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Abstract 

Elevated indoor CO2 levels are indicative of insufficient ventilation in occupied spaces and 

correlate with elevated concentrations of pollutants of indoor origin. Adverse health and well-

being outcomes associated with elevated indoor CO2 levels are based on CO2 as a proxy, 

although some emerging evidence suggests CO2 itself may impact human cognition. Using 

portable monitors, we conducted an exposure study with 16 subjects in Singapore to 

understand the levels, dynamics and influencing factors of personal exposure to CO2. 

Participants carried a CO2 monitor continuously for 7-day periods recording their exposure 

levels at 1-min intervals. A recall diary was maintained of time-microenvironment-activity 

budget.  We found that the mode of bedroom ventilation was a major determinant of CO2 

exposure. Approximately half of the participants slept in bedrooms employing ductless split 

air-conditioners (group “AC”); half slept in bedrooms naturally ventilated through operable 

windows (group “NV”).  Median CO2 exposure levels for AC vs. NV groups are significantly 

different (𝑥̃𝐴𝐶  = 650 ppm vs. 𝑥̃𝑁𝑉 = 550 ppm, p < 0.001). Mean daily integrated exposures for 

group AC were statistically higher than for group NV: 22,800 ppm h/d vs. 16,000 ppm h/d (p 

< 0.005). Exposure events associated with potential adverse cognitive implications (duration 

> 2.5 h, average CO2 mixing ratio > 1000 ppm) occurred, on average, at frequencies of 0.5 d-1 

across all participants, 0.6 d-1 for AC participants and 0.2 d-1 for NV participants. The 

majority of such events occurred in the home (86%), followed by work (9%) and transit 

(3%).  

Keywords: indoor air pollution; ventilation; human cognition; wearable sensors; bioeffluents 

1. Introduction 

The mixing ratio of carbon dioxide (CO2) in indoor air, a metric long-considered to be 

associated with the quality of indoor air [1], remains utilized in present guidelines [2]. 

Because humans emit CO2 as a result of their metabolism, indoor CO2 levels are used as a 

proxy to assess of the sufficiency of outdoor air ventilation in relation to occupancy and 

activity [3]. Indoor CO2 levels, or estimates of metabolic CO2 emission rates, are also used in 

demand controlled ventilation systems [4]. In cases such as these, elevated levels of CO2 are 

not assumed to be directly problematic, but rather are taken to be indicative of insufficient 

dilution of indoor air with outdoor air, enabling air pollutants with indoor sources to 

accumulate, including bioeffluents other than CO2 [3,5]. It is under this concept that CO2 

levels in indoor air are considered in guidelines such as ASHRAE 62.1, which includes an 

appendix with an example calculation showing an indoor CO2 level of 700 ppm above 

outdoors results in satisfaction with respect to levels of human bioeffluents in a substantial 

majority of occupants [6].  
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By contrast, it is to protect against adverse direct health consequences that a personal 

exposure limit (PEL) has been established in the United States, limiting occupational CO2 

exposure to a maximum of 5000 ppm as an 8-h time weighted average [7]. This PEL is based 

on studies conducted at CO2 levels ranging from 10,000 ppm to 30,000 ppm that show 

adverse outcomes including electrolyte imbalances, metabolic changes, and non-narcotic 

central nervous system effects [8]. 

As routinely encountered in nonindustrial buildings, elevated CO2 has been empirically 

associated with a variety of adverse outcomes including symptoms of sick building syndrome 

and influenza [9], declines in rates of student attendance in schools [10], and increases in sick 

leave at a large manufacturing employer [11]. In these studies, CO2 was not thought to act as 

a causative agent, but rather as an indicator. However, emerging evidence suggests that CO2 

itself may adversely affect human cognition and decision-making performance at levels that 

are elevated, but still commonly encountered indoors. Studies investigating the impact of CO2 

on cognition in the range of 600-5000 ppm were conducted with a cohort of ten participants 

in a controlled, office-type chamber [12–14]. These studies concluded that several hours 

exposure to 3000 ppm or 4000 ppm CO2 results in decreased cognitive performance as 

observed via decrements in performance on a proofreading exercise. Satish et al. [15] 

exposed a cohort of 22 participants to 600, 1000, and 2500 ppm CO2 for 2.5-h periods. At 

1000 ppm, statistically significant, moderate reductions were observed in 7 of 9 metrics of 

decision making relative to 600 ppm; at 2500 ppm, statistically significant and more 

substantial reductions were observed in 8 of 9 metrics of decision making. A recent study 

largely substantiates those findings. Allen et al. [16] exposed 24 participants to CO2 levels of 

550 ppm, 945 ppm or 1400 ppm for “full work days” (~8 h), and found that cognitive 

function scores were 15% and 50% lower, respectively, for the days with 945 ppm and 1400 

ppm as compared with 550 ppm.  

On the other hand, other recent studies implicate bioeffluents or possibly the 

combination of CO2 and bioeffluents as the agent(s) adversely affecting human cognitive 

performance. Zhang et al. [17, 18] reported measures of cognitive impacts and physiological 

responses to elevated CO2 exposures lasting 255 min resulting from either injection of pure 

CO2 or via reduced ventilation in relation to human metabolic emissions. During experiments 

in which CO2 was injected, Zhang et al. [17] report no statistically significant effects on 

perceptions of air quality, acute health symptoms, or cognitive impacts. Only when reduced 

ventilation rates led to increased levels of metabolic CO2 plus associated bioeffluents were 

deleterious effects observed. Maddalena et al. [19] found that 4-h exposures to 1800 ppm 

CO2 and increased bioeffluent levels (reported as TVOC and noted to also include room 

sources) resulted in significant reductions in cognitive performance relative to a 900 ppm 

condition. They found similar reductions in cognitive performance across conditions where 

TVOC increased but CO2 remained constant at ~900 ppm.  Strøm-Tejsen et al. [20] reported 

reductions in objectively measured sleep quality as well as reduced measures of ability to 

concentrate and perform effectively on a test of logical thinking after subjects slept in 

bedrooms with elevated CO2 levels owing to reduced ventilation.  

 A large body of prior work confirms that CO2 levels used in the aforementioned 

cognitive studies are often observed in the building stock. In a sample of 100 office buildings 

in the United States (the BASE study), Erdmann and Apte [21] report an average ∆CO2 

(CO2,indoor – CO2,outdoor) of 260 ppm with a standard deviation of 130 ppm, indicating that the 

majority of offices in this sample are below the CO2 level (700 ppm above outdoors) shown 

in the example provided in Appendix C of ASHRAE 62.1. However, as noted by Allen et al. 

[16], the highest 8-h time-weighted-average CO2 mixing ratio was 1400 ppm in the BASE 
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study. Classrooms, an indoor environment where cognitive performance is of central 

importance, are commonly susceptible to elevated indoor CO2 [22]. Shendell et al. [10] 

reported that 45% of 434 US school classrooms had short-term (< 5-min) average CO2 levels 

above 1000 ppm. Santamouris et al. [23] reported that 52% of 62 classrooms in naturally 

ventilated schools in Greece had average CO2 mixing ratios greater than 1000 ppm.  

There are also reports of the occurrence of elevated CO2 levels in dwellings, especially 

in regions with substantial building heating or cooling loads. Bekö et al. [24] report that only 

32% of 500 Danish children’s bedrooms sustained average CO2 levels below 1000 ppm 

during measured night-time periods, with 23% of rooms experiencing a twenty-minute period 

above 2000 ppm. In the constantly warm and humid climate of Singapore, studies have 

shown an accumulation of CO2 in bedrooms (>1000 ppm) that are served by air-conditioning 

(typically a ductless split system) rather than being ventilated with open windows and 

operating fans [25, 26].  

While a large body of building-associated CO2 monitoring data have been reported, the 

levels of CO2 are almost always reported for a particular building or indoor space of interest. 

Given the historical acknowledgement of CO2 as a proxy of exposure to air pollutants with 

indoor sources, combined with emerging evidence for cognitive implications associated with 

CO2 exposures per se, complementary studies are warranted to directly measure personal 

exposures to CO2. Such studies are enabled by the recent development of portable, 

lightweight monitors that can be easily carried and that provide real-time measurement of an 

individual’s personal CO2 mixing ratio through time.  We are aware of only one recent study 

of this type. That effort targeted a cohort of school-aged children who wore the sensor only 

during school hours [27]. In the study described here, we report a novel dataset that measured 

continuous (24 h/d over week-long periods), personal CO2 mixing ratios with complementary 

time-microenvironment-activity budgets for 16 participants in Singapore.  Part of the 

inspiration for this work was the observation of high overnight CO2 levels in air-conditioned 

bedrooms of members of our research team in Singapore.  That observation led us to explore 

the CO2 exposure consequences of bedroom ventilation style for this tropical climate. Data 

generated by real-time personal CO2 exposure studies can be used to identify the time and 

place of problematic exposures to air pollutants with indoor sources (i.e., by using CO2 as a 

proxy). Real-time, personal CO2 levels can also provide context for emerging studies of 

cognitive implications of human exposures to CO2.  

2. Methods 

Study participants were recruited from a convenience sample of university students and 

professionals; all participants had a primary working environment of a typical cubicle-based 

office space. All participants were requested not to alter behavior from their normal day-to-

day activities when engaged in the study. Because we anticipated sleeping environments to 

play an important role influencing CO2 exposures in Singapore, subjects were recruited with 

the intent of creating equal sized groups within the sample population based on bedroom 

ventilation mode: either air-conditioned bedrooms served by a mini-split ductless air-

conditioning systems (group “AC”) or naturally ventilated (group “NV”) bedrooms with 

operable windows (typically kept open when occupied) and operating fans.  

In all, 16 subjects participated in the study; seven met the criteria for group AC, six for 

group NV, and three exhibited mixed bedroom ventilation characteristics (alternating AC and 

NV) and were assigned to group “MX”. Of the 16 participants, six were female, ten male, and 

the age range was 20-39 y. Where noted, anonymized participant identifications reflect 
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bedroom ventilation mode and gender followed by a numeric identifier, e.g., AC-M-02 is the 

2nd male participant in the AC sleeping microenvironment category. Participants each 

responded to a demographic questionnaire to obtain relevant personal data. Demographic 

details of subjects participating in the study, including the participant’s height, weight, 

marital status, a calculation of individual CO2 generation rate (ranging from 15-22 L/h across 

the 16 participants), a description of air-conditioner usage, number of individuals living in 

each participant’s home, and approximate number of coworkers in each participant’s 

workplace, can be found in Table S1 of the Supporting Information (SI).   

Participants were asked to complete a recall-based time-microenvironment-activity 

budget diary for each day engaged in the study. Participants recorded the time of entry and 

exit for each microenvironment, a broad descriptor of the type of environment (home, office, 

transit mode, outdoor, etc.), a broad descriptor of the nature of their activity (working, 

sleeping, eating, etc.), air-conditioning status (on/off), and window opening status 

(open/closed). For this manuscript, microenvironments are grouped into five categories: 

home, work, transit, other indoor, and outdoor (see SI for additional details). The ‘other 

indoor’ microenvironment includes all time spent indoors but not at home or work.  

Participants wore, carried, or otherwise kept in close proximity to their person a 

portable, battery-operated sensor (CM-0018, CO2Meter Inc.) that measured and stored 

records of date, time, temperature (°C), relative humidity (%), and CO2 mixing ratio (ppm) at 

1-minute intervals. Participants were asked to use the sensor to monitor their exposures for 24 

hours per day, for a target total of seven continuous days per person. In the event of sensor 

failure or user error, participants were asked to continue their participation to create a 

cumulative seven-day log, which resulted in a non-continuous record for some participants. 

All logs included at least two weekend days, to account for differences that may result from 

working vs. non-working activity patterns. Prior to use in the study, sensors were either 

factory calibrated or calibrated to a 3-point standard by placing the sensor in a 10-L stainless 

steel chamber (CTH-24, Eagle Stainless) and diluting a flow of food-grade (99%+) CO2 with 

a stream of CO2-free air passed through a CO2 sorbent (Sodasorb, Grace Chemical) to reach 

the desired CO2 mixing ratio in the chamber. Reference CO2 mixing ratios were determined 

from flow rate measurements made with a primary air flow calibrator (Gilian Gilibrator 2, 

Sensidyne LP). Sensors used in the study were calibrated a minimum of once every two 

months.   

Personal CO2 measurements were made between 19 May and 9 December 2015. All 

subjects were residing in Singapore during participation in the study. Because of the year-

round warm and humid climate of Singapore, no seasonal differences exist across the study’s 

duration. Four subjects participated during the 2015 haze period, spanning September 2015 to 

November 2015 when outdoor air pollution frequently reached hazardous levels. The haze 

period may have influenced individuals’ activity patterns and/or preference for enclosed, air-

conditioned indoor spaces; however, no systematically elevated CO2 exposures were 

observed for those subjects participating during haze periods compared to non-haze periods. 

All statistical analyses described in this paper were conducted in Matlab (R2012a, The 

Mathworks, Inc.). Statistical significance testing and consequent p-values were determined 

with the Wilcoxon rank sum test. All participants signed informed consent documents and 

were compensated S$10/d for their participation in this study. The methods described here 

were reviewed and approved by the Institutional Review Board of Nanyang Technological 

University (IRB-2015-04-010). 
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3. Results and Discussion 

 

3.1. Characterizing personal CO2 mixing ratios 

The 16 participants were engaged in the study for a total of 108 days, yielding an 

aggregate total of 2600 hours of continuous, personal CO2 monitoring.  The 1-min personal 

CO2 mixing ratios from two participants are shown in Figure 1, one each from the AC and 

NV groups. A feature common to both participants (AC-F-01 and NV-M-02) are short-

duration peaks in personal CO2 mixing ratio. These peaks generally correspond with time 

spent in air-conditioned public transit vehicles; the median CO2 mixing ratio in ‘transit’ 

environments was 1300 ppm across all subjects (Figure S1 of the SI). However, 

notwithstanding the elevated CO2 mixing ratios in transit, as we will see in §3.2, the impact 

of transit environments on integrated exposure is modest owing to the relatively small 

contribution of this activity to total time-microenvironment budgets.  In this sample, subjects 

spent an average of 7.2% of their time in transit.  

Time series personal CO2 mixing ratios are reported for participant AC-F-01 in the 

upper panel of Figure 1. Subject AC-F-01 reported that she was on holiday and spent the 

nights of 21-23 August in a hotel, returning to sleep in her normal air-conditioned bedroom 

on the nights of 23-26 August. The difference in the CO2 profile between the two nights of 

21-23 August and the three nights of 23-26 August result from sleeping in 

microenvironments with different modes of ventilation. On average, participant AC-F-01’s 

integrated CO2 exposure in the sleeping microenvironment was 25,000 ppm-h per sleeping 

period for 23-26 Aug compared to an average of 6800 ppm-h per sleeping period for 21-23 

Aug. These differences are largely explained by a 3 higher average CO2 mixing ratio (2370 

ppm vs. 800 ppm) between these two sleeping microenvironments. This example illustrates 

the importance of the CO2 mixing ratio in sleeping microenvironments, where individuals 

spend a substantial portion of their daily time budget. Sleeping microenvironments are also 

likely to be characterized by smaller volumes than other microenvironments, enabling 

accumulation of CO2, particularly if measures are taken to limit outdoor air exchange to 

reduce total cooling demand (or heating demand, in cold climates). Integrated exposures are 

explored in §3.2.  

As can be observed in the lower panel of Figure 1, sleeping periods are not as clearly 

apparent from CO2 mixing ratios for participant NV-M-02, who slept exclusively in 

bedrooms ventilated with open windows and operating fans. The result is a flatter diurnal 

CO2 profile for NV-M-02 than for AC-F-02, largely because CO2 mixing ratios in the 

sleeping microenvironment with open windows are nearer to outdoor levels.  

Summary statistics of 1-h averaged personal exposure mixing ratios for all participants 

across the duration of their engagement in the study are shown in Table 1; summary statistics 

of the raw 1-min personal exposure mixing ratios are shown in Table S2 of the SI. Personal 

CO2 mixing ratios are neither normally nor lognormally distributed, as determined by 

inspection of Q-Q plots of 1-min mixing ratios and log-transformed 1-min mixing ratios for 

linearity. Mean 1-h exposure mixing ratios are substantially higher for AC participants than 

NV participants, primarily a result of higher personal CO2 mixing ratios at the 75th percentiles 

and above for AC participants.  
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Figure 1. Example of continuous record of personal carbon dioxide mixing ratios for two 

participants: top panel (AC-F-01) and bottom panel (NV-M-02). Annotations to AC-F-01 

correspond to elevated CO2 in transit microenvironments. 

The distributions in Table 1 reveal that all participants, regardless of sleeping 

microenvironment, spend a meaningful fraction of a typical day at elevated personal CO2 

levels. For AC participants, 95th percentile values (corresponding to 1.2 h/d) average 2200 

ppm; all 95th percentile values are higher than 1100 ppm (700 ppm above a nominal outdoor 

background of 400 ppm, as shown in Appendix C of ASHRAE 62.1 and described 

previously). For NV and MX participants, the 95th percentile values are lower than for AC 

participants, averaging 1220 ppm and 1470 ppm, respectively 

 

Cumulative distributions of 1-min personal CO2 mixing ratios are shown in Figure 2. 

Exposure mixing ratios appear similar for AC and NV groups until approximately the 40th 

percentile, when values diverge. This is a result of AC and NV participants, spending, on 

average, a similar fraction of each day at or near ambient levels (< 500 ppm). The data shown 

in Figure 2 do not reflect any temporal patterns of exposure, that is, while AC and NV groups 

have similar 40th percentile exposure mixing ratios, the location or time of those exposures 

may differ between AC and NV groups.  
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Table 1. Summary of descriptive statistics of hourly averaged personal CO2 mixing ratios 

(ppm) across all participants. a,b  

     Percentile  

Participant Nights AC Mean Std. Dev. Skew 25 50 75 90 95 

AC-M-01 7/7 860 640 1.5 450 510 1190 1950 2370 

AC-F-01 6/7 1230 880 1.1 520 830 1760 2760 3010 

AC-F-02 7/7 1020 720 1.1 390 780 1480 2110 2490 

AC-M-02 7/7 740 240 1.8 570 710 840 950 1270 

AC-M-03 7/7 830 490 3.1 550 710 840 1330 1780 

AC-M-04 7/7 760 260 0.6 510 740 980 1090 1160 

AC-M-05 5/6c 1190 1070 1.3 480 530 1890 2970 3430 

NV-M-01 0/7 640 180 2.3 540 630 710 780 880 

NV-M-02 0/7 710 190 1.4 570 670 830 920 1070 

NV-F-01 0/7 610 310 6.1 500 540 580 770 1060 

NV-M-03 1/7 660 400 2.1 440 480 660 1330 1680 

NV-M-04 0/7 650 280 1.1 460 520 860 1130 1270 

NV-F-02 0/4 700 340 2.4 500 570 790 1020 1390 

MX-F-01 5/9 830 370 1.1 550 720 1000 1400 1580 

MX-M-01 4/7 690 310 0.7 440 510 1020 1170 1210 

MX-F-02 3/7d 1120 300 1.1 890 1080 1270 1540 1620 
a “Nights AC” refers to the number of nights the participant spent in an air-conditioned sleeping 

microenvironment out of the total number of nights engaged in the study.  

b All values of CO2 are rounded to nearest 10 ppm. 
c Participant AC-M-05 generally slept in a bedroom with the air-conditioner off but with windows closed, 

resulting in a bedroom ventilation condition more similar to the “AC” group. 
d Participant MX-F-02 reported that the when the air-conditioner was operating, the windows were kept partially 

open to provide ventilation to the room. 

 

Figure 2. Grouped 1-min personal CO2 mixing ratios for a) all participants in groups AC and 

NV and b) all participants in group MX split into the days MX participants slept in air 

conditioned bedrooms (MX:AC) and days MX participants slept in naturally ventilated 

bedrooms (MX:NV). Pairwise comparison of median values show differences that are 

statistically significant (p < 0.0001) for AC versus NV groups and for MX:AC versus 

MX:NV groups, as determined with the Wilcoxon rank sum test. 
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Median values of personal mixing ratios when grouped by sleeping environment are 

statistically significantly different when pooled for AC and NV participants (p < 0.0001). For 

the MX participants, we performed a similar analysis by subdividing the days when MX 

participants slept in AC conditions (MX:AC) from those sleeping in NV conditions 

(MX:NV), as shown in Figure 2b. Median values of personal CO2 mixing ratios are again 

statistically significantly different (p < 0.0001) when comparing MX:AC and MX:NV. 

Further discussion of statistical testing of 1-min personal exposure mixing ratios can be found 

in the Supporting Information.  

3.2. Estimates of time integrated CO2 exposures and time activity budgets 

 

Daily integrated CO2 exposures are determined as the time-integral of personal CO2 

mixing ratios and calculated by summing over the day the product of a personal mixing ratio 

and the measurement time-step, similar in concept to the approach described by Burke et al. 

[28]. Average daily integrated exposures (ppm h/d) are summarized for groups of participants 

in Figure 3a. Time-microenvironment budgets across the five categories of microenvironment 

are summarized for groups of participants in Figure 3b. Apportionments of average daily 

integrated exposure and time-microenvironment budgets for individual participants are 

provided in Figures S2 and S3 of the SI. Average daily integrated exposure, when grouped by 

AC or NV, is significantly different (𝑥̃𝐴𝐶  = 22,800 ppm h/d vs. 𝑥̃𝑁𝑉= 16,000 ppm h/d, p < 

0.005).  

 
 

Figure 3. a) Average daily integrated CO2 exposure and b) time-activity budget apportioned 

by category of microenvironment. Error bars shown in panel a) reflect the range of daily 

integrated exposures across individuals in the indicated group. Reported p-value is 

determined with the Wilcoxon rank sum test. Reference lines in panel a) are shown for 

comparison to a hypothetical equivalent daily integrated exposure from continuous exposure 

to an average CO2 mixing ratio of 1000 ppm (solid) and 400 ppm (dashed) for a 24-h period. 

Exposures in Figure 3 are presented in units of 1000 ppm h/d. A “baseline” 

hypothetical daily integrated exposure is shown on Figure 3 as a dashed line at 9,600 ppm 

h/d. This is the daily exposure that an individual would receive if average personal exposure 
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mixing ratios were at outdoor ambient levels (400 ppm  24 h/d). Analogously, the solid line 

at 24,000 ppm h/d represents the daily integrated exposure an individual would receive if 

personal exposure mixing ratios averaged 1000 ppm. This integrated mixing ratio implies 

periods of exposure both above and below 1000 ppm and is shown to provide context to the 

actual exposure data shown in Figure 3. Average daily integrated exposures across 

participants mostly occurred in the range 9600-24,000 ppm h/d, although as can be observed 

from the error bars in Figure 3, some individuals exceeded the 24,000 ppm h/d threshold 

(four AC participants and one MX participant; see Figure S2).  Across all participants, the 

home microenvironment was the dominant contributor to daily integrated exposure, 

accounting for an average of 66% of daily integrated CO2 exposure. The work 

microenvironment was the second largest contributor, averaging 18% for all participants, 

followed by transit (10%), ‘other indoor’ (5%), and ‘outdoor’ (0.5%). 

While variability in daily integrated exposure is observed across participants in each 

group, on average, exposures reported Figure 3 follow the expected trend based on sleeping 

microenvironment ventilation mode. The AC group has the highest average daily integrated 

CO2 exposure, followed by MX, and NV has the lowest. Inter-daily variability in exposures is 

also observed, with stronger variability for AC participants than for NV participants. An 

example of day-to-day variability for two illustrative participants is shown in Figure S4, 

where daily integrated exposures (ppm h/d) vary day-to-day by a factor of (max/min) 2.5 for 

AC-F-01, and only 1.4 for NV-M-02.  

Exposure in any given microenvironment is the product of the average personal CO2 

mixing ratio encountered there and the duration of occupancy. Participants spent the large 

majority of their time in three microenvironment categories: 61% at home, 26% at work, 7% 

in transit, and spent only 1% outdoors. These time-activity budget values agree reasonably 

well with a recent modeling study of exposures to particulate matter and ozone in Singapore 

that reported 70%, 28%, 3.2%, and 4.5%, at home, at work, transit, and outdoors respectively 

[29].   Differences in daily integrated CO2 exposures appear not to be driven by differences in 

behavior across groups as no statistically significant differences in comparisons of time-

microenvironment-activity budgets are observed (see Table S3 in the SI). Instead, the major 

contributor to differences in exposure is levels of CO2 in the home: median mixing ratios of 

CO2 in AC vs. NV homes during times when the subjects were present are significantly 

different (883 vs. 656 ppm, p < 0.01).  

3.3. Frequency, location, and duration of elevated exposure events 

 

The high time resolution of CO2 measurements, coupled with the detailed time-

microenvironment budgets recorded by each subject enable an in-depth analysis of the nature 

of exposure ‘events’ when personal mixing ratios of CO2 are elevated. In this study, we 

characterize elevated exposure events of the sample population in two ways. First, in §3.3.1, 

based on the exposure duration reported by Satish et al. [15], continuous 2.5-h rolling average 

personal exposure mixing ratios are determined for each subject for each day of participation. 

We extract the maximum 2.5-h rolling average for each day, resulting in approximately seven 

events for each of the 16 participants. In §3.3.2, exposure events are characterised as 

beginning when personal CO2 crosses the threshold of 1000 ppm and ending when CO2 falls 

below that same threshold. In both approaches, elevated exposure events are described by the 

average CO2 mixing ratio during the event and cross-referenced to the time-

microenvironment budget to determine the location in which the event occurred. If multiple 

microenvironments were occupied during an event, the location contributing the majority or 

plurality of the duration is reported.  
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Three categories of exposure events are considered: exposure level 0 (EL0) where 

mean personal CO2 exceeds 1000 ppm for 0.5-2.5 h, exposure level of possible concern 1 

(ELPC1) where mean personal CO2 levels are 1000-2500 ppm for a duration exceeding 2.5 h, 

and exposure level of possible concern 2 (ELPC2) where CO2 levels are above 2500 ppm for 

more than 2.5 h. These values are selected based on the work of Satish et al. [15]; selection of 

CO2 level and duration endpoints from other studies would clearly affect the frequency of the 

categorized ELPC events. As our knowledge of the role of CO2 influencing human cognition 

continues to develop, the original data could be re-evaluated to reflect a more detailed 

understanding of problematic CO2 exposure levels. The approach of personal CO2 monitoring 

also provides a means of identifying when and where problematic exposures to other air 

pollutants of indoor origin might occur. For example, Ramalho et al. [5] show that when 

average occupied CO2 mixing ratios in dwellings increase from <750 ppm to between 1000-

1500 ppm, the proportion of dwellings meeting a 2 μg/m3 limit for benzene decreases from 

60% to 46%, further decreasing to 31% when the average CO2 level exceeds 2000 ppm.  Also 

worth noting: because the occurrence of elevated CO2 exposures is commonly a consequence 

of metabolic emissions, personal CO2 exposure monitoring is a useful proxy for 

characterizing overall exposure to bioeffluents. 

3.3.1. Maximum daily 2.5-h exposure mixing ratios 

 

Statistics describing the distributions of daily maximum 2.5-h exposure mixing ratios 

are shown in Figure 4 for AC, NV, and MX participants. Median values of daily maximum 

2.5-h mixing ratios follow expectations based on classification of sleeping 

microenvironment: the AC group exhibits the highest median value (1470 ppm), followed by 

MX (1270 ppm), and NV (1030 ppm). Pairwise comparisons of medians are significantly 

different for AC vs. NV (p < 0.001), AC vs. MX (p < 0.05), and MX vs. NV (p < 0.05). The 

distributions shown in Figure 4 reveal that ELPC1 is likely for all participants, representing 

the 18th, 47th, and 18th percentile for groups AC, NV, and MX, respectively. Events meeting 

ELPC2 mixing ratio criteria (> 2500 ppm) correspond to the 70th percentile of daily 

maximum 2.5-h averaged exposure mixing ratios for group AC; ELPC2 events are not 

experienced by NV and MX groups. 

Daily maximum 2.5-h exposure mixing ratios are plotted as a function of time of day 

(plotted at the temporal midpoint of the 2.5-h period) and the corresponding classification of 

microenvironment in Figure 5. Across all subjects, the majority of daily maximum 2.5-h 

exposure mixing ratios occurred in the home (78%), followed by work (12%), transit (6%) 

and ‘other indoor’ locations (3%). Higher CO2 levels in the homes of the AC group resulted 

in 88% of daily maximum 2.5-h exposure mixing ratios occurring in the home for this group. 

Elevated household levels also contributed to the relative dearth of occurrences of daily 

maximum exposures for AC participants in the timeframe 10:00-21:00. Data for group AC 

are clustered and elevated in the early morning (06:00-08:00), a result of overnight 

accumulation of CO2 in an enclosed bedroom.  In contrast, NV and MX participants’ daily 

maximum 2.5-h events occurred more uniformly throughout the day and in a broader 

diversity of microenvironments: 69% in the home, 13% at work, 11% in transit, and 7% in 

‘other indoor’ locations.  
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Figure 4. Distributions of daily maximum 2.5-h CO2 mixing ratios for each category of 

participants: AC (n = 52), NV (n = 45), and MX (n = 26). In each box, the central mark is the 

median, the edges denote 25th and 75th percentiles, and whiskers extend to the data points not 

considered outliers while outliers are plotted individually. Median values across groups are 

significantly different as determined with a Wilcoxon rank sum test.  

 
Figure 5. Diurnal distributions of daily maximum 2.5-h CO2 exposure mixing ratios. For data 

points where more than one microenvironment contributed to the exposure during the 2.5-h 

period, the microenvironment that contributed the majority or plurality of exposure is the 

identified category.  
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3.3.2. Characterizing elevated exposure events (above 1000 ppm and for longer than 0.5 h) 

 

 A summary of the frequency and location of elevated events is provided in Table 2. 

These data are reported in greater detail in Tables S4-S7 of the SI, with six bins of average 

CO2 level and six bins of duration. In aggregate, the sum of conditions ELPC1 and ELPC2 

occur often, roughly once every second day when averaged across all participants. Events in 

the ELPC clusters occur more frequently for AC and MX participants than for NV subjects.  

Exposure events meeting the ELPC criteria occur almost exclusively in the home 

microenvironment (Table 2): averaged across all participants 86% of events occurred in the 

home, while only 9% occurred in the work microenvironment. In this context, it is worth 

noting that the majority of cognitive studies of CO2 [14–17,19] have focused on office-type 

microenvironments. Further studies exploring implications of elevated CO2 exposures in 

homes and sleeping microenvironments, with attention to the next-day effects of CO2 

exposures during sleeping periods (e.g., [20]), are warranted. 

Systematic investigations of the mechanisms of action for CO2 alone and CO2 plus 

bioeffluents to affect cognition at levels encountered in buildings are only beginning to 

emerge. Vehviläinen et al. [30] report that exposures to elevated CO2 result in higher 

concentrations of CO2 in body tissues, changes in heart rate variation, and increases in 

peripheral blood circulation in subjects. These changes coincided with increases in subjective 

assessments of sleepiness and incidence of headache.  However, as CO2 was not 

independently controlled in this study, impacts cannot be exclusively attributed to CO2 

exposure. Zhang et al. [18] report that exposures to elevated CO2 and accompanying 

bioeffluents resulted in increases in diastolic blood pressure and salivary α-amylase. They 

propose a model that these increases are indicative of higher arousal/stress, in turn reducing 

human cognitive performance.  

Table 2. Summary of the frequency and location for exposure events with CO2 levels 

exceeding 1000 ppm for a duration of greater than 0.5 h.  

 Frequency of indicated exposure event (per d) for group: 

Exposure 

category a All AC NV MX 

EL0 0.75 0.64 0.71 1.0 

ELPC1 0.46 0.47 0.18 0.97 

ELPC2 0.05 0.12 0 0 

 Fraction of ELPC events by location for group: 

Location All AC NV MX 

Home 86% 85% 100% 86% 

Work 9% 9% 0% 11% 

Transit 3% 6% 0% 0% 

Other indoor 1% 0% 0% 4% 
a Designation of exposure categories by average CO2 level across the duration of exposure event. EL0 

is exposure level 0, for which the average CO2 level exceeded 1000 ppm for a duration in the range 

0.5-2.5 h.  ELPC1 is exposure level of possible concern 1, for which the average CO2 level was in the 

range 1000 - 2500 ppm for a duration exceeding 2.5 h.  ELPC2 is exposure level of possible concern 

2, for which the average CO2 level exceeded 2500 ppm for a duration exceeding 2.5 h.  Any ELPC 

event is the aggregate sum of events characterized by ELPC1 and ELPC2.  
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3.4. Study limitations and implications 

 

The sample population in this study represents a limited sample from a narrow strata of 

the Singapore population, and is not statistically representative. While we observed the mode 

of bedroom ventilation to be an important determinant of personal CO2 exposure, subsequent 

studies should confirm the findings of this work in larger sample populations with greater 

statistical power. Furthermore, there are many variables that combine to impact personal CO2 

exposures, including microenvironment volume, ventilation rates, and occupant densities that 

were not fully explored in this investigation.  While data describing these variables are 

challenging to collect in real-time and in diverse populations, subsequent studies could 

investigate these factors via quantitative or qualitative criteria to elucidate the influence of 

other factors in addition to ventilation mode that are known to affect indoor CO2 levels and 

personal exposures.  

Notwithstanding the limitations, the data collected in this study illustrate the potential 

for frequent, elevated exposures to CO2 and should motivate larger scale investigations of 

continuous, personal CO2 exposures. Such investigations should expand the sample size of 

the present study of personal CO2 exposures in populations residing in tropical regions as 

well as extend to other regions where outdoor air ventilation may be suppressed, for example, 

in regions with substantial building heating loads. Several long-term trends in built 

environments can motivate such studies. First, as airtightness of the building stock increases 

to help meet energy-efficiency goals, air pollutants with indoor sources, including CO2, may 

accumulate to higher indoor levels. Secondly, a warming climate may induce building owners 

and occupants to install more ductless air-conditioning systems, as used in the AC group in 

this study, to improve thermal comfort. Such ductless systems do not generally include a 

provision for outdoor air ventilation, and therefore may substantially reduce outdoor air 

exchange in environments previously ventilated by open doors and windows. 

Exposure monitoring in this study was conducted for a period of seven days per person, 

a practical upper-limit of individual participation duration based on informal subject 

feedback. Developments in CO2 sensing and data logging to enable smaller device footprints, 

lighter weight, longer battery life, and simple, reliable data transfer would facilitate efforts to 

scale up exposure studies, either in individual duration or in numbers of participants.   

Generally, indoor CO2 levels are controlled through provision of adequate outdoor air 

ventilation for occupied spaces. Although ventilation contributes substantially to building 

energy consumption [31], the financial cost of providing adequate or even substantial 

ventilation rates (as much as 25 L/s/person) is minor compared to the typical wages of an 

office worker in an advanced economy [32]. Financial benefits from energy savings owing to 

reduced ventilation may thus be offset by elevated indoor CO2 even if only relatively modest 

adverse effects on cognitive performance occur in practice. However, there is little research 

on the combined effects of thermal comfort and elevated exposure to CO2 and other indoor 

air pollutants on human cognition. Such combined investigations are warranted given the 

available evidence that lower temperatures can improve work performance [33], and that 

temperature, ventilation mode, and air-exchange rate are likely to be interdependent.  If 

cognitive consequences of excessive CO2 exposure are further substantiated, opportunities for 

capture and/or sequestration of CO2 in buildings, with dual-benefits for building 

sustainability and indoor environmental quality may become warranted to develop [34].  

Several research efforts describe the application of CO2 capture technologies to indoor 

environments [35,36]. Solid sorbents are beginning to be integrated into HVAC systems to 

remove CO2 from recirculation air in commercial buildings [37].  
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4. Conclusions 

 

Potential adverse outcomes associated with personal exposures to elevated indoor CO2 

include 1) exposures to coincident indoor-sourced air pollution for which CO2 is an indicator 

and 2) possible decrements in cognitive performance. In this study, we report continuous, 

personal, highly time-resolved measurements of CO2 for a cohort of 16 subjects in Singapore 

over week-long sampling periods. Nearly all participants spent a meaningful portion (1.2 h, 

or the 95th percentile) of a typical day with personal CO2 mixing ratios elevated above 1100 

ppm. We observed that the mode of bedroom ventilation was a major determinant of 

exposure, a result of the substantial time spent in the home (61% of each day) and the 

potential for CO2 to accumulate in small, enclosed bedroom volumes. Exposure levels of 

possible concern (ELPC) with respect to adverse cognitive impacts occurred frequently in 

this sample population. Averaged across all participants, approximately one ELPC occurred 

every two days, with greater frequencies for the AC and MX groups than NV group. The 

majority (86%) of ELPC occurred in the home, followed by work (9%), transit (3%) and 

‘other indoor’ locations (1.4%). Only the AC group experienced exposure events (ELPC2) 

for which substantial decrements in cognitive performance were observed in previous studies. 

These data inform our understanding of personal exposures to CO2, motivating expanded 

studies to more thoroughly quantify personal CO2 exposure and to inform studies of cognitive 

implications with data describing the extent, location, and drivers of elevated, personal CO2 

exposures. 
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