Piloting Portland's MultiModal Arterial Performance System

Shaun Quayle
Kittleson & Associates, Inc.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation
https://pdxscholar.library.pdx.edu/trec_seminar/89

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Piloting Portland’s Multi-Modal Arterial Performance System

November 22, 2013

Why Performance Measures?

➢ “What Gets Measured Gets Done”
➢ Reality-Focus rather than Prediction
➢ MAP-21 → Accountability

MAP-21
Moving Ahead for Progress in the 21st Century
Why Not Performance Measures?

- It costs too much
- What to collect & where to start?
- Lacking reliability, confidence, or resolution in data
- Data overload…how to make it useful?
- Software gives me answers that are “close enough”

Arterial Performance Background

- NCHRP 3-79: Measuring the Performance of Auto Traffic on Urban Streets
 - Delay & Queue Measurement
 - Running Time

Purdue Univ. – NCHRP 3-79
Data-Driven Vision for Arterial Performance

Define desired outcomes & objectives

Archive & Share Data

Evaluate against outcomes & objectives

Data Collection Plan/Program

Validate Data & Summarize Results

Conduct Collection
Concept for Arterial Performance Management

- Agree upon outcomes and measures
- Establish best data collection technologies & approach
- Leverage existing infrastructure and mainstream collection
- Fuse different data sources into a complete picture
- Establish institutional agreements and resources

Operations Arterial Performance Objectives

- Reduce congestion
- Minimize delay
- Minimize travel time
- Minimize queue spillback
- Reduce travel speeds
- Reduce traveler frustration
- Better inform traveler(s)

Monitor to determine/confirm problem, appropriate solutions, and on-going performance metrics
<table>
<thead>
<tr>
<th>Users of Arterial Performance Data & Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planners</td>
</tr>
<tr>
<td>• want to understand future needs and how to invest wisely</td>
</tr>
<tr>
<td>Engineers/Operators</td>
</tr>
<tr>
<td>• want to know how well this system is working</td>
</tr>
<tr>
<td>Modelers & Researchers</td>
</tr>
<tr>
<td>• want to investigate trends and ideas</td>
</tr>
<tr>
<td>Traveling Public</td>
</tr>
<tr>
<td>• want information about their trip</td>
</tr>
</tbody>
</table>
Arterial Performance Guidance

Data Collection Guidance
- Point Based Travel Time: 2-mile spacing
- Vehicle Classification & Speed: ≤ 1-mile spacing
- Vehicle Volume & Delay
- Intersection Operations
- Transit Measures
- Pedestrian Measures
- Bicycle Measures

Collector or Local Street

Legend
- Intersection Operations & Transit Signal Priority
- Transit Measures
- Emissions
- Vehicle Classification
- Vehicle Speed
- Travel Time (Point Based)
- Volume
- Delay
- Bicycle
- Pedestrian
- Arterial Detection Zone
- Arterial
Criteria for Top Arterial Performance Candidates

- Street is of Regional Importance
- Frequent Transit Service
- Basic Corridor Readiness
- Signal & Comm System to Automate

Pilot Project – 82nd Avenue Key Findings

- Successfully Leveraged Existing Infrastructure to Semi-Automate Multi-modal Data Sources
- Data interfaces are missing or incomplete
- Recognize strength & weakness of data sources
 - Ease of use, biases, etc…
- Location, Location, Location
System Detection

Length-Based Classification
Intersection Count Data

View Volume Logs For: 10 - US526 @ 185th - 24 & 185th @ Cornell

NORTHWEST SIGNAL

Volume Logs For: 10 - US526 @ 185th - 24 & 185th @ Cornell

Date	Start Time	End Time	Volumes	Volume
10/27/11	10/26/11	10/26/11	114	160
10/24/11	10/24/11	10/24/11	114	160
10/21/11	10/21/11	10/21/11	114	160
10/18/11	10/18/11	10/18/11	114	160
10/15/11	10/15/11	10/15/11	114	160
10/12/11	10/12/11	10/12/11	114	160
10/09/11	10/09/11	10/09/11	114	160
10/06/11	10/06/11	10/06/11	114	160

Truck Priority

Kittelson & Associates, Inc.
Bicycle Count Stations

BIKE DETECTION (NEW)

Installed parallelogram inductive bike loop to count bike traffic.

<table>
<thead>
<tr>
<th>Performance Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Weekday PM Peak Hour Bike Volume</td>
</tr>
<tr>
<td>Weekday Bike ADT</td>
</tr>
<tr>
<td>Weekend Bike ADT</td>
</tr>
</tbody>
</table>

Transit Performance Data (TriMet)

TriMet AVL DATA

TriMet AVL data provides real time vehicle tracking and can be aggregated to determine on time performance for bus routes.

<table>
<thead>
<tr>
<th>Performance</th>
<th>NB Route 22</th>
<th>SB Route 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Time (%)</td>
<td>84%</td>
<td>78%</td>
</tr>
</tbody>
</table>

Data from TriMet Fall 2012 (3:30 - 5:30 PM)

TRANSIT SIGNAL PRIORITY (TSP)

Transit signal priority (TSP) operates by transmitting location and vehicle information to traffic signals which prioritizes transit vehicles at signals.
Bluetooth™ “Probe” Permanent Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>3/4/12 – 3/10/12</th>
<th>9/9/12 – 9/15/12</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>82nd: Glisan - Springwater</td>
<td>454</td>
<td>497</td>
<td>+ 9.5%</td>
</tr>
<tr>
<td>82nd: Springwater - Glisan</td>
<td>421</td>
<td>451</td>
<td>+ 7.1%</td>
</tr>
<tr>
<td>Powell: 8th - 42nd</td>
<td>3064</td>
<td>3159</td>
<td>+ 3.1%</td>
</tr>
<tr>
<td>Powell: 42nd – 8th</td>
<td>3566</td>
<td>3689</td>
<td>+ 3.5%</td>
</tr>
</tbody>
</table>

Bluetooth™ “Probe” Speed & TT

[Map and Graph Showing Travel Times and Data Analysis]
Probe Data \(\rightarrow \) 24/7

<table>
<thead>
<tr>
<th>Periods</th>
<th>Buffer IndexBefore(^1)</th>
<th>Buffer IndexAfter(^2)</th>
<th>Delta in Buffer Index (^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekdays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free 12:00 AM - 6:30 AM</td>
<td>46%</td>
<td>42%</td>
<td>-4%</td>
</tr>
<tr>
<td>Coord 6:30 AM - 9:00 AM</td>
<td>39%</td>
<td>43%</td>
<td>4%</td>
</tr>
<tr>
<td>Coord 9:00 AM - 3:00 PM</td>
<td>41%</td>
<td>44%</td>
<td>3%</td>
</tr>
<tr>
<td>Coord 3:00 PM - 6:30 PM</td>
<td>70%</td>
<td>55%</td>
<td>-15%</td>
</tr>
<tr>
<td>Coord 6:30 PM - 8:30 PM</td>
<td>36%</td>
<td>37%</td>
<td>1%</td>
</tr>
<tr>
<td>Free 8:30 PM - 11:59 PM</td>
<td>35%</td>
<td>31%</td>
<td>-4%</td>
</tr>
<tr>
<td>24 Hour Average</td>
<td>63%</td>
<td>54%</td>
<td>-9%</td>
</tr>
<tr>
<td>Saturdays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free 12:00 AM - 9:00 AM</td>
<td>34%</td>
<td>38%</td>
<td>4%</td>
</tr>
<tr>
<td>Coord 9:00 AM - 7:30 PM</td>
<td>32%</td>
<td>35%</td>
<td>3%</td>
</tr>
<tr>
<td>Free 7:30 PM - 11:59 PM</td>
<td>32%</td>
<td>32%</td>
<td>0%</td>
</tr>
<tr>
<td>24 Hour Average</td>
<td>37%</td>
<td>39%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Bluetooth™ Origin-Destination

Butler Street as Origin

<table>
<thead>
<tr>
<th>Source (Next)</th>
<th>Destination (Previous)</th>
<th>Number of Trips</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCM Avon</td>
<td>34 E. Avon</td>
<td>2508</td>
<td>45.1%</td>
</tr>
<tr>
<td>Premier Plaza</td>
<td>34 E. Avon</td>
<td>2601</td>
<td>45.4%</td>
</tr>
</tbody>
</table>
Fleet “Probe” Data (Inrix™)

Probe Data Comparison – Pilot Evaluation

BLUETOOTH MAC ADDRESS READER

A Bluetooth MAC address reader is used to measure segment travel time, speed and origin-destination data.

INRIX DATA SEGMENT

Inrix data is used to measure travel time and average speed data for a segment. (Inrix segment highlighted below)

Performance Metrics

<table>
<thead>
<tr>
<th>Route</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Time SE Foster to NE Gilsan (NB)</td>
<td>8:10 mins</td>
</tr>
<tr>
<td>Travel Time NE Foster to SE Stark (SB)</td>
<td>7:58 mins</td>
</tr>
</tbody>
</table>

Data collected Portal, from Feb 10 - Oct 12, 2012 (4 - 6 PM)

Data based on Inrix 2010 average weekday (4 - 6 pm)
Controller Logs = Timing Effectiveness

Before:

After:

Service Delay Log

Level Of Service: System 12 - US95 Actual M1, Local 11 - pair

Color Key:

A: Free Flow
B: Reasonably Free Flow
C: Stable Flow
D: Approaching Unstable Flow
E: Unstable Flow
F: Forced Flow
Service Delay Log: Pedestrians

PEDESTRIAN DETECTION

With pedestrian detection, delay and call request information can be collected and logged by a 2070 traffic controller.

AM/PM Peak Period Pedestrian Performance

<table>
<thead>
<tr>
<th>Cross Walk Phase</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button Calls Per Hour</td>
<td>16 / 58</td>
<td>16 / 58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay to Serve Call (sec)</td>
<td>30 / 35</td>
<td>30 / 35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Arrival on Green = Timing Effectiveness

Source: NWS Voyage Manual

% Arrival on Green Before and After Retiming
Red Clearance Extension

Summary Arterial Performance Measures

Transit
- On-Time Performance, Ons/Offs, Travel Time, # of TSP requests

Pedestrian
- Number of ped phases served, Transit Ons/Offs, ped delay

Bicycle
- Number of bikes, bicycle delay (if own detector input)
Summary Arterial Performance Measures

- **Freight**
 - # of trucks (length-based), # of truck priority requests

- **Autos**
 - # of vehicles (sys det or controller log), travel time, speeds, delay, % arrival on green, max outs v. gap outs

Next Steps – Enhanced Logging

- Delay by Input
- TSP
- Red Extension
Next Steps – Improved Interfaces

Inrix, Bluetooth, Bike Counts, Controller Logs, GUIs

Next Steps – Validation & Research

- Inrix, Bluetooth, Bike Counts, Controller Logs, GUIs
Next Steps – Continued Pilot Projects

- Outreach Workshops
- Target Funded Upcoming Capital Projects
- Incorporate into Design Specs/Guidance

Successful Arterial Performance

- **Quality Data**
 - Validate!

- **Appropriateness** for Objectives/Outcomes &
 - Know outcomes first
 - No gadgets for gadgets sake

- **Ease of Use** are of the utmost importance
 - Time is a valuable commodity
 - Interfaces to other systems/devices
Questions / Discussion?

Shaun Quayle
s quyale@kittelson.com; 503-228-5230