2016

Quantum Yield Optimization for Semiconductor Photocatalysis Systems

Ryan Catabay
Portland State University, rcatabay@pdx.edu

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/mcecs_mentoring
Part of the Materials Science and Engineering Commons, and the Mechanical Engineering Commons

Citation Details
http://pdxscholar.library.pdx.edu/mcecs_mentoring/10

This Poster is brought to you for free and open access. It has been accepted for inclusion in Undergraduate Research & Mentoring Program by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Design and Build of a Photocatalytic Reactor
Ryan Catabay¹, Simon Fowler², and Dr. Jun Jiao¹²
¹Department of Mechanical and Materials Engineering. ²Department of Physics, Portland State University

Introduction
The utilization of photocatalysis has well-known potential for the degradation of organic contaminants in water purification processes [1]. A continuous flow photocatalytic reactor was developed in order to optimize the quantum yield of titanium dioxide (TiO₂), a semiconductor material well known for its photocatalytic properties [2]. This photocatalytic reactor was particularly designed for a controlled, variable radiant flux of ultraviolet (UV) light onto a fixed 3-dimensional thin-film catalyst structure. An exploded-view solid model representation of the UV chamber and a transparent view are shown below in Figure 1, parts a) and b) respectively.

Figure 1. Solid models of the UV chamber (a, b) and the catalyst reactor core (c, d) [3]

Continuous UV radiation excites the photocatalyst, generating electron-hole pairs that form hydroxyl radicals. The design of the reactor includes a variable catalyst cartridge (shown above in parts c) and d) of Figure 1), allowing multiple catalyst thicknesses, positions, and phases to be tested in rapid succession. In having these controlled variables, this reactor allows for a consistent measurement of contaminant degradation, relating directly to the quantum yield of the catalyst. Results from testing are to be compared to a theoretical model developed to optimize catalyst geometry based on electron-hole pair generation and diffusion processes.

Reactor Build
There are three parts to this work: UV chamber and control system, catalyst cartridge assembly, and material synthesis. The reactor UV chamber consists of six illumination walls, each with high-powered UV-LEDs mounted within. The intensity of UV exposure to the catalyst is controlled by pulse-width-modulation on a touchscreen display. Below, Figure 2 shows multiple views of the reactor. 2b) shows the illumination of the UV chamber core, while 2d) shows the reactor core.

Figure 2. Images of the UV chamber (a-c), and the catalyst reactor core (d).

Material Synthesis
Synthesizing the TiO₂ catalyst onto the quartz substrate is an important aspect of this work. Prior to catalyst cartridge syntheses, a material synthesis procedure is to be finalized. A sol-gel dipping process is being used to establish a TiO₂ thin film with the highest catalytic activity. To characterize the synthesized films, multiple analytical tools such as scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Raman spectroscopy and UV-Vis spectroscopy were used.

Results
For the initial contaminant degradation testing, Methylene Blue (MB) is used as a model contaminant. A single UV-LED is used to photo-activate TiO₂ on quartz within a cuvette, degrading surrounding MB over time. Degradation measurements are performed with a Shimadzu UV-Vis 3600 Spectrophotometer. Experimental procedure and degradation results of initial testing is shown in Figure 3.

Figure 3. Experimental procedure and depiction for initial catalyst testing is shown in (a) and (b). UV-Vis data shows the degradation of the MB over time in (c) and (d). Depiction and data is from previous testing done by the same group [3].

Future Work
The next steps of this research include the following: finalizing the material synthesis process, establishing the control and degradation measurement systems, and testing the system for continuous flow degradation.

References

The authors acknowledge the support of the Semiconductor Research Corporation (SRC) Education Alliance (award # 2009-UR-2032G) and of the Maseeh College of Engineering and Computer Science (MCECS) through the Undergraduate Research and Mentoring Program (URMP), and funding from PSU's Institute of Sustainable Solutions.