A Study of Bicycle Signal Compliance Employing Video Footage

Sam R. Thompson
Portland State University

Kirk Paulsen
Portland State University

Christopher M. Monsere
Portland State University, monsere@pdx.edu

Miguel A. Figliozzi
Portland State University, figliozzi@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac

Part of the Civil and Environmental Engineering Commons

Let us know how access to this document benefits you.

Citation Details

Thompson, Sam R.; Paulsen, Kirk; Monsere, Christopher M.; and Figliozzi, Miguel A., "A Study of Bicycle Signal Compliance Employing Video Footage" (2013). *Civil and Environmental Engineering Faculty Publications and Presentations*. 74.
https://pdxscholar.library.pdx.edu/cengin_fac/74

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
A Study of Bicycle Signal Compliance Employing Video Footage

Institute of Transportation Engineers – Western District Annual Meeting
Session 7A: Planning and Modeling Our Communities
Tuesday, July 16th

Presenter:
Sam R. Thompson, E.I.T
Graduate Research Assistant
Portland State University
Civil & Environmental Engineering
Data Collection

- Two data sources:
 - City of Portland
 - Archived from previous research
 - 3 intersections
 - Portland
 - Bicycle-specific Signals
 - Portland State
 - Project-specific
 - 4 intersections
 - Varying intersection characteristics/locations
Data Reduction

- Cyclists were eligible to become part of the study if they were observed to:
 - Arrive on the red indication
 - Utilize bicycle infrastructure (and bicycle signal where applicable) on both sides of the intersection
Data Reduction

- Three types of data collected:
 - Descriptive
 - Event
 - Compliance-specific

- Helmet: Yes
- Cargo: Yes
- Car in Adjacent Lane: Yes
- Clothing Type: Casual
- Sex: Male
- Bike Type: Mountain
Compliance Indicators

- Compliant
- Non-compliant
 1. Illegal right turn on red (RTOR)
 2. Gap Accepted
 3. Signal Jump
Compliance Indicators

Illegal Right Turn on Red: RTOR

2011/07/10 12:02:43
Compliance Indicators

Gap Accepted
Compliance Indicators

Signal Jump

[Images of traffic signals and vehicles]

[Images showing a vehicle passing through a red light]
Results

- Total of 2,617 cyclists
- Initial Compliance Rate of 69.1%
- Compliance Rate excluding RTOR: 89.7%

<table>
<thead>
<tr>
<th>Compliance Indicator</th>
<th>Percent</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliant</td>
<td>89.7</td>
<td>1809</td>
</tr>
<tr>
<td>Gap Accepted</td>
<td>5.9</td>
<td>118</td>
</tr>
<tr>
<td>Signal Jump</td>
<td>4.3</td>
<td>87</td>
</tr>
<tr>
<td>Other</td>
<td>0.1</td>
<td>3</td>
</tr>
</tbody>
</table>
Compliance at Bike-Specific Signals

<table>
<thead>
<tr>
<th></th>
<th>No Bike Signal</th>
<th>Bike Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliant</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Gap Accepted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Jump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compliance by Helmet Use

<table>
<thead>
<tr>
<th>Helmet Use</th>
<th>Compliant</th>
<th>Gap Accepted</th>
<th>Signal Jump</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmet</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Helmet</td>
<td>75%</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compliance by Peak Period

- AM
- PM
- Off Peak

- Compliant
- Gap Accepted
- Signal Jump
- Other
Compliance by Wait Time

- Compliant
- Gap Accepted
- Signal Jump
- Other

Wait Time (sec):

- 0
- 20
- 40
- 60

Compliance percentages:

- 100%
- 75%
- 50%
- 25%
- 0%
Gap Accepted by Cross Traffic

Ratio of Accepted Gap to AASHTO BCT vs. Cross Traffic (veh/hr)
Comparison to Other Modes

- Motorists do not come to a complete stop before completing a right turn 56.9% of the time\(^1\).
 - Cyclists in this study committed RTOR violations at a rate of 23%.

- The average non-compliance rate for pedestrians is 15.8%\(^2\).
 - Cyclists in this study had combined violation rate for signal jumps and accepted gaps of 7.8%

- Motorists were found to run red indications at a rate of 1.3%\(^3\).
 - Cyclists in this study accepted gaps at a rate of 4.5%.
Conclusions

- Compliance at bicycle-specific signals is comparable to compliance at traditional signals.
- Observed compliance nearly 90% excluding RTOR.
- Risk-taking profile for non-compliant cyclists:
 - More likely to not wear a helmet.
 - Not influenced by wait time.
 - Minimum gap accepted equal to or less than minimum crossing time (determined by AASHTO) for high volume intersections.
Acknowledgements

- Oregon DOT Research Project TAC
- TAC: Gary Obery (ODOT), Peter Koonce (PBOT), Scott Beaird (Kittelson, Inc.), Nick Fortey (FHWA), Mark Joerger (ODOT)
- OTREC and Oregon DOT
- Dr. Christopher Monsere, Dr. Miguel Figliozzi, Kirk Paulsen
Questions?

Find interim report, TRB papers, and presentations at http://bit.ly/SxRrZd

* Opening photo credit via itdp @ flickr
References for Discussion

