# Date(s): 2/7/2022 # Project: Carli Creek Water Quality Assessment Project # Created For: Pollutants, medians, OWQC, and Intern'l BMP database # Name: Chris Desiderati ### setwd("C:/Users/irish/Documents/ACADEMIC/GRAD SCHOOL/Project_Carli/R") getwd() library(tidyverse) #activate tidyverse library(lubridate) #activate lubridate to deal with time library(dplyr) #to transform data #### Finding Peak reductions SS1<-read.csv("Site1.csv") SS1$DateTime<-mdy_hm(SS1$DateTime) SS3<-read.csv("Site3.csv") SS3$DateTime<-mdy_hm(SS3$DateTime) SS4<-read.csv("Site4.csv") SS4$DateTime<-mdy_hm(SS4$DateTime) SS13<-SS1%>% left_join(SS3,by="DateTime") SS13<-SS13%>% rename(Site.1=Flow.x)%>% rename(Site.3=Flow.y)%>% rename(Date=DateTime) str(SS13) SS13$Date<-ymd(SS13$Date) SS13%>% # Percent Peak Flow reductions during defined time-intervals of study period filter(Date>as_datetime("2021-01-29 12:00:00")&Date% drop_na()%>% summarize(MaxSite1=max(Site.1),MaxSite3=max(Site.3))%>% mutate(Reduction=((MaxSite1)-(MaxSite3))/MaxSite1*100) #### Stats of Field Parameters ### df0<-read.csv("CarliCW_050521.csv") df0 %>% group_by(Sample.Pt.Descr) %>% summarise_at(c("COND_FLD","PH_FLD","DO_FLD","TEMP_FLD"),mean) df0 %>% group_by(Sample.Pt.Descr) %>% summarise_at(c("COND_FLD","PH_FLD","DO_FLD","TEMP_FLD"),median) df0 %>% group_by(Sample.Pt.Descr) %>% summarise_at(c("COND_FLD","PH_FLD","DO_FLD","TEMP_FLD"),sd) df0 %>% group_by(Sample.Pt.Descr) %>% summarise_at(c("COND_FLD","PH_FLD","DO_FLD","TEMP_FLD"),min) df0 %>% group_by(Sample.Pt.Descr) %>% summarise_at(c("COND_FLD","PH_FLD","DO_FLD","TEMP_FLD"),max) #### Stats of Solids #### df0 %>% group_by(Sample.Pt.Descr) %>% summarise(across(c("TSS","TDS","TS","HARDNESS"),list(mean=mean,median=median,sd=sd,min=min,max=max)))%>% write.csv("SolidsStats.csv",row.names=T) #### Stats of E. coli#### df0 %>% group_by(Sample.Pt.Descr) %>% summarise(across(c("COLILERT"),list(median=median,sd=sd,min=min,max=max)))%>% write.csv("EcoliStats.csv",row.names=T) #### Stats of Nutrients #### df0 %>% group_by(Sample.Pt.Descr) %>% summarise(across(c("NH3","NO3NO2","TPO4"),list(mean=mean,median=median,sd=sd,min=min,max=max)))%>% write.csv("NutsStats.csv",row.names=T) #### Stats of Metals #### df0 %>% group_by(Sample.Pt.Descr) %>% summarise(across(c("CD","CU","PB","ZN","HG"),list(mean=mean,median=median,sd=sd,min=min,max=max)))%>% write.csv("TotalM+Stats.csv",row.names=T) df0 %>% group_by(Sample.Pt.Descr) %>% summarise(across(c("CD_DISS","CU_DISS","PB_DISS","ZN_DISS"),list(mean=mean,median=median,sd=sd,min=min,max=max)))%>% write.csv("DissM+Stats.csv",row.names=T)