1996

Embedded particle computation in evolved cellular automata

Wim Hordijk
Santa Fe Institute

James P. Crutchfield

Melanie Mitchell
Santa Fe Institute

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

Part of the [Computer Sciences Commons](https://pdxscholar.library.pdx.edu/compsci_fac)

Let us know how access to this document benefits you.

Citation Details

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDX Scholar. For more information, please contact pdxscholar@pdx.edu.
Embedded-Particle Computation in Evolved Cellular Automata

Wim Hordijk
James P. Crutchfield
Melanie Mitchell

SFI WORKING PAPER: 1996-08-073

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder.

www.santafe.edu
1 Introduction

In our work we are studying how genetic algorithms (GAs) can evolve cellular automata (CAs) to perform computations that require global coordination. The “evolving cellular automata” framework is an idealized means for studying how evolution (natural or computational) can create systems that perform emergent computation, in which the actions of simple components with local information and communication give rise to coordinated global information processing [3].

In previous work [4, 5], we analyzed the process by which a genetic algorithm designed CAs to perform particular tasks. In this paper we focus on how these CAs implement the emergent computational strategies for performing a task. In particular, we develop a class of embedded-particle models to describe the computational strategies implemented by particular CAs. To do this, we use the computational mechanics framework of Crutchfield and Hanson [2, 6], in which a CA’s information processing is described in terms of regular domains, embedded particles, and their interactions. We then evaluate this class of models by comparing their computational performance to that of the CAs they model. The results demonstrate, via a generally close quantitative agreement between the CAs and the embedded particle models, that this new model class captures the significant functional features in the CAs’ space-time behavior that underlie the CAs’ computational capability and evolutionary fitness.

2 CAs and Computation

This paper concerns one-dimensional binary-state CAs with periodic (circular) boundary conditions. Such a CA consists of a one-dimensional lattice of \(N \) two-state machines (“cells”), each of which changes its state as a function only of the current states in a local neighborhood.

The lattice starts out with an initial configuration (IC) of cell states (0s and 1s) and this configuration changes at discrete time steps during which all cells are updated simultaneously according to the CA’s rule \(\phi \). A CA’s rule \(\phi \) can be expressed as a lookup table that lists, for each local neighborhood, the state which is taken on by the neighborhood’s central cell at the next time step. In a one-dimensional CA, a neighborhood consists of a cell and its radius \(r \) neighbors on either side.

One-dimensional binary-state cellular automata are perhaps the simplest examples of decentralized, spatially extended systems in which emergent computation can be observed. In our studies, a CA performing a computation means that the input to the computation is encoded as the IC, the output is decoded from the configuration reached at some later time step, and the intermediate steps that transform the input to the output are taken as the steps in the computation.

To date, we have used a genetic algorithm (GA) to evolve one-dimensional, binary-state \(r = 3 \) CAs to perform a density-classification task [3, 4] and a synchronization task [5].

For the density classification task, the goal is to find a CA that decides whether or not the IC contains a majority of 1s (i.e., has high density). More precisely, we call this task the “\(\rho_c = 1/2 \)” task. Here \(\rho \) denotes the density of 1s in a binary-state CA configuration and \(\rho_c \) denotes a “critical” or threshold density for classification. Let \(\rho_0 \) denote the density of 1s in the IC. If \(\rho_0 > \rho_c \), then within \(M \) time steps the CA should reach the fixed-point configuration of all 1s (i.e., all cells in state 1 for all subsequent iterations); otherwise, within \(M \) time steps it should reach the fixed-point configuration of all 0s. \(M \) is a parameter of the task that depends on the lattice size \(N \).

For the synchronization task, the goal is to find a CA that, from any IC, settles down within \(M \) time steps to a periodic oscillation between an all-0s configuration and an all-1s configuration. Again, \(M \) is a parameter of the task that depends on \(N \).

Since the CA can only use local interactions, and thus has to propagate information across the lattice to achieve global coordination, both tasks require a nontrivial computation by the CA. For example, in the synchronization task, the entire lattice has to be synchronized, which means the CA must, using only local interactions, resolve separate regions of the lattice that are locally synchronized but are out of phase with respect to one another.
3 Analysis of Evolved CAs

Due to the local nature of a CA’s operations, it is typically very hard, if not impossible, to understand the CA’s global behavior—in our case, the strategy for performing a computational task—by directly examining either the bits in the lookup table or the temporal sequence of raw 0-1 spatial configurations of the lattice.

Crutchfield and Hanson developed a method for detecting and analyzing the “intrinsic” computational components in the CA’s space-time behavior in terms of regular domains, particles, and particle interactions [2, 6]. This method is part of their computational mechanics framework for understanding information processing embedded in physical systems [1].

Briefly, a regular domain is a homogeneous region of space-time in which the same “pattern” appears. More formally, the spatial patterns in a regular domain can be described by a regular language that is mapped onto itself by the CA rule ϕ. An embedded particle is a spatially localized, temporally recurrent structure found at domain boundaries, i.e., where the domain pattern breaks down.

When two or more particles “collide” they can produce an interaction result—e.g., another set of particles or a mutual annihilation.

Using computational mechanics, we can analyze the space-time behavior of evolved CAs in terms of these domains, particles, and interactions. Fig. 1 shows a space-time diagram of ϕ_{sync1}—a CA that was evolved for the synchronization task—starting with a randomly generated IC. (Cells in state 1 are colored black, cells in state 0 are colored white. Time increases down the page.) We define the performance $P_{N,M}(\phi)$ of a CA ϕ on a given task as the fraction of I randomly generated ICs on which ϕ reaches the desired behavior within M time steps on a lattice of length N. For the synchronization task, we let $M = 2.15N$ and we measured $P_{N,10^4}(\phi_{\text{sync1}})$ to be 1.0 for $N = 149,599,999$.

In ϕ_{sync1}’s space-time behavior, there are two regular domains: the “synchronized” domain (the parts of the lattice which display the desired oscillation) and a second domain which looks like a zigzag pattern. (These regions are readily apparent in Fig. 1.) Having identified these domains, we can build a filter that removes them, revealing the domain boundaries, which in this case are predominantly particles. The filtered space-time diagram is shown in Fig. 2, where the regular domains are mapped to 0s (white), and the domain boundaries are mapped to 1s (black).

A catalog of ϕ_{sync1}’s observed particles and their properties (temporal periodicity and velocity), and all possible particle interactions, is given in Table 1. The temporal periodicity of a particle is the number of time steps after which its spatial configuration repeats. The velocity of a particle is the number of sites it is shifted in space after exactly one temporal period, divided by the temporal periodicity. For example, the particle μ in Fig. 2 has a temporal periodicity of 2, and after 2 time steps it has shifted 6 sites in space, so its velocity is 3.

As was mentioned earlier, we consider the embedded
Table 1: A catalog of \(\phi_{\text{sync}1} \)'s particles and their properties, and interactions, some of which can be observed in the filtered space-time diagram of Fig. 2. An interaction result denoted by \(\emptyset \) means that the two particles annihilate. The probabilities associated with the occurrence of particles at \(t_c \) and with their interactions (in parentheses) are given. If no explicit probability is given for an interaction, the interaction result occurs with probability 1.0. These particle and interaction probabilities are explained in section 4. For \(\phi_{\text{sync}1} \), \(t_c \) was measured to be 26.

<table>
<thead>
<tr>
<th>Label</th>
<th>Temporal Periodicity</th>
<th>Velocity</th>
<th>Prob. at (t_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>-</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
<td>1</td>
<td>0.39</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>2</td>
<td>-1</td>
<td>0.40</td>
</tr>
<tr>
<td>(\delta)</td>
<td>4</td>
<td>-3</td>
<td>0.07</td>
</tr>
<tr>
<td>(\mu)</td>
<td>2</td>
<td>3</td>
<td>0.07</td>
</tr>
<tr>
<td>(\nu)</td>
<td>2</td>
<td>-1</td>
<td>0.07</td>
</tr>
</tbody>
</table>

\[\phi_{\text{sync}1} \text{ Interactions} \]
- \(\alpha \rightarrow \gamma + \beta \), \(\gamma + \delta \rightarrow \emptyset \), \(\mu + \beta \rightarrow \emptyset \)
- \(\beta + \gamma \rightarrow \delta + \mu \) (0.84), \(\beta + \gamma \rightarrow \nu \) (0.16)
- \(\mu + \nu \rightarrow \gamma, \mu + \delta \rightarrow \gamma + \beta, \nu + \delta \rightarrow \beta \)

The particular value of \(t_c \) for a given CA depends on the IC, but we can estimate the average condensation time \(\overline{t_c} \) for a given rule by sampling \(t_c \) over a large set of random ICs. The measured value of \(\overline{t_c} \) for various rules will be used later when we test the models. For \(\phi_{\text{sync}2} \), \(t_c \) was measured to be 49.

![Space-time diagram](image)

Figure 3: Space-time diagram of a lower-performance evolved CA, \(\phi_{\text{sync}2} \), for the synchronization task, starting with a randomly generated IC. The condensation time \(t_c = 28 \) is marked by the solid line.

As a first simplifying assumption of the model, we replace the spatio-temporal dynamics that can be observed up to the condensation time by a particle probability distribution at \(t_c \). In this, we assume that the net effect of the dynamics up until \(t_c \) is to generate some distribution of particles of various types, randomly located in
the lattice at that time, and that beyond generating this
distribution, the initial “pre-condensation” dynamics are
not relevant to estimating the average performance. We
estimate this particle probability distribution empirically
over a set of randomly generated ICs to obtain the occur-
rence frequency of each particle type at \(t_c \). For example,
the empirical distribution for the particles of \(\phi_{\text{sync1}} \) is
given in Table 1, measured over \(10^4 \) ICs.

Actually, this particle distribution depends on the to-
total number of particles that occur at \(t_c \). Since the lattice
has periodic boundary conditions, the domain (or parti-
cle) in which site \(N - 1 \) participates must agree with the
domain (or particle) that site 0 contributes to. Given a
total number of particles in the lattice, certain particles
have to occur more often than other particles in order to
obey these constraints. For example, some particle types
must always occur in pairs. The embedded-particle model
therefore uses a probability distribution for the total num-
er of particles occurring at \(t_c \), together with a particle
probability distribution conditioned on this total number
of particles. It uses both distributions to generate a par-
ticle configuration at \(t_c \).

Furthermore, since the correct final configuration of the
CA (all black or all white) for the density classification
task depends on the density of the initial configuration,
we split up the particle probability distribution for CAs
for this task in a distribution generated by low density ICs
(\(\rho_0 < 0.5 \)) and a distribution generated by high density
ICs (\(\rho_0 > 0.5 \)).

As a second simplifying assumption, in the model all
particles have zero width, even though, as can be seen in
Fig. 3, particles actually have varying widths.

As a third simplifying assumption, we allow interactions
only between pairs of particles. No interactions involving
more than two particles are included in the model.

A fourth simplifying assumption we make is that par-
ticle interactions are instantaneous. As can be seen in
Fig. 3, when two particles collide and interact with each
other, typically the interaction takes time to occur—for
some number of time steps the lattice cannot be com-
pletely described in terms of domains and particles. In
the embedded-particle model when two particles collide
they are immediately replaced by the interaction result.

In a CA’s space-time behavior, the interaction result
is determined by the phases that both particles are in
at the time of their collision. As a fifth simplifying as-
sumption, we approximate an interaction’s relative phase
dependence by a stochastic choice of phase. To determine
an interaction result, the model uses a table (similar to
Table 1), containing interaction-result probabilities. For
each possible pair of particle types, this table lists all the
interaction results that these two particles can produce,

5 Testing the Embedded-Particle Model

One way to test a model is to compare its performance
to that of the actual CA. If the model can predict the
CA’s performance \(P_{\text{CA}}(\phi) \), this will support our claim
that the embedded-particle model is a good description
of the CA’s computational strategy. This is a quantita-
tive complement to the computational mechanics analysis
which establishes the structural role of domains, particles,
and interactions.

To run the model, we start by generating an initial par-
icle configuration at \(t_c \), according to the particle proba-
bility distribution in the model. This simply puts a num-
er of particles of various types in the lattice at random
locations, uniformly distributed over the lattice. Thus at
\(t_c \), we know for each particle its type, and thus its veloc-
ity, and its spatial location. (The value \(t_c \) in the model
is assigned the measured value of \(t_c \) for the CA.)

It is then straightforward to calculate geometrically at
what time step \(t \) the first interaction between two particles
will occur (i.e., the time step at which two particles will
 collision). The table with interaction-result probabilities is
consulted, and the result of this particular interaction is
determined. The two interacting particles are then re-
placed by the interaction result, yielding a new particle
configuration at time step \(t \). This overall process is iter-
ated either until there are no particles left in the lattice
(they all annihilated) or until a given maximum number
(\(M - t_c \)) of time steps is reached, whichever occurs first.
We refer to this iteration process as the “ballistic particle dynamics” of the model. (See Fig. 4.)

MODEL
- Domains
- Particles
- Interactions

![Figure 4: Schematic illustration of running the embedded-particle model. An initial particle configuration at t_c is generated first. Then the ballistic particle dynamics is iterated for a maximum number ($M - t_c$) of time steps.](image)

Since the embedded-particle model contains information about which domains form which particles, we can keep track of the domains between the particles at each time step while the model is run. Thus, if all particles eventually annihilate each other, we know which domain is left occupying the entire lattice.

6 Results

We can now estimate the performance of a particular CA by running its model on a large number of ICs and calculating the fraction over which it displays the correct behavior (i.e., settles down to the correct domain within the maximum number of allowed time steps).

Fig. 5 shows the results of comparing the average performances of four different evolved CAs with the estimated average performances produced by running the embedded-particle models of their respective strategies. In all cases the average performance is calculated over 10 sets of 10^4 random ICs (in case of the actual CAs) or initial particle configurations (in case of the models), with $N = 149$ and $M = 2.15N$. Table 2 gives the average performances (with standard deviations given in parentheses).

The first two CAs, ϕ_{sync1} and ϕ_{sync2}, are GA-evolved rules for the synchronization task. ϕ_{sync1} is the best rule found for this task; its strategy is shown in Fig. 1. ϕ_{sync2} is a rule that appeared early on in the GA run, and so it still has relatively low performance; its strategy is shown in Fig. 3.

The next two rules, ϕ_{dens1} and ϕ_{dens2}, are GA-evolved rules for the density classification task. Both rules appeared later on in the GA run, and ϕ_{dens2} was the best CA found for this task.

As both Fig. 5 and Table 2 show, there is very close agreement between the average CA and model performances for both the synchronization rule ϕ_{sync2} and the density rule ϕ_{dens1}, with only 1% and 3% difference respectively.

For ϕ_{sync1} the discrepancy between the average CA and model performances is about 5%. This discrepancy is caused by the temporal periodicity of four of the “zigzag” domain (see Fig. 1). Because of the periodic boundary conditions, on a lattice size of 149 the real CA can never settle down to a configuration containing only the zigzag domain. However, this can happen in the embedded-particle model, since it ignores the spatial periodicity of domains. Such configurations count as incorrect behavior and the model yields a slightly lower performance for ϕ_{sync1}.

There is a discrepancy of about 23% for ϕ_{dens2}. This can be explained by the fact that, for ϕ_{dens2}, the distances between the particles at t_c are important characteristics. These distances—ignored by the model—reflect the sizes of the domains that are in between the particles and are key in ϕ_{dens2}’s strategy. Since the model distributes the particles randomly over the lattice, this leads to a lower model performance for ϕ_{dens2}. This is less of a problem for ϕ_{dens1}, since its strategy is much less dependent on these inter-particle distances.

The generally good agreement between the performance of a model and that of the corresponding CA demonstrates the promise of the embedded-particle model. The discrepancies noted above, which can be explained, demonstrate where our simplifying assumptions fail. We expect to be able to improve on the model’s agreement...
Table 2: Comparison of the CA average performances and the embedded-particle model average performances for four different evolved CA rules. These averages are calculated over 10 sets of 10^4 ICs each. The standard deviations are given in parentheses. The γ used for each model is given, as is the hexadecimal code for each CA's ϕ, with the most significant bit being associated with the neighborhood 0000000.

<table>
<thead>
<tr>
<th>Rule</th>
<th>$P_{1490^{th}}(\phi)$ CA</th>
<th>Model</th>
<th>Difference</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{\text{sync}1}$</td>
<td>1.0000</td>
<td>0.9519</td>
<td>5%</td>
<td>26</td>
</tr>
<tr>
<td>FEB106EA B8ED0DA</td>
<td>(0.0000)</td>
<td>(0.0032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6484A85A F410C2A0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\phi_{\text{sync}2}$</td>
<td>0.1799</td>
<td>0.1823</td>
<td>1%</td>
<td>49</td>
</tr>
<tr>
<td>CE2E2F20 C682064</td>
<td>(0.0034)</td>
<td>(0.0039)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E41F2E2 E7187AE8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_{dense1}</td>
<td>0.6923</td>
<td>0.6675</td>
<td>3%</td>
<td>38</td>
</tr>
<tr>
<td>050045B1 000000F6</td>
<td>(0.0030)</td>
<td>(0.0035)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8B7F5937 FB0F7F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_{dense2}</td>
<td>0.7701</td>
<td>0.5904</td>
<td>23%</td>
<td>16</td>
</tr>
<tr>
<td>050406B7 05000FF70</td>
<td>(0.0037)</td>
<td>(0.0049)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>377F5587 EFF7F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

with these and other CAs by incorporating a few additional features, such as the domain-size distribution. Preliminary results support the validity of these expectations.

7 Conclusions

Emergent computation in decentralized spatially extended systems, in particular in CAs, is still not well understood. In previous work we have used an evolutionary approach to search for CAs that are capable of performing computations that require global coordination, and have qualitatively analyzed the emergent “computational strategies” in terms of domains, particles, and particle interactions. The embedded-particle models described in this paper provide a means to more rigorously formalize the notion of “emergent computational strategy” in spatially extended systems and to make predictions about their behavior and their evolutionary fitness. This is an essential, quantitative part of our overall research program—to understand how natural spatially extended systems can perform globally coordinated computations and how evolutionary processes can give rise to systems with sophisticated emergent computational abilities.

Acknowledgments

This research was supported by the Santa Fe Institute, under the Adaptive Computation and External Faculty Programs (supported by ONR grant N00014-95-1-0975) and under NSF grant IRI-9320200 and DOE grant DE-FG03-94ER25231. It was supported by the University of California, Berkeley, under ONR grant N00014-95-1-0524.

References