Earthquake and Tsunami Forecasts: Relation of Slow Slip Events to Subsequent Earthquake Rupture

Timothy H. Dixon
University of South Florida

Yan Jiang
Geological Survey of Canada

Rocco Malservisi
University of South Florida

Robert McCaffrey
Portland State University

Nicholas Voss
University of South Florida

See next page for additional authors

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac

Part of the Geology Commons, Geophysics and Seismology Commons, and the Tectonics and Structure Commons

Citation Details

This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

Timothy H. Dixona,1, Yan Jiangb, Rocco Malservisi, Robert McCaffrey, Nicholas Vossa, Marino Prottd, and Victor Gonzalezd

aSchool of Geosciences, University of South Florida, Tampa, FL 33620; bPacific Geoscience Centre, Geological Survey of Canada, BC, Canada V8L 4B2; cDepartment of Geology, Portland State University, Portland, OR 97201; dObservatorio Vulcanológico y Sísmológico de Costa Rica, Universidad Nacional, Heredia 3000, Costa Rica

Edited* by David T. Sandwell, Scripps Institution of Oceanography, La Jolla, CA, and approved October 24, 2014 (received for review June 30, 2014)

The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

Geologic and Seismic Background

The Nicoya Peninsula forms the western edge of the Caribbean plate, where the Cocos plate subducts beneath the Caribbean plate along the Middle American Trench at about 5 cm/yr (3). The region has a well-defined earthquake cycle, with large (M > 7) earthquakes in 1853, 1900, 1950 (M 7.7), and most recently 5 September 2012 (Mw 7.6). Smaller (M ~ 7) events in 1978 and 1990 have also occurred nearby (4). Large tsunamis have not been reported for any of these events (5), but the 1992 Mw 7.6 Nicaragua earthquake 150 km to the northwest generated a large tsunami, reflecting shallow rupture (6, 7). SSEs are common below the Nicoya Peninsula (8, 9). These enigmatic events have now been identified in many subduction zones (10, 11) and represent largely aseismic slip on the plate boundary occurring over weeks or months (12).

Results

Our high-precision GPS network was substantially complete by 2007. We used a special noise minimization technique (9) to define surface displacements from SSEs in this tropical environment (Methods and Supporting Information). Fig. 1 shows event displacements that are well-recorded (2007 and later). The inter-SSE velocities (average site velocity between the various SSEs, assumed constant over the observation interval) are inverted to estimate coupling (locking) on the plate interface (Fig. 2). The SSE displacements are inverted to estimate slip on the interface during the various events (Fig. 3). We assume that

Significance

Recent destructive megathrust earthquakes and tsunamis in Japan and Sumatra indicate the difficulty of forecasting these events. Geodetic monitoring of the offshore regions of the subduction zones where these events occur has been suggested as a useful tool, but its potential has never been conclusively demonstrated. Here we show that slow slip events, nondestructive events that release energy slowly over weeks or months, are important mechanisms for releasing seismic strain in subduction zones. Better monitoring of these events, especially those offshore, could allow estimates of the size of future earthquakes and their potential for damaging tsunamis. However, the predictive value of slow slip events remains unclear.

The authors declare no conflict of interest.

This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

Data deposition: All raw data are available at Unavco, the National Science Foundation consortium for geodetic research (www.unavco.org).

1To whom correspondence should be addressed. Email: thd@usf.edu.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1412299111/-/DCSupplemental.
all locking and slip occurs on the fault plane (subduction megathrust), using published slab geometry (13) and inversion techniques (14). The estimated locked or slip patches are 30 km or larger, limited by the spatial resolution of our network (Supporting Information).

The temporal resolution of the onset time of individual SSEs is of order 5–10 d, limited by data noise (8, 9). The multiple slip patches shown as single events in Fig. 3 (e.g., 2007.4) probably do not occur simultaneously. They likely migrate both in time and space, but their temporal migration is not well-resolved. Typical migration speeds for SSEs in Cascadia are about 10 km/d (15–17). In Costa Rica, time lags between on-shore events and offshore events recognized by pressure transients in a borehole hydrologic observatory suggest propagation speeds as high as 20 km/d (18). Because our network only spans about 50 by 100 km, it would take at most 5–10 d for a series of SSEs to migrate across our network, comparable to the temporal resolution of our data. We have therefore considered events together in a single group (a composite event) if they occur within the same 30-d period. Possible up-dip, down-dip, or along-strike migration of several better resolved events is discussed in ref. 9.

The spatial distribution of coseismic rupture for the 2012 earthquake (19) is defined by a dense network of broad-band seismometers, strong motion sensors, and a subset of our GPS stations that recorded dynamic ground displacements at a high rate. These data suggest that the event initiated offshore at ~13 km depth, then ruptured down-dip, reaching a maximum slip of 4.4 m at a depth of about 25 km, stopping at a depth of about 30–35 km near the upper plate Moho. This main rupture patch, beneath the Nicoya Peninsula, is similar to that obtained from static GPS offsets (1). Our inter-SSE locking pattern (Fig. 2) and that obtained from an earlier analysis of campaign and continuous GPS results defining average interseismic site velocities (2) both reveal a locked patch closely coinciding with the 2012 earthquake rupture. However, the new inter-SSE site velocities require an additional locked patch down-dip and east of the 2012 rupture that can be understood in the context of the SSEs that also occur there, as discussed below.

Fig. 3 shows the individual SSEs for 2007 and later and their cumulative slip. The largest events were deeper, down-dip of seismic rupture. However, all recorded events had at least some shallow slip, and four had shallow slip in excess of 30 mm. Shallow SSEs have been reported in only a few subduction zones: New Zealand (20, 21), Japan (22, 23), and Ecuador (24). We suspect the paucity of such events is at least in part a sampling artifact, as many on-shore geodetic networks lack sensitivity to slip events far offshore (25, 26). Our network has sensitivity up to about 30 km offshore, but not beyond (Supporting Information).

In terms of magnitude and location relative to coseismic rupture, we can distinguish two classes of slow slip: i) Large events down-dip and mainly east of the main earthquake rupture, in or near the Golfo de Nicoya region, including the one immediately preceding the earthquake (Fig. 3). These events occur near the intersection of the down-going slab and the upper plate Moho, at the down-dip projection of the Fisher seamount chain. ii) Smaller offshore events, up-dip of the main earthquake rupture. If slow slip propagates all of the way to the trench, where we lack resolution, the magnitude of up-dip events is underestimated.

When the SSEs in Costa Rica are considered as a group, a striking pattern emerges: They surround the area of coseismic rupture; none occur within the 2012 rupture zone (Figs. 3 and 4). In contrast to the complementary pattern between slow slip and seismic rupture, inter-SSE locking and slow slip have a more complex relationship: Except for a small offshore locked patch to the northwest that is not well-resolved (Supporting Information) and the well-resolved earthquake rupture patch, many locked regions also slip in SSEs (Figs. 2 and 4). The summed moment for the 2007 and later SSEs (1.6 x 1021 Nm) is equivalent to an M 7.5 earthquake, suggesting that SSEs constitute an important part of the strain release budget.

If the rate and spatial pattern of strain accumulation were constant over the entire 62-y (1950–2012) interseismic period, a fully locked patch would have a total slip deficit of about 5 m. The maximum coseismic slip in 2012 was comparable (4.4 m); a Mw 6.9 event in 1978 (1, 19) may have contributed to the small
Fig. 3. Slip (mm) on the plate interface associated with individual SSEs shown in Fig. 1. Bottom Right panel shows summed slip for the period 2007–2012. Dashed lines represent depth contours on the plate interface, at 20 and 45 km, respectively.
Fig. 4. Summed SSE slip on the plate interface (black contours in meters, yellow, orange, and red colors) for the entire (1950–2012) interseismic period, assuming the 2007–2012 measurement period is typical. For comparison, the patch that ruptured in the 2012 earthquake (19) is also shown (in center, blue contours in meters).

difference. We can compare the amount of released and deficit slip to summed slow slip from the various SSE patches if we similarly assume that the rate and spatial pattern of slow slip over the interseismic period were constant and adequately sampled by the 2007–2012 data (Fig. 4). With these assumptions, down-dip SSEs released up to 4 m of slip, close to the amount expected. The down-dip slow slip patch was thus able to limit the rupture size of the 2012 event by intermittent release of strain in a series of large SSEs, roughly every 2–3 y if the post-2007 record is typical. In contrast, up-dip SSEs summed to no more than a 2-m slip, a little less than half the expected amount (postseismic slip will presumably account for an additional fraction). If the modern rate of SSEs has been constant since the last earthquake in 1950, the summed moment for all of the SSEs over this period (2 × 10^{21} Nm) is nearly an order of magnitude higher than the moment released by the 2012 earthquake (3.5 × 10^{20} Nm) and is equivalent to a Mw 8.2 earthquake. SSEs thus appear to be releasing 80–90% of the slip associated with relative plate motion, consistent with the historically low seismic coupling coefficient for this margin (27–29). We suggest that Central America tends to have smaller earthquakes compared with many other subduction zones because a significant fraction of slip occurs via frequent SSEs. Of course, we do not know if such behavior will continue in the future. Prior events in 1900 and 1950 appear to have ruptured approximately the same patch (1, 19). The better located 1978 event (Mw 6.9) was smaller than the 2012 event (Mw 7.6) but also ruptured in the same area.

Discussion
Since episodic tremor and SSEs were first identified in the Cascadia subduction zone (30), it has been assumed that slow slip would “load” the seismogenic zone, bringing it closer to failure and possibly triggering a major earthquake (15, 31–33). In Japan, foreshocks and a series of repeating earthquakes several weeks before the 2011 Tohoku earthquake migrated toward the hypocenter, leading to speculation that shallow slow slip triggered the rupture: “If this kind of premonitory slow slip behavior also precedes other large earthquakes, [it will] have crucial implications for earthquake prediction and risk assessment” (33).

One difficulty in assessing the argument that slow slip triggered the 2011 Tohoku earthquake is that the on-shore GPS network was too far away to record shallow SSEs. SSEs were inferred largely on the basis of seismicity (33). Our studies suggest that shallow SSEs do not always collocate with seismic tremor or low-frequency earthquakes (8); hence, seismicity alone may not be diagnostic. Limited available geodetic data are far from definitive, although they have been interpreted to support the triggering hypothesis for the 2011 Tohoku earthquake (34). SSEs in other subduction zones have also been interpreted to support the triggering hypothesis (35, 36). Our data describe, to our knowledge, the first well-recorded shallow SSEs in the decade leading up to a large subduction zone earthquake and a deeper event in 2012 immediately before the earthquake (Supporting Information), allowing a rigorous examination of the triggering hypothesis. Unfortunately, the predictive value of such events remains unclear. Two observations are relevant:

i) Broadly similar SSEs in 2007 and 2009 did not trigger a major plate interface earthquake (smaller within-plate earthquakes occurred near the time of some SSEs, but whether these were triggered or coincidental is not clear).

ii) Changes in Mohr–Coulomb failure stress (ΔCFS) (37, 38) associated with the 2012 SSE using the same plate interface geometry (13) show somewhat elevated (up to ~0.5 bars) ΔCFS near the down-dip end of the earthquake rupture (Supporting Information). However, this was not where the rupture initiated; rather, it initiated offshore, then propagated down-dip (19). ΔCFS at this up-dip location was less than 0.2 bars, below thresholds commonly assumed in these calculations. In subduction environments, ΔCFS ~1–25 bars have been shown to influence aftershock location and promote subsequent large thrust earthquakes (39). Using all of the SSEs since 2007 gives ΔCFS values of ~0.3–0.6 bars at the nucleation point, closer but still below the accepted triggering threshold. Poro-elastic processes are not considered in such calculations and could contribute to overall stress change (40). We also cannot preclude a cascade effect not directly related to stress triggering, whereby slow slip initiates a process that evolves into an earthquake (41).

SSEs can be described in terms of a conceptually simple rate-state friction model, consistent with a range of faulting behavior including earthquakes and after-slips (42–47). In this model, earthquake rupture occurs on locked patches of the plate interface that have accumulated significant stress and are velocity-weakening (friction decreases as slip velocity increases), whereas slow slip and after-slip occur on patches that are perhaps at lower stress and are velocity-strengthening (friction increases as slip velocity increases). Patches with near-neutral frictional characteristics are conditionally stable and may behave in either mode depending on stress or other physical conditions. Our results are broadly consistent with this view: Areas of the plate interface subject to frequent SSEs did not rupture in the main earthquake, consistent with velocity-strengthening behavior. We suggest this occurs for at least two different reasons, reflecting the two different classes of SSEs that we observe: their different pressure, temperature, and compositional (e.g., water content) environments, and presumably different types of velocity-strengthening behavior.

Down-dip of the main coseismic rupture, relatively large SSEs relieved all or most slip deficits during the interseismic period. SSEs in the same depth range have been reported in Alaska (48), Cascadia (49), and Japan (11, 50), perhaps highlighting frictional conditions that also contribute to deep after-slip in subduction zones (51) and similarly help to define the extent of subsequent coseismic rupture (49).

Up-dip of the main rupture, SSEs did not release all accumulated slip deficits; nevertheless, rupture propagation stopped close to the coastline and did not continue into the offshore...
locked patch. Either some strain is transmitted to the next seismic cycle (52), or it will be released as after- slip in the near future. Preliminary observations suggest that significant offshore after- slip is occurring, but it will be several more years before an accurate strain release budget can be calculated.

The large contrasts in pressure, temperature, and pore fluid pressure that characterize ambient conditions for shallow versus deep slow slip suggest that different physical processes are responsible for the two classes of events. Large variations in pore fluid pressure are more likely in the shallow region (sediments are largely dewatered by the time they reach the depth of deep slow slip), and these variations can have a significant impact on frictional conditions and resolved normal stress. Regardless of process, shallow SSEs limit tsunami potential in at least one and possibly two ways: by releasing some accumulated slip deficit and perhaps by marking frictional properties that limit seismic rupture. Of course, frictional properties can change over time. As an example, after-slip, usually considered an indicator of velocity-strengthening behavior, has been observed in areas that had previously undergone seismic (velocity-weakening) behavior (53). Understanding why such changes occur is an important research topic.

In contrast to previous studies, our results do not support the idea that SSEs have predictive value for the timing of megathrust earthquakes, at least with current data and model limitations. However, our findings do suggest that SSEs provide important constraints for earthquake magnitude and tsunami forecasting: SSEs limited the size of the 2012 earthquake by releasing a large fraction of the interseismic strain and revealed regions of velocity-strengthening that may have limited rupture propagation, especially offshore, limiting the subsequent tsunami. Better monitoring and understanding of these events could therefore improve hazard forecast accuracy, especially if future studies show that our results are broadly applicable to other subduction zones.

Current technology is not well-suited to the precise, spatially dense, and high time-resolution monitoring that is required to detect shallow SSEs in typical subduction zones (54), where geography limits geodetic resolution in the critical offshore region. For example, sea floor pressure gauges provide good temporal sampling, but are subject to drift and spurious signals from transient oceanographic events and are also expensive to deploy in sufficient numbers for good spatial sampling. Development of improved techniques for sea floor geodesy is urgently needed.

Methods

GPS data analysis and uncertainty estimation follow ref. 9. Briefly, the phase and pseudorange data are recorded at 15-s intervals and decimated to 5-min samples. Nine stations also record data at 5 Hz for strong ground motion studies (8, 19). A complete description of network hardware is given in ref. 8. The decimated data are used to estimate 24-h average position estimates of the receiver antenna phase center, assumed to be fixed relative to the ground via large monuments. Noise minimization includes identification and removal of annual terms reflecting atmospheric and hydrological effects and regional filtering to identify and remove common-mode errors, likely related to satellite orbit and reference frame effects. The resulting position time series define surface displacements associated with SSEs as well as long-term site velocities associated with the locked plate interface. The estimated displacements are used as inputs to a dislocation model (14) to estimate slip on the plate interface during a SSE. The estimated plate interface displacements are then used as inputs into Coulomb 3.3 (38), a model for estimating changes in ΔCFS on a fault associated with nearby displacements. Detailed descriptions of the data analysis, dislocation modeling and inversions for slip at depth, and the ΔCFS analysis are given in Supporting Information.

ACKNOWLEDGMENTS. We thank two anonymous reviewers, whose comments greatly improved the manuscript. We thank Unavco for assistance with installing and maintaining the GPS network in the Nicoya Peninsula. This work was supported by National Science Foundation Grants OCE-0850232, 0850233, 0850237, 1140261, and 1345100 from the Margins, Tectonics, Instrumentation-Facilities, and Geophysics programs (to T.H.D.). Y.J. was supported by a NASA Earth and Space Science Fellowship.

Supporting Information

Dixon et al. 10.1073/pnas.1412299111

GPS Data Analysis

GPS data analysis and error estimation follow ref. 1. Briefly, GPS observations are used to estimate 24-h average positions, using the GIPSY/OASIS (GPS Inferred Positioning System/Orbit Analysis Software) software in the precise point positioning mode (2). Observations with less than 4 h of observations are deleted. Fiducial-free orbit data from the Jet Propulsion Lab are used to produce fiducial-free station coordinates. Daily site coordinates are then transformed to the ITRF (International Terrestrial Reference Frame) 2008 reference frame (3) using daily transformation parameters also provided by the Jet Propulsion Lab. The Wide Lane Phase Bias (4) solutions are adopted for calculating cycle ambiguities in the GPS observations. This algorithm is able to resolve ambiguities with single station observations, which improves the GPS time series repeatability by ~30% in the east direction. The postfit WRMS (weighted root mean square scatter) for a linear plus seasonal time series model fit to the raw position data are 3 mm, 3 mm, and 8 mm for the north, east, and vertical components, respectively. Regional filtering (5) and modeling the SSEs (1) reduces postfit WRMS to 2 mm, 2 mm, and 6 mm for the three position components. The positionogram method (1) is used to identify the onset of the SSEs in the GPS time series. Velocity uncertainties from analysis of the GPS postfit residuals using a white plus colored noise model are 0.1 mm/y for the horizontal component estimates and 0.5 mm/y for the vertical component.

All velocities from the GPS time series are initially in the ITRF 2008 reference frame. A local rotation pole is used to transform these to the stable Caribbean Plate reference frame (6) following procedures outlined in our previous studies (1, 7–9). A model for the GPS time series is then developed that accounts for inter-SSE velocity, seasonal variation, and SSE timing, duration, and displacement (1).

Inversions for Slip at Depth

We use the TDefnode software package (10) to invert our geodetic measurements. TDefnode simultaneously estimates long-term block rotation, interseismic or inter-SSE locking on fault surfaces, and transient sources such as SSEs. The Earth’s crust is defined by a series of plates or blocks separated by active faults. Block motions are specified by rotation about Euler poles, and strain accumulation along block boundaries is specified by the backslip model (11). Block boundaries are faults that are represented by 3D irregular grids of nodes defined by latitude, longitude, and depth. For this work, the fore-arc block (8, 9) is defined separately from the Cocos and Caribbean plates. The fore-arc block is bounded by a right-lateral strike-slip fault to the northeast and the dipping subduction interface to the southwest. The strike slip fault separating the fore-arc block and Caribbean plate is assumed to be vertical and to run through the active volcanic chain. The thrust fault separating the fore-arc block from the Cocos plate dips at a value specified by the slab model (12). Additional constraints include Centroid Moment Tensor earthquake slip vectors and campaign GPS stations to help define the relative motion direction between the fore-arc block and adjacent plates.

Strain accumulation in adjacent blocks due to locking on block boundaries is calculated by adopting elastic Green’s functions and integrating over small patches between the nodes. Surface velocities are predicted using Okada’s method (13), applying a slip deficit rate on each small patch defined by adjacent nodes. To quantify inter-SSE locking along the plate interface, a locking factor \(\phi \) is estimated for each node, defined as the ratio of locked to total slip on the fault, ranging from 0 (freely slipping) to 1 (fully locked), and then smoothed. The inversion scheme uses a grid search and simulated annealing (14) to seek the set of parameters that minimizes data misfit, defined by the reduced \(\chi^2 \) statistic. To reduce the number of estimated parameters when inverting for the inter-SSE locking pattern, rake is determined by the relative plate or block motion direction.

For SSEs, two approaches were compared: Slip direction is opposite to the direction of plate motion, and slip direction is estimated as a free parameter. In both cases, slip direction (rake) is assumed uniform over the entire plate interface in both space and time; that is, rake variation between patches is not allowed. Results for the two approaches are similar; here we present the case where rake is estimated.

Different along-strike and down-dip parameterization methods for inter-SSE locking and slow slip can also be used to reduce the number of adjustable parameters. In this study, we use the free nodes (“smoothed grid” method) (10) for both inter-SSE locking and SSE displacement to obtain unbiased estimates of patch shape, smoothing results to better represent the inherent spatial resolution of the network, ~30 km (Spatial Resolution of the Inversions). We tested the stability of results by performing a large number of inversions under various data weighting and smoothing conditions. Note that results for the 2007.4 SSE are very similar to those presented in ref. 7 even though the data analysis and inversion procedures differ substantially between the two studies. This event is more poorly constrained than later events (Spatial Resolution of the Inversions).

Spatial Resolution of the Inversions

Although the node spacing (~10 km beneath the peninsula, somewhat larger offshore) of our mesh can yield slip patch estimates with the same dimensions, this exceeds the inherent spatial resolution of our network, which has a typical station spacing of ~20–30 km. Some form of regularization of the inversion is therefore required. Inversion results (for both inter-SSE locking and SSEs) are therefore smoothed to better reflect network resolution. An initial series of inversions is run to define the tradeoff between smoothing and data misfit; smoothed solutions with data misfit comparable to the known data noise (1) are deemed acceptable (Fig. S1).

We checked the spatial resolving power of the network for inter-SSE locking by conducting a series of “checkerboard” tests, similar to that described in ref. 9. Adjacent patches are assigned to be either fully locked or fully slipping, the corresponding surface displacement is calculated at the existing station locations, random noise is added, and the synthetic dataset is inverted, in this case without smoothing to better illustrate whether individual patches are well-resolved. The test is repeated for various patch sizes, starting with a small patch size (~10 km) and then in multiples of this patch size (~20 km, 30 km, and 40 km). It can be seen in Fig. S2 that patch sizes of 10 and 20 km (Top) are not well-resolved. The 30-km patch sizes (third panel) are well-resolved beneath the peninsula, but are less well-resolved offshore. The 40-km patches (Bottom) are resolved offshore out to a distance of ~30 km and are less well-resolved beyond this distance.

The resolution of SSE slip patches is similar to the inter-SSE locking, unless individual stations are offline during an event. Fig. S3 shows where the spatial resolution of SSEs is strong (90% or more of the simulated slip is recovered) and moderate (60% or
more recovery) assuming a fully operational network. Of course, this is not always the case. As an example, coastal station SAJU only came online in 2008; hence, the 2007.4 SSE is less well-constrained compared with later events. Nevertheless, our solution for the 2007.4 SSE appears to be robust; different data weighting and inversion schemes yield similar results.

A Possible Earthquake Precursor and Coulomb Failure Stress Analysis

An SSE started several days before the 2012 earthquake and continued right up until the time of the earthquake (Fig. 1 and Fig. S4). To assess the possibility that slow slip triggered the 2012 earthquake, we calculated the stress change associated with slow slip at the point where the earthquake nucleated, and other locations on the plate interface. Coulomb Failure Stress changes (ΔCFS) were calculated using Coulomb 3.3 software (15). ΔCFS is a relationship between shear stress change and normal stress change:

$$ΔCFS = Δτ - μ′Δσ_n,$$

where $Δτ$ is the change in shear stress, $μ′$ is the effective friction, and $Δσ_n$ is the change in normal stress (15, 16). A positive value for $ΔCFS$ implies that the fault is brought closer to failure. We use the slip distribution from the inversion averaged over a subfault grid, which is 18×16 patches. The geometry of the patches is consistent with the Slab 1.0 model (12). In these calculations, we assume a rake of 128° (17) and $μ′ = 0.4$. If we consider the hypocenter for the 2012 earthquake (17), 9.75° N and 274.5° E, with a depth of 16 km (green star in Fig. 5S), the ΔCFS from the 2012 SSE is +0.128 bars.

ΔCFS is inherently dependent on fault orientation. Experimentation with the “receiver” fault orientation gives ΔCFS as high as +0.2 bars and as low as -0.15 bars. These extreme values were calculated for a fault dipping at 10° at the hypocenter (17) with rakes of 160° and 0°, respectively. The dip of 10° coincides with the dip of the Slab 1.0 fault model (12), however the range of rakes extends beyond realistic values for subduction zone thrust faulting. Varying the receiver fault dip from 5–30° does not change ΔCFS significantly (<0.05 bars). Using other reported hypocenters from the US Geological Survey, National Earthquake Information Center, located closer to the center of the peninsula, gives a ΔCFS lower than that of our preferred hypocenter (17). Although sections of the fault located near the SSE patches experienced ΔCFS as high as +0.5 bars, these patches are not located near the preferred hypocenter for the 2012 $M_w = 7.6$ event.

Hence, although the timing of the 2012 SSE is suspiciously close to the 2012 earthquake, and the direction of motion of several GPS stations is somewhat anomalous compared with previous SSEs, a clear case for triggering of the 2012 earthquake by a SSE cannot be made. Given existing data and models, we cannot preclude the possibility that the timing of the 2012 SSE and the 2012 earthquake was coincidental.

Plate Interface Geometry

To define the geometry of the plate interface for both the SSEs and the ΔCFS analysis, we use the Slab 1.0 model (12). This published, open source, 3D global model is now widely used for subduction zone strain and related calculations but can differ from models augmented by local seismic data. We compared the Slab 1.0 model to several other published local models, including a recent 2D model (18) and another 3D model (19) (Fig. S6). All of these models are very similar in the depth range of 0–20 km (the depth range of shallow SSEs), typically within a 3 km depth or better at a given distance from the trench. However, below 20 km (e.g., including the region of deeper SSEs), the models can differ by 10–15 km in predicted depth at a given distance from the trench. In the northern Nicoya Peninsula, Slab 1.0 and the model of Christeson et al. (20) are very similar, whereas the other models are about 10 km deeper at a distance of 100 km from the trench. In the southern Nicoya Peninsula, Slab 1.0 and the models of DeShon et al. (19) and Christeson et al. (20) are very similar, whereas the other models are about 10–15 km deeper at this distance from the trench.

These differences do not significantly affect estimates of the location of the deeper SSEs shown in Figs. 3 and 4, which show the projection of these events onto the horizontal surface. Hence, the assignment of deeper SSEs to the region of the plate interface below the seismic rupture patch is unaffected by choice of plate interface model. The ΔCFS estimates are similarly little affected by the choice of plate boundary geometry. However, choice of plate interface model does affect the interpretation of depth, which is important when assessing physical conditions on the plate interface, such as pressure and temperature.

Fig. S1. Tradeoff between smoothing of inversion results for SSEs and rms misfit of model to data. Smoothing values between 10^4 and 10^6 were investigated in this study (arrows).
Fig. S2. Checkerboard test of network and inversion resolution. Four different patch sizes are used to determine the minimum resolvable patch size for inter-SSE locking or slow slip (Left, input; Right, output). The 30-km patches (third panel from top) are resolvable beneath the peninsula. Immediately offshore, 30-km patches are resolvable in some areas, degrading to ∼40 km farther offshore (Bottom).
Fig. S3. Summed slip for all SSEs from 2007 to 2012, compared with resolution of slip estimates. (Top) Contours outline area where resolution is strong (>90% of simulated slip is recovered by inversion). (Bottom) Contours outline areas where resolution is weaker (>60% of simulated slip is recovered by inversion).
Fig. S4. Detrended displacement time series for the east–west component of three high-precision GPS stations in the Nicoya Peninsula, Costa Rica for 2 y before the 5 September 2012 earthquake (red line and arrow). An SSE beginning several months before the earthquake is evident in all three stations, continuing up to the day of the earthquake.

Fig. S5. ΔCFS associated with the 2012 SSE. Red colors indicate changes promoting earthquake rupture, and blue colors indicate changes inhibiting earthquake rupture. Circle and arrow mark the location of rupture initiation of the 2012 earthquake (1).

Fig. S6. Comparison of different models for slab geometries beneath the Nicoya Peninsula. Cross-sections are perpendicular to the local trend of the trench. Model references include the following: DeShon et al. (2006) (1), Feng et al. (2013) (2), Norabuena et al. (2004) (3), Christeson et al. (1999) (4), and Hayes et al. (2012) (5).