Empirical Evaluation of Transit Signal Priority through Fusion of Heterogeneous Transit and Traffic Signal Data and Novel Performance Measures

Wei Feng
Chicago Transit Authority, weifengpdx@gmail.com

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Recommended Citation

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Empirical Evaluation of Transit Signal Priority

 Wei Feng, Chicago Transit Authority
 Miguel Figliozzi, Portland State University
 Robert Bertini, Cal Poly State Univ., San Luis Obispo

(Doug Beghtel/The Oregonian)
Background—Transit Signal Priority

Kamila Widulinski and Matthew Lapointe (2013)
Background—Transit Signal Priority

Evaluation methods

• **Analytic:** Lin (2002); Abdy & Hellinga (2011)
• **Simulation:** Furth & Muller (2000); Dion et al. (2004)
• **Empirical:** Kimpel et al. (2005); Albright & Figlioizzi (2012)

Before / after

Performance measures

• Bus travel time
• Schedule adherence
• Headway variability
• Delay for other vehicles
• **Lack of effectiveness and efficiency measures/evaluation**
Motivation

Unique set of complementary data sources

- **TriMet**
 - Bus AVL/APC data
 - **AVL**: Automatic Vehicle Location
 - **APC**: Automatic Passenger Count

- **City of Portland**
 - SCATS signal phase log data
 - Intersection vehicle count data
 - **SCATS**: Sydney Coordinated Adaptive Traffic System
Research Questions

Current TSP system in Portland:
– Effectiveness and efficiency?
– Time savings for buses vs. delay to cross street vehicles
– Green extension vs. early green phases?
– Near-side vs. far-side bus stops?
– Any problems and improvement opportunities?
Study Corridor

Bus Route 9
Bus Route 66
SE Powell Blvd.

Milwaukie 21st 26th 33rd 39th 42nd 50th 52nd 65th 69th 71st 72nd 82nd

12 SCATS signals

Near-side:
- 26th EB
- 33rd EB
- 42nd EB
- 72nd EB

- 26th WB
- 43rd WB

Far-side:
- 33rd WB
- 39th EB
- 49th EB
- 50th EB
- 52nd EB
- 65th EB
- 69th EB
- 71st EB
- 72nd EB

Stop-to-stop segment
Near-side (6)
Far-side (12)
Bus stop-to-stop segments

6 near-side segments

12 far-side segments
SCATS Signals

Median Cycle Length, Green phase and red phase duration

Seconds

Intersections / Directions

Red
Green
Data Integration

- Bus ALV/APC Database
- SCATS Vehicle Count Database
- SCATS Signal Phase Log Database

Bus Stop-to-Stop Trip Database

TSP Performance Evaluation
Bus Stop-to-Stop Trip Attributes

Input data
- Bus departure/arrival time
- Passenger activities
- Signal phase start/end time
- Priority request
- Upstream/downstream distance

Output variables
- Probability of arriving at intersection in:
 - Green
 - Red
 - Green extension
 - Early green
- Signal delay
- Time savings
Bus Time Saving (Early Green)

\[\text{Arrival time} \]

\[R_j^s \]

\[\text{Departure time} \]

\[R_j^e \]

\[R_{j+1}^s \]

\[R_{j+1}^e \]

\[\text{Speed (mph)} \]

\[\text{Density} \]

\[0.00 \ 0.10 \ 0.20 \]

\[0 \ 5 \ 15 \ 25 \ 35 \]
Bus Time Saving (Green Extension)

\[t_i = R_{j+1}^{e} = t_r \]

\[GE_{j}^{e} = R_{j+1}^{s} = t_r \]

\[v_{\text{max}} \]

\[GE_{j}^{s} \]

\[GE_{j}^{e} \]

\[t_l \]

\[d_1 \]

\[d_2 \]

\[d_{t_i} \]

\[\text{Arrival time} \]

\[\text{Departure time} \]
Key Performance Measures

– TSP Frequency

– TSP Effectiveness (for each TSP request)
 ➢ Probability of benefiting from a TSP phase
 ➢ Expected time saving

– TSP Efficiency (for each TSP phase)
 ➢ Probability of being beneficial to a TSP request
 ➢ Expected time saving per second of TSP phase duration
When A TSP Request Will Benefit from GE/EG

- Benefit from Green Extension
- Benefit from Early Green

Cycle

- Red-GE
- GE
- Green

Cycle

- Red-EG
- EG
- Green
Potential Results of A TSP Request

- on-time EG = Red/Cycle
- on-time GE = GE/Cycle

<table>
<thead>
<tr>
<th>Location</th>
<th>EG</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>39th</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>42nd</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>50th</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>52nd</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>65th</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>69th</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>71st</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>72nd</td>
<td>50%</td>
<td>0%</td>
</tr>
</tbody>
</table>

near

Portland State University
Actual Outcomes of TSP Requests

- TSP request
 - No TSP phase within the cycle
 - TSP phase within the cycle
 - Neither GE or EG
 - GE
 - EG
 - Both GE and EG

GE: Green Extension
EG: Early Green
Actual Outcomes of TSP Requests

![Bar chart showing the actual outcomes of TSP requests with percentage ranges and categories: Neither GE nor EG, EG, Both GE and EG, GE. The chart includes specific results for different years such as 39th, 42nd, 50th, 52nd, 65th, 69th, 71st, and 72nd.](chart.jpg)
TSP Effectiveness

- Bus trips that request TSP
- Green extension

![Diagram](image)

- No TSP phase within the cycle
- TSP phase within the cycle

Effectiveness
- Early
- On-time
- Late

Benefit
- Time saving
TSP Request Outcomes for GE

- d: no GE
- a: late GE
- b: on time GE
- c: early GE

<table>
<thead>
<tr>
<th>39th</th>
<th>42nd</th>
<th>50th</th>
<th>52nd</th>
<th>65th</th>
<th>69th</th>
<th>71st</th>
<th>72nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>WB</td>
<td>EB</td>
<td>WB</td>
<td>EB</td>
<td>WB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>near</td>
<td>near</td>
<td>near</td>
<td>near</td>
<td>near</td>
<td>near</td>
<td>near</td>
<td>near</td>
</tr>
</tbody>
</table>

- d: no GE
- a: late GE
- b: on time GE
- c: early GE

[Graph showing TSP Request Outcomes for GE]
TSP Request Outcomes for EG

- d: no EG
- a: late EG
- b: on time EG
- c: early EG

<table>
<thead>
<tr>
<th></th>
<th>39th</th>
<th>42nd</th>
<th>50th</th>
<th>52nd</th>
<th>65th</th>
<th>69th</th>
<th>71st</th>
<th>72nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>near</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- d: no EG
- a: late EG
- b: on time EG
- c: early EG

Nearness:
- d
- a
- b
- c
Ideal TSP Effectiveness

- on-time EG = Red/Cycle
- on-time GE = GE/Cycle

<table>
<thead>
<tr>
<th>39th near</th>
<th>42nd near</th>
<th>50th</th>
<th>52nd</th>
<th>65th</th>
<th>69th</th>
<th>71st near</th>
<th>72nd near</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>WB</td>
<td>EB</td>
<td>WB</td>
<td>EB</td>
<td>WB</td>
<td>EB</td>
<td>WB</td>
</tr>
</tbody>
</table>

- EB: EB
- WB: WB
- on-time EG = Red/Cycle
- on-time GE = GE/Cycle
Passenger Time Saving per TSP Request

\[
\frac{\sum_{i} \text{Time saving from } GE_i}{\sum_{i} \text{TSP request}_i}
\]

\[
\frac{\sum_{i} \text{Time saving from } EG_i}{\sum_{i} \text{TSP request}_i}
\]

![Bar chart showing time saving for different TSP requests from GE and EG](chart.png)
TSP Phase Triggered by TSP Requests

- **TSP phase**
 - GE or EG

- **TSP request within the cycle**
 - No TSP request within the cycle
 - TSP request within the cycle

- **EB**
 - Neither EB or WB

- **WB**
 - Both EB and WB
% of GEs Associated to TSP Requests From
% of EGs Associated to TSP Requests From

- Neither EB nor WB
- EB
- EB and WB
- WB

Percentages for years:

- 39th
- 42nd
- 50th
- 52nd
- 65th
- 69th
- 71st
- 72nd
TSP Efficiency

- **Bus trips that request TSP**: Green extension

- **TSP phase**
 - **GE or EG**

- **No TSP request within the cycle**
 -

- **TSP request within the cycle**
 -

- **Efficiency**
 - Early
 - On-time
 - Late

- **Benefit**: Time saving
Actual Green Extension Efficiency

The diagram illustrates the efficiency of green extension for various cycle points from 39th to 72nd, categorized as follows:

- **Out of Cycle**
- **Early (c)**
- **On-time (b)**
- **Late (a)**

Each cycle point is represented with bars indicating the percentage of each category. The diagram shows a breakdown of efficiency with a focus on how early, on-time, and late extensions are distributed across the cycles.
Actual Early Green Efficiency

- out of cycle
- c: early
- b: on-time
- a: late

30
TSP Efficiency (Time Saving vs. Delay)

TSP phase
GE or EG

If on-time

Major street bus and other vehicles time saving

Major street other vehicles time saving

Minor street other vehicles delay
Bus Passenger Time Saving per EG

\[\frac{\sum_j \text{Time saving of } EG_j}{\sum_j EG_j} \]
Bus Passenger Time Saving per GE

\[\sum_{j} Time\ saving\ of\ GE_{j} \]

\[\sum_{j} GE_{j} \]
Vehicle Time Savings and Delay

\[
TD = \frac{q_1 \cdot q_2}{2(q_2 - q_1)} \left(2 \cdot \text{Red} \cdot GE + GE^2\right)
\]

\[
TTS = \frac{q_1 \cdot q_2}{2(q_2 - q_1)} \left(2 \cdot \text{Red} \cdot EG - EG^2\right)
\]
Green Extension Efficiency

Assume single occupancy vehicles

- Minor street vehicle delay
- Major street vehicle time saving
- Major street passenger time saving

seconds

39th | 42nd | 50th | 52nd | 65th | 69th | 71st | 72nd

35
Early Green Efficiency

Assume single occupancy vehicles
Summary of Findings

Green extension
- Too many late green extension phases
- Time savings \approx Delay

Early green
- Time savings $>$ Delay

TSP performance
- Vary significantly across intersections
- Big gap between actual and ideal performance
Conclusions

• Proposed TSP performance measures can help identify problems/improvement opportunities and support planning decisions

• Findings from this study may be site-specific, but the methodologies are transferable to other corridors/cities

• TSP effectiveness and efficiency can be greatly affected by control logic, parameter calibration and signal detection/communication reliability
Future Work

• Consider vehicle queuing effect when estimating bus arrival time probabilities at intersections

• Utilize new and higher resolution data such as:
 – 5-second bus AVL data (finer bus trajectory between bus stops)
 – TSP Optical detector log data (priority log in/out records)
Acknowledgements

Steve Callas
David Crout

Peter Koonce
Willie Rotich
Questions?
On Average

<table>
<thead>
<tr>
<th>TSP request</th>
<th>Actual</th>
<th>Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within a cycle but early</td>
<td>1.5%</td>
<td>6%</td>
</tr>
<tr>
<td>Within a cycle but late</td>
<td>2.5%</td>
<td>0%</td>
</tr>
<tr>
<td>No TSP phase within a cycle</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Bus time saving</td>
<td>0.3s</td>
<td>0.3s</td>
</tr>
<tr>
<td>Passenger time saving</td>
<td>7.5s</td>
<td>0%</td>
</tr>
</tbody>
</table>

Actual:
- GE: 1.5%, 2.5%, 25%, 55%
- EG: 10%, 5%, 1%, 0%

Ideal:
- GE: 1.5%, 5%, 1%, 0%
- EG: 10%, 5%, 1%, 0%

Bus time saving: 0.3s (GE), 0.5s (EG)
Passenger time saving: 7.5s (GE), 10s (EG)
On Average

<table>
<thead>
<tr>
<th>TSP phase</th>
<th>Actual</th>
<th>Ideal</th>
<th>GE or EG</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>5%</td>
<td>40%</td>
<td>100%</td>
</tr>
<tr>
<td>Late</td>
<td>3%</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td>No TSP request within a cycle</td>
<td>64%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>28%</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>=100%</td>
<td>=100%</td>
<td>=100%</td>
</tr>
<tr>
<td>Duration</td>
<td>7s</td>
<td>11s</td>
<td></td>
</tr>
<tr>
<td>Bus passenger time savings</td>
<td>20s</td>
<td>90s</td>
<td></td>
</tr>
<tr>
<td>Major street vehicle time savings</td>
<td>60s</td>
<td>300s</td>
<td></td>
</tr>
<tr>
<td>Minor street vehicle delay</td>
<td>80s</td>
<td>200s</td>
<td></td>
</tr>
</tbody>
</table>

- GE or EG
 - GE: 100%
 - EG: 0%
 - Actual: 0%
 - Ideal: 0%