9-2016

Paternal Mitochondrial Transmission in Intra-Species
Caenorhabditis briggsae Hybrids

Joseph A. Ross
California State University, Fresno

Dana K. Howe
Oregon State University

Anna Luella Coleman-Hulbert
Portland State University

Dee R. Denver
Oregon State University

Suzanne Estes
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: http://pdxscholar.library.pdx.edu/bio_fac

Part of the [Biology Commons](http://pdxscholar.library.pdx.edu/bio_fac)

Citation Details

This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Paternal Mitochondrial Transmission in Intra-Species Caenorhabditis briggsae Hybrids

Joseph A. Ross,*1 Dana K. Howe,2 Anna Coleman-Hulbert,3,4 Dee R. Denver,2 and Suzanne Estes3
1Department of Biology, California State University, Fresno
2Department of Integrative Biology, Oregon State University
3Department of Biology, Portland State University
4Institute of Ecology and Evolution, University of Oregon

*Corresponding author: E-mail: jross@csufresno.edu.
Associate editor: Ilya Ruvinsky

Abstract
To study mitochondrial–nuclear genetic interactions in the nematode Caenorhabditis briggsae, our three laboratories independently created 38 intra-species cytoplasmic–nuclear hybrid (cybrid) lines. Although the cross design combines maternal mitotypes with paternal nuclear genotypes, eight lines (21%) unexpectedly contained paternal mitotypes. All eight share in common ancestry of one of two genetically related strains. This unexpected parallel observation of paternal mitochondrial transmission, undesirable given our intent of creating cybrids, provides a serendipitous experimental model and framework to study the molecular and evolutionary basis of uniparental mitochondrial inheritance.

Key words: mitochondria, heteroplasmy, coevolution, transmission, fertilization.

The broad conservation of maternal mitochondrial transmis-
sion (MMT) (Birky 1995) suggests its evolutionary importance. However, forces promoting MMT are poorly understood (Carelli 2015). Presence of multiple mitochondrial genotypes (mitotypes) in a cell (heteroplasmy) causes dysfunction in mice (Sharpley et al. 2012) and humans (Schwartz and Visking 2002). Thus, MMT might have evolved to prevent heteroplasmy (Mishra and Chan 2014). Studies in primates and in the nematode Caenorhabditis elegans, a relative of C. briggsae, suggest that paternal mitochondria are actively degraded following fertilization (Sutovsky et al. 2012) and mitochondrial loci by PCR of a mitochondrial restriction fragment length polymorphism (RFLP) or by sequencing of the mitochondrial cytochrome oxidase II (COII) locus to identify strain-specific single-nucleotide polymorphisms (table 1). While we always observed the expected nuclear genotype in each line, we observed only P0 male mitotypes in 8 of 20 inter-population crosses that employed either HK104 or HK105, both isolated from Japan. Paternal mitotypes were not evident in the 18 lines initiated from other strains, and no lines appeared by PCR to be heteroplasmy. The eight lines containing paternal mitotypes are not cybrids; instead, they have mito-nuclear haplotypes identical to P0 males for 10 generations (supplementary fig. S1, Supplementary Material online). This design produces cybrids: lines with the P0 maternal mitotype and P0 paternal nuclear genotype.

We next extracted genomic DNA from pools of each line and genotyped nuclear loci by polymerase chain reaction (PCR) of strain-specific or clade-specific amplified fragment length polymorphisms (AFLPs) (Koboldt et al. 2010; Hicks et al. 2012) and mitochondrial loci by PCR of a mitochondrial restriction fragment length polymorphism (RFLP) or by sequencing of the mitochondrial cytochrome oxidase II (COII) locus to identify strain-specific single-nucleotide polymorphisms (table 1). While we always observed the expected nuclear genotype in each line, we observed only P0 male mitotypes in 8 of 20 inter-population crosses that employed either HK104 or HK105, both isolated from Japan. Paternal mitotypes were not evident in the 18 lines initiated from other strains, and no lines appeared by PCR to be heteroplasmy. The eight lines containing paternal mitotypes are not cybrids; instead, they have mito-nuclear haplotypes identical to a P0 strain. The presence of a PCR-detectable paternal mitotype is evidence for paternal mitochondrial transmission (PMT): as no hermaphrodites from the P0 male population were used in producing cybrids, PMT is the only means by which P0 male mitotypes could exist in cybrids.

PMT was symmetrical, observed only when an “HK” strain served as the maternal or paternal P0 strain. While asymmetry with respect to cross direction is expected when hybrids suffer from Dobzhansky–Muller incompatibilities, asymmetry is consistent with the interpretation that PMT is caused by
separation of co-evolved mitochondrial and nuclear loci (Turelli and Moyle 2007).

Our results suggest two possible mechanisms facilitating PMT. Co-evolved signal–receiver genes, as occur in species-specific sperm-egg protein recognition (Swanson and Vacquier 1998), could be separated in temperate–tropical cybrids. However, this explanation predicts more frequent inter-clade PMT, whereas our observations reveal more frequent intra-clade PMT. Thus, we favor the alternate explanation that natural genetic variation, perhaps passively accumulated through genetic drift, has reduced or eliminated the function of a paternal mitochondrial signal–receiver system in some members of the temperate clade.

PMT has been detected in a variety of taxa (Kondo et al. 1990; Gyllensten et al. 1991; Kaneda et al. 1995; Kvisite et al. 2003; Aksyonova et al. 2005; Fontaine et al. 2007). However, such empirical observations rarely occur in tractable model systems and/or with sufficiently high frequency to encourage experimental pursuit of the mechanisms facilitating PMT. Recent discovery of mitochondrial-nuclear epistasis in AF16-HK104 hybrids (Chang et al. 2016) supports the possibility that mitonuclear interactions are important for the prevention of PMT. The role in *C. elegans* paternal mitochondrial elimination of a nuclear-encoded mitochondrial endonuclease, which translocates into mitochondria (Zhou et al. 2016), suggests that interaction of

Table 1. Nuclear and Mitochondrial Genotypes of Cybrid Lines.

<table>
<thead>
<tr>
<th>Line (Rep)</th>
<th>P0 strains</th>
<th>Line nuclear genotype</th>
<th>Line mitochondrial genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maternal</td>
<td>Paternal</td>
<td>Exp</td>
</tr>
<tr>
<td>RC-PH (1)</td>
<td>HK105</td>
<td>PB800</td>
<td>Te</td>
</tr>
<tr>
<td>RC-PH (2)</td>
<td>HK105</td>
<td>PB800</td>
<td>Te</td>
</tr>
<tr>
<td>RC-PH (3)</td>
<td>HK105</td>
<td>PB800</td>
<td>Te</td>
</tr>
<tr>
<td>RC-HP (1)</td>
<td>PB800</td>
<td>HK105</td>
<td>Te</td>
</tr>
<tr>
<td>RC-HP (2)</td>
<td>PB800</td>
<td>HK105</td>
<td>Te</td>
</tr>
<tr>
<td>RC-HE (1)</td>
<td>HK104</td>
<td>EG4818</td>
<td>Te</td>
</tr>
<tr>
<td>RC-HE (2)</td>
<td>HK104</td>
<td>EG4818</td>
<td>Te</td>
</tr>
<tr>
<td>RC-HE (3)</td>
<td>HK104</td>
<td>EG4818</td>
<td>Te</td>
</tr>
<tr>
<td>MR-AH (1)</td>
<td>HK105</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AH (2)</td>
<td>HK105</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AH (3)</td>
<td>HK105</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AD (1)</td>
<td>DL232</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AD (2)</td>
<td>DL232</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AD (3)</td>
<td>DL232</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AE (1)</td>
<td>ED3101</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AE (2)</td>
<td>ED3101</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AE (3)</td>
<td>ED3101</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AJ (1)</td>
<td>JU403</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AJ (2)</td>
<td>JU403</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AJ (3)</td>
<td>JU403</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AI (1)</td>
<td>JU1345</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AI (2)</td>
<td>JU1345</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AI (3)</td>
<td>JU1345</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AP (1)</td>
<td>PB800</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AP (2)</td>
<td>PB800</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AP (3)</td>
<td>PB800</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AV (1)</td>
<td>VT847</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AV (2)</td>
<td>VT847</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>MR-AV (3)</td>
<td>VT847</td>
<td>AF16</td>
<td>Tr</td>
</tr>
<tr>
<td>CP129 (1)</td>
<td>HK104</td>
<td>AF16</td>
<td>AF16</td>
</tr>
<tr>
<td>CP129 (2)</td>
<td>HK104</td>
<td>AF16</td>
<td>AF16</td>
</tr>
<tr>
<td>CP131 (1)</td>
<td>AF16</td>
<td>HK104</td>
<td>HK104</td>
</tr>
<tr>
<td>CP131 (2)</td>
<td>AF16</td>
<td>HK104</td>
<td>HK104</td>
</tr>
<tr>
<td>CP133 (3)</td>
<td>AF16</td>
<td>HK104</td>
<td>HK104</td>
</tr>
</tbody>
</table>

aAll crosses were replicated "(Rep)" thrice, with the exception of AF16 male × HK104 hermaphrodite (producing CP129 and CP130), for which one of three lines initiated went extinct.

bThe expected nuclear genotype is the P0 male wild isolate genotype.

cIsolates belong to the tropical ("Tr"), temperate ("Te") or equatorial Kenya phylogenetic clade (Cutter et al. 2010). Nuclear genotype was observed either by an AFLP that distinguishes temperate from tropical alleles or at five loci distinguishing AF16 and HK104 (CP129–CP133). Because the former assays only distinguish members of different clades, nuclear genotypes of within-clade (Te × Te or Tr × Tr) hybrids were unable to be obtained (–).

dThe expected mitochondrial genotype is the P0 maternal wild isolate genotype.

eMitochondrial genotype was observed either by sequencing the COII gene or by an RFLP distinguishing the AF16 and HK104 mitotypes (CP129–CP133).

fThe observed and expected mitotypes occasionally did not match (gray shading), providing evidence for paternal mitochondrial transmission.

F, failed PCR reaction.
the endonuclease with mitochondrial gene products is critical for preventing PMT. These possibilities promote the use of *C. briggsae* to elucidate the molecular and genetic mechanisms facilitating PMT.

Supplementary Material

Supplementary figure S1 is available at *Molecular Biology and Evolution* online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

This work was supported by the National Institutes of Health (SC2-GM113727 and F32-GM090492 to J.A.R., R01-GM087628 to D.R.D. and S.E.); and the National Science Foundation (MCB-1330427 to S.E. and D.R.D.).

References

