1-10-2014

Evaluating Driver and Pedestrian Behaviors at Enhanced Multilane Midblock Pedestrian Crossings

Nick Foster
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: http://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, and the Urban Studies and Planning Commons

Recommended Citation
http://pdxscholar.library.pdx.edu/trec_seminar/76

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Evaluating Driver and Pedestrian Behaviors at Enhanced Multi-lane Midblock Pedestrian Crossings

A Case Study in Portland, OR

Nick Foster, AICP
Introduction

• Problem
 – Over 4,000 pedestrian deaths in 2010

• Potential solution
 – Enhanced crossings
 • Effectiveness?
 • Use?
Project Overview

• Two marked midblock crossings
 – Rectangular rapid flash beacons (RRFB)
 – Raised median refuge islands
 – Z-crossing (Danish offset)
• One site only
Background

• RRFB research focused on drivers
 – Driver yielding rates: 54%-88%
• Crossing decisions based on distance to crosswalk
 – Limited research on attraction
• No literature on Z crossing use
Site 1 – Barbur Boulevard

- 30,700 ADT
- 35 MPH
Site 2 – B-H Highway

- 26,400 ADT
- 40 MPH

Evaluating Driver and Pedestrian Behavior at Enhanced Multi-lane Midblock Pedestrian Crossings
Methodology

• 62 hours of video
 – Weekdays in February 2013
• Driver and pedestrian behavior MOEs
RESULTS
Driver Yielding Rates

Evaluating Driver and Pedestrian Behavior at Enhanced Multi-lane Midblock Pedestrian Crossings

Comparison of Driver Yielding Rates by Location

- **B-H Highway**
 - Stage 1: RRFB Not Activated Crossings: 13, RRFB Activated Crossings: 135
 - Stage 2: RRFB Not Activated Crossings: 20, RRFB Activated Crossings: 162
 - Overall: RRFB Not Activated Crossings: 33, RRFB Activated Crossings: 297

- **Barbur Boulevard**
 - Stage 1: RRFB Not Activated Crossings: 0, RRFB Activated Crossings: 16
 - Stage 2: RRFB Not Activated Crossings: 16, RRFB Activated Crossings: 228
 - Overall: RRFB Not Activated Crossings: 16, RRFB Activated Crossings: 468

Summary

- Overall, RRFB activated crossings show higher yielding rates compared to RRFB not activated crossings.
- The highest yielding rate was observed on B-H Highway, Stage 2, with RRFB activated crossings.
- The lowest yielding rate was observed on Barbur Boulevard, Stage 1, with RRFB not activated crossings.
Comparison to Other Studies

Evaluating Driver and Pedestrian Behavior at Enhanced Multi-lane Midblock Pedestrian Crossings

- Hunter, et al.
- Western Michigan
- ODOT
- ODOT (Bend)
- Shurbutt, et al. (2 Beacons)
- Shurbutt, et al. (4 Beacons)
- This study

Average Driver Yielding Rate

0% 20% 40% 60% 80% 100%

Shurbutt, et al. (4 Beacons) has the highest average driver yielding rate, followed by ODOT (Bend) and Shurbutt, et al. (2 Beacons).
Pedestrian Actuation Rates

Evaluating Driver and Pedestrian Behavior at Enhanced Multi-lane Midblock Pedestrian Crossings

Barbur Boulevard

- No Cars Present
- Cars Present
- Overall

B-H Highway

- No Cars Present
- Cars Present
- Overall

Location

Overall

RRFB Actuation Rate
Crossing Locations

Bus Stops

15%
15%
70%

SW 62nd Ave

B-H Highway
Diverted Crossings

- 52% of crossings at crosswalk are out-of-direction
Evaluating Driver and Pedestrian Behavior at Enhanced Multi-lane Midblock Pedestrian Crossings
Z-Crossing Use

- Path use = 52%
 - High yielding rates
Other Findings

• Avoidance maneuvers
 – Hard braking (2)

• Stranded pedestrians
 – RRFB activated (1 – 0.3%)
 – RRFB not-activated (6 – 15%)

• Minimal pedestrian delay
 – 20 sec max (RRFB not activated)
 – All but one <15 sec (RRFB activated)
Conclusions

- 91-92% overall driver yielding rate
- Marked midblock crossing with RRFB may encourage diversion
- Z-crossing effectiveness limited
 - Adequate sight distance
 - No physical barrier
Future Research

• Pedestrian diversion
 – More sites
 – Before/after
 – Wider field of view
 – Automated analysis
 – Survey

• Z-crossing
 – More sites

• Driver understanding
Acknowledgments

• Co-authors
 – Chris Monsere
 – Katherine Carlos

• Data reduction/earlier iteration
 – Deanna George
 – Fahad Alhajri