TFDEA: A New Approach for Technology Forecasting of New Product Development Targets

Lane Inman

Timothy R. Anderson
Portland State University, tim.anderson@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/etm_fac

Part of the Engineering Commons

Let us know how access to this document benefits you.

Citation Details
TFDEA: A New Approach for Technology Forecasting of New Product Development Targets

Lane Inman,
Veritas, Inc.

Tim Anderson
Portland State University
Presentation Flow

Introduction

Tech. Forecasting

DEA

TFDEA

Application

Conclusions

Introduction

Tech. Forecasting

DEA

TFDEA

Application

General Practice

State of the Art

General Practice

Example

TPC-C
Introduction

- **GAP1**: Current quantitative technology forecasting techniques do not handle variable trade-offs.
- **GAP2**: Current DEA tools do not handle single occurrence DMUs with variable time periods.
Research Objectives

- **Methodology:**
 - Develop a methodology for technology forecasting which provides a robust means to measure the SOA and its progress by extending current temporal DEA to allow for DMUs which are introduced only once at irregular intervals.

- **Application:**
 - Apply the methodology to a straightforward real world application.
Technology Forecasting

- **What is technology forecasting?**
 - “to predict the future characteristics of a useful machine”

- **What's a machine?**
 - Not only physical devices, but tools, techniques and procedures that provide some function to an end-user.

What is technology?

*Knight '74
What is technology, really?

Machine

Structure
Element 1
Element 2
Element 3
Element 4

Technology

Function
Attribute 1
Attribute 2

Introduction
Tech. Forecasting
DEA
TFDEA
Application
Conclusions
How is it currently done?

Definition
- Monitoring

Exploration
- Extrapolation
- Expert Opinion

Refinement
- Modelling and Simulation
- Scenarios

Understanding
What are the challenges?

- *It is difficult to assign a single attribute to the measurement of a technology.*
- Typically only addresses a technological approach not a single technology.
How are these challenges addressed?

- **State Of the Art (SOA)**

 “The best implemented technology as reflected by the physical and performance characteristics actually achieved during the time period in question”

 –Dodson, TFSC 1 1970
How can SOA be used?

- Given that technology is never better than State-of-the-Art, an index may be used to measure relative to the SOA.
- Over time a product's technology index will change – tracking that change will allow for future predictions.
What is the SOA?

Increasing State of the Art

Technology Approach #1

Technology Approach #2

Characteristics: #1, #2

Time: t₁, t₂
Where does SOA fit?

Definition

Exploration

Refinement

Monitoring

Extrapolation

Expert Opinion

Modeling and Simulation

Scenarios

Understanding
Steps to Forecast SOA

What does DEA measure?
Steps For DEA

- Decide Purpose
- Define DMU
- Determine I/O
- Choose DEA Model
- Collect Data
- Perform Analysis
- Examine Results
- Improve Model

Introduction
Tech. Forecasting
DEA
TFDEA
Applications
Conclusions
Data Envelopment Analysis

- Builds an efficiency envelope relative to its peers (extreme-point method)
How do they go together?
How do they fit together?

Introduction

TEFDEA

Tech. Forecasting

DEA

TFDEA

Application

Conclusions

Gap: General forms do not take into account the dynamic nature of trade-off surfaces.

Attr: DMUs are independently rated against peers which are explicitly identified by DEA.

Gap: Do not address the “best” available technology.

Attr: DEA is an extreme point method.

Gap: Current methods are limited to a single output.

Attr: DEA can handle multiple inputs and outputs simultaneously.

Gap: Current methods require independent attributes.

Attr: DEA does not require attribute independence.
How do they fit together?

Traditional DEA

- Decide Purpose
- Define a DMU
- Determine I/O Model
- Collect Data
- Perform Analysis
- Examine Results
- Improve Model
- Choose Model

Measuring SOA

- Specify Operational Definition of SOA
- Specify Parameter Selection Guidelines
- Develop Technique to Represent Surface
- Develop Prospective SOA Advances (GAP)
- Perform Analysis
- Examine Results

TFDEA

- Determine Scope of Forecast
- Define a Product
- Define SOA Characteristics
- Determine Specific Model
- Improve Model
- Collect Data
- Analyze Tech. Progress
- Examine Results
Example - RDBMS

RDBMS

Structure (INPUT)

Total Cost Of Ownership

OLTP TECH

Function (OUTPUT)

tpm-C
TPC Data

<table>
<thead>
<tr>
<th>Product</th>
<th>Name</th>
<th>Year Released</th>
<th>Total Cost($)</th>
<th>Perf. (tpmC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unisys Aquanta QR/6 c/s</td>
<td>1997</td>
<td>297392</td>
<td>7407</td>
</tr>
<tr>
<td>B</td>
<td>ALR Revolution 6X6 (1MB L2) c/s</td>
<td>1997</td>
<td>463821</td>
<td>1308</td>
</tr>
<tr>
<td>C</td>
<td>Compaq ProLiant 3000 6/450-512</td>
<td>1998</td>
<td>176042</td>
<td>6290</td>
</tr>
<tr>
<td>D</td>
<td>Unisys Aquanta QR/2V Server</td>
<td>1998</td>
<td>424297</td>
<td>1911</td>
</tr>
<tr>
<td>E</td>
<td>Compaq Proliant 3000-6/600-1P</td>
<td>1999</td>
<td>160643</td>
<td>8050</td>
</tr>
<tr>
<td>F</td>
<td>Compaq Proliant ML570</td>
<td>2000</td>
<td>201717</td>
<td>2020</td>
</tr>
<tr>
<td>G</td>
<td>Dell PowerEdge 6450</td>
<td>2000</td>
<td>334936</td>
<td>3123</td>
</tr>
<tr>
<td>H</td>
<td>Unisys e-@action Enterprise Server</td>
<td>2000</td>
<td>797935</td>
<td>6139</td>
</tr>
</tbody>
</table>

Source: Transaction Processing Council (TPC) www.tpc.org
Identification of the SOA
Mapping Progress

- Introduction
- Tech. Forecasting
- DEA
- TFDEA
- Application
- Conclusions
How do we represent it?

- Use the β determined earlier:

$$\phi^t = (\beta)^t \cdot \phi^0$$

$$y^t_r = \beta^{\Delta t} \cdot y^0_r \ \forall \ r \in \{1...m\}$$

- Translation: new outputs can be multiplied by the old outputs
Forecasting the Future

Graph showing the relationship between X - Cost (US 1000s $) and Y - Performance (1000s tpmC), with various data points and lines indicating 1998 Frontier, 1999 Predicted Frontier, and 95% Confidence Interval.
Forecasting the Future
Forecasting the Future
Applications:
TPC Results

Output-Oriented TFDEA

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Predicted Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Range</td>
<td>541</td>
<td>42.77%</td>
</tr>
<tr>
<td>ROC Predicts Lower Bound Only</td>
<td>220</td>
<td>17.39%</td>
</tr>
<tr>
<td>ROC Predicts Upper Bound Only</td>
<td>241</td>
<td>19.05%</td>
</tr>
<tr>
<td>ROC Did not Predict SOA</td>
<td>263</td>
<td>20.79%</td>
</tr>
<tr>
<td>Total</td>
<td>1265</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

IO-OO Output-Oriented TFDEA

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Predicted Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Range</td>
<td>797</td>
<td>63.00%</td>
</tr>
<tr>
<td>ROC Predicts Lower Bound Only</td>
<td>130</td>
<td>10.27%</td>
</tr>
<tr>
<td>ROC Predicts Upper Bound Only</td>
<td>338</td>
<td>26.71%</td>
</tr>
<tr>
<td>ROC Did not Predict SOA</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Total</td>
<td>1265</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
TPC Results

<table>
<thead>
<tr>
<th>Product</th>
<th>Date</th>
<th>ϕ_{lower}</th>
<th>ϕ_{upper}</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM eServer xSeries 365 4P c/s</td>
<td>2004-03-31</td>
<td>1.23</td>
<td>1.30</td>
<td>Low</td>
</tr>
<tr>
<td>HP Integrity Superdome</td>
<td>2004-04-14</td>
<td>0.95</td>
<td>1.02</td>
<td>Target</td>
</tr>
<tr>
<td>HP rx8620</td>
<td>2004-04-15</td>
<td>1.04</td>
<td>1.07</td>
<td>Low</td>
</tr>
<tr>
<td>Unisys ES7000 Aries 420 Enterprise Server</td>
<td>2004-04-20</td>
<td>1.20</td>
<td>1.24</td>
<td>Low</td>
</tr>
<tr>
<td>HP Integrity rx5670 Cluster 64P</td>
<td>2004-04-30</td>
<td>0.82</td>
<td>0.89</td>
<td>RISK</td>
</tr>
<tr>
<td>PRIMEPOWER 2500</td>
<td>2004-04-30</td>
<td>1.64</td>
<td>1.77</td>
<td>Low</td>
</tr>
<tr>
<td>IBM eServer pSeries 690 Model 7040-681</td>
<td>2004-08-16</td>
<td>1.08</td>
<td>1.21</td>
<td>Low</td>
</tr>
<tr>
<td>IBM eServer Xseries 445 8P c/s</td>
<td>2004-08-31</td>
<td>1.44</td>
<td>1.59</td>
<td>Low</td>
</tr>
</tbody>
</table>

HP Integrity made its debut – but it used RedHat Linux for its Operating System.
TPC - Conclusions

- Method provides a good estimate of future trends.
- IO-OO offers additional insight.
- Still prone to disruptive technologies.