3-2016

Dynamic Stall of an Experimental Wind Turbine Blade

Matthew Scott Melius
Portland State University

Raúl Bayoán Cal
Portland State University, rcal@pdx.edu

Karen Mulleners
École Polytechnique Fédérale de Lausanne

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mengin_fac

Part of the Mechanical Engineering Commons

Citation Details

This Article is brought to you for free and open access. It has been accepted for inclusion in Mechanical and Materials Engineering Faculty Publications and Presentations by an authorized administrator of PDXscholar. For more information, please contact pdxscholar@pdx.edu.
To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.

© 2016 AIP Publishing LLC

Received Wed Oct 14 00:00:00 UTC 2015 Accepted Tue Jan 26 00:00:00 UTC 2016 Published online

Acknowledgments:
This work was in part funded by the National Science Foundation (NSF-CBET-1034581). The authors thank the Helicopter and Fluid Systems Departments of the German Aerospace Center (DLR) in Göttingen for providing access to the experimental facilities detailed in this manuscript.

Article outline:
I. INTRODUCTION
II. COHERENT STRUCTURE IDENTIFICATION TECHNIQUES