10-1-1998

A Note on the Green Dyadic Calculation of the Decay Rates for Admolecules at Multiple Planar Interfaces

P.T. Leung
Portland State University, hopl@pdx.edu

R. L. Hartman

Scott M. Cohen
Portland State University, scott.cohen@pdx.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac

Citation Details

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces

R. L. Hartman, S. M. Cohen, and P. T. Leung
Department of Physics, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
(Received 4 September 1998; accepted 23 October 1998)

The Green dyadic formulation for calculating classical decay rates of admolecules at multiple planar interfaces first published by Chance, Prock and Silbey has been reexamined. It is pointed out that, for the case of fluorescent molecules sandwiched between a system of super- and substrate interfaces, the original formalism requires significant modifications in order to lead to results consistent with those obtained from the Sommerfeld radiation theory. © 1999 American Institute of Physics. [S0021-9606(99)70204-7]

I. INTRODUCTION

The study of molecular fluorescence at solid interfaces has been active for the last 2 decades since the first experimental works of Kuhn and Drexhage done in the early 1970's. Theoretically, it has been found that one of the most simple and direct approaches is to follow a phenomenological model solving the electrodynamics of an emitting molecular dipole in the vicinity of the interfaces. This model can provide both frequency shifts and decay rates for the molecules in the vicinity of the interfaces. The Sommerfeld method was first generalized to the case of interfaces as in Ref. 6 and 7. It is also in this review article that gone beyond fluorescence to other optical phenomena at interfaces. This model solving the electrodynamics of an emitting molecule can provide both frequency shifts and decay rates for the molecular dipole in the vicinity of the interfaces. This generalization includes both cases (i) where the layer of fluorescent dyes is deposited on the top of a stratified multilayer system and (ii) where the layer is sandwiched between two such multilayer systems.

It is the purpose of this paper to point out that, in the original CPS formulation for case (ii) above, the choice of the dyadic eigenfunctions was not appropriately made and significant modifications are necessary to obtain a consistent Green dyadic theory for this case. The correct result will be presented in two different but equivalent formulations and will be shown to lead back to well-known results from the Sommerfeld theory for the simple case with the dyes sandwiched between only one superstrate and one substrate medium.

II. THE CPS FORMULATION

To be clear and self-contained, let us first recapitulate the main results from the CPS article. For harmonic currents and fields, the dyadic Green formulation of Ref. 4 has the standard Green's function solution (in SI units):

$$\mathbf{E}(\mathbf{R}) = i\omega \mu \int \mathbf{G}(\mathbf{R}, \mathbf{R}') \cdot \mathbf{J}(\mathbf{R}') dV(\mathbf{R}')$$

(1)

where \(\mu\) is the magnetic permeability. For simplicity, we will consider in this paper only the case with one superstrate and one substrate confining the source in the gap as depicted in Fig. 1. More details on the case with a large number of layers and generalization to the case with gradient index media will be presented in a forthcoming paper.

Let \(G_0\) denote the Green dyadic for the source field and \(G_i (i = 1, 2, 3)\) denote those for the scattered fields in the three media. Thus according to Ref. 4, one obtains

$$G_0(\mathbf{R}, \mathbf{R}') = \frac{-1}{k^2} \hat{z} \hat{z} \delta(\mathbf{R} - \mathbf{R}') + \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda \hat{h}_1(\lambda)} \sum_{j=0}^{1} \left[M_{j\lambda k}(+h_1)M'_{j\lambda k}(-h_1) + N_{j\lambda k}(+h_1)N'_{j\lambda k}(-h_1) \right] \frac{1}{\hat{z} \leq \hat{z}'}.$$

(2)

$$G_i(\mathbf{R}, \mathbf{R}') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda \hat{h}_1(\lambda)} \sum_{j=0}^{1} \left[c_i M_{j\lambda k}(-h_1) + c [M_{j\lambda k}(h_1)] M'_{j\lambda k}(h_1) \right] \frac{1}{\hat{z} \leq \hat{z}'} + \left[f_1 N_{j\lambda k}(-h_1) + f'_1 N_{j\lambda k}(h_1) \right] N'_{j\lambda k}(h_1),$$

(3)
\[G_2(R, R') = \frac{i}{4\pi} \int_0^{\infty} d\lambda \sum_{n=0}^{\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \times \sum_{j=0}^{1} \left[c_2 M_{j\lambda n}(h_2) M'_{j\lambda n}(h_1) \right] + f_2 N_{j\lambda n}(h_2) N'_{j\lambda n}(h_1)], \tag{4} \]

\[G_3(R, R') = \frac{i}{4\pi} \int_0^{\infty} d\lambda \sum_{n=0}^{\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \times \sum_{j=0}^{1} \left[c_3 M_{j\lambda n}(-h_3) M'_{j\lambda n}(h_1) \right] + f_3 N_{j\lambda n}(-h_3) N'_{j\lambda n}(h_1)], \tag{5} \]

where \(M \) and \(N \) are given in cylindrical coordinates by:

\[M_{j\lambda n}(h) = e^{ihz} \left[\frac{n J_n(\lambda r)}{r} \sin \left(\frac{j \pi}{2} - n \varphi \right) \hat{r} - \frac{\partial J_n(\lambda r)}{\partial r} \cos \left(\frac{j \pi}{2} - n \varphi \right) \hat{\varphi} \right], \tag{6} \]

\[N_{j\lambda n}(h) = \frac{e^{ihz}}{k} \left[\frac{ih}{r} \frac{\partial J_n(\lambda r)}{\partial r} \cos \left(\frac{j \pi}{2} - n \varphi \right) \hat{r} + \frac{j \pi}{2} - n \varphi \hat{\varphi} + \lambda^2 J_n(\lambda r) \cos \left(\frac{j \pi}{2} - n \varphi \right) \hat{z} \right], \tag{7} \]

with \(J_n \) the Bessel function of the first kind and \(h_1(\lambda) = \sqrt{k_1^2 - \lambda^2} \), where the square root is taken to have positive real part.

According to Ref. 4, requirement of continuity of transverse field components at interfaces \(z = 0 \) and \(z = z_0 \) leads to the following systems where \(e_j = e^{ih_jz} \):}

Region 1

\[G = G_0 + G_1 \]

Region 2

\[G = G_2 \]

Region 3

\[G = G_3 \]

\[z = z_0 \]

FIG. 1. Geometry of the problem.

\[
\begin{bmatrix}
1 & 1 & 0 & -1 \\
-h_1 & h_1 & 0 & h_3 \\
1 & e_1 & -e_2 & 0 \\
h_1 & e_1 & h_2e_2 & 0
\end{bmatrix} = \begin{bmatrix}
c_1 \\
c'_1 \\
c_2 \\
c'_2 \\
-1 & h_1 & -e_1 \\
-h_1e_1 & -h_2e_2 & 0
\end{bmatrix}, \tag{8} \]

or in matrix form \(A e = r \), and

\[
\begin{bmatrix}
h_1/k_1 \\
k_1 \\
h_1/e_1 \times k_1 & -h_2e_2/k_2 \\
1/k_1 & e_1 & -k_2e_2 & 0
\end{bmatrix} = \begin{bmatrix}
h_1/k_1 \\
-k_1 \\
-e_1h_1/k_1 \\
-e_1k_1
\end{bmatrix}, \tag{9} \]

or \(B f = r_f \). Solving Eqs. (8) and (9) yields the following:

\[
\begin{pmatrix}
e_i h_j - e_j h_i \\
e_i h_j + e_j h_i \\
h_i - h_j \\
h_i + h_j
\end{pmatrix} = \begin{pmatrix}
e^2_i R^\parallel_{12} / (1 - e^2_i R^\parallel_{12} R^\parallel_{13}) \\
e^2_i R^\parallel_{12} / (1 - e^2_i R^\parallel_{12} R^\parallel_{13}) \\
e^2_i R^\parallel_{12} / (1 - e^2_i R^\parallel_{12} R^\parallel_{13}) \\
e^2_i R^\parallel_{12} / (1 - e^2_i R^\parallel_{12} R^\parallel_{13})
\end{pmatrix}, \tag{10} \]

where

\[
R^\parallel_{ij} = \frac{e_i h_j - e_j h_i}{e_i h_j + e_j h_i},
\]

and

\[
R^\perp_{ij} = \frac{h_i - h_j}{h_i + h_j}.
\]

Note that sign errors in Eq. (3.34) of Ref. 4 are corrected in Eq. (10).

We have confirmed that the above results are in error by performing a numerical calculation of special cases. For example, the scattered electric field was calculated at the site of a vertical dipole located at the center of region 1, with values for the dielectric constants \(e_1, e_2 \), and \(e_3 \) set arbitrarily. Next the values of \(e_2 \) and \(e_3 \) were interchanged. Results in the two cases differed, indicating that the analytical results in Eq. (10) are in error.

III. THE CORRECT SOLUTION

We shall present here two different approaches to the correct Green dyadic solution to the above problem.
A. Solution by expanding the solution space

In reviewing the problem, we found that Eqs. (8) and (9) do not satisfy the boundary conditions at the interfaces and that no solution could be found once the constraints of forms (3) (4), and (5) were imposed. A necessary remedy is enlargement of the solution space to the point where the boundary conditions can be satisfied. For instance, the expression for \(G_1 \) contains dyadic products \(\mathbf{M}_{jnk}(-h_1)\mathbf{M}_{jk}'(h_1) \) and \(\mathbf{M}_{jnk}(h_1)\mathbf{M}_{jk}'(-h_1) \) but not \(\mathbf{M}_{jnk}(-h_1)\mathbf{M}_{jk}'(-h_1) \) and \(\mathbf{M}_{jnk}(h_1)\mathbf{M}_{jk}'(h_1) \) which are equally valid. It turns out that the correct solution from this approach has already been worked out in the electrical engineering literature.10 The general solutions for the scattering fields are given by

\[
G_1(\mathbf{R}, \mathbf{R}') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \frac{\lambda}{h_1(\lambda)} \sum_{n=0}^{+\infty} \left[c_n \mathbf{M}_{jnk}(-h_1) + a_n \mathbf{M}_{jnk}(h_1) \right] \mathbf{M}_{jk}'(h_1),
\]

\[
+ \left[a_1 \mathbf{M}_{jnk}(-h_1) + a_2 \mathbf{M}_{jnk}(h_1) \right] \mathbf{M}_{jk}'(h_1) + \left[f_1 \mathbf{N}_{jnk}(-h_1) + f_2 \mathbf{N}_{jnk}(h_1) \right] \mathbf{N}_{jk}'(h_1),
\]

\[
G_2(\mathbf{R}, \mathbf{R}') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \frac{\lambda}{h_1(\lambda)} \sum_{n=0}^{+\infty} \left[c_2 \mathbf{M}_{jnk}(h_2) + f_2 \mathbf{N}_{jnk}(h_2) \right] \mathbf{M}_{jk}'(h_1) + \left[b_2 \mathbf{N}_{jnk}(h_2) \right] \mathbf{N}_{jk}'(h_1),
\]

\[
G_3(\mathbf{R}, \mathbf{R}') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \frac{\lambda}{h_1(\lambda)} \sum_{n=0}^{+\infty} \left[c_3 \mathbf{M}_{jnk}(h_3) + f_3 \mathbf{N}_{jnk}(h_3) \right] \mathbf{M}_{jk}'(h_1) + \left[b_3 \mathbf{N}_{jnk}(h_3) \right] \mathbf{N}_{jk}'(h_1).
\]

By imposing the appropriate boundary conditions, the expansion coefficients can finally be obtained as10

\[
c_n = \frac{1}{1 - e^{2R^2_{l2}R^2_{13}}} \begin{bmatrix}
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}} \\
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}}
\end{bmatrix},
\]

\[
a_n = \frac{1}{1 - e^{2R^2_{l2}R^2_{13}}} \begin{bmatrix}
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}} \\
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}}
\end{bmatrix},
\]

\[
f_n = \frac{1}{1 - e^{2R^2_{l2}R^2_{13}}} \begin{bmatrix}
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}} \\
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}}
\end{bmatrix},
\]

\[
b_n = \frac{1}{1 - e^{2R^2_{l2}R^2_{13}}} \begin{bmatrix}
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}} \\
e^{2R^2_{l2}R^2_{13}} & e^{1 + R^2_{l2}R^2_{13}}
\end{bmatrix},
\]

Using the above solution, we can write out the Green’s functions as

\[
G_1(\mathbf{R}, \mathbf{R}') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \frac{\lambda}{h_1(\lambda)} \sum_{n=0}^{+\infty} \left[\frac{1}{1 - e^{2R^2_{l2}R^2_{13}}} \left[e^{2R^2_{l2}R^2_{13}}(R^2_{l2}M^+ + M^+) + R^2_{l3}M^+(M^+ + e^{2R^2_{l2}R^2_{13}}M^-) \right] + \frac{1}{1 - e^{2R^2_{l2}R^2_{13}}} \left[e^{2R^2_{l2}R^2_{13}}N^- + (R^2_{l3}N^+ - N^-) \right] \right),
\]
\[G_2(R, R') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \sum_{j=0}^{+\infty} \left[\frac{1}{1 - e^{iR_1 R_{13}} R_2} \left(\frac{e_1}{e_2} (1 + R_{12}^2) M(h_2) (M^+ + R_1^3 M^+) \right) \right. \]
\[+ \left. \frac{1}{1 - e^{iR_1 R_{13}} R_2} \left(\frac{k_1 e_1}{k_2 e_2} (1 - R_{12}^2) N(h_2) (N^- - R_{13}^3 N^+) \right) \right], \quad (16) \]
\[G_3(R, R') = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \sum_{j=0}^{+\infty} \left[\frac{1}{1 - e^{iR_1 R_{13}} R_2} \left(1 + R_{13}^3 \right) M(-h_3) (M^+ + e_3 R_{12}^3 M^-) \right] \]
\[+ \frac{1}{1 - e^{iR_1 R_{13}} R_2} \left[\frac{k_1}{k_3} (1 - R_{13}^3) N(-h_3) (N^+ - e_3 R_{12}^3 N^-) \right], \quad (17) \]

where \(M^\pm = M' (\pm h_1) \) and \(N^\pm = N' (\pm h_1) \). We have checked that the solution given by Eqs. (15)–(17) does satisfy the numerical test described above.

B. Solution by reassociation

An alternative approach, which might be called ‘‘reassociation’’, is to introduce explicitly the source \(\mathbf{J} \) into the dyadic expansion. We replaced typical products such as \((\mathbf{M} \mathbf{M}^T) \mathbf{J} \) with the equivalent product \(\mathbf{M} (\mathbf{M}^T \mathbf{J}) \) reducing the product on the right to a complex scalar. An additional small step then leads to the realization that \(c (\mathbf{M} \mathbf{M}^T) \mathbf{J} \) can be replaced by \(c \mathbf{M} \), where \(\mathbf{M}^T \mathbf{J} \) scalar has been absorbed into the \(c \). We will see at the end that \(\mathbf{J} \) can be factored from both sides of the resulting equations leading to expressions for \(\mathbf{G} \), independent of the source, as they must be. Following the logic given above, we have:

\[G_1(R, R') \cdot \mathbf{J} = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \sum_{j=0}^{+\infty} \left[c_1 M_{j n h} (-h_1) + c'_1 M_{j n h} (h_1) + f_1 N_{j n h} (-h_1) + f'_1 N_{j n h} (h_1) \right], \quad (18) \]
\[G_2(R, R') \cdot \mathbf{J} = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \sum_{j=0}^{+\infty} \left[c_2 M_{j n h} (h_2) + f_2 N_{j n h} (h_2) \right], \quad (19) \]
\[G_3(R, R') \cdot \mathbf{J} = \frac{i}{4\pi} \int_0^{+\infty} d\lambda \sum_{n=0}^{+\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \sum_{j=0}^{+\infty} \left[c_3 M_{j n h} (-h_3) + f_3 N_{j n h} (-h_3) \right], \quad (20) \]

where the \(c \) and \(f \) coefficients are functions of current density \(\mathbf{J} \) as well as position, \(j, n \) and \(\lambda \). This approach allows us to work directly with electric and magnetic field values in applying the boundary conditions at the interfaces. The resulting eight equations decouple into two matrix systems:

\[A = \left[\begin{array}{ccc} -M'(h_1) & h_1 M'(h_1) & -e_1 M'(-h_1) & -h_1 e_1 M'(-h_1) \end{array} \right] \cdot \mathbf{J}', \quad (21) \]
\[B = \left[\begin{array}{ccc} h_1 N'(h_1) & -k_1 N'(h_1) & -h_1 e_1 N'(-h_1) & -k_1 e_1 N'(-h_1) \end{array} \right] \cdot \mathbf{J}'. \quad (22) \]

where \(A \) and \(B \) are the same matrices defined above in Eqs. (8) and (9). The matrix solution of Eqs. (21) and (22) leads to:

\[\begin{bmatrix} c_1 \\ c'_1 \\ c_2 \\ c_3 \end{bmatrix} = \frac{1}{1 - e^{iR_1 R_{13}} R_2} \begin{bmatrix} e_1^2 R_{12}^3 (R_{13}^4 M^+ + M^+) \\ (1 + R_{12}^2) (M^- + R_{13}^3 M^+) \\ (1 + R_{13}^3) (M^+ + e_3 R_{12}^3 M^-) \end{bmatrix} \cdot \mathbf{J}, \quad (23) \]

\[\begin{bmatrix} f_1 \\ f'_1 \\ f_2 \\ f_3 \end{bmatrix} = \frac{1}{1 - e^{iR_1 R_{13}} R_2} \begin{bmatrix} e_1^2 R_{12}^3 (R_{13}^4 N^- - N^-) \\ (1 - R_{12}^2) (N^- - R_{13}^3 N^+) \\ (1 - R_{13}^3) (N^+ - e_3 R_{12}^3 N^-) \end{bmatrix} \cdot \mathbf{J} \quad (24) \]

We can now insert Eqs. (23) and (24) into Eqs. (18)–(20). Since an arbitrary \(\mathbf{J} \) then appears on both sides of the result, we can factor out \(\mathbf{J} \), yielding results in complete agreement with Eqs. (15)–(17). More details on this approach and the equivalence between the two methods will be provided in a forthcoming paper.\(^\dagger\)

IV. CALCULATION OF DECAY RATES

According to the classical phenomenological approach of CPS, the normalized decay rate of the admolecule can be obtained in terms of the imaginary part (3) of the reflected field at the dipole site as:

\[\hat{\beta} = \frac{b}{b_0} = \frac{1 + 6\pi \varepsilon_0 q n^2}{\rho_0 k_1^3} 2 \langle E_0 \rangle, \quad (25) \]
where q is the intrinsic quantum yield and $k_1=n_1 \omega/c$, with n_1 the real refractive index of the medium containing the dipole. We show below that the dyadics given in Eqs. (15)–(17) can indeed lead back to the correct results for \hat{b} for a molecule confined as in the geometry of Fig. 1.

We first consider the problem of a vertically oriented dipole with moment $p_0 \hat{z} e^{-i \omega t}$ at the source position $d \hat{z}$ between two interfaces at $z=0$ and $z=s+d=z_0$. The current will be given by

$$J = -i \omega p_0 \hat{z} e^{-i \omega t} \delta(R'-d \hat{z}).$$

Inserting this J into Eqs. (1) and using Eq. (15) yields

$$E_z^l(d \hat{z}) = \left\{ \begin{array}{l l}
\left(\frac{\omega^2 \mu_0 \mu_1 p_0 e^{-i \omega t}}{4 \pi} \right) \int_{\lambda=0}^{+\infty} \frac{2 - \delta_n}{\lambda h_1(\lambda)} \left[\frac{1}{1 - e_1^R{R}_{12}^R} \left(e_1^R{R}_{12}^R N^- N^- \right) R_{12}^N \left(e_1^R{R}_{12}^R N^- N^- \right) \right] d \lambda \\
\int_{\lambda=0}^{+\infty} \frac{1}{1 - e_1^R{R}_{12}^R} \left[\frac{1}{1 - e_1^R{R}_{12}^R} \left(e_1^R{R}_{12}^R N^- N^- \right) R_{12}^N \left(e_1^R{R}_{12}^R N^- N^- \right) \right] d \lambda
\end{array} \right. \nonumber$$

Inserting Eq. (27) into Eq. (25), we obtain

$$\hat{b}_z = 1 + \frac{6 \pi \varepsilon_0 q n_1^2}{p_0 k_1^2} \left[\frac{1}{2 \pi \varepsilon_0 k_1} \int_{\lambda=0}^{+\infty} \frac{1}{\lambda h_1(\lambda)} \left(\frac{1 - R_{13}^{ll} d \hat{z}}{1 - e_1^R{R}_{12}^R} - 1 \right) d \lambda \right]$$

$$= 1 - q + \frac{3 q}{2 k_1^2} \left[\int_{\lambda=0}^{+\infty} \frac{1}{\lambda h_1(\lambda)} \left(\frac{1 - R_{13}^{ll} d \hat{z}}{1 - e_1^R{R}_{12}^R} - 1 \right) d \lambda \right], \quad \text{(28)}$$

where we have used

$$\int_{\lambda=0}^{+\infty} \frac{\lambda^3 d \lambda}{\lambda^2 - \lambda^2} = \frac{2}{3} k_1^3.$$
\[\hat{x} \cdot \mathbf{G}_1(d\hat{z}, \hat{d}z) \cdot \hat{x} = \frac{i}{8\pi} \int_{\lambda=0}^{+\infty} \frac{1}{1-e_i^2R_{12}R_{13}} \left(2e_i^2R_{12}^4 + e_i^2R_{12}^4 + e_i^2R_{12}^4 \right) \]
\[+ \frac{1}{k_i^2(1-e_i^2R_{12}R_{13})} \left(2e_i^2R_{12}^4 + e_i^2R_{12}^4 + e_i^2R_{12}^4 \right) \frac{\lambda d\lambda}{h_i^2(\lambda)} \]
\[= \frac{i}{8\pi k_i^2} \int_{\lambda=0}^{+\infty} \left[k_i^2 \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) - 1 \right] + h_i^2(\lambda) \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) \frac{\lambda d\lambda}{h_i^2(\lambda)}. \]

where we have again used the identity:
\[\frac{2xy + x + y}{1 - xy} = (x + 1)(y + 1) \]

Using \(k_i^2 = \omega^2\epsilon_0\epsilon_1\mu_0\mu_1 \), we finally have
\[E_i(d\hat{z}) = \frac{p_0}{8\pi \epsilon_0 \epsilon_1} \int_{\lambda=0}^{+\infty} \left[k_i^2 \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) - 1 \right] + h_i^2(\lambda) \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) \frac{\lambda d\lambda}{h_i^2(\lambda)}. \]

Inserting Eq. (32) into Eq. (25), we obtain
\[\hat{b}_i = 1 + \frac{6\pi \epsilon_0 q_i n_i^2}{p_0 k_i^2} \int \left[\frac{p_0}{8\pi \epsilon_0 \epsilon_1} \int_{\lambda=0}^{+\infty} \left[k_i^2 \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) - 1 \right] + h_i^2(\lambda) \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) \frac{\lambda d\lambda}{h_i^2(\lambda)} \right] i[-ih_i(\lambda)] \]
\[= 1 + 3q_i \int \left[\left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) + h_i^2(\lambda) \left((e_i^2R_{12}^4 + 1)(e_i^2R_{12}^4 + 1) \right) \frac{\lambda d\lambda}{h_i^2(\lambda)} \right]. \]

which is identical to Eq. (2.29) of Ref. 4. Thus our Green dyadics in Eqs. (15)–(17) indeed reproduce the correct results for the decay rates obtained by the generalization of the Sommerfeld method.4

V. CONCLUSION

The dyadic Green’s function solution to the double mirror problem in Ref. 4 was found to have a theoretical error. We have shown that the error can be corrected by extending and symmetrizing the solution form in order to satisfy boundary conditions as done in Ref. 10. Alternatively, reassociation of the dyadic product with current density leads to the same solution as can be seen by virtue of an isomorphism between formulations.8 Finally, the corrected dyadic Green’s function formulation can be used directly to calculate and verify decay rates calculated in Ref. 4 from the Sommerfeld theory for the case of an oscillating dipole positioned between interfaces. With either of the two approaches, generalization is straightforward to the case with an arbitrary number of multiple interfaces for both the substrate and superstrate.8,10 In addition, the green dyadic formalism will also allow one to calculate an arbitrary source within the gap beyond that of an electric point dipole. The present formulation should be useful in these aspects.

ACKNOWLEDGMENTS

The authors are grateful to Professor Robert Silbey of MIT for very helpful correspondence. Partial support from Oregon Medical Systems is also acknowledged.

9. Note that the \(\delta \) function term is necessary for \(G_0 \) as explained in C. T. Tai, Proc. IEEE 61, 480 (1973).