Rerouting Mode Choice Models: How Including Realistic Route Options Can Help Us Understand Decisions to Walk or Bike

Joseph Broach
Portland State University, jbroach@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation
https://pdxscholar.library.pdx.edu/trec_seminar/37

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Rerouting Mode Choice Models: How Including Realistic Route Options Can Help Us Understand Decisions to Walk or Bike

Joseph Broach, PhD, Research Associate
Urban Studies and Planning
Transportation Research and Education Center (TREC)
Portland State University
Friday Transportation Seminar - April 1, 2016
Motivation

1. Understand behavior

2. Inform policy

3. Improve prediction
The story so far

Revealed Preference
Bike Route Choice
Bike GPS Study

2007-2012

2010-2013

Transferability of
Bike Route Choice
Preferences

2014

2015-2016

Revealed Preference
Walk Route Choice
Family Activity Study

Revealed Preference
Mode Choice
The conceit

1. Given trip from A to B

2. Routes that *would* be taken are considered for each mode

3. Attributes along those routes affect mode choice
The plot

Given: Trip from Origin to Destination

Predict: Highest Utility “Best” Walk and Bike Routes

Estimate: Maximum Likelihood Mode Choice Utility Function
The setting

Only trips starting and ending within the City of Portland

Rich GIS data from Metro & City
- walk/bike network
- facilities
- land-use
- terrain
Adult participants in the Family Activity Study (2010-2013)

Compared with block group and typical Portland household with children...

- more educated 60% college
- less diverse 85% white
- more women 62% female
- more owners 81% own home
- similar income $50-75k
- more cars 1.7 cars
- more biking 11% trips
- more driving 75% trips
The characters (2)

GPS Trips (& tours)

- 1,419 (11%)
- 1,501 (11%)
- 9,957 (75%)
- 384 (3%)
walk considered an option <- trips over 7mi excluded ->

99th %tiles
walk, bike

Density
walk
bike
auto
transit

miles (shortest path)
data means (trips <= 7mi)

NHTS 2009 (means for trips <= 7mi)
The action

All models include: socio-demographics (gender, car ownership), trip context (purpose, day of week, transit access)

Model 1: Shortest Paths & OD Buffers (0.25-1 mi)

Model 2: Predicted Walk & Bike Routes

Model 3: Combination of Route, OD + Home area
Big reveal #1

Measuring along single best walk & bike routes predicts mode choice significantly better than within origin-destination buffer areas.
Big Reveal #2

Route and area measures complementary to route measures, in some cases.
Big reveal #3

Bike and walk facilities matter in decisions of whether to bike or walk.

-12% -10% -8% -6% -4% -2% 0% 2% 4%
not shown, each arterial crossing without a signal: -31% prob. walking
Gender matters for decisions of *whether* to bike, unlike decisions of *where* to bike.

-38%
Overall, for similar trip

-70%
When “best” route entirely along moderate traffic streets (ADT 5-20k)

+68%
When “best” route entirely along low-traffic bike boulevard

+0%
On trips that cross Willamette River (Men: 2.2x as likely)
Big reveal #5

Sensitivity to corridor-level policies substantially increased using predicted routes.

Route 1: follows shortest path along busy street* with bike lane
shortest path distance is 2 miles

Route 2: requires 10% detour, but uses quiet, local streets

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Model</td>
<td>1.7%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Route Model</td>
<td>3.1%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Initial Probability of Biking
(“best” route is Route 1)

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Model</td>
<td>1.7%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Route Model</td>
<td>21.5%</td>
<td>30.1%</td>
</tr>
</tbody>
</table>

Probability of Biking w/ proposed bike boulevard treatment along Route 2 (“best” route shifts)

* ADT 20k (cars per day)
Plot twist!

• Self-selection: Could those wanting to bike or walk more just live where facilities are better?

• Importance (1-5) in choice of current home...
 ...good walking neighborhood (mean=4.2)
 ...good biking neighborhood (mean=3.8)

• Significant impact but w/in range of travel environment effects (+22% walk, +39% bike)

• Significance and magnitude of route attributes largely unchanged, suggesting complementary effects
Critics always find something!

- Trip-based model (though included tour distance)
- Assumed order entirely destination -> mode
- Panel data (though controlled for time effects)
- Single “best” route for everyone
- Transit/Auto missing variables
- Preferences can only be revealed within existing conditions (new facility types, different urban forms)
- Attitudes not included
Morals of the story

• Quality bike and walk routes not only improve experience on existing trips but also encourage new trips by walking and biking.

• Low traffic-stress facilities are good for all users and may be especially important to encourage women to bike.

• For maximum value, bike facilities should follow shortest paths; however, still have value even when that’s not feasible, particularly when other options poor.
Questions? Ideas?

Special thanks to:
- NITC Dissertation Fellowship
- Portland Metro
- City of Portland
- Jennifer Dill & FAS Team
Further reading...

Contact me at jbroach@pdx.edu if you need help accessing any of my articles:

Bike Route Choice

Pedestrian Route Choice

Mode Choice

