Transportation Cost Index as a Performance Measure for Transportation and Land Use Systems: New Approaches and Applications

Liming Wang
Portland State University

Huajie Yang
Portland State University

Jenny H. Liu
Portland State University, jenny.liu@pdx.edu
MOTIVATIONS

This research aims to fill gaps in existing multi-modal performance measures for transportation and land use systems:

1. As a supplement/replacement of traffic-centric measures such as LOS, travel delay;
2. Recent federal and state legislations put more emphasis on using performance measures in transportation planning & operation: MAP-21, Oregon Job and Transportation Act (OJTA);
3. Existing performance measures for transportation and land use systems, although numerous, have their own limitation (Table 1), and leave important aspects and policy areas uncovered, for example, the balance of transportation investment between different modes and across geographical areas as mandated by OJTA.

TABLE 1. Summary of existing performance measures for LU & T systems

<table>
<thead>
<tr>
<th>Type of Measures</th>
<th>Examples</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Potential Measures</td>
<td>Employment accessible within 30 minutes by public transit during a.m. peak</td>
<td>Easy to interpret/understand; Sensitivity to chosen mode, time-of-day, and specific opportunities</td>
<td>Opportunities, mode, time-of-day and time budget specific; Potentially many measures to look at</td>
</tr>
<tr>
<td>Utility-based Measures</td>
<td>Logsum as an accessibility measure</td>
<td>Elegant, composite measures for all modes; possible to derive net user benefit from scenarios</td>
<td>Hard to interpret by itself; unable to compare across regions/times</td>
</tr>
<tr>
<td>Weighted Indices</td>
<td>Walk-score & Generalized cost weighted access to employment</td>
<td>Location-specific composite measures for a chosen mode</td>
<td>Hard to interpret by itself; Focuses on a single mode</td>
</tr>
<tr>
<td>Person-specific measures</td>
<td>Time-space prism measures</td>
<td>Detailed realistic measure</td>
<td>Data availability; too many measures to examine</td>
</tr>
<tr>
<td>Generalized Costs Indicator</td>
<td>Generalized costs indicator for private car by type of trips</td>
<td>Easy to interpret/understand; able to monitor trends and compare scenarios</td>
<td>per distance costs for motorized trips ignoring land use system; mode, time-of-day specific</td>
</tr>
</tbody>
</table>

IMPLEMENTATIONS & APPLICATIONS

Two current implementations utilize different data sources and are suitable for different use cases:

- **Survey-based Approach** utilizes travel survey data to calculate travel costs for each trip and each household, and then aggregates trip-level and household-level costs by geography (e.g., TAZ, district), trip purpose and/or income group.
- **Cluster-based Approach** first identifies activity centers in a study area with spatial clustering of activities and uses them as travel market baskets; the transportation costs are then computed for every geography (TAZ), trip purpose and income group as the costs of accessing the destinations in the travel market baskets.

CONCLUSION AND FUTURE WORK

This paper presents the results of our project aiming to develop a Transportation Cost Index (TCI) as a comprehensive multimodal performance measure for transportation and land use systems, to address certain limitations of existing similar measures and fill gaps in policy areas. It was adopted by the Accessibility Indicator Development Team (IDT) as one of the indicators for the Oregon Least Cost Planning process mandated by OJTA. Some ongoing and future work include:

- Verify patterns of transportation costs with information from alternative data sources;
- Test TCI usage in public engagement and policy making process.

ACKNOWLEDGEMENTS

- Oregon DOT for funding support through Grant # SPR-760;
- National Institute of Transportation and Communities for funding support through Grant # 2015-758;