10-25-2013

Engaging Stakeholders in Ecosystem Service Assessment Under Climate Change and Urban Development Scenarios

Heejun Chang
Portland State University, changh@pdx.edu

David E. Ervin
Portland State University, ervin@pdx.edu

Wes Hoyer
Portland State University

Mike Psaris
Portland State University

Ken Lyons
Portland State University

See next page for additional authors

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/geog_fac

Part of the Environmental Education Commons, Geographic Information Sciences Commons, and the Physical and Environmental Geography Commons

Citation Details
Chang, Heejun; Ervin, David E.; Hoyer, Wes; Psaris, Mike; Lyons, Ken; Dietrich, Emily D.; Hamlin, Samantha; Lambrinos, John; Winfield, Tammy; and Cochran, Bobby, "Engaging Stakeholders in Ecosystem Service Assessment Under Climate Change and Urban Development Scenarios" (2013). Geography Faculty Publications and Presentations. 46.
https://pdxscholar.library.pdx.edu/geog_fac/46

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Geography Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Engaging Stakeholders in Ecosystem Service Assessment under Climate Change and Urban Development Scenarios

Ecosystem Services Research to Action Program
October 25, 2013

Heejun Chang, Dave Ervin, Wes Hoyer, Mike Psaris, Ken Lyons, Emily Detritch, Samantha Hamlin, John Lambrinos, Tammy Winfield, Bobby Cochran
How can scientists engage in diverse stakeholder community?

- Dissemination of information (community education)
- Development of practical steps towards implementation of integrated resource management (decision tool)

Booth and Burgin (1997) *Frontiers in Ecology*
Current (2000) t_1
Future (2050) t_2

Scenarios

Modeling

Water Related ES
- Water Yield
- Water Temperature
- Sedimentation
- Nutrients (N & P)

Terrestrial ES
- Carbon sequestration
- Timber harvesting
- Agricultural production

INtegrated Valuation of Environmental Services and Tradeoffs
Nutrient Tracking Tool

Economic analysis: Target conservation area
FRAGSTATS: Landscape Configuration
Map correlation: Bundling and Tradeoff
Multilevel model: Scale Influence
How to construct scenarios?

Climate Change

Riparian planting

Low Δ

Land development

High Δ

Management

1. Climate Change
2. Riparian planting
3. Land development
4. Low Δ
5. Management
6. High Δ
7. Low Δ
8. Climate Change
9. Riparian planting
10. Land development
11. High Δ
12. Management

Change Annual Temperature (°C)

% Change Annual Precipitation
Summary of the stakeholders’ perception of the relative importance of individual ecosystem services

Water-related ES
- Water yield: 11.7
- Agriculture: 11.7
- Timber: 8.3
- Biodiversity: 11.7
- Carbon: 11.7
- Temperature: 13.3
- Sediment: 7.5
- Nutrient: 20.0

Terrestrial ES

Water-related ES
Bundling of ecosystem services

Example: Water yield 40%, water temperature 30%, nitrogen retention 15%, phosphorus retention 15%
Lessons learned

• **Early** communication helps identify the problems with appropriate scale and the needs of stakeholders in ES assessment.

• **Continuous** communication helps clarify and develop the common issues of interest (e.g., scenario development).

• More importantly, researchers can obtain original rich data from community partners (both quantitative and qualitative)

• **Visuals and maps** are useful tools for communication in the spatial patterns of ES.

• The **process** of developing a community of science and policy might be time-consuming but rewarding.
Acknowledgements

http://www.pdx.edu/ecosystem-services/

Questions or comments: Contact Heejun Chang at changh@pdx.edu

This research was supported by the US National Science Foundation (#1026629). Additional support was provided by the Institute for Sustainable Solutions at PSU.