2)

p

= (p− 2)
p− 1

p
+
|H|
p

and since |H| is the upper bound from Theorem A.10 we have

=
(p− 2)(p− 1)

p
+
|C2||C3|
p · p!

∑
Vi∈Irr Sp

χi(σ)χi(C2)χi(C3)

χi(Id)

Substituting |C2| = |C3| = (p − 1)! and noting that σ ∈ C2 = C3, so χi(σ) =

χi(C2) = χi(C3) we have

=
(p− 2)(p− 1)

p
+

(p− 1)!

p2

∑
Vi∈Irr Sp

χi(σ)
3

χi(Id)
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There is a procedure called the Murnaghan-Nakayama rule to compute irreducible

characters of the symmetric groups, which is beyond the scope of this dissertation,

but we refer the interested reader to [19]. Application of this rule for computing

characters of symmetric groups shows that χi(σ) ∈ {0, 1,−1} for any irreducible

character χi and any prime p, so we can replace χi(σ)
3 in the summation above

with χi(σ) giving the desired formula.

If C2 and C3 were the identity, the only possible (σ, α, φ) would be (σ, (), ()) but

σ · () · () = σ, so this is not a hypermap. This means N (σ,C2, C3) = 0, but it also

means that since H is empty, there are no elements of |H|/p = 0 = N (σ,C2, C3).

Substituting in the upper bound from Theorem A.10 for |H| we obtain the desired

value:

N (σ,C2, C3) =
|H|
p

=
|C2||C3|
p(p!)

∑
Vi∈Irr Sp

χi(σ)χi(C2)χi(C3)

χi(Id)
.

Finally, if at least one of C2, C3 is neither the identity element nor the p-cycles,

then we already saw that H has no fixed points under the conjugation action by

Z(σ). Then each orbit has size p and N (σ,C2, C3) = |H|/p which completes the

proof.

We cannot end this section without the following corollary of Theorem A.12 which

yields a congruency result about sums of reciprocals of binomial coefficients.

Corollary A.12.1. For any prime p

(p− 1)!

p−1∑
i=0

(−1)i
(
p− 1

i

)−1

≡ −2p mod p2
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Proof. We consider N (σ,C2, C3) where σ is a p-cycle in Sp and C2 = C3 are the

conjugacy class of p-cycles. From Theorem A.12

N (σ,C2, C3) =
(p− 2)(p− 1)

p
+

(p− 1)!

p2

∑
Vi∈Irr Sp

χi(σ)

χi(Id)
.

Computing the values of χi(σ)
χi(Id)

for each irreducible representation of Sp (it is par-

ticularly easy to compute χi for these two conjugacy classes using the Murnaghan-

Nakayama rule) gives that

∑
Vi∈Irr Sp

χi(σ)

χi(Id)
=

p−1∑
i=0

(−1)i
(
p− 1

i

)−1

.

Then the formula for N (σ,C2, C3) becomes

N (σ,C2, C3) =
p3 − 3p2 + 2p

p2
+

(p− 1)!

p2

p−1∑
i=0

(−1)i
(
p− 1

i

)−1

.

Noting that N (σ,C2, C3) counts the size of a finite set and must therefore be a

nonnegative integer (in fact we know from the proof of Theorem A.12 that it is

positive) we know that

p2 − 3 +
2p

p2
+

(p− 1)!

p2

p−1∑
i=0

(−1)i
(
p− 1

i

)−1

is an integer, which gives the desired result.
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Appendix B Full Code of Computer Program to Compute Rg and Cg

This appendix provides the code used to run Algorithm 1. It is written in the

Julia language and broken up into several parts. The parts are organized as

follows (with various helper functions distributed amongst the parts). The al-

gorithm as a whole is run using the file minseps.jl, which also processes the

embeddings found to compute the Rg into isomorphism classes of graphs for

the Cg. In search organization.jl the case breakdown for the various searches

is handled, and computations to convert the hypermaps found back into the

corresponding combinatorial maps is handled. In hypermap search.jl the func-

tions to compute all isomorphism classes of hypermaps with the given conjugacy

classes is handled, and hypermap utils.jl provides a few useful functions for in-

teracting with hypermaps. Then combinadic.jl includes iterators for generating

combinatorial objects, in particular a method to iterate over elements of a given

conugacy class in Sn, perm utils.jl has some frequently used methods for per-

mutations and permutation groups, and murnaghan nakayama.jl implements the

Murgnahan-Nakayama algorithm for computing characters of symmetric groups

need for memory pre-allocation (the current implementation only implements the

Murnaghan-Nakayama algorithm for characters which do not evaluate to zero in

the cases where memory usage was an issue).

minseps.jl:

include (" search_organization.jl")

include (" perm_utils.jl")

using Graphs
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# Input should be the graphs found by make_minseps functions for genus g,

# along with the sets I_h for h < g

function make_I_g(g_graphlist , existing_graphs)

I_g = []

# for each graph in g_graphlist , want to iso test it againt all

# of existing_graphs , if it’s not iso to any , it stays

for graph in g_graphlist

if graph == []

isDupe = 1

else

isDupe = 0

for e_graph in existing_graphs

# The following line should be tested thoroughly whenever

# OSCAR.jl or Graphs.jl is updated.

if Graphs.Experimental.has_isomorph(graph , e_graph) ==1

isDupe = 1

break

end

end

if isDupe == 0

push!(I_g , graph)

end

end

end

return(I_g)

end

function main(max_g ::Int)

graphmaketime = 0.0

graphisotime = 0.0

I_g_list = [[] for i in 0:max_g]

I_gs = [Graphs.Graph ([1;;])]
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I_g_list [1] = I_gs

for g in 1:max_g

genus_g_duals= generate_minseps_genus(g)

x=time()

E_g_count = count_embeds(genus_g_duals)

g_minseps = dual_list_to_minseps(genus_g_duals)

println(string(g))

flush(stdout)

println (" process time = ")

println(string(time()-x))

println ("Size of E_g = ")

println(string(E_g_count ))

flush(stdout)

graphsg = minseps_list_to_graphs(g_minseps , g)

I_g = make_I_g(graphsg , I_gs)

I_g_list[g+1] = I_g

I_gs = vcat(I_gs , I_g)

println ("Size of I_g = ")

println(length(I_g))

flush(stdout)

end

end

main (4)

search organization.jl

include (" hypermap_search.jl")

include (" hypermap_utils.jl")

include (" perm_utils.jl")

using Graphs

using Combinatorics

using DataStructures
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# First step: given g,ghat , E, find all valid triples

# lambda_1 ,lambda_2 ,lambda_3 such that they are minsep candidates.

# Note at this point choice of one lambda doesn ’t affect the others ,

# so just make 3 lists.

function get_class_candidates(g::Int , ghat::Int , E::Int , i::Int)

# recall that the number of vertices is 2+g-ghat ,

# and i is the number of black vertices.

j = 2+g-ghat -i

psi_candidates = Combinatorics.partitions(E, i)

phi_candidates = Combinatorics.partitions(E, j)

# Now we determine the number of faces , F

F = E - g - ghat

# Candidate partitions for theta have no 1-cycles , so we

# construct partitions of E-F, and then add one to each block.

theta_candidates = [x + ones(Int , F) for x in

collect(Combinatorics.partitions ((E-F),F))]

candidates = [psi_candidates , phi_candidates , theta_candidates]

# Now we need to compute some sizes

n_psi = sum([ conj_class_size(part) for part in psi_candidates ])

n_phi = sum([ conj_class_size(part) for part in phi_candidates ])

n_theta = sum([ conj_class_size(part) for part in theta_candidates ])

if n_psi*length(phi_candidates) >= n_phi*length(psi_candidates)

if n_phi >= n_theta

theta_flag = 1

else

theta_flag = 0

end

return(theta_flag , psi_candidates , theta_candidates , j, 0)

else

if n_psi >= n_theta

theta_flag =1

else
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theta_flag =0

end

return(theta_flag , phi_candidates , theta_candidates , i, 1)

end

end

function make_default_perm(in_partition :: Vector{Int})

defperm = Vector{Vector{Int }}()

Counter = 1

for i in 1: length(in_partition)

push!(defperm , [Counter:Counter+in_partition[i]-1;])

Counter = Counter+in_partition[i]

end

return(defperm)

end

# Computes hypermaps corresponding to minsep embeddings with

# least separating genus g and embedding genus ghat

function get_ghat_minseps(g::Int , ghat::Int)

big_ghat_minseps = Vector{Vector{Vector{Int }}}[]

for E in (g+ghat +1):(2*(g+ghat))

x = time()

push!( big_ghat_minseps , get_ghat_minseps_edges(g, ghat , E))

println(string(E))

println ("E edges time =")

println(string(time()-x))

flush(stdout)

end

ghat_minseps = reduce(vcat , big_ghat_minseps)

return(ghat_minseps)

end

# Find hypermaps corresponding to minimal separating ribbon graphs
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# with embedding genus ghat and e edges. Specialized version of

# get_ghat_minseps to be more easily split up for long calculations

# on multiple nodes

function get_ghat_minseps_edges(g::Int , ghat::Int , E::Int)

ghat_minseps_E = Vector{Vector{Int }}[]

needed_vertices = 2+g-ghat

for i in 1:div(needed_vertices ,2)

conj_class_nums = get_class_candidates(g, ghat , E, i)

psi_choices = conj_class_nums [2]

if conj_class_nums [1] ==1

theta_choices = conj_class_nums [3]

for psi_choice in psi_choices

psi = make_default_perm(psi_choice)

for theta_choice in theta_choices

if g-ghat >1

append !( ghat_minseps_E , [x for x in

get_phi_candidates_v1(E,theta_choice , ghat , psi , (conj_class_nums [4]))])

else

append !( ghat_minseps_E , [x for x in

get_phi_candidates_v1(E,theta_choice , ghat , psi , (conj_class_nums [4]) ,1)])

end

end

end

else

phi_cycles = conj_class_nums [4]

for psi_choice in psi_choices

psi = make_default_perm(psi_choice)

outs = get_phi_candidates_v2(E, phi_cycles , ghat , psi)

append !( ghat_minseps_E , [x for x in outs])

end

end

end

if g-ghat > 1
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return ([x for x in ghat_minseps_E if is_transitive_pair ([Perm(x[1]), Perm(x[2])])])

else

return(ghat_minseps_E)

end

flush(stdout)

end

# Finds hypermaps corresponding to minimal separating embeddings

# with least separating genus g

function generate_minseps_genus(g::Int)

total_minseps = []

for ghat in 0:g

println ("g, ghat = ")

print(string(g))

println(string(ghat))

flush(stdout)

glist = get_ghat_minseps(g,ghat)

push!( total_minseps , glist)

end

return(reduce(vcat ,total_minseps ))

end

# Function to determine the actual number of embeddings in R_g

# Takes list of hypermap duals and determines how many elements

# of R_g were counted twice due to distinct colorings

function count_embeds(hypermap_list :: Vector{Vector{Vector{Int }}})

tempcount = length(hypermap_list)

self_color_counts = zeros(Threads.nthreads ())

Threads.@threads for hypermap in hypermap_list

x = Perm(hypermap [1])

y = Perm(hypermap [2])

if length(cycles(x)) == length(cycles(y))
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if is_self_color_dual(x, y) == 0

#tempcount= tempcount -0.5

self_color_counts[Threads.threadid ()] += 1

end

end

end

tempcount = tempcount - 0.5*( sum(self_color_counts ))

return(tempcount)

end

# Converts hypermap duals of minseps to combinatorial maps

# for those minsep embeddings

function dual_list_to_minseps(dual_list :: Vector{Vector{Vector{Int }}})

minseps_list = [get_dual_map(Perm(dual [1]), Perm(dual [2]), Int(sum(length(k) for k

in cycles(Perm(dual [1]))))) for dual in dual_list]

return(minseps_list)

end

# Takes as input a list of graphs and returns a list with

# one copy of each isomorphism class in the graph list.

function getIsoClasses(graphlist)

isoclasses = Vector{SimpleGraph }()

for graph in graphlist

isdupe = 0

Threads.@threads for G in isoclasses

if Graphs.Experimental.has_isomorph(graph , G)==1

isdupe = 1

break

end

#extra check to avoid instability with threads

if isdupe ==1

break

end
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end

if isdupe == 0

push!( isoclasses , graph)

end

end

return(isoclasses)

end

# Converts each combinatorial map in a list into a graph for isomorphism testing.

# Graphs.jl doesn ’t support isomorhpism testing for multigraphs so loops and

# multiple edges need to be subdivided.

function minseps_list_to_graphs(minsep_list :: Vector{Vector{Perm{Int}}}, g::Int)

temp_graphs_list = [graph_from_embedding(ribbon_graph [1],

length(cycles(ribbon_graph [2]))) for ribbon_graph in minsep_list]

sorted_graphs_list =[ Vector{SimpleGraph }() for e in 1:4*g]

for ribbon_graph in minsep_list

E = length(cycles(ribbon_graph [2]))

push!( sorted_graphs_list[E], graph_from_embedding(ribbon_graph [1], E))

end

# Need to deal with edge countness

final_graphs = [getIsoClasses(sorted_graphs_list[e]) for e in 1: length(sorted_graphs_list )]

fgs = reduce(vcat , final_graphs)

return(fgs)

end

hypermap search.jl

include (" perm_utils.jl")

include (" combinadic.jl")

include (" murnaghan_nakayama.jl")

using Oscar

using Combinatorics

using DataStructures
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function perm_components(part::Array{Array{Int ,1},1}, n::Int)

starters = [chunk [1] for chunk in part]

perm_parts = [chunk [2: length(chunk)] for chunk in part]

return(starters , perm_parts ,n)

end

# Creates a counter of permutations with given orbits

function perm_counter(s:: Array{Int ,1})

return ([1: factorial(i-1) for i in s])

end

# Creates a permutation from given "cycle starters", elements that should form each cycle ,

# size of symmetric group , and position of each cycle in the lex order of cycles

# comprised of the given elements

function make_perm(starters :: Array{Int ,1}, perm_parts ::Array{Array{Int ,1},1}, n::Int , index:: NTuple)

phi = [Int (1):n;]

for i in 1: length(starters)

tempperm = vcat(starters[i], nthperm(perm_parts[i], index[i]))

for j in 1:( length(tempperm )-1)

phi[tempperm[j]] = tempperm[j+1]

phi[tempperm[end]] = tempperm [1]

end

end

return(Perm(phi))

end

function make_cartesian(v:: Vector{Int})

n = length(v)

return(CartesianIndices(ntuple(i-> 1:v[i], n)))

end

# Finds all (psi ,phi ,theta) that form hypermaps of genus g for given psi

# on n bits where phi has k cycles by searching through all possible phi
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function get_phi_candidates_v2(n::Int ,k::Int ,g::Int , psitemp :: Vector{Vector{Int }})

println (" running v2")

flush(stdout)

S = symmetric_group(n)

sigma = cperm(S, psitemp ...)

psi = Perm(Vector{Int}(sigma ))

needed_verts = n-k -length(cycles(psi ))+2 - 2*g

H = centralizer(S,sigma)

HH = [Perm(Vector{Int}(x)) for x in H[1]]

parts = [part for part in Combinatorics.partitions ([Int (1): Int(n);],k)]

outlist = [Vector{Int}[] for i in 1: Threads.nthreads ()]

for part in parts

decomp = perm_components(part ,Int(n))

PP = make_cartesian ([ factorial(length(part[i])-1) for i in 1: length(part )])

Threads.@threads for index in PP

phi = make_perm(decomp [1], decomp [2], decomp [3], Tuple .( index))

theta = psi*phi

# really this is theta ^(-1) but here only the cycle type of theta

# is needed , which is the same as the cycle type of theta ^(-1)

if length(cycles(theta)) == needed_verts

if 1 in [length(cyc) for cyc in cycles(theta)]

nothing

else

is_min =1

for g in HH

if (g^(-1)* phi*g).d < phi.d

is_min =0

break

end

end

if is_min ==1

push!( outlist[Threads.threadid ()], phi.d)

end
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end

end

end

end

return ([[ Vector{Int}(sigma), x] for x in reduce(vcat ,outlist )])

end

# Iterates through tload amount elements of a conjugacy class for use

# in get_phi_candidates_v1. Starts at position in lex -order among

# that conjugacy class based on avgtload and i (i counts a threads

# position) to allow for thread safe iteration.

function find_phis(i::Int , avgtload ::Int , tload::Int , part:: Vector{Int},

cc:: Accumulator{Int , Int}, K:: Vector{Int},

p_inv::Perm{Int}, HH:: Vector{Perm{Int}}, PP:: Vector{UnitRange{Int}},

n_phi_cycles ::Int , n::Int , outlist :: Vector{Vector{Int }})

x = time()

combo_part = unrank_combo_partition (1+ avgtload *(i-1), n, K, [cc[k] for k in K])

iter_done =0

for j in 1:tload

if iter_done == 1

break

end

decomp = perm_components(ct_to_p(combo_part), n)

for index in Iterators.product(PP...)

theta = make_perm(decomp [1], decomp [2], decomp [3], index)

phi = theta ^(-1)* p_inv

if length(cycles(phi)) == n_phi_cycles

is_min =1

for g in HH

if (theta^g).d < theta.d

is_min =0

break
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end

end

if is_min ==1

push!(outlist , phi.d)

end

end

end

combo_part , iter_done = conj_class_next !(n, combo_part , [cc[k] for k in K])

end

end

# Finds all (psi ,phi ,theta) that form hypermaps of genus g for given

# psi on bits where theta is in a given conjugacy class by searching through

# all possible theta.

function get_phi_candidates_v1(n::Int , part:: Vector{Int}, g::Int ,

psitemp :: Vector{Vector{Int}}, n_phi_cycles ::Int)

println (" running v1 no nmb")

flush(stdout)

if sum(part) != n

println (" Invalid Partition ")

return ([])

else

cc= counter(part)

K = reverse(sort([k for k in keys(cc)]))

PP = perm_counter(vcat ([[k for i in 1:cc[k]] for k in K]...))

total_load_denom = 1

for k in K

total_load_denom = total_load_denom*factorial(k)^(cc[k])* factorial(cc[k])

end

total_load = div(factorial(n), total_load_denom)

threadload = div(total_load , Threads.nthreads ())

S = symmetric_group(n)

sigma = cperm(S,psitemp ...)
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p_inv = Perm(Vector{Int}(sigma ^( -1)))

H = centralizer(S,sigma)

HH = [Perm(Vector{Int}(x)) for x in H[1]]

outlist = [Vector{Int }[] for i in 1: Threads.nthreads ()]

for i in 1: Threads.nthreads ()

sizehint !( outlist[i], threadload)

end

Threads.@threads for i in 1: Threads.nthreads ()

if i<Threads.nthreads ()

find_phis(i, threadload , threadload , part , cc, K, p_inv , HH, PP, n_phi_cycles , n, outlist[i])

else

tload = total_load - threadload *( Threads.nthreads ()-1)

find_phis(i, threadload , tload , part , cc, K, p_inv , HH, PP, n_phi_cycles ,n,outlist[i])

end

end

return ([[ Vector{Int}(sigma), x] for x in reduce(vcat ,outlist )])

end

end

# Version of get_phi_candidates_v1 that pre -allocates memory for storage by

# using the bounds from theorem A.10

function get_phi_candidates_v1(n::Int , part:: Vector{Int}, g::Int ,

psitemp :: Vector{Vector{Int}}, n_phi_cycles ::Int , nm_flag ::Int)

println (" running v1 with nmb")

flush(stdout)

if sum(part) != n

println (" Invalid Partition ")

return ([])

else

cc= counter(part)

K = reverse(sort([k for k in keys(cc)]))

PP = perm_counter(vcat ([[k for i in 1:cc[k]] for k in K]...))

if n_phi_cycles ==1
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hintload = div(map_bound(n, part), n)

elseif n_phi_cycles ==2

hintload = div(round(sum([ map_bound(n, [n-i, i], part) for i in 1:div(n,2)])) , n)

else

println ("use version without mn rule")

flush(stdout)

return ([])

end

total_load_denom = 1

for k in K

total_load_denom = total_load_denom*factorial(k)^(cc[k])* factorial(cc[k])

end

total_load = div(factorial(n), total_load_denom)

threadload = div(total_load , Threads.nthreads ())

S = symmetric_group(n)

sigma = cperm(S,psitemp ...)

p_inv = Perm(Vector{Int}(sigma ^( -1)))

H = centralizer(S,sigma)

HH = [Perm(Vector{Int}(x)) for x in H[1]]

outlist = [Vector{Int }[] for i in 1: Threads.nthreads ()]

for i in 1: Threads.nthreads ()

sizehint !( outlist[i], hintload)

end

Threads.@threads for i in 1: Threads.nthreads ()

if i<Threads.nthreads ()

find_phis(i, threadload , threadload , part , cc, K, p_inv , HH, PP, n_phi_cycles , n, outlist[i])

else

tload = total_load - threadload *( Threads.nthreads ()-1)

find_phis(i, threadload , tload , part , cc, K, p_inv , HH, PP, n_phi_cycles ,n,outlist[i])

end

end

return ([[ Vector{Int}(sigma), x] for x in reduce(vcat ,outlist )])

end
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end

hypermap utils.jl

include (" perm_utils.jl")

using Oscar

# Takes an integer i and permutations phi , psi.

# Returns [n,m] where n is the length of the orbit of i under phi and

# m is the length of the orbit of i under psi

function point_type(i::Int , phi::Perm{Int},psi::Perm{Int})

return ([[ length(cycles(phi)[j]) for j in 1: length(cycles(phi)) if i in cycles(phi)[j]][1],

[length(cycles(psi)[j]) for j in 1: length(cycles(psi)) if i in cycles(psi)[j]][1]])

end

#Takes a pair of integers x and y and permutations phi and psi.

# Returns true if there is a "color swapping isormophism" mapping x to y

function is_color_swap_iso(x::Int ,y::Int ,sigma , alpha)

E = sum(conjclass(sigma))

f_array = [0 for i in 1:E]

# fill in f_array

f_array[x] = y

counter = 0

while minimum(f_array )==0 && counter <= E

for i in 1:E

if f_array[i] != 0

f_array[sigma[i]] = alpha[f_array[i]]

f_array[alpha[i]] = sigma[f_array[i]]

end

end

counter = counter +1

end

if sort(f_array) != [1:E;]

return (0)
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end

f = Perm(f_array)

if f*sigma == alpha*f && f*alpha == sigma*f

return (1)

end

return (0)

end

# Determines if a hypermap is "self -color -dual"

function is_self_color_dual(sigma ::Perm , alpha ::Perm)

E = sum(conjclass(sigma))

# First easy check is is cycle structures match

if conjclass(sigma) != conjclass(alpha)

return (0)

end

# Now we check for isomorphism

# Possible destinations for 1: set n = length of the cycle in sigma containing 1, m = lengt of

# cycle in alpha containing 1. Destinations are all other elements with type (m,n)

one_targets = [y for y in 1:E if point_type(y,sigma , alpha) == point_type (1, alpha , sigma)]

for y in one_targets

if(is_color_swap_iso (1,y,sigma , alpha)) ==1

return (1)

end

end

return (0)

end

# Constructs combinatorial map for the dual of a hypermap

function get_dual_map(psi::Perm{Int}, phi::Perm{Int}, n::Int)

phitemp = [n+phi[i] for i in Int (1):n]

theta = Perm(vcat([psi[i] for i in Int (1):n],phitemp ))

alpha = Perm(vcat([i+n for i in Int (1):n],[i for i in Int (1):n]))

sigma = theta ^(-1)* alpha
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return ([sigma ,alpha ])

end

function flipVert(vert , e::Int)

flipped = []

for i in vert

if i >e

j=i-e

else

j = i+e

end

push!(flipped , j)

end

return(flipped)

end

# Creates a graph from a combinatorial map (sigma ,alpha) with

# alpha in our standard form: (1, n+1)(2, n+2)...(n, 2n)

# Adds additional edges to make a simple graph to use built

# in graph isomorphism testing method

function graph_from_embedding(sigma::Perm{Int}, e::Int)

G = Graphs.Graph(length(cycles(sigma )))

for i in 1: length(cycles(sigma))

for x in cycles(sigma)[i]

if x < e+1

for j in 1: length(cycles(sigma))

if x+e in cycles(sigma )[j]

if Graphs.has_edge(G, i, j)

Graphs.add_vertex !(G)

Graphs.add_edge !(G, i, Graphs.nv(G))

Graphs.add_edge !(G, j, Graphs.nv(G))

break

else
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Graphs.add_edge !(G,i,j)

break

end

end

end

end

end

end

return(G)

end

combinadic.jl

# Implements ranking unranking algorithms for k-combinations from sets of size n

# Assumes that

using SplittablesBase

using DataStructures

# Returns the next combination of k elements

# from a set of size n

function combination_next(n::Int ,k::Int , v:: Vector{Int})

j=k

while v[j] == n-k+j

j=j-1

if j==0

return(v)

end

end

v[j] = v[j]+1

for i in (j+1):k

v[i] = v[i-1]+1

end

return(v)

end
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# length_vec should be the following vector:

# [sum([ length(x) for x in v[i:end]]) for i in 1: length(v)]

# Precomputing this reduces allocations by about 50%

function combination_tuple_next(v:: Vector{Vector{Int}}, length_vec :: Vector{Int})

for i in length(v): -1:1

k = length(v[i])

if v[i] != [1; length_vec[i]+2- length(v[i]): length_vec[i];]

v[i] = combination_next(length_vec[i],k, v[i])

return(v)

end

v[i] = [1:k;]

end

return(v)

end

# Given a vector of k-subsets of [N], [N-k], [N-2k],...

# computes the next such vector in lex order

function regular_combination_next !(v:: Vector{Vector{Int}}, k::Int , N::Int)

n = length(v)*k

length_vec = [N:-k:(N-( length(v)-1)*k);]

if v == [[1+N-n;length_vec[i]+2-k:length_vec[i];] for i in 1: length(length_vec )]

return(v,1)

end

for i in length(v): -1:1

if i == length(v)

firstval = 1+ length_vec[i]-k

else

firstval = 1+ length_vec[i]-k*(1+ length(v)-i)

end

if v[i] != [firstval; length_vec[i]+2-k:length_vec[i];]

v[i] = combination_next(length_vec[i],k, v[i])

for j in i+1: length(v)
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v[j] = [v[j -1][1]: v[j -1][1]+k-1;]

end

return(v,0)

end

end

return(v,0)

end

# Finds the r-th vector in lex order of set partitions of [n] into

# mults[i] blocks of size K[i]

function unrank_combo_partition(r::Int , n::Int , K:: Vector{Int}, mults:: Vector{Int})

if length(K) != length(mults)

println ("K does not match mults ")

return ([[0]])

elseif length(K) ==1

return(unrank_reg_combo(r,n,K[1]))

end

if n != sum([K[i]*mults[i] for i in 1: length(K)])

println ("error not a valid cycle type")

return ([[0]])

elseif length(K)==1 && mults ==[1]

return ([[1:K[1];]])

else

qdenom =1

for i in 2: length(K)

qdenom = qdenom * factorial(mults[i])*( factorial(K[i])^( mults[i]))

end

Q = div(factorial(n-(K[1]* mults [1])) , qdenom)

if Q ==0

println ("yikes !")

return ([[1]])

else

# Here we’re going to do a kind of conversion.
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# We scale down by i-1 do a unrank_reg_combo , then scale back up by i-1

for i in 1:n-(K[1]* mults [1])

Rone = div(r-1, Q)

Rtwo = r-Q*Rone

w = unrank_reg_combo(Rone+1, n, K[1], mults [1])

return ([w..., unrank_combo_partition(Rtwo , n-K[1]* mults[1], K[2:end], mults [2:end ])...])

end

end

end

end

#This version unranks regular combinations , need to adapt to list of disjoint k-subsets

function unrank_reg_combo(r::Int , n::Int , k::Int)

c = div(n,k)

if c*k != n

println ("error k does not divide n")

return ([[0]])

elseif n <=k

return ([[1:k;]])

else

Q = div(factorial(n-k), factorial(c -1)*( factorial(k)^(c-1)))

if Q ==0

println ("yikes !")

return ([[1]])

else

Rone = div(r-1, Q)

Rtwo = r - Q*Rone

w = combination_unrank(Rone+1,n,k)

if n-k ==k

return ([w, [1:k;]])

else

return ([w, unrank_reg_combo(Rtwo , n-k, k)...])

end
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end

end

end

# Computes the r-th regular combination of l disjoint k-subsets

# of [n] with respect to lex order

function unrank_reg_combo(r::Int , n::Int , k::Int , l::Int)

if l==0

return(Vector{Int }[])

elseif k*l > n

println ("error k*l > n")

return ([[0]])

else

for i in 1:(n+1-k*l)

Q = div(factorial(n+1-i-k), factorial(l-1)* factorial(k)^(l-1)* factorial(n+1-i-l*k))

if Q==0

println (" yikes !")

return ([[1]])

elseif r > Q*binomial(n-i, k-1)

r = r - Q*binomial(n-i,k-1)

else

Rone = div(r-1,Q)

Rtwo = r - Q*Rone

w = [i-1 for j in 1:k] + combination_unrank(Rone+1, n+1-i, k)

return ([w, [[i-1 for j in 1:k] for m in 1:(l -1)]+ unrank_reg_combo(Rtwo , n+1-i-k, k, l -1)...])

end

end

end

end

# Given r disjoint l-subsets of [n], computes the position

# in lex order among all such regular combinations

function rank_reg_combo(v:: Vector{Vector{Int}}, l::Int , r::Int)
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N= l*r

s = 1

for i in 1:(r-1)

s = s+( combination_rank(v[i], N-l*(i-1), l)-1)*div(factorial(N-i*l), factorial(r-i)* factorial(l)^(r-i))

end

return(s)

end

# Take n and a permutation in S_n and

# computes the next permutation with

# respect to lex -order

function permutation_next(n, v:: Vector{Int})

k=n-1

while v[k] > v[k+1]

k = k-1

end

if k==0

return(v)

end

j = n

while v[k] >v[j]

j = j-1

end

v[k],v[j] = v[j],v[k]

r = n

s = k+1

while r >s

v[r], v[s] = v[s], v[r]

r = r-1

s= s+1

end

return(v)

end
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# Computes all k-subsets of [n] in co-lex order

# and returns as binary vectors. Very fast

# but requires storing all elements

function colex_bitstring(n::Int ,k::Int)#,v:: Vector{Int})

if k==0

return ([zeros(Int , n)])

else

if k < n

l1 = [vcat ([0], C) for C in colex_bitstring(n-1, k)]

else

l1 = Vector{Int64 }[]

end

l2 = [vcat ([1], C) for C in colex_bitstring(n-1,k-1)]

l = vcat(l1, l2)

return(l)

end

end

# input should be n (size of symmetric group) sigma a vector of vectors with entries ordered by decreasing

# length , and increasing first element within entries of the same length. Within each length block , the

# entries of the vectors should be integers in {1,... k} where k is the sum of the lengths of vectors in

# this block and all following blocks

function conj_class_next !(n::Int , sigma:: Vector{Vector{Int}}, lambda :: Vector{Int})

chunk_track =0

i = length(lambda)

chunk_end = length(sigma)

while i>0

current_chunk = sigma [1+ chunk_end - lambda[i] : chunk_end]

t = regular_combination_next !( current_chunk , length(current_chunk [1]), n

- sum([ length(sigma[i]) for i in 1:( chunk_end -lambda[i])]))[2]

if t == 0

sigma [1+ chunk_end - lambda[i] : chunk_end] = current_chunk
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return(sigma , 0)

else

sigma [1+ chunk_end - lambda[i] : chunk_end] = [[1: length(current_chunk [1]);] for i in 1: lambda[i]]

end

chunk_end = chunk_end - lambda[i]

i = i-1

end

return(sigma , 1)

end

# Returns all k-subsets of [n]

function combinations_list(n,k)

V = colex_bitstring(n,k)

end

# Computes the position of k-subset of [n]

# in lex -order

function combination_rank(s:: Vector{Int},n::Int , k::Int)

return(binomial(n,k) - sum([ binomial(n- s[i], k-i+1) for i in 1:k]))

end

# Computes the r-th k-subset of [n] with

# respect to lex -order

function combination_unrank(r::Int , n::Int , k::Int)

running_sum = 1

if r > binomial(n,k)

println ("error r> n choose k")

return ([0])

elseif n == k

if r ==1

return [1:n;]

else

println ("error n=k, r not ")
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end

elseif k == 1

if r <= n

return [r]

else

println ("error ")

return [0]

end

else

running_sum = binomial(n-1, k-1)

i=1

while running_sum <r

i += 1

running_sum += binomial(n-i, k-1)

end

running_sum = running_sum - binomial(n-i, k-1)

out = vcat([i], [j+i for j in combination_unrank(r-running_sum , n-i, k-1)])

end

return(out)

end

# Computes the r-th partition of a set of size N into k blocks of size n

function regular_partition_unrank(r::Int , n::Int , k::Int)

N = n*k

total_parts = div(factorial(N), (factorial(n)^k)* factorial(k))

fixed_first_block_num = div(total_parts , binomial(N-1, n-1))

first_part_no = 1+ floor(r/fixed_first_block_num)

new_r = r % fixed_first_block_num

end

# Converts a partition of a set into a ‘‘default ’’

# permutation.

function ct_to_p(v:: Vector{Vector{Int}})
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n = sum([ length(w) for w in v])

N = [1:n;]

Q = [zeros(Int , length(w)) for w in v]

for i in 1: length(v)

Q[i] = N[v[i]]

N= N[filter(x -> !(x in v[i]), eachindex(N))]

end

return(Q)

end

perm utils.jl

using Combinatorics

using DataStructures

using Oscar

# Returns the conjugacy class of a permutation as a list of cycle lengths

function conjclass(x::Perm{Int})

return(sort([ length(i) for i in cycles(x)]))

end

function conj_class_size(part:: Vector{Int})

n = sum(part)

l = length(part)

# The size of a the conjugacy class in S_n is equal to the index of the centralizer subgroup

# of any element of the conjugacy class

# The order of the centralizer is the product of the cycle lengths times the number of ways to

# mix up the cycles of the same length

numb_k_cycles = counter(part)

C_ord = prod(part)*prod([ factorial(big(numb_k_cycles[k])) for k in 1:n])

return(factorial(big(n))/ C_ord)

end

# If two permutations x and y are conjugate , returns a permutation t such that x^t = y. Otherwise
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# returns 0.

function solve_conjugation(x::Perm{Int}, y::Perm{Int}, n::Int)

x_cyc_type = sort([ length(cycles(x)[i]) for i in 1: length(cycles(x))])

y_cyc_type = sort([ length(cycles(y)[i]) for i in 1: length(cycles(y))])

if x_cyc_type != y_cyc_type

return (0)

else

VV = vcat(sort([ cycles(x)[i] for i in 1: length(cycles(x))], by=length )...)

WW = vcat(sort([ cycles(y)[i] for i in 1: length(cycles(y))], by=length )...)

tau = zeros(Int64 , n)

for i in 1:n

tau[VV[i]] = WW[i]

end

t = Perm(tau)

if t^-1 *x*t != y

println ("OH NO!")

end

return(t)

end

end

# Makes a "default" permutation with given cycle type. Returns it as a list of integers

function make_default_perm(in_partition :: Vector{Int})

defperm = Vector{Vector{Int64 }}()

counter = 1

for i in 1: length(in_partition)

push!(defperm , [counter:counter+in_partition[i]-1;])

counter = counter+in_partition[i]

end

return(defperm)

end

# Takes a pair of permutations and returns whether they generate a transitive permutation group
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# MUST NOT BE RUN IN ANY TYPE OF MULTITHREADED ENVIRONMENT - it calls GAP through Oscar and

# will crash Julia if multiple threads are active

function is_transitive_pair(permpair :: Vector{Perm{Int }})

n = sum(conjclass(permpair [1]))

S = SymmetricGroup(n)

sigma = cperm(S, [cycles(permpair [1])[i] for i in 1: length(cycles(permpair [1]))])

alpha = cperm(S, [cycles(permpair [2])[i] for i in 1: length(cycles(permpair [2]))])

# type adjust sigma and alph to be elements of S

H = Oscar.permutation_group(n, [sigma , alpha])

return(is_transitive(H))

end

murnaghan nakayama.jl

include (" perm_utils.jl")

#Evaluates the irreducible character of S_n corresponding to partition lambda for

#elements of cycle type rho. Assumes that lambda has the form k^1 ,1^{n-k}.

function char_eval(n::Int , lambda :: Vector{Int}, rho:: Vector{Int})

h = length(lambda)-1

r = rho [1]

charval = 0

#edge cases:

if r == n

return (( -1)^h)

elseif length(lambda) ==1

return (1)

elseif length(lambda) ==n

return (( -1)^(r-1)* char_eval(n-r, ones(Int , n-r), rho [2:end ]))

end

# contribution from leaving only horizontal strip

if r< lambda [1]

charval = charval + char_eval(n-r, vcat([ lambda [1]-r], lambda [2:end]), rho [2:end])

end

# contribution from leaving only vertical strip
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if r<length(lambda)

charval = charval + ( -1)^(r+1)* char_eval(n-r, vcat([ lambda [1]], ones(Int , h-r)), rho[2: end])

end

return(charval)

end

# Computes the lower bound on the number of possible n-bit

# hypermaps (sigma ,alpha ,varphi) where sigma and alpha are

# both n-cycles and varphi has type rho

function map_bound(n::Int , rho:: Vector{Int})

boundval = 0

bigval = conj_class_size(rho)

for i in 1:n

lambda = vcat([i], ones(Int , n-i))

boundval = boundval + bigval*char_eval(n, lambda , rho)/(n*char_eval(n, lambda , ones(Int , n)))

end

return(Int(round(boundval )))

end

# Computes the lower bound on the number of possible n-bit

# hypermaps (sigma ,alpha ,varphi) where sigma is an n-cycle

# alpha has type phi and varphi has type theta

function map_bound(n::Int , phi:: Vector{Int}, theta:: Vector{Int})

boundval = 0

bigval = conj_class_size(phi)* conj_class_size(theta)

for i in 1:n

lambda = vcat([i], ones(Int , n-i))

boundval = boundval + bigval*char_eval(n,lambda , [n])* char_eval(n,lambda , phi) * char_eval(

n,lambda ,theta )/( factorial(n)* char_eval(n,lambda ,ones(Int ,n)))

end

return(Int(round(boundval )))

end
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